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Forewords

This monograph is mainly intended to help my self-study of the theory of com-
plex analytic spaces. I do not claim any originality for the results in this mono-
graph. In writing this monograph, I drew on the following references: [GR-b]
(influencing my writing of chapters 2,3,4,6), [Fis] (chapters 1,3,5), [BS] (chapter 6),
[GPR] (chapters 3,4), [Vak17] (chapter 5), [Dem] (chapter 6).

The main goal of this monograph is to prove the semicontinuity theorem
and base change theorems in complex analytic geometry, mainly due to Grauert.
Namely: Thm. 6.6.2 and its immediate consequence Thm. 6.6.10, Thm. 6.7.4, and
Thm. 6.7.10. Thus, Sec. 6.6 and 6.7 are the climax of this monograph. And all pre-
vious results can be viewed as paving the way for the proof and understanding of
these theorems. I have tried to prove everything needed: the only exceptions are
Stein theory (e.g. Cartan’s Theorems) and Grauert direct image theorem, whose
references are given in Chapter 6.

Base change theorems and semicontinuity theorem give satisfying answers
to the following type of questions: Suppose that we have a complex manifold
X and a (finite-rank) holomorphic vector bundle E on X (namely, a locally-free
OX-module E ), and suppose we deform the complex structures of X and E . Un-
der what conditions can we extend an element of E pXq to global sections of the
nearby complex manifolds? In mathematical physics, one also considers defor-
mations of “(possibly) singular complex manifolds”, a.k.a. complex analytic spaces
(“complex spaces” for short). For instance, in 2-dimensional conformal field the-
ory and string theory, one considers deformations of compact curves with possi-
bly nodal singularities. Nodal curves are the “limits” of compact Riemann sur-
faces. (“Flat holomorphic maps” are a rigorous formulation of this limiting pro-
cess.) So, even if one is primarily interested in smooth complex manifolds, general
complex spaces are often inevitable.

Although, as mentioned at the beginning, this monograph was written to help
myself learn about the subject, I would be more than happy if others interested
in this subject could benefit from my writing.

December 2022
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Chapter 1

Basic notions of complex spaces

1.1 Notations and conventions

The following notations and conventions are assumed throughout the mono-
graph.

All rings and algebras are assumed to have a unity 1. Their morphisms are
assumed to map 1 to 1. “Rings” and ”C-algebras” are always assumed to be com-
mutative, unless otherwise stated. In general, an B-algebra A means a morphism
of rings B Ñ A. If A and B are already C-algebras, we require the morphisms to
be also C-linear.

N “ t0, 1, 2, 3, . . . u and Z` “ t1, 2, 3, . . . u.
i “

?
´1.

t0u,C,C2,C3, . . . are called (complex) number spaces.
Unless otherwise stated, all vector spaces are over C.
A neighborhood of a point x in a topological space means an open subset con-

taining x.
A precompact subset U of a topological space X is a subset such that the clo-

sure U cl in X is compact. A nowhere dense subset of X is a subset whose closure
in X contains no non-empty open subsets of X .

Ctz1, . . . , znu denotes OCn,0, the algebra of convergent power series of
z1, . . . , zn. It is clearly an integral domain. Crz1, . . . , zns denotes the algebra of
polynomials of z1, . . . , zn.

We assume the readers are familiar with the basic notions of sheaves and
their maps (morphisms), sheafifications, image sheaves, kernels and cokernels
of sheaves. For each presheaf E on a topological space X , we let Ex denote the
stalk of Ex at x. The stalk of s P E at x is denoted by sx, or sometimes abbreviated
to s when no confusion arises.

If φ : X Ñ Y is a continuous map of topological spaces, then the direct image
φ˚E denotes the sheaf on Y whose space of sections over any open V Ă Y is
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E pφ´1pV qq, i.e.

pφ˚E qpV q “ E pφ´1
pV qq.

If ψ : Y Ñ Z is continuous, we clearly have

pψ ˝ φq˚E “ ψ˚pφ˚E q.

If f : E1 Ñ E2 is an X-sheaf map, then we have a canonical φ˚f : φ˚E1 Ñ φ˚E2. φ˚

is a left exact functor from the category of X-sheaves to that of Y -sheaves. (Cf.
Rem. 1.9.6.)

If F is an OY -module, the inverse image φ´1pF q is the sheafification of the
presheaf on X associating to each open subsets of X :

U ÞÑ lim
ÝÑ

V ĄφpUq

F pV q

where the direct limit is over all open subset V Ă Y containing φpUq. For each
x P X there is a natural equivalence

pφ´1F qx » Fφpxq. (1.1.1)

EU , E |U , E |U , E æU all denote the restriction of anX-sheaf E to the open subset
U . If Y is a subset of X and ι : Y ãÑ X is the inclusion map, we define the set
theoretic restriction

E æY “ ι´1
pE q. (1.1.2)

In particular, for each y P Y , we have a canonical identification

pE æY qy “ Ey. (1.1.3)

Warning: in the future, we will define the restriction E |Y “ E |Y when Y is a
complex subspace of a complex space X and E is an OX-module. E |Y will be
different from E æY . In particular, pE |Y qy is not Ey.

We also write E pUq as H0pU,E q.
Recall that the support of an X-sheaf E , denoted by SupppE q, is the subset of

all x P X such that Ex ‰ 0.

Remark 1.1.1. If Y is a closed subset of a topological space X , then there is a
one-to-one correspondence between Y -sheaves F and X-sheaves E satisfying
SupppE q Ă Y : For any open U Ă X ,

F pU X Y q “ E pUq. (1.1.4)

Let ι : Y ãÑ X be the inclusion. Then clearly ι˚F “ E and E æY “ F . We often
view E and F as the same thing.
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If U is an open subset of CN , then a holomorphic function f on U is, by def-
inition, a continuous function f : U Ñ C which is separately holomorphic on
each variable (i.e., if z1, . . . , zi´1, zi`1, . . . , zN are fixed, then fpz‚q “ fpz1, . . . , zNq

is holomorphic with respect to zi).

Remark 1.1.2. The above definition agrees with our usual understanding of
analytic functions, i.e., f has convergent power series expansions fpz‚q “
ř

n1,...,nNPN an1,...,nN pz1 ´ w1q
n1 ¨ ¨ ¨ pzN ´ wNqnN if pw‚q P U . To see this, choose a

holomorphic f on U . Let us assume for simplicity w1 “ ¨ ¨ ¨ “ wN “ 0, and U is
the polydisc DR‚

“ tpz‚q P CN : |z1| ă R1, . . . , |zN | ă RNu where R1, . . . , RN ą 0.
Then for each 0 ă ri ă Ri and z‚ P Dr‚

,

fpz‚q “

¿

|ζ1|“r1

¨ ¨ ¨

¿

|ζN |“rN

fpζ‚q

pζ1 ´ z1q ¨ ¨ ¨ pζN ´ zNq
¨
dζ1 ¨ ¨ ¨ dζN

p2iπqN

by applying residue theorem successively to the variables ζ1, . . . , ζN . Write each
pζi´ziq

´1 as
ř8

ni“0 z
ni
i {ζni`1

i which converges absolutely and uniformly on |ζi| “ ri
and z‚ on any compact subset of Dr‚

, and substitute them into the above integral,
we get the desired series expansion which is absolutely and uniformly convergent
on |z1| ď r1, . . . , |zN | ď rN for all 0 ă ri ă Ri. This proves one direction. For
the other direction, namely absolutely convergent power series give holomorphic
functions, one simply applies Morera’s theorem to each complex variable.

Lemma 1.1.3 (Identitätssatz). If X is a connected complex manifold, and if h is a non-
zero (i.e. not constantly zero) holomorphic function on X , then h is non-zero when re-
stricted to any open subset U of X .

Proof. Consider the special case that X,U are open polydiscs in Cn. We know the
lemma is true when n “ 1 (by e.g. taking power series). For a general n, if h|U “ 0,
we may enlarge successively the disc-shape domains of each variable z1, . . . , zn on
which h is constantly zero to get h “ 0.

In general, we let Ω be the (clearly open) subset of all x P X such that h is
constantly zero on a neighborhood of x (i.e. the germ of h at x is zero). If x P XzΩ,
then every neighborhood of x P X biholomorphic to an open polydisc must be
disjoint from Ω, according to the previous paragraph. So XzΩ is open. Since X is
connected, Ω must be either H or U . Thus Ω “ H since h ‰ 0.

1.2 C-ringed spaces and sheaves of modules

1.2.1 C-ringed spaces

Definition 1.2.1. A C-ringed space is a topological space X together with a sheaf
of local C-algebras OX onX (i.e., for each open U Ă X , OXpUq is a C-algebra with
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unity, and the additions and multiplications are compatible with the restriction to
open subsets of U ; each stalk OX,x is a local C-algebra).

By saying that OX,x is a local C-algebra, we mean that there is a unique maxi-
mal ideal mX,x of OX,x, and that we have an isomorphism of vector spaces

C »
ÝÑ Cx :“ OX,x{mX,x, λ ÞÑ λ1.

We write mX,x as mx when no confusion arises. For each f P OX,x, we let fpxq P C
denote the residue class of f in OX,x{mx, called the value of f at x. In this way,
any section of OX can be viewed as a function.

OX is called the structure sheaf ofX . Each open subsetU Ă X is automatically
a C-ringed subspace of X with structure sheaf OU :“ OX |U .

For the sake of brevity, we write

OpXq “ OXpXq (1.2.1)

The following important fact is obvious:

Proposition 1.2.2. An element f P OX,x is a unit (i.e. invertible in the ring OX,x) iff
fpxq ‰ 0.

Proof. fpxq “ 0 iff f P mX,x iff f is not a unit.

Definition 1.2.3. A morphism of C-ringed spaces φ : X Ñ Y is a continuous
map of topological spaces, together with a morphism of sheaves of C-algebras
φ# : OY Ñ φ˚OX (namely, φ# is a sheaf map, and φ# : OY pV q Ñ OXpφ´1pV qq

is a morphism of C-algebras for each open V Ă Y ), and for each x P X and
y “ φpxq, the restriction φ# : OY,y Ñ OX,x is a morphism of local C-algebras, i.e.
a morphism of C-algebras such that

φ#
pmY,yq Ă mX,x. (1.2.2)

The set of morphisms of C-ringed spaces X Ñ Y is denoted by MorpX, Y q. If
φ P MorpX, Y q and ψ P MorpY, Zq, then their composition ψ ˝φ P MorpX,Zq is the
usual composition of maps of sets, together with

pψ ˝ φq
#

“ φ#
˝ ψ# : OZ,ψ˝φpxq Ñ OX,x

for all x P X .

We leave it to the readers to define isomorphisms of C-ringed spaces.

Proposition 1.2.4. For each section f P OY defined at y “ φpxq, we have

pφ#fqpxq “ f ˝ φpxq. (1.2.3)
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Proof. This is true when f “ 1 since φ# preserves 1. It is also true when f P mY,y.
So it is true in general.

Thus, φ# may be viewed as the transpose of φ. When studying morphisms
between complex spaces, we may write φ#f as f ˝ φ (cf. Rem. 1.4.2).

Example 1.2.5. A complex manifold is a C-ringed space if we define the structure
sheaf OX to be the sheaf of (germs of) holomorphic functions. If X and Y are
complex manifolds, then a holomorphic map from X to Y is a morphism of C-
ringed spaces.

1.2.2 Modules over C-ringed spaces

We begin this section with the following general observation:

Remark 1.2.6. If M ,N are two subsheaves of an X-sheaf such that Mx “ Nx for
all x P X , then M “ N . (For any s P M , sx P Mx “ Nx for all x on which s
is defined. So s P N . So M Ă N , and vice versa.) Thus, we can talk about“
the unique subsheaf of a given sheaf whose stalks are...” where the unique part is
automatic.

Definition 1.2.7. A presheaf of OX-modules E on a C-ringed space X is a sheaf
such that for each open U Ă X , E pUq is an OpUq-module, and that the linear
combination and the action of OpUq on E pUq are compatible with the restriction
to open subsets of U . If E is a sheaf, we call E an OX-module. We call the vector
space

E |x “ Ex{mX,xEx “ Ex b pOX,x{mX,xq (1.2.4)

the fiber of E at x. The right most expression of (1.2.4) will be explained in Rem.
1.9.3. The residue class of s P E in E |x is denoted by spxq or s|x.

Definition 1.2.8. A morphism of (presheaves of) OX-modules φ : E Ñ F , where
E and F are (presheaves of) OX-modules, is a sheaf map intertwining the actions
of OX . More precisely, for each open U Ă X , φ : s P E pUq ÞÑ φpsq P F pUq is a
morphism of OpUq-modules; if V Ă U is open, then φps|Uq “ φpsq|U .

φ is called injective resp. surjective if it is so as a sheaf map, namely φ : Ex Ñ

Fx is injective resp surjective for all x P X . E
φ
ÝÑ F

ψ
ÝÑ G is called exact if the

corresponding sequence of stalk map Ex
φ
ÝÑ Fx

ψ
ÝÑ Gx is exact for all x P X . φ

is an isomorphism of OX-modules iff φ has an inverse iff φ is both injective and
surjective.
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Remark 1.2.9. In the following diagrams, assume that all objects are OX-modules,
that all horizontal arrows are morphisms of OX-modules, and that the two hori-
zontal lines are exact.

0 E F G

0 E 1 F 1 G 1

α β γ (1.2.5)

If there are morphisms β, γ such that the second square in (1.2.5) commutes, then
β restricts to a (necessarily unique) morphism α such that the first square com-
mutes.

E F G 0

E 1 F 1 G 1 0

α β γ (1.2.6)

If there are morphisms α, β such that the first square in (1.2.6) commutes, then
β descends to a (necessarily unique) morphism γ such that the second square
commutes.

Of course, the same observations hold for morphisms of modules of any com-
mutative ring/algebra, and for general sheaf maps.

Remark 1.2.10 (Gluing construction of sheaves). Let pVαqαPA be an open cover
of a topological space X . Suppose that for each α P A, we have a sheaf E α, that
for any α, β P A, we have a sheaf isomorphism ϕβ,α : E α

VαXVβ

»
ÝÑ E β

VαXVβ
, that

ϕα,α “ 1, and that ϕγ,α “ ϕγ,βϕβ,α when restricted to Vα X Vβ X Vγ . Then we can
define a sheaf E on X as follows. For any open U Ă X , E pUq is the set of all
psαqαPA P

ś

αPA E αpU X Vαq (where each component sα is in E αpU X Vαq) satisfying
that sβ|VαXVβ “ ϕβ,αpsα|VαXVβq for any α, β P A. If W is an open subset of U , then
the restriction E pUq Ñ E pW q is defined by that of E αpUXVαq Ñ E αpWXVαq. Then
for each β P A, we have a canonical isomorphism (trivialization) ϕβ : EVβ

»
ÝÑ E β

Vβ

defined by psαqαPA ÞÑ sβ . It is clear that for each α, β P A, we have ϕβ “ ϕβ,αϕα
when restricted to Vα X Vβ .

In the case that X is a C-ringed space, that each E α is an OVα-module, and that
ϕβ,α is an equivalence of OVαXVβ -modules, then E is a sheaf of OX-modules.

Let X be a C-ringed space.

Definition 1.2.11. A set of sections S Ă OXpXq is said to generate the OX-module
E if they generate each stalk Ex, i.e., each element of Ex is an OX,x-linear combina-
tion of finitely many elements of S. Equivalently, this means that the OX-module
morphism

à

sPS

OX Ñ E , ‘sfs ÞÑ
ÿ

s

fs ¨ s (1.2.7)

(where fs P OX) is surjective. If it is also injective, we say S generates freely E .
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Definition 1.2.12. We say an OX-module E is of finite type if each x P X is con-
tained in a neighborhood U such that the restriction E |U is generated by finitely
many elements of E pUq, or equivalently, there is a surjective OU -module mor-
phism On

U Ñ E |U .

Exercise 1.2.13. Show that if E is a finite type OX-module, then each stalk Ex is a
finitely generated OX,x-module, and hence each fiber E |x is finite-dimensional.

Definition 1.2.14. If E1,E2 are OX-submodules of an OX-module F . The sheafifi-
cation of the presheaf

pE1 ` E2q
pre

pUq “ E1pUq ` E2pUq (1.2.8)

is denoted by E1 ` E2. It is the unique subsheaf of F (cf. Rem. 1.2.6) whose stalks
are pE1`E2qx “ E1`E2. It follows that if E1 is generated by s1, s2, ¨ ¨ ¨ P E1pXq and E2

is generated by t1, t2, ¨ ¨ ¨ P E2pXq, then E1 ` E2 is generated by s1, s2, . . . , t1, t2, . . . .

We recall the well-known

Theorem 1.2.15 (Nakayama’s lemma). Let pA,mq be a local ring with maximal ideal
m, and let M be a finitely generated A-module. Choose a finite set of elements s1, . . . , sn P

M. Then the following are equivalent.

(1) s1, . . . , sn generate the A-module M (i.e. elements of M are A-linear combinations
of s1, . . . , sn).

(2) The residue classes of s1, . . . , sn span the pA{mq-vector space M{pmMq.

Proof. Clearly (1) implies (2). Let us prove (2)ñ(1). Assume s1, . . . , sn span
M{pmMq. We extend the list s1, . . . , sn to s1, . . . , sN P M (where N ě n) such
that they generate M. If N “ n then there is nothing to prove.

AssumeN ą n. Then every element of M, and in particular sN , can be written
as

sN “ a1s1 ` ¨ ¨ ¨ ` ansn ` σ

where a1, . . . , an P A and σ P mM. Since s1, . . . , sN generate the A-module M, we
have σ “ f1s1 ` ¨ ¨ ¨ ` fNsN where f1, . . . , fN P m. So

sN “ g1s1 ` ¨ ¨ ¨ ` gNsN

where gn`1, gn`2, . . . , gN P m. Since g1 P m, 1 ´ g1 is invertible in A. So

sN “ p1 ´ gNq
´1

N´1
ÿ

i“1

gisi.

This proves that s1, . . . , gN´1 generate M. By repeating this procedure several
times, we conclude that s1, . . . , sn generate M.
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To apply Nakayama’s lemma to sheaves of modules, we need the following
observation:

Remark 1.2.16. Let E be a finite-type OX-module. Let s1, . . . , sn be sections of E
defined on a neighborhood of x P X . Suppose (the germs of) s1, . . . , sn generate
the OX,x-module Ex. Then there is a neighborhood U of x such that s1, . . . , sn
generate E |U . In particular, “Ex generates E |U”.

Proof. Since E is finite-type, we may find U such that E |U is generated by
t1, . . . , tm P E pUq. Since s1, . . . , sn generate Ox, the germs of t1, . . . , tm are OX,x-
linear combinations of s1, . . . , sn. Thus, on a possibly smaller U , t1, . . . , tm are
OXpUq-linear combinations of s1, . . . , sn. So s1, . . . , sn generate E |U .

Corollary 1.2.17. Let E be a finite-type OX-module. Then SupppE q is a closed subset of
X .

Proof. Assume the setting of Rem. 1.2.16. If Ex “ 0 then the stalks of s1, . . . , sn are
zero at x. So we may shrink U so that s1 “ ¨ ¨ ¨ “ sn “ 0 in E pUq. So E |U “ 0.

Exercise 1.2.18. Use Nakayama’s lemma and Rem. 1.2.16 to show that if E is a fi-
nite type OX-module, and if s1, . . . , sn P E pUq (whereU is a neighborhood of x) are
such that s1pxq, . . . , snpxq span the fiber E |x, then they generate E |V for a possibly
smaller neighborhood V of x. (The opposite direction is obvious.) Nakayama’s
lemma is most often used in this form.

Corollary 1.2.19. Let E be a finite-type OX-module. Then the rank function x P X ÞÑ

dimpE |xq is upper-semicontinuous.

Definition 1.2.20. We say that an OX-module E is free if it is isomorphic to On
X for

some n P N. We say E is locally free if each x P X is contained in a neighborhood
U such that E |U is free (or equivalently, that E |U is generated freely by finitely
many elements of E pUq).

Exercise 1.2.21. Show that for a complex manifold X , locally free OX-modules E
are the same as holomorphic vector bundles on X . Describe local trivializations
and transition functions in terms of local free generators of E .

Definition 1.2.22. An ideal sheaf I on a C-ringed space X is an OX-submodule
of OX . In particular, each stalk Ix is an ideal of OX,x. The zero set NpIq is defined
to be

NpIq :“ tx P X : fpxq “ 0 for all f P Ixu “ tx P X : Ix Ă mX,xu

“tx P X : 1 R Ixu “ tx P X : Ix ‰ OX,xu “ SupppOU{Iq.
(1.2.9)

Note that this is a closed subset of X by Cor. 1.2.17.
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Proof. Note that pOU{Iqx “ OU,x{Ix. So x P SupppOU{Iq iff OU,x{Ix ‰ 0 iff Ix Ĺ

OU,x iff Ix Ă mx (as mx is the unique maximal ideal) iff fpxq “ 0 for all f P mx.

Remark 1.2.23. If I is generated by f1, . . . , fn P OpXq, written as

I “ f1OX ` ¨ ¨ ¨ ` fnOX ,

then clearly

NpIq “ tThe common zeros of f1, . . . , fnu. (1.2.10)

We also write NpIq as Npf1, . . . , fnq.

1.3 Complex spaces and subspaces

Definition 1.3.1. A (complex) model space is

SpecanpOU{Iq :“
`

NpIq, pOU{Iq æNpIq

˘

(1.3.1)

where U is an open subset of a number space Cn, OU is the sheaf of holomorphic
functions on U , I is a finite-type ideal of OU . SpecanpOU{Iq is called the analytic
spectrum of the sheaf OU{I. Its underlying topological space is SupppOU{Iq as a
subset of U , and its structure sheaf is pOU{Iq æNpIq, whose stalk at any x P NpIq is
OU,x{Ix (cf. (1.1.3)). With abuse of notations, one also writes for simplicity

SpecanpOU{Iq :“
`

NpIq,OU{I
˘

. (1.3.2)

The stalk at x P NpIq of the structure sheaf is a local C-algebra
`

OU,x{Ix,mU,x{Ix
˘

Definition 1.3.2. A C-ringed Hausdorff space X is called a complex space if each
point x P X is contained in a neighborhood V such that the C-ringed space V
(whose structure sheaf is defined by OV :“ OX |V ) is isomorphic to a model space.
Sections of OXpXq are called holomorphic functions on X . OX,x is called an an-
alytic local C-algebra. Equivalently, an analytic local C-algebra is Ctz1, . . . , znu{I
for some finitely generated ideal I .1

If X, Y are complex spaces, a morphism φ : X Ñ Y of C-ringed spaces is
called a holomorphic map. If φ has an inverse morphism Y Ñ X , we say that φ is
a biholomorphism. Clearly, a holomorphic map φ is a biholomorphism iff it is a
homeomorphism of topological spaces and induces isomorphisms φ# : OY,φpxq

»
ÝÑ

OX,x for each x P X .
1As we shall see, Ctz1, . . . , znu is Noetherian. So the condition that I is finitely generated is

redundant.
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Definition 1.3.3. A morphism of (analytic) local C-algebras OY,y Ñ OX,x is a
homomorphism of unital algebras sending mY,y into mX,x.

Definition 1.3.4. Let X be a complex space. An open complex subspace is
pU,OX |Uq where U is an open subset of X . A closed complex subspace is

SpecanpOX{Iq :“
`

NpIq, pOX{Iq æNpIq

˘

(1.3.3)

where I is a finite type ideal of OX . The stalk of the structure sheaf at x P NpIq is
a local C-algebra

`

OX,x{Ix,mx{Ix
˘

.

Remark 1.3.5. Let X0 “ SpecanpOX{Iq. The construction of OX0 “ pOX{Iq æNpIq

involves two sheafifications: one for quotient, and one for set-theoretic restriction.
It would be convenient to combine these two into one: OX0 is the sheafification of
the presheaf Opre

X0
sending each open U0 Ă X0 (more precisely, U0 Ă NpIq) to

Opre
X0

pU0q “ lim
ÝÑ
UĄU0

OXpUq{IpUq (1.3.4)

where the direct limit is over all open U Ă X containing U0. Indeed, one can also
take the direct limit over all open U satisfying U X NpIq “ U0.

Remark 1.3.6. We have an obvious inclusion map which is holomorphic:

ι : X0 “ SpecanpOX{Iq ãÑ X

such that ι# : OX Ñ ι˚OX0 “ ι˚ι
´1pOX{Iq restricts to the quotient maps OX,x Ñ

OX,x{Ix “ pι˚ι
´1pOX{Iqqx for all x P X .

Proof. We explain the existence of such sheaf map ι#. Choose any open U Ă X .
Then by passing to direct limits (1.3.4), the quotient map OXpUq Ñ OXpUq{IpUq

becomes a map OXpUq Ñ Opre
X0

pU X NpIqq whose composition with Opre
X0

Ñ OX0

gives OXpUq Ñ OX0pU X NpIqq “ pι˚OX0qpUq.

Complex spaces arise from

Remark 1.3.7 (Gluing construction of complex spaces). Suppose X is a Haus-
dorff space with an open cover V “ pVαq. Suppose that for each Vα there is a
homoemorphism φα : Vα Ñ Uα where Uα is a complex space. Suppose also that
for each α, β, the homeomorphism φβφ

´1
α : φαpVα X Vβq Ñ φβpVα X Vβq (where

the source and the target are regarded as open subspaces of Uα and Uβ respec-
tively) can be extended to an isomorphism φβ,α of C-ringed spaces satisfying the
cocycle condition: for all α, β, γ, we have φα,α “ 1 and φγ,α “ φγ,βφβ,α (from
φαpVα X Vβ X Vγq to φγpVα X Vβ X Vγq). Then X is naturally a complex space such
that φα : Vα Ñ Uα is extended to an isomorphism of C-ringed spaces such that
φβ “ φβ,αφα (from Vα X Vβ to φβpVα X Vβq). Indeed, OX is constructed by gluing
all the Vα-sheaves φ´1

α OUα (cf. Rem. 1.2.10).
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Let us see some examples of complex spaces. We begin with an easier class of
examples:

Definition 1.3.8. Let X be a complex space, and let CX be the sheaf of complex
valued continuous functions on X . Then there is a natural morphism of sheaves
of local C-algebras (i.e. a morphism ofX-sheaves which preserve the linear struc-
tures and algebra multiplications when restricted to each open subset, and whose
stalk maps send the maximal ideals into maximal ones)

red : OX Ñ CX (1.3.5)

sending each f P OX to f as a function (cf. Def. 1.2.1). red is called the reduction
map of X . If red : OX,x Ñ CX,x is injective, we say that X is reduced at x P X ,
or equivalently that x is a reduced point of X . If X is reduced everywhere, X is
called a reduced complex space.

Exercise 1.3.9. Let X be a closed subspace of a reduced complex space Y . Show
that X “ Y iff redpXq “ Y .

A holomorphic function on a reduced complex space can be viewed as a gen-
uine continuous function without losing information. (Formally speaking: OX

is a subsheaf of CX .) For non-reduced spaces, holomorphic functions cannot be
viewed as genuine functions.

Remark 1.3.10. In commutative algebra, there is a notion of reducedness: OX,x

is called reduced if it has no non-zero nilpotent element. We will see later that
a complex space X is reduced at x iff OX,x is a reduced ring. This is the famous
Nullstellensatz.

Example 1.3.11. Let U Ă Cm ˆ Cn be open, and let I “ z1OU ` ¨ ¨ ¨ ` zmOU .
Then X “ SpecanpOU{Iq is naturally equivalent to the complex submanifold U X

p0 ˆ Cnq » U X Cn (whose structure sheaf is the sheaf of holomorphic functions
fpζ1, . . . , ζnq).

Proof. Clearly NpIq “ U X Cn (cf. Rem. 1.2.23). Consider the identity map φ :
UXCn Ñ X as a homeomorphism of topological spaces. In particular, we have an
isomorphism redφ# : CX Ñ CUXCn . We shall construct φ# : OX “ OU{I æNpIqÑ

OUXCn such that φ is an isomorphism of C-ringed spaces.
By (1.1.3), for each x P U X Cn,

OX,x “ ppOU{Iq æNpIqqx » OCm`n,x{Ix » OCn,x

where the last isomorphism can be seen by taking power series expansions of
fpz‚, ζ‚q “ fpz1, . . . , zm, ζ1, . . . , ζnq at n and throwing away every terms containing
powers of ζ‚. Define a sheaf map

φ# : OX
red
ÝÝÑ CX

redφ#

ÝÝÝÑ
»

CUXCn .
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Its stalk map is OCn,x Ñ CUXCn,x sending each f to the function f itself. From this
we see that the stalk map is injective and has image OUXCn,x. This shows that φ#

is an injective sheaf map with image OUXCn . So φ# restricts to an isomorphism of
sheaves of local C-algebras OX Ñ OUXCn .

Remark 1.3.12. The proof of Exp. 1.3.11 suggests a way of understanding a re-
duced model space X “ SpecanpOU{Iq: 1. Find the underlying topological space
NpIq. 2. Understand each stalk OX,x “ OU,x{Ix and show that red : OX,x Ñ CX,x

is injective. 3. Find a familiar sheaf of local C-subalgebras A Ă CX such that
Ax “ redpOX,xq. Then X » pNpIq,A q.

Exercise 1.3.13. Let U be a neighborhood of 0 P C2. Let z, w be the standard coor-
dinates of C2. Let I “ zw ¨OU , the ideal sheaf generated by the function zw. Show
that SpecanpOU{Iq is equivalent to the C-ringed space whose underlying topolog-
ical space is NpIq “ tpz, wq P U : z “ 0 or w “ 0u, and whose structure sheaf is
the sheaf of continuous functions on open subsets of NpIq that are holomorphic
when restricted respectively to the z-axis and to the w-axis.

Example 1.3.14. Let k P Z`. Let U be a neighborhood of 0 P C. We call
SpecanpOU{zkOUq “ p0,Ctzu{zkCtzuq “ p0,Crzs{zkCrzsq the k-fold point. It is
not reduced when k ą 1. A single reduced point is precisely a 1-fold point, which
is the same as the connected 0-dimensional complex manifold C0.

We close this section by discussing a useful relationship between local-freeness
and rank functions. A locally-free sheaf clearly has locally constant rank. The
converse holds under some conditions which are often easy to verify:

Proposition 1.3.15. Let X be a reduced complex space, and let E be a finite-type OX-
module. Then E is locally free if and only if the rank function R : x P X ÞÑ dimpE |xq is
locally constant. Moreover, if R has constant value n, and if s1, . . . , sn P E pXq generate
E , then s1, . . . , sn generate E freely.

Proof. Suppose R has constant value n and s1, . . . , sn P E pXq generate E . Then
for each open U Ă X and f1, . . . , fn P OpUq satisfying f1s1 ` ¨ ¨ ¨ ` fnsn “ 0, we
have for each x P U that f1pxqs1pxq ` ¨ ¨ ¨ `fnpxqsnpxq “ 0 where sipxq is the restric-
tion of si to the fiber E |x. Clearly s1pxq, . . . , snpxq span E |x. Since dimpE |xq “ n,
s1pxq, . . . , snpxq form a basis of E |x. So f1pxq “ ¨ ¨ ¨ “ fnpxq “ 0. As holo-
morphic functions on a reduced space are determined by their values, we have
f1 “ ¨ ¨ ¨ “ fn “ 0. This proves that s1, . . . , sn are OX-free.

Assume in general that E is finite-type and R is locally constant. By shrinking
X to a neighborhood of x P X we may assume R has constant value n. Choose
s1, . . . , sn P Ex whose values at x form a basis of E |x. By Nakayam’s lemma (Exe.
1.2.18), we may shrink X so that s1, . . . , sn P E pXq generate E . So by the first
paragraph, E is locally-free.
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1.4 Holomorphic maps

In order to construct complex spaces by gluing model spaces (Rem. 1.3.7),
and to understand holomorphic maps between complex spaces, we need
to understand morphisms (i.e. holomorphic maps) between model spaces
SpecanpOU{Iq Ñ SpecanpOV {J q (where U Ă Cm and V Ă Cn are open). This
is a main goal of this section.

The first step is to understand the case that target is just V . As one may ex-
pect, holomorphic maps in this case are described by an n-tuple of holomorphic
functions. Recall that MorpX, Y q is the set of holomorphic maps from the complex
space X to Y . Let z1, . . . , zn be the standard coordinates of Cn.

Theorem 1.4.1. Let X be a complex space. Then the following map is bijective:

MorpX,Cn
q Ñ OpXq

n, φ ÞÑ pφ#z1, . . . , φ
#znq. (1.4.1)

Remark 1.4.2. Due to this theorem, if ψ : X Ñ Y is a holomorphic map and
f P OpY q, then we may write

f ˝ ψ “ ψ#f (1.4.2)

by viewing f as a holomorphic map Y Ñ C.

The proof of Thm. 1.4.1 relies on the Noetherian property of OX,x, whose proof
is deferred to the next section.

Proof that (1.4.1) is surjective assuming (1.4.1) is injective. Assume (1.4.1) is injective
for all complex spaces. Fix X and F “ pf1, . . . , fnq P OpXqn. We claim that each
x P X is contained in a neighborhood Ux such that F |Ux P OpUxqn corresponds to
some φx P MorpUx,Cnq. By the injectivity, for every x, y P X , φx and φy agree on
Ux X Uy. Gluing all φx together gives the desired φ corresponding to F .

To prove the claim, we may assume Ux is a model space SpecanpOV {Iq where
V Ă Cm is open and I is finite-type. Since the stalk pOV {Iq|x equals OV,x{Ix,
we can further shrink Ux so that F |Ux can be lifted to rF |V P OpV qn. rF can be
viewed as a holomorphic map V Ñ Cn. Its composition with the inclusion ι :
SpecanpOV {Iq ãÑ V gives the desired holomorphic map φ.

Proof that (1.4.1) is injective. Let φ1, φ2 P MorpX,Cnq correspond to the same ele-
ment pf1, . . . , fnq of OpXqn. By (1.2.3), zi ˝ φ‚pxq “ pφ#

‚ ziqpxq “ fipxq. So φ1 equals
φ2 as set maps, i.e. φ‚pxq “ pf1pxq, . . . , fnpxqq. Checking that they are equal as
morphisms of C-ringed spaces is equivalent to showing for any x that φ#

1 “ φ#
2

as maps from OCn,φ‚pxq “ Otz1 ´ f1pxq, . . . , zn ´ fnpxqu to OX,x. We know that they
both send each zi ´ fipxq to fi ´ fipxq. So they are equal by the uniqueness part of
the following proposition.

17



The following proposition can be viewed as the infinitesimal version of Thm.
1.4.1. (This will become clear after the readers read Thm. 1.6.2.)

Proposition 1.4.3. Let OX,x be an analytic local C-algebra. Fix n P N and f1, . . . , fn P

OX,x. Then there is a unique morphism of local C-algebras satisfying

Φ : OCn,0 “ Ctz1, . . . , znu Ñ OX,x, zi ÞÑ fi ´ fipxq. (1.4.3)

Note that as a morphism of local rings, Φ is assumed to send mCn,0 “
řn
j“1 zjCtz1, . . . , znu into mX,x.

Proof. Existence: By the second paragraph of the proof that (1.4.1) is surjective
(which does not rely on the injectivity of (1.4.1)), by shrinking X , we may choose
a holomorphic map ϕ : X Ñ Cn corresponding to pf1´f1pxq, . . . , fn´fnpxqq. Then
the stalk map ϕ# : OCn,0 Ñ OX,x gives Φ.

Injectivity: Assume Φ1,Φ2 both satisfy the requirement. Then they clearly
agree when restricted to the polynomial ring Crz1, . . . , zns. Now we choose
g P Ctz‚u. For each k P N, we may write g as a polynomial of z‚ plus gk P mk

Cn,0.
So Φ1pgq ´Φ2pgq equals Φ1pgkq ´Φ2pgkq, which belongs to mk

X,x since Φi sends mC,0
into mX,x. So Φ1pgq ´ Φ2pgq belongs to

Ş

kPN m
k
X,x, which is 0 due to the following

theorem and the fact that OX,x is Noetherian.

Theorem 1.4.4 (Krull’s intersection theorem). Let pA,mq be a Noetherian local ring,
and let M be a finitely-generated A-module. Then

Ş

kPN m
k ¨ M “ 0.

Proof. The submodule N “
Ş

kPNm
k ¨ M is also finitely generated as A is Noethe-

rian. Then N “ 0 will follow from mN “ N (equivalently, 0 spans the “fiber”
N {mN ) and Nakayama’s lemma. That mN “ N is due to Artin-Rees lemma (ap-
plied to the m-stable filtration pmkMqkPN to show that pN X mkMqkPN “ pN qkPN is
m-stable).

Recall that if I is an ideal of a ring A, an I-filtration pMnqnPN (of M0) is a
descending chain of A-modules M0 Ą M1 Ą M2 Ą ¨ ¨ ¨ satisfying IMn Ă Mn`1

for all n P N. It is called I-stable if for some N P N we have IMn “ Mn`1 for all
n ě N .

Theorem 1.4.5 (Artin-Rees lemma). Let I be an ideal of a Noetherian ring A. Then
for any I-stable filtration pMnqnPN inside a finitely-generated A-module M, and for any
submodule N Ă M, pN X MnqnPN is I-stable.

Proof. The graded ring A‚ “
À

nPN I
n (where I0 “ A) is a quotient of the Noethe-

rian ring Arz1, . . . , zms if I is generated by m elements. So A‚ is Noetherian.
Let M be a finitely-generated A-module, and let pMnqnPN be an I-filtration

in M. Then each Mn is A-finitely-generated because A is Noetherian. Consider
the graded A‚-module M‚ “

À

nPNMn defined by the condition that an element

18



a P In in the n-th component of A‚ sends ξ P Mk in the k-th component of M‚ to
aξ P Mn`k in the pn ` kq-th component. We note that

The I-filtration pMnqnPN is I-stable
õ

M‚ is a finitely generated graded A‚-module
(1.4.4)

Indeed, if pMnqnPN is I-stable, choose N P N such that IMn “ Mn`1 for all n ě

N . Then MďN
‚ :“

À

nďN Mn (which is A-finitely-generated) generates the A‚-
module M‚. So M‚ is A‚-finitely-generated. Conversely, if M‚ is A‚-finitely-
generated, we can find N P N such that M‚ is generated by MďN

‚ . Then it is not
hard to see that IMn “ Mn`1 for all n ě N .

Now suppose that pMnqnPN is I-stable. Then M‚ is A‚-finitely-generated. So
its submodule N X M‚ “

À

nPN N X Mn is A‚-finitely-generated because A‚ is
Noetherian. Therefore pN X MnqnPN is I-stable.

The uniqueness part of Thm. 1.4.1 can be formulated in the following form.

Remark 1.4.6 (Substitution rule). Let X be a complex space, let I be a finite type
ideal of OX containing f1´g1, . . . , fn´gn where f‚, g‚ P OpXq. Let F “ pf1, . . . , fnq

and G “ pg1, . . . , gnq. Let h P OCn . Then F#h and G#h restrict to the same (locally
defined) holomorphic function of Y “ SpecanpOX{Iq, i.e. they are equal as ele-
ments of OX{I.

Proof. fi and gi are equal as holomorphic functions of Y . So by Thm. 1.4.1, F and
G are the same holomorphic map X Ñ Cn. So F#h equals G#h as elements of
OY .

Example 1.4.7. Let U Ă C2 be open, let f P OpUq, and let I be the ideal sheaf of
OU generated by z2 ´ fpz1, z2q. Then for each h P OC2 , hpz1, z2q and hpz1, fpz1, z2qq

are equal as elements of OU{I.

We have seen how a holomorphic map from a model space SpecanpOU{Iq

to V Ă Cn looks like. The next question is when this map “has image in
SpecanpOV {J q”? This is answered by the following theorem whose proof does
not rely on the Noetherian property.

Theorem 1.4.8. Let φ : X Ñ Y be a holomorphic map of complex spaces. Let
X0 “ SpecanpOX{Iq and Y0 “ SpecanpOY {J q be closed complex subspaces of X and Y
respectively. Then the following are equivalent:

(a) There is a (necessarily unique) holomorphic map ψ : X0 Ñ Y0 such that the follow-
ing diagram commutes:

X0 Y0

X Y

ψ

φ

(1.4.5)
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(b) For each x P X and y “ φpxq, the stalk map φ# : OY,y Ñ OX,x satisfies

φ#
pJyq Ă Ix

Proof. Assume (a). If x P X0, then each f P Jy Ă OY,y is sent by the transpose ι#Y0,Y
to 0. Also f is sent by φ# to φ#pfq P OX,x, and then sent by ι#X0,X

to φ#pfq ` Ix in
OX0,x “ OX,x{Ix, which must be 0 since (1.4.5) commutes. So φ#pfq P Ix.

If x P XzX0, then x ‰ NpIq. So Ix “ OX,x0 . Then clearly φ#pJyq Ă Ix. (b) is
proved.

Now assume (b). If y R NpJ q, then Jy “ OY,y. So 1 P Jy, and so 1 “ φ#p1q

belongs to Ix. Therefore x R NpIq. This proves φpNpIqq Ă NpJ q. So ψ exists as a
continuous map of topological spaces, and such a map is clearly unique.

Choose x P X0 i.e. x P NpIq. By (b), we have a commutative diagram

OX0,x “ OX,x{Ix OY0,y “ OY,y{Jy

OX,x OY,y

ψ#

φ#

for a unique stalk map ψ# : OY0,y Ñ OX0,x, which is clearly a morphism of local
C-algebras. It remains to show that these stalk maps can be assembled into a sheaf
map.

Recall the presheaves in Rem. 1.3.5. For each open V Ă Y , (b) implies
φ#pJ pV qq Ă Ipφ´1pV qq. So the map φ# : OY pV q Ñ pφ˚OXqpV q “ OXpφ´1pV qq

descends to

OY pV q{J pV q Ñ OXpφ´1
pV qq{Ipφ´1

pV qq.

By taking direct limit over all V containing a fixed open V0 Ă Y0, we obtain

Opre
Y0

pV0q Ñ Opre
X0

pψ´1
pV0qq

Its composition with

Opre
X0

pψ´1
pV0qq Ñ OX0pψ´1

pV0qq “ pψ˚OX0qpV0q

gives a presheaf map Opre
Y0

Ñ ψ˚OX0 whose sheafification is the desired ψ# : OY0 Ñ

ψ˚OX0 .

1.5 Weierstrass division theorem and Noetherian
property of OX,x

1.5.1 Main results

Now that we have seen the importance of the Noetherian property, we prove
this in this section. Since OX,x is a quotient of OCn,0, it suffices to prove that OCn,0
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is Noetherian. The proof relies on Weierstrass division theorem, which we state
below.

Definition 1.5.1. We say that fpzq P Ctzu has order k P N Y t8u if fpzq “ zkpak `

ak`1z ` ak`2z
2 ` ¨ ¨ ¨ q and ak ‰ 0; f has order 8 iff f “ 0. More generally, for

m P N, we say that fpw‚, zq “ fpw1, . . . , wm, zq P Ctw‚, zu has order k (in z) if
fp0, zq P Ctzu has order k. Equivalently, fpw‚, zq “

ř8

i“0 akpw‚qzk where

a0p0q “ ¨ ¨ ¨ “ ak´1p0q “ 0, akp0q ‰ 0. (1.5.1)

That f has order 8 in z means aip0q “ 0 for all i.
Recall that the degree of a polynomial ppw‚, zq P Ctw‚urzs is the smallest power

of z whose coefficient is a non-zero element of Ctw‚u. The degree of zero polyno-
mial is set to be ´8.

Remark 1.5.2. Let fpw‚, zq have order k ă 8 in z, defined on a neighborhood of
0. Then inside this neighborhood we can find a smaller one U ˆ V Ă Cm ˆC such
that fp0, zq has one zero in V cl (namely z “ 0) with multiplicity k. By Rouché’s
theorem, we may shrink U such that for each fixed w‚ P U , the holomorphic
function fpw‚, zq of z has k zeros in V counting multiplicities; see Fig. 1.5.1.

z

w‚

Figure 1.5.1

In the following, we suppress the variable w‚ when necessary.

Theorem 1.5.3 (Weierstrass division theorem (WDT)). Suppose g P Ctw‚, zu has
order k ă 8 in z. Then for each f P Ctw‚, zu, there exist unique q P Ctw‚, zu and
r P Ctw‚urzs with degree ă k such that f “ gq ` r.

We shall prove the Noetherian property using the following (almost) equiva-
lent form of WDT.

Theorem 1.5.4 (Weierstrass division theorem (WDT)). Suppose g P Ctw‚, zu “

OCm`1 has order k ă 8 in z. Then OCm`1,0{gOCm`1,0 is a rank-k free OCm-module.
1, z, . . . , zk´1 are a set of free generators.

Theorem 1.5.5. Every analytic local C-algebra OX,x is Noetherian.

Proof. It suffices to discuss OCn,0. We prove this by induction on n. The case n “ 0
is trivial. Suppose the case m “ n ´ 1 is known. We prove the case m ` 1. We
write Om “ OCm,0 and Om`1 “ OCm`1,0 for simplicity.

21



• Claim: If g P Om`1 is nonzero, then Om`1{gOm`1 is a Noetherian ring, equiv-
alently, a Noetherian Om`1-module.

Suppose the claim is true. Choose any non-zero ideal I Ă Om`1. Choose
0 ‰ g P I . By the claim, I{gOm`1, as a Om`1-submodule of Om`1{gOm`1, is Om`1-
finitely generated. Thus, the exact sequence

0 Ñ gOm`1 Ñ I Ñ I{gOm`1 Ñ 0

shows that I is Om`1-finitely generated. This proves the case m ` 1.
It remains to prove the claim. Choose 0 ‰ g P Om`1. Then on a complex line

passing through 0, 0 must be an isolated zero of g. (Otherwise, on each line, g
vanishes on a neighborhood of 0. So g vanishes on each line (and hence each do-
main containing 0) by complex analysis.) By choosing new coordinates, we may
assume the last coordinate axis is that line. Namely, writing g “ gpw1, . . . , wm, zq,
g has finite order in z.

By casem, Om is Noetherian. By WDT, Om`1{gOm`1 is a finitely-generated Om-
module, hence a Noetherian Om-module, and hence a Noetherian Om`1-module.

1.5.2 Proof of WDT

We prove the first version of WDT following [GR-b].

Proof of the uniqueness. Let f “ gq1`r1 “ gq2`r2. Then gpq1´q2q “ r2´r1. Choose
a small enough neighborhood U ˆ V Ă Cm ˆ C as in Rem. 1.5.2 such that for all
fixed w‚ P U , gpzq has k zeros in V (counting multiplicities). So gpq1 ´ q2q has ě k
zeros in z. Since r2 ´ r1 has degree ă k in z, for the fixed w‚, the number of zeros
of r2 ´ r1 is either ă k (which is impossible), or is 8. Since the latter is the only
possible case, we conclude pr1 ´ r2qpzq “ 0 for all w‚. And pq1 ´ q2qpzq “ 0 since it
is so outside the (finitely many) zeros of g. (One can also deduce q1 “ q2 from the
fact that OCm`1,0 is an integral domain.)

Discussion. We now discuss the proof of the existence part. Let pf, pg be the first k
terms in their power series expansions of z. So

gpw‚, zq “ a0 ` a1z ` ¨ ¨ ¨ ` ak´1z
k´1

looooooooooooooomooooooooooooooon

pg

`zkpak ` ak`1z ` ak`2z
2

` ¨ ¨ ¨ q

where all ai “ aipw‚q P Ctw‚u and a0p0q “ ¨ ¨ ¨ “ ak´1p0q “ 0, akp0q ‰ 0. So
pg ´ pgqz´k and similarly pf ´ pfqz´k are naturally elements of Ctw‚, zu. Moreover,
pg ´ pgqz´k is a unit.

A naı̈ve attempt to find the decomposition f “ gq ` r is to write

f “ g ¨
f ´ pf

g
` pf
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since clearly pf P Ctw‚urzs has degree ă k in z. This certainly works for single-
variable functions. However, when m ą 0, the expression pf ´ pfq{g might not be
continuous at the origin. (Take for instance the quotient to be z2{pwz ` z2q.) We
can only divide f ´ pf by g ´ pg, which gives an element of Ctw‚, zu. So we write

f “ pg ´ pgq ¨
f ´ pf

g ´ pg
` pf “ g ¨

f ´ pf

g ´ pg
` pf `

˜

´pg ¨
f ´ pf

g ´ pg

¸

looooooomooooooon

f1

We then decompose f1, find f2, and then repeat this procedure again and again
to produce an infinite series, which we hope would converge to the expected
decomposition. Namely, we let f0 “ f . So the above defines f1 in terms of f0. We
define in a similar way fn`1 in terms of fn:

fn “ g ¨
fn ´ pfn
g ´ pg

` pfn ` fn`1. (1.5.2)

Substituting f0, f1, . . . , fn into f , we get

f “

˜

g ¨
f0 ´ pf0
g ´ pg

` pf0

¸

` f1

“

˜

g ¨
f0 ´ pf0
g ´ pg

` pf0

¸

`

˜

g ¨
f1 ´ pf1
g ´ pg

` pf1

¸

` f2 “ ¨ ¨ ¨

“g ¨

n
ÿ

i“0

fi ´ pfi
g ´ pg

`

n
ÿ

i“0

pfi ` fn`1. (1.5.3)

In the following formal proof, we give careful analysis when n Ñ 8.

Finishing the proof of WDT. For each pr‚, ρq “ pr1, . . . , rm, ρq P Rm
ą0 ˆ Rą0, define a

norm ∥¨∥r‚,ρ on Ctw‚, zu as follows: if h “
ř

i1,...,im,jPN bi‚,jw
i1
1 ¨ ¨ ¨wimm z

j then

∥h∥r‚,ρ“
ÿ

i1,...,im,jPN

|bi‚,j|r
i1
1 ¨ ¨ ¨ rimm ρ

j,

which might take value 8. We have

∥h1h2∥r‚,ρď ∥h1∥r‚,ρ¨∥h2∥r‚,ρ ∥h ´ ph∥r‚,ρď ∥h∥r‚,ρ. (1.5.4)

We write (1.5.2) as

´fn`1 “
pg

pg ´ pgq
¨ pfn ´ pfnq
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“
pg

z´kpg ´ pgq
¨ z´k

pfn ´ pfnq “: β ¨ αn. (1.5.5)

By the first paragraph in the previous Discussion, we have β, αn P Ctw‚, zu.
Choose r‚, ρ such that f, g are defined (and holomorphic) and g ´ pg has no ze-
ros in the polydisc D with multiradii r‚, ρ except at the origin. Then (1.5.5) shows
that all fn are defined in this domain.

Slightly shrink ρ so that C :“ ∥f∥r‚,ρă 8. Now we use the condition that g has
order k in z in full power: it tells us that βp0, zq “ 0. So we may shrink r‚ such that
∥β∥r‚,ρă

1
2
ρk. Clearly ∥fn ´ pfn∥r‚,ρ“ ρk∥αn∥r‚,ρ. So by (1.5.4),

∥fn`1∥r‚,ρă
1

2
∥fn ´ pfn∥r‚,ρď

1

2
∥fn∥r‚,ρ.

Thus ∥fn∥r‚,ρă 2´nC. So ∥z´kpfn ´ pfnq∥r‚,ρă 2´nρ´kC and ∥ pfn∥r‚,ρă 2´nC.
The uniform norm on the polydisc with multi-radii pr‚, ρq is clearly ď ∥¨∥r‚,ρ.

So fn Ñ 0 uniformly on the polydisc D. The infinite series
ř8

i“0
z´kpfi´ pfiq
z´kpg´pgq

con-
verges uniformly to a continuous function q on any compact subset of D. q
is holomorphic, since it is so on each variable by Morera’s theorem. Similarly,
ř8

i“0
pfi converges uniformly to a holomorphic r. Residue theorem and the fact

that contour integrals commute with (uniformly convergent) infinite sum show
that r does not have ě k powers of z (since each pfn does not). Thus, we obtain the
decomposition f “ gq ` r by letting n Ñ 8 in (1.5.3).

1.6 Germs of complex spaces

Definition 1.6.1. The category of germs of complex spaces denotes the one whose
objects are pX, xq where X is a complex space and x is a marked point. If U Ă

X is a neighborhood of x then pX, xq is identified with pU, xq. A morphism of
germs from pX, xq to pY, yq is a holomorphic map φ : U Ñ Y where U Ă X is a
neighborhood of x such that φpxq “ y. Two morphisms φ1, φ2 : pX, xq Ñ pY, yq

are regarded equal if there is a neighborhood U of x such that φ1|U equals φ2|U

as holomorphic maps U Ñ Y . Composition of morphisms are the usual one for
holomorphic functions (i.e. for C-ringed spaces).

An isomorphism of germs of complex spaces φ : pX, xq Ñ pY, yq is a mor-
phism of germs with inverses, namely, there is a morphism ψ : pY, yq Ñ pX, xq

such that ψ ˝ φ and φ ˝ ψ are 1 on neighborhoods of x and y respectively. Equiv-
alently, there are neighborhoods U Q x and V Q y such that φ : U Ñ V is a
biholomorphism, and that φpxq “ y.

The category of analytic local C-algebras is understood in the obvious way:
the morphisms are defined by Def. 1.3.3.
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Theorem 1.6.2. The contravariant functor F from the category of germs of complex
spaces to the category of analytic local C-algebras, sending pX, xq to OX,x and send-
ing φ : pX, yq Ñ pY, yq to φ# : OY,y Ñ OX,x, is an antiequivalence of categories.
Namely:

(1) For each pX, xq and pY, yq, the following map is bijective

F : Mor
`

pX, xq, pY, yq
˘

Ñ Mor
`

OY,y,OX,x

˘

, φ ÞÑ φ#. (1.6.1)

(2) Each analytic local C-algebra is isomorphic to FppX, xqq for some germ of complex
space pX, xq.

Part (2) is obvious. Let us prove part (1).

Proof. Assume without loss of generality that Y is a model space SpecanpOV {J q

where V Ă Cn is open and y “ 0.
Suppose φ#

1 , φ
#
2 : OY,y “ OCn,0{J0 Ñ OX,x are equal. Then for each j “

1, . . . , n, φ#
1 zj equals φ#

2 zj as elements of OX,x. So they are equal onX if we shrink
X to a smaller neighborhood of x. By Thm. 1.4.1, φ1 and φ2 are equal as holomor-
phic maps X Ñ V , and hence are equal as X Ñ Y . So the map F in (1.6.1) is
injective.

Next, we choose a morphism Φ : OCn,0{J0 Ñ OX,x. Let f1 “ Φpz1q, . . . , fn “

Φpznq, which are elements of OpXq if we shrink X to a smaller neighborhood of
x. View F “ pf1, . . . , fnq P OpXqn as a holomorphic map φ : X Ñ Cn. Replace X
by φ´1pV q such that φ : X Ñ V . Note that φpxq “ 0. So h P OCn,0 ÞÑ h ˝φ “ φ#h P

OX,x is a morphism of local C-algebras. It agrees with OCn,0 Ñ OCn,0{J0
Φ
ÝÑ OX,x

on z1, . . . , zn by the very definition of F . So they agree on any element of OCn,0 due
to Prop. 1.4.3. We conclude φ#phq “ Φprhsq for all h P OCn,0 (where rhs denotes
the residue class of h in OCn,0{J0). In particular, we have φ#J0 “ 0 in OX,x.

Shrink V and X Ă φ´1pV q, and choose g1, . . . , gk P OCnpV q generating the
ideal J0 and sent by φ# to 0 P OpXq. Since J is finite-type, by Rem. 1.2.16, we can
shrink V such that g1, . . . , gk generate J . Thus φ#J “ 0 in φ˚OX . By Thm. 1.4.8,
φ restricts to a holomorphic map rφ : X Ñ Y . rφ# : OY,y “ OCn,0{J0 Ñ OX,x equals

Φ since φ# : OCn,0 Ñ OX,x factors as OCn,0 Ñ OCn,0{J0
rφ#

ÝÝÑ OX,x. This proves that
F is surjective.

Corollary 1.6.3. Let X, Y be complex spaces, x P Y, y P Y , and Φ : OY,y
»
ÝÑ OX,x be

an isomorphism of local C-algebras. Then there are neighborhoods U Q x, V Q y and a
biholomorphism φ : U

»
ÝÑ V whose transpose φ# : OV,y Ñ OU,x equals Φ.

Definition 1.6.4. An analytic local C-algebra is called regular if it is isomorphic
to OCn,0 “ Ctz1, . . . , znu for some n.

Corollary 1.6.5. Let X be a complex space and x P X . If OX,x is regular, then there is a
neighborhood U of x biholomorphic to an open subset of Cn for some n.
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Definition 1.6.6. We say that X is smooth at x (equivalently, x is a smooth point
of X) if OX,x is regular. We say that X is smooth (equivalently, X is a complex
manifold) if it is smooth everywhere.

1.7 Immersions and closed embeddings; generating
OX,x analytically

Definition 1.7.1. A holomorphic map φ : X Ñ Y is called an immersion at x P X
if φ# : OY,φpyq Ñ OX,x is surjective. φ is called an immersion if it is an immer-
sion at every x P X . φ is called a closed (resp. open) embedding if there is a
commutative diagram

X Y

Y0

»

φ

ι (1.7.1)

where Y0 is a closed (resp. open) complex subspace of Y and X
»
ÝÑ Y0 is a biholo-

morphic map.

A closed embedding is clearly an immersion. Moreover, an immersion is lo-
cally a closed embedding:

Proposition 1.7.2. Let φ : X Ñ Y be an immersion at x. Then there are neighborhoods
V of y “ φpxq and U Ă φ´1pV q of x such that φ : U Ñ V is a closed embedding. In
particular, φ is an immersion on U .

Proof. By assumption, φ# : OY,y Ñ OX,x is surjective. Let J be its kernel, and
choose generating elements g1, . . . , gk P J . By shrinking Y to a neighborhood of y
(and shrink X accordingly), we assume g1, . . . , gk P OY pY q. Let J “ g1OY ` ¨ ¨ ¨ `

gkOY . Then Jx “ J . Define a closed subspace Z “ SpecanpOY {J q of Y . Then φ#

factors as

φ# : OY,y ↠ OY,y{J “ OZ,y
Ψ

ÝÝÑ
»

OX,x.

By Cor. 1.6.3, we may shrink X so that there is an open embedding rφ : X Ñ Z,
rφpxq “ y, such that rφ# : OZ,y Ñ OX,x equals Ψ. Let ι : Z Ñ Y be the inclusion.
Then pιrφq# “ rφ#ι# : OY,y Ñ OX,x equals φ#. By Thm. 1.6.2, we may find open
U Q x such that φ “ ιrφ on U . Since rφpUq is an open subset of Z, we may find open
V Ă Y such that rφpUq “ V XZ “ V XNpJ q. So φ restricts to the biholomorphism
rφ : U Ñ rφpUq where rφpUq is a closed subspace of V .

We now discuss when an immersion is a closed embedding and give some
examples.
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Proposition 1.7.3. Let X be complex spaces and φ : X Ñ Y a holomorphic immersion.
Assume that φ is an injective and closed map2 of topological spaces. Suppose we have a
finite type ideal J of OY such that NpJ q equals the image of φ, and that

Jy “ KerpOY,y
φ#

ÝÝÑ OX,xq (1.7.2)

for all x P X and y “ φpxq. Then φ is a closed embedding. More precisely, φ restricts to
a biholomorphism

rφ : X
»
ÝÑ SpecanpOY {J q. (1.7.3)

We will see in Cor. 2.7.8 that the assumption on the existence of J is redun-
dant.

Proof. Let Y0 :“ SpecanpOY {J q. By Thm. 1.4.8, the restriction (1.7.3) as a holomor-
phic map exists, i.e., we have a commutative diagram

X Y0

Y

rφ

φ

The underlying topological space of Y0 :“ SpecanpOX{J q is NpJ q. So rφ is a con-
tinuous closed bijection from X to NpJ q, which is therefore a homeomorphism.
For each x P X, y “ φpxq, the stalk map rφ# : OY0,y “ OY,y{Jy Ñ OX,x is surjective
since φ is an immersion, and is injective by (1.7.2). So rφ is a biholomorphism.

Example 1.7.4. The holomorphic map ι : 0 ˆ Cn Ñ Cm ˆ Cn is an immersion and
a closed injective map, and the kernels of ι# at the level of stalks are the stalks
of the ideal I “ z1OCm`n ` ¨ ¨ ¨ ` zmOCm`n . Thus, by Prop. 1.7.3, ι restricts to a
biholomorphism 0 ˆ Cn »

ÝÑ SpecanpOCm`n{Iq. This reproves Exp. 1.3.11.

Example 1.7.5. Let X be a complex space, and let I,J be finite-type ideals of OX .
Let Y “ SpecanpOX{Iq. So OY “ pOX{Iq|NpIq. Then

rJ “
`

pI ` J q{I
˘

æNpIq

is a finite-type ideal of OY , and is the unique ideal whose stalk at each x P NpIq

equals pIx ` Jxq{Ix. Then there is a biholomorphism

SpecanpOX{pI ` J qq
φ

ÝÝÑ
»

SpecanpOY { rJ q. (1.7.4)

which equalsNpI`J q
“
ÝÑ NpIqXNpJ q as maps of topological spaces, and whose

stalk maps are

OY,x{ rJx “
OX,x{Ix

pIx ` Jxq{Ix
»

ÝÝÑ OX,x{pIx ` Jxq.

2φ is called closed if it maps closed subsets to closed subsets.
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Proof. The key point is to show that the above stalk isomorphisms can be assem-
bled into a sheaf isomorphism. Consider the diagram

SpecanpOY { rJ q

SpecanpOX{pI ` J qq Y

X

α

φ

(1.7.5)

By Thm. 1.4.8, there is a holomorphic map α such that the lower triangle com-
mutes. The stalk maps are α# : OX,x{Ix Ñ OX,x{pIx`Jxq, with kernel pIx`Jx{Ixq.
These kernels can be assembled into the ideal sheaf rJ on NpIq. Thus, Prop. 1.7.3
guarantees that there is a biholomorphism making the upper triangle in (1.7.5)
commutes.

Exp. 1.7.5 shows that a closed complex subspace of a closed subspace is again
a closed subspace of the original space. Thus, we have more generally:

Corollary 1.7.6. If α : X Ñ Y and β : Y Ñ Z are closed embeddings, then so is the
composition β ˝ α : X Ñ Z.

Let us consider the special case φ : X Ñ Cn, where φ is represented by
pf1, . . . , fnq P On

X (cf. Thm. 1.4.1). Then φ is an immersion at x iff the morphism of
analytic local C-algebras defined in Prop. 1.4.3, namely Ctz‚u Ñ OX,x sending zj
to fj ´ fjpxq, is surjective. This actually mean that f1, . . . , fn generate (analytically)
the analytic local C-algebra OX,x. (They certainly do not generate the ring OX,x al-
gebraically. But one can imagine that the subalgebra generated algebraically by
f‚ is “dense” in OX,x, where the density means approximation by power series
of f1, . . . , fn.) The situation is similar to the case of a surjective morphism of C-
algebras Crz‚s Ñ A, whose algebro-geometric meaning is that the affine scheme
SpecpAq is embedded into the affine plane Cn.

We must find a criterion about whether f1, . . . , fn generate OX,x (analytically).
At first sight, this problem seems not easy even if X is smooth. (For instance,
take f1, . . . , fn to be some arbitrary holomorphic functions and deduce whether
they generate OX,x.) There is indeed a simple criterion, which is proved using the
(holomorphic version of) inverse function theorem. To begin with, we define:

Definition 1.7.7. If X is a complex space and x P X , the vector space mX,x{m2
X,x

is called the cotangent space of X at x, and its dual space pmx{m2
xq˚ is called the

tangent space. Since OX,x is Noetherian, mX,x is finitely-generated, and hence
mX,x{m2

X,x is finite-dimensional.
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It is inspiring to write the residue class of f ´ fpxq (where f P OpXq) in the
cotangent space mX,x{m2

X,x as dxf .

Theorem 1.7.8. Let X be a complex space and x P X . Let f1, . . . , fn P OpXq. Consider
pf1, . . . , fnq as a holomorphic map φ : X Ñ Cn (cf. Thm. 1.4.1). The following are
equivalent.

(1) φ is an immersion at x.

(2) The morphism of analytic local C-algebras Φ : OCn,φpxq Ñ OX,x sending each zi to
fi (cf. Prop. 1.4.3) is surjective.

(3) (The residue classes of) f1 ´ f1pxq, . . . , fn ´ fnpxq span mX,x{m2
X,x.

(4) (The germs of) f1 ´ f1pxq, . . . , fn ´ fnpxq generate the ideal mX,x.

If any of these conditions holds, we say that f1, . . . , fn generate (the algebra) OX,x

analytically.

Proof. Assume for simplicity that φpxq “ 0. Clearly (1)ô(2) and (3)ô(4). (Note
that (3)ñ(4) follows from Nakayama’s lemma.) It remains to prove (2)ô(3).

Assume (2). Choose any g P mX,x. Then there is hpz‚q P OCn,0 sent by Φ to g.
We may write hpz‚q “

ř

i aizi ` an element of m2
Cn,0 where ai P C. Since Φpziq “ fi

and Φpm2
Cq Ă m2

X,x, we have g P
ř

i aifi ` m2
X,x. This proves (3).

Asume (3). By discarding some elements, we may assume that f1, . . . , fn form
a basis of mX,x{m2

X,x. Assume X is a model space SpecanpOU{Iq where U Ă CN is
open and x “ 0. So OX,x “ OCN ,0{I0, mX,x “ mCN ,0{I0, and hence

mX,x{m2
X,x “ mCN ,0{pm2

CN ,0 ` I0q. (1.7.6)

Lift f‚ to elements of OCN ,0, still denoted by f‚. Then we can extend f1, . . . , fn
to a list f1, . . . , fN whose residue classes form a basis of mCN ,0{m

2
CN ,0 such that

fn`1, . . . , fN P I0. By the inverse function theorem, we may assume x “ 0 and
f1, . . . , fN are the standard coordinates z1, . . . , zN of CN . By shrinking U , we may
assume zn`1, . . . , zN P IpUq.

Assume for simplicity that I is generated by zn`1, . . . , zN together with
g1, . . . , gk P IpUq. Let I1 “ zn`1OU ` ¨ ¨ ¨ ` zNOU . Then by Exp. 1.7.5, X “

SpecanpOU{Iq is naturally a closed subspace of X1 “ SpecanpOU{I1q (defined by
g1, . . . , gk). By Exp. 1.7.4, X1 is naturally equivalent to U X pCn ˆ 0q. So the map
pz1, . . . , znq : X1 Ñ Cn is an open embedding. φ is its restriction to X , which is
therefore an immersion at 0. This proves (1) and hence (2).

Remark 1.7.9. Assume thatX, Y are complex manifolds and φ : X Ñ Y is a closed
embedding of complex spaces. Let x P X . Then by Thm. 1.7.8, φ is an immersion
at x in the sense of complex differential manifolds, namely, it induces an injective
map of tangent spaces (since its transpose is a surjective map of cotangent spaces).
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Therefore, since φ is also a homeomorphism from X to its image in Y , as in the
case of real differential manifolds, one can use inverse function theorem to find a
neighborhood V of y “ φpxq, a biholomorphic map β from V to a neighborhood
rV of 0 P Cn, and biholomorphism α from U “ φ´1pV q to a neighborhood rU of
0 P Cm (where m ď n), such that β ˝φ ˝α´1 : rU Ñ rV is the restriction of the closed
embedding Cm » Cm ˆ t0u ãÑ Cm ˆ Cn´m.

We give an application of analytically generating elements.

Proposition 1.7.10.

Let Φ,Ψ : OY,y Ñ OX,x be morphisms of analytic local C-algebras. Assume f1, . . . , fn P

OY,y generate the algebra OY,y analytically.

(1) If Φpfiq “ Ψpfiq for all i “ 1, . . . , n, then Φ “ Ψ.

(2) Let I be the ideal of OX,x generated by Φpfiq ´ Ψpfiq for all i. Then I contains
Φphq ´ Ψphq for every h P OY,y.

Proof. (1): By Prop. 1.4.3, we have a (unique) morphism Υ : OCn,0 Ñ OY,y sending
zi to fi ´ fipxq. So Φ ˝ Υ and Ψ ˝ Υ agree at z1, . . . , zn. So Φ ˝ Υ “ Ψ ˝ Υ by Prop.
1.4.3. By assumption, Υ is surjective. So Φ “ Ψ.

(2): Apply (1) to the restriction Φ,Ψ : OY,y Ñ OX,x{I .

Prop. 1.7.10-(2) is the stalk version of a geometric construction called equalizer.

1.8 Equalizers of X Ñ Y

Definition 1.8.1. Let φ, ψ : X Ñ Y be holomorphic maps of complex spaces. A

kernel or an equalizer of the double arrow X Y
φ

ψ
is a complex space E

and a holomorphic map ι : E Ñ X such that φ ˝ ι “ ψ ˝ ι, and that for every
complex space S and holomorphic map µ : S Ñ X satisfying φ ˝ µ “ ψ ˝ µ there
is a unique holomorphic rµ : S Ñ E such that µ “ ι ˝ rµ.

S

E X Y

µ
rµ

ι
ψ

φ

(1.8.1)

It is easy to see that equalizers are unique up to isomorphisms.

The main result of this section is:
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Theorem 1.8.2. Every double arrow X Y
φ

ψ
of holomorphic maps has an equal-

izer which is the inclusion map of a closed subspace ι : E “ SpecanpOX{Iq ãÑ X . This
is called the canonical equalizer. The finite-type ideal I is uniquely determined by the
fact that for all x P X :

(a) If φpxq ‰ ψpxq, then Ix “ OX,x.

(b) If φpxq “ ψpxq, then by considering φ#, ψ# as stalk maps OY,φpxq Ñ OX,x, Ix is
the ideal of OX,x generated by all φ#pfq ´ ψ#pfq (where f P OY,φpxq).

Moreover, NpIq, the underlying set of E, is ∆ “ tx P X : φpxq “ ψpxqu.

From Prop. 1.7.10, it is clear that Ix is generated by φ#pfiq ´ ψ#pfiq if
f1, . . . , fn P OY,y generate the algebra OY,y analytically, e.g. z1, . . . , zn if Y is a
model space in Cn.

Remark 1.8.3. From Thm. 1.8.2, it is clear that ifE0 Ñ X is an equalizer ofX Ñ Y ,
then it is a closed embedding, and equals the composition of a unique biholomor-
phism E0

»
ÝÑ E and the inclusion map E ãÑ X where E is the canonical equalizer.

Construction of E. We define a finite-type ideal I satisfying (a) and (b). We shall
first define it locally and then glue the pieces. Then I gives E.

Let Ω “ Xz∆ which is open. We set IΩ “ OX |Ω. For each x P ∆, we choose
a neighborhood Vy Ă Y of y “ φpxq biholomorphic to a model space. So we can
choose finitely many f1, . . . fn P OY pVyq embedding Vy onto a closed subspace of
an open subset of Cn. Ux “ φ´1pVyq X ψ´1pVyq is a neighborhood of x, and we
set IUx to be the ideal of OUx generated by φ#pf1q ´ ψ#pf1q, . . . , φ

#pfnq ´ ψ#pfnq

(defined on Ux).
We claim that these locally defined finitely-generated ideals are compatible. If

p P Ux X ∆ then, as φppq “ ψppq, by Prop. 1.7.10 or by substitution rule (Rem.
1.4.6), the stalk pIUxqp is the ideal generated by all φ#pfq ´ ψ#pfq P OX,p where
f P OY,φppq. If p P Ux X Ω, then as φppq ‰ ψppq and pf1, . . . , fnq is an embedding,
there is some fi among f1, . . . , fn such that φ#pfiq ´ ψ#pfiq has non-zero value at
p, and hence its germ at p is not in mX,p. This proves pIUxqp “ OX,p. Combining
these two cases together, we see that IΩ and IUx (for all x P ∆) are compatible.
This defines I.

If φpxq ‰ ψpxq, then Ix “ OX,x shows x R NpIq. If φpxq “ ψpxq, then φ#pfq ´

ψ#pfq vanishes at x by (1.2.3). So Ix vanishes at x. So x P NpIq. This proves
∆ “ NpIq.

Proof that E is an equalizer. It is easy to check φ˝ι “ ψ˝ι. Choose any holomorphic
µ : S Ñ X such that φ ˝ µ “ ψ ˝ µ. For any s P S, let x “ µpsq. Then φpxq “ ψpxq.
Choose any f P OY,φpxq. Then φ ˝ µ “ ψ ˝ µ shows that µ# sends φ#pfq ´ ψ#pfq

to 0 P OS,s. Thus µ# : OX,x Ñ OS,s vanishes on Ix. Thus, by Thm. 1.4.8, there is a
unique holomorphic rµ : S Ñ E such that the triangle in (1.8.1) commutes.

31



The proof of Thm. 1.8.2 is finished. From the proof, we know:

Remark 1.8.4. Assume the setting of Thm. 1.8.2. Assume φpxq “ ψpxq “: y. Let
Vy be a neighborhood of y biholomorphic to a model space. More precisely, we
choose pf1, . . . , fnq P OY pVyq

n which, considered as a holomorphic map Vy Ñ Cn,
is a closed embedding of Vy into an open subset of Cn. Let Ux “ φ´1pVyqXψ´1pVyq.
Then the ideal sheaf I|Ux is generated by φ#pf1q ´ ψ#pf1q, . . . , φ

#pfnq ´ ψ#pfnq P

OpUxq.

1.9 E bOX
F , HomOX

pE ,F q, and H om OX
pE ,F q

We fix a C-ringed space X .

1.9.1 Tensor product

Definition 1.9.1. Let E and F be OX-modules. Consider the presheaf G of OX-
modules defined by G pUq “ E pUq bOpUq F pUq. The tensor product of restriction
maps E pUq Ñ E pV q and F pUq Ñ F pV q gives the restriction map G pUq Ñ G pV q.
The sheafification of G is denoted by E bOX F or simply E b F and called the
tensor product of E and F .

Remark 1.9.2. Let A be a commutative ring, and fix an A-module N . Recall the
following basic facts:

1. Tensor products commute with direct limits. More precisely, let pMαq

be a direct system of A-modules. Then the canonical map Mβ bA N Ñ

plim
ÝÑα

Mαq bA N (for each fixed β) defines, by passing to the direct limit, an
isomorphism

lim
ÝÑ
α

pMα bA N q
»
ÝÑ plim

ÝÑ
α

Mαq bA N . (1.9.1)

(Proof: Construct the inverse map explicitly.)

2. The tensor product functor ´ b N is right exact. Namely, if

M1
f
ÝÑ M2

g
ÝÑ M3 Ñ 0

is an exact sequence of A-modules, then so is

M1 b N fb1
ÝÝÑ M2 b N gb1

ÝÝÑ M3 b N Ñ 0.

Identify M3 with Cokerf “ M2{fpM1q. Then the right exactness of tensor
product is equivalent to that tensor products commute with cokernels: we
have an equivalence of A-modules

Coker
`

M1 bA N fb1
ÝÝÑ M2 bA N

˘ »
ÝÝÑ Coker

`

M1
f
ÝÑ M2

˘

bA N (1.9.2)
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descended from the canonical morphism

M2 bA N ÝÑ
M2

fpM1q
bA N . (1.9.3)

Proof. We have a well-defined map sending M2

fpM1q
ˆN to M2bAN

pfb1qpM1bAN q
(i.e. the LHS

of (1.9.2)) sending rξs ˆ η to rξ bA ηs, where r¨ ¨ ¨ s stands for the residue classes,
and ξ P M2, η P N . This map is clearly A-biinvariant. So it gives an A-module
morphism from the RHS to the LHS of (1.9.2), which is clearly the inverse of the
map in (1.9.2) from LHS to RHS. So (1.9.2) is an isomorphism.

Remark 1.9.3. We can now use (1.9.2) to explain the last equality of (1.2.4):

Ex bOX,x pOX,x{mxq “ Ex b Cokerpmx ãÑ OX,xq

»CokerpEx b mx Ñ Ex b OX,xq » CokerpEx b mx Ñ Exq “ Ex{mxEx

since the image of the multiplication map Ex b mx Ñ Ex is mxEx.

Proposition 1.9.4. The canonical morphism of OpUq-modules

E pUq bOpUq F pUq Ñ Ex bOX,x Fx

(where U Q x is open and the map is the tensor product of E pUq Ñ Ex and F pUq Ñ Fx)
induces an isomorphism

pE b F qx “ lim
ÝÑ
UQx

E pUq bOpUq F pUq
»

ÝÝÑ Ex bOX,x Fx. (1.9.4)

Proof. Define a canonical map from Ex ˆ Fx to lim
ÝÑUQx

E pUq bOpUq F pUq and show
that it is OX,x-biinvariant. This descends to the inverse map of (1.9.4).

Corollary 1.9.5. For each OX-module F , the functor ´ b F on the abelian category of
OX-modules is right exact: if

E1 Ñ E2 Ñ E3 Ñ 0

is exact, then so is

E1 b F Ñ E2 b F Ñ E3 b F Ñ 0.

Proof. Exactness of sheaves can be checked at the level of stalks. Then this follows
from the isomorphism (1.9.4) and the right exactness of ´ bOX,x Fx.
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1.9.2 Hom

We leave it to the readers to check the following easy facts:

Remark 1.9.6. Let A be a commutative ring, and fix an A-module N :

1. HomApN ,´q is a left exact functor. Namely, for any exact sequence of A-
modules

0 Ñ M1
f
ÝÑ M2

g
ÝÑ M3, (1.9.5)

we have an exact sequence

0 Ñ HomApN ,M1q
f˚
ÝÑ HomApN ,M2q

g˚
ÝÑ HomApN ,M3q

where f˚ sends T to f ˝ T and g˚ is defined similarly. Equivalently,
HomApN ,´q commutes with kernels: there is a equivalence

HomA

`

N ,KerpM2
g
ÝÑ M3q

˘

» Ker
`

HomApN ,M2q
g˚
ÝÑ HomApN ,M3q

˘

(1.9.6)

induced by the obvious inclusion

HomA

`

N ,KerpM2
g
ÝÑ M3q

˘

ãÑ HomApN ,M2q.

2. HomAp´,N q is a left exact contravariant functor. for any exact sequence of
A-modules

M1
f
ÝÑ M2

g
ÝÑ M3 Ñ 0 (1.9.7)

we have an exact sequence

0 Ñ HomApM3,N q
g˚

ÝÑ HomApM2,N q
f˚

ÝÑ HomApM1,N q

where f˚ sends T to T ˝ f and g˚ is defined similarly. Equivalently,
HomAp´,N q turns cokernels into kernels: there is a canonical equivalence

HomA

`

CokerpM1
f
ÝÑ M2q,N

˘

» Ker
`

HomApM2,N q
f˚

ÝÑ HomApM1,N q
˘

(1.9.8)

induced by the obvious inclusion

HomA

`

CokerpM1
f
ÝÑ M2q,N

˘

ãÑ HomApM2,N q.
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Definition 1.9.7. Let E ,F be OX-modules. The hom space HomOX pE ,F q is de-
fined to be the space of all OX-module morphims from E to F .

The presheaf of OX-modules sending each open U Ă X to the OpUq-module
HomOU pEU ,FUq, and whose restriction map is the obvious restriction of sheaf
morphisms, is automatically a sheaf of OX-modules. It is called the hom sheaf
and denoted by Hom OX pE ,F q.

The dual and the double dual of E is defined by

E _
“ Hom OX pE ,OXq, E __

“ pE _
q

_. (1.9.9)

Exercise 1.9.8. Describe canonical equivalences

E » E bOX OX » OX bOX E » Hom OX pOX ,E q. (1.9.10)

In general, the stalks of Hom OX pE ,F q cannot be identified with
HomOX,xpEx,Fxq. But good things happen when E is coherent, as we will see
in Cor. 2.2.4.

1.10 pOX´modq bOS
pOS´modq; pullback sheaves

Definition 1.10.1. Let φ : X Ñ S be a holomorphic map of complex spaces. Let E
be an OX-module and M an OS-module. Then E bOS M “ M bOS E denotes the
sheafification of the presheaf of OX-modules sending each open U Ă X to

pE bOS M q
pre

pUq “ lim
ÝÑ

V ĄφpUq

E pUq bOSpV q M pV q (1.10.1)

where the direct limit is over all open subset V Ă S containing φpUq, and g P

OSpV q acts on ς P E pUq as

g ¨ ς :“ φ#
pgq ¨ ς. (1.10.2)

For each x P X , we have a canonical equivalence

pE bOS M qx » Ex bOS,φpxq
Mφpxq. (1.10.3)

Thus M ÞÑ E bOS M and E ÞÑ E bOS M are right exact functors.

Definition 1.10.2. The pullback sheaf of M along φ is the OX-module defined by

φ˚M :“ OX bOS M (1.10.4)
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whose stalk at x is OX,xbOS,φpxq
Mx. It can be viewed as the induced representation

of M . Thus we may write

E bOS M “ E bOX φ
˚M . (1.10.5)

If V Ă S is open and σ P M pV q, then the pullback section φ˚pσq P φ˚M pφ´1pV qq

is the image of

1 b σ P Opφ´1
pV qq bOpV q M pV q Ñ pOX bOS M qpφ´1

pV qq “ pφ˚φ
˚M qpV q.

(1.10.6)

This gives a canonical morphism of OS-modules

M Ñ φ˚φ
˚M . (1.10.7)

If g : M1 Ñ M2 is a morphism of OS-modules, we define an OX-module
morphism

φ˚g :“ 1 b g : OX bOX M1 Ñ OX bOX M2, (1.10.8)

called the pullback of g.

The notation E bOS M is a generalization of E bC W for a (C-)vector space
W by viewing C as the structure sheaf of the single reduced point t0u, and by
viewing the holomorphic map as the obvious one X Ñ t0u.

Proposition 1.10.3. pφ˚, φ˚q is a pair of adjoint functors between the categories of OX-
modules and OS-modules (with φ˚ the left adjoint and φ˚ the right one). Namely, there is
a natural isomphism

HomOX pφ˚M ,E q
»
ÝÑ HomOSpM , φ˚E q. (1.10.9)

The word natural means that for any morphisms g : M2 Ñ M1 of OS-modules and
f : E1 Ñ E2 of OX-modules, φ˚g and φ˚f induce a commutative diagram

HomOX pφ˚M1,E1q HomOSpM1, φ˚E1q

HomOX pφ˚M2,E2q HomOSpM2, φ˚E2q

»

»

(1.10.10)

Proof. Given a morphism F : φ˚M Ñ E , the composition of M Ñ φ˚φ
˚M with

φ˚F : φ˚φ
˚M Ñ φ˚E gives a morphism G : M Ñ φ˚E . Informally,

Gpσq “ F p1 b σq. (1.10.11)

We leave it to the readers to check that F ÞÑ G is natural.
Conversely, given G : M Ñ φ˚E . The OpUq-module morphisms

OpUq bOpV q M pV q Ñ E pUq, f b σ ÞÑ f ¨ Gpσq|U

for all open U Ă X and V Ą φpUq pass to F : φ˚M Ñ E . This gives the inverse of
the above construction.
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Proposition 1.10.4. Let φ : X Ñ S be a holomorphic map of complex spaces. Let E and
F be OS-modules. Then we have a canonical isomorphism of OX-modules

φ˚
pE bOS F q

»
ÝÝÑ φ˚E bOX φ

˚F (1.10.12)

Proof. The OpV q-module morphisms

E pV q bOpV q F pV q Ñ φ˚E pφ´1
pV qq bOpφ´1pV qq φ

˚F pφ´1
pV qq

ς b σ ÞÑ φ˚
pςq b φ˚

pσq

(for all open V Ă S) pass to a morphism E bOS F Ñ φ˚pφ˚E bOX φ˚F q, and
hence, by Prop. 1.10.3, a morphism (1.10.12). Its stalk map at each x P X is
(setting t “ φpxq) the canonical morphism

pEt bOS,t Ftq bOS,t OX,x Ñ pEt bOS,t OX,tq bOX,x pFt bOS,t OX,tq

which is an isomorphism by Lem. 1.10.5.

Lemma 1.10.5. Let B Ñ A be a ring morphism. Let E ,F be B-modules. Then there is a
canonical A-module isomorphism

pE bB Fq bB A »
ÝÝÑ pE bB Aq bA pF bB Aq (1.10.13)

Proof. We have

pE bB Fq bB A » E bB A bB F » E bB pA bA Aq bB F
»pE bB Aq bA pA bB Fq

Definition 1.10.6. Let ι : Y “ SpecanpOX{Iq ãÑ X be a closed subspace of X . Let
E be an OX-module. Then the (sheaf theoretic) restriction of E to Y , denoted by
E |Y or E |Y is

E |Y “ ι˚E “ pOX{Iq æNpIq bOXE . (1.10.14)

Remark 1.10.7. If ι : Y “ SpecanpOX{Iq Ñ X is an embedding of closed complex
subspace, one may view an OY -module F as the corresponding OX-module ι˚F .
A more precise statement is that the functor ι˚ from the category of OY -modules to
the category of OX-modules annihilated by the multiplication of I, sending each
morphism φ to ι˚φ, is an equivalence of categories. (Cf. Thm. 1.6.2 or Thm. 2.2.2
for the precise meaning.) An inverse functor can be chosen to be ι˚. In particular,
we have a canonical equivalence F » ι˚ι˚F for any OY -module F and E » ι˚ι

˚E
for any OX-module E annihilated by I (so that E “ E {IE » E bOX pOX{Iq). These
equivalences are the identity maps at the level of stalks.
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Moreover, the functor ι˚ is an equivalence of tensor categories. Namely, we
have natural isomorphisms

ι˚pF1 bOY F2q » pι˚F1q bOX pι˚F2q.

Note that since OX,y Ñ OY,y is surjective (if y P Y ), we have

F1,y bOY,y F2,y » F1,y bOX,y F2,y. (1.10.15)

If E is an OX-module, we also have a natural isomorphism

ι˚pE |Y q » pOX{Iq bOX E . (1.10.16)

Thus, the study of the restriction E |Y can be turned into the study of an OX-
module.

1.11 Fiber products

Definition 1.11.1. Let φ : X Ñ S and ψ : Y Ñ S be holomorphic maps of complex
spaces. A fiber product of these two maps is a complex space X ˆS Y together
with holomorphic maps prX : X ˆS Y Ñ X and prY : X ˆS Y Ñ Y satisfying:

(1) φ ˝ prX “ ψ ˝ prY .

(2) For each complex space Z and holomorphic maps α : Z Ñ X and β : Z Ñ Y
satisfying φ˝α “ ψ˝β there is a unique holomorphic map α_β : Z Ñ XˆSY
such that α “ prX ˝ pα _ βq and that β “ prY ˝ pα _ βq.

Z

X X ˆS Y

S Y

α_β

α

β
φ

prX

prY

ψ

(1.11.1)

The commutative square diagram above involving S,X, Y,X ˆS Y is called a
Cartesian square. prY : X ˆS Y Ñ Y is called the pullback/base change of
φ : X Ñ S along ψ : Y Ñ S.

The following is easy to check:

Proposition 1.11.2. In Def. 1.11.1, let γ : Z 1 Ñ Z be a holomorphic map. Then

pα _ βq ˝ γ “ pα ˝ γq _ pβ ˝ γq : Z 1
Ñ X ˆS Y. (1.11.2)
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Fiber products are clearly unique up to isomorphisms. The following is easy
to check.

Remark 1.11.3. Suppose that the following two small commuting square dia-
grams are both Cartesian, then the largest rectangular square is also Cartesian.

X X ˆS Y pX ˆS Y q ˆY Z

S Y Z

Namely, pX ˆS Y q ˆY Z, together with its maps to X and Z, is a pullback of
X Ñ S along Z Ñ S. This can be generalized to more complicated situations. For
instance, if the following 4 small cells are Cartesian squares, then so is the largest
square diagram.

X1 Z1 Z3

X Z Z2

S Y Y1

Example 1.11.4. Let U, V be open subsets of a complex space X . Then U X V is a
fiber product U ˆX V : we have Cartesian square

U U X V

X V

Definition 1.11.5. Let φ : X Ñ S, ψ : Y Ñ S, α : X 1 Ñ X , β : Y 1 Ñ Y be
holomorphic maps of complex spaces. Assume X ˆS Y exists. Assume we have
a fiber product X 1 ˆS Y

1 of φ ˝ α : X 1 Ñ S and ψ ˝ β : Y 1 Ñ S. Then

α ˆ β : X 1
ˆS Y

1
Ñ X ˆS Y (1.11.3)

denotes pα ˝prX 1q _ pβ ˝prY 1q, the unique holomorphic map making the following
diagram commute.

X 1 X 1 ˆS Y
1

X X ˆS Y Y 1

S Y

α
αˆβ

prX1

prY 1

φ

prX

prY
β

ψ

(1.11.4)
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The following is easy to check:

Proposition 1.11.6. In Def. 1.11.5, let µ : Z Ñ X 1, ν : Z Ñ Y 1 be holomorphic maps of
complex spaces such that φ ˝ α ˝ µ “ ψ ˝ β ˝ ν. Then we have equality

pα ˆ βq ˝ pµ _ νq “ pα ˝ µq _ pβ ˝ νq : Z Ñ X ˆS Y. (1.11.5)

Let rα : X2 Ñ X 1, rβ : Y 2 Ñ Y 1 be holomorphic maps of complex spaces, and assume that
a fiber product X2 ˆS Y

2 exists for φ ˝ α ˝ rα : X2 Ñ S and ψ ˝ β ˝ rβ : Y 2 Ñ S. Then

pα ˆ βq ˝ prα ˆ rβq “ pα ˝ rαq ˆ pβ ˝ rβq : X2
ˆS Y

2
Ñ X ˆS Y. (1.11.6)

Remark 1.11.7. There are no canonical fiber products of give holomorphic φ :
X Ñ S, ψ : Y Ñ S. But suppose that a fiber product X ˆS Y exists and is fixed.
Then for each open U Ă X and X Ă Y , there is a unique (open) fiber product
U ˆS V inside X ˆS Y . which is the open complex subspace

U ˆS V :“ pr´1
X pUq X pr´1

Y pV q

of X ˆS Y . The projections prU : U ˆS V Ñ U and prV : U ˆS V Ñ V are defined
respectively by the restrictions of prX , prY .

Moreover, assume that α : X 1 Ñ X , β : Y 1 Ñ Y are holomorphic, and a fiber
product X 1 ˆS Y

1 is fixed. Let U 1 Ă X 1 and V 1 Ă Y 1 be open such that αpU 1q Ă U ,
βpV 1q Ă V . Let U 1 ˆS V

1 be the fiber product inside X 1 ˆS Y
1. The we have a

commutative diagram

X 1 ˆS Y
1 X ˆS Y

U 1 ˆS V
1 U ˆS V

αˆβ

α|U 1 ˆβ|V 1

(1.11.7)

Proof. Show that the inclusion U ˆS V ãÑ X ˆS Y is the product of U ãÑ X and
V ãÑ Y and U 1 ˆS V

1 ãÑ X 1 ˆS Y
1 similarly. Then apply Prop. 1.11.6.

With the help of the above observation, we can prove:

Lemma 1.11.8 (Gluing fiber products). Let φ : X Ñ S and ψ : Y Ñ S be holo-
morphic maps of complex spaces. Let pUiqiPI and pVtqtPT be open covers of X and Y
respectively. Suppose that for each i P I and t P T there exists a fiber product Ui ˆS Vt.
Then a fiber product X ˆS Y exists.
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Proof. It suffices to assume pVtq has only one member, which is Y . So each Ui ˆS Y
exists. To simplify notations, for each i, j, k P I we set Uij “ Ui X Uj , Uijk “

Ui X Uj X Uk. We let Uij ˆi Y and Uijk ˆi Y denote the corresponding open fiber
products inside Ui ˆS Y . So Uij ˆi Y and Uij ˆj Y are isomorphic but not identical.

We now apply the gluing construction Rem. 1.3.7 to constructXˆY by gluing
all Ui ˆ Y together. As gluing of topological spaces the process is trivial. To glue
the structures of complex spaces, we must assign an isomorphism πj,i : UijˆiY

»
ÝÑ

Uij ˆj Y for all i, j. This is chosen to be 1Uij ˆj,i 1Y defined by Def. 1.11.5. (Note
that this is not an identity map since the source does not equal the target. The
symbol ˆj,i reflects the fact that this product relies on both i and j.)

Clearly πi,i is the identity. To finish checking the cocycle condition, we must
show that the holomorphic maps πk,i and πk,j ˝ πj,i are equal when restricted to
open subsets Uijk ˆi Y Ñ Uijk ˆk Y . By Rem. 1.11.7, πk,i restricts to 1Uijk ˆk,i 1Y ,
and πk,j ˝ πj,i restricts to p1Uijk ˆk,j 1Y q ˝ p1Uijk ˆj,i 1Y q, which equals 1Uijk ˆk,i 1Y
by Prop. 1.11.6.

Thus the complex space X ˆS Y is constructed. We leave it to the readers to
define prX and prY .

1.12 Fiber products and inverse images of subspaces

Proposition 1.12.1. Let φ : X Ñ S be a holomorphic map of complex spaces, and let J
be a finite type ideal of OS . Then we have a Cartesian square

X φ´1pS0q :“ SpecanpOX{JOXq

S S0 :“ SpecanpOS{J q

φ
rφ (1.12.1)

where JOX is the (necessarily unique) finite-type ideal of OX whose stalks pJOXqx

are generated by Jφpxq (more precisely, by φ#pJφpxqq, cf. (1.10.2)). φ´1pS0q :“
SpecanpOX{JOXq is called the inverse image of S0 along φ.

Proof. If V Ă S is open and J |V is generated by finitely many g1, g2, ¨ ¨ ¨ P

J pV q, then pJOXq|φ´1pV q is defined to be the ideal of OX |φ´1pV q generated by
φ#pg1q, φ

#pg2q, . . . . Clearly the stalks of pJOXq|φ´1pV q satisfy the requirement.
Thus, these ideals are compatible for different V , and can be glued together and
form the desired ideal JOX . To check that (1.12.1) is Cartesian one uses Thm.
1.4.8.

Remark 1.12.2. Using the explicit construction of J in the proof of Prop. 1.12.1,
one sees that the underlying set of φ´1pS0q is the usual preimage of S0, i.e., tx P

X : φpxq P S0u.
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Remark 1.12.3. As an OX-module, Oφ´1pS0q has a natural equivalence

Oφ´1pS0q “ OX{JOX » OX bOS pOS{J q “ φ˚
pOS0q (1.12.2)

Thus, for any OX-module E , we have canonical equivalences of OX-modules

E |φ´1pS0q “ E bOX Oφ´1pS0q » E bOS pOS{J q » E {J E (1.12.3)

Proof. Using the right exactness of OX bOS ´, we have

OX bOS pOS{J q “ OX bOS CokerpJ ãÑ OSq

»CokerpOX bOS J Ñ OX bOS OSq » CokerpOX bOS J Ñ OXq

which equals OX{JOX since the term insider the last Coker is the multiplication
map. (Compare Rem. 1.9.3.) This proves (1.12.2). (1.12.3) follows from a similar
argument.

Example 1.12.4. Let I,J be finite-type ideals of OS . Using Thm. 1.4.8 again,
one easily checks that there is a Cartesian square that breaks into two commuting
triangles.

X “ SpecanpOS{Iq X X Y :“ SpecanpOS{pI ` J qq

S Y “ SpecanpOS{J q

(1.12.4)

Thus, the inverse image of Y along X is naturally equivalent to the closed sub-
space X X Y :“ SpecanpOS{pI ` J qq of S, called the intersection of X and Y .
(Compare this with Exp. 1.7.5.) In view of this equivalence, we shall view X X Y
as closed subspaces of X and Y in the future.

Proposition 1.12.5. Let φ : X Ñ S and ψ : Y Ñ S be holomorphic, and let X0 and Y0
be complex subspaces of X, Y respectively. Assume that X ˆS Y is a fiber product of φ
and ψ. Recall prX : X ˆS Y Ñ X and prY : X ˆS Y Ñ Y . Then the intersection

X0 ˆS Y0 :“ pr´1
X pX0q X pr´1

Y pY0q

is a fiber product of X0 ãÑ X
φ
ÝÑ S and Y0 ãÑ Y

ψ
ÝÑ S, called the (closed) fiber product

inside X ˆS Y . The projections of pr´1
X pX0q X pr´1

Y pY0q to X0 and Y0 are respectively
the restrictions of prX and prY . Moreover, the inclusion X0 ˆS Y0 ãÑ X ˆS Y equals the
product of X0 ãÑ X and Y0 ãÑ Y .
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Proof. The four cells are Cartesian squares. So is the largest one (Rem. 1.11.3).

X0 pr´1
X pX0q X0 ˆS Y0

X X ˆS Y pr´1
Y pY0q

S Y Y0

φ

prX

prY

ψ

(1.12.5)

The claim about inclusions is obvious.

Remark 1.12.6. The closed fiber product X0 ˆS Y0 Ă X ˆS Y can be written more
explicitly. Choose finite-type ideals I Ă OX and J Ă OY defining X0, Y0 respec-
tively. Then X0 ˆS Y0 is defined by the ideal K Ă OXˆSY generated by pr#XpIq and
pr#Y pJ q. More precisely: each stalk Kxˆy is generated by pr#XpIxq and pr#Y pJyq.

In practice, we may assumeX and Y are small enough such that I is generated
by f1, . . . , fm P OpXq and J is generated by g1, . . . , gn P OpY q. Then all pr#Xpfiq

and pr#Y pgjq generate K.

Remark 1.12.7. Similar to Rem. 1.11.7, suppose we have holomorphic α : X 1 Ñ X ,
β : Y 1 Ñ Y , φ : X Ñ S, ψ : Y Ñ S. Let X0 Ă X, Y0 Ă Y,X 1

0 Ă X 1, Y 1
0 Ă Y 1 be

closed subspaces such that α restricts to α : X 1
0 Ñ X0 and β restricts to β : Y 1

0 Ñ Y0
(in the sense of Thm. 1.4.8). Then for the closed fiber products X0 ˆS Y0 Ă X ˆS Y
and X 1

0, the following diagram commutes.

X 1 ˆS Y
1 X ˆS Y

X 1
0 ˆS Y

1
0 X0 ˆS Y0

αˆβ

α|X1
0

ˆβ|Y 1
0

(1.12.6)

1.13 Fiber products, direct products, and equalizers

Definition 1.13.1. LetX, Y be complex spaces. A direct product ofX, Y , or simply
a product of X, Y , is a fiber product of X Ñ 0 and Y Ñ 0 and denoted by X ˆ Y
(together with the projections prX : X ˆ Y Ñ X and prY : X ˆ Y Ñ Y ).

To spell out the definition: For each complex space Z and holomorphic α :
Z Ñ X, β : Z Ñ Y , there is a unique holomorphic map α _ β : Z Ñ X ˆ Y such
that the following diagram commute.

Z

X X ˆ Y Y

α β
α_β

prX prY
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If f P OX and g P OY , we write

f b 1 :“ pr#Xpfq, 1 b g :“ pr#Y pgq, f b g :“ pr#Xpfqpr#Y pgq. (1.13.1)

If x P X and y P Y , we define the completed tensor product

OX,xpbOY,y :“ OXˆY,xˆy

which is well-defined up to isomorphisms by Cor. 1.6.3.

Remark 1.13.2. One can also view OXˆSY,xˆy as OX,xpbOS,sOY,y (if s “ φpxq “ ψpyq),
a completed tensor product over OS,s. In the case that either φ or ψ is “finite”, the
stalk OXˆSY,xˆy is actually equal to the usual tensor product OX,x bOS,s OY,y. This
will be studied in the next chapter.

Example 1.13.3. Cm`n is naturally a product of Cm and Cn.

Proof. Apply Thm. 1.4.1.

Lemma 1.13.4. For every complex spaces X, Y there is a product X ˆ Y .

Proof. We know this is true when X, Y are number spaces, and hence when X, Y
are open subspaces of number spaces (cf. Exp. 1.11.7), and hence if X, Y are
model spaces (due to Prop. 1.12.5), and hence for all complex spaces (by Lemma
1.11.8).

Remark 1.13.5. If X and Y are model spaces SpecanpOU{Iq and SpecanpOV {J q

where U Ă Cm and V Ă Cn are open, I is generated by f1, f2, ¨ ¨ ¨ P IpUq, and J is
generated by g1, g2, ¨ ¨ ¨ P J pV q, then XˆY as a closed direct product inside U ˆV
can be written down explicitly with the help of Rem. 1.12.6: it is the model space
SpecanpOUˆV {Kq where K is the ideal generated by all fi b 1 and 1 b gj .

In the following, we give two proofs that fiber products always exist. We need
the following notion:

Proposition 1.13.6. Let φ : X Ñ Y be a holomorphic map. Then 1X _φ : X Ñ X ˆ Y
is an equalizer:

X X ˆ Y Y
1_φ φ˝prX

prY
(1.13.2)

The canonical equalizer Gpφq of X ˆ Y Ñ Y (which is a closed subspace of X ˆ Y ) is
called the graph of φ.

Proof. Let Z be a complex space. Any holomorphic map Z Ñ X ˆ Y is α _ β for
some α : Z Ñ X and β : Z Ñ Y . Suppose that the compositions of α _ β with
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φ ˝ prX and with prY are equal. Then φ ˝α “ β. Then we may find a holomorphic
map Z Ñ X such that the following diagram commutes.

Z

X X ˆ Y

α_β

1_φ

Indeed, we can choose this map to be α. Then by Prop. 1.11.2, p1 _ φq ˝ α “

α_ pφ˝αq “ α_β. On the other hand, if we have another such holomorphic map
ψ : Z Ñ X . Composing the above triangle with prX : X ˆ Y Ñ X shows that
ψ “ prX ˝ p1_φq ˝ψ equals prX ˝ pα_βq “ α. This proves the uniqueness of such
ψ.

Remark 1.13.7. Using Thm. 1.8.2, one can give a more explicit description of the
graph of φ : X Ñ Y . We write it as SpecanpOXˆY {J q for a finite-type ideal J . Let
x P X, y P Y . If y ‰ φpxq then Jxˆy “ OXˆY,xˆy. If y “ φpxq then Jxˆy is the ideal
of OXˆY,xˆy generated by

pf ˝ φq b 1 ´ 1 b f (1.13.3)

for all f P OY,y (equivalently, for a set of f generating the algebra OY,y analytically).
The underlying topological space of the graph is tx ˆ y P X ˆ Y : y “ φpxqu.

Remark 1.13.8. The graph construction shows that every holomorphic map φ :

X Ñ Y is the composition of a closed embedding X 1_φ
ÝÝÑ X ˆ Y (cf. Rem. 1.8.3)

and a projection of direct product X ˆ Y
prY
ÝÝÑ Y . Thus, very often, the study of

general holomorphic maps reduces to the studies of these two special types of
maps. As an application of this observation, we prove:

Theorem 1.13.9. For any holomorphic maps of complex spaces φ : X Ñ S, ψ : Y Ñ S,
there exists a fiber product X ˆS Y .

Proof. We want to show that the pullback of φ along ψ exists. We know it exists
when ψ is a closed embedding due to Prop. 1.12.1. It also exists when ψ is a
projection S ˆ Y1 Ñ S: in that case X ˆS Y is given by the Cartesian square

X X ˆ Y1

S S ˆ Y1

φ φˆ1 (1.13.4)

(We leave it to the readers to check that this commutative diagram is indeed Carte-
sian.) The general case follows from Rem. 1.13.8 and the fact that the pullback of
a pullback is a pullback (Rem. 1.11.3).
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We now give another way of constructing fiber products. This construction is
very explicit when X and Y are model spaces.

Proposition 1.13.10. Let φ : X Ñ S, φ : Y Ñ S be holomorphic maps of complex
spaces. Let prX : X ˆ Y Ñ X and prY : X ˆ Y Ñ Y be the projections of X ˆ Y . Then
the canonical equalizer E of the following double arrow is a fiber product X ˆS Y :

E X ˆ Y S
ι

φ˝prX

ψ˝prY

(1.13.5)

The projections of E to X, Y are prX ˝ ι and prY ˝ ι respectively. We call E the (closed)
fiber product of X, Y inside the direct product X ˆ Y .

Proof. That E is an equalizer means that φ ˝ pprX ˝ ιq “ ψ ˝ pprY ˝ ιq, and that for
every holomorphic α _ β : Z Ñ X ˆ Y whose compositions with φ ˝ prX and
with ψ ˝ prY are the same (namely, φ ˝ α “ ψ ˝ β) there is a unique holomorphic
γ : Z Ñ E such that ι˝γ “ α_β (namely, pprX ˝ιq˝γ “ α and pprY ˝ιq˝γ “ β). This
means precisely that E equipped with prX ˝ ι and prY ˝ ι is a fiber product.

Remark 1.13.11. Using Thm. 1.8.2, we can describe the fiber product X ˆS Y
inside a given X ˆ Y easily: It is SpecanpOXˆY {J q where J is a finite-type ideal.
Let x P X, y P Y . If φpxq ‰ ψpyq then Jxˆy “ OXˆY,xˆy. If φpxq “ ψpyq then Jxˆy is
the ideal of OXˆY,xˆy generated by

pf ˝ φq b 1 ´ 1 b pf ˝ ψq (1.13.6)

for all f P OS,φpxq (equivalently, for a set of f generating the algebra OS,φpxq analyti-
cally). The underlying topological space ofXˆSY is txˆy P XˆY : φpxq “ ψpyqu.

From this, it is clear that given a fiber product X ˆS Y , if x P X, y P Y and
φpxq “ ψpyq, then there is a unique point of X ˆS Y , denoted by px, yq or x ˆ y,
whose projections to X, Y are x, y respectively. Moreover, all points of X ˆS Y are
in this form.

Exercise 1.13.12. Show that the pullback of φ ˆ ψ : X ˆ Y Ñ S ˆ S along the
diagonal map ∆S defined by 1S _ 1S : S Ñ S ˆ S is a fiber product X ˆS Y .

We have seen that fiber products can be constructed from equalizers. Con-
versely, equalizers can also be viewed as special cases of fiber products:

Proposition 1.13.13. Let φ, ψ : X Ñ Y be holomorphic maps, and let ∆Y : Y Ñ Y ˆY

be the diagonal map of Y with image rY being a closed subspace of Y ˆ Y , called the
diagonal of Y ˆ Y . Then the inverse image E of rY along φ _ ψ : X Ñ Y ˆ Y is the

canonical equalizer of X Y.
ψ

φ
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Proof. Write rY as SpecanpOY ˆY ,J q. Then by Rem. 1.13.7, Jy,y1 “ OY ˆY,yˆy1 if
y ‰ y1, and Jy,y1 is generated by all f b 1 ´ 1 b f where f P OY,y.

Write E as SpecanpOX{Iq. Then by Prop. 1.12.1, if φpxq ‰ ψpxq then Ix equals
OX,x (since Jφpxq,ψpxq “ OY ˆY,φpxqˆψpxq); if φpxq “ ψpxq then Ix is generated by
pf b 1 ´ 1 b fq ˝ pφ _ ψq (i.e. by f ˝ φ ´ f ˝ ψ) for all f P OY,φpxq. Comparing this
description with Thm. 1.8.2, we see that E is the canonical equalizer.
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Chapter 2

Finite holomorphic maps and
coherence

2.1 Coherent sheaves

We fix a C-ringed space X .

Definition 2.1.1. An OX-module E is called coherent if the following conditions
are satisfied:

1. E is of finite-type.

2. For every open set U Ă X , any n P N, and any OU -module morphism φ :
On
U Ñ E |U , the kernel Kerφ is a finite-type OU -module.

Set s1 “ φp1, 0, ¨ ¨ ¨ , 0q, . . . , sn “ φp0, 0, . . . , 1q. Then Kerφ is called the sheaf of
relations of s1, . . . , sn and denoted by Rel ps‚q “ Rel ps1, . . . , snq.

In other words, Rel ps‚q is the sheaf of all pf1, . . . , fnq P On
U such that f1s1 `

¨ ¨ ¨ ` fnsn “ 0. A coherent OX-module is a finite-type OX-module such that any
sheaf of relations is finite-type.

Remark 2.1.2. It is clear that a finite type submodule of a coherent OX-module is
coherent.

Theorem 2.1.3. Let 0 Ñ E Ñ F
φ
ÝÑ G Ñ 0 be an exact sequence of OX-modules. If

two of the three sheaves are coherent, then the remaining one is also coherent.

We view E as a subsheaf of F .

Proof of E ,F coherent ñ G coherent. Since F is finite-type and φ is surjective, G is
finite-type. Choose any x P X , any neighborhood U Q x, and any t1, . . . , tn P G pUq.
We shall show that Rel pt‚q is generated by finitely many global sections after
shrinking U to a smaller neighborhood of x.
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Shrink U so that we can find s1, . . . , sn P F pUq sent to t1, . . . , tn by φ, and
that E |U is generated by some elements e1, . . . , ek P E pUq. As F is coherent,
Rel pe‚, s‚q is finite-type. So we can further shrink U so that Rel pe‚, s‚q is gen-
erated by pf l1, . . . , f

l
k, g

l
1, . . . , g

l
nq P OpUqk`n for finitely many l.

Clearly pgl1, . . . , g
l
nq P OpUqn are in Rel pt‚q. We claim that they generate

Rel pt‚q. Choose any y P U and h1, . . . , hn P OX,y such that h1t1 ` ¨ ¨ ¨ ` hntn “ 0 in
Gx. So h1s1 ` ¨ ¨ ¨ ` hnsn P Ey. So µ1e1 ` ¨ ¨ ¨ ` µkek ` h1s1 ` ¨ ¨ ¨ ` hnsn “ 0 in Fy

for some µ1, . . . , µk P OX,y. So pµ‚, h‚q P Rel pe‚, s‚qy. So pµ‚, h‚q is an OX,y-linear
combination of pf l‚, g

l
‚q. Hence ph‚q is an OX,y-linear combination of pgl‚q.

Proof of F ,G coherent ñ E coherent. As E is a subsheaf of F and F is coherent,
the sheaves of relations of E are clearly finite-type. Let us prove that E is finite-
type. Choose x P X and a neighborhood U Q x such that F |U is generated by
s1, . . . , sn P F pUq. Then each ti “ φpsiq is in G pUq. Since G is coherent, Rel pt‚q is
finite-type. Thus, after shrinking U to a smaller neighborhood, Rel pt‚q is gener-
ated by pf l1, . . . , f

l
nq P OpUqn for finitely many l.

Let el “ f l1s1 ` ¨ ¨ ¨ ` f lnsn. Then φpelq “ 0, and hence el P E pUq. We claim
that e1, e2, . . . generate E |U . Choose any y P U and σ P Ey. Then φpσq “ 0 and
σ “ g1s1 ` ¨ ¨ ¨ `gnsn for some g1, . . . , gn P OX,y. So pg‚q P Rel pt‚qy. Hence pg‚q is an
OX,y-linear combination of pf 1

‚ q, pf 2
‚ q, . . . . So σ is the same OX,y-linear combination

of e1, e2, . . . .

Proof of E ,G coherent ñ F coherent. Step 1. We prove that F is finite-type.
Choose x P X and a neighborhood U Q x. Shrink U so that we can find
s1, . . . , sn P F pUq such that t1 “ φps1q, . . . , tn “ φpsnq generate G |U , and that
there are e1, . . . , ek P E pUq generating E |U . Then for each y P U and σ P Ey,
φpσq “ f1t1 ` ¨ ¨ ¨ ` fntn for some f1, . . . , fn P OX,y. So σ ´ f1s1 ´ ¨ ¨ ¨ ´ fnsn be-
longs to Ey, which is an OX,y-linear combination of e1, . . . , ek. This shows that
s1, . . . , sn, e1, . . . , ek generate F |U .

Step 2. We prove that all sheaves of relations of F are finite-type. Again
we choose x P X and a neighborhood U Q x. Choose any s1, . . . , sn P F pUq,
and let t‚ “ φps‚q. Since Rel pt‚q is finite-type, we may shrink U to a smaller
neighborhood such that we can find G P OpUqnˆk (i.e. an OpUq-valued n ˆ k
matrix) such that the columns G‚,1, . . . , G‚,k P OpUqn generate Rel pt‚q. Set

pe1, . . . , ekq “ ps1, . . . , snqG P F pUq
k,

namely, ej “
řn
i“1 siGi,j . Then e1, . . . , en are killed by φ, i.e. they are in E pUq. As

Rel pe‚q is finite-type, we may shrink U and find a k ˆ m matrix E P OpUqkˆm

whose columns generate Rel pe‚q. Let F “ GE (which is in OpUqnˆm). We claim
that the columns of F generate Rel ps‚q.

Choose any y P U and an element of Rel ps‚qy, written as an n ˆ 1 matrix
A P Onˆ1

X,x . So ps1, . . . , snqA “ 0. Hence pt1, . . . , tnqA “ 0. So A P Rel pt‚qy. Since
G‚,1, . . . , G‚,k generate Rel pt‚qy, we may write A “ GB for some B P Okˆ1

X,y . So
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pe1, . . . , ekqB “ 0. Thus, asE‚,1, . . . , E‚,m generate Rel pe‚qy, we may writeB “ EC
for some C P Omˆ1

X,y . Thus A “ FC. So A is an OX,y-linear combination of columns
of F .

Remark 2.1.4. The above proof shows that if E and G are of finite type, then so is
F .

Corollary 2.1.5. E1,E2 are coherent OX-modules if and only if E1 ‘ E2 is coherent.

Proof. The exactness of 0 Ñ E1 Ñ E1 ‘ E2 Ñ E2 Ñ 0 shows that “E1,E2 coherent”
ñ “E1 ‘ E2 coherent”, and that if E1 ‘ E2 is coherent then E2 is finite type and the
sheaves of relations of E1 are finite-type. Exchanging the roles of E1,E2 shows that
“E1 ‘ E2 coherent” ñ “E1,E2 coherent”.

Corollary 2.1.6. Let φ : F Ñ G be a morphism of coherent OX-modules. Then
Imφ,Kerφ,Cokerφ are coherent.

Proof. Imφ is finite-type since F Ñ Imφ is surjective and F is finite-type. The
sheaves of relations of Imφ are finite-type because G is coherent and Imφ is its
OX-submodule. So Imφ is coherent. That Kerφ and Cokerφ are coherent follows
from Thm. 2.1.3 and the exact sequences 0 Ñ Kerφ Ñ F Ñ Imφ Ñ 0 and
0 Ñ Imφ Ñ G Ñ Cokerφ Ñ 0.

Corollary 2.1.7. If E ,F are coherent OX-submodules of a coherent OX-module G , then
E ` F and E X F are coherent.

Note that the intersection sheaf E XF is defined to be the sheaf of all sections
of G whose germ at each x P X belongs to ExXFx. It is easy to check that pE XF qx

is canonically equivalent to Ex X Fx.

Proof. Clearly E ` F is finite-type and hence coherent. So by Cor. 2.1.6, E {pE X

F q » pE ` F q{F is coherent, and hence E X F is coherent.

Definition 2.1.8. Let φ : F Ñ G be a morphism of OX-module. If L is an OX-
submodule of G , we define φ´1pL q to be the OX-module such that for each open
U Ă X ,

φ´1
pL qpUq “ ts P F pUq : φpsqx P Lx for all x P Uu (2.1.1)

where φpsqx is the germ of φpsq at x.

We have an obvious canonical equivalence

φ´1
pL qx » φ´1

pLxq. (2.1.2)

Therefore, by checking at the level of stalks, we see that the sequence

0 Ñ Kerpφq Ñ φ´1
pL q Ñ L Ñ 0 (2.1.3)

is exact. Thus, by Thm. 2.1.3 and Cor. 2.1.6, we have:
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Corollary 2.1.9. Let φ : F Ñ G be a morphism of OX-module. If L is a coherent
OX-submodule of G , then φ´1pL q is OX-coherent.

Theorem 2.1.10. Assume that OX is a coherent OX-module. Then an OX-module E
is coherent if and only if for each x P X there is a neighborhood U Q x such that E |U

is isomorphic to Cokerφ for some morphism of free OU -modules φ : Om
U Ñ On

U (where
m,n P N).

Indeed, the “only if” part does not need OX to be coherent.

Proof. “If”: Since OU is coherent, Om
U and On

U are coherent. So Cokerφ is coherent
by Cor. 2.1.6.

“Only if”: Let E be coherent. Choose x P X . Since E is finite-type, we may
find a neighborhood U such that there is a surjective ψ : On

U Ñ E |U . Since E
is coherent, Kerψ is finite-type. Thus, after shrinking U , we may find a surjective
π : Om

U Ñ Kerψ. Then E |U » Cokerpι˝πq where ι : Kerψ Ñ On
U is the inclusion.

Corollary 2.1.11. For any coherent OX-modules E ,F , the tensor product E bOX F is
coherent.

Proof. Choose any x P X . By Thm. 2.1.10, we may shrink X to a neighborhood of
x such that E » Cokerφwhere φ : Om

X Ñ On
X is a morphism. By the right exactness

of ´ b F (cf. Prop. 1.9.5), E b F is equivalent to CokerpOm
X b F Ñ On

X b F q,
which is CokerpFm Ñ F nq. By Cor. 2.1.5, Fm,F n are coherent. So the cokernel
is coherent by Cor. 2.1.6.

We end this section with some more criteria on coherence.

Proposition 2.1.12. Let φ : X Ñ S be a morphism of C-ringed spaces, and let E be
a finite-type OS-module. Then φ˚E is a finite type OX-module. If moreover E is OS-
coherent and OX is OX-coherent, then φ˚E is a coherent OX-module.

Proof. If E is finite-type, then for each x P X , we may shrink X to a neighborhood
of x such that E is generated by finitely many s1, s2, ¨ ¨ ¨ P E pXq. So φ˚E “ OX bOS

E is generated by all φ˚si “ 1 b si. So φ˚E is finite-type.
Now assume E is OS-coherent and OX is OX-coherent. By Thm. 2.1.10, we

may shrink X so that E » CokerpOm
S Ñ On

S q. Then

φ˚E » OX bOS CokerpO
m
S Ñ On

S q » CokerpOX bOS Om
S Ñ OX bOS On

S q

»CokerpOm
X Ñ On

Xq

which is OX-coherent by Thm. 2.1.10

Proposition 2.1.13 (Extension principle). Let Y “ SpecanpOX{Iq be a closed com-
plex subspace of a complex spaceX where I is finite-type. Let ι : Y Ñ X be the inclusion,
and let E be an OY -module. Assume that OX is a coherent OX-module. Then E is a co-
herent OY -module if and only if ι˚E is a coherent OX-module.
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Extension principle is an important special case of Finite mapping Thm. 2.7.1
which we will prove later.

Proof. We identify E with ι˚E and OY with ι˚OY “ OX{I. (Cf. Rem. 1.10.7.)
Clearly I is OX-coherent. So OY is OX-coherent by Cor. 2.1.6.

Assume ι˚E is OX-coherent. Then by Prop. 2.1.12, E » ι˚ι˚E is OY -coherent.
Conversely, assume E is OY -coherent. Then by Thm. 2.1.10, E » CokerpOm

Y Ñ

On
Y q after shrinking X to a neighborhood of x P Y Ă X . Since OY is OX-coherent,

by Cor. 2.1.5, Om
Y ,O

n
Y are OX-coherent. So E is OX-coherent by Cor. 2.1.6.

Corollary 2.1.14. Let Y be a closed complex subspace of X . Assume OX is OX-coherent.
Then OY is OY -coherent.

Proof. Write Y “ SpecanpOX{Iq where I is a finite-type ideal of OX . So I is OX-
coherent. Hence OY “ OX{I is OX-coherent, and hence OY -coherent by Extension
principle.

Thus, if we can show that OCn is coherent for any n, then all model spaces, and
hence all complex spaces have coherent structure sheaves.

2.2 Germs of coherent sheaves; coherence of hom
sheaves

Let X be a C-ringed space.
An important reason for studying coherent sheaves is that germs of coherent

sheaves are equivalent to finitely-generated modules of local analytic C-algebras,
just as germs of complex spaces are equivalent to local analytic C-algebras (Thm.
1.6.2). Let us be more precise.

Definition 2.2.1. Let X be a C-ringed space and x P X . The category of germs of
coherent modules at x is the category whose objects are coherent OU -modules EU
where U Q x is open. If V Ă U is a neighborhood of x, then EU and EV :“ EU |V are
viewed as the same object.

A morphism between two objects EU ,FU is an element φ P HomOV pEV ,FV q

for a possibly smaller neighborhood V Q x. Two morphisms are regarded as equal
if then agree when restricted to a possibly smaller neighborhood of x on which
both are defined. Compositions of morphisms are defined in the obvious way.
Thus, in this category the set of morphisms from EU to FU is precisely the stalk
Hom OU pEU ,FUqx of Hom OU pEU ,FUq.

Theorem 2.2.2. LetX be a C-ringed space and x P X . Assume that OX is a coherent OX-
module, and OX,x is Noetherian. Then the functor F from the category of germs of coherent
modules at x to the category of finitely-generated OX,x-modules, sending EU to the OX,x-
module Ex and sending each φ P Hom OU pEU ,FUqx (namely, each φ P HomOV pEV ,FV q
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for a possibly smaller neighborhood V Q x) to the corresponding stalk map Ex Ñ Fx, is
an equivalence of categories. Namely, the following two statements hold:

(1) For each objects EU ,FU , the following OX,x-module morphism is bijective:

F : Hom OU pEU ,FUqx
»
ÝÑ HomOX,xpEx,Fxq (2.2.1)

(2) Each finitely-generated OX,x-module is isomorphic to FpEUq for some object EU .
Namely, it is isomorphic to EU,x.

Remark 2.2.3. If only (1) resp. (2) is satisfied, we say F is fully-faithful resp.
essentially surjective. These names also apply to contravariant functors.

From the proof, we shall see that the F in (2.2.1) is an isomorphism even with-
out assuming that OX ,FU are coherent or OX,x is Noetherian.

Proof of (2). Choose any finitely generated OX,x-module M. Then we have a
surjective morphism α : On

X,x Ñ M. Kerα is an OX,x-submodule of On
X,x,

which is finitely-generated since OX,x is Noetherian. Thus we have a surjective
β : Om

X,x Ñ Kerα. Let γ : Om
X,x Ñ On

X,x be the composition of β and the inclusion
ι : Kerα Ñ On

X,x. Then M » Cokerγ.
We can extend γ to an OU -module morphism φ : Om

U Ñ On
U for some neigh-

borhood U Q x. Namely, the stalk map of φ at x is γ. (For instance, choose U
such that s1 “ γp1, 0, . . . , 0q, . . . , sn “ γp0, 0, . . . , 1q P On

X,x can be defined on U .
Then φ is defined to be the OU -module morphism sending p1, 0, . . . , 0q P OpUqm

to s1 P OpUqn, etc., and p0, 0, . . . , 1q to sn.) Then Cokerφ is a coherent OU -module
(Cor. 2.1.5 and 2.1.6) whose stalk at x is Cokerγ » M.

Proof of (1). Choose an OU -module morphism φ : EU Ñ FU such that Fpφq “ 0.
So the stalk map φ : EU,x Ñ FU,x is zero. Since EU is finite-type, EU,x is finitely-
generated. So we may choose s1, . . . , sn P EU,x generating EU,x. We may find a
neighborhood V Q x in U such that s1, . . . , sn P E pV q, that φps1q “ ¨ ¨ ¨ “ φpsnq “ 0
in F pV q, and that (by Rem. 1.2.16 and that EU is finite-type) s1, . . . , sn generate
EV . So φ sends all sections of EV to 0. This proves that F is injective and uses only
the condition that EU is finite-type.

We now prove that F is surjective. Choose any η P HomOX,xpEx,Fxq. By Thm.
2.1.10, there is a neighborhood V Q x inside U and an OV -module morphism
α : Om

V Ñ On
V such that EV “ Cokerpαq. Let πx : On

V,x Ñ Ex “ Cokerpαx : Om
V,x Ñ

On
V,xq be the quotient map. Let η1 be On

V,x
πx
ÝÑ Ex

η
ÝÑ Fx. Then as argued in the

proof of part (2), the stalk map η1 can be extended to an OV -module morphism
rη1 : On

V Ñ FV after shrinking V . rη1 ˝ α : Om
V Ñ FV has stalk map η ˝ πx ˝ αx at

x, which is 0. So by the injectivity of F, we may shrink V so that rη1 ˝ α “ 0. So
rη1 equals On

V
π
ÝÑ EV “ Cokerpαq

rη
ÝÑ FV for some OV -module morphism rη. Then

rηx “ η, i.e. Fprηq “ η.
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Let us emphasize the following crucial special case of Thm. 2.2.2:

Corollary 2.2.4. Let X be a C-ringed space and x P X . Let E and F be OX-modules.
Then the canonical OX,x-module morphism

F : Hom OX pE ,F qx Ñ HomOX,xpEx,Fxq (2.2.2)

is injective if E is finite-type, and is bijective if E is coherent.

Corollary 2.2.5. Let F be an OX-module.

1. The contravariant functor Hom OX p´,F q on the category of coherent OX-modules
is left exact, where the contravariant functor sends each φ P HomOX pE1,E2q to
Hom OX pE2,F q Ñ Hom OX pE1,F q, ψ ÞÑ ψ ˝ φ.

2. Assume that F is coherent. Then the functor Hom OX pF ,´q on the category
of OX-modules is left exact, where the functor sends each φ P HomOX pE1,E2q to
Hom OX pF ,E1q Ñ Hom OX pF ,E2q, ψ ÞÑ φ ˝ ψ.

Note that these two exactness is equivalent to saying that we have equiva-
lences

Hom OX

`

CokerpE1 Ñ E2q,F
˘

» Ker
`

Hom OX pE2,F q Ñ Hom OX pE1,F q
˘

(2.2.3a)

Hom OX

`

F ,KerpE1 Ñ E2q
˘

» Ker
`

Hom OX pF ,E1q Ñ Hom OX pF ,E2q
˘

(2.2.3b)

induced by the obvious inclusions

Hom OX

`

CokerpE1 Ñ E2q,F
˘

ãÑ Hom OX pE2,F q,

Hom OX

`

F ,KerpE1 Ñ E2q
˘

ãÑ Hom OX pF ,E1q.

Proof. Let E1 Ñ E2 Ñ E3 Ñ 0 be an exact sequence of coherent OX-modules.
Then we have 0 Ñ Hom pF ,E3q Ñ Hom pF ,E2q Ñ Hom pF ,E1q which, thanks
to Cor. 2.2.4, gives stalk maps 0 Ñ HomOX,xpFx,E3,xq Ñ HomOX,xpFx,E2,xq Ñ

HomOX,xpFx,E1,xq at each x P X which is exact by Rem. 1.9.6. This proves part 1.
Part 2 is proved in a similar way.

Corollary 2.2.6. Assume that E ,F are coherent OX-modules. Then Hom OX pE ,F q is
coherent. So E _ is coherent if E ,OX are coherent.

Proof. If E “ On
X then Hom pE ,F q » F n is coherent by Cor. 2.1.5. In the general

case, choose x P X . Then by Thm. 2.1.10 we may shrink X to a neighborhood of
x such that E » CokerpE1 Ñ E2q where E1,E2 are free OX-modules. The coherence
of Hom pE ,F q follows from (2.2.3a) and Cor. 2.1.6.
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2.3 Supports and annihilators of coherent sheaves;
image spaces

In this section, we assume X, Y are complex spaces.
From Rem. 1.10.7, we know that if I is a finite-type ideal of OX annihilating

an OX-module E , then the study of E is equivalent to the study of the OY -module
E |Y where Y “ SpecanpOX{Iq. A natural question is whether we can find a largest
such I, i.e., a smallest such Y . To study this problem, we introduce:

Definition 2.3.1. Let E be an OX-module. Then the annihilator sheaf of E , written
as Ann OX pE q or simply Ann pE q, is the ideal sheaf of OX defined to be the kernel
of the OX-module morphism OX Ñ Hom OX pE ,E q “: End OX pE q sending each
f P OX to the multiplication of f on E . So we have an exact sequence

0 Ñ Ann OX pE q Ñ OX Ñ End OX pE q. (2.3.1)

If E and OX are coherent then so is Ann OX pE q (due to Cor. 2.1.6 and 2.2.6).
Similarly, ifA is a commutative ring and M anA-module, then the annihilator

AnnApMq is defined to be the kernel of A Ñ EndApMq.

Remark 2.3.2. (2.3.1) gives an exact sequence of stalk maps at each x. Assume that
E is OX-coherent. Then by Prop. 2.2.4, End OX pE qx » EndOX,xpExq. This shows that
we have a canonical equivalence of OX,x-modules

Ann OX pE qx » AnnOX,spExq (2.3.2)

if E is coherent.

Definition 2.3.3. Assume OX is coherent. Given a coherent OX-module E , we
define the support of E , written as SupppE q, to be the complex space

SupppE q “ Specan
`

OX{ Ann OX pE q
˘

. (2.3.3)

Remark 2.3.4. AnnpExq “ OX,x iff 1 P AnnpExq iff 1 annihilates Ex iff EX,x “ 0. This
shows that the underlying topological space of SupppE q defined above (i.e. the
set of all x such that OX,x{ Ann pE qx ‰ 0) agrees with the usual one (i.e. the set of
all x such that Ex ‰ 0) when E is coherent.

Remark 2.3.5. We know that the support (as a set) of a finite-type OX-module is
a closed subset of X (Cor. 1.2.17). Now we know that if E ,OX are coherent, then
SupppE q as a set is an analytic subset of X , which means that it is NpIq for a
finite-type ideal I.

Our definition of analytic subsets seems stronger than the usual one, which
says that a subset A Ă X is analytic if each x P X is contained in a neighborhood
U such thatAXU is the zero set of finitely many elements of OpUq. These two def-
initions are indeed equivalent, which follows from the coherence of the radicals
of coherent ideals. See Cor. 3.2.8.
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Convention 2.3.6. If E ,OX are coherent, we understand SupppE q as a complex
subspace of X , unless when we explicitly say that we are considering SupppE q as
a set or an analytic subset. (So “the set SupppE q” means SupppE q as an analytic
subset (i.e. red

`

SupppE q
˘

, cf. Def. 3.2.9), but not the RHS of (2.3.3).) The same
convention applies to φpXq in Def. 2.3.8.

Example 2.3.7. If I is a finite-type (and hence coherent) ideal of OX , then

SupppOX{Iq “ SpecanpOX{Iq. (2.3.4)

Definition 2.3.8. Let φ : X Ñ Y be a holomorphic map of complex spaces. As-
sume that OY , φ˚OX are coherent OY -modules and Impφq “ tφpxq : x P Xu is a
closed subset of Y . We define the image space φpXq of φ to be

φpXq “ Supppφ˚OXq “ Specan
`

OY { Ann OY pφ˚OXq
˘

. (2.3.5)

Then φ# : OφpXq Ñ φ˚OX is clearly injective.

The notation φpXq and the name “image space” is justified by the following
lemma.

Lemma 2.3.9. The underlying topological space of φpXq is the usual one Impφq “

tφpxq : x P Xu. In particular, Impφq is an analytic subset of Y .

Proof. Choose y P Y . We show that pφ˚OXqy “ 0 iff y R Impφq. First as-
sume pφ˚OXqy “ 0. Choose a neighborhood V of y. The non-zero element
1 P pφ˚OXqpV q “ OXpφ´1pV qq becomes 0 in pφ˚OXqy, which means that we may
shrink V so that 1 “ 0 in OXpφ´1pV qq. So φ´1pV q “ H. Hence y R Impφq. Con-
versely, suppose y R Impφq. Since Impφq is closed, we may find a small enough
neighborhood V Q y such that φ´1pV q “ H. So pφ˚OXqy “ 0.

Remark 2.3.10. In the setting of Def. 2.3.8, using (2.3.2), it is easy to see that we
have a canonical equivalence of OY,y-modules

Ann OY pφ˚OXqy » Ker
`

φ# : OY,y Ñ pφ˚OXqy
˘

. (2.3.6)

Exercise 2.3.11. Assume that φ˚OX and OY are OY -coherent and φ is a closed map.
Show that if X is reduced then the complex space φpXq is reduced. (Recall Def.
1.3.8.) Show that if A is an analytic subset of X , then the set φpAq is analytic in Y .

To study a coherent sheaf E one can restrict the underlying complex space
to SupppE q. Likewise, to study φ when φ˚OX and OY are coherent and Impφq is
closed, one can restrict the codomain of φ to φpXq:
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Proposition 2.3.12. Let φ : X Ñ Y be holomorphic. Assume that OY , φ˚OX are co-
herent OY -modules and Impφq is closed in Y . Then there is a unique holomorphic map
rφ : X Ñ φpY q (the restriction of φ) such that the following diagram commutes:

X Y

φpXq

φ

rφ

Proof. This follows immediately from Thm. 1.4.8.

Let us give another application of supports of coherent sheaves. Recall that
if A is a commutative ring and M is an A-module, an element a P A is called a
zero divisor of M if aξ “ 0 for a non-zero ξ P M. Equivalently a is a zero divisor
iff KerpM ˆa

ÝÑ Mq is non-zero. If a is not a zero divisor of M, we call it a non
zero-divisor of M, not to be confused with a non-zero zero divisor, which is by
definition a zero divisor which itself is not zero. Finally, a zero divisor means a
zero divisor of A.

In the following we assume OX is coherent, which is redundant after Oka’s
coherence theorem is proved.

Proposition 2.3.13. Let X be a complex space, E a coherent OX-module, and choose
f P OpXq. Then

Z “ tx P X : The germ of f at x is a zero divisor of Exu

is an analytic subset of X . In particular, the set of x P X such that f is a non zero-divisor
of Ex is open in X .

Proof. Let K “ KerpE
ˆf
ÝÝÑ E q, which is coherent by Cor. 2.1.6. Then SupppK q is

a complex subspace of X . A point x P X belongs to SupppK q iff Kx “ KerpEx
ˆf
ÝÝÑ

Exq is non-zero iff f is a zero divisor of Ex. This shows that Z equals SupppK q as
sets.

2.4 Finite maps and proper maps

The proof of coherence of the structure sheaves of complex spaces is closely
related to the study of finite holomorphic maps φ : X Ñ Y and the coherence of
φ˚OX . In this section, we discuss finite maps in the purely topological setting.

We assume X, Y are topological spaces. Recall that a continuous map φ : X Ñ

Y is called closed if φ sends closed subsets of X to closed subsets of Y .

Proposition 2.4.1. Let φ : X Ñ Y be a continuous map. Then the following are equiva-
lent.
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(1) φ is a closed map.

(2) For each y P Y ,

tφ´1
pV q : V Ă Y is a neighborhood of yu

is a basis of neighborhoods of φ´1pyq , which means that for each open U Ă X
containing φ´1pyq there is a neighborhood V Q y such that φ´1pV q Ă U .

Proof. Assume (1). For each open U Ă X containing φ´1pyq, let V Ă Y be defined
by Y zV “ φpXzUq where φpXzUq is closed because φ is closed. So V is open and
clearly contains y. Since V X φpXzUq “ H, φ´1pV q X pXzUq “ H. So φ´1pV q Ă U .
This proves (2).

Assume (2). Choose any closed subset E Ă X . We shall show that φpEq is
closed in Y . Choose any y P Y zφpEq. Then XzE is a neighborhood of φ´1pyq.
So we can choose a neighborhood V Ă Y of y such that φ´1pV q Ă XzE. So
φ´1pV q XE “ H, and hence V XφpEq “ H. This proves that y is an interior point
of Y zφpEq. So Y zφpEq is open, and (1) is proved.

Remark 2.4.2. The above proposition shows that closedness is a local property
(with respect to the base Y ): If Y has an open cover pVαqα, then φ : X Ñ Y is
closed iff the restriction φ : φ´1pVαq Ñ Vα is closed for each α.

Definition 2.4.3. A continuous map φ : X Ñ Y is called finite if it is a closed map
and if φ´1pyq is a finite set for all y P Y . The composition of two finite maps is
clearly finite. If φ : X Ñ Y is a holomorphic map of complex spaces which is
finite as a continuous map of topological spaces, we say φ is a finite holomorphic
map.

Remark 2.4.4. A main reason that we require finite maps to be closed is the fol-
lowing: Suppose φ is finite. Given y P Y , choose mutually disjoint neighborhoods
Ux Ă X for all x P φ´1pyq. Then by Prop. 2.4.1, there is a sufficiently small neigh-
borhood V Ă Y of y such that

φ´1
pV q “

ž

xPφ´1pyq

φ´1
pV q X Ux. (2.4.1)

In other words, we can shrink each Ux to a smaller neighborhood of x such that

φ´1
pV q “

ž

xPφ´1pyq

Ux. (2.4.2)

From this it is clear that the restriction φ|Ux : Ux Ñ Y is finite.

As applications of this observation, we prove several important facts about
direct images.
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Proposition 2.4.5. Let φ : X Ñ Y be a finite continuous map, and let E be an X-sheaf.
Then for each y P Y , we have an isomorphism of abelian groups

Φ : pφ˚E qy
»

ÝÝÑ
à

xPφ´1pyq

Ex (2.4.3)

defined componentwise by the obvious restriction maps.

If φ is a morphism of C-ringed spaces and E is an OY -module, then Φ is clearly
an isomorphism of OY,y-modules. Moreover, Φ is an isomorphism of pφ˚OXqy-
modules if we let pφ˚OXqy »

À

xPφ´1pyq
OX,x act on the codomain of Φ component-

wise.

Proof. Ψ is defined by passing to the direct limit of the map

ΦV : E pφ´1
pV qq Ñ

à

xPφ´1pyq

Ex (2.4.4)

over all open V Q y. If s P E pφ´1pV qq and ΦV psq “ 0, then we may find disjoint
neighborhoods Ux Q x such that s|Ux “ 0. After shrinking V such that (2.4.1) holds,
we have s “ 0. So Φ is injective.

On the other hand, choose sx P Ex for each x P φ´1pyq. Then we may choose
small enough neighborhoods Ux Q x and V Q y such that sx P E pUxq and (2.4.2)
holds. Let s P E pφ´1pV qq be sx when restricted to Ux. Then ΦV psq “ sx. So Φ is
surjective.

Recall that for an arbitrary continuous map φ, the functor φ˚ is left exact.

Corollary 2.4.6. Let φ : X Ñ Y be a finite continuous map. Then φ˚ is an exact
functor (i.e. a left and right exact functor) from the category of X-sheaves to that of
Y -sheaves. Namely: if a sequence of maps of X-sheaves

0 Ñ E Ñ F Ñ G Ñ 0, (2.4.5)

is exact, then the following is exact:

0 Ñ pφ˚E qy Ñ pφ˚F qy Ñ pφ˚G qy Ñ 0. (2.4.6)

Indeed, (2.4.5) is exact if and only if (2.4.6) is exact.

Proof. By Prop. 2.4.5, (2.4.6) is the same as

0 Ñ
à

xPφ´1pyq

Ex Ñ
à

xPφ´1pyq

Fx Ñ
à

xPφ´1pyq

Gx Ñ 0.

The equivalence of the exactness of (2.4.5) and (2.4.6) follows.
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Proposition 2.4.7 (Base change proposition). Let π : X Ñ S be a finite holomorphic
map of complex spaces. Let E be an OX-module and M an OS-module. Then we have a
(clearly natural) OS-module isomorphism

Υ : pπ˚E q bOS M
»

ÝÝÑ π˚pE bOS M q

σ b µ P E pπ´1
pW qq bOSpW q M pW q ÞÑ σ b µ P pE bOS M qpπ´1

pW qq
(2.4.7)

for all open W Ă S.

Note that the stalk map of Φ at any t P S is the canonical morphism

Υ : pπ˚E qt bOS,t Mt ÝÑ π˚pE bOS M qt (2.4.8)

Proof. By Prop. 2.4.5, the stalk map (2.4.8) can be extended to a commutative
diagram

pπ˚E qt bOS,t Mt πpE bOS M qt

´

À

xPπ´1ptq Ex
¯

bOS,t Mt

À

xPπ´1ptqpE bOS M qx

Υ

» »

»

(2.4.9)

where the other three morphisms of OS,t-modules are isomorphisms. So (2.4.8) is
an isomorphism.

Lemma 2.4.8. Let φ : X Ñ Y be a finite holomorphic map of complex spaces. Assume
that E is a coherent OX-module. Then each y P Y is contained in neighborhood V Ă Y
such that E |π´1pV q is the cokernel of a morphism of free Oπ´1pV q-modules.

Proof. Choose V such that (2.4.2) holds and Ux is a small enough neighborhood
of x P φ´1pyq such that E |Ux is equivalent to CokerpOm

Ux
Ñ On

Ux
q. The natural

numbers m,n might initially depend on x, but we can enlarge m,n so that they
do not. Then E |π´1pV q is clearly the cokernel of a morphism Om

π´1pV q
Ñ On

π´1pV q
.

Definition 2.4.9. A continuous map φ : X Ñ Y is called proper if for each com-
pact subset K Ă Y , φ´1pKq is compact.

Finite maps are special cases of proper maps as shown by the following propo-
sition. Indeed, a deep theorem by Grauert says that if φ is a proper holomorphic
map then φ˚E is OY -coherent whenever E is OX-coherent. In particular, φ˚OX is
OY -coherent. So we can study fpXq. In the special case that φ is finite, the study of
the coherence of φ˚OX is crucial to the proof of coherence of all structure sheaves
of complex spaces.

Proposition 2.4.10. Let φ : X Ñ Y be a continuous map of locally compact Hausdorff
spaces. The following are equivalent.
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(1) φ is proper.

(2) φ is closed, and φ´1pyq is compact for each y P Y .

Thus, a finite map is precisely a proper map whose fibers φ´1pyq are all discrete sets.

Proof. Assume (1). Let us prove that φ is closed by proving part (2) of Prop. 2.4.1.
Choose y P Y and any neighborhood U Ą φ´1pyq. Since Y is locally compact, we
can fix a precompact neighborhood V0 Ă Y of y. Then E :“ pXzUq X φ´1pV cl

0 q is
compact by the properness of φ. Let V be the set of all precompact open subsets
of V0 containing y. Then

Ş

V PV V
cl “ tyu since Y is Hausdorff, and hence E X

Ş

V PV φ
´1pV clq “ H. So by the compactness of E, there is V P V such that E X

φ´1pV clq “ 0. So φ´1pV clq Ă U .
Assume (2). For each y P Y , since φ´1pyq is compact and X is locally compact,

we may find a precompact neighborhood U Ă X of φ´1pyq. By Prop. 2.4.1, we can
find a neighborhood V of y such that φ´1pV q Ă U . So φ´1pV qcl is compact since it
is closed in U cl. From this we conclude that any compact K Ă Y can be covered
by finitely many open sets V1, V2, . . . such that φ´1pVjq

cl is compact. Then φ´1pKq

as a closed subset of
Ť

j φ
´1pVjq

cl is compact.

The following important fact says that properness and finiteness are preserved
by base changes.

Proposition 2.4.11. Let π : X Ñ S and ψ : Y Ñ S be holomorphic maps of complex
spaces. If π is proper resp. finite, then prY : X ˆS Y Ñ Y is proper resp. finite.

Proof. As a topological space, XˆS Y is the closed subset of all xˆy P XˆY such
that πpxq “ ψpyq (Rem. 1.13.11). The relation pr´1

Y pyq “ π´1pψpyqq ˆ y shows that
the fibers of prY are finite sets if those of π are finite. It also shows that if K Ă Y
is compact then pr´1

Y pKq is a (clearly closed) subset of π´1pψpKqq ˆ K which is
compact if π is proper. So prY is proper if π is so.

2.5 Weierstrass maps and Weierstrass preparation
theorem

The goal of this section is to study an important class of finite holomorphic
maps called Weierstrass maps.

Definition 2.5.1. Let S be a complex space. Let k P N. For each i “ 1, . . . , k, we
choose a polynomial of degree ni

pipziq “ 1 b ai,0 ` p1 b ai,1qzi ` ¨ ¨ ¨ ` p1 b ai,niqz
ni
i P OpCk

ˆ Sqrzis
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where ai,j P OpSq, ni P Z`, and ai,niptq ‰ 0 for all t P S. Consider pi as an element
of OpCk ˆ Sq. Let

X “ SpecanpOCkˆS{Iq I “ p1OCkˆS ` ¨ ¨ ¨ ` pkOCkˆS. (2.5.1)

Then the holomorphic map π : X Ñ S defined by restricting the projection prS :
Ck ˆ S Ñ S is called a Weierstrass map.

Recall that by our notations, 1 b ai,j means pr#S ai,j “ ai,j ˝ prS . We shall write
1 b ai,j as ai,j if no confusion arises.

Proposition 2.5.2. Weierstrass maps are finite.

Proof. Clearly each fiber of π : X Ñ S is a finite set. To check that π is closed, by
Rem. 2.4.2, it suffices to check it locally with respect to the base.

By Rem. 1.5.2 we can shrink S and find an open disc D Ă C such that for
each t P S and each i, the polynomial pipzi, tq of zi has ni zeros in D counting
multiplicities. So X (as a topological space, namely NpIq) is a closed subset of
pDclqk ˆ S. Therefore π : X Ñ S is the restriction of the projection pDclqk ˆ S Ñ S
to a closed subset, which is closed because the projection pDclqk ˆS Ñ S is proper
and hence closed (Prop. 2.4.10).

The next proposition says that a canonical pullback Y Ñ T of a Weierstrass
map X Ñ S along a holomorphic map ψ : T Ñ S is Weierstrass.

Proposition 2.5.3. Assume the setting of Def. 2.5.1. Let ψ : T Ñ S be a holomorphic
map of complex spaces. Set

rai,j “ ai,j ˝ ψ P OpT q

rpipziq “ 1 b rai,0 ` p1 b rai,1qzi ` ¨ ¨ ¨ ` p1 b rai,niqz
ni
i P OpCk

ˆ T qrzis

and set

Y “ SpecanpOCkˆT {J q J “ rp1OCkˆT ` ¨ ¨ ¨ ` rpkOCkˆT . (2.5.2)

Then the Cartesian square

Ck ˆ S Ck ˆ T

S T

1ˆψ

ψ

restricts to a Cartesian square

X Y

S T

π

rψ

rπ

ψ
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Proof. By Prop. 1.12.1 we have a Cartesian square

X Y

Ck ˆ S Ck ˆ T

which, together with Rem. 1.11.3, proves our proposition.

The following theorem is the first major result of this chapter. Many subse-
quent major results in this chapter are proved using this theorem.

Theorem 2.5.4 (Fundamental theorem of Weierstrass maps). Assume the setting
of Def. 2.5.1. Then

tzν11 ¨ ¨ ¨ zνkk : 0 ď νi ď ni ´ 1 for all 1 ď i ď ku (2.5.3)

(or more precisely, these elements acted on by pr#CkˆSÑCk) is a set of free generators of the
OS-module π˚OX .

In particular, π˚OX is a free OS-module of rank n1n2 ¨ ¨ ¨nk.

Lemma 2.5.5. If Thm. 2.5.4 holds when S is smooth, then Thm. 2.5.4 holds when S is
any complex space.

Proof. Note that Thm. 2.5.4 is local by nature since it can be checked at the level
of stalks. So we may assume S is so small that it is a closed subspace of an open
subset Ω Ă Cm, and that each ai,j is the restriction of an element of OpΩq. There-
fore, by Prop. 2.5.3, we have a Weierstrass map Y ãÑ Ck ˆ Ω Ñ Ω (which we also
denote by π) such that the following two squares are Cartesian.

X Y

Ck ˆ S Ck ˆ Ω

S Ω

In particular, π : X Ñ S is the base change of π : Y Ñ Ω to S.
Write S “ SpecanpOΩ{Iq. Then by Rem. 1.12.3, OX is OY bOΩ

OS (if we regard
OX as an OY -module and OS as an OΩ-module). By Base change Prop. 2.4.7, we
have canonical isomorphisms of OΩ-modules

π˚OX » π˚pOY bOΩ
OSq » π˚OY bOΩ

OS.

Equivalently, π˚OX » π˚OY |S as OS-modules. Since we assume that Thm. 2.5.4
holds for π : Y Ñ Ω, we know that π˚OY is generated freely by (2.5.3). So π˚OX is
generated freely by (the restrictions to S of) (2.5.3).
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Due to Lemma 2.5.5, we can assume that:

Convention 2.5.6. In the remaining part of this section, S is an open subset of Cm.
Let t‚ “ pt1, . . . , tmq be the variables of S.

To prepare for the proof, we let Nppiq Ă C ˆ S be the subset of all pzi, t‚q such
that pipzi, t‚q “ 0. For each pt‚q P S, the fiber

Nppiqt‚ “ tThe set of all zi P C satisfying pipzi, t‚q “ 0u

Then by Prop. 2.4.5, we have an obvious isomorphism of OS,t‚-modules

pπ˚OXqt‚ »
à

wiPNppiqt‚
1ďiďk

OCkˆS,pw‚,t‚q{Ipw‚,t‚q (2.5.4)

where

Ipw‚,t‚q “ p1OCkˆS,pw‚,t‚q ` ¨ ¨ ¨ ` pkOCkˆS,pw‚,t‚q.

Our goal is to show that (2.5.3) generates (2.5.4) freely.

2.5.1 Proof of Thm. 2.5.4, I

In this subsection, we assume pt‚q “ 0 P S Ă Cm for simplicity, and show that
(2.5.3) generate pπ˚OXq0. We let pτ‚q denote a set of general variables of S. (2.5.4)
reads

pπ˚OXq0 »
à

wiPNppiq0
1ďiďk

OCkˆS,pw‚,0q{Ipw‚,0q. (2.5.5)

Lemma 2.5.7. (2.5.3) generates pπ˚OXq0.

Proof-special case. We consider the special case that for each i, Nppiq0 is the single
point 0. In this case, pipzi, τ‚q has order ni in zi (recall Def. 1.5.1). (Namely, pi is,
up to multiplication by a nowhere zero element of OpSq, a Weierstrass polynomial
of zi.) Now (2.5.5) reads

pπ˚OXq0 » OCkˆS,p0,0q{Ip0,0q.

We explain the proof when k “ 2. The general case follows from exactly the same
argument.

Choose fpz1, z2, τ‚q P OC2ˆS,p0,0q. Then by WDT (Weierstrass division theorem),

fpz1, z2, τ‚q “

n1´1
ÿ

j“0

zj1 ¨ gjpz2, τ‚q mod p1OC2ˆS,p0,0q
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where gj P OCˆS,p0,0q. Apply WDT again, we have

gjpz2, τ‚q “

n2´1
ÿ

l“0

zl2 ¨ hlpτ‚q mod p2OCˆS,p0,0q

where hl P OS,0. This finishes the proof.

To prove the general case, for each wi P Nppiq0 we define integer

µipwiq “ tThe multiplicity of the root zi “ wi of pipzi, 0qu

So 0 ă µipwiq ď ni.

Lemma 2.5.8. For each i, choose wi P Nppiq0. Then there is an OS,0-coefficient-
polynomial q1pz‚, τ‚q of z1, . . . , zn with multi-degree ď

`

n1 ´ µ1pw1q, . . . , nk ´ µkpwkq
˘

satisfying the following conditions.

(1) Its germ at pw‚, 0q is an invertible element of the ring OCkˆS,pw‚,0q{Ipw‚,0q.

(2) Its germ at p rw‚, 0q is 0 in the ring OCkˆS,p rw‚,0q{Ip rw‚,0q for any p rw‚q “

p rw1, . . . , rwkq P Ck such that rwi P Nppiq0 (for all i) and that p rw‚q ‰ pw‚q.

This lemma can be viewed as a partition of unity of pπ˚OXq0. We postpone the
proof of this lemma until after proving Lemma 2.5.7.

Proof of Lemma 2.5.7-general case. In view of (2.5.5), it suffices to prove the follow-
ing claim:

• Choose any pw‚q P Ck such that wi P Nppiq0, and choose any fpz‚, τ‚q P

pπ˚OXq0 which is zero in OCkˆS,p rw‚,0q{Ip rw‚,0q whenever p rw‚q ‰ pw‚q. Then f
belongs to the OS,0-submodule of pπ˚OXq0 generated by (2.5.3).

– Namely, there is an OS,0-coefficient-polynomial qpz‚, τ‚q of z‚ with
multi-degree ď pn1 ´ 1, . . . , nk ´ 1q whose germ at pw‚, 0q is equal to the
germ of f mod Ipw‚,0q, and whose germ at p rw‚, 0q (where p rw‚q ‰ pw‚q) is
in Ip rw‚,0q.

Let q1 be as in Lemma 2.5.8, whose germ at pw‚, 0q is an invertible element of
OCkˆS,pw‚,0q. Note that f{q1 is in OCkˆS,pw‚,0q (but not in pπ˚OXq0). We now apply
the proof of the special case to f{q1. Then by WDT (noting that pipzi, τ‚q has order
µipwiq in zi´wi), there is an OS,0-coefficients polynomial q2pz‚, τ‚q of z‚ with multi-
degree ď pµ1pn1q ´1, . . . , µkpnkq ´1q which equals f{q1 in OCkˆS,pw‚,0q{Ipw‚,0q. Then
f and q :“ q1q2 are clearly equal in OCkˆS,pw‚,0q{Ipw‚,0q. They are also equal in
OCkˆS,p rw‚,0q{Ip rw‚,0q since both are 0.

We are done with the proof of Lemma 2.5.7.
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2.5.2 Proof of Lemma 2.5.8

Definition 2.5.9. A polynomial qpz, τ‚q P Ctτ‚urzs is called a Weierstrass polyno-
mial of z if it is monic and the degree equals the order in z. Namely,

qpz, τ‚q “ a0pτ‚q ` a1pτ‚qz ` ¨ ¨ ¨ ` an´1pτ‚qzn´1
` zn (2.5.6)

where a0, . . . , an´1 P Ctτ‚u, and

a0p0q “ a1p0q “ ¨ ¨ ¨ “ an´1p0q “ 0.

Theorem 2.5.10 (Weierstrass preparation theorem (WPT)). Choose fpz, τ‚q P

Ctz, τ‚u with finite order n in z. Then there exist a unique invertible u P Ctz, τ‚u and a
Weiertrass polynomial q P Ctτ‚urzs of z such that in Ctz, τ‚u we have

f “ uq.

Proof. Uniqueness: f “ uq can be written as q “ u´1f . Write qpz, τ‚q “ zn ´ r
where the polynomial r P Ctτ‚urzs of z has degree ă n. Then zn “ u´1f ` r gives
the unique Weierstrass division of zn by f . So u, q are unique.

Existence: By WDT, we have zn “ αf ` r where α P Ctz, τ‚u and r P Ctτ‚urzs

has degree ă n. Now, zn “ αpz, 0qfpz, 0q ` rpz, 0q gives the unique Weierstrass
division of zn by fpz, 0q. Since f has order n in z, we may write fpz, 0q “ znhpzq

where h P Ctzu is invertible. So zn “ hpzq´1 ¨ fpz, 0q also gives a Weierstrass
division. Therefore rpz, 0q “ 0 and αpz, 0q “ hpzq´1. So αp0, 0q ‰ 0, i.e. α is
invertible in Ctz, τ‚u. We have f “ α´1q where q “ zn ´ r.

We are ready to prove Lemma 2.5.8.

Proof of Lemma 2.5.8. Recall the polynomials pi in Def. 2.5.1. By WPT, for each
wi P Nppiq0, in the ring Ctzi ´ wi, τ‚u, pipzi, τ‚q equals a unit times a Weierstrass
polynomial ri,wipzi, τ‚q of zi ´ wi. So ri,wipzi, τ‚q P OS,0rzis has degree µipwiq in zi,
and ri,wipzi, 0q “ pzi ´ wiq

µipwiq. So in the ring OCkˆS,p rw‚,0q{Ip rw‚,0q, ri,wi is invertible
when rwi ‰ wi (since ri,wip rwi, 0q ‰ 0), and is 0 when rwi “ wi. Thus

Ri :“
ź

rwiPNppiq0
rwi‰wi

ri, rwi

is invertible in OCkˆS,p rw‚,0q{Ip rw‚,0q
when rwi “ wi and is zero when rwi ‰ wi. Ri P

OS,0rzis has degree n ´ µipwiq in zi. So p1 “
śk

i“1Ri gives the desired polynomial.
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2.5.3 Proof of Thm. 2.5.4, II

Finishing the proof of Thm. 2.5.4. We have already shown that the set (2.5.3)
(which has n1 ¨ ¨ ¨nk elements) generate π˚OX . In particular, π˚OX is a finite-type
OS-module. To show that (2.5.3) generates π˚OX freely, by Prop. 1.3.15, it suffices
to show that the fiber pπ˚OXq|y “ pπ˚OXq bOS pOS{mS,yq has dimension n1 ¨ ¨ ¨nk
for each y P S.

By Base change Prop. 2.4.7, pπ˚OXq|y is canonically equivalent to

π˚pOX bOS pOS{mS,yqq,

which equals π˚OXy “ OpXyq (where Xy “ π´1pyq is the inverse image of y and
is a closed subspace of X) by Rem. 1.12.3. By Prop. 2.5.3, π : π´1pyq Ñ tyu is a
Weierstrass map. It is the restriction of Ck Ñ tyu to the complex subspace of Ck

defined by the ideal sheaf generated by pipzi, yq “ ai,0pyq`ai,1pyqzi`¨ ¨ ¨`ai,nipyqznii
for all 1 ď i ď k. Thus, it suffices to prove the following lemma.

Lemma 2.5.11. Let X “ SpecanpOCk{Iq where I is the ideal sheaf generated by
p1, . . . , pk where each pipziq P Crzis has degree ni. Then OpXq has dimension n1 ¨ ¨ ¨nk.

Proof. We are still in the setting of Def. 2.5.1, but assuming that S is a single point
0. So Nppiq0 “ Nppiq. By (2.5.5),

OpXq »
à

wiPNppiq
1ďiďk

OCk,w‚
{Iw‚

.

Clearly Iw‚
is the ideal generated by pzi ´ wiq

µipwiq for all 1 ď i ď k. So
#

k
ź

i“1

pzi ´ wiq
νi : 0 ď νi ď µipwiq ´ 1

+

is a basis of OCk,w‚
{Iw‚

. This calculates the dimension of OpXq.

2.6 Coherence of OX

The goal of this section is to prove that OX is coherent for every complex space
X . By Cor. 2.1.14, it suffices to prove that OCn is coherent. The role that Thm. 2.5.4
plays in the proof of coherence of OCn is similar to the role that WDT plays in the
proof that OCn,0 is Noetherian.

Lemma 2.6.1. Assume that X is an open subset of Cn. Assume that for each open con-
nected U Ă X and each non-zero h P OpUq, OU{hOU is a coherent OU{hOU -module.
Then OX is a coherent OX-module.
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More precisely, our assumption is that the structure sheaf of SpecanpOU{hOUq

is coherent.

Proof. Step 1. By shrinking X to a connected open subset if possible, it suffices to
show that for each OX-module morphism φ : ON

X Ñ OX , its kernel E is of finite
type. Let h1 “ φp1, 0, . . . , 0q, . . . , hN “ φp0, 0, . . . , 1q, which are in OpXq. So

φps1, s2, . . . , sNq “ s1h1 ` s2h2 ` ¨ ¨ ¨ ` sNhN

If φ “ 0, then E “ ON
X is clearly of finite-type. So we assume φ ‰ 0, i.e., one of

h1, . . . , hN , say h1, is nonzero.
For each x P X , the germ of h1 at x is nonzero by Identitätssatz 1.1.3, and OX,x

is an integral domain. So Kerpφq “ 0 ifN “ 1. In the following, we assumeN ą 1.
Let Y “ SpecanpOX{h1OXq. For each f P OX , let rf s denote its residue class in

OY . Define an OX-module morphism π : ON
X Ñ ON´1

Y by

πps1, s2 . . . , sNq “ prs2s, . . . , rsN sq

Then φ descends to ψ : ON´1
Y Ñ OY satisfying

ψprs2s, . . . , rsN sq “ rs2h2 ` ¨ ¨ ¨ ` sNhN s

Let F “ Kerpψq and let rπ be the restriction of π to E . Then we have a commutative
diagram of OX-module morphisms

0 E ON
X OX

0 F ON´1
Y OY

rπ

φ

π

ψ

Step 2. Let us prove that rπ is an epimorphism by proving the surjectivity of
each stalk map rπ : Ex Ñ Fx. An element of Fx is precisely prs2s, . . . , rsN sq (where
s2, . . . , sN P OX,x) satisfying that s2h2 ` ¨ ¨ ¨ ` sNhN belongs to h1OX,x, i.e. of the
form ´s1h1 for some s1 P OX,x. Then ps1, . . . , sNq belongs to Ex and is sent to
prs2s, . . . , rsN sq by rπ.

Step 3. Let N “ Kerprπq. By Step 2, we have an exact sequence

0 Ñ N Ñ E
rπ
ÝÑ F Ñ 0

By assumption, OY is OY -coherent. So F is OY -finite-type (by Cor. 2.1.5 and Cor.
2.1.6), and hence OX-finite-type. To prove that E is of finite-type, by Rem. 2.1.4, it
remains to prove that N is a finite type OX-module. Let us prove that

ξ2 “ p´h2, h1, 0, . . . , 0q, ξ3 “ p´h3, 0, h1, . . . , 0q, . . . , ξN “ p´hN , 0, 0, . . . , h1q
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(which are clearly inside N ) generate N .
Choose any x P X and ps‚q “ ps1, s2, . . . , sNq P Nx. So s2, . . . , sN P h1OX,x

because ps‚q is killed by rπ. Choose g2, . . . , gN P OX,x such that

s2 “ g2h1, . . . , sN “ gNh1

Since s1h1 ` s2h2 ` ¨ ¨ ¨ ` sNhN “ 0 because ps‚q is killed by φ, we have

ps1 ` g2h2 ` ¨ ¨ ¨ ` gNhNqh1 “ 0

By Identitätssatz 1.1.3, the germ of h1 at x is non-zero. Thus, since OX,x is an
integral domain, we have s1 ` g2h2 ` ¨ ¨ ¨ ` gNhN “ 0. So

ps1, s2, . . . , sNq “ g2ξ2 ` ¨ ¨ ¨ ` gNξN

The proof is completed.

Theorem 2.6.2 (Oka’s coherence theorem). For every complex space X , OX is a co-
herent OX-module.

Proof. We prove the coherence of OCm by induction on m. The case m “ 0 is
obvious. Assume that OCm is coherent. Let us prove that OCm`1 is coherent.

By Lemma 2.6.1, it suffices to show that for each open connected U Ă Cm`1

and non-zero h P OpUq, if we write Y “ SpecanpOU{hOUq then OY is a coherent
OY -module. Let K be the kernel of a morphism ON

Y Ñ OY . Then we have an
exact sequence of OY -modules

0 Ñ K Ñ ON
Y Ñ OY .

We need to show that for each x P U , say x “ 0, after shrinking U to a neighbor-
hood of x, K is OU -generated by finitely many elements of K pUq.

The germ of h in OU,x is non-zero by the Identitätssatz 1.1.3. Thus, by choosing
a new set of coordinates pz, t1, . . . , tmq of U such that x “ 0, we may assume that
the germ of h at 0, which is an element of Ctz, t1, . . . , tmu, has finite order n in
z. (Cf. the proof of Thm. 1.5.5). Thus, by WPT, after shrinking U to a smaller
neighborhood of 0 we may assume that h P Ctt‚urzs is a Weierstrass polynomial
of degree=order n in z.

We assume U “ V ˆ W where V Ă C and W Ă Cm are neighborhoods of 0.
By Rem. 1.5.2, we may assume that Nphq “ tpz, t‚q P C ˆ W : hpz, t‚q “ 0u is like
Fig. 1.5.1: for each pt‚q P W , the polynomial hpz, t‚q of z has n zeros in V counting
multiplicities. Thus Nphq Ă U . Therefore

OU{hOU “ OCˆW {hOCˆW .

So the projection of π : Y Ñ W (inherited from C ˆ W Ñ W ) is a Weierstrass
map. By the Fundamental Thm. 2.5.4 of Weierstrass maps, π˚OY and hence
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π˚pON
Y q “ pπ˚OY qN are OW -free. So they are OW -coherent by our assumption that

OCm is coherent. Therefore π˚K is OW -coherent by Cor. 2.1.6 and the exactness of

0 Ñ π˚K Ñ π˚O
N
Y Ñ π˚OY .

So K is OY -finite-type by the following lemma.

Lemma 2.6.3. Let π : X Ñ S be a finite morphism of C-ringed spaces, and let E be an
OX-module. If π˚E is OS-finite-type, then E is OX-finite-type.

Proof. Choose any t P S. By shrinking S to a neighborhood of t (and shrinking X
to π´1pSq), we can find σ1, . . . , σk P E pXq “ pπ˚E qpSq which OS-generate π˚E . For
each x P X , by Prop. 2.4.5, Ex is a direct summand of the OS,πpxq-module pπ˚E qπpxq.
So Ex is OS,πpxq-generated (and hence OX,x-generated) by σ1, . . . , σk. This proves
that E is OX-generated by σ1, . . . , σk.

Corollary 2.6.4. Let X be a complex space. An ideal of OX is finite-type if and only if it
is coherent.

2.7 Finite mapping theorem

The following two theorems are the main results of this section.

Theorem 2.7.1 (Finite mapping theorem). Let π : X Ñ S be a finite holomorphic
map of complex spaces, and let E be an OX-module. Then the following are equivalent.

(1) E is OX-coherent.

(2) π˚E is OS-coherent.

Theorem 2.7.2. Let π : X Ñ S be a holomorphic map of complex spaces. Let t P S,
and assume that x P π´1ptq is an isolated point of π´1ptq. Then there are neighborhoods
U Ă X of x and W Ă S of πpUq such that π restricts to a finite holomorphic map
π : U Ñ W .

Remark 2.7.3. It follows immediately from Thm. 2.7.2 that if π : X Ñ S is holo-
morphic and if t P S is such that π´1ptq is a finite set, then there are neighborhoods
U Ă X of π´1ptq and W Ă S of πpUq such that the restriction π : U Ñ W is finite.

Corollary 2.7.4. Let X be a complex space which, as a set, is txu. Then an OX-module E
is OX-coherent if and only if E (or more precisely E ptxuq) is a finite-dimensional vector
space.

Proof. Let π : X Ñ t0u be the obvious map where t0u is the reduced single point.
(Note that x is not assumed to be reduced.) Then π is clearly finite. That E is
finite-dimensional is equivalent to that π˚E is Ot0u-coherent. Thus the proof is
finished by Thm. 2.7.1.
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2.7.1 Proof of the main results

We begin with the following preliminary lemma.

Lemma 2.7.5. Given a finite holomorphic π : X Ñ S, if π˚OX is OS-coherent, then for
each coherent OX-module E , π˚E is OS-coherent.

Proof. Choose any t P S. By Lemma 2.4.8, we can shrink S to a neighborhood of t
and shrink X to π´1pSq so that E » CokerpOm

X Ñ On
Xq for a morphism Om

X Ñ On
X .

Thus, by the (right) exactness of π˚ (Cor. 2.4.6), π˚E » Cokerpπ˚Om
X Ñ π˚On

Xq,
which is coherent since π˚OX is coherent.

The crucial part of the proof is the following lemma.

Lemma 2.7.6. Choose open subsets R Ă Ck and S Ă Cm. Let X “ SpecanpORˆS{Iq

where I is a coherent ideal of ORˆS . Let π : X Ñ S be the holomorphic map restricted
from the projection RˆS Ñ S. Let t P S and assume that x P π´1ptq is an isolated point
of π´1ptq. Then there are neighborhoods U Ă R of x and W Ă S of πpUq such that the
restriction π : pU ˆ W q X X Ñ W is finite, and that π˚OpUˆW qXX is OW -coherent.

We assume x “ 0R and t “ 0S for simplicity, and prove the lemma by induction
on k.

Proof for the case k “ 1. ShrinkR to a neighborhood of 0R such that π´1p0Sq “ pRˆ

0Sq X NpIq is t0u. So we may shrink R further so that we can find f P IpR ˆ Sq

such that pR ˆ 0Sq X Npfq “ t0u. So f , as an element of Ctz, t1, . . . , tmu, has finite
order in z. So by WPT, we may shrink R, S further and replace f by a Weierstrass
polynomial of z, which we still denote by f .

Let J “ fORˆS and Y “ SpecanpORˆS{J q. Let rπ : Y Ñ S be the restriction
of R ˆ S Ñ S to Y . As in the proof of Oka’s coherence Thm. 2.6.2, we may
shrink R and S so that Fig. 1.5.1 holds, and hence that rπ is a Weierstrass map. So
π “ rπ ˝ ιX,Y is finite since both rπ and the inclusion map ι “ ιX,Y are finite.

By the Fundamental Thm. 2.5.4 of Weierstrass maps (and Oka’s coherence the-
orem), rπ˚OY is OS-coherent. So by Lemma 2.7.5, rπ˚ sends coherent OY -modules
to coherent OS-modules. But ι˚OX is OY -coherent by Extension principle 2.1.13.
So π˚OX “ rπ˚ι˚OX is OS-coherent.

Proof that case k ñ case k ` 1. Assume that case k is true. Now assume R is an
open subset of Ck`1. By shrinking R to a neighborhood of 0R we assume R “ U ˆ

V where U Ă C and V Ă Ck are open subsets containing 0C and 0Ck respectively,
and that π´1p0Sq “ pU ˆ V ˆ 0Sq X NpIq equals t0u.

Let α : X Ñ V ˆ S be the restriction of the projection U ˆ V ˆ S Ñ V ˆ S.
Then α´1p0V ˆSq “ pU ˆ 0V ˆ 0Sq ˆ NpIq is t0u. So by the case k “ 1, we may
shrink U, V, S to smaller neighborhoods of 0U , 0V , 0S respectively so that α is finite
and α˚OX is OV ˆS-coherent. By Def. 2.3.8, we can define the image space αpXq
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whose underlying topological space is Impαq, and by Prop. 2.3.12, α factors as the
composition of a holomorphic rα : X Ñ αpXq and the inclusion αpXq ãÑ V ˆ S.
We thus obtain a commutative diagram

V ˆ S

X “ SpecanpOUˆV ˆS{Iq S

αpXq

prS
α

rα
rπ

ι

where rπ is the restriction of prS to αpXq. We have π “ prS ˝ α “ rπ ˝ rα.
Clearly rπ´1p0Sq “ t0V ˆSu. Thus, by our assumption on case k, we may shrink

V, S so that rπ is finite and (by case k and Lemma 2.7.5) rπ˚ sends coherent OαpXq-
modules to coherent OS-modules. Note that we still have that α is finite and
ι˚rα˚OX “ α˚OX is OV ˆS-coherent after shrinking V, S (but not U is not shrunken).
So rα is finite, and by Extension principle 2.1.13, rα˚OX is OαpXq-coherent. So π “

rπ ˝ rα is finite, and π˚OX “ rπ˚rα˚OX is OS-coherent. We are done with the proof of
Lemma 2.7.6.

We are now ready to prove Thm. 2.7.2 and more:

Lemma 2.7.7. Thm. 2.7.2 is true. Moreover, in Thm. 2.7.2, U and W can be chosen so
that (besides that π is finite) π˚OU is also OW -coherent.

Proof. It suffices to assume that X is a model space, say a closed subspace of an
open R Ă Ck. We first assume S is an open subset of Cm. Define φ : X Ñ R ˆ S
so that the following triangular diagram commutes

X ˆ S

X R ˆ S S

ιX,Rˆ1
1_π

φ prS

By Prop. 1.13.6 and Prop. 1.12.5, 1 _ π and ιX,R _ 1 are closed embeddings. So
their composition φ is a closed embedding (Cor. 1.7.6). By Prop. 1.11.6,

prS ˝ φ “ prS ˝ pι ˆ 1q ˝ p1 _ πq “ prS ˝ pι _ πq “ π.

Thus, by identifying X with φpXq, the assumptions of Lemma 2.7.6 are satisfied.
The conclusions of Lemma 2.7.6 prove what we want to prove.

In the general case, we may shrink S (and shrink X accordingly) so that S is
a closed subspace of an open Ω Ă Cm. Let ι : S Ñ Ω be the inclusion. Then
by shrinking X and Ω (and S accordingly) to neighborhoods of any given points,
ι ˝ π : X Ñ Ω is finite and ι˚π˚OX is OΩ-coherent. Clearly π is finite, and by
Extension principle 2.1.13, π˚OX is OS-coherent.
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Proof of Thm. 2.7.1, (1)ñ(2). Let us prove that π˚OX is coherent. Choose any t P

S. By Lemma 2.7.7, for each x P π´1ptq we can choose neighborhoods Ux Q x and
Wx Ą πpUxq such that π˚OUx is OWx-coherent, and that Ux X Ux1 “ H if x ‰ x1.
So for each open W Ă

Ş

xPπ´1ptq Wx, we have that π˚OUxXπ´1pW q is OW -coherent.
Therefore, if we set U “

Ť

xPπ´1ptq Ux, then

π˚OUXπ´1pW q »
à

xPπ´1ptq

π˚OUxXπ´1pW q

is OW -coherent.
Since π : X Ñ S is finite, by Prop. 2.4.1, there is a neighborhood W Q t inside

Ş

xPπ´1ptq Wx such that π´1pW q “ U X π´1pW q. So π˚Oπ´1pW q “ pπ˚OXq|W is OW -
coherent.

The proof of (2)ñ(1) is similar to that of Oka’s coherence Thm. 2.6.2:

Proof of Thm. 2.7.1, (2)ñ(1). Assume that π˚E is coherent. Then E is OX-finite-
type by Lemma 2.6.3. Let us show that the sheaves of relations of E are finite-type.
By Prop. 2.4.1 or Rem. 2.4.4, we have a neighborhood W of t such that

π´1
pW q “

ž

xPπ´1ptq

Ux

where each Ux is a small enough neighborhood of x. Shrink Y to W and X to
π´1pW q. So we have an equivalence of OW -modules

π˚E »
à

xPπ´1ptq

π˚pE |Uxq.

Suppose α : ON
Ux

Ñ EUx is a morphism of OUx-modules. Let K “ Kerpαq so
that we have an exact

0 Ñ K Ñ ON
Ux Ñ EUx .

We regard K ,OUx ,EUx as OX-modules by identifying them with their direct im-
ages under Ux ãÑ X . Clearly OUx is OX-coherent. So π˚OUx is OS-coherent. Also
π˚EUx is OS-coherent since it is a direct summand of the coherent sheaf π˚E (cf.
Cor. 2.1.5). Thus, the exact sequence of OS-modules

0 Ñ π˚K Ñ π˚O
N
Ux Ñ π˚EUx

together with Cor. 2.1.6 show that π˚K is OS-coherent. Therefore, by Lemma
2.6.3, K is OX-finite-type.

We are done with the proofs of Thm. 2.7.1 and 2.7.2. In the following, we give
some applications.
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2.7.2 Applications

Corollary 2.7.8. Let φ : X Ñ Y be a holomorphic map of complex spaces. Then the
following are equivalent.

(1) φ is a closed embedding.

(2) φ is an immersion of complex spaces, and it is a closed and injective map of topo-
logical spaces.

Proof. (1)ñ(2) is obvious. Assume (2). Then as φ is finite, φ˚OX is OY -coherent.
By (2.3.6), the coherent ideal

J “ Ann OY pφ˚OXq

satisfies the assumptions in Prop. 1.7.3. Thus (1) follows from Prop. 1.7.3.

Rem. 1.13.8 tells us that any holomorphic map factors as the composition of
a closed embedding and the projection of a direct product. When the holomor-
phic map is finite, such decomposition might not be useful because, although
closed embeddings are finite, projections are usually not. The following proposi-
tion gives a refinement of this decomposition. It says that any finite holomorphic
map locally factors as the composition of a closed embedding and a Weierstrass
map. This result will be used e.g. in the proof of Base change Thm. 2.8.2.

Proposition 2.7.9. Let π : X Ñ S be a finite holomorphic map of complex spaces. Then
each t P S is contained in a neighborhood W Ă S such that the restriction π : π´1pW q Ñ

W is equivalent to the restriction of a Weierstrass map. More precisely, there exist a
Weierstrass map κ : Y Ñ W and a closed embedding φ : π´1pW q Ñ Y such that the
following diagram commutes.

π´1pW q Y

W

π

φ

κ
(2.7.1)

Proof-Step 1. By Finite mapping theorem, π˚OX is coherent. So we may shrink
S to a neighborhood of t and shrink X accordingly (i.e. replace X by the new
π´1pSq) so that π˚OX is OS-generated by f1, . . . , fk P OpXq. Indeed, we only need
to choose f1, . . . , fk such that π˚OX is OS-generated by Crf‚s “ Crf1, . . . , fks. Con-
sider F “ pf1, . . . , fkq as a holomorphic map F : X Ñ Ck (Thm. 1.4.1). Then we
have a commutative diagram

X Ck ˆ S

S

π

F_π

prS

(2.7.2)
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We want to show that F _ π is a closed embedding.
Since π is closed, one checks easily using (2.7.2) that F _ π is closed. To show

that F _π is injective, it suffices to show that F is injective when restricted to each
fiber π´1pτq (where τ P S). By Prop. 2.4.5, we have

pπ˚OXqτ »
à

xPπ´1pτq

OX,x (2.7.3)

which is OS,s-generated by f1, . . . , fk. If x, x1 P π´1pτq and x ‰ x1, then an element
of OS,τ rf‚s is 1 in OX,x and 0 in OX,x1 . So an element of Crf‚s takes value 1 at x
and 0 at x1. Thus, at least one of f1, . . . , fk takes different values at x and x1. So
F pxq ‰ F px1q.

To show that F _ π is an immersion, note that by (2.7.3), the C-algebra mor-
phism

F# : OCk,F pxq Ñ OX,x

sends z1, . . . , zk to (the germs at x of) f1, . . . , fk respectively. So the morphism

pF _ πq
# : OCkˆS,xˆτ “ OCk,xpbOS,τ ÝÑ OX,x

sends zi b 1 to fi. Thus, this morphism is surjective since OX,x is OS,τ -generated
by polynomials of f1, . . . , fk. So F _ π is an immersion. By Cor. 2.7.8, F _ π is a
closed embedding.

Proof-Step 2. Since pπ˚OXqt is a finitely generated module of the Noetherian ring
OS,t, for each i, the OS,t-submodule of pπ˚OXqt generated by all non-negative pow-
ers of fi is finitely generated. So fi is integral over OS,t. Namely, we may find
ni P Z` such that

ai,0 ` ai,1fi ` ¨ ¨ ¨ ` ai,ni´1f
ni´1
i ` fnii “ 0 (2.7.4)

where each ai,j P OS,t.
Shrink S to a neighborhood of t (and shrink X to π´1pSq) so that all ai,j are

elements of OpSq, and that (2.7.4) holds at the level of OpXq. Then

pipziq “ ai0 ` ai,1zi ` ¨ ¨ ¨ ` ai,ni´1z
ni´1
i ` znii

is a monic polynomial of zi, viewed as in OpCk ˆ Sq. Note that F _ π is still a
closed embedding. We let I be the ideal of OCkˆS generated by p1, . . . , pk, and
let Y “ SpecanpOCkˆS{Iq. Then prS : Ck ˆ S Ñ S restricts to a Weierstrass map
κ : Y Ñ S. By Thm. 1.4.8, F _ π : X Ñ Ck ˆ S restricts to φ : X Ñ Y , which is
clearly a closed embedding. And we clearly have a commutative diagram

X Y

S

π

φ

κ

This finishes the proof.
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2.8 Base change theorem for finite holomorphic maps

In algebraic geometry, if X, Y, S are affine schemes, then OpX ˆS Y q »

OpXq bOpSq OpY q. In complex analytic geometry, fiber products are in general
related to completed tensor products. But in the case that one holomorphic map
is finite, the usual (algebraic) tensor products are sufficient. The goal of this sec-
tion is to explore the relationship between X ˆS Y and tensor products in the
analytic setting and at the level of stalks. This goal will be achieved in Cor. 2.8.4
which is crucial to the future proof that “flatness of holomorphic maps is pre-
served by base change”. We shall prove Cor. 2.8.4 as a consequence of the Base
change theorem of finite holomorphic maps.

2.8.1 The setting

Consider a Cartesian square of holomorphic maps of complex spaces.

X X ˆS Y

S Y

π

prX

prY

ψ

(2.8.1)

Let E be an OX-module. Then we have an OY -module morphism

Ψ : ψ˚π˚E ÝÑ prY,˚pr
˚
XE , (2.8.2)

namely, a morphism

Ψ : pπ˚E q bOS OY ÝÑ prY,˚pE bOX OXˆSY q (2.8.3)

such that for each open V Ă Y and each open W Ă S containing ψpV q, Ψ sends

σ b g P E pπ´1
pW qq bOSpW q OY pV q (2.8.4)

to

σ b pr#Y g P E pπ´1
pW qq bOXpπ´1pW qq OXˆSY ppr´1

Y pV qq. (2.8.5)

(Note that prXppr´1
Y pV qq Ă π´1pW q.) It is easy to see that Ψ is natural. We call Ψ

the base change morphism.

Remark 2.8.1. The stalk map of Ψ at each y P Y is the OY,y-module morphism
determined by

Ψ : pπ˚E qψpyq bOS,ψpyq
OY,y ÝÑ prY,˚pE bOX OXˆSY qy

σ b 1 ÞÑ σ b 1
(2.8.6)
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2.8.2 Base change theorem

The following theorem is the main result of this section. Note that in the Carte-
sian square (2.8.1), if π is finite then prY is finite (Prop. 2.4.11).

Theorem 2.8.2 (Base change theorem). In the setting of Subsec. 2.8.1, assume that
π : X Ñ S is finite and E is a coherent OX-module. Then the base change morphism Ψ
(cf. (2.8.3)) is an isomorphism of OY -modules.

Note that this theorem is local by nature. Namely, in the proof we may shrink
S to a neighborhood of any given point, and replaceX by π´1pSq and Y by ψ´1pSq.

In the special case that E “ OX , we have:

Corollary 2.8.3. Let (2.8.1) be a Cartesian square of holomorphic maps of complex spaces.
Assume that π : X Ñ S is finite. Then we have an OY -module isomorphism

Ψ : pπ˚OXq bOS OY
»

ÝÝÑ prY,˚OXˆSY (2.8.7)

whose stalk map at each y P Y is an OY,y-module morphism determined by

Ψ : pπ˚OXqψpyq bOS,ψpyq
OY,y ÝÑ prY,˚pOXˆSY qy

f b 1 ÞÑ pr#Xf
(2.8.8)

Clearly (2.8.7) is also an isomorphism of OY -algebras.

Corollary 2.8.4. Let (2.8.1) be a Cartesian square, and assume that π : X Ñ S is finite.
Then for each x P X and y P Y such that πpxq equals t “ ψpyq, there is an isomorphism
of OS,t-algebras

OX,x bOS,t OY,y
»

ÝÝÑ OXˆSY,xˆy

f b g ÞÑ pr#Xf ¨ pr#Y g
(2.8.9)

First Proof. By Thm. 2.7.2, we may shrink X and S to neighborhoods of x and t
respectively, and shrink Y to ψ´1pSq, so that π´1ptq “ txu (as sets) and π is still
finite. Then in view of Prop. 2.4.5, we see that (2.8.8) becomes exactly (2.8.9).

Second Proof. By Prop. 2.4.5, for each y and t “ ψpyq, (2.8.8) is precisely the direct
sum of (2.8.9) over all x P π´1ptq “ pr´1

Y pyq.

The second proof shows that Cor. 2.8.3 and Cor. 2.8.4 are indeed equivalent.
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2.8.3 Proof of Base change Thm. 2.8.2

Lemma 2.8.5. Assume that Thm. 2.8.2 holds when E “ OX . Then Thm. 2.8.2 holds for
any coherent OX-module E .

Proof. If Thm. 2.8.2 holds when E “ OX , then it holds when E is OX-free. Now in
the general case, by Lemma 2.4.8 we can assume that S is so small that there is an
exact sequence of OX-modules

F Ñ G Ñ E Ñ 0

where F and G are OX-free. By the right exactness of ψ˚ and π˚ (Cor. 2.4.6), we
have an exact sequence

ψ˚π˚F Ñ ψ˚π˚G Ñ ψ˚π˚E Ñ 0.

Since the base change map Ψ is natural, we have a commutative diagram

ψ˚π˚F ψ˚π˚G ψ˚π˚E 0

prY,˚pr
˚
XF prY,˚pr

˚
XG prY,˚pr

˚
XE 0

Ψ » Ψ » Ψ

where the first two Ψ are isomorphisms by assumption. So the third Ψ is an
isomorphism by Five Lemma.

Lemma 2.8.6. Cor. 2.8.3 holds if π : X Ñ S is a Weierstrass map.

Proof. By Prop. 2.5.3, we may assume that prY : X ˆS Y Ñ Y is a Weierstrass
map. More precisely, we may assume that (2.8.1) factors as

X X ˆS Y

Ck ˆ S Ck ˆ Y

S Y

where the two small squares are Cartesian. By the Fundamental Thm. 2.5.4 of
Weierstrass maps, π˚OX is OS-freely generated by (2.5.3), and so pπ˚OXq bOS OY

is OY -freely generated by (2.5.3) b 1. Also, prY,˚OXˆSY is OY -freely generated by
(2.5.3). Using e.g. (2.8.8) one checks that Ψ sends the given free generators of
pπ˚OXq bOS OY bijectively to those of prY,˚OXˆSY . So Ψ must be an isomorphism.
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Proof of Thm. 2.8.2. By Lemma 2.8.5, it suffices to prove Cor. 2.8.3. By Prop. 2.7.9,
we may assume S is so small that π : X Ñ S factors as X ãÑ Z

rπ
ÝÑ S where X

is a closed subspace of Z and rπ is equivalent to a Weierstrass map. Thus, (2.8.1)
factors as the combination of two Cartesian squares

X X ˆS Y

Z Z ˆS Y

S Y

ι ιˆ1

rπ

ĂprZ

ĂprY
ψ

(2.8.10)

where prY : X ˆS Y Ñ Y is rprY ˝ pι ˆ 1q.
We have proved that Cor. 2.8.3 holds (and hence Thm. 2.8.2 holds, cf. Lemma

2.8.5) for the lower Cartesian square. Cor. 2.8.3 also holds for the upper Cartesian
square: Write X “ SpecanpOZ{Iq and let J “ rpr#Z pIq ¨ OZˆSY (the ideal sheaf of
OZˆSY generated by rpr#Z pIq), then we have canonical isomorphisms

ι˚OX bOZ OZˆSY “ pOZ{Iq bOZ OZˆSY

»Coker
`

I bOZ OZˆSY Ñ OZ bOZ OZˆSY

˘

»OZˆSY {J » pι ˆ 1q˚OXˆSY

where the last isomorphism is due to Prop. 1.12.1.
Apply Thm. 2.8.2 to the lower square and the coherent OZ-module ι˚OX : The

domain of the isomorphism Ψ is

prπ˚ι˚OXq bOS OY “ π˚OX bOS OY

and the codomain is

rprY,˚pι˚OX bOZ OZˆSY q » rprY,˚
`

pι ˆ 1q˚OXˆSY

˘

“ prY,˚OXˆSY .

By checking stalkwise with the help of (2.8.6) and (2.8.8) (and possibly Prop.
2.4.5), one sees that this morphism (i.e. the base change map for the lower square
of (2.8.10) and the OZ-module ι˚OX) agrees with the morphism Ψ in Cor. 2.8.3. So
the latter must be an isomorphism.

2.9 Analytic spectra Specan

We fix a complex space S.
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2.9.1 Main results

Definition 2.9.1. A morphism from a finite holomorphic map π : X Ñ S to a
finite holomorphic κ : Y Ñ S is a holomorphic map φ : X Ñ Y such that the
following diagram commutes.

X Y

S

π

φ

κ
(2.9.1)

The set of morphisms is denoted by MorSpX, Y q. This defines the category of
finite holomorphic maps to S.

Definition 2.9.2. An OS-algebra is an S-sheaf of C-algebras A together with a
morphism of sheaves of C-algebras OS Ñ A . Since A is an A -module, it becomes
an OS-module. We say that A is a coherent OS-algebra if it is an OS-algebra which
is coherent as an OS-module.

A morphism of OS-algebras from B to A is by definition a morphism Φ : B Ñ

A of sheaves of C-algebras such that the following diagram commutes.

A B

OS

Φ

(2.9.2)

The commutativity of (2.9.2) is equivalent to saying that the morphism of sheaves
of C-algebras Φ is also a morphism of OS-modules. The set of morphisms is de-
noted by MorOSpB,A q. This defines the category of coherent OS-algebras.

We have avoided using the symbol HomOSpB,A q, which is the set of OS-
module morphisms but not OS-algebra morphisms.

Theorem 2.9.3. The contravariant functor F from the category of finite holomorphic
maps to S to the category of coherent OS-algebras is an antiequivalence of categories. The
functor F sends each finite holomorphic map π : X Ñ S to the coherent OS-algebra
π˚OX . At the level of morphisms the functor is

F : MorSpX, Y q Ñ MorOSpκ˚OY , π˚OXq, φ ÞÑ φ#. (2.9.3)

Thus, for each coherent OS-algebra A there is, up to isomorphisms, a unique
finite holomorphic map π : X Ñ S such that π˚OX “ A . We write this map as
SpecanpA q Ñ S and call this map (or simply call the complex space SpecanpA q)
the analytic spectrum of A .

Note that when A “ OS{I where I is a coherent ideal of OS , as before,
SpecanpA q denotes the unique analytic spectrum as a closed subspace of S. For a
general A , SpecanpA q is not unique.
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Corollary 2.9.4. Let ψ : Z Ñ S be a holomorphic map of complex spaces. Let A be a
coherent OS-algebra. Then

SpecanpA bOS OZq » SpecanpA q ˆS Z

Proof. This is just a rephrasing of Cor. 2.8.3.

2.9.2 Proof of Thm. 2.9.3

Proof that (2.9.3) is injective. Let φ, ψ P MorSpX, Y q such that ψ˚, φ˚ : κ˚OY Ñ

π˚OX are equal. By Prop. 2.4.5, for each t P S, φ# : pκ˚OY qt Ñ pπ˚OXqt is an
OS,t-module morphism of the form

φ# :
à

yPκ´1ptq

OY,y Ñ
à

xPπ´1ptq

OX,x

whose restriction to OY,y Ñ OX,x is non-zero iff y “ φpxq. A similar description
holds for ψ#. It follows that φ and ψ must be equal, first of all as maps of sets,
and then clearly as holomorphic maps.

Proof that (2.9.3) is surjective. Choose any Φ P MorOSpκ˚OY , π˚OXq. It suffices
to show that Φ is locally realized by φW , i.e., that each t P S is contained in a
neighborhood W Ă S such that, after shrinking S to W , X to π´1pXq, and Y

to κ´1pXq, Φ equals φ#
W . Then by the injectivity of (2.9.3), φW and φW 1 agree on

W X W 1. So these φW can be glued together to realize Φ globally.
To find φ locally, we first assume that κ is a Weierstrass map, which factors

as κ : Y ãÑ Ck ˆ S
prS
ÝÝÑ S. Consider z1, . . . , zk as elements of OpCk ˆ Sq and

also of OpY q “ pκ˚OY qpSq by restriction. Let fi “ Φpziq, which is an element of
pπ˚OXqpSq “ OpXq. Regard F “ pf1, . . . , fkq as a holomorphic mapX Ñ Ck (Thm.
1.4.1). Then by Thm. 1.4.8, the holomorphic map F _prS : X Ñ Ck ˆS restricts to
a holomorphic φ : X Ñ Y . (This is similar to the Proof-Step 2 of Prop. 2.7.9. Note
that one needs the commutativity of (2.9.2) to check condition (b) of Thm. 1.4.8!)
Then (2.9.1) commutes because κ ˝ φ “ prS ˝ pF _ πq “ π. Both φ# and Φ send
each zi P pκ˚OY qpSq to fi. So φ# “ Φ because the powers of z1, . . . , zk generate the
OS-module κ˚OY by Thm. 2.5.4.

Now, in the general case, by Prop. 2.7.9 we may assume S is small enough
such that κ factors as

κ : Y ãÑ Z
ϖ
ÝÑ S

where ϖ : Z Ñ S is a isomorphic to a Weierstrass map and Y “ SpecanpOZ{J q is
a closed subspace of Z. We have a sequence of morphisms of OS-algebras

π˚OX
Φ

ÐÝÝ κ˚OY
ι#

ÐÝÝ ϖ˚OZ .
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By the previous paragraph, there is ψ P MorSpX,Zq such that ψ# : ϖ˚OZ Ñ π˚OX

equals Φ ˝ ι# and hence vanishes on ϖ˚J . Thus, by Prop. 2.4.5, for each x P X ,
ψ# : OZ,ψpxq Ñ OX,x vanishes on Jψpxq. So Thm. 1.4.8 tells us that ψ restricts to a
holomorphic φ : X Ñ Y . Namely ψ “ ι ˝ φ. Clearly φ P MorSpX, Y q.

We have φ# ˝ ι# “ ψ# “ Φ ˝ ι#. Thus, to show that φ# “ Φ, it suffices to show
that ι# : ϖ˚OZ Ñ κ˚OY is surjective. This is clear from Prop. 2.4.5 and the fact
that Y is a closed subspace of Z.

The above two proofs together show that F is fully faithful.

Proof that F is essentially surjective. Given any coherent OS-algebra A , our
goal is to find a finite holomorphic map π : X Ñ S (for some complex space
X) such that π˚OX is equivalent to A as OS-algebras.

We first show that the construction of π is local by nature. Suppose that we
have an open cover pSiqiPI of S such that for each i we have a finite holomorphic
πi : Xi Ñ Si such that there is an isomorphism of OSi-algebras

Φi : πi,˚OXi
»

ÝÝÑ A |Si .

Write Sij “ Si X Sj , X i
ij “ π´1

i pSijq, and let πiij : X i
ij Ñ Sij be the restriction

of πi. Then by the full-faithfulness of F, there is a unique isomorphism γj,i P

MorSijpX
i
ij, X

j
ijq such that γ#j,i : π

j
ij,˚OXj

ij
Ñ πiij,˚OXi

ij
equals Φ´1

i |Sij ˝ Φj|Sij . One
checks easily that these γj,i satisfy the cocycle condition so that they can be used
as the gluing maps to glue all πi together and form a desired π : X Ñ S.

Let us construct π locally. Choose t P S. Using the methods in the proof of
Prop. 2.7.9, one shows that if S is sufficiently small then there exist a Weierstrass
map κ : Y Ñ S and Φ : MorOSpκ˚OY ,A q which is surjective as an OS-module
morphism. T “ KerpΦq is an ideal of κ˚OY , i.e., an OS-submodule of κ˚OY whose
stalk at each τ P S is invariant under pκ˚OY qτ . So Tτ “ Tτ ¨ pκ˚OY qτ . Thus, by
Prop. 2.4.5, we have an pκ˚OY qτ -module isomorphism

κ˚pT OY qτ »
à

yPκ´1pτq

pT OY qy “
à

yPκ´1pτq

TτOY,y » Tτ ¨ pκ˚OY qτ “ Tτ

such that each σ P Tτ corresponds to σ ¨ 1 on the LHS.
T OY is a finite-type ideal of OY since T is OS-coherent by Cor. 2.1.6. Define

X “ SpecanpOY {T OY q, and let π : X Ñ S be the restriction of κ. This gives the
desired finite holomorphic map since, by the exactness of κ˚, we have an κ˚OY -
module isomorphism

π˚OX “ κ˚pOY {T OY q » κ˚OY {κ˚pT OY q » κ˚OY {T » A .

(These isomorphisms are explicit at the level of stalks.)
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2.10 Nullstellensatz

In this section, we give another application of Finite mapping Thm. 2.7.1 and
Thm. 2.7.2: we prove the complex analytic version of Hilbert Nullstellensatz,
called Rückert Nullstellensatz in [GR-b] and [GPR]. Nullstellensatz will be used
in an essential way to prove that every complex space X has an associated re-
duced complex space Xred, and that if X is reduced at x then X is reduced near
x.

2.10.1 Equivalent forms of Nullstellensatz

Theorem 2.10.1 (Nullstellensatz). Let X be a complex space. If f P OpXq satisfies
that fpxq “ 0 for all x P X , then the germ of f at each x P X is a nilpotent element of
OX,x.

The converse is clearly true: If f is nilpotent at OX,x for each x, then f a zero
continuous function.

Recall that if I is an ideal of a commutative ring A, then its radical
?
I is

?
I “ ta P A : an P I for some n P Z`u.

Similarly:

Definition 2.10.2. IfX is a C-ringed space and I is an ideal of OX , then the radical
of I is the ideal

?
I of OX defined by
?
IpUq “ tf P OpUq : f P

a

Ix for all x P Uu.

So I is determined by p
?
Iqx “

?
Ix for all x P X .

Then there is an equivalent way of stating Nullstellensatz:

Theorem 2.10.3 (Nullstellensatz). Let X be a complex space. Then the kernel of the
reduction map red : OX Ñ CX (where CX is the sheaf of germs of continuous functions)
equals

?
0X , the radical of the zero ideal of OX .

We call
?
0X the nilradical of OX (or of X).

Remark 2.10.4. There are some other equivalent statements of Nullstellensatz:

1. Let I be a coherent ideal of OX . Then f P OpXq vanishes on the subset NpIq

if and only if f P
?
I.

2. Let OX,x be an analytic local C-algebra, and let I be an ideal. Then f P OX,x

is an nilpotent element of I if and only if f vanishes on the SpecanpOX,x{Iq,
the germ of complex subspace of X defined by I .
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3. If E is a coherent sheaf on a complex space X . Then f P OpXq vanishes on
the subset SupppE q if and only if for each x P X there is n P Z` such that
fnEx “ 0.

Proof. 1ôThm. 2.10.1: Let Y “ SpecanpOX{Iq. Then f P OX,x belongs to
?
Ix iff

the residue class of f in OY,x “ OX,x{Ix is nilpotent.
1ô2: Obvious. 3ñ 1: Take E “ OX{I. 1ñ3: Take I “ Ann OX pE q.

2.10.2 Proof of Nullstellensatz

We start by proving a special case.

Lemma 2.10.5. LetX be a neighborhood of 0 P Cm`1 wherem P N. Let pz, w, t2, . . . , tmq

be the standard coordinates of Cm`1. Let I be a coherent ideal of OX such that

NpIq Ă tpz, w, t‚q P X : z “ 0u.

Then (the germ at 0 of) z is an element of
?
I0, the stalk of

?
I at 0.

Proof. We prove by induction on m P N. The base case m “ 0 is elementary and is
hence omitted. Assume the lemma holds for m ´ 1 where m ě 1. Let us prove it
for m. Let Y “ SpecanpOX{Iq.

We first assume that I0 contains

hpz, w, t‚q “

8
ÿ

n“0

anpw, t‚qzn (2.10.1)

where a0 ‰ 0. Then as in the proof of Thm. 1.5.5, we may choose a new set of
coordinates pw, t‚q for Cm such that a0pw, t‚q “ hp0, w, t‚q has finite order in w, i.e.
apw, 0q is non-zero. So 0Cm`1 is an isolated point of the fiber at 0Cm of the holomor-
phic map π : Y Ñ Cm defined by the restriction of Cm`1 Ñ Cm, pz, w, t‚q ÞÑ pz, t‚q.
We shrink X to a neighborhood of 0 so that 0Cm`1 is the only point of that fiber,
and that (by Thm. 2.7.2) π : Y Ñ V is finite where V is a neighborhood of 0 P Cm.
See Fig. 2.10.1.

z

w

t‚

π

Figure 2.10.1

By Finite mapping Thm. 2.7.1, π˚OY is a coherent OV -module. By assumption,
the Nullstellensatz holds for any coherent ideal J of OV such that

NpJ q Ă tpz, t‚q P V : z “ 0u.
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Choose J “ Ann OV pπ˚OY q. Then the assumption tells us that there is n P Z` such
that zn P OCm,0 kills the stalk pπ˚OY q0 » OY,0 (Prop. 2.4.5). So π#zn (or simply zn

as an element of OpCm`1q) kills OY,0 “ OCm`1,0{I0. Therefore zn P I0.
Now, in the general case, note that it suffices to prove that z is nilpotent in

ză0I0 “ tf P OCm`1,0 : z
kf P I0, k P Z`u. This statement is true if we can h P ză0I0

whose series expansion as in (2.10.1) has non-zero constant term. This follows by
choosing a non-zero g P I0, letting k be the smallest power of z such that the series
expansion of g in z has non-zero coefficient before zk, and setting h “ z´kg.

Proof of Nullstellensatz. Let X be a complex space, and assume that f P OpXq

vanishes at every x P X . We now fix x P X and show that f is nilpotent in
OX,x. Consider the graph Gpfq of f , namely the image of the closed embedding
f _ 1 : X Ñ C ˆ X (cf. Prop. 1.13.6). Assume X is a small enough neighborhood
of x so that X is a closed subspace of an open U Ă Cm and x “ 0Cm . Then Gpfq is
a closed subspace of C ˆ U .

As a set, Gpfq is contained in 0 ˆ U . Let z P OpCq be the standard coordinate
of C. Then by Lemma 2.10.5, z b 1 P OCˆU,0ˆ0 is nilpotent in OGpfq,0ˆ0. But the
restriction f _ 1 : X Ñ Gpfq is a biholomorphism, and it pulls z b 1 “ pr#C z
(where prC : C ˆ U Ñ C is the projection) back to z ˝ prC ˝ pf _ 1q “ z ˝ f “ f . So
f is nilpotent in OX,0.

2.10.3 Examples

We give an interesting situation to which Nullstellensatz can be applied.

Example 2.10.6. Let X be a complex space and p P X . Let ∆ P OpXq. Let E Ă F
be a pair of coherent OX-modules. Assume that ξ P F pXq satisfies that for each
x P XzNp∆q, the germ ξx belongs to Ex. Then ∆k

p ¨ ξp P Ep for some k P N.

Proof. Let K “ OX ¨ ξ ` E , which is coherent. Then E Ă K , and Ex “ Kx

when x R Np∆q. Thus SupppK {E q, as a set, is inside Np∆q. So ∆ vanishes on
the set SupppK {E q. By Rem. 2.10.4, there is k P N such that ∆k

p kills Kp{Ep. So
∆k
p ¨ Kp Ă Ep and hence ∆k

p ¨ ξp P Ep.

Remark 2.10.7. The above example is particularly interesting when X is irre-
ducible at p (cf. Def. 3.2.10) and ∆p ‰ 0. In that case, the example shows that
ξp is an K-linear combination of elements of Ep, where K is field of fractions of the
integral domain OX,p.

This example suggests why Nullstellensatz is important. Nullstellensatz tells
us that in coherent sheaves, all poles are of finite orders. (In Exp. 2.10.6, we
consider poles at ∆ “ 0, since ξ belongs to E when restricted to XzNp∆q.) In the
following, we give another compelling example.
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Example 2.10.8. Choose a neighborhood U of 0 P C. Choose f P OpUzt0uq with
infinite poles at 0, i.e., the Laurant series expansion fpzq “

ř

nPZ anz
n satisfies

inftn : an ‰ 0u “ ´8. Define an OU -module E “ fOU ` OU . More precisely, E
is the sheafification of the presheaf associating to each open V Ă U the set of all
fα ` β|V zt0u where α P OpV zt0uq, β P OpV q.

E is clearly of finite type. But E is not coherent: Otherwise, then E {OU is
coherent. Since E {OU clearly has support in t0u, by Nullstellensatz we have
zkE0 Ă OU,0. In particular, pzkfq0 P OU,0. This is impossible.

If, however, f P OpUzt0uq has finite poles at 0, then it is not hard to show that
E is coherent: see Prop. 4.1.5.

2.A Kernels and cokernels in categories of modules

In a category C, if φ, ψ : X Ñ Y are two morphisms of objects, then the equaliz-

ers of double arrow X Y
φ

ψ
can be defined in the same way as in Def. 1.8.1.

Likewise, a coequalizer of this double arrow is an object C P C and a morphism
π : Y Ñ C such that π ˝ φ “ π ˝ ψ, and that for every object T and morphism
ν : Y Ñ T satisfying ν ˝φ “ ν ˝ψ there is a unique morphism rν : C Ñ T such that
ν “ rν ˝ π.

X Y C

T

φ

ψ

π

ν
rν (2.A.1)

Thus, if a functor (resp. contravariant functor) F : C Ñ D is an equivalence
(resp. antiequivalence) of categories (cf. Thm. 1.6.2 and 2.2.2), then F sends the

(co)equalizer of a double arrow X Y
φ

ψ
(on the C side) to a (co)equalizer of

FpXq FpY q
Fpφq

Fpψq

(resp. sends equalizers to coequalizers of FpY q FpXq
Fpφq

Fpψq

and coequalizers to equalizers).
The category of modules of a commutative rings and the one of (coherent) OX-

modules (whereX is a C-ringed space) are both additive categories, which means
roughly that one can take direct sums, that the morphism spaces are abelian
groups, and that there is a zero object. A functor between additive functions,
called an additive functor, is assumed to preserve the abelian group structures of
the morphism spaces.

Moreover, the above categories are abelian categories. This means that the
kernel of a morphism φ : M Ñ N (which is an object together with the “in-

clusion” morphism) is equivalent to the equalizer of M N
φ

0
and that the
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cokernel is equivalent to the coequalizer of this double arrow. From this, it is
clear that if a functor (resp. contravariant functor) F : C Ñ D is an equivalence
(resp. antiequivalence) of abelian categories, then F must be an exact functor, be-
cause F commutes with kernels and cokernels (resp. sends kernels to cokernels
and cokernels to kernels).

We refer the readers to [Vak17, Chapter 1] for a more detailed introduction to
abelian categories.
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Chapter 3

Local decomposition, singular loci,
and dimensions

3.1 Prime decomposition

We fix a commutative ring A. Recall that A is called reduced if A has no non-
zero nilpotent elements. This is equivalent to saying that t0u “

a

t0u. If I is an
ideal of A, then A{I is reduced iff

?
I “ I .

Remark 3.1.1. Recall the general fact that for any ideals I1, . . . , Ik of A we have
a

I1 ¨ ¨ ¨ Ik “
a

I1 X ¨ ¨ ¨ X Ik “
a

I1 X ¨ ¨ ¨ X
a

Ik. (3.1.1)

In view of Nullstellensatz, the first equality says that “the zero sets defined by
I1 ¨ ¨ ¨ Ik and defined by I1 X¨ ¨ ¨XIk are equal” (namely, they are equal to the union
of the zero sets of I1, . . . , Ik). The second equality implies that if Ii “

?
Ii for each

i, then I1 X ¨ ¨ ¨ X Ik is its own radical.

Proof. The two equalities in (3.1.1) are clearly Ă. If f P Xi

?
I i then fni P Ii for

some ni P Z`. Then fn1`¨¨¨`nk P I1 ¨ ¨ ¨ Ik, and hence f P
?
I1 ¨ ¨ ¨ Ik. This proves

(3.1.1).

Proposition 3.1.2. Assume A is reduced. Let p Ĺ A be an ideal. Then the following are
equivalent.

(a) p is a prime ideal.1 Equivalently, A{p is an integral domain.

(b) p “
?
p. Moreover, if p “ I1 XI2 where I1, I2 are ideals of A, then I1 “ p or I2 “ p.

(c) p “
?
p. Moreover, if p “ I1 X I2 where I1, I2 are ideals of A satisfying I1 “

?
I1

and I2 “
?
I2, then I1 “ p or I2 “ p.

1Recall that a prime ideal p is required not to be the whole ring A.
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We leave it to the readers to figure out the geometric meaning of this lemma
(in the case that A is an analytic C-algebra).

Proof. By replacing A by A{p, we may assume p “ t0u. Clearly (b)ñ(c).
(a)ñ(b): Assume t0u is prime. Then clearly t0u “

a

t0u. Suppose t0u “ I1 X I2
and I1, I2 ‰ t0u. Then we may choose non-zero fi P Ii. And f1f2 P I1 ¨ I2 Ă

I1 X I2 “ t0u. So f1f2 “ 0, contradicting that t0u is prime. So (b) follows.
(c)ñ(a). Assume (c). Suppose that there are non-zero f, g P A such that fg P

t0u, i.e. fg “ 0. Then as A is reduced, t0u “
a

t0u “
?
fA ¨ gA “

?
fA X

?
gA.

This contradicts (c).

Theorem 3.1.3. If A is Noetherian and reduced, then there are prime ideals p1, . . . , pN
of A such that

t0u “ p1 X ¨ ¨ ¨ X pN (3.1.2)

and that for each 1 ď i ď N ,

t0u ‰
č

j‰i

pj. (3.1.3)

Moreover the prime ideals p1, . . . , pN satisfying (3.1.2) and (3.1.3) are unique. We call
this unique decomposition the prime decomposition of t0u Ă A.

The geometric meaning of (3.1.2) is that an element f P A is zero iff f restricts
to zero on A{pi (i.e. “f vanishes on the zero set Nppiq”) for all i.

Note that if a “
?
a is an ideal of a Noetherian ring A, then Thm. 3.1.3 applied

to A{a says that there are prime ideals p1, . . . , pN of A such that

a “ p1 X ¨ ¨ ¨ X pN (3.1.4a)

a ‰
č

j‰i

pj @1 ď i ď N (3.1.4b)

called the prime decomposition of a.

Proof of the existence. We first note that if we can find prime ideals p1, . . . , pN sat-
isfying (3.1.2), then by discarding some members of these ideals so that the inter-
section of the remaining ones is still t0u until we cannot do this anymore, (3.1.3)
is automatically satisfied. So we only need to find prime ideals satisfying (3.1.2).

Let A be the set of all ideals a not equal to A such that a “
?
a and that a Ă A

has no prime decomposition (equivalently, a is not a finite intersection of prime
ideals). Note that if a P A, then a “

?
a and a is not prime. So by Prop. 3.1.2,

a “ b X c where the ideals b, c are not a and are the radicals of themselves. One of
b, c is not a finite intersection of prime ideals, otherwise a is a finite intersection of
prime ideals. So one of b, c is in A.

The above argument shows that if a1 “ t0u belongs to A, then we can con-
struct a strictly increasing infinite chain of elements of A: a1 Ĺ a2 Ĺ a3 Ĺ ¨ ¨ ¨ ,
contradicting that A is Noetherian. So t0u R A.

89



Remark 3.1.4. In Thm. 3.1.3, (3.1.2) and (3.1.3) imply that
č

j‰i

pj

I

pi ‰ H.

This means that we can find f P A which is non-zero when restricted to A{pi (i.e.
“non-zero on Nppiq”) and zero in the other A{pj . Thus, by taking sums, we see
that there always exists f P A which is non-zero precisely when restricted to the
given ones of A{p1, . . . ,A{pN .

We remark that when A is not necessarily reduced, there is a generalization
called primary decomposition, cf. [AM]. We will not use this notion in out notes.

To prove the uniqueness part of Thm. 3.1.3 we first need:

Lemma 3.1.5. In Thm. 3.1.3, for each f P A, the annihilator AnnApfq equals

AnnApfq “
č

1ďiďN
fRpi

pi (3.1.5)

Recall that AnnApfq “ AnnApfAq is the ideal of all a P A satisfying af “ 0
(Def. 2.3.1). Then (3.1.5) says that af “ 0 iff a “vanishes on all Nppiq where f is
non-zero on Nppiq”. See also Prop. 3.6.3 for a geometric interpretation.

Proof. Suppose a P A and af “ 0. Then af restricts to 0 on the integral domain
A{pi. If f R pi then f is nonzero in A{pi. So a is 0 in A{pi. Hence a P pi. Conversely,
if a P pi for all i such that f R pi, then af belongs to pi for all 1 ď i ď N . So
af P Xipi “ t0u.

Note that when A is reduced, f is a non zero-divisor iff AnnApfq “ t0u. Thus:

Corollary 3.1.6. In Thm. 3.1.3, f P A is a non zero-divisor if and only if f R pi for all
1 ď i ď N .

Now the uniqueness of prime decomposition follows immediately from the
following fact:

Proposition 3.1.7. In Thm. 3.1.3, p1, . . . , pN are precisely the associated primes of A,
i.e. prime ideals of the form AnnApfq for some f P A.

Proof. We first note that an intersection of more than one members of p1, . . . , pN
is not prime. This together with Lemma 3.1.5 would imply that AnnApfq is prime
only if AnnApfq “ pi for some i, and hence that the associated primes are among
p1, . . . , pN . To prove the claim, consider for instance p “ p1 X p2 X ¨ ¨ ¨ X pk where
k ą 1. Suppose p is prime. Then by Prop. 3.1.2, either p1 or p2 X ¨ ¨ ¨ X pk equals p,
contradicting (3.1.3). So p cannot be prime.

For each i, by Rem. 3.1.4 we can choose f P A non-zero on A{pi but zero on
A{pj whenever j ‰ i. Then pi “ AnnApfq by Lemma 3.1.5, which shows that pi
must be an associated prime.
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We now give another characterization of the prime components of a reduced
Noetherian ring.

Lemma 3.1.8. Let A be Noetherian and reduced with prime decomposition t0u “ p1 X

¨ ¨ ¨ X pN . Let p Ă A be a prime ideal. Then pi Ă p for some 1 ď i ď N .

Proof. Suppose that for each i we have pi Ć p. Then there exists fi P pizp. The
primeness of p implies that f “ f1 ¨ ¨ ¨ fN is not in p. But f is in p1 X ¨ ¨ ¨ X pN “ t0u.
So 0 R p, impossible.

Proposition 3.1.9. Let A be Noetherian and reduced with prime decomposition t0u “

p1 X ¨ ¨ ¨ X pN . Let p Ă A be a prime ideal. The following are equivalent.

(1) p “ pi for some 1 ď i ď N .

(2) p is a minimal prime ideal of A. Namely, if q is a prime ideal of A and if q Ă p, then
q “ p.

Proof. (1)ñ(2): Let us prove for instance that p1 is minimal. Suppose q Ă p1 is a
prime ideal of A, then t0u “ qX p2 X ¨ ¨ ¨ X pN . Then some members of q, p2, . . . , pN
give the prime decomposition of t0u Ă A. By the uniqueness of prime decompo-
sition, the number of these members must be N , and q “ p1.

(2)ñ(1): By Lem. 3.1.8.

3.2 Reduction redpXq and coherence of
?
I

In this section we study the reduction of complex spaces. The main results
Thm. 3.2.1 and equivalently Thm. 3.2.2 are originally due to Oka and H. Cartan.
Some key ingredients of the proof are prime decomposition, Nullstellensatz, and
the ranks of Jacobian matrices (which are a guise for embedding dimensions to be
studied later). Our approach follows [GPR].

3.2.1 Main results and consequences

Theorem 3.2.1. Let X be a complex space reduced at a point x. There X is reduced on a
neighborhood U of x.

This theorem is equivalent to:

Theorem 3.2.2. Let X be a complex space. Then for each coherent ideal I of OX , its
radical

?
I is coherent.
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Remark 3.2.3. Note that Thm. 3.2.2 is equivalent to the seemingly special case
that for each complex space X ,

?
0X is coherent. Indeed, if this special case is

true, let Y “ SpecanpOX{Iq. Then
?
0Y is (or more precisely, ιY,X,˚

?
0Y is)

?
0Y “

a

I{I “
?
I{I. (3.2.1)

So
?
I{I is coherent, and hence

?
I is coherent. Therefore Thm. 3.2.2 holds.

Proof that Thm. 3.2.1 and 3.2.2 are equivalent. Assume Thm. 3.2.2. Assume X is re-
duced at x. Then

?
I is coherent and its stalk at x is 0. So its stalks are zero

everywhere on a neighborhood U of x. Then X is reduced everywhere on U .
Assume Thm. 3.2.1. Choose any complex space X and coherent ideal I.

Choose x P X . Since OX,x is Noetherian,
?
Ix is generated by finitely many el-

ements f1, f2, . . . . By shrinking X to a neighborhood of x, we assume f1, f2, ¨ ¨ ¨ P?
IpXq. Let J be the ideal generated by f1, f2, . . . . Then J Ă

?
I and Jx “

?
Ix.

This implies that Y “ SpecanpOX{J q is reduced at x (since
a

0Y,x “
?
Jx{Jx).

Jx “
?
Ix also implies Ix Ă Jx. Therefore, since I is coherent, by Rem. 1.2.16

we may shrink X so that I Ă J . We conclude that

I Ă J Ă
?
I Ă

?
J .

By Thm. 3.2.1, we may shrink X so that Y is reduced everywhere on X . This
means J “

?
J , which proves that

?
I equals J and is therefore coherent.

Corollary 3.2.4. Let X be a complex space. Then for each analytic subset A of X , the
ideal associated to A defined by

IApUq “ tf P OXpUq : fpxq “ 0 @x P A X Uu (3.2.2)

(for all open U Ă X) is coherent.

Proof. If A “ NpIq for some coherent ideal I then

IA “
?
I. (3.2.3)

Remark 3.2.5. Let X be a reduced complex space. By Nullstellensatz, we have a
bijection

tAnalytic subsets of Xu
»

ÐÑ tCoherent ideals I Ă OX satisfying I “
?
Iu

A ÞÑ IA NpIq Ð[ I
(3.2.4)

If A,B are analytic subsets of X then clearly

A Ă B ðñ IA Ą IB

A X B and A Y B are both analytic subsets of X , and we indeed have

IAXB “
a

IA ` IB IAYB “ IA X IB “
a

IA ¨ IB (3.2.5)
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Proof. It is clear that the coherent ideals (cf. Cor. 2.1.7 for the coherence) IA ` IB

has zero set AXB and IA ¨ IB has zero set AYB. And
?

IA ¨ IB “ IA X IB by
Rem. 3.1.1.

Remark 3.2.6. We often identify an analytic subset A with the corresponding re-
duced complex subspace SpecanpOX{IAq. In that case “analytic subsets” and “re-
duced complex subspaces” are synonymous. But there is one exception. The
intersection of analytic subsets A X B is usually not the intersection of two (re-
duced) complex spaces (as defined in Exp. 1.12.4): In the former case A X B is
determined by the ideal IAXB “

?
IA ` IB and the latter case IA ` IB. So

we will make distinctions between analytic subsets and reduced complex subspaces when
taking intersections.

There is no such a problem when taking unions: We haven’t defined unions
for closed complex subspaces, since both I1 X I2 and I1 ¨ I2 are reasonable ideals
for defining the union. Certainly, for analytic subspaces, IAXB is the correct ideal
defining the union.

Corollary 3.2.7. Let X be a complex space. Then the set of all non-reduced points of X
is an analytic subset of X .

Proof. x P X is not reduced iff x P Suppp
?
0Xq.

Corollary 3.2.8. Let A be a subset of a complex space X . Then the following are equiva-
lent:

(1) A is an analytic subset of X . (Recall this means that A “ NpIq for a coherent ideal
I Ă OX .)

(2) Each x P X is contained in a neighborhood U such that A X U is analytic in U .

Therefore A is analytic iff each x P X is contained in a neighborhood U such
that A X U is the zero set of finitely many elements of OpUq.

Proof. Clearly (1)ñ(2). Assume (2). Let IA be defined by (3.2.2). For each x P X
there is a neighborhood U of x such that A X U is analytic, i.e. A X U “ NpIUq

for a coherent ideal IU of OU . Then IA|U equals IAXU “
?
IU which is coherent.

Therefore IA is coherent. We have NpIAq “ A since NpIAq X U “ NpIAXUq “

A X U . So A is analytic.

Definition 3.2.9. Let X be a complex space. Then the reduced space

redpXq “ SpecanpOX{
?
0Xq

is called the reduction of X .
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3.2.2 Proof of Thm. 3.2.1

Definition 3.2.10. We say that a complex space X is irreducible at x if OX,x is an
integral domain. (Note that if X is irreducible at x then X is reduced at x.) We say
thatX is locally irreducible ifX is irreducible at every point ofX . IfX is not irre-
ducible at x, we say that X is reducible at x. (Note that “reducible”‰“reduced”!)

Lemma 3.2.11. Suppose that Thm. 3.2.1 holds whenever X is irreducible at x. Then
Thm. 3.2.1 holds in general.

Proof. Assume OX,x is reduced. Apply prime decomposition (Thm. 3.1.3) to A “

OX,x to get t0u “ p1 X ¨ ¨ ¨ X pN . By shrinking X to a neighborhood of x we assume
each pi is the stalk Pi,x of a coherent ideal Pi of OX . Let Yi “ SpecanpOX{Piq.
Then Yi is irreducible at x. Since

ŞN
i“1 Pi is OX-coherent (Cor. 2.1.7), we may

shrink X so that
Ş

i Pi,y “ t0u for all y P X .
By assumption, we can shrinkX further so that each Yi is reduced everywhere.

This means that for each y P X we have Pi,y “
a

Pi,y. Therefore by Rem. 3.1.1,
the zero ideal of OX,y is its own radical. So OX,y is reduced.

Lemma 3.2.12. Let X be a model space irreducible at 0 P X . Then after shrinking X to
a neighborhood of 0, there exists ∆ P OpXq whose germ at 0 is non-zero such that X is
smooth outside Np∆q.

Proof of Thm. 3.2.1. By Lemma 3.2.11, it suffices to assume that X is a complex
model space irreducible (and hence reduced) at 0. Assume that the statement
in Lemma 3.2.12 holds. Since ∆ is non-zero in the integral domain OX,0, ∆ is
a non zero-divisor of OX,0. Therefore, by Prop. 2.3.13, we may shrink X to a
neighborhood of 0 so that ∆ is a non zero-divisor of OX,x for all x P X .

Choose any open V Ă X and f P
?
0XpV q. Since XzNp∆q is a complex man-

ifold,
a

0XzNp∆q “ 0. So the support of f , or more precisely SupppfOV q, is inside
Np∆q. So ∆ vanishes on SupppfOV q. Therefore, by Nullstellensatz (Rem. 2.10.4-
3), for each x P V there is n P N such that f∆n “ 0 in OX,x. This proves f “ 0 in
OX,x because ∆ is a non zero-divisor. Therefore

?
0X “ 0.

We shall give two proofs of Lemma 3.2.12. The first one is given in Sec. 3.5
which relies on the following preliminary Lemma. The second proof is given in
Subsec. 4.5.4.

Lemma 3.2.13. Let pw1, . . . , wm, z1, . . . , znq be the standard coordinates of Cm`n. Let I
be an ideal of A “ OCm`n,0 such that I ‰ A . Suppose that Bz1I Ă I, . . . , BznI Ă I .
Then I Ă w1A ` ¨ ¨ ¨ ` wmA .

Proof. Note that I ‰ A means that all elements of I vanish at 0. Now Bz‚
I Ă I

implies that all higher partial derivatives over z1, . . . , zn of f P I are in I , and
hence vanish at 0. Therefore the restriction of f to 0Cm ˆ Cn must be constantly
zero, since its power series expansion at 0 is zero. But the ideal of elements of A
vanishing on 0 ˆ Cn is precisely w1A ` ¨ ¨ ¨ ` wmA . This finishes the proof.
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3.3 Local decomposition of reduced complex spaces

3.3.1 Germs of analytic subsets and ideals

Fix a complex space X . Suppose that X is reduced and x P X . Then similar to
Rem. 3.2.5, we have a bijection A ÞÑ IA, NpIq Ð[ I :

(1) Germs of analytic subsets of X at x.

(2) Ideals I Ă OX,x satisfying I “
?
I .

Indeed, (1) are precisely the germs of closed reduced complex subspaces of X
passing through x, and (2) are precisely the germs of coherent ideals I Ă OX at x
satisfying I “

?
I (cf. Thm. 2.2.2).

Remark 3.3.1. To be more explicit, if a germ A in (1) is represented by an analytic
subset A closed in a neighborhood U of x, then the stalk at x of IA “ tf P OU :
fpyq “ 0, @y P Au gives the corresponding ideal IA in (2). Conversely, given an
ideal I in (2) which is finitely generated because OX,x is Noetherian, let f1, . . . , fk P

I generate I , and choose a neighborhood U Ă X of x such that f1, . . . , fk P OXpUq.
Then the germ at x of Npf1OU ` ¨ ¨ ¨ ` fkOUq gives the germ NpIq in (1).

Remark 3.3.2. We list some easy but useful facts about this correspondence. Let
pX, xq be a germ of reduced complex space.

• IAYB “ IA X IB “
?
IA ¨ IB.

• By Prop. 3.1.2-(c), OX,x is an integral domain if and only if pX, xq is an ir-
reducible germ, namely if pX, xq “ pA, xq Y pB, xq where pA, xq, pB, xq are
germs of analytic subsets then pA, xq “ pX, xq or pB, xq “ pX, xq.

– More precisely, OX,x is an integral domain iff for every neighborhood
U of x written as U “ A Y B where A,B are analytic subsets of U , one
of A and B contains a neighborhood of x P X .

3.3.2 Local decomposition

Theorem 3.3.3. Let X be a reduced complex space and x P X . Then after shrinking X
to a neighborhood of x, we have

X “ X1 Y ¨ ¨ ¨ Y XN (3.3.1)

where eachXi is an analytic subset ofX which is irreducible at x, and for each 1 ď i ď N ,
ď

j‰i

Xj contains no neighborhoods of x P X. (3.3.2)

95



Such decomposition of X is unique up to shrinking X to smaller neighborhoods of x. We
call it the local decomposition (or irreducible decomposition) of X at x. Moreover,
we have

t0u “ IX1,x X ¨ ¨ ¨ X IXN ,x (3.3.3)

which gives the prime decomposition of t0u Ă OX,x.

Note that (assuming (3.3.1) then) (3.3.2) is equivalent to saying that

X
I

ď

j‰i

Xj “ Xi

I

ď

j‰i

Xj intersects every neighborhood of x P X. (3.3.4)

Proof. Uniqueness: Every local decomposition (3.3.1) clearly gives a prime de-
composition (3.3.3), where the condition

Ş

j‰i IXj ,x ‰ 0 corresponds precisely to
(3.3.2). The uniqueness of prime decomposition implies the uniqueness of local
decomposition.

Existence: Let t0u “ p1 X ¨ ¨ ¨ X pN be the prime decomposition of t0u Ă OX,x.
By shrinking X , for each i we may find a coherent ideal Pi whose stalk at x is
pi. Since P1 X ¨ ¨ ¨ X PN is coherent (Cor. 2.1.7), we can shrink X further so that
P1 X ¨ ¨ ¨ X PN “ 0X . So by Rem. 3.1.1,

X “ Np0Xq “ NpP1 X ¨ ¨ ¨ X PNq “ NpP1 ¨ ¨ ¨ PNq “ X1 Y ¨ ¨ ¨ Y XN .

This gives a local decomposition.

Lem. 3.1.5 has the following geometric interpretation:

Proposition 3.3.4. Let X be a reduced complex space and f P OpXq. Then SupppfOXq

(cf. Def. 2.3.3) is reduced. Suppose that X has local decomposition X “ X1 Y ¨ ¨ ¨ Y XN

at x. Then
`

SupppfOXq, x
˘

“
ď

1ďiďN
fxRIXi,x

pXi, xq (3.3.5)

Proof. The germ of the complex space SupppfOXq at x is OX{x{AnnOX,xpfq. By
Lem. 3.1.5, the ideal AnnOX,xpfq is its own radical (cf. (3.1.1)), and the germ of
zero set of AnnOX,xpfq equals the RHS of (3.3.5) by Rem. 3.3.2.

Property (3.3.2) can be upgraded to the following form:

Theorem 3.3.5. Let X “ X1 Y ¨ ¨ ¨ Y XN be a local decomposition of a reduced complex
space X at x. Then after shrinking X to a neighborhood of x, for each i ‰ j,

Xi X Xj is nowhere dense in Xi (3.3.6)

In that case, X is reducible at each point of Xi X Xj where i ‰ j.
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Note that (3.3.6) implies, for instance, that if 1 ď k ă N then pX1 Y ¨ ¨ ¨ YXkq X

pXk`1 Y ¨ ¨ ¨ YXNq is nowhere dense in every Xi. Hence it is nowhere dense in any
union of subclass of X1, . . . , XN .

We will prove Thm. 3.3.5 in Sec. 3.4. Note that (cf. Rem. 3.2.6) here Xi X Xj

means set-theoretic intersection (i.e. intersection of analytic subsets), not intersec-
tion of complex spaces. But this is not really a big issue here; we are just reminding
the readers of the conventions we set before.

It is easy to see that if X1, . . . , XN are irreducible at x and if (3.3.6) is satisfied
for all i ‰ j, then (3.3.2) is satisfied, and hence X “ X1 Y ¨ ¨ ¨ Y XN is the unique
local decomposition of X at x. This observation can be generalized:

Proposition 3.3.6. Let X “ X1 Y ¨ ¨ ¨ YXN be a decomposition of reduced complex space
X into analytic subsets. Choose x P X1 X ¨ ¨ ¨ X XN . Assume X is small enough such
that for each 1 ď i ď N , Xi has a local decomposition

Xi “ Xi,1 Y Xi,2 Y ¨ ¨ ¨

at x. Assume that (3.3.6) holds for all 1 ď i ‰ j ď N . Then

X “
ď

i,k

Xi,k

is the local decomposition of X at x.

Proof. It suffices to show that, after shrinking X to a neighborhood of x, Xi,kXXj,l

is nowhere dense in Xi,k if pi, kq ‰ pj, lq. By Thm. 3.3.5, we may shrink X so
that this is true whenever i “ j. So let us assume i ‰ j. Suppose that Xi,k X Xj,l

contains a non-empty open subset U of Xi,k. Let A “
Ť

k1‰kXi,k1 . Then UzA is an
open subset of Xi,kzA “ XizA and hence is open in Xi. UzA is nonempty because
Xi,k XA is nowhere dense in Xi,k. So UzA is a nonempty subset of Xi XXj and is
open in Xi, impossible.

3.4 Non zero-divisors and nowhere dense analytic
subsets

As an application of local decomposition, we give an extremely useful geo-
metric characterization of non-zero divisors:

Proposition 3.4.1. Let X be a reduced complex space and x P X . Choose f P OpXq.
Then the following are equivalent.

(1) f is a non zero-divisor of OX,x.

(2) There is a neighborhood U Ă X of x such that Npfq X U is nowhere dense in U .
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Proof. Assume (1) is true. Then by Prop. 2.3.13, after shrinking X to a neighbor-
hood of x, f is a non-zero divisor of OX,p for all p P X . If Npfq contains an open
subset V of X , then f takes value zero everywhere on V . So f |V “ 0 because X is
reduced, contradicting the fact that f is a non zero-divisor of OV,p when p P V . So
(2) must be true.

Assume that (1) is not true. By shrinkingX , we may find a local decomposition
X “ X1Y¨ ¨ ¨YXN at x. By Cor. 3.1.6, the germ of f at x belongs to IXi,x for some i.
Shrink X so that f P IXipXq. Then f vanishes on Xi. Thus, by (3.3.4), Npfq Ą Xi

contains the non-empty open subset Xz
Ť

j‰iXj of X . So (2) is not true.

Thus, we get a function-theoretic characterization of irreducible points. One
may compare this characterization with its global version Thm. 4.11.3.

Corollary 3.4.2. Let X be a reduced complex space and x P X . The following are equiv-
alent:

(1) X is irreducible at x.

(2) For every nonzero f P OX,x there is a neighborhood U Ă X of x such thatNpfqXU
is nowhere dense in U .

The following can be compared with Cor. 4.11.2.

Corollary 3.4.3. Let X be a reduced complex space and x P X . The following are equiv-
alent:

(1) X is irreducible at x.

(2) For every germ of analytic subset pA, xq, either pA, xq “ pX, xq, or there is a neigh-
borhood U of x P X such that A X U is nowhere dense of U .

Proof. Assume (1). For each pA, xq Ĺ pX, xq, since JA,x ‰ 0, we choose a nonzero
f P JA,x. By Cor. 3.4.2, there is a neighborhood U of x P X such that Npfq X U
(which contains A X U ) is nowhere dense analytic in U . This proves (2).

Assume (2). Then for every nonzero f P OX,x, since pNpfq, xq Ĺ pX, xq, there is
a neighborhood U of x such that Npfq X U is nowhere dense in U . So (1) follows
from Cor. 3.4.2.

We are now ready to prove Thm. 3.3.5.

Proof of Thm. 3.3.5. We set A “ Xi, B “ Xj for simplicity. Since their germs
satisfy pA, xq Ć pB, xq, we have pA X B, xq Ĺ pA, xq. So, by Cor. 3.4.3, after
shrinking X to a neighborhood of x, A X B is nowhere dense in A. This proves
(3.3.6).

Now assume that (3.3.6) holds for all i ‰ j. Let y P A X B. Since A X B
is nowhere dense in B, we have pA, yq Ĺ pA Y B, yq. Similarly, since A X B is
nowhere dense in A, we have pB, yq Ĺ pAYB, yq. This proves the last sentence of
Thm. 3.3.5, thanks to Rem. 3.3.2.
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Remark 3.4.4. Prop. 3.4.1 can be used in the following way.

• Suppose A is an analytic subset of a reduced space X . To show that A is
nowhere dense, it suffices to prove that for each x P A there is a non zero-
divisor f P OX,x vanishing on A X U for a neighborhood U of x. Then after
shrinking U , Npfq X U is nowhere dense. So its subset A X U is nowhere
dense.

Actually, if A is expected to be nowhere dense, then one must be able to find such
f due to the following generalization of Prop. 3.4.1 (which can be viewed as the
complex-analytic version of prime avoidance lemma, cf. [Vak17, Sec. 11.2] or [Eis,
Sec. 3.2]):

Proposition 3.4.5. Let X be a reduced complex space and I a coherent ideal of OX . Let
A “ NpIq. The following are equivalent.

(1) A is nowhere dense in X .

(2) For each x P X , Ix contains a non zero-divisor of OX,x.

Another description of nowhere dense analytic subsets is given by Ritt’s
lemma 3.10.7.

Proof. (2)ñ(1) is already explained in Rem. 3.4.4. Let us prove (1)ñ(2).
Assume that A is nowhere dense. By shrinking X to a neighborhood of x we

may find a local decomposition X “ X1 Y ¨ ¨ ¨ Y XN at x. For each i, we have
pXi, xq Ć pA, xq, namely, we cannot find any neighborhood U Ă X of x such
that Xi X U Ă A X U : Otherwise, by (3.3.4), Xi contains an open subset (namely
Xiz

Ş

j‰iXj) which intersects U , contradicting the fact that A is nowhere dense.
Therefore, we have IA,x Ć IXi,x for all i. Since

?
Ix “ IA,x and IXi,x is its

own radical, we have Ix Ć IXi,x. The existence of a non zero-divisor follows from
the next lemma.

Lemma 3.4.6. Let X “ X1 Y ¨ ¨ ¨ Y XN be a decomposition of reduced complex space X
into analytic subsets. Let x P X , and assume that each Xj has a local decomposition at x:

Xj
“ Xj

1 Y Xj
2 Y ¨ ¨ ¨

Suppose that we have a linear subspace W Ă OX,x such that

W Ć IXj
i ,x

p@i, jq

Then there is an element of W which is a non zero-divisor of OX1,x, . . . ,OXN ,x.

Proof. Since each W X IXj
i ,x

is not the full space W , the finite union
Ť

i,jpW X

IXj
i ,x

q “ W X
`
Ť

i,j IXj
i ,x

˘

is not W . So there is an element f P W which is not in
Ť

i,j IXj
i ,x

. By Cor. 3.1.6, f is a non zero-divisor of each OXj ,x.

Note that in the above proof we have used the fact that C is an infinite field.
Over a finite field, a finite union of proper linear subspaces might be the full linear
space.
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3.5 Ranks of Jacobian matrices and singular loci

This section can be read immediately after Sec. 3.2. The goal of this section is
to prove Lemma 3.2.12, a crucial ingredient in the proof that any complex space
reduced at a point is reduced near that point (Thm. 3.2.1). Indeed, even if we as-
sume that a complex space is reduced everywhere, this lemma still tells us some-
thing interesting: it says that if X is irreducible at 0 then, after shrinking X to a
neighborhood of 0, X is smooth outside a nowhere dense analytic subset (due to
Prop. 3.4.1).

The proof of Lemma 3.2.12 relies on Jacobian matrices, which are very useful
for determining the singular locus of a complex space.

Definition 3.5.1. If X is a complex space, we define the singular locus of X to be
the closed (cf. Cor. 1.6.5) subset

SgpXq “ tx P X : X is not smooth at xu.

3.5.1 Jacobian matrices

Assume X “ SpecanpOU{Iq is a closed subspace of an open U Ă Cm, where I
is generated by f 1, . . . , fn P OpUq. Let pz1, . . . , zmq be the standard coordinates of
Cm, and consider the Jacobian matrix function

Bz‚
pf ‚

q “

´

Bzif
j
¯1ďjďn

1ďiďm

which is an m ˆ n matrix valued function on U whose i ˆ j entry is Bzif
j .

For each k P N, let

Zk “ tx P U : rank Bz‚
pf ‚

qpxq ď ku. (3.5.1)

Then clearly

Z0 Ă Z1 Ă ¨ ¨ ¨ Ă Zm´1 Ă Zm “ Zm`1 “ Zm`2 “ ¨ ¨ ¨ “ U. (3.5.2)

Each Zk is an analytic subset of U , because

Zk “
č

1ďi1ă¨¨¨ăik`1ďm
1ďj1ă¨¨¨ăjk`1ďn

N

ˆ

det Bz‚
pf ‚

q

ˇ

ˇ

ˇ

j“j1,...,jk`1

i“i1,...,ik`1

˙

(3.5.3)

3.5.2 Proof of Lemma 3.2.12

Proof-Step 1. Assume the setting of Subsec. 3.5.1, and assume 0 P X . In this first
step, we construct ∆. Fix r P N to be

r “ “the smallest number such that pZr X X, 0q “ pX, 0q”
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where pZr X X, 0q, pX, 0q are germs of sets at 0. Namely, r is the smallest number
such that Zr X X contains a neighborhood of 0 P X . Thus, we may shrink2 U so
that

X Ă Zr

at the level of sets. More precisely, NpIq Ă Zr.
Since Zr´1 XX containes no neighborhoods of 0 P X , by (3.5.3) we can choose

an r ˆ r-submatrix, say the first r rows and the first r columns:

Bz‚
pf ‚

q

ˇ

ˇ

ˇ

ďr

ďr
“

´

Bzif
j
¯1ďjďr

1ďiďr

such that the zero set of its determinant

∆ “ det Bz‚
pf ‚

q

ˇ

ˇ

ˇ

ďr

ďr
P OpUq

intersected with X contains no neighborhoods of 0 P X . (Note that Zr´1 Ă Np∆q.)
This implies that ∆ is non-zero in OX,0. Our goal is to show that XzNp∆q is
smooth.

Proof-Step 2. Set

w1 “ f 1, . . . , wr “ f r, wr`1 “ zr`1, . . . , wm “ zm.

Then by inverse function theorem, each point x P UzNp∆q has a neighborhood on
which w1, . . . , wm are a set of coordinates. Recall that Ix is generated by w1, . . . , wr
and f r`1, . . . , fn. If we can show for each x P XzNp∆q that Ix is generated by
w1, . . . , wr, then X is smooth at x, since X is near x the pm ´ rq-dimensional sub-
manifold defined by w1 “ ¨ ¨ ¨ “ wr “ 0. Thus SgpXq Ă Np∆q.

• Claim: After possibly shrinking X to a neighborhood of 0, for each x P

XzNp∆q we have

Bwif
j

P Ix p@i, j ą rq

If this is proved, then for each i ą r, Bwif
j belongs to Ix for all j since it is

zero when j ď r. Then BwiIx Ă Ix. Thus by Lemma 3.2.13, Ix is generated by
w1, . . . , wr, finishing the proof. (We warn the reader that Bwi is not equal to Bzi
even if i ą r, and is not defined on Np∆q.)

Let us take a closer look at the relationship between the Jacobians of pf ‚q over
z‚ and over w‚. On UzNp∆q we have

Bz‚
pf ‚

q “

»

–

Bz‚
pf ‚q

ˇ

ˇ

ˇ

ďr

ďr
0

˚ Ipm´rqˆpm´rq

fi

fl

loooooooooooooooooomoooooooooooooooooon

Bz‚ pw‚q

¨ Bw‚
pf ‚

q (3.5.4)

2This is the only place we shrink U in Step 1 and 2 of the proof.
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and also

Bw‚
pf ‚

q “

»

–

Irˆr ♣

0 Bw‚
pf ‚q

ˇ

ˇ

ˇ

ąr

ąr

fi

fl (3.5.5)

where ˚ P OpUq and ♣ P OpUzNp∆qq. From these two relations we observe:

Ob 1. Bz‚
pf ‚q

ˇ

ˇ

ďr

ďr
¨ ♣ equals the upper right block of Bz‚

pf ‚q which is holomorphic
on U . So by Cramer’s rule, ∆ ¨ ♣ can be extended to an element of OpUq. So
the same can be said about ∆ ¨ Bw‚

pf ‚q
ˇ

ˇ

ąr

ąr
. (Look at the lower right block of

Bz‚
pf ‚q.) We conclude

Bwif
j

“ hji{∆ for some hji P OpUq p@i, j ą rq

Ob 2. At each x P XzNp∆q Ă ZrzZr´1, the rank of Bw‚
pf ‚q equals that of Bz‚

pf ‚q,
which is r. Therefore, by (3.5.5), for all i, j ą r, Bwif

j vanishes on XzNp∆q,
and hence hji vanishes on XzNp∆q.

Observation 2 shows that if we already know that X is reduced, then every
holomorphic function vanishing on XzNp∆q, in particular Bwif

j where i, j ą r,
must be an element of IpXzNp∆qq. Then the Claim in Step 2 follows and hence
SgpXq Ă Np∆q. But since we cannot assume what we want to prove, we need a
little more effort to prove the Claim.

In Step 1 and 2, we have not used the fact that X is irreducible at x. This
condition enters Step 3 of the proof. Indeed, we only need the weaker condition
that X is reduced at x.

Proof-Step 3. Assume that OX,0 is an integral domain, and hence reduced. For
each i, j ą r, the two observations in Step 2 show that the holomorphic function
∆ ¨ hji on U takes value zero at every point of X . So its germ at 0 is a nilpotent
element of OX,0 by Nullstellensatz, and hence is zero. We can thus shrink U to a
neighborhood of 0 so that ∆ ¨ hji is zero in OXpXq for all i, j ą r. If x P XzNp∆q,
then ∆pxq ‰ 0 and hence ∆ is invertible in OX,x. Therefore in OX,x we have hji “ 0
and hence Bwif

j “ 0 if i, j ą r. This proves the claim in Step 2 that Bwif
j is in

Ix.

We are done with the proof of Lemma. 3.2.12.
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3.5.3 Additional comments

Assume the setting of Subsec. 3.5.1, and assume moreover that X is reduced.
Assume U is small enough so that X Ă Zr. Then Proof-Step 1&2 show that
SgpXq Ă X X Np∆q (see the comments before Step 3), and that XzNp∆q is an
m ´ r dimensional complex manifold. Note that in the proof we take ∆ to be the
determinant of one r ˆ r submatrix of Bz‚

f ‚, and we may well take other sub-
matrices. By (3.5.3), Zr´1 is the intersection of Np∆q where ∆ runs through the
determinants of all k ˆ k submatrices of Bz‚

f ‚. Therefore SgpXq Ă X X Zr´1.
It is natural to ask if we have SgpXq “ X X Zr´1. In Sec. 3.6, we will prove

Lemma 3.5.2 saying that this is indeed true if X X Zr´1 is nowhere dense in X .
Note that if X is irreducible at 0, then ∆ is non-zero in OX,0 and hence is a non
zero-divisor. Thus, by Prop. 3.4.1, we can shrink X to a neighborhood of 0 so that
X X Np∆q and hence X X Zr´1 are nowhere dense in X .

Lemma 3.5.2. Assume the setting of Subsec. 3.5.1.

(1) Assume that X is reduced, that X Ă Zr, and that X X Zr´1 is nowhere dense in
X . Then

SgpXq “ X X Zr´1 (3.5.6)

and XzZr´1 is an pm ´ rq-dimensional complex manifold.

(2) If the X in Subsec. 3.5.1 is irreducible at 0 P X , then we can shrink U to a neigh-
borhood of 0 P U (and replace X by X X U ) so that the assumptions in (1) are
satisfied for some r P N.

The only thing in Lemma 3.5.2 unproved so far is SgpXq Ą X X Zr´1. We will
prove this in Subsec. 3.6.2.

3.6 Embedding dimensions and singular loci

The rank of Bz‚
f ‚ in Subsec. 3.5.1 depends on how X is embedded into an

open subset of a number space. Using Jacobi criterion, we can relate this rank to
intrinsic numbers of X call embedding dimensions.

3.6.1 Embedding dimensions

Definition 3.6.1. Let X be a complex space and x P X . The embedding dimen-
sion of X at x, denoted by embxX or embOX,x, is the smallest n such that a neigh-
borhood U of x can be closely embedded to an open subset of Cn.

Equivalently (Prop. 1.7.2), embxX is the smallest n such that there is a neigh-
borhood U of x and a holomorphic f : U Ñ Cn which is an immersion at x.
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Proposition 3.6.2. For each complex space X and x P X ,

embxX “ embOX,x “ dimCmX,x{m2
X,x. (3.6.1)

Proof. If φ : X Ñ Cn is an immersion at x, then by Thm. 1.7.8, n ě dimmX,x{m2
X,x.

We can choose n to be dimmX,x{m2
X,x by shrinking X to a neighborhood of x, and

choosing f1, . . . , fn P OpXq forming a basis of mX,x{m2
X,x. Then φ “ pf1, . . . , fnq is

an immersion at x due to Thm. 1.7.8.

As an immediate consequence of Prop. 3.6.2, Cn has embedding dimension n
everywhere. Thus, for complex manifolds, embedding dimensions agree with the
usual dimensions.

Proposition 3.6.3. Let Z be a complex space and I a coherent ideal of OZ . Let X “

SpecanpOZ{Iq and x P X , and define the quotien map dx : mZ,x Ñ mZ,x{m2
Z,x (the

differential map of Z at x). Then

embxX ` dimC dxpIxq “ embxZ. (3.6.2)

Proof. We have an exact sequence

0 Ñ
Ix ` m2

Z,x

m2
Z,x

Ñ
mZ,x

m2
Z,x

Ñ
mZ,x

Ix ` m2
Z,x

Ñ 0 (3.6.3)

where mZ,x
Ix`m2

Z,x
“ mX,x{m2

X,x since mX,x “ mZ,x{Ix. Thus (3.6.2) follows.

Corollary 3.6.4 (Jacobi criterion). Let U be an open subset of Cm, let I be the ideal of
OU generated by f 1, . . . , fn P OpUq, and let X “ SpecanpOU{Iq. Then for each x P X ,

embxX ` rankx
`

Bz‚
f ‚
˘

“ m. (3.6.4)

Proof. There is clearly a well-defined linear injective map

Ψ : dxpmCm,xq “
mCm,x

m2
Cm,x

ÝÑ Cm

dxphq ÞÑ pBz‚
hqpxq

(3.6.5)

(where h P mCm,x). Thus dxpIxq and ΨpdxpIxqq have the same dimension. The fact
that each h P Ix is an OCm,x-linear combination of the germs f 1

x , . . . , f
n
x implies that

pBz‚
hqpxq is a C-linear combination of pBz‚

f 1qpxq, . . . , pBz‚
fnqpxq, since f ipxq “ 0. So

ΨpdxpIxqq is spanned by pBz‚
f 1qpxq, . . . , pBz‚

fnqpxq. This proves

rankx
`

Bz‚
f ‚
˘

“ dimC dxpIxq (3.6.6)

and hence finishes of the proof of the corollary, thanks to Prop. 3.6.3.
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As an easy application of Jacobi criterion, we prove:

Proposition 3.6.5. Let X, Y be complex spaces and x P X, y P Y . Then

embxˆyX ˆ Y “ embxX ` embyY. (3.6.7)

Proof. Let U Ă Cm and V Ă Cn be open subsets such that X “ SpecanpOU{Iq

and Y “ SpecanpOV {J q, where I is an ideal of OU generated by finitely many
f 1, f 2, . . .OpUq, and J is an ideal of OV generated by finitely many g1, g2, ¨ ¨ ¨ P

OpV q. Let z‚ be the set of coordinates of Cm and w‚ the set of coordinates of Cn.
Then by Rem. 1.12.6, XˆY is the closed subspace of UˆV defined by the ideal of
OUˆV generated by f 1pz‚q, f 2pz‚q, . . . and g1pw‚q, g2pw‚q, . . . . By Jacobi criterion,

embxˆyX ˆ Y “ m ` n ´ rankxˆy Bpz‚,w‚q

`

f ‚
pz‚q, g‚

pw‚q
˘

“m ` n ´ rankx Bz‚
f ‚

pz‚q ´ ranky Bw‚
g‚

pw‚q “ embxX ` embyY.

3.6.2 Analysis of singular loci

Proof of Lemma 3.5.2. Under the assumptions of (1), we need to show that each
x P XXZr´1 is a singular point. If x is smooth, we can find a neighborhoodW Ă X
of x which is a complex manifold. In particular, the embedding dimensions of W
must be constant on W . Thus, by Jacobi criterion, the ranks of Bz‚

f ‚ are constant
on W .

Notice the assumptions in (1) that X X Zr´1 is nowhere dense in X . So W Ć

X XZr´1. From the definition of Z‚, we know that the ranks of Bz‚
f ‚ on Zr´1 (and

in particular at x P W ) are ď r´1, and that the rank on the non-empty set W zZr´1

is r (since X Ă Zr). This is impossible. So x is singular.

Lemma 3.5.2 shows that if X is irreducible at 0, then the singular locus of a
neighborhood of 0 P X is a nowhere dense analytic subset of that neighborhood.
This property can be generalized.

Proposition 3.6.6. Let X be a complex space reduced at x. Then after shrinking X to a
neighborhood of x, there is a local decomposition X “ X1 Y ¨ ¨ ¨ Y XN at x such that

SgpXq “

´

ď

i‰j

Xi X Xj

¯

Y

´

ď

i

SgpXiq

¯

. (3.6.8)

In particular, after shrinking X further, SgpXq is a nowhere dense analytic subset of X .

Note that each SgpXiq can be described by Lemma 3.5.2. We thus have an
explicit local description of singular loci of reduced complex spaces.
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Proof. Clearly we have Ă in (3.6.8). To show Ą we only need to show that SgpXq Ą

Xi XXj if i ‰ j and after shrinking X . This is due to Thm. 3.3.5, since a reducible
point must be singular. This proves (3.6.8). Thm. 3.3.5 says thatXiXXj is nowhere
dense inX . By Lemma 3.5.2, SgpXiq is nowhere dense inXi (and hence inX) after
shrinking X . So SgpXq is nowhere dense.

Theorem 3.6.7. Let X be a complex space. Then SgpXq is an analytic subset of X . If X
is reduced, then SgpXq is nowhere dense in X .

Proof. Prop. 3.6.6 shows that if X is reduced, then each x P X is contained in a
neighborhood Ux Ă X such that SgpXq X Ux is analytic and nowhere sense in Ux.
Therefore by Cor. 3.2.8, SgpXq is analytic and nowhere dense in X . In the general
case, X “ X 1 Y pXzX 1q where X 1 is the set of non-reduced points of X , which is
an analytic subset by Cor. 3.2.7. Clearly

SgpXq “ X 1
Y SgpXzX 1

q. (3.6.9)

So SgpXq must be analytic.

3.7 Products of reduced spaces are reduced

In this section, we give our first application of Thm. 3.6.7: We study the re-
ducedness of complex spaces with the help of their singular loci.

Proposition 3.7.1. Let X be a complex space and x P X . Let I be a coherent ideal of OX

such thatNpIq “ SgpXq. (For instance, I “ ISgpXq.) Then the following are equivalent.

(1) X is reduced at x.

(2) Ix contains a non zero-divisor of OX,x.

Proof. Assume (1). By Thm. 3.2.1, we may shrink X to a neighborhood of x so
that X is reduced. Then by Thm. 3.6.7, NpIq is nowhere dense in X . Thus (2)
follows from Prop. 3.4.5.

Assume (2). Shrink X so that there is f P IpXq which is a non zero-divisor
of OX,x. To prove (1), we need to show that every g P

a

0X,x is zero. Shrink X
further so that g P OpXq and gn is zero in OpXq for some n P Z`. Since XzNpIq

is smooth, g|XzNpIq “ 0. So Supppgq “ SupppgOXq is inside NpIq. Since f vanishes
on NpIq, by Nullstellensatz (Rem. 2.10.4-3), there is k P Z` such that in OX,x we
have fkg “ 0, and hence g “ 0 because f is a non zero-divisor.

Note that the proof of (2)ñ(1) is similar to that of Thm. 3.2.1. (See the proof
above Lemma 3.2.13.)

We shall prove that the direct product of two reduced complex spaces is re-
duced. To prove this fact, we first need a result on completed tensor product of
non zero-divisors.
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Proposition 3.7.2. Let X, Y be complex spaces and x P X, y P Y . Let f P OX,x be a
non zero-divisor of OX,x and g P OX,x be a non zero-divisor of OY,y. Then f b g is a non
zero-divisor of OX,xpbOY,y “ OXˆY,xˆy.

Recall the meaning of f b g in (1.13.1). Since f b g “ pf b 1qp1 b gq and the
product of two non zero-divisors is a non zero-divisor, it suffices to prove that
f b 1 is a non zero-divisor.

A different proof of this proposition is given in Sec. 5.6, after Cor. 5.6.7.

Proof-Step 1. We prove Prop. 3.7.2 under the assumption that y is the only point
of Y . Then the obvious projection Y Ñ t0u, where t0u is the reduced single point,
is finite. Therefore, by Cor. 2.8.4, we have a canonical equivalence

OXˆY,xˆy » OX,x bC OY,y.

Note that by Thm. 2.7.1, OY,y is a finite-dimensional vector space. Then one checks
easily that fb1 is a non zero-divisor: choose any element of OX,xbCOY,y and write
it as a finite sum h “

ř

i hibei where teiu is a basis of OY,y. If pfb1qh “
ř

i fhibei
is zero, then each fhi “ 0, and hence hi “ 0.

Proof-Step 2. We now prove the general case. Choose any h P OXˆY,xˆy such that
pf b 1qh “ 0. We shall prove that h P mk

Y,y ¨ OXˆY,xˆy for all k P N. Then since
mk
Y,y ¨ OXˆY,xˆy Ă mk

XˆY,xˆy, we have h “ 0 by Krull’s intersection Thm. 1.4.4.
Let J be Ityu, the ideal sheaf of all sections of OY vanishing at y. Then Jy “

mY,y. Thus, what we need to prove is that h is zero in OXˆY,xˆy{J k
y OXˆY,xˆy for all

k. Let Y k “ SpecanpOY {J kq whose underlying topological space is tyu but might
be non-reduced. Let prY : X ˆ Y Ñ Y be the projection. Then by Prop. 1.12.1 and
1.12.5, OXˆY,xˆy{J k

y OXˆY,xˆy is the stalk at x ˆ y of

OXˆY {J kOXˆY “ Opr´1
Y pY kq “ OXˆY k .

Note that by Prop. 1.12.5, the inclusion ιXˆY k,XˆY equals 1X ˆ ιY k,Y . Thus, the
residue class of f b 1OY,y “ pr˚

XˆY,Xf in OXˆY k,xˆy is

p1X ˆ ιY k,Y q
˚pr˚

XˆY,Xf “ pr˚
XˆY k,Xf “ f b 1O

Y k,y

which, by Step 1, is a non zero-divisor of OXˆY k,xˆy. So h is 0 in OXˆY k,xˆy. This
finishes the proof.

Theorem 3.7.3. Let X, Y be (non-empty) complex spaces. Then X and Y are reduced if
and only if the direct product X ˆ Y is reduced.

Proof. First, if one of X, Y (say X) is not reduced, then there is a nonzero f P OX

such that f vanishes everywhere on X . So f b 1 “ pr#Xf is nonzero but vanishes
everywhere on X ˆ Y . So X ˆ Y is not reduced.
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Now we assume that X and Y are reduced and prove that X ˆ Y is reduced
at every point x ˆ y. By Prop. 3.7.1, we may shrink X, Y to neighborhoods of
x, y respectively so that we can find f P ISgpXqpXq which is a non zero-divisor of
OX,x, and find g P ISgpY qpY q which is a non zero-divisor of OY,y. Since f takes
value zero on SgpXq, fb1 takes value zero on SgpXqˆY , and similarly 1bg takes
value zero on X ˆ SgpY q. Thus f b g “ pf b 1qp1 b gq vanishes on

pSgpXq ˆ Y q Y pX ˆ SgpY qq Ą SgpX ˆ Y q. (3.7.1)

The above Ą is due to the fact that the product of smooth spaces is smooth, ac-
cording to Exp. 1.13.3.

Now we have f b g P ISgpXˆY qpX ˆ Y q. By Prop. 3.7.2, f b g is a non zero-
divisor of OXˆY,xˆy. So by Prop. 3.7.1, X ˆ Y is reduced at x ˆ y.

We remark that the “Ą” in (3.7.1) is actually ““”. See Cor. 3.10.11.

3.8 Non locally-free loci of coherent sheaves

In this section, we use (co)rank functions to study the non locally-free loci of
coherent sheaves.

Definition 3.8.1. Let X be a complex space and E an OX-module. We say that E
is locally free at x if there is a neighborhood U Ă X of x such that E |U is OU -free.
(Recall our convention that free sheaves are assumed to have finite ranks). When
E is OX-coherent, then this is equivalent to saying that Ex is a free OX,x-module
(Thm. 2.2.2).

The (clearly closed) subset of all x P X at which E is not locally free is called
the non locally-free locus of E .

Lemma 3.8.2. Let A be a commutative Noetherian local ring and M an A-module to-
gether with a surjective morphism of A-modules φ : An Ñ M. Then M is A-free if and
only if the morphism

φ˚ : HomApM,An
q Ñ HomApM,Mq, α ÞÑ φ ˝ α

is surjective.

Proof. If M is free then φ˚ is surjective because HomApM,´q is right exact. Con-
versely, if φ˚ is surjective, then the fact that 1M is in the image of φ˚ means that
there is a lift ψ : M Ñ An such that φ ˝ ψ “ 1M. This proves that M is a direct
summand of An. Therefore M is a projective A-module by Prop. 5.3.7, and hence
is free of finite rank by Thm. 5.4.2.
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Theorem 3.8.3. Let X be a complex space and E a coherent OX-module. Then

E “ tx P X : E is not locally free at xu

is an analytic subset of X . If X is reduced, then E is nowhere dense.

Proof-Step 1. Let us prove that E is analytic. By Cor. 3.2.8, it suffices to show that
each x P X is contained in a neighborhood U such that E X U is analytic in U .
So let us assume X is so small that there is a surjective OX-module morphism
φ : On

X Ñ E . This yields a morphism of coherent modules (cf. Cor. 2.2.5)

Hom OX pE ,On
Xq Ñ Hom OX pE ,E q.

The support of the cokernel of this morphism is, by Lemma 3.8.2, the set of all x
such that Ex is not OX,x-free, namely E. So E is analytic since it is (as a set) the
support of a coherent sheaf.

Proof-Step 2. Assume that X is reduced. We need to show that E contains no
nonempty open subsets of X . By shrinking X , it suffices to prove that E ‰ X . So
let us assume E “ X and find a contradiction.

Now our assumption is that E is nowhere locally free on X . By shrinking X ,
we assume that

E » Cokerpφ : Om
X Ñ On

Xq.

Let ξ1 “ φp1, 0, . . . , 0q, . . . , ξm “ φp0, 0, . . . , 1q, which are elements of OpXqn.
Then F “ pξ1, . . . , ξmq can be viewed as an element of OpXqnˆm, i.e. an n ˆ m
matrix-valued holomorphic function on X . And for each x P X , setting Cx “

OX,x{mX,xOX,x, we have

n ´ rankF pxq “ dimCokerpφpxq : Cm
x Ñ Cn

xq

“ dimCokerpφ b 1 : Om
X bC Cx Ñ On

X bC Cxq

“ dimCokerpφ : Om
X Ñ On

Xq bC Cx “ dimpE |xq.

As in Subsec. 3.5.1, for each k P N, the set

Γk “ tx P X : rankF pxq ď ku

is an analytic subset of X . We let r be the smallest number such that Γr contains a
nonempty open subset ofX . Then ΓrzΓr´1 also contains a non-empty open subset
U Ă X . By restricting X to U , we assume that X “ Γr. So the dimensions of the
fibers dimpE |xq are constant on X . Therefore, since X is reduced, Prop. 1.3.15
implies that E is locally free on X . Impossible.

Exercise 3.8.4. Let X be a reduced complex space irreducible at x P X . Show that
after shrinking X to a neighborhood of x, there is r P N such that X “ Γr and that
Γr´1 is nowhere dense in X . Show that if X “ Γr and if Γr´1 is nowhere dense
then Γr´1 is the non locally-free locus of E .

109



3.9 Dimensions

Definition 3.9.1. Let X be a complex space and x P X . The (Chevalley) dimen-
sion of OX,x, also called the dimension of X at x and denoted by dimOX,x or
equivalently dimxX , is the smallest n P N such that:

• There exists a neighborhood U of x and f1, . . . , fn P OpUq such that x is an
isolated point of Npf1, . . . , fnq.

It is clear that dimxX “ 0 iff x is an isolated point of X . We set dimx H “ ´8.
The global dimension is defined to be

dimX “ sup
xPX

dimxX.

We say that X is (resp. locally) pure dimensional if x P X ÞÑ dimxX is a (resp.
locally) constant function. We say that X has pure dimension n at x if X has
dimension n at every point of a neighborhood of x.

3.9.1 Basic facts about dimensions

Proposition 3.9.2. Let X be a complex space and x P X . Then

dimxX “ dimx redpXq.

Equivalently, for A “ OX,x we have

dimA “ dimA {
?
0A .

Proof. If X is small enough such that f1, . . . , fn P OpXq makes x an isolated point
of Npf‚q, then their restrictions to redpXq (i.e. their residue classes in redpXq) also
make x an isolated point of the zero set.

Conversely, if f1, . . . , fn P OpredpXqq makes x an isolated point of Npf‚q, then
after shrinking X to a neighborhood of x, we can assume f1, . . . fn are the restric-
tions of elements of OpXq, whose zero set also has x as an isolated point.

Proposition 3.9.3. We have dimxX ď n if and only if there exist a neighborhood Ux Ă

X of x, an open subset V Ă Cn, and a finite holomorphic map F : Ux Ñ V .

Proof. The “if” part is clear. The “only if” part follows by choosing F “ pf1, . . . , fnq

(where f‚ are in Def. 3.9.1) and applying Thm. 2.7.2 to deduce the finiteness.

Corollary 3.9.4. For each complex space X , the dimension function

X Ñ N x ÞÑ dimxX

is upper semicontinuous.
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Proof. Fix any p P X and let n “ dimpX . Then by Prop. 3.9.3, we may shrink X
to a neighborhood of p and find an open subset V Ă Cn such that there is a finite
map φ : X Ñ Cn. Then clearly dimxX ď n for each x P X .

Corollary 3.9.5. Let φ : X Ñ Y be a finite holomorphic map. Then for each x P X ,

dimxX ď dimφpxq Y. (3.9.1)

Proof. Let y “ φpxq and n “ dimy Y . By Prop. 3.9.3, after shrinking Y and re-
placing X by φ´1pY q, we have a finite holomorphic map π : Y Ñ V where V is
an open subset of Cn. Since F ˝ φ : X Ñ V is finite, by Prop. 3.9.3 we conclude
dimxX ď n.

Proposition 3.9.6. Let X be a complex space and x P X . The following are equivalent.

(1) dimxX “ 0, namely, x is an isolated point of X .

(2) OX,x is a finite-dimensional vector space.

(3) OX,x is an Artinian ring.

(4) There exists k P Z` such that mk
X,x “ 0.

Proof. (1)ñ(2): By shrinking X , we assume x is the only point of X . Let t0u be the
reduced single point (whose structure sheaf is C). Then the obvious holomorphic
map X Ñ t0u is finite. Therefore, by Thm. 2.7.1, OX,x is C-coherent, i.e., C-finite-
dimensional.

(2)ñ(3): Obvious.
(3)ñ(4): The decreasing chain mX,x Ą m2

X,x Ą m3
X,x Ą ¨ ¨ ¨ must be stationary

as OX,x is Artinian. So there is k P Z` such that mk
X,x “ mk`1

X,x . So mk
X,x “ 0 by

Nakayama’s lemma 1.2.15.
(4)ñ(1): Assume for simplicity that X is a closed subspace of an open subset

U of Cn, and x “ 0. Let z1, . . . , zn be the coordinates of Cn. Since mk
X,x “ 0, the

germ of zki in OX,x is zero. Thus, after shrinking U to a neighborhood of 0, we
have that that zki |X is zero in OX for all i. So for each p P X we have pzippqqk “ 0.
So p “ 0. This proves X “ t0u “ txu.

3.10 Active lemma for dimensions

Let X be a complex space.

111



3.10.1 Active lemma

Definition 3.10.1. An element f P OpXq is called active at x or active in OX,x if f
(or more precisely redpfq) is a non zero-divisor of OredpXq,x “ OX,x{

a

0X,x .

Non zero-divisors are always active, but the converse is not true.

Proposition 3.10.2. If f P OpXq is a non zero-divisor of OX,x, then f is active in OX,x.

Proof. Let A “ OX,x. Suppose that f is not active at x, i.e. f is a zero-divisor of
A {

?
0. Then fg P

?
0 for some g P A and g R

?
0. So for some n P Z` we have

fngn “ 0 in A . Notice that gn ‰ 0. So we can find k P N such that in A we have
fkgn ‰ 0 and f ¨ fkgn “ 0. Therefore f is a zero-divisor of A .

Theorem 3.10.3 (Active lemma). Let f P OpXq and x P Npfq. If f is a non zero-
divisor of OX,x, then

dimxNpfq “ dimxX ´ 1. (3.10.1)

Thus, by Prop. 3.9.2, if f is active at x then (3.10.1) also holds.

One may also compare Active lemma with Prop. 3.6.3.

Proof. Let m “ dimxNpfq and n “ dimxX . Then, after shrinking X to a neighbor-
hood of x, there are g1, . . . , gm P OpXq such that Npfq XNpg1, . . . , gmq “ txu. Thus
n ď m ` 1.

Let us prove m ď n ´ 1. Let A “ Npfq. By Prop. 3.9.3, we may shrink X and
find a finite holomorphic map φ : X Ñ Y sending x to 0, where Y Ă Cn is open.
By Exe. 2.3.11, φpAq is an analytic subset of Y . So m ď dim0 φpAq by Cor. 3.9.5.
Therefore, it suffices to prove dim0 φpAq ď n ´ 1.

By Thm. 2.7.2, we may shrink Y to a neighborhood of 0 and replace X by
φ´1pY q so that φ´1p0q “ x and hence OX,x “ pφ˚OXq0. By Thm. 2.7.1, φ˚OX

is OY -coherent. Hence OX,x is a finitely-generated OY,0-module. Thus, as OY,0

is Noetherian, the germ of f in OX,x is integral over OY,0 (see the argument for
(2.7.4)), i.e.

fNx ` aN´1f
N´1
x ` ¨ ¨ ¨ ` akf

k
x “ 0

for some ak, . . . , aN´1 P OY,0 where ak is non-zero in OY,0. Since f is a non zero-
divisor of OX,x, we conclude that ak (or more precisely φ#ak) equals

´fN´k
´ aN´1f

N´k´1
´ ¨ ¨ ¨ ´ ak`1f

in OX,x. So ak belongs to AnnOY,ypOA,xq “ AnnOY,yppφ˚OAqyq. By shrinking X, Y
further, we have ak P Ann OY pφ˚OAqpY q. By Def. 2.3.8, ak vanishes on φpAq, i.e.
φpAq Ă Npakq. So it suffices to prove dim0Npakq ď n ´ 1.
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Since ak is non-zero in OY,0, as in the proof of Thm. 1.5.5 we may choose a new
set of coordinates pz1, . . . , znq of Cn such that ak has finite order in z1. So 0Cn is an
isolated point of the fiber π´1p0Cn´1q, where π : Npakq Ñ Cn´1 is the restriction of
prCn´1 : C ˆ Cn´1 Ñ Cn´1. This proves dim0Npakq ď n ´ 1.

Remark 3.10.4. Active lemma is a key result in dimension theory. As one has seen
above, there are two crucial ingredients in the proof of Active Lemma:

(1) Suppose that φ : X Ñ Y is a finite holomorphic map, Y is reduced (it
suffices to take Y to be an open subset of Cn), y P Y , φ´1pyq “ txu,
f P OpXq vanishes at x and is a non zero-divisor of OX,x. Then one shows
pφpNpfqq, yq Ĺ pY, yq with the help of the coherence of φ˚OX .

(2) One shows that every proper subgerm of pCn, 0q has dimension ď n ´ 1.

Remark 3.10.5. Assume dimxX ą 0. By taking local decomposition of redpXq at x
and using Cor. 3.1.6 or Lemma 3.4.6, we can find f P mX,x which is an active germ
of X at x. By Active lemma, we can repeat this procedure to obtain f1, . . . , fn P

mX,x such that, after shrinking X to a neighborhood of x, each fi is in OpXq and is
an active germ of Npf1, . . . , fi´1q at x. And x is an isolated point of Npf1, . . . , fnq.

Contrary to active elements, if OX,x is not reduced then mX,x might not contain
a non zero-divisor of OX,x. Thus, we may not be able to find f1, . . . , fn P mX,x such
that each fi is a non zero-divisor of OX,x{pf1OX,x ` ¨ ¨ ¨ ` fi´1OX,xq. In the case that
we can, we will call OX,x a Cohen-Macaulay ring.

3.10.2 Consequences of Active lemma

Corollary 3.10.6. If x P Cn then

dimxCn
“ n.

Proof. This is clear when n “ 0. That dimxCn “ n implies dimxCn`1 “ n ` 1
follows from Active lemma.

Corollary 3.10.7 (Ritt’s lemma). Let A be an analytic subset of a complex space X . The
following are equivalent.

(1) A is nowhere dense in X .

(2) dimxA ă dimxX for all x P X .

Proof. By Prop. 3.9.2, it suffices to assume that X is reduced. Clearly (2)ñ(1).
Assume (1). Then by Prop. 3.4.5, for each x there is a non zero-divisor f P OX,x

vanishing on the germ pA, xq. Therefore dimxA ď dimxNpfq “ dimxX ´ 1 by
Active lemma. This proves (2).
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Proposition 3.10.8. Let X “ A1 Y ¨ ¨ ¨ Y AN be a union of analytic subsets. Then

dimxX “ sup
1ďiďN

dimxAi (3.10.2)

Proof. By Prop. 3.9.2, we may assume that X is reduced. “ě” clearly holds. We
prove “ď” by induction on m “ supi dimxAi. We may assume that x is in each Ai
and hence dimxAi ě 0.

The base case m “ 0 is obvious. Assume that (3.10.2) holds for any decompo-
sition such that supi dimxAi “ m´ 1. Now assume supi dimxAi “ m ą 0. We may
shrink X to a neighborhood of x and discard those i satisfying dimxAi “ 0. Thus,
we may assume dimxAi ą 0 for all i. Shrink X further so that each Ai has a local
decomposition Ai “ Bi,1 Y Bi,2 Y ¨ ¨ ¨ at x. Then for each i, j, clearly x is not an
isolated point of Bi,j . This implies mX,x Ć IBi,j ,x. Therefore, by Lemma 3.4.6, we
can find f P mX,x which is a non zero-divisor of OX,x and of every OAi,x. Thus, by
Active lemma, dimxNpfq “ dimxX ´ 1 and supi dimxNpfq X Ai “ m ´ 1. These
two numbers are equal by assumption on case m ´ 1. So dimxX “ m.

Proposition 3.10.9. Let X, Y be complex spaces and x P X, y P Y . Then

dimxˆyX ˆ Y “ dimxX ` dimy Y. (3.10.3)

Proof. We prove this by induction onm “ dimxX . The case dimxX “ 0 is obvious.
Suppose (3.10.3) holds whenever dimxX “ m ´ 1. In the case that dimxX “ m,
choose f P mX,x active in OX,x (Rem. 3.10.5). Then by Prop. 3.7.2, f b1 P mXˆY,xˆy

is active in OXˆY,xˆy. By shrinking X to a neighborhood of x we may assume
f P OpXq. Therefore, by Active lemma, dimxˆyNpfq ˆ Y “ dimxˆyNpf b 1q “

dimxˆypXˆY q´1, and dimxNpfq “ dimX´1. By assumption, dimxˆyNpfqˆY “

dimxNpfq ` dimy Y . This proves (3.10.3).

Note that in the above proof, one can also use Prop. 3.4.1 to show that f b 1 is
active if f is so.

3.10.3 Comparing different versions of dimensions

We first compare (Chevalley) dimensions and embedding dimensions.

Theorem 3.10.10. Let X be a complex space and x P X . Then dimxX ď embxX .
Moreover, X is smooth at x if and only if dimxX “ embxX .

Proof. Clearly dimxX ď embxX in general (Recall Def. 3.6.1) and dimxX “

embxX if X is smooth at x. We now assume n :“ embxX equals dimxX and
prove that X is smooth at x.

By Def. 3.6.1, after shrinking X to a neighborhood of x, we may view X as a
closed subspace of an open subset V of Cn. Write X “ SpecanpOV {Iq. We claim
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that Ix “ 0. Then we can choose a neighborhood W Ă V of x such that I|W “ 0
(Rem. 1.2.16), and clearly the complex subspace X XW of X is smooth. Hence X
is smooth at x.

Suppose Ix ‰ 0. Then Ix contains a nonzero element f , which is a non zero-
divisor of the integral domain OCn,0. Since f vanishes on the germ pX, 0q, by
Active lemma we have dimxX ď n ´ 1, which is impossible.

Corollary 3.10.11. Let X, Y be complex spaces. Then

SgpX ˆ Y q “ pSgpXq ˆ Y q Y pX ˆ SgpY qq. (3.10.4)

Proof. We need to prove that for every x P X and y P Y , X ˆ Y is smooth at x ˆ y
iff X is smooth at x and Y is smooth at y. This is immediate from Prop. 3.6.5,
3.10.9, and Thm. 3.10.10.

In algebraic geometry, the dimension of a commutative ring usually means
Krull dimension. Fortunately, it agrees with Chevalley dimension when the ring
is an analytic local C-algebra.

Definition 3.10.12. Let A be a commutative ring. The Krull dimension of A is the
largest n P N such that there exists a chain p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pn of prime ideals of A.
If such n can be arbitrarily large, we set the Krull dimension to be `8.

Lemma 3.10.13. Let p1 Ĺ p be prime ideals of OX,x. Then

dimOX,x{p ă dimOX,x{p1. (3.10.5)

Recall that a prime ideal of OX,x is not equal to OX,x, and hence is contained in
mX,x.

Proof. By replacing OX,x by OX,x{p1 (and replacing X by a closed subspace of a
neighborhood of x), it suffices to assume that p1 “ 0 and that A “ OX,x is an
integral domain. Then 0 Ĺ p Ĺ A . Choose a non-zero f P p. Then f is a non
zero-divisor of A . Thus by Active lemma, dimA {p ď dimA {fA “ dimA ´ 1.
This proves (3.10.5).

Proposition 3.10.14. dimxX equals the Krull dimension of OX,x.

Proof. Lemma 3.10.13 shows that n “ dimxX is no less than the Krull dimension
of OX,x. To prove the equality, we need to show the existence of a chain of prime
ideals p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pn. We prove this by induction on n. The case n “ 0 is
obvious. Assume this is true whenever dimxX “ n´1. Now assume dimxX “ n.
By Rem. 3.10.5, we can find an active germ f P mX,x at x. Then dimxNpfq “ n´ 1
by Active lemma. By Prop. 3.10.8, in the prime decomposition of fOX,x Ă OX,x

there is a prime component p0 such that dimOX,x{p0 “ n ´ 1. By assumption,
we have a strictly increasing chain of n prime ideals of OX,x{p0. These are prime
ideals of OX,x containing p0. In this way, we get a strictly increasing chain of n` 1
prime ideals of OX,x.
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3.11 Noether property for coherent sheaves

LetX be a complex space. In this section, we use dimension theory and Active
lemma to prove the Noether property for coherent sheaves of X . This result will
be used in the proof of Grauert comparison theorem. (See the proof of Lemma
6.5.5.)

Definition 3.11.1. Let E be a coherent OX-module. An ascending chain of co-
herent OX-submodules of E is a collection pEiqiPI where I is a directed set, and
Ei Ă Ej if i ď j. We say that the chain is stationary at x P X if there is a neigh-
borhood U Ă X of x and i P I such that Ei|U “ Ej|U for all j ě i. We say that E
satisfies Noether property at x every every ascending chain of coherent submod-
ules of E is stationary at x. We say that E satisfies Noether property if it satisfies
Noether property at every x P X .

It is clear that if E satisfies Noether property, then any ascending chain of
coherent submodules of E is stationary on any precompact open subset of X .

Lemma 3.11.2. Let 0 Ñ E Ñ F
ψ
ÝÑ G Ñ 0 be an exact sequence of OX-modules. If F

satisfies Noether property at x then so does G . If E and G satisfy Noether property at x
then so does F .

Proof. Assume that F satisfies Noether property at x. Let pGiqiPI be an ascend-
ing chain of coherent submodules of G . By Cor. 2.1.9, ψ´1pGiq is OX-coherent.
So we have an ascending chain pGiqiPI which is stationary at x. Then pGiqiPI “

pψpψ´1pGiqqqiPI is stationary at x.
Now assume that E and G satisfy Noether property at x. Let pFiqiPI be an

ascending chain of coherent submodules of F . We regard E as a submodule of
F . Then pψpFiqqiPI and pE X FiqiPI are ascending chains of coherent submodules
of G and E respectively, where the coherence is due to Cor. 2.1.6 and 2.1.7. So
they are stationary at x. From this one deduces that pFiqiPI is stationary at x.

Lemma 3.11.3. Let φ : X Ñ Y be a finite holomorphic map of complex spaces, and let
E be an OX-module. Let x P X . If φ˚E satisfies Noether property at y “ φpxq, then E
satisfies Noether property at x.

Proof. Let pEiqiPI be an ascending chain of coherent submodules of E . Then
pφ˚EiqiPI is an ascending chain of coherent (Thm. 2.7.1) submodules of φ˚E . By
assumption, after shrinking Y to a neighborhood of y and shrinking X to φ´1pY q,
there is i P I such that for all j ě i we have φ˚Ei “ φ˚Ej , namely pφ˚Eiqy “ pφ˚Ejqy
for all y P Y . This means, by Prop. 2.4.5, that Ei,x “ Ej,x for all x P φ´1pyq and j ě i.
So Ei “ Ej when j ě i.

Lemma 3.11.4. Let X be a connected complex manifold, and let I be a coherent ideal of
OX . If I ‰ 0X , then Ix ‰ 0 for every x P X .
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Proof. We know that SupppIq is a (closed) analytic subset of X . If we can show
that SupppIq is open in X , then SupppIq “ X , which finishes the proof of the
lemma.

Choose any x P SupppIq. Then Ix ‰ 0. There exist a connected neighborhood
U of x and f P IpUq such that f is non-zero in OU,x. By Identitätssatz 1.1.3, f is
non-zero in OU,p for all p P U , which shows U Ă SupppIq.

Theorem 3.11.5. Let X be a complex space and E a coherent OX-module. Then E satis-
fies Noether property.

Proof. We need to prove that any coherent module E satisfies Noether property at
x. We prove this by induction on dimxX . Then case dimxX “ 0 is obvious since
E is a finite-dimensional vector space (Cor. 2.7.4). Now assume that coherent
sheaves satisfy Noether property at x (for all X and x P X) whenever dimxX ď

n ´ 1 and n P Z`. Let us prove that this is true when dimxX ď n.
By Prop. 3.9.3, after shrinking X to a neighborhood of x, we may find a finite

map from X to an open subset of Cn. Therefore, by Lemma 3.11.3, it suffices to
assume that X is an open subset of Cn. Let E be a coherent OX,x-module. After
shrinking X further, E is the cokernel of a morphism of free OX-modules (Thm.
2.1.10). Thus, by Lemma 3.11.2, it suffices to assume that E is OX-free, and hence
that E “ OX .

Let pIiqiPI be an ascending chain of ideals of OX . We need to show that it
is stationary at x. It suffices to assume that Ik ‰ 0X for some k. By Lemma
3.11.4, Ik,x ‰ 0. Shrink X so that we can find f P IkpXq non-zero in OX,x. By
discarding all i ă k, we assume that fOX Ă Ii for all i P I. Let Ji “ Ii{fOX ,
which is an OX-submodule of OX{fOX . Identify Ji with its restriction to Y “

SpecanpOX{fOXq. Then pJiqiPI is an ascending chain of coherent ideals of OY .
Since OX,x is an integral domain, we have dimOY,x “ dimOX,x ´ 1 “ n ´ 1 by
Active lemma. Thus, by assumption, pJiqiPI is stationary at x. Therefore pIiqiPI is
stationary at x.

3.12 Openness and dimensions of fibers I

Definition 3.12.1. Let φ : X Ñ Y be a continuous map of topological spaces. We
say that φ is open at x P X if for each neighborhood U Ă X of x, φpUq contains a
neighborhood of φpxq. We say that φ is open (on X) if φ is open at every point of
X .

It is clear that φ is open at x iff

tU Ă X : U is a neighborhood of X and φpUq is open in Y u

is a base of neighborhoods of x.
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3.12.1 Dimension Formula (3.12.2)

In the following, φ : X Ñ Y always denotes a holomorphic map of complex
spaces. For each y P Y , the fiber Xy means the inverse image φ´1pyq (cf. Prop.
1.12.1), namely

Xy “ φ´1
pyq “ SpecanpOX{ItyuOXq.

Recall that Ityu is the ideal of all g P OpY q vanishing at y, and can also be written
as mY,y by abuse of notations.

Proposition 3.12.2. The following are true for φ : X Ñ Y .

(1) For each x P X ,

dimxXφpxq ě dimxX ´ dimφpxq Y. (3.12.1)

(2) The function x P X ÞÑ dimxXφpxq is upper semicontinuous.

Note that part (1) generalizes Cor. 3.9.5, and part (2) generalizes Cor. 3.9.4.

Proof. Fix x P X . Let m “ dimxXφpxq and n “ dimφpxq Y . By the definition of
dimensions, we may shrink Y to a neighborhood of y “ φpxq and X to a neigh-
borhood of x inside φ´1pY q such that there exist f1, . . . , fm P OpXq such that x is
the only point of Npf1, . . . , fmq X Xy. Consider pf‚q P OpXqm as a holomorphic
map X Ñ Cm, and let Ψ “ pf‚q _ φ : X Ñ Cm ˆ Y . Then x is the only point
of Ψ´1pΨpxqq “ Ψ´1p0 ˆ yq. Therefore, by Thm. 2.7.2, we may shrink X and Y
further so that Ψ is finite. Then by Cor. 3.9.5 and Prop. 3.10.9,

dimxX ď dim0ˆy Cm
ˆ Y “ m ` n.

This proves (1) .
Since Ψ is finite, each p P X is an isolated point of Ψ´1pΨppqq. Since

Ψ´1
pΨppqq “ Npf1 ´ f1ppq, . . . , fm ´ fmppqq X Xφppq

we must have dimpXφppq ď m. This proves (2).

Our main goal of this section and the next one is to understand when the
following Dimension Formula holds:

dimxXφpxq “ dimxX ´ dimφpxq Y (3.12.2)

More precisely, our goal is to understand the following result of Remmert which
relates the openness of φ and (3.12.2).
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Corollary 3.12.3. Assume that Y is locally irreducible. Then φ : X Ñ Y is open if and
only if Dimension Formula (3.12.2) holds for all x P X .

Proof. This follows from Thm. 3.13.1 and 3.13.3, together with the fact that every
locally irreducible space is locally pure dimensional (Thm. 3.14.10).

The following proposition is helpful for the proof of Thm. 3.13.1 and 3.13.3.

Proposition 3.12.4. Assume that X and Y are locally pure dimensional. If Dimension
Formula (3.12.2) holds at x0 P X , then it holds everywhere on a neighborhood of x0.

Proof. Since X and Y are locally pure dimensional, we may shrink X to a neigh-
borhood of x0 so that the RHS of (3.12.2) is constant over all x P X . By Prop.
3.12.2-(2), after further shrinking X , dimxXφpxq ď dimx0 Xφpx0q for all x P X . As-
sume that (3.12.2) holds at x0. Then by Prop. 3.12.2-(1), dimxXφpxq ě dimx0 Xφpx0q

for all x P X . So ““” holds. So dimxXφpxq is constant over x P X . Therefore
(3.12.2) holds for all x P X .

3.12.2 Openness and Dimension Formula: the finite case

In this subsection, we study the relation between Dimension Formula and
openness when φ is finite. Note that when φ : X Ñ Y is finite and y P Y , by
Rem. 2.3.10 and Prop. 2.4.5,

AnnOY,y

´

à

xPφ´1pyq

OX,x

¯

“ Ker
´

φ# : OY,y Ñ
à

xPφ´1pyq

OX,x

¯

(3.12.3)

The following important lemma tells us that when φ is finite, openness means
“locally surjective”.

Lemma 3.12.5. Assume that φ : X Ñ Y is finite and Y is reduced. Let x P X and y “

φpxq, and assume that x is the only point of φ´1pyq. Then the following are equivalent.

(1) φ is open at x.

(2) The set φpXq contains a neighborhood of y in Y . Equivalently, pφpXq, yq “ pY, yq.

(3) The ideal AnnOY,ypOX,xq is zero. Equivalently (by (3.12.3)), φ# : OY,y Ñ OX,x is a
monomorphism.

Proof. (1)ô(2): Clearly (1)ñ(2). Assume (2). By Prop. 2.4.1 and the fact that
φ´1pyq “ txu, for each neighborhood U Ă X of x there is a neighborhood V Ă Y
of y such that φ´1pV q Ă U . Then φpUq contains φpφ´1pV qq “ V X φpXq, and
V X φpXq contains a neighborhood of y P Y by (2). This proves (1).

(2)ô(3): By Def. 2.3.8, φpXq has structure sheaf Supppφ˚OXq. So φpXqy has
structure ring OY,y{AnnOY,ypφ˚OXq. So pφpXq, yq “ pY, yq iff AnnOY,ypφ˚OXq “ 0
(since pY, yq is reduced).
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Theorem 3.12.6. Assume that φ : X Ñ Y is finite, and let x P X . Consider the
following statements:

(1) φ is open at x.

(2) Dimension Formula (3.12.2) holds at x, namely

dimxX “ dimφpxq Y. (3.12.4)

Then (1)ñ(2). If Y is irreducible at φpxq, then (2)ñ(1).

Proof of (1)ñ(2). Assume for simplicity that X, Y are reduced, and that (by Thm.
2.7.2) x is the only point of φ´1pyq where y “ φpxq. Assume (1). We prove (3.12.4)
by induction on dimxX . If dimxX “ 0 then y contains a neighborhood of itself.
So y is isolated in Y and hence (3.12.4) holds.

Now assume dimxX ą 0. By Prop. 2.4.1, after shrinking Y to a neighborhood
of y and shrinking X to φ´1pY q, we may assume that X has local decomposition
X “ X1 Y ¨ ¨ ¨ YXN at x. Then x is not an isolated point of any Xi, otherwise (3.3.4)
does not hold. Thus dimxXi ą 0.

By Cor. 3.9.5, it suffices to prove dimxX ě dimy Y . By assumption (1), pY, yq “
Ť

ipYi, yq. Thus, by Prop. 3.10.8, there exists i such that dimy Yi “ dimy Y . Then
it suffices to prove dimxXi ě dimy Yi. By Lem. 3.12.5, φ : Xi Ñ Yi is open at x.
Thus, by replacing Xi, Yi with X, Y , we may assume that X is irreducible at x and
prove dimxX ě dimy Y .

By Rem. 3.3.2 (or by the fact that the inverse image of a prime ideal under
a ring homomorphism is prime), Y is irreducible at y. Since pY, yq ‰ ptyu, yq

(because dimy Y ě dimyX ą 0) and hence mY,y ‰ 0, after shrinking X, Y , there
exists g P OpY q such that gpyq “ 0 and that the stalk gy is nonzero in OY,y. Then
pg ˝ φqx is nonzero in OX,x. Thus, by Active lemma, we have

dimxNpg ˝ φq “ dimxX ´ 1 dimyNpgq “ dimy Y ´ 1.

Therefore, it suffices to prove that dimxNpg ˝φq ě dimyNpgq. Since φ : Npg ˝φq Ñ

Npgq is open at x (by Lem. 3.12.5), one can now apply the induction.

Proof of (2)ñ(1). Assume that (1) is not true and that Y is irreducible at y “ φpxq.
By Thm. 2.7.2, we may assume that x is the only point of φ´1pyq. By Lemma 3.12.5,
pφpXq, yq and pY, yq are not equal. So IφpXq,y is not 0 in OY,y (cf. Subsec. 3.3.1).
After shrinking Y and shrinking X to φ´1pY q, we may find g P OpY q non-zero in
OY,y and vanishing on φpXq. Since Y is irreducible at y, g is a non zero-divisor of
OY,y. So by Cor. 3.9.5 and Active lemma,

dimxX ď dimy φpXq ď dimyNpgq “ dimy Y ´ 1.

This disproves (2).
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Example 3.12.7. Consider analytic subsets X “ 0ˆ 0ˆC2 and Y “ pC2 ˆ 0ˆ 0q Y

p0ˆ0ˆC2q of C4, viewed as reduced complex spaces. Then Y is pure dimensional
but is reducible at 0. Dimension Formula (3.12.2) holds for the inclusion map ιX,Y
at every point of X , but ιX,Y is not open at 0. Therefore, in Thm. 3.12.6, to deduce
(2)ñ(1) one cannot remove the irreducibility condition.

Corollary 3.12.8 (Invariance of dimensions). Assume that φ : X Ñ Y is finite, and
let y P Y . Then

dimy φpXq “ sup
xPXy

dimxX. (3.12.5)

Proof. By Rem. 2.4.4, we may assume Y is small enough such that φ´1pY q is a
disjoint union

š

xPXy
Ux where each Ux is a neighborhood of x P X , and each

restriction φ : Ux Ñ Y is finite. Then φpXq “
Ť

xPXy
φpUxq, and so by Prop. 3.10.8,

we have dimy φpXq “ supxPXy dimy φpUxq. By Lemma 3.12.5, φ : Ux Ñ φpUxq is
open at x. Thus, by Thm. 3.12.6, dimy φpUxq “ dimx Ux “ dimxX .

3.13 Openness and dimensions of fibers II

We fix a holomorphic map of complex spaces φ : X Ñ Y .

3.13.1 Openness and Dimension Formula: the general case

The following theorem generalizes the part (2)ñ(1) of Thm. 3.12.6.

Theorem 3.13.1. Let x P X , and assume that Y is irreducible at φpxq. If Dimension
Formula (3.12.2) holds at x, then φ is open at x.

Proof. Let y “ φpxq and dimxXy “ m, and assume that (3.12.2) holds at x. We
may shrink X to a neighborhood of x so that there exist f1, . . . , fm P OpXq such
that Npf1, . . . , fmq X Xy “ txu. Consider F “ pf1, . . . , fmq as a holomorphic map
X Ñ Cm. Then Υ “ φ _ F : X Ñ Y ˆ Cm satisfies that x is the only point of
Υ´1py ˆ 0q. Since the projection prY : Y ˆ Cm Ñ Y is open and φ “ prY ˝ Υ, in
order to show that φ is open at x it suffices to show that Υ is open at x.

By Thm. 2.7.2, we may shrink X further so that Υ is finite map from X to a
neighborhood of yˆ 0 in Y ˆCm. By assumption, Dimension formula holds for Υ
at x. Thus, Υ is open at x by Thm. 3.12.6 and the fact that Y ˆ Cm is irreducible at
y ˆ 0 (due to Lemma 3.13.2).

Lemma 3.13.2. If Y is irreducible at y, then Y ˆ Cm is irreducible at y ˆ 0.

In fact, the product of any two irreducible points is irreducible. See Cor. 4.12.5.
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Proof. By induction, it suffices to assume m “ 1. Let A “ OY,y and B “ OY ˆC,yˆ0.
It suffices to prove that there is a monomorphism of C-algebras B Ñ A rrzss

where A rrzss is the algebra of formal power series of z whose coefficients are
elements of A . Then since A is an integral domain, A rrzss is clearly also an
integral domain, and so is B.

We may write A “ OCn,0{J where J is an ideal of OCn,0, and write y “ 0
(in Cn). Let pw1, . . . , wn, zq be the set of coordinates of Cn`1. Then we have a C-
algebra monomorphism Φ : OCn`1,0 Ñ OCn,0rrzss defined by taking power series
expansions with respect to z. More precisely, if fpw‚, zq is in OCn`1,0, then Φpfq “
ř

kPN akpw‚qzk where

akpw‚q “ Resz“0fpw‚, zqz´k´1dz.

This formula shows that if fpw‚, zq belongs to JOCn`1,0 (i.e. f is a (finite) OCn`1,0-
linear combination of elements gpw‚q P J) then each coefficient ak belongs to J .
Thus Φ restricts to a morphism

Ψ : B “ OCn`1,0{JOCn`1,0 Ñ A rrzss “ pOCn,0{Jqrrzss

If Ψ sends the residue class rf s P B of f P OCn`1,0 to the zero element of A rrzss,
then each ak belongs to J . The power series expansion f “

ř

k akz
k shows that rf s

belongs to zkB Ă mk
Y ˆC,0 for all k P N. Thus rf s “ 0 by Krull’s intersection Thm.

1.4.4. This proves that Ψ is injective.

Theorem 3.13.3. Assume that Y is locally pure dimensional. If φ : X Ñ Y is open, then
Dimension Formula (3.12.2) holds for every x P X .

This theorem can not be proved by Thm. 3.12.6. Instead, a prototype of this
theorem is Prop. 3.13.5-A which can be proved before we prove Thm. 3.13.3.

Proof. Assume that Y has pure dimension n. Fix x P X and y “ φpxq. Then (3.12.2)
obviously holds when n “ 0. Now assume n ą 0. To prove (3.12.2) by induction
on n, it suffices to show that after shrinking Y to a neighborhood of y and X to
φ´1pY q, there exists g P OpY q with gpyq “ 0 such that

(a) Npgq has pure dimension n ´ 1.

(b) dimxNpg ˝ φq “ dimxX ´ 1.

Then (3.12.2) holds at x for the restriction of φ to Npg ˝ φq Ñ Npgq (since it is
clearly open), and hence holds for φ : X Ñ Y .

By Rem. 3.10.5, we may shrink Y (and shrink X accordingly) so that there
exists g P OpY q with gpyq “ 0 such that g is active in OY,y. Then by Active lemma,
Dimension Formula (3.12.2) holds for g : Y Ñ C at y. Thus, by Prop. 3.12.4,
(3.12.2) holds for g at every point of Y . This proves (a). It also proves, together
with Thm. 3.13.1, that g : Y Ñ C is open. So g ˝φ : X Ñ C is open. Thus, by Prop.
3.13.5-A to be proved in the next subsection, g ˝ φ is active in OX,x. This proves
(b) by Active lemma.
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Corollary 3.13.4. Let φ : X Ñ S and ψ : Y Ñ S be open holomorphic maps of complex
spaces. Assume that S is locally pure dimensional. Then for each x P X, y P Y such that
s “ φpxq equals ψpyq,

dimxˆyX ˆS Y “ dimxX ` dimy Y ´ dims S. (3.13.1)

Proof. By Thm. 3.13.3, Dimension Formula (3.12.2) holds at x ˆ y for both φ ˆ ψ :
XˆY Ñ SˆS (which, together with Prop. 3.10.9, shows that as an analytic subset
of X ˆ Y the fiber Xs ˆ Ys “ pX ˆS Y qs has dimension dimxX ` dimy Y ´ 2 dims S
at xˆ y) and X ˆS Y Ñ S (which shows that dimxˆyX ˆS Y equals dimxˆypX ˆS

Y qs ` dims S).

3.13.2 Openness and active elements

Active lemma tells us that Dimension Formula (3.12.2) holds if Y “ C and
φ : X Ñ C (considered as a holomorphic function) satisfies that φ´ φpxq is active
at x. This suggests that active elements are related to openness. Let us give a
result indicating their relationship.

Proposition 3.13.5. Let f P OpXq. Consider the following conditions for x P X .

(1) The holomorphic map f : X Ñ C is open at x.

(2) f ´ fpxq is active in OX,x.

Then the following are true.

A If (1) holds for all x P X then (2) holds for all x P X .

B If (2) holds for a given x P X then (1) holds for the same point x.

Proof of A . Assume that f is open on X . Choose any x P X . Let us prove (2) for
x. Assume for simplicity that X is reduced and fpxq “ 0. If f is not active at x,
then by Prop. 3.4.1, Npfq contains a nonempty open subset U . Then f is not open
everywhere on U .

Proof of B . Assume that (2) is true for a given x P X . Then by Active lemma,
(3.12.2) holds for f : X Ñ C at x. Thus f is open at x by Thm. 3.13.1.

The proof of B shows that for any f P OpXq,

f ´ fpxq is active in OX,x

ó

Dimension Formula (3.12.2) holds for f : X Ñ C at x
ó

f : X Ñ C is open at x

(3.13.2)
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The following example shows that in Thm. 3.13.3, knowing that φ is open at
a point x is not sufficient to imply Dimension Formula (3.12.2) at x. It also shows
that in Prop. 3.13.5, knowing that (1) holds at x is not sufficient to imply (2) at x.

Example 3.13.6. Let X be reduced with local decomposition X “ X1 Y ¨ ¨ ¨ Y XN

at x where N ě 2. Let n “ dimxX ą 0. By Rem. 3.1.4, we may shrink X to a
neighborhood of x and find f P OpXq which belongs to IX2,x, . . . ,IXN ,x but not
to IX1,x. Then f |X1 is active in the integral domain OX1,x “ OX,x{IX1,x, and hence
fpX1q contains a neighborhood of 0 “ fpxq in C by Prop. 3.13.5-B. This shows that
f is open at x. However, by Cor. 3.1.6, f is not active in OX,x.

Now we assume that dimxX1 “ dimxX2 “ n. By Active lemma, dimxNpfq X

X1 “ n´ 1 and dimxNpfq XX2 “ n. Apply Prop. 3.10.8 to Npfq “
Ť

ipNpfq XXiq.
Then we see that dimxNpfq “ n. So Dimension Formula (3.12.2) does not hold
for f : X Ñ C at x.

Corollary 3.13.7 (Open mapping theorem). Assume that X is reduced, and choose
f P OpXq and x P X . If f is not a constant function on any neighborhood of x P X , then
f : X Ñ C is open at x.

Note that the condition that f is not constant on neighborhoods of x means
precisely that f ´ fpxq is not zero in OX,x.

Proof. We may assume X is small enough such that there is a local decomposition
X “ X1 Y ¨ ¨ ¨ YXN at x, corresponding to the prime decomposition t0u “ IX1,x X

¨ ¨ ¨ X IXN ,x. Since f ´ fpxq is not zero in OX,x, it does not belong to IXi,x for some
i. So f ´ fpxq is active in OXi,x “ OX,x{IXi,x. Therefore, for each neighborhood U
of x P X , Prop. 3.13.5 implies that fpXi XUq contains a neighborhood of fpxq P C.
So fpUq contains a neighborhood of fpxq. f is open at x.

3.14 Openness and torsion sheaves; irreducible and
pure dimensional

If φ : X Ñ Y is a finite holomorphic map and Y is reduced, in the case that
φ´1pyq “ txu, Lem. 3.12.5 says that the openness of φ at x is equivalent to that
Ann OY pφ˚OXq is zero at y. In the general case that φ´1pyq is not a single point,
this ideal sheaf does not tell us whether φ is open at every point of φ´1pyq. In
this section, we show that the torsion sheaf TOX pφ˚OXq is a good alternative to
Ann OY pφ˚OXq for the study of openness when Y is irreducible at y (cf. Prop.
3.14.8). As an application, we show that any complex space X irreducible at x is
pure dimensional on a neighborhood of x.

In Prop. 4.5.7, we will continue to discuss what Ann OY pφ˚OXq “ 0 and
TOX pφ˚OXq “ 0 mean geometrically.
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3.14.1 Coherence of torsion sheaves

Definition 3.14.1. Let A be a commutative ring and M an A-module. A torsion
element of M is an element ξ P M such that aξ “ 0 for a non zero-divisor a P A
of A. The set of torsion elements clearly form an A-submodule, and is denoted
by TApMq or simply T pMq and called the torsion module of M. We say that M
is torsion free if T pMq “ 0. In general, M{T pMq is always torsion free.

Definition 3.14.2. Let X be a complex space and E an OX-module. The torsion
sheaf of E , denoted by TOX pE q or simply T pE q, is the sheaf associating to each
open U Ă X :

TOX pE qpUq “ ts P E pUq : the stalk sx P TOX,xpExq, @x P Uu

We have a canonical equivalence

TOX pE qx » TOX,xpExq. (3.14.1)

Note that to show (3.14.1) one needs the fact that any s P T pE q torsion in Ex is
torsion in Ep for all p in a neighborhood of x. This follows from Prop. 2.3.13.

There is a geometric description of torsion elements:

Proposition 3.14.3. Let X be a reduced complex space, E a coherent OX-module, and
s P E pXq. Then s belongs to T pE qpXq if and only if Supppsq :“ SupppsOXq is nowhere
dense in X .

Applying this proposition to sufficiently small neighborhoods of x, we see
that the stalk sx belongs to T pExq iff Supppsq X U is nowhere dense in U for a
neighborhood U of x. When X is irreducible at x, then by Cor. 3.4.3, sx P T pExq iff
Supppsq contains no neighborhoods of x P X .

Proof. Assume that s P T pE qpXq. Then each x P X is contained in a neighborhood
U such that there is f P OpUq such that fs “ 0 and that f is a non zero-divisor of
OX,x. Then Supppsq X U Ă Npfq, and by Prop. 3.4.1, Npfq is nowhere dense after
shrinking U to a smaller neighborhood of x. This proves that Supppsq is nowhere
dense.

Conversely, suppose that SupppsOXq is nowhere dense. Recall that Supppsq
is the zero set of Ann psOXq. Thus, by Prop. 3.4.5, there is a non zero-divisor
f P OX,x such that f P Ann psOXqx “ AnnpsOX,xq. So fs “ 0. Therefore s belongs
to T pExq for every x.

In the following discussion of torsion sheaves, we are mainly interested in
integral domains and locally irreducible spaces.

Proposition 3.14.4. Let M be a finitely generated module of an integral domain A. Then
TApMq is the kernel of the canonical morphism M Ñ M__, where M__ is the double
dual of M.
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Proof. Choose any ξ P M. Then ξ belongs to the kernel of Φ : M Ñ M__ iff
ψpξq “ 0 for all ψ P M_ “ HomApM,Aq. If ξ P T pMq then aξ “ 0 for a nonzero
a P A. So aψpξq “ ψpaξq “ 0, and hence ψpξq “ 0 because a is a non zero-divisor.

Conversely, choose any ξ P MzT pMq. We need to show that there exists ψ P

M_ such that ψpξq ‰ 0. Let pAˆq´1M be the localization of M by Aˆ “ ta P A :
a ‰ 0u, which is a vector space over the factional field Q “ pAˆq´1A. (So elements
of pAˆq´1M are of the form ξ{a, η{b, . . . where ξ, η P M and a, b P Aˆ. ξ{a “ η{b
iff caξ “ cbη for some c P Aˆ. See [AM, Chapter 3] for details). So ξ{1 is not zero
in pAˆq´1M. We can thus choose a Q-linear functional λ : pAˆq´1M Ñ Q such
that λpξ{1q ‰ 0.

Since M is A-generated by finitely many elements η1, η2, . . . , we may find a ‰

0 in A such that aλpηiq P A for each i. Then

ψ : M Ñ pAˆ
q

´1M aλ
ÝÑ A

is an A-module morphism non-zero at ξ.

From this proposition it follows immediately that:

Corollary 3.14.5. Let X be a locally irreducible complex space and E a coherent OX-
module. Then TOX pE q is the kernel of the canonical morphism E Ñ E __. Consequently,
TOX pE q is OX-coherent.

Remark 3.14.6. In Cor. 3.14.5, note that the support of T pE q (as a set) is an ana-
lytic subset of X (Rem. 2.3.5). It is clearly inside the non locally-free locus of E .
Therefore, by Thm. 3.8.3, the support of T pE q is nowhere dense in X .

3.14.2 Openness and torsion sheaves

Lemma 3.14.7. Let φ : X Ñ Y be a finite holomorphic map. Let f P OpXq, and consider
fOY as an OY -submodule of φ˚OX . Then

SuppOY
pfOY q “ φ

`

SuppOX
pfOXq

˘

(3.14.2)

at the level of analytic subsets (i.e. both sides have the same reduction).

Proof. By Prop. 2.4.5, for each y P Y , we have an isomorphism φ˚OX »
À

xPφ´1pyq
OX,x, which identifies fy as an element of pφ˚OXqy with ‘xPφ´1pyqfx as

an element
À

xPφ´1pxq
OX,x. It is clear that fy ‰ 0 iff fx ‰ 0 for some x P φ´1pyq.

This means that y belongs to the LHS iff y belongs to the RHS of (3.14.2).

Proposition 3.14.8. Let φ : X Ñ Y be a finite holomorphic map of complex spaces where
Y is reduced. Let y P Y . Consider the following statements:

(1) pφ˚OXqy is a torsion free OY,y-module.
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(2) φ is open at every x P Xy “ φ´1pyq.

Then the following are true.

A If Y is irreducible at y P Y then (1)ñ(2).

B If X is irreducible at every x P Xy then (2)ñ(1).

Recall that φ˚OX is OY -coherent by Thm. 2.7.1. Also, note that pφ˚OXqy “
À

xPXy
OX,x by Prop. 2.4.5. Thus pφ˚OXqy is OY,y-torsion-free iff OX,x is OY,y-

torsion-free for every x P Xy.

Proof of A . Assume that Y is irreducible at y P Y and (2) is not true. Then φ is not
open at some x P Xy. By Thm. 2.7.2 there is a neighborhood U of x and V of φpUq

so that φ restricts to a finite holomorphic map φ : U Ñ W such that x is the only
point of Uy “ U X φ´1pyq. By Lemma 3.12.5, the germ of analytic space pφpUq, yq

does not equal pW, yq. Since pW, yq is irreducible, by Cor. 3.4.3, we may shrink
U,W so that φpUq “ Supppφ˚OUq is nowhere dense in W . Hence every section of
φ˚OU is a torsion element by Prop. 3.14.3. So pφ˚OXqy is not torsion free.

Proof of B . Assume that X is irreducible at every x P Xy and (2) is true. We
shall show that OX,x is OY,y-torsion free. By Thm. 2.7.2, we may shrink X, Y so
that φ´1pyq “ txu. Choose any nonzero f P OX,x. By further shrinking X, Y ,
we assume that f P OpXq, and that SuppOX

pfOXq “ X by Prop. 3.3.4 and the
fact that X is irreducible at x. By assumption (2) and Lem. 3.12.5, pφpXq, yq “

pY, yq. So we can shrink Y further so that φpXq “ Y . So by Lem. 3.14.7, we have
SuppOY

pfOY q “ Y . By Prop. 3.14.3, f is not a torsion element of pφ˚OXqy.

Example 3.14.9. Every Weierstrass map π : X Ñ S is open. One can check that
this follows from Rem. 1.5.2. But it also follows from Prop. 3.14.8, as explained
below.

Proof. By Thm. 2.5.4, π˚OX is OS-free. So by Prop. 3.14.8, π is open if S is smooth.
In the general case, we may assume that S is small enough such that it is a closed
subspace of an open subset Ω of Cn. Then by Prop. 2.5.3, we have a Cartesian
square

X Y

S Ω

π ϖ (3.14.3)

(so ϖ´1pSq “ X , cf. Prop. 1.12.1) where ϖ is a Weierstrass map. So ϖ is open.
Choose any open U Ă X . Then U “ X X V for an open V Ă Y . ϖpV q is open in
Ω. So ϖpV q X S “ ϖpV X ϖ´1pSqq “ ϖpUq “ πpUq is open in S. This proves that
π is open.
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3.14.3 Irreducible and pure dimensional

Theorem 3.14.10. LetX be a complex space irreducible at x. ThenX is pure dimensional
at x.

Recall Def. 3.9.1 for the definition of pure dimensionality at a point.

Proof. By Thm. 3.2.1, we may shrink X so that X is reduced. Let n “ dimxX .
Then after shrinking X further, we may find a finite holomorphic map φ : X Ñ V
such that V is open in Cn, φpxq “ 0, and x is the only point of φ´1p0q (due to
Thm. 2.7.2). By Thm. 3.12.6, φ is open at x. So by Prop. 3.14.8, pφ˚OXq0 is OV,0-
torsion-free. By Cor. 3.14.5, T pφ˚OXq is OV -coherent. Thus, after shrinking V
to a neighborhood of 0 and replacing X by φ´1pV q, φ˚OX is OV -torsion-free. By
Prop. 3.14.8, φ is open at every point of X . Therefore, by Thm. 3.12.6, X has pure
dimension n.

Corollary 3.14.11. Let X be a complex space and x P X . Let n P N. Then the following
are equivalent.

(1) In the prime decomposition
a

0X,x “ p1 X ¨ ¨ ¨ X pN of
a

0X,x Ă OX,x we have

dimOX,x{pi “ n

for all 1 ď i ď N .

(2) X has pure dimension n at x.

Proof. This is clear from Thm. 3.14.10, Prop. 3.10.8, and (3.3.4) (for the direction
(2)ñ(1)).

Example 3.14.12. Let φ : X Ñ Y be a finite holomorphic map of complex spaces.
Assume that Y is locally irreducible. Let x P X and y “ φpxq. If X is pure
dimensional at x and φ is open at x, then φ is open on a neighborhood of X .

Proof. By Thm. 3.14.10, Y is locally pure dimensional. By Thm. 2.7.2, we may
shrink X and Y to neighborhoods of x and y respectively such that X has pure
dimensionm and Y has pure dimension n, and that φ is still finite. By Thm. 3.12.6,
Dimension Formula (3.12.2) holds for φ at x. Thus m “ n. By Prop. 3.12.4, we
may shrink X and Y further so that φ is finite and (3.12.2) holds at every point of
X . So φ is open by Thm. 3.12.6.

3.15 More on smoothness, dimensions, and codimen-
sions

As an application of Thm. 3.14.10, we use global dimensions of complex man-
ifolds (i.e. the largest dimensions of connected components, recall Def. 3.9.1) to
describe dimensions of points of complex spaces:
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Theorem 3.15.1. Let X be a reduced complex space and x P X . Then there is a neigh-
borhood U of x such that for every neighborhood V Ă U of x,

dimxX “ dimV zSgpXq (3.15.1)

Consequently, we have dimX “ dimXzSgpXq.

Proof. Let n “ dimxX . By Cor. 3.9.4, we can shrink X to a neighborhood of x
so that for any neighborhood V , we have n ě dimV zSgpXq. Shrink X further
so that X has local decomposition X “ X1 Y ¨ ¨ ¨ Y XN at x. By Prop. 3.10.8,
we have dimxXi “ n for some i. By Thm. 3.14.10, we can shrink X further so
that Xi has pure dimension n. By (3.3.4), for each neighborhood V of x P X ,
W “ V X pXiz

Ť

j‰iXjq is non-empty. Since SgpW q is nowhere dense in W (by
Thm. 3.6.7), W zSgpW q is a non-empty open complex submanifold of V zSgpXq

with pure dimension n. This proves n ď dimV zSgpXq.

Corollary 3.15.2. Let X be a reduced complex space and x P X . Then the following are
equivalent.

(1) X is smooth at x.

(2) There is a neighborhood U of x such that the embedding dimension function

emb : X Ñ N p ÞÑ embpX

is constant on U .

Proof. Clearly (1)ñ(2). Assume that (1) is not true. We disprove (2) by proving
that emb is not constant on any neighborhood U of x. Let n “ dimxX . Then
by Thm. 3.15.1, there is a smooth point p P U such that dimpX “ n and hence
embpX “ n. Since x is not a smooth point, we have embxX ą dimxX “ n by Thm.
3.10.10.

Remark 3.15.3. Let X “ SpecanpOU{Iq be a closed subspace of an open U Ă

Cm, where I is generated by f 1, . . . , fn P OpUq. Let pz1, . . . , zmq be the standard
coordinates of Cm. Then by Cor. 3.15.2 and Jacobi criterion (Cor. 3.6.4), a point
x P X is a smooth point of X if and only if the rank of Bz‚

pf ‚q P Cnˆm bC OpUq is
constant on a neighborhood of x. In that case, the constant rank equalsm´dimxX .

Remark 3.15.4. It is clear that Rem. 3.15.3 gives a retrospective explanation of
Lem. 3.5.2-(1). I didn’t call it a “proof”, because the argument in Rem. 3.15.3
relies on Thm. 3.15.1, whose proof in turn relies on the fact that for every reduced
complex space X , the singular locus SgpXq is nowhere dense in X . This fact was
proved in Thm. 3.6.7, and the latter was originally proved using Lem. 3.5.2.

But actually, the nowhere dense property of SgpXq follows easily from Lem.
3.2.12: Note that SgpXq is closed inX since the set of smooth points is clearly open
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in X . Now, it suffices to show that for each x P X , after shrinking X to a neigh-
borhood of x, SgpXq is nowhere dense. In the special case that X is irreducible at
x, this follows immediately from Lem. 3.2.12 and Prop. 3.4.1. The general case
follows from the special case and (3.6.8) (whose proof does not rely on Lem. 3.5.2).

To summarize, Rem. 3.15.3 gives an actual proof of Lem. 3.5.2-(1). Crucial
ingredients of this proof are Thm. 3.15.1 (which is a consequence of Thm. 3.14.10)
and Lem. 3.2.12. The main point I am trying to make is that Lem. 3.2.12 can
be proved without using the analysis in Subsec. 3.5.2: see Subsec. 4.5.4. Thus,
the same can be said about Lem. 3.5.2-(1), especially about the relation SgpXq Ă

XXZr´1. As a consequence, all the properties about SgpXq proved in Sec. 3.6 and
afterwards can be proved using the theory of branched coverings as in Subsec.
4.5.4, instead of using the argument in Subsec. 3.5.2.

We give a criterion for smoothness in terms of codimensions. The following
theorem will be used in the proof that the singular locus of a normal complex
space is thin of order 2; see Thm. 4.9.4. The readers may assume for simplicity
that the following X is (also) irreducible at x, since this is the main case we are
interested in.

Theorem 3.15.5. Let X be a complex space such that redpXq has local decomposition
redpXq “ X1 Y ¨ ¨ ¨ Y XN at x P X . Let Y be an analytic subset of X containing x such
that Y irreducible at x. Define the codimension of pY, xq in pX, xq to be

codimxpY,Xq “ sup
1ďiďN

pXi,xqĄpY,xq

dimxXi ´ dimx Y (3.15.2)

Then the following are equivalent.

(1) pY, xq Ć pSgpXq, xq. Namely, every neighborhood of x in Y contains a smooth
point of X .

(2) After shrinking X to a neighborhood of x, there is a nowhere dense analytic sub-
set A Ă Y such that for each p P Y zA, the ideal IY,p of OX,p is generated by
codimxpY,Xq elements.

If either (1) or (2) is true, we say that X is smooth at the germ pY, xq.

Proof. Define analytic subsets of X

B “
ď

pXi,xqĄpY,xq

Xi C “
ď

pXj ,xqČpY,xq

Xj (3.15.3)

Let n “ dimxB and m “ dimx Y . Then by Prop. 3.10.8 and (3.15.2), we have
codimxpY,Xq “ n ´ m.
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By Cor. 3.9.4, we can shrink X to a neighborhood of x so that dimB ď n. Since
XzC “ BzC, we have

dimXzC ď n (3.15.4)

Choose i such that pXi, xq Ą pY, xq and dimxXi “ n. So we can shrink X further
so that Y Ă Xi and that (by Cor. 3.4.3) Y X C is nowhere dense in Y . By Thm.
3.14.10, we can shrink X further so that Xi and Y have pure dimensions n and m
respectively. Therefore, since

Y zC Ă XizC Ă XzC,

for each p P Y zC we have n “ dimpXi “ dimpXizC ď dimpXzC ď n. Hence

dimpX “ n dimp Y “ m p@p P Y zCq (3.15.5)

We shall use (3.15.5) and the nowhere-density of Y X C in Y to prove (1)ô(2).
(1)ñ(2): Define analytic subset

A “ pY X SgpXqq Y pY X Cq Y SgpY q

of Y . Then by (1) and Cor. 3.4.3 and Thm. 3.6.7, after shrinking X , A is nowhere
dense in Y . Since each p P Y zA is a smooth point of both X and Y , (2) follows
immediately from (3.15.5) and Rem. 1.7.9.

(2)ñ(1): We shrink X to a neighborhood of x so that the statement of (2) is
true. Suppose that (1) is not true. Then we can shrink X further so that Y Ă

SgpXq. Note that (2) is still true. Let A be the nowhere dense analytic subset of Y
described in (2). Since SgpY q is nowhere dense in Y (by Thm. 3.6.7), Y zpSgpY q Y

A Y Cq is not empty. Choose p P Y zpSgpY q Y A Y Cq. By (2), IY,p is generated by
n ´ m elements f1, . . . , fn´m P OX,p. By Prop. 3.6.3, we have

embpY ` n ´ m ě embpX

By (3.15.5) and Thm. 3.10.10, we have embpY “ m and embpX ą n (since p P

SgpXq). This is impossible.

Remark 3.15.6. Let X, Y, x be as in Thm. 3.15.5. Let C be as in (3.15.3). As in
the proof of Thm. 3.15.5, we shrink X to a neighborhood of x so that (3.15.4) and
(3.15.5) hold, and that Y X C is nowhere dense in Y .

For each p P Y zC, by inequality (3.12.1) (applied to a suitable map V Ñ Cl

where V is a neighborhood of p in XzC), the smallest number l of generators of
IY,p is no less than dimpX ´ dimp Y “ n ´ m. We conclude that for all p P Y zC,

codimxpY,Xq ď the smallest number of OX,p-generators of IY,p (3.15.6)
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Thus, one may view Thm. 3.15.5 as a generalization of Thm. 3.10.10. In-
deed, when Y “ txu, Thm. 3.15.5 becomes exactly Thm. 3.10.10, because
embxX “ dimCmX,x{m2

X,x is the smallest number of generators of the ideal mX,x

by Nakayama’s lemma.
We remark that in the viewpoint of algebraic geometry, the prime ideal IY,x is

a point of the scheme SpecpOX,xq, and codimxpY,Xq is the Krull dimension of the
localization of OX,x at IY,x.
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Chapter 4

Normalization, branched coverings,
and global decomposition

4.1 Sheaves of meromorphic functions MX

We fix a reduced complex space X . So non zero-divisors and active elements
are synonymous.

Definition 4.1.1. The sheaf of (germs of) densely defined holomorphic functions
of X is the sheaf WX associated to presheaf Wpre

X such that for each open U Ă X ,

Wpre
X pUq “ lim

ÝÑ
nowhere dense

analytic subsets AĂU

OpUzAq

where the direct limit is defined by the obviously injective inclusion maps
OpUzAq Ñ OpUzBq if A,B Ă U are nowhere dense analytic subsets and A Ă B.

WX clearly contains OX and, more generally, contains OXzA as subsheaves
where A is any nowhere dense analytic subset of X . Moreover, we have an obvi-
ous identification

WXpXq “ WXpXzAq (4.1.1)

Remark 4.1.2. WX is a torsion-free OX-module.

Proof. Choose x P X , f P WX,x, and a non zero-divisor v P OX,x such that vf “ 0.
By shrinking X to a neighborhood of x, we may assume that v P OpXq, that
f P OpXzAq where A Ă X is a nowhere dense analytic subset, and that (by Prop.
3.4.1) Npvq is nowhere dense in X . So f must be zero outside AYNpvq. Thus f is
zero in OpXzAq.
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4.1.1 The sheaf of meromorphic functions MX

Definition 4.1.3. The sheaf of (germs of) meromorphic functions on X is the
subsheaf MX of WX defined by

MXpUq “ tf P WXpUq : @x P U there is an active v P OX,x

such that vfx P OX,xu

where U Ă X is open and fx denotes the stalk of f at x.

If A a commutative ring, we let

NzdpAq “ tNon zero-divisors of Au. (4.1.2)

Recall that if M is an A-module, then the localization of M by NzdpAq , which is
denoted by NzdpAq´1M, is the set of elements of the form s{u where s P M and
u P NzdpAq, and s{u “ s1{u1 iff u1s´us1 is annihilated by an element of NzdpAq. In
the case that M is torsion free (e.g. A “ M “ OX,x), s{u “ s1{u1 iff u1s “ us1.

Remark 4.1.4. Note that for any active v P OX,x one can find a neighborhood
V Ă X of x so that v P OpV q and Npvq is nowhere dense in V (Prop. 3.4.1). From
this, it is clear that each f{v where v P NzdpOX,xq and f P OX,x can be extended to
an element of MXpUq. Therefore, we have a canonical equivalence

MX,x » NzdpOX,xq
´1OX,x (4.1.3)

In particular, if X is irreducible at x, then MX,x is the field of fractions of OX,x.

Proposition 4.1.5. Every finite-type OX-submodule of MX is OX-coherent.

Proof. Let E be a finite-type OX-submodule of MX . It suffices to show that
the sheaves of relations of E are finite-type. Choose any open U Ă X and
s1, . . . , sn P E pUq. Let us show that for each x P U , after shrinking U to a
smaller neighborhood of x, Rel ps1, . . . , snq is OU -coherent. It is clear that we
can shrink U and find v P OpUq which is a non zero-divisor of OX,x such that
vs1, . . . , vsn P OpUq. By Prop. 3.4.1, we may shrink U further so that Npvq is
nowhere dense in U . Then it is clear that Rel ps1, . . . , snq equals Rel pvs1, . . . , vsnq,
which is locally finitely generated because OX is coherent.

Example 4.1.6. Let X be a reduced complex space with local decomposition X “

X1Y¨ ¨ ¨YXN at x such that Thm. 3.3.5 holds. Then we can define the characteristic
function

χXk P O
´

X
I

ď

1ďiăjďN

Xi X Xj

¯

Ă WXpXq

χXkppq “

"

1 if p P Xk

H
Ť

1ďiďN Xi

0 otherwise

(4.1.4)

Then the stalk of χXk at x belongs to MX,x.
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Proof. When N “ 1, χXk “ 1 in OXpXq. So let us assume N ą 1. We assume k “ 1
for simplicity. Apply Rem. 3.1.4 to the prime decomposition 0 “ IX1,x X ¨ ¨ ¨ X

IXN ,x of 0 Ă OX,x. Then we can find

f P
č

ią1

IXi

I

IX1,x g P IX1,x

I

ď

ią1

IXi,x

Then f ` g R IXj for all 1 ď j ď N . Therefore f ` g P NzdpOX,xq by Cor. 3.1.6.
We can thus shrink X to a neighborhood of x to get f, g P OpXq satisfying that f
vanishes on X2 Y ¨ ¨ ¨ Y XN and that g vanishes on X1. Then pf ` gqχX1 and f are
equal on X

I

Ť

1ďiăjďN Xi X Xj , and hence are equal as elements of WXpXq. This
proves χXk,x P MX,x.

4.2 Sheaves of weakly holomorphic functions pOX

We fix a reduced complex space X .

Definition 4.2.1. We say that f P WXpXq is locally bounded at x if there is a
neighborhood U Ă X of x and a nowhere dense analytic subset A Ă U such that
f |UzA P OpUzAq, and that

sup
pPUzA

|fppq| ă `8.

We say that f P WXpXq is a weakly holomorphic function if f is locally bounded
at every point of X . The OX-module pOX defined by

pOXpUq “ tf P WXpUq : f is locally bounded at every x P Uu

(for any open U Ă X) is called the sheaf of (germs of) weakly holomorphic
functions.

Let us consider the question of whether a holomorphic map of reduced com-
plex spaces induces a morphism of W-sheaves or M -sheaves or pO-sheaves.

Proposition 4.2.2. Let φ : X Ñ Y be a holomorphic map of reduced complex spaces.
Assume that for any open subset V Ă Y and nowhere dense analytic subset B Ă V ,
the analytic subset A “ φ´1pBq is nowhere dense in U “ φ´1pV q. Then the map φ# :
OY pV zBq Ñ OXpUzAq induces a morphism of OY -algebras

φ# : WY Ñ φ˚WX (4.2.1a)

which restricts to morphisms of OY -algebras

φ# : MY Ñ φ˚MX (4.2.1b)

φ# : pOY Ñ φ˚
pOX (4.2.1c)
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Proof. φ# : OY pV zBq Ñ OXpUzAq, when passing to the direct limit over all
nowhere dense analytic B Ă V , gives Wpre

Y pV q Ñ Wpre
X pUq, hence Wpre

Y pV q Ñ

WXpUq “ φ˚WXpV q, hence Wpre
Y Ñ φ˚WX , and hence (4.2.1a). It clearly restricts

to (4.2.1c).
If g P MY pV q, then by shrinking V to a neighborhood of y “ φpxq for any

x P U , we can find v P OY pV q such that Npvq is nowhere dense in V , and that
vf P OY pV q. Then φ#pvqφ#pfq P OXpUq, and Npφ#pvqq “ φ´1pNpvqq is nowhere
dense in U “ φ´1pV q. By Prop. 3.4.1, the stalk φ#pvqp at every p P U is a non
zero-divisor of OX,p. Therefore φ#pfq P MXpUq. This gives (4.2.1b).

Exercise 4.2.3. Under the assumption of Prop. 4.2.2, suppose moreover that φ is
surjective. Show that φ# : WY Ñ φ˚WX is injective.

Theorem 4.2.4. Assume X “ X1 Y ¨ ¨ ¨ Y XN where X1, . . . , XN are analytic subsets
of X , and assume for each 1 ď i ‰ j ď N that Xi X Xj is nowhere dense in Xi. Then
the closed embedding ιi : Xi ãÑ X satisfies the assumption in Prop. 4.2.2. Moreover, we
have isomorphisms of OX-algebras

à

i

ι#i : WX
»

ÝÝÑ
à

1ďiďN

WXi (4.2.2a)

à

i

ι#i : MX
»

ÝÝÑ
à

1ďiďN

MXi (4.2.2b)

à

i

ι#i : pOX
»

ÝÝÑ
à

1ďiďN

pOXi (4.2.2c)

Proof-Step 1. Let us show that ιi satisfies the assumption in Prop. 4.2.2. Let U Ă X
be open and A be a nowhere dense analytic subset of U . Then we need to show
that A X Xi is nowhere dense in U X Xi. Set Y “ U and Yi “ U X Xi, which is
an analytic subset of Y . Then A is a nowhere dense analytic subset of Y , and we
need to show that A X Yi is nowhere dense in Yi. We assume for simplicity that
i “ 1.

Consider the open subset Y ˝
1 “ Y1zpY2 Y ¨ ¨ ¨ Y YNq “ Y zpY2 Y ¨ ¨ ¨ Y YNq of Y .

ThenAXY ˝
1 contains no open subsets of Y ˝

1 . If Ω is an open subset of Y1 contained
inside AX Y1, then ΩX Y ˝

1 is an open subset of Y ˝
1 contained inside AX Y ˝

1 , which
is empty. Thus Ω Ă Y 1

1 where Y 1
1 “ Y1zY ˝

1 . But Y 1
1 “

Ť

ją1 Y1 XYj is nowhere dense
in Y1 since

Ť

ją1X1 X Xj is nowhere dense in X1. So Ω is empty. Thus A X Y1 is
nowhere dense in Y1.

Proof-Step 2. That (4.2.2a) and (4.2.2c) are isomorphisms is not hard to check and
is left to the readers. Since (4.2.2b) is the restriction of (4.2.2a), (4.2.2b) is injective.
Let us show that the stalk map of (4.2.2b) at any x P X is surjective. By discarding
those Xi not containing x, we assume x P

ŞN
i“1Xi. Also, if (4.2.2b) is surjective

(and hence isomorphic) in the special case that each Xi is irreducible at x, then it
is isomorphic in the general case due to Prop. 3.3.6 and the special case. So we
may well assume that each Xi is irreducible at x.
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It suffices to show that each MXi,x (which is inside WXi,x Ă
À

j WXj ,x » WX,x)
belongs to MX,x. Set i “ 1 for simplicity. Then we need to show that the zero-
extension of each f1 P MX1,x from the germ pX1, xq to pX, xq, still denoted by f1
but now belonging to WX,x, is inside MX,x.

Choose v1 P NzdpOX1,xq such that g1 :“ v1f1 P OX1,x. Since OX1,x “ OX,x{IX1,x,
we can lift (i.e. extend) v1 and g1 to elements

rv1, rg1 P OX,x.

We add r since rv1 and rg1 are not necessarily the zero-extensions of v1 and g1. By
contrast, rv1f1 (as an element of WX,x) is the zero-extension of g1.

We write the characteristic function χXi (cf. Exp. 4.1.6) as χi, which is in MX,x.
Then χ1rv1f1 “ χ1rg1 in WX,x. Also, it is clear that χjf1 “ 0 in WX,x if j ą 1. Let

u “ χ1rv1 ` χ2 ` ¨ ¨ ¨ ` χN P MX,x

Then uf1 “ χ1rg1 holds in WX,x. Since rg1 P OX,x and χ1 P MX,x, we conclude
uf1 P MX,x.

To show that f1 P MX,x, it now remains to show that u is a unit of MX,x,
namely, u is the quotient of two elements of NzdpOX,xq. Shrink X to a neighbor-
hood of x so that rv1 P OXpXq and χ1, . . . , χN P MXpXq. Then u P MXpXq. u
equals v1 P OX1pX1q on X1zX

1
1 where X 1

1 “ X2 Y ¨ ¨ ¨ YXN , and equals 1 on X 1
1zX1.

Since v1 is a non zero-divisor of OX1,x, by Prop. 3.4.1, we can shrink X further so
that Npv1q is nowhere dense in X1. Choose w P NzdpOX,xq such that wu P OX,x,
and shrink X so that w P OpXq and that Npwq is nowhere dense in X (again by
Prop. 3.4.1). Then

Npwuq Ă pNpv1q X pX1zX
1
1qq Y pX1 X X 1

1q Y Npwq

is nowhere dense in X , which implies that wu is a non zero-divisor of OX,x.

A main goal of this chapter is to show that pOX is a coherent OX-module, that
pOX Ă MX , and that pOX,x is the integral closure of OX,x in WX,x (and hence in MX,x).

We first recall some facts about integral elements.
Recall that if A is a commutative ring and B is a commutative A-ring, i.e. a

commutative ring with a homomorphism A Ñ B, an element x P B is called
integral over A if

xn ` an´1x
n´1

` ¨ ¨ ¨ ` a1x ` a0 “ 0 (4.2.3)

for some n P Z` and a0, . . . , an´1 P A. We collect some facts about integral ele-
ments.

Proposition 4.2.5. Assume that A is Noetherian.

137



1. x P B is integral over A if and only if x is contained in an A-subalgebra C Ă B
which is a finitely-generated A-module.

2. Let A Ă B be an A-subalgebra of B. Assume that A is a finitely-generated A-
module. Then an element x P B is integral over A if and only if x is integral over
A.

3. If x1, . . . , xn P B are integral over A, then Arx1, . . . , xns (the A-subalgebra of B
generated by x1, . . . , xn) is a finitely generated A-module.

Note that an A-subalgebra of B is a subset of B closed under multiplications
and A-linear combinations.

Proof. 1. Let X be the A-subalgebra generated by x, namely X “ Arxs. Then x
being integral means precisely that X is a finitely-generated A-module. Then part
1 is obvious, because A is Noetherian.

2. The “only if” part is obvious. Suppose that x is integral over A. Then Arxs

is a finitely-generated A-module. Since A is A-finitely generated, Arxs is clearly
A-finitely generated. Thus x is integral over A due to part 1.

3. Induction on n. The case n “ 1 is clear. Assume case n ´ 1 is true. Let
x1, . . . , xn P B be integral over A. Then X “ Arx1, . . . , xn´1s is A-finitely gener-
ated, and (since xn is clearly integral over X ) Arx1, . . . , xns “ X rxns is X -finitely
generated. Therefore X rxns is A-finitely-generated.

Definition 4.2.6. Assume that A is Noetherian. The set of all elements of B
which are integral over A is called the integral closure of A in B, which is an
A-subalgebra of B by Prop. 4.2.5. If A is the integral closure of A, we say A is
integrally closed in B. If A is integrally closed in NzdpAq´1A, we say that A is a
normal ring.

Remark 4.2.7. Assume A is Noetherian, and let pA be the integral closure of A in
B. Then pA is integrally closed in B.

Proof. Let x P B be integral over pA. Then we can find n P N and c0, . . . , cn´1 P pA
such that xn ` cn´1x

n´1 ` ¨ ¨ ¨ ` c1x ` c0 “ 0. Let C “ Arc0, c1, . . . , cn´1s, which is
a finitely-generated A-module by Prop. 4.2.5. Clearly Crxs is C-finitely-generated,
and hence A-finitely-generated. So x is integral over A.

Example 4.2.8. Let A be a Noetherian integral domain with field of fractions K “

NzdpAq´1A, and let pA be the integral closure of A in K. Let ppzq “ zn `an´1z
n´1 `

¨ ¨ ¨ ` a1z ` a0 P Arzs. Suppose that ppzq “ p1pzq ¨ ¨ ¨ pNpzq where each pipzq P Krzs

is monic. (For instance, since Krzs is a UFD (unique factorization domain), we
may take the irreducible decomposition of ppzq in Krzs.) Then pipzq P pArzs. In
particular, if A is normal, then pipzq P Arzs.
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Proof. Let K be a field extension of K in which ppzq splits as ppzq “ pz´ b1q ¨ ¨ ¨ pz´

bnq where each bi P K. Since ppbiq “ 0, each bi is integral over A. The coefficients
of pipzq are contained in the A-subalgebra of K generated by b1, . . . , bn, and hence
are integral over A due to Prop. 4.2.5. So these coefficients are in pA.

From this example, we see immediately that

Corollary 4.2.9. Assume that A is a Noetherian and normal integral domain, and let K
be its field of fractions. Then a monic polynomial ppzq P Arzs is irreducible in Arzs if and
only if it is irreducible in Krzs.

We have promised to prove that pOX,x is the integral closure of OX,x in WX,x.
Now we prove a half of this result.

Lemma 4.2.10. Let x P X . Then the integral closure of OX,x in WX,x is contained inside
pOX,x.

Proof. Let f P WX,x be integral over OX,x. Then by shrinkingX to a neighborhood
of x, we may find a nowhere dense analytic A Ă X and a0, a1, . . . , an´1 P OpXq

such that f P OpXzAq and that on XzA we have

fn “ a0 ` a1f ` ¨ ¨ ¨ ` an´1f
n´1.

By further shrinking X , we find M ą 0 such that for all 0 ď i ď n ´ 1 we have
suppPX aippq ď M . Therefore, if p P XzA is such that |fppq| “ R ą 1, then

Rn
ď Mp1 ` R ` ¨ ¨ ¨ ` Rn´1

q ď nMRn´1,

and hence R ď nM . This shows |fppq| ď maxt1, nMu for all p P XzA, and hence
f P pOXpXq.

4.3 Riemann extension theorems; OCn,0 is normal

Let X be a reduced complex space. Recall that the singular locus SgpXq is a
nowhere dense analytic subset of X by Thm. 3.6.7.

Theorem 4.3.1 (First Riemann extension theorem). If X is smooth, then

pOX “ OX

It follows that for a general reduced complex space, we have for every open
U Ă X that pOXpUq Ă OXpUzSgpXqq. And hence

pOX Ă OXzSgpXq (4.3.1)
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Proof. We need to prove that for any (small enough) pure n-dimensional complex
manifold X and any nowhere dense analytic subset A, if f P OpXzAq is locally
bounded at every point of A, then f can be extended (necessarily uniquely) to an
element of OpXq. We prove this by induction on dimA. The case dimA “ ´8 (i.e.
A “ H) is obvious. Assume the case dimA ď m ´ 1 is true. Consider the case
dimA “ m. Note that m ă n by Ritt’s lemma 3.10.7. It suffices to prove that any
locally bounded f P OpXzAq can be extended to an element of OpXzSgpAqq. Then
since dimSgpAq ď m´1 (due to Thm. 3.6.7 and Ritt’s lemma 3.10.7), we can apply
the assumption on case ď m ´ 1 to conclude f P OpXq.

Thus, by replacing X by XzSgpAq, it suffices to assume that A is an m-
dimensional smooth complex subspace of X . Since what we want to prove is
local by nature, in view of Rem. 1.7.9, we may choose any x P X and shrink X to
a neighborhood of x so that X is an open subset of Cn with coordinates pz‚, ζq “

pz1, . . . , zn´1, ζq, that x “ 0, and that A “ tpz‚, ζq P X : zm`1 “ ¨ ¨ ¨ “ zn´1 “ ζ “ 0u.
We assume moreover that X is of the form U ˆ D2r where U is a neighborhood of
0 P Cn´1 and D2r “ tζ P C : |ζ| ă 2ru.

Define

rfpz‚, ζq “

¿

|w|“r

fpz‚, wq

w ´ ζ

dw

2iπ

which is a holomorphic function on U ˆ Dr. The proof is finished if we can show
that rf equals f on U ˆ Dˆ

r . Namely, we shall show that for each fixed z‚ P U ,
rgpζq “ rfpz‚, ζq and gpζq “ fpz‚, ζq are the same holomorphic function on Dˆ

r . This
is clear, because g is locally bounded at 0 P C, and is hence a holomorphic function
on Dr. So rg “ g by Cauchy’s integral formula.

Corollary 4.3.2. OCn,0 is a normal ring.

Proof. By Lemma 4.2.10, the integral closure of OCn,0 in NzdpOCn,0q
´1OCn,0 is be-

tween OCn,0 and pOCn,0, which are equal by Thm. 4.3.1.

Definition 4.3.3. A closed subset A Ă X is called thin if each x P X (equivalently,
each x P A) has a neighborhood Ux such that A X Ux is contained in a nowhere
dense analytic subset rAx of U , whose dimension at x is necessarily less than that
of Ux by Ritt’s lemma 3.10.7. We say that A is thin of order k if for each x we can
find rAx such that dimx Ux ´ dimx

rAx ě k.

Corollary 4.3.4. Assume that X is smooth and A is a thin subset of X . Then X is
connected if and only if XzA is connected.

Proof. If X is not connected, then X is a disjoint union of non-empty open subsets
X “ UYV . Then XzA is the disjoint union of UzA and V zAwhich are non-empty
because A is nowhere dense in U and in V . So XzA is disconnected.
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Conversely, assume that XzA is disconnected, and write it as a disjoint union
of non-empty open subsets XzA “ U YV . Define f P OpU YV q to be constantly 1

on U and 0 on V . Then f P pOXpXq, and hence f P OXpXq by Thm. 4.3.1. Namely,
f can be extended to a holomorphic function on X . Since A is nowhere dense
in X , XzA is dense in X . So the range of the continuous function f : X Ñ C is
t0, 1u. Therefore X is not connected, otherwise the intermediate value theorem is
violated.

We give an interesting application of Cor. 4.3.2.

Theorem 4.3.5. OCn,0 is a UFD.

Proof. To prove that OCn,0 is a UFD, we need to show that each non-zero f P OCn,0
factors as the product of a unit and some prime elements of OCn,0. This is clearly
true when n “ 0. So let us assume n ą 0.

Since f ‰ 0, we may change the coordinate of Cn to a new one pw‚, zq “

pw1, . . . , wn´1, zq such that f has finite order in z. (Cf. the proof of Thm. 1.5.5).
Thus, by WPT, we may write f “ uq where u P OCn´1,0rzs is a unit and q is a
Weierstrass polynomial. In particular, q is monic. So, as MCn´1,0rzs is a UFD, we
have qpzq “ p1pzq ¨ ¨ ¨ pNpzq where each pipzq P MCn´1,0rzs is monic and irreducible.
By Cor. 4.3.2, the Noetherian integral domain OCn´1,0 is normal. So by Rem. 4.2.8,
each pipzq, which is irreducible in MCn´1,0rzs, is a monic polynomial in OCn´1,0rzs.
It remains to prove that each pipzq is a prime element of OCn,0. This follows from
Prop. 4.3.6.

Proposition 4.3.6. Let X be a complex space irreducible at x P X , let K be the field of
fractions of A “ OX,x, and let ppzq be a monic polynomial in A rzs which is irreducible
in Krzs. Then ppzq is a prime element of B “ OXˆC,xˆ0.

Proof. Since ppzq is monic, it has finite order k in z. We need to prove that if
a, b P B and ppzq divides apzqbpzq in B, then p divides one of a, b in B. By
WDT, B{ppzqB is A -generated by 1, z, . . . , zk´1. Thus, it suffices to assume that
apzq, bpzq are polynomials in A rzs of degrees ă k.

We claim that ppzq divides ab in A rzs. Then it follows that ppzq divides one of
a, b in Krzs because, in the UFD Krzs, ppzq is irreducible and hence prime. Let’s
say ppzq divides apzq in Krzs. Since the degree of ppzq is larger than that of apzq,
apzq must be zero. Then clearly ppzq divides apzq in A rzs, which finishes the proof.

By Euclidean division (which is available because ppzq is monic), ab “ gp ` r
where gpzq, rpzq P A rzs and rpzq has degree ă k. This gives the unique Weierstrass
division of ab by p (cf. Thm. 1.5.3). Since p divides ab in B, we have ab “ hp for
some h P B, which also gives the Weierstrass division. So h “ g P A rzs. This
proves the claim.

Theorem 4.3.7 (Second Riemann extension theorem). If X is smooth and A is a
thin subset of X of order 2, then

OXzA “ OX
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Proof. We shall prove that OpUzAq “ OpUq for any sufficiently small neighbor-
hood U of any x P X . In that case, A X U is contained in a thin (i.e. nowhere
dense) analytic subset of U , and we may well assume that A X U is that analytic
subset. Thus, by shrinkingX to a neighborhood of x and extendingA, we assume
A is a thin analytic subset of X .

As in the proof of Thm. 4.3.1, by an inductive argument, it suffices to assume
that X is an open subset of Cn with coordinates pz‚, ζ1, ζ2q “ pz1, . . . , zn´2, ζ1, ζ2q,
and that A “ tpz‚, ζ1, ζ2q P X : zm`1 “ ¨ ¨ ¨ “ zn´2 “ ζ1 “ ζ2 “ 0u. Note that
m ď n´ 2. We assume moreover that X is of the form U ˆ D2r ˆ D2r where U is a
neighborhood of 0 P Cn´2 and D2r “ tζ P C : |ζ| ă 2ru. To show that f P OpXzAq

is actually in OpXq, by Thm. 4.3.1, it suffices to show that f is locally bounded at
any point of A.

For each z‚ in a precompact subset V Ă U and ζ1 P Dˆ
r “ Drzt0u, applying the

maximal principle to the holomorphic function fpz‚, ζ1, ζ2q of ζ2 (defined on D2r

since ζ1 ‰ 0), we have for all |ζ2| ă r that

|fpz‚, ζ1, ζ2q| ď sup
|w2|“r

|fpz‚, ζ1, w2q| ď M

where

M “ sup
γ‚PV,|w1|ďr,|w2|“r

|fpγ‚, w1, w2q| ă `8.

The study of pOX for singular (reduced) complex spaces is more difficult and
relies on the notion of branched coverings.

4.4 Resultants and discriminants

Let A be a commutative ring. In this section, we collect some facts about poly-
nomials that will be helpful for the subsequent study of branched coverings.

Definition 4.4.1. Let fpzq “ a0 ` a1z ` ¨ ¨ ¨ ` amz
m and gpzq “ b0 ` b1z ` ¨ ¨ ¨ ` bnz

n

be polynomials in Arzs of degree m,n respectively. Then the resultant respf, gq of
f and g is the determinant of the pm ` nq ˆ pm ` nq matrix

»

—

—

—

—

—

—

—

—

—

—

—

–

a0 a1 ¨ ¨ ¨ ¨ ¨ ¨ am
a0 a1 ¨ ¨ ¨ ¨ ¨ ¨ am

¨ ¨ ¨ ¨ ¨ ¨

a0 a1 ¨ ¨ ¨ ¨ ¨ ¨ am

b0 b1 ¨ ¨ ¨ ¨ ¨ ¨ bn
b0 b1 ¨ ¨ ¨ ¨ ¨ ¨ bn

¨ ¨ ¨ ¨ ¨ ¨

b0 b1 ¨ ¨ ¨ ¨ ¨ ¨ bn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.4.1)
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where the first block has n rows and the second one has m rows. Let f 1pzq be the
derivative of fpzq. Then

Dpfq “ respf, f 1
q

is called the discriminant of f .1

Now we assume A “ K is a field.

Proposition 4.4.2. Let K be any field extension of K in which fpzq and gpzq split. Then
the following are equivalent.

(a) respf, gq ‰ 0.

(b) f and g have no common zeros in K.

(c) 1 is a gcd (greatest common divisor) of f, g in Krzs.

Proof. Recall that a gcd of f, g in A “ Krzs is equivalently an element in fA ` gA
dividing f and g in A, which is therefore also a gcd of f, g in Krzs. So (b)ô(c). In
the following, we prove (a)ô(b), and it suffices to assume that f, g split in K.

Clearly, f, g have common zeros in K iff there exist upzq “ c0 ` c1z ` ¨ ¨ ¨ `

cn´1z
n´1 and vpzq “ d0 ` d1z ` ¨ ¨ ¨ ` dm´1z

m´1 in Krzs such that uf “ ´vg. This is
equivalent to that det (4.4.1) “ 0, because uf ` vg “ 0 iff

pc0, c1, . . . , cn´1, d0, d1, . . . , dm´1q ¨ (4.4.1) “ 0.

Corollary 4.4.3. Let K be a field extension of K in which f ‰ 0 splits. Then Dpfq ‰ 0 if
and only if each zero of f in K has multiplicity 1.

Proof. This follows from Prop. 4.4.2, because each zero of f in K has multiplicity
1 iff 1 is a gcd of f and f 1 in Krzs.

Definition 4.4.4. If fpzq P Krzs is monic, we define its reduction redpfq P Krzs as
follows. Since Krzs is a UFD, we can write fpzq “ p1pzqn1 ¨ ¨ ¨ pNpzqnN in a unique
way where n1, . . . , nN P Z`, p1, . . . , pN P Krzs are monic and irreducible, and
pi ‰ pj if i ‰ j. We set

redppqpzq “ p1pzq ¨ ¨ ¨ pNpzq (4.4.2)

Remark 4.4.5. The discriminant Dpredppqq is a non-zero element of K. Equiva-
lently (by Cor. 4.4.3), the multiplicity of any zero of p in K is 1.

1Our definition of Dpfq is a non-zero constant times the usual definition of Dpfq. Such differ-
ence is unimportant for the purpose of our notes.
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Proof. By Prop. 4.4.2. it suffices to show that 1 is a gcd of redppq and redppq1 in
Krzs. If not, then a gcd must be divided by pi for some i, say divided by p1. So
p1 divides redppq1 “ p1

1p2 ¨ ¨ ¨ pN ` p1p
1
2 ¨ ¨ ¨ pN ` ¨ ¨ ¨ ` p1p2 ¨ ¨ ¨ p1

N , and hence divides
p1
1p2 ¨ ¨ ¨ pN . Since all pi are irreducible and p1 ‰ pi if i ą 1, we must have that p1

divides p1
1 (in Krzs), which is impossible because the degree of p1

1 is less than that
of p1.

Remark 4.4.6. Clearly redppq and p have the same zero sets in any field extension
K in which p splits. Thus, if ppzq “ pz ´ z1qm1 ¨ ¨ ¨ pz ´ zkqmk in Krzs, then by Rem.
4.4.5,

redppqpzq “ pz ´ z1q ¨ ¨ ¨ pz ´ zkq.

In particular, the expression of redppq is unchanged if we replace K by any field
extension of K.

4.5 Branched coverings

Definition 4.5.1. A holomorphic map of complex spaces φ : X Ñ Y is called
a local biholomorphism at x P X if there is a neighborhood U of x such that
V “ φpUq is open in Y and that the restriction φ : U Ñ V is a biholomorphism;
equivalently (cf. Cor. 1.6.3), φ# : OY,φpxq Ñ OX,x is an isomorphism of local C-
algebras. We say that φ is a local biholomorphism if it is so at every point of
X .

Definition 4.5.2. A finite surjective holomorphic map of reduced complex spaces
π : X Ñ S is called a branched covering (of S) if there is a thin subset ∆ Ă S such
that π´1p∆q is thin in X , and that the restriction π : Xzπ´1p∆q Ñ Sz∆ is a local
biholomorphism. We say that ∆ is the branch locus of π. Then if V Ă Y is open,
π : π´1pV q Ñ V is clearly a branched covering with branch locus V X ∆.

If ∆ “ H, we say that π is an unbrached covering.

Remark 4.5.3. The restriction π : Xzπ´1p∆q Ñ Sz∆ is clearly an unbranched
covering. Using Prop. 2.4.1, it is easy to see that each y P Sz∆ is contained in a
neighborhood V such that π´1pV q is disjoint union of open subsets U1 Y ¨ ¨ ¨ Y UN ,
where each π : Ui Ñ V is a biholomorphism. In particular, this map is a covering
map of topological spaces.

Remark 4.5.4. It is clear that a branched covering π : X Ñ Y satisfies the assump-
tion in Prop. 4.2.2. In particular, the inverse image under π of a thin subset of Y
is a thin subset of X . This means any thin subset of Y containing a given branch
locus ∆ can also be a branch locus. Also, it is easy to see that π sends thin subsets
of X to thin subsets of Y .
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Remark 4.5.5. Let π : X Ñ S be a finite holomorphic map of reduced complex
spaces. Let Ω be the set of all t P S such that π : π´1pV q Ñ V is a local biholo-
morphism (equivalently, an unbranched covering) for some neighborhood V Ă S
of t. It is clear that π is a branched covering if and only if the (obviously) closed
subset SzΩ is thin in S, and π´1pSzΩq is thin in X . In that case, SzΩ is the smallest
branch locus.

Remark 4.5.6. By Rem. 4.5.5, it is clear that the property of being a branched
covering is local with respect to the base space: If S is covered by some open
subsets pVαqαPA such that the restriction π : π´1pVαq Ñ Vα is a branched covering
for every α, then π : X Ñ S is a branched covering.

When constructing branched coverings, once one has found a thin ∆ Ă S and
know that π is unbranched outside ∆, one can use the following criterion to show
that π is surjective and that π´1p∆q is thin:

Proposition 4.5.7. Let π : X Ñ S be a finite holomorphic map of complex spaces where
S is reduced. Consider the following statements:

(i) The OS-module morphism π# : OS Ñ π˚OX is injective.

(ii) π is surjective.

(a) π˚OX is OS-torsion free.

(b) For every nonempty open subset V Ă S and every thin subset ∆ Ă V , π´1p∆q is
thin in π´1pV q.

Then (i)ô(ii) and (a)ñ(b). If X is reduced, then (b)ñ(a).

This proposition can be viewed as a geometric characterization of the condi-
tions Ann OSpπ˚OXq “ 0 and TOSpπ˚OXq “ 0. (The readers may compare this
proposition with Prop. 3.14.8.) We see that both hold when π is a branched cov-
ering.

Proof. (i)ô(ii): The zero locus of Ann OSpπ˚OXq equals red
`

Supppπ˚OXq
˘

and
hence equals the set φpXq (cf. Def. 2.3.8). But this zero locus is S iff Ann OSpπ˚OXq

is zero, due to the reducedness of S. So the equivalence follows immediately from
Rem. 2.3.10.

(a)ñ(b): Assume (a). Shrink S to any nonempty open subset and let ∆ a thin
analytic subset of S. If π´1p∆q is not thin, then there is x P X such that π´1p∆q con-
tains a neighborhood U of x. Let t “ πpxq. Define f P pπ˚OXqt to be 1 in OX,x and 0
in OX,y whenever y P π´1ptqztxu. Then the germ of analytic subset SuppOS,t

pfOS,tq

equals πpSuppOX,x
pfOX,xqq by Lem. 3.14.7, and hence is inside p∆, tq. So f is a

non-zero torsion element of pπ˚OXqt by Prop. 3.14.3.
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Now assume that X is reduced and that (a) is not true. Choose t P S such that
pπ˚OXqt contains a non-zero OS,t-torsion element f . Shrink S to a neighborhood
of t and shrink X to π´1pSq so that f P OpXq and f P TOSpπ˚OXq. By Prop.
3.14.3, ∆ “ SuppOY

pfOSq is nowhere dense in S. Since f ‰ 0 and X is reduced,
U “ tx P X : fpxq ‰ 0u is a nonempty open subset of X . Since SuppOX

pfOXq

contains U , by Lem. 3.14.7, π´1p∆q contains U . So (b) is false.

4.5.1 Main results

The goal of this section is to prove:

Theorem 4.5.8. Let X,S be pure n-dimensional reduced complex spaces, and let π :
X Ñ S be a finite holomorphic map which is surjective. Then π is a branched covering.

Corollary 4.5.9. Let π : X Ñ S be a finite surjective open holomorphic map of reduced
complex spaces. Assume that S is locally irreducible. Then π is a branched covering.

Proof. By Thm. 3.14.10, we may shrink S and assume that S has pure dimension
n. Then since π is open, finite, and surjective, we see that X has dimension n
everywhere due to Thm. 3.12.6.

A converse of Thm. 4.5.8 is easy to prove:

Proposition 4.5.10. Let π : X Ñ S be a branched covering, and assume that S has pure
dimension n. Then X also has pure dimension n.

Proof. Let ∆ Ă S be a branch locus. Then X clearly has pure dimension n outside
the thin subset π´1p∆q. If x P π´1p∆q, then dimxX ď n by Prop. 3.9.5, and
dimxX ě n by the upper-semicontinuity of dimensions (Cor. 3.9.4).

4.5.2 Weierstrass branched coverings

Assume the setting of Def. 2.5.1. So π : X Ñ S is a Weierstrass map defined by
polynomials p1pz1q, . . . , pkpzkq. We assume that S is reduced. We do not assume
that X is reduced. Then we have discriminants

Dppiq P OpSq.

We set

∆ “

k
ď

i“1

NpDppiqq “ N
`

Dpp1q ¨ ¨ ¨Dppkq
˘

Lemma 4.5.11. The restriction π : Xzπ´1p∆q Ñ Sz∆ is a local biholomorphism. In
particular, Xzπ´1p∆q is reduced.
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Proof. Let x P X such that t “ πpxq is not in ∆. Then for each i, Dppiptqq “

Dppiqptq ‰ 0. By Prop. 4.4.3, (for the fixed t) each zero of pipt, zq has multiplicity 1.
Thus, if we write x “ pt, ζ1, . . . , ζkq, then ζi is a zero of pipt, zq with multiplicity 1.
Assume for simplicity that ζ1 “ ¨ ¨ ¨ “ ζk “ 0. Then by WPT, in OSˆCk,x, pi is a unit
times qi “ zi ´ bi where bi P mS,t. Therefore

OX,x “ OSˆCk,x

M

k
ÿ

i“1

qiOSˆCk,x

which, by Thm. 2.5.4, is a free OS,t-module generated by 1. Therefore π# : OS,t Ñ

OX,x is an isomorphism of local C-algebras. So π is a local biholomorphism at
x.

Proposition 4.5.12. Assume that ∆ is nowhere dense in S (equivalently, that each
NpDppiqq is nowhere dense in S). Then X is reduced, and the Weierstrass map π :
X Ñ S is a branched covering with branch locus ∆.

The branched covering π in Prop. 4.5.12 is called a Weierstrass (branched)
covering.

Proof. By Lemma 4.5.11, X is reduced at x P X if πpxq ‰ ∆. Now assume πpxq “

∆. To show that X is reduced at x, by Prop. 3.7.1, it suffices to show that ISgpXq,x

contains a non zero-divisor of OX,x.
By Lemma 4.5.11, we have SgpXq Ă π´1pBq where

B “ SgpY q Y ∆.

Since Y is reduced, by Thm. 3.6.7, SgpY q is nowhere dense in B. Since ∆ is
nowhere dense by assumption, B is also nowhere dense in Y . Thus, by Prop.
3.4.5, we can find g P IB,y which is a non zero-divisor of OY,y. By Thm. 2.5.4,
OX,x is a free OS,πpxq-module. (We only need the torsion freeness.) Therefore
π#g is a non zero-divisor of OX,x. This proves that OX,x is reduced, because
π#g P Iπ´1pBq,x Ă ISgpXq,x.

Since ∆ is thin in Y , π´1p∆q is thin in X by Prop. 4.5.7 or by the fact that every
Weierstrass map is open (cf. Exp. 3.14.9). So π is a branched covering by Lemma
4.5.11.

Theorem 4.5.13. Let t P S, and assume that OS,t is a normal integral domain (e.g. S is
smooth, cf. Cor. 4.3.2). Then we can shrink S to a neighborhood of t P S and replace X
by π´1pSq so that the restriction π : redpXq Ñ S is a Weierstrass covering.

Proof. We may assume that p1, . . . , pk are monic. Let K “ MS,t be the field of
fractions of OS,t, and view each pipziq P OS,trzis as a polynomial in Krzis. As in
Def. 4.4.4, we have irreducible decomposition

pi “ p‚
i,1p

‚
i,2 ¨ ¨ ¨ (4.5.1)
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in Krzis where ‚ denote elements of Z`, each pi,˚ P Krzis is monic and irreducible,
and pi,j ‰ pi,l if j ‰ l. Then qi “ redppiq equals

qi “ pi,1pi,2 ¨ ¨ ¨ (4.5.2)

Since OS,t is normal, by Exp. 4.2.8, we have pi,˚ P OS,trzis.
Shrink S to a neighborhood of t (and shrink X accordingly to π´1pSq) so that

pi,˚ P OpSqrzis for all i, and that (4.5.1) and (4.5.2) hold in OSrzis. Then from these
two formulas, it is clear that Nppiq “ Npqiq. Thus, redpXq (as an analytic subset
of X) equals Npq1, . . . , qkq. Let Y “ SpecanpOSˆCk{

ř

i qiOSˆCkq. Then we have a
Weierstrass map π : Y Ñ S such that the underlying set of Y equals that of X .

We now show that, after shrinking S further, Y is reduced and π : Y Ñ S
is a branched covering. This will imply that π : Y Ñ S equals π : redpXq Ñ

S, finishing the proof. Indeed, by Rem. 4.4.5, the discriminant Dpqiq (which is
an element of OS,t Ă K since the coefficients of qi are in OS,t) is non-zero. So
Dpq1q ¨ ¨ ¨Dpqkq is non-zero in the integral domain OS,t, and hence is a non zero-
divisor. So by Prop. 3.4.1, we may shrink S further so that ∆ “ NpDpq1q ¨ ¨ ¨Dpqkqq

is nowhere dense in S. This proves the claim with the help of Prop. 4.5.12.

A similar argument implies the following criterion for reducedness, which can
be compared with Prop. 4.3.6 (a criterion for irreducibility).

Proposition 4.5.14. Let t P S. For each 1 ď i ď k, assume that pipziq P OS,trzis
is monic, and that the discriminant Dppiq is a non zero-divisor of OS,t. Then for each
x P pr´1

S ptq (where prS : S ˆ Ck Ñ S is the projection), the following ring is reduced:

OSˆCk,x

M

k
ÿ

i“1

pi ¨ OSˆCk,x

Proof. Immediate from Prop. 4.5.12 and 3.4.1.

4.5.3 Proof of Thm. 4.5.8

Lemma 4.5.15. Let φ : X Ñ Y and ψ : Y Ñ Z be surjective finite holomorphic maps
of reduced complex spaces. Assume that ψ and ψ ˝ φ : X Ñ Z are branched coverings.
Then φ is a branched covering.

Proof. The branch loci of ψ and ψ ˝ φ are both thin subsets of Z. So their union
∆ is also thin in Z. By Rem. 4.5.4, we can enlarge a branch locus to any larger
thin subset. So we may assume that ψ and ψ ˝ φ have common branch locus
∆. Clearly φ : Xzφ´1ψ´1p∆q Ñ Y zψ´1p∆q is a local biholomorphism. So φ is a
branched covering with branch locus ψ´1p∆q.
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Proof of Thm. 4.5.8. In view of Rem. 4.5.6, it suffices to choose any t P S and
show that we can shrink S to a neighborhood of t and shrink X to π´1pSq so that
π is a branched covering.

We first consider the case when S is smooth. By Prop. 2.7.9, we may shrink
S and X so that there is a Weierstrass map ψ : Y Ñ S and a closed embedding
α : X Ñ Y such that π “ ψ ˝ α. By Thm. 4.5.13, we may shrink S, and shrink
X to π´1pSq and Y to ψ´1pSq, so that ψ : redpY q Ñ S is a Weierstrass covering.
Thus, as αpXq (which is reduced, cf. Exe. 2.3.11) is a closed subspace of redpY q,
we may replace Y by redpY q so that (Y is reduced and) ψ : Y Ñ S is a Weierstrass
covering. Let ∆ be a branch locus.

By Thm. 3.12.6, π is open. Therefore π´1p∆q is a thin subset of X . To prove
that π is a branched covering with branch locus ∆, it suffices to show that π is a
biholomorphism at every x P Xzπ´1p∆q. Let y “ αpxq and s “ πpxq. Using the fact
that ψ is a biholomorphism from a neighborhood of y P Y to a neighborhood of
s P S and the fact that π is open at x, it is easy to see that the closed embedding α
is open at x. Thus, the reduced subspace αpXq of Y contains a neighborhood of y.
So the germs of analytic sets pαpXq, yq and pY, yq are equal. Namely, the inclusion
of reduced complex spaces ι : αpXq Ñ Y is a local biholomorphism at y. So α is a
local biholomorphism at x. This finishes the proof of the smooth case.

Now we consider the general case. Since S has pure dimension n, by Prop.
3.9.3, we can shrink S and X so that there is a finite holomorphic map ϖ : S Ñ W
where W is an open subset of Cn. By the smooth case, both ϖ and ϖ ˝ π are
branched coverings. Thus, by Lemma 4.5.15, π is a branched covering.

4.5.4 Another proof of Lem. 3.2.12

Using the techniques developed so far in this chapter, we can give another
proof of Lem. 3.2.12, which is the crucial part of the proof of Thm. 3.2.1.

Proof of Lem. 3.2.12. Step 1. We claim that, after shrinking X to a neighborhood
of x, there is a finite holomorphic map φ : X Ñ S where S is a neighborhood of
0 P Cn such that φ´1p0q “ txu, and that φ is open at x. Indeed, by shrinking X so
that X is a model space, we have a finite φ1 : X Ñ S1 where S1 is a neighborhood
of 0 P CN and (by Thm. 2.7.2 and shrinking X,S1 further) φ´1

1 p0q “ txu. If φ1

is open at x then we are done. Otherwise, by Lem. 3.12.5, we have pφ1pXq, 0q ‰

pS1, 0q. Thus, by shrinking X,S1 we can find g P OpS1q nonzero in OS1,0. As in
the proof of Thm. 1.5.5, we may choose a new set of coordinates of S1 and shrink
X,S1 so that g has finite order in the last variable. By Thm. 2.7.2, after further
shrinking X,S1, the projection CN Ñ CN´1 on the first N ´ 1 variables restricts to
a finite holomorphic map S1 Ñ S2 where S2 is a neighborhood of 0 P CN´2. By
Thm. 2.7.2 again, after shrinking X,S1, S2, we obtain a finite holomorphic map
φ2 : X Ñ S2 with φ´1

2 p0q “ txu.
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By repeating the above procedure until impossible, we get a finite holomor-
phic map φ : X Ñ S where S is a neighborhood of 0 P Cn, such that φ´1 “ txu,
and that either φ is open at x or n “ 0. But in the latter case, X as a set is a single
point. So φ is also open at x. This finishes the proof of the claim.

Step 2. SinceX is irreducible at x, by Prop. 3.14.8, the torsion sheaf TOSpφ˚OXq

has zero stalk at 0 P S. Since TOSpφ˚OXq is OS-coherent (Cor. 3.14.5), we can
shrink X,S so that TOSpφ˚OXq “ 0. Thus, by Prop. 3.14.8 again, φ is open.

By Prop. 2.7.9, after shrinking X,S, φ is the restriction of a Weierstrass
map. Namely, there are monic polynomials pi P OpSqrzis (where 1 ď i ď k)
such that φ : X Ñ S equals π ˝ ι where ι is a closed embedding of X into
Z “ SpecanpOCkˆS{

řk
i“1 piOCkˆSq, and π : Z Ñ S is the restriction of the pro-

jection Ck ˆ S Ñ S. We may assume for simplicity that X is a closed complex
subspace of Y .

The fact that pi vanishes on X implies, by Nullstellensatz, that a positive
power of pi vanishes in OX,x. Since OX,x is an integral domain (because X is
irreducible at x), we conclude that qi “ redppiq has zero germ in OX,x. Thus, by
shrinking X,Z, S, we have that q1, . . . , qk restrict to zero on X . So X is a com-
plex subspace of Y “ SpecanpOCkˆS{

řk
i“1 qiOCkˆSq. Then, as in the proof of Thm.

4.5.13, Y is reduced, and π : Z Ñ S restricts to a branched covering ϖ : Y Ñ S
with branch locus D. Since φ : X Ñ S is open, as in the proof of Thm. 4.5.8, we
conclude that the inclusion X ãÑ Y is an open embedding outside φ´1pDq. Thus
Xzϖ´1pDq “ Xzφ´1pDq is smooth since Y zϖ´1pDq (as an unbranched covering
of SzD) is smooth. So SgpXq Ă φ´1pDq.

Since D is thin in S, after shrinking S,X , there is g P OpSq with nonzero germ
at 0 P S such that g P ID. Since pφ˚OXq0 “ OX,x is OS,0-torsion free, ∆ “ φ#g is a
non zero-divisor of OX,x. Since SgpXq Ă φ´1pDq, X is smooth outside Np∆q.

4.6 pOX,x is the integral closure of OX,x in MX,x

Let X be a reduced complex space. The main result of this section (Cor. 4.6.10)
is indicated in the title. This is an immediate consequence of Thm. 4.6.9 which
says that the two equivalent conditions in Lemma 4.6.1 always hold.

Lemma 4.6.1. Let x P X . Then the following are equivalent.

(1) There exists δ P NzdpOX,xq satisfying that δ ¨ pOX,x Ă OX,x. We call δ a universal
denominator of pOX,x.

(2) pOX,x is a finitely-generated OX,x-submodule of MX,x.

Proof. Assume (1). Then clearly pOX,x Ă MX,x. The OX,x-module morphism
MX,x

ˆδ
ÝÑ MX,x is injective, and it sends pOX,x to δ pOX,x which is an ideal of OX,x
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and hence OX,x-finitely-generated because OX,x is Noetherian. Therefore pOX,x is
OX,x-finitely-generated. (2) is true.

Assume (2). Then pOX,x is OX,x-generated by f1, . . . , fn P pOX,x. Since each
fiOX,x belongs to MX,x, there is δi P NzdpOX,xq such that δifi P OX,x. Then δ “

δ1 ¨ ¨ ¨ δn is a universal denominator.

4.6.1 Primitive elements

Definition 4.6.2. A branched covering π : X Ñ S is called a b-sheeted (branched)
covering (where b P Z`) if for each t P Sz∆, π´1ptq has b distinct elements. Note
that the function

t P Sz∆ ÞÑ |π´1
ptq|

is clearly locally constant. Therefore, if a branched covering π : X Ñ S satisfies
that Sz∆ is connected, then π is b-sheeted for some b.

In the following part of this section, we assume that π : X Ñ S is a branched
covering and S is a connected complex manifold. Then by Cor. 4.3.4, Sz∆ is
connected. So π is b-sheeted for some b.

Choose e P OpXq. We can define γepzq P OpSz∆qrzs such that for each t P Sz∆,

γept, zq “
ź

xPπ´1ptq

pz ´ epxqq. (4.6.1)

Clearly γepzq is a monic polynomial with degree b.

Lemma 4.6.3. γepzq is an element of OpSqrzs.

Proof. e is (uniformly) bounded on any compact subset of X . Since π is finite and
hence proper (Prop. 2.4.10), the coefficients of γepzq are bounded on V z∆ for each
precompact open subset V Ă S. So these coefficients belong to pOSpSq, and hence
belong to OSpSq by Riemann extension Thm. 4.3.1.

Definition 4.6.4. We say that e is a primitive element of OpXq over OpSq if the dis-
criminantDpγepzqq P OpSq is non-zero at some t P S. In that case, by Identitätssatz
1.1.3, the zero set of Dpγepzqq is nowhere dense in S. By Cor. 4.4.3, e is primitive
if and only if there is some t P Sz∆ such that the restriction e : π´1ptq Ñ C is
injective.

(In the general case that S is a reduced complex space, we say e P OpXq is a
primitive element over OpSq if the zero locus of Dpγeq is nowhere dense in S.)

Lemma 4.6.5. If X is biholomorphic to a closed analytic subset of an open subset U of
CN , then there exists a primitive element e P OpXq over OpSq.

Proof. LetX be a closed analytic subset ofU Ă CN . Let pz1, . . . , zNq be the standard
coordinates of CN . Choose any t P Sz∆. Then one can easily find a1, . . . , aN P C
such that e “ a1z1 ` ¨ ¨ ¨ ` aNzN is injective on π´1ptq. The restriction of e to X is a
primitive element.
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4.6.2 Main results

Theorem 4.6.6. Let π : X Ñ S be a b-sheeted branched covering whereX is reduced and
S is a connected complex manifold. Assume that there is a primitive element e P OpXq

over OpSq. Then OpXq contains an element whose stalk at each x P X is a universal
denominator of pOX,x.

Proof. Let ∆ Ă S be a branch locus. By enlarging ∆, we assume that ∆ contains
the zero set of Dpγepzqq. Therefore, for each t P Sz∆, γept, zq has b distinct zeros
for z.

For each t P Sz∆, write π´1ptq “ tx1, . . . , xbu, and let

Mptq “ det

»

—

—

—

–

1 epx1q epx1q
2 ¨ ¨ ¨ epx1q

b´1

1 epx2q epx2q
2 ¨ ¨ ¨ epx2q

b´1

...
1 epxbq epxbq

2 ¨ ¨ ¨ epxbq
b´1

fi

ffi

ffi

ffi

fl

(4.6.2)

be the Vandermonde determinant. Then Mptq2 is independent of the order
x1, . . . , xb of elements of π´1ptq. Therefore, by varying t P Sz∆, we get δ P OpSz∆q

such that

δptq “ Mptq2

for all t P Sz∆. Since e is continuous onX and hence bounded on compact subsets
of X , and since π is proper (Prop. 2.4.10), δ must belong to pOSpSq. Thus, by
Riemann extension Thm. 4.3.1, δ P OpSq. Clearly Npδq is contained in ∆ (by the
basic properties of Vandermonde determinant), so

Npπ#δq Ă π´1
p∆q (4.6.3)

Since π´1p∆q is thin in X , by Prop. 3.4.1, for each x P X we have

pπ#δqx P NzdpOX,xq (4.6.4)

Let us show that π#δ P OpXq is a universal denominator of pOX,x. Choose any
f P pOX,x. By Prop. 2.4.1, we may shrink S to a neighborhood of πpxq and shrinkX
to π´1pSq so that f P OpXzAq for some thin subset A Ă X , and that f is bounded
on XzA. Note that πpAq is thin in S (Rem. 4.5.4). For each 1 ď j ď b and t P

Szp∆ Y πpAqq, let Kjptq be the determinant of the matrix defined by replacing the
j-th column of the Vandermonde matrix in (4.6.2) with pfpx1q, . . . , fpxbqqt. Then

ωjptq “ MptqKjptq (4.6.5)
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is independent of the order x1, . . . , xb. Thus, by varying t, ωj becomes a (clearly
bounded) holomorphic function on Szp∆YπpAqq. Thus, we have ωj P OpSq, again
by Riemann extension Thm. 4.3.1. By Cramer’s rule, for each xi P π´1ptq,

δptq ¨ fpxiq “

b
ÿ

j“1

ωjptq ¨ epxiq
j´1

Therefore, the following relation holds in OpXzpπ´1p∆q Y Aqq

π#δ ¨ f “

b
ÿ

j“1

π#ωj ¨ ej´1 (4.6.6)

where the RHS is an element of OpXq.

Remark 4.6.7. Recall that if F Ă K is a field extension, an element ϵ P K is called
a primitive element of F Ă K if K “ Fpϵq, i.e., if elements of K are F-coefficiented
rational functions of ϵ. Therefore, (4.6.6) implies that for each t P S and x P π´1ptq,
the germ ex is a primitive element of the field extension MS,t Ă MX,x provided
that X is irreducible at x (so that MX,x is a field).

To apply Thm. 4.6.6 we need the following simple observation:

Lemma 4.6.8. Let X be a pure n-dimensional reduced complex space. Choose x P X .
Then, after shrinking X to a neighborhood of x, there is a connected open subset S Ă Cn

and a branched covering π : X Ñ S, together with a primitive element e of OpXq over
OpSq.

Proof. By Prop. 3.9.3, there is a finite map π : X Ñ S where S is a connected
open subset of Cn. By Thm. 3.12.6, π is an open map. Thus, we may replace S by
πpXq so that π is surjective (and clearly still finite). By Thm. 4.5.8, π is a branched
covering. By Prop. 2.4.1, we may shrink S to a neighborhood of πpxq and shrink
X to π´1pSq so that X is biholomorphic to a model space. Therefore, by Lemma
4.6.5, there is a primitive element e P OpXq over OpSq.

Theorem 4.6.9. Let X be a reduced complex space and x P X . Then pOX,x is a finitely-
generated OX,x-submodule of MX,x.

Proof. By Thm. 4.2.4 and local decomposition (Thm. 3.3.5), it suffices to assume
that X is irreducible at x. Thus, we can shrink X to a neighborhood of x so that
(by Thm. 3.14.10) X has pure dimension n. We can shrink X further so that
the conclusions in Lemma 4.6.8 holds. So by Thm. 4.6.6, there is a universal
denominator of OX,x. This proves the theorem with the help of Lemma 4.6.1.

Corollary 4.6.10. For each reduced complex spaceX and each x P X , pOX,x is the integral
closure of OX,x in MX,x.
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Proof. Thm. 4.6.9 shows that pOX,x is included in the integral closure of OX,x. That
it contains the integral closure is already shown in Lemma 4.2.10.

The proof of Thm. 4.6.6 implies the following generalization of Second Rie-
mann extension Thm. 4.3.7. It will be used in Prop. 4.10.2 to obtain global decom-
position of reduced complex spaces.

Theorem 4.6.11. Let X be a reduced locally pure-dimensional complex space and let A
be a thin subset of X of order 2. Then OXzA Ă pOX .

Proof. We may shrink X so that it has pure dimension n. Let us check that
OXzA,x Ă pOX,x for each x P X . As in the proof of Thm. 4.6.9, we may shrink
X to a neighborhood of x to get a b-sheeted branched covering π : X Ñ S where
S is a connected open subset of Cn and there is a primitive e P OpXq. As in the
proof of Thm. 4.6.6, we have δ P OpSq. Let us show that π#δ ¨OXzA,x Ă OX,x. Then
the argument in Lemma 4.6.1 shows that OXzA,x belongs to the integral closure of
OX,x in MX,x, namely OXzA,x Ă pOX,x.

If f P OXzA,x, we may shrinkX and S so that f P OpXzAq. Then ωj P OpSzp∆Y

πpAqqq is locally bounded at each point of ∆zπpAq, because f is continuous at each
point of π´1p∆qzA. Therefore, ωj is holomorphic on SzπpAq by First Riemann
extension Thm. 4.3.1. Since A is thin in X of order 2, by Cor. 3.12.8, πpAq is thin in
S of order 2. Therefore ωj P OpSq by Second Riemann extension Thm. 4.3.7. Thus
π#δ ¨ f belongs to OX,x by (4.6.6).

4.7 Uniform convergence of holomorphic functions

LetX be a reduced complex space. In this section, we give another application
of the proof of Thm. 4.6.6. The results in this section will not be used in the rest of
this monograph and can therefore be skipped on first reading.

Proposition 4.7.1. Under the assumptions of Thm. 4.6.6, the OS-module morphism

Φ : π˚
pOX Ñ Ob

S

f ÞÑ pπ#ω1, . . . , π
#ωbq

(4.7.1)

(where ωj is defined by (4.6.5)) is injective. Moreover, the restriction of Φ to π˚OX is
continuous in the sense that if W Ă S is open and pfnqnPN is a sequence in Opπ´1pW qq

converging locally uniformly to f P Opπ´1pW qq, then Φpfnq converges locally uniformly
to Φpfq.

The locally uniform convergence of pfnqnPN means that each x P π´1pW q is
contained in a neighborhood on which fn converges uniformly to f . Since X
is locally compact, this is equivalent to saying that fn converges uniformly to f
on every compact subset of π´1pW q. The locally uniform convergence in Ob

S is
defined componentwise.
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Proof. The continuity of Φ follows from the construction of ωj . The injectivity of
Φ follows from (4.6.6) and the fact that (4.6.4) holds at every x P X .

Theorem 4.7.2 (Weierstrass convergence theorem). Let X be a reduced locally pure
dimensional complex space. Let pfnqnPN be a sequence in OpXq converging locally uni-
formly to a function f : X Ñ C. Then f P OpXq.

Proof. It is clear that f is continuous. Since it suffices to prove the theorem locally,
we may assume (by Lemma 4.6.8) that X is small enough such that the assump-
tions of Thm. 4.6.6 hold. So Prop. 4.7.1 can be applied to X . Let Φ be as in
Prop. 4.7.1. Since Φ is continuous, limnÑ8 Φpfnq converges locally uniformly to
a continuous function ξ : S Ñ Cb, which must be holomorphic (i.e. ξ P OpSqb)
because, by Morera’s theorem, Weierstrass convergence theorem clearly holds for
the complex manifold S. Let M “ ImpΦq be the image sheaf of Φ.

• Claim: There exists σ P M pSq such that ξ “ limnΦpfnq equals σ.

Suppose that the claim is true. Since Φ is injective and hence Φ : π˚OXpSq Ñ

M pSq is bijective, there exists g P π˚OXpSq “ OpXq such that σ “ Φpgq. To show
that f is holomorphic, it suffices to show that f equals g as functions. Indeed,
since Φpfnq converges locally uniformly to Φpgq, by (4.6.6), we have that π#δ ¨

fn converges locally uniformly to π#δ ¨ g. Since π#δ ¨ fn also converges locally
uniformly to π#δ ¨ f , we have π#δ ¨ g “ π#δ ¨ f . Therefore g “ f outside the
nowhere dense subset π´1p∆q due to (4.6.3). So g “ f everywhere because f and
g are continuous.

The proof of Claim follows from the following lemma.

Lemma 4.7.3. Let S be a complex manifold and b P N. Let M be an OS-submodule of Ob
S .

Then M pSq is a close subset of OpSqb under the topology of locally uniform convergence.

Proof. By shrinking S, it suffices to assume that S is an open subset of CN con-
taining 0. Then the topology of OpSqb is metrizable since S is second-countable
(though we do not need this fact in order to prove Thm. 4.7.2). Thus, it suffices
to prove that if pξnqnPN is a sequence in M pSq converging locally uniformly to
ξ P OpSqb, then ξ P M pSq. It suffices to show that ξt P Mt for each t P S. For sim-
plicity, let us assume t “ 0 and prove ξ0 P M0. If we take power series expansions
of ξn and ξ, which can be calculated by contour integrals, then each coefficient
of ξn converges to the corresponding coefficient of ξ. Therefore, for each k P Z`,
the residue class of ξn in Op

0{mk
S,0O

p
0 converges to that of ξ as n Ñ 8. Given that

the germ of each ξn at 0 is an element of M0, the proof is finished thanks to the
following general fact.

Proposition 4.7.4. Let pA,mq be a Noetherian local C-algebra. Let P be a finitely-
generated A-module, and let M be an A-submodule of P . Then P is weakly closed in
M.
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By saying that M is weakly closed in P , we mean that if pξnqnPN is a sequence
in M satisfying that for each k P Z`, the residue class of ξn in P{mkP (which is
clearly a finite-dimensional C-vector space and is equipped with the Euclidean
topology) converges to that of ξ as n Ñ 8, then ξ P M.2

Proof. For each k P Z`, consider the following commutative diagram

M P P{M

P{mkP P{pM ` mkPq

ι

π

ϖ

Since the composition of the two maps in the first row is zero, we haveϖ˝π˝ι “ 0.
Choose a sequence pξnqnPN in P converging weakly to ξ P P , namely, for each k,
the residue class of ξn in P{mkP converges to that of ξ. Then limn π ˝ ιpξnq “ πpξq.
Since every linear subspace (and in particular π ˝ ιpMq) is closed in the finite
dimensional C-vector space P{mkP , we have πpξq P π ˝ ιpMq and hence ϖ ˝πpξq P

ϖ ˝ π ˝ ιpMq “ 0. Therefore, the residue class of ξ in

P{pM ` mkPq “
P{M

mkpP{Mq

is zero for each k. By Krull’s intersection Thm. 1.4.4, the residue class of ξ in P{M
is zero. So ξ P M.

4.8 Coherence of pOX ; the normalization pX

Let X be a reduced complex space. We say that x P X is normal if OX,x is
normal, i.e. OX,x “ pOX,x (cf. Cor. 4.6.10). We say that X is a normal (reduced)
complex space if every point of X is normal.

The first goal of this section is to prove:

Theorem 4.8.1. pOX is a coherent OX-module.

Corollary 4.8.2. The set of non-normal points of X is a nowhere dense analytic subset of
X .

Proof. The non-normal locus ofX is the support of the coherent sheaf pOX{OX .

The construction of the normalization pX (defined by Specan pOX) will be an
immediate consequence of (the proof of) Thm. 4.8.1.

2It is easy to find a metric on P under which the convergence of sequences is described in this
way.
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4.8.1 Non-normal loci

It turns out that in order to prove Thm. 4.8.1 we need to first prove Cor. 4.8.2.
In fact, we only need the fact that the set of normal points are open. Cor. 4.8.2
follows easily from the following criterion.

Theorem 4.8.3. Let I be a coherent ideal of OX such that NpIq is nowhere dense in X ,
that SgpXq Ă NpIq, and that I “

?
I. Then the set of non-normal points of X is equal

to the support of

End OX pIq

End OX pIq X µpOXq

where µpOXq is the image of OX under the morphism µ : OX Ñ End OX pIq sending each
f to the multiplication map ˆf .

Such I exists: one simply take I “ ISgpXq, since SgpXq is nowhere dense in X
(by Thm. 3.6.7).

Thm. 4.8.3 follows immediately from the following stronger result:

Proposition 4.8.4. Choose any x P X . Let I be a coherent ideal of OX such that NpIq is
nowhere dense in X . Consider the following statements:

(1) pOX,x “ OX,x

(2) EndOX,xpIxq Ă µpOX,xq, namely, each element of EndOX,xpIxq is the multiplication
map of an element of OX,x.

Then (1)ñ(2). If SgpXq Ă NpIq and I “
?
I, then (2)ñ(1).

Proof. Part 1. Assume that (1) is true and NpIq is nowhere dense in X . Choose
any OX,x-module endomorphism α of Ix. Then α is the multiplication by f for
some f P MX,x. Indeed, since NpIq is nowhere dense in X , by Prop. 3.4.5 we can
find g P Ix which is a non zero-divisor of OX,x and hence of MX,x. Set f “

αpgq

g
.

Then for each h P Ix, since α is a homomorphism, we have

fh “
αpgqh

g
“
αphgq

g
“
αphqg

g
“ αphq

which shows that α is the multiplication of f on Ix.
Since OX,x is Noetherian and EndOX,xpIxq is a finitely-generated OX,x-module,

the OX,x-submodule generated by 1, α, α2, . . . is finitely-generated. Therefore
α is integral over OX,x. Thus, a monic OX,x-polynomial of f multiplied by the
non zero-divisor g is zero, which implies that f is integral over OX,x. Thus
f P pOX,x “ OX,x. Therefore α is the multiplication of an element of OX,x. This
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proves (2).

Part 2. Assume that (1) is not true and SgpXq Ă NpIq. Choose f P pOX,x not in
OX,x. Shrink X to a neighborhood of x so that f P pOXpXq Ă MXpXq, and that I is
generated by finitely many sections g1, g2, ¨ ¨ ¨ P IpXq. The polar set

P pfq “ tp P X : fp R OX,pu (4.8.1)

is contained in SgpXq due to First Riemann extension Thm. 4.3.1. So P pfq Ă NpIq.
By Prop. 4.1.5, OXf ` OX is a coherent OX-submodule of MX . Applying Exp.
2.10.6 to the pair of coherent sheaves OX Ă OXf ` OX , we see that there is n P Z`

such that pgni fqx P OX,x for all i. Thus fxInx Ă OX,x for a larger n.
Since fx R OX,x, we can find the smallest n P Z` such that fxInx Ă OX,x. Choose

any rf P fIn´1
x not in OX,x. (But note that rf belongs to pOX,x since f does.) Then

rfIx Ă OX,x.
We now assume furthermore that I “

?
I and claim that rfIx Ă Ix. Suppose

that the claim is true. Let α P EndOX,xpIxq be the multiplication by rf . Then α R

µpOX,xq and hence (2) is not true. Indeed, if α P µpOX,xq, then α “ µpκq for some
κ P OX,x. Let g be as in Part 1. Then rfg “ κg. Since g is a non zero-divisor of OX,x

and hence of MX,x, we have rf “ κ and hence rf P OX,x, impossible.
Let us prove rfIx Ă Ix. Shrink X further so that rf P pOXpXq and that rfgi P

OpXq for each i. By Thm. 4.3.1 again, rf belongs to OpXzSgpXqq and is locally
bounded on X . Thus, for each p P NpIq we can choose a sequence ppkqkPN in
XzSgpXq converging to p such that sup

kPN
| rfppnq| ă `8 and hence that p rfgiqppq “

lim
kÑ8

rfppkqgippkq “ 0 (because rfgi and gi are continuous, and gippq “ 0.) So each

rfgi vanishes on NpIq, and hence must belong to IpXq by Nullstellensatz and that
I “

?
I. This proves rfIx Ă Ix.

Remark 4.8.5. In the above proof, we have actually shown that if NpIq is a
nowhere dense analytic subset of X and x P X , then each element of EndOX,xpIxq

is the multiplication map of an element of pOX,x.

4.8.2 Proof of Thm. 4.8.1

Proposition 4.8.6. Let π : X Ñ S be a 1-sheeted branched covering of reduced complex
space. Then we have an isomorphism of OS-algebras (cf. Prop. 4.2.2)

π# : pOS
»

ÝÝÑ π˚
pOX

Proof. Outside the branch locus ∆, π : Xzπ´1p∆q Ñ Sz∆ is a 1-sheeted un-
branched covering, i.e. a biholomorohism. For each t P S, an element g P pOS,t
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is of the form g P OSpV zBq where V is a neighborhood of t P S, B is a thin an-
alytic subset of V , and g is bounded. Since g is determined by its values outside
the nowhere dense subset pV X ∆q Y B of V , π#g is non-zero if g is non-zero. So
π# is injective at t.

If f P pπ˚
pOXqt, choose a neighborhood V of t such that f P pOXpπ´1pV qq. By

Prop. 2.4.1, we may shrink V and find a thin analytic subset A Ă π´1pV q such
that f P OXpπ´1pV qzAq and f is bounded. So f restricts to a holomorphic map
on π´1pV qzpA Y π´1p∆qq which is sent biholomorphically by π to V zpπpAq Y ∆q.
Define g P OSpV zpπpAq Y ∆qq to be f ˝ π´1, which is bounded and hence belongs
to pOSpV q. Then π#g “ f . This shows that π# is surjective at t.

We are now ready to give the

Proof of Thm. 4.8.1. Choose any x P X . We show that pOX is coherent up to
shrinking X to a neighborhood of x. By Thm. 4.6.9, pOX,x is OX,x-generated by
finitely many elements f1, . . . , fn P pOX,x. Since each fi is integral over OX,x, we
can find a monic OX,x-polynomial Pi such that Pipfiq “ 0. Shrink X so that each
fi belongs to pOXpXq, that the coefficients of each Pi belong to OpXq, and that
Pipfiq “ 0 holds in pOXpXq.

Let A be the OX-subalgebra of pOX generated by f1, . . . , fn, namely, it is the
unique subsheaf of pOX whose stalk at each p P X is the OX,p-subalgebra generated
by the stalks of f1, . . . , fn at p. Then Pipfiq “ 0 implies that A is a finite-type OX-
module, and hence coherent by Prop. 4.1.5. Thus, by Thm. 2.9.3, we can define
a finite holomorphic map ψ : Y “ SpecanpA q Ñ X such that the equivalence of
OX-algebras ψ˚OY » A holds. Clearly each stalk of A has no non-zero nilpotent
elements. So each stalk OY,q (q P Y ), which is a direct summand of pψ˚OY qψpqq

(Prop. 2.4.5), is reduced. Therefore Y is reduced.
Since pOX equals OX outside the thin analytic subset ∆ “ SgpXq by First Rie-

mann extension Thm. 4.3.1, A equals OX outside ∆. Therefore Y z∆ “ Xz∆.
Thus, by Prop. 4.5.7, ψ is a 1-sheeted branched covering. By Prop. 4.8.6, we
obtain an isomorphism of OX-algebras pOX » ψ˚

pOY .
We know that pψ˚OY qx “ Ax is the integral closure pOX,x of OX,x in MX,x. So by

Rem. 4.2.7, Ax is the integral closure of itself in MX,x. So Ax “
À

yPψ´1pxq
OY,y is a

normal ring. (Note that the elements of NzdpAxq´1Ax belong to MX,x.) Therefore
OY,y is normal for each y P ψ´1pxq. By Cor. 4.8.2 (implied by Thm. 4.8.3), each
y P ψ´1pxq is contained in a normal open subset of Y . Therefore, by Prop. 2.4.1,
we may shrink X to a neighborhood of x and shrink Y to ψ´1pXq so that Y is
normal. Therefore pOX » ψ˚OY , and ψ˚OY is OX-coherent by Finite mapping Thm.
2.7.1.
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The normalization pX

Using the coherence of pOX , we immediately obtain

Theorem 4.8.7. For any reduced complex space X , there is, up to isomorphisms (in the
sense of Def. 2.9.1), a unique 1-sheeted branched covering ν : pX Ñ X such that pX is
normal. This covering (or simply the complex space pX) is called the normalization of
X . Specan pOX Ñ OX is a normalization.

Proof. By Prop. 4.8.6, we have an isomorphism of OX-algebras ν˚O pX » pOX . So the
equivalence class of the OX-algebra ν˚O pX is unique. Therefore the normalization
is unique due to Thm. 2.9.3.

Let pX be Specan pOX . Then the proof of Thm. 4.8.1 shows that pX is reduced and
normal, and ν : pX Ñ X is a 1-sheeted covering with branch locus SgpXq.

Remark 4.8.8. Suppose that we have decomposition X “ X1 Y ¨ ¨ ¨ YXN of X into
analytic subsets such that Xi X Xj is nowhere dense in Xi for all i ‰ j. Then by
Thm. 4.2.4, or more precisely by (4.2.2c), pX is a disjoint union of open subsets

pX “

N
ž

i“1

pXi

where each pXi is the normalization of Xi.

4.9 Basic properties of normal complex spaces

Let X be a reduced complex space.

Proposition 4.9.1. Assume that X is normal. Then X is locally irreducible. In particu-
lar, X is locally pure dimensional (by Thm. 3.14.10).

Proof. Suppose that X is not irreducible at x. Shrink X so that we have local
decomposition X “ X1 Y ¨ ¨ ¨ Y XN at x (where N ě 2) and Thm. 3.3.5 holds for
all i ‰ j. The characteristic function χXi (cf. Exp. 4.1.6) clearly belongs to pOXpXq.
But it cannot be extended to a continuous function on X , otherwise its value at
x would be both 1 and 0. So it is not in OpXq. This contradicts the normality
pOX “ OX .

Our next goal is to prove that if X is normal then SgpXq is thin of order 2. We
first need some preparations.

Lemma 4.9.2. Let Y be an analytic subset of X , and choose x P Y . Assume that
dimxX “ n and dimx Y “ n ´ 1, and that Y irreducible at x. Choose f P IY,x which is
a non zero-divisor of OX,x, and let pNpfq, xq “

Ť

kpZk, xq be the local decomposition of
pNpfq, xq. Then pY, xq “ pZk, xq for some k.
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Proof. Since pY, xq is irreducible, by Rem. 3.3.2, we have pY, xq “ pY X Zk, xq for
some k, and hence pY, xq Ă pZk, xq. (Cf. also Lem. 3.1.8.) Suppose that pY, xq ‰

pZk, xq. Then, since dimx Y “ n ´ 1, by Prop. 3.10.14, the (Krull) dimension of Zk
at x is ě n (since we can find a chain of n` 1 strictly increasing irreducible germs
in pZk, xq where the n-th one is pY, xq). However, since f P NzdpOX,xq, we have
dimx Zk ď dimxNpfq “ n ´ 1 by Active lemma. This is impossible.

Lemma 4.9.3. Assume that X is normal with pure dimension n. Let Y be an analytic
subset of X . Assume that x P Y satisfies that Y is irreducible at x and that dimx Y “

n ´ 1. Let tf1, . . . , fNu be a set of non-zero generators of the ideal IY,x. Then, after
shrinking X to a neighborhood of x, we have f1, . . . , fN P IY pXq, and there exists a
nowhere dense analytic subset A of Y such that for each p P Y zA, the ideal IY,p of OX,p

is generated by the germ fi,p for some 1 ď i ď N .

The last sentence of this proposition implies, in particular, that for each p P

Y zA, IY,p is a principal ideal of OX,p.

Proof. Step 1. The case n “ 0 is obvious. So we assume n ą 0. Note that f1, . . . , fN
are non zero-divisors of OX,x because X is irreducible everywhere (Prop. 4.9.1).
Thus, we may shrink X to a neighborhood of x so that f1, . . . , fN P IY pXq, that
(by Prop. 2.3.13 and Rem. 1.2.16) f1,p, . . . , fN,p are non zero-divisors generating
IY,p for each p P X , and that (by Thm. 3.14.10) Y has pure dimension n ´ 1.

By Lemma 4.9.2, for each i, the germ pY, xq is a component in the local decom-
position pNpfiq, xq “

Ť

kpZk, xq. Therefore, by Thm. 3.3.5, we can shrinkX further
so that all the germs not equal to pY, xq in the local decomposition of pNpfiq, xq are
analytic subsets of X whose intersections with Y are nowhere dense in Y . Let
B be the union of these thin analytic subsets. Recall that SgpY q is a thin analytic
subset of Y (Thm. 3.6.7). Let A “ B Y SgpY q. Then Y zA is a complex manifold
with pure dimension n ´ 1. Choose any p P Y zA. Then for all i we have

pNpfiq, pq “ pY, pq (4.9.1)

Step 2. Our goal is to prove that IY,p is generated by some fi,p. It suffices
to show that for every 1 ď i, j ď N , either fi,p{fj,p or fj,p{fi,p is in OX,p. If this
is true, then for any i, j there must be an inclusion relation between fi,pOX,p and
fj,pOX,p. Consequently, among the ideals f1,pOX,p, . . . , fN,pOX,p there is a largest
one fi,pOX,p. Then fi,p generates IY,p.

So let us take i “ 1, j “ 2 for simplicity, and show that either f1,p{f2,p or f2,p{f1,p
is inside OX,p. (Note that they are inside MX,p.) We can assume without loss of
generality that there is a sequence ppnqnPZ`

in XzY converging to p such that

sup
n

|f1ppnq{f2ppnq| ă `8, (4.9.2)

otherwise, there must exist such a sequence for f2{f1. Let f “ f1{f2. Let us show
that fp belongs to OX,p.
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Suppose that fp R OX,p. Recall (4.8.1) for the definition of the polar set P pfq.
Then by (4.9.1) we have the relation pP pfq, pq Ă pY, pq for germs of subsets of X at
p. As argued after (4.8.1), Exp. 2.10.6 implies that fpI k

Y,p Ă OX,p for some k P Z`.
We let k ą 0 be the smallest such number, and find g “ fi1,p ¨ ¨ ¨ fik´1,p (where
1 ď i1, . . . , ik´1 ď N ) such that rf “ fp ¨ g R OX,p. Notice rfIY,p Ă OX,p.

For each fi, by (4.9.2), rffi P OX,p vanishes at p. But Np rffiq Ă pY, pq by (4.9.1).
Thus,Np rffiq is a germ of analytic subset inside pY, pq passing through p. Since (by
Active lemma) both pNp rffiq, pq and pY, pq have dimension n´ 1, these two germs
must be equal. (Otherwise there is a non-zero element of the integral domain
OY,p » OCn´1,0 vanishing on pNp rffiq, pq, which contradicts Active lemma.) We
conclude that rffi,p P IY,p for all i. Therefore rfIY,p Ă IY,p.

Now, the multiplication of rf gives an OX,p-endomorphism α of IY,p. We know
that rf R OX,p. So there does not exist κ P OX,x such that α is the multiplication
µpκq. (Otherwise, since Y is nowhere dense in X by Ritt’s lemma, IY,p contains
a non zero-divisor of OX,p, which is also a non zero-divisor of MX,p. So its multi-
plication with rf equals that with κ, and hence rf “ κ, impossible.) Thus, by Prop.
4.8.4, OX,p is not normal. This is a contradiction.

Theorem 4.9.4. Assume that X is normal. Then SgpXq is thin of order 2.

Consequently, a reduced complex curve (i.e. reduced 1-dimensional complex
space) is smooth iff it is normal.

Proof. Fix x P SgpXq and let n “ dimxX . Since SgpXq is nowhere dense in X
(Thm. 3.6.7), dimx SgpXq ď n ´ 1 by Ritt’s lemma 3.10.7. Let us assume that
dimx SgpXq “ n ´ 1 and find a contradiction.

Shrink X to a neighborhood of x so that SgpXq has local decomposition
SgpXq “ Y1 Y Y2 Y ¨ ¨ ¨ at x. By Prop. 3.10.8, there is i such that dimx Yi “ n ´ 1.
Let Y “ Yi. By Prop. 4.9.1 (and Thm. 3.14.10), X is irreducible at x, and X, Y have
pure dimensions n, n ´ 1 respectively after shrinking X further. By Thm. 3.15.5
and Lem. 4.9.3, we have pY, xq Ć pSgpXq, xq. This gives a contradiction.

Theorem 4.9.5. Let φ : X Ñ Y be a holomorphic map of reduced complex spaces.
Assume that Y is normal and φ is a homeomorphism. Then φ is a biholomorphism.

For example, ifφ is a holomorphic map of complex manifolds which is a home-
omorphism, then φ is a biholomorphism.

Proof. Since Y is locally irreducible, by Cor. 4.5.9, φ is a 1-sheeted branched cover-
ing with branch locus ∆ Ă Y . Let ψ : Y Ñ X be the inverse of φ. Then ψ restricts
to a holomorphic map ψ : Y z∆ Ñ Xzψp∆q.

Choose any y P ∆ and let x “ ψpyq. Let us show that ψ is holomorphic on a
neighborhood of y. By shrinking X to a neighborhood of x replacing Y by φpXq,
we assume that X is a closed subspace of an open ball U in Cn. Let ι : X Ñ Cn be
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the inclusion map. Then ι ˝ ψ can be viewed as a continuous map Y Ñ Cn which
satisfies ι ˝ ψpY q Ă X and is holomorphic outside ∆. By First Riemann extension
Thm. 4.3.1, ι ˝ φ|Y z∆ : Y z∆ Ñ Cn can be extended to a holomorphic function
Y Ñ Cn, which must equal ι ˝ φ as continuous maps. Thus ι ˝ ψ : Y Ñ Cn is
holomorphic and satisfies ι ˝ ψpY q Ă X . Thus, by the reducedness of Y and by
Thm. 1.4.8, ι ˝ ψ restricts to a holomorphic map rψ : Y Ñ X , which clearly equals
ψ as set maps. Therefore φ ˝ rψ “ 1Y and rψ ˝ φ “ 1X as set maps, and hence as
holomorphic maps because X and Y are reduced.

4.10 Global decomposition of reduced complex
spaces

Let X be a reduced complex space.

4.10.1 Global decomposition: the normal case

Proposition 4.10.1. LetX be normal, and let T be a thin subset ofX . Then the following
are equivalent.

(1) X is connected.

(2) XzT is connected.

If X satisfies these conditions, we say that X is irreducible.

Note that in the special case that T “ SgpXq, we have that X is connected iff
the complex manifold XzSgpXq is so.

Proof. If X is a disjoint union of two non-empty open subsets, the same is true for
XzT because T is nowhere dense in X . This shows (2)ñ(1). On the other hand,
if XzT is a disjoint union of non-empty open subset U \ V , define f : XzT Ñ C
to be 0 on U and 1 on V . Since X is normal and f is locally bounded, f can be
extended to a holomorphic function on X because pOX “ OX . But the range of this
function must be t0, 1u. So X is not connected. This proves (1)ñ(2).

Proposition 4.10.2. Let X be normal. Then X is locally connected. Equivalently, X
is a disjoint union of open connected subspaces (which are clearly normal, and hence
irreducible)

X “
ž

αPA

Xα. (4.10.1)

If T is a thin subset of X , then

XzT “
ž

αPA

XαzT (4.10.2)
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is the decomposition of XzT into connected components. Each Xα is the closure of XαzT
in X .

We call (4.10.1) the global decomposition of the normal complex space X . It
follows that (4.10.2) is the global decomposition of XzT .

Proof. That X is locally connected is equivalent to the existence of decomposition
into connected components (4.10.1) is a basic fact in point-set topology. Once we
have (4.10.1), then we clearly have (4.10.2) where eachXαzT is connected by Prop.
4.10.1. Since T X Xα is nowhere dense in Xα, Xα is the closure of XαzT .

To prove that X is locally connected, we choose any x P X and shrink X to
a neighborhood of x so that X is a model space. In particular, the complex man-
ifold XzSgpXq is second countable, and hence has countably many irreducible
components

XzSgpXq “
ž

nPZ`

Ωn.

Define f P OpXzSgpXqq to be constantly n on Ωn. Since X is normal, SgpXq is thin
of order 2 by Thm. 4.9.4. Therefore, by Thm. 4.6.11, f P OpXq. By continuity, f
has range Z`.

Let Ωą1 “
Ť

ną1Ωn. Then XzSgpXq “ Ω1 Y Ωą1. Hence

X “ pXzSgpXqq
cl

“ Ωcl
1 Y Ωcl

ą1.

Since Ωcl
1 Ă A :“ Npf ´ 1q and Ωcl

ą1 Ă B :“ tx P X : fpxq ‰ 1u, and since
X “ A \ B, we must have Ωcl

1 “ A and Ωcl
ą1 “ B. This proves that Npf ´ 1q “ Ωcl

1

and is open in X . The same argument shows that for each n, Ωcl
n “ Npf ´ nq and

is open in X . Note that Ωcl
n is connected because Ωn is so. We thus have

X “
ž

nPZ`

Npf ´ nq “
ž

nPZ`

Ωcl
n

where each Ωcl
n is a connected open subset of X . This proves the existence of

(4.10.1).

4.10.2 Global decomposition: the general case

Proposition 4.10.3. Let T be a thin subset of X containing SgpXq. Let ν : pX Ñ X be
the normalization of X . Then the following are equivalent.

(1) pX is irreducible.

(2) The complex manifold XzT is connected.

If X satisfies these conditions, we say that X is irreducible.
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Again, if we set T “ SgpXq, we see that X is irreducible iff XzSgpXq is con-
nected.

Proof. Since smooth points of X are normal, ν restricts to a biholomorphism
ν : pXzν´1pT q Ñ XzT . Since ν´1pT q is thin in pX , by Prop. 4.10.1, pXzν´1pT q is
connected iff pX is irreducible.

Remark 4.10.4. If X is irreducible then pX , which is locally pure dimensional by
Prop. 4.9.1, must be pure n-dimensional for some n. Therefore X is also pure
n-dimensional due to Cor. 3.12.8.

Proposition 4.10.5. Let ν : pX Ñ X be the normalization of X . Let

pX “
ž

αPA

pXα

be the global decomposition of pX . Let Xα “ νp pXαq. Assume that T is a thin subset of X
containing SgpXq. The following are true.

1. The restriction να : pXα Ñ Xα of ν is the normalization of Xα. T X Xα is a branch
locus of the 1-sheeted branched covering να.

2. Each Xα is the closure of the complex manifold XαzT in X , and

XzT “
ž

αPA

XαzT

is the (disjoint) decomposition of the complex manifold XzT into connected compo-
nents.

We clearly have X “
Ť

αPAXα. This is called the global decomposition of X .

Note that each Xα is an analytic subset of X (cf. Exe. 2.3.11).
To summarize, Prop. 4.10.5 says that the global decomposition of X can be

obtained in two equivalent ways: either by taking the image of the connected
components of pX under the normalization map ν, or by taking the closures of the
connected components of XzT .

Proof. Since smooth points are normal, the restriction

ν : pXzν´1
pT q

»
ÝÑ XzT

is a biholomorphism, which further restricts to a biholomorphism

ν : pXαzν´1
pT q

»
ÝÑ νp pXαzν´1

pT qq “ XαzT.
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Since pXα is an open and closed connected component of pX , ν´1pT q X pXα is
nowhere dense in pXα. So pXαzν´1pT q is dense in pXα. Therefore Xα must be the
closure of XαzT in X . So T X Xα is a thin subset of Xα. Thus να : pXα Ñ Xα

is a 1-sheeted covering with branch locus T X Xα. Since pXα is normal, να is the
normalization of Xα.

By Prop. 4.10.2, we have global decomposition

pXzν´1
pT q “

ž

αPA

pXαzν´1
pT q.

ν sends this decomposition biholomorphically to XzT “
š

αPAXαzT .

4.11 Basic properties of irreducible complex spaces

Let X be a reduced complex space. In this section, we collect some useful facts
about irreducible complex spaces.

Proposition 4.11.1. If X is irreducible, then X is pure dimensional.

Proof. By definition of irreducible complex spaces, the normalization pX is con-
nected. Thus, by Prop. 4.9.1, pX has pure dimension n. Therefore X has pure
dimension n by Cor. 3.12.8.

Proposition 4.11.2. The following are equivalent.

(1) X is irreducible.

(2) Any analytic subset A of X is either nowhere dense in X or A “ X .

(3) Whenever we have X “ A Y B where A and B are analytic subsets of X , then
X “ A or X “ B.

Proof. (1)ñ(2): Let X be irreducible. First assume that X is a connected complex
manifold. Then by Lemma 3.11.4, either IA “ 0X (namely, A “ X) or IA,x ‰ 0
for each x P X . In the latter case, A is clearly nowhere dense in X .

Now assume that X is irreducible but not necessarily smooth. Since XzSgpXq

is connected, the smooth case implies that either A Ą XzSgpXq or AzSgpXq is
nowhere dense in XzSgpXq. In the former case, clearly A “ X . In the latter case,
one checks easily that A is nowhere dense in X .

(2)ñ(3): Assume (2). If X “ A Y B where A and B are analytic, then one of A
and B must equal X , otherwise both A and B are nowhere dense in X due to (2),
which is impossible.

166



(3)ñ(1): Assume that (1) is not true. Let ν : pX Ñ X be the normalization.
Then pX is not connected. We have pX “ pA \ pB where pA, pB are non-empty open
and closed subsets of X . A “ νp pAq is the closure in X of A0 “ νp pAzν´1pSgpXqqq,
and similarly B “ νp pBq is the closure of B0 “ νp pBzν´1pSgpXqqq. Since ν :
pXzν´1pSgpXqq Ñ XzSgpXq is a biholomorphism, A0 and B0 are disjoint non-
empty open subsets of XzSgpXq. So A ‰ X and B ‰ X . This disproves (3).

The following theorem gives a sheaf-theoretic characterization of irreducible
complex spaces. Compare this with Cor. 3.4.2.

Theorem 4.11.3. The following are equivalent.

(1) X is irreducible.

(2) Every coherent OX-module E whose support SupppE q contains a nonempty open
subset U of X satisfies SupppE q “ X .

(3) Every coherent ideal I vanishing on a nonempty open subset of X is the zero ideal.

In the special case that I “ fOX where f P OpXq, this corollary implies that if
f is not constantly zero on X then f is not zero when restricted to any non-empty
open subset of X . Thus, this theorem generalizes Lemmas 1.1.3 and 3.11.4.

Proof. Assume (1). Obvious from Prop. 4.11.2, since SupppE q is a complex sub-
space of X (cf. Def. 2.3.3).

(2)ñ(3): Apply (2) to E “ OX{I, noting that I vanishes on an open subset U
iff NpIq (which is the reduction of SupppOX{Iq) contains U .

Assume that (1) is not true. By Prop. 4.11.2, there is an analytic subset A Ĺ X
containing a non-empty open subset U Ă X . Then IA ‰ 0 but IA|U “ 0. (3) is
not true.

Theorem 4.11.4 (Open mapping theorem). Assume that X is irreducible, Y is a
Riemann surface, and f : X Ñ Y is non-constant holomorphic map. Then f is open.

In particular, when Y “ C and f is considered as a holomorphic function, the
openness of f implies that the absolute value function |f | : X Ñ r0,`8q does not
achieve maximum when restricted to any open subset of X .

Proof. Choose any x P X and let y “ φpxq. To show that f is open at x, we may
shrink Y to a neighborhood of y biholomorphic to an open subset of C and shrink
X to f´1pY q. So we may assume that Y is open in C. Since f is not constant, by
Thm. 4.11.3, fx is not constant in OX,x. Thus f is open at x by Cor. 3.13.7.

Corollary 4.11.5. Let φ : X Ñ Y be a surjective holomorphic map of reduced complex
spaces. If X is irreducible, then Y is also irreducible.
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Proof. Immediate from Prop. 4.11.2.

Proposition 4.11.6. Let X and Y be reduced complex spaces. Then X ˆ Y is irreducible
if and only if both X and Y are irreducible.

Proof. Applying Cor. 4.11.5 to the projections of X ˆ Y to X and Y shows that
if X ˆ Y is irreducible then X and Y are irreducible. Conversely, assume that
X and Y are both irreducible. Then XzSgpXq and Y zSgpY q are connected. So
pXzSgpXqqˆpY zSgpY qq is connected. But this complex manifold is pXˆY qzSgpXˆ

Y q by Cor. 3.10.11. Therefore X ˆ Y is irreducible.

4.12 Normalization and local irreducibility

Let X be a reduced complex space, and let ν : pX Ñ X be the normalization of
X . In this section, we use normalization and global irreducibility to study (local)
irreducible points of X .

Proposition 4.12.1. For each x P X , the number of points in ν´1pxq is equal to the
number of irreducible components in the local decomposition of X at x.

Proof. It suffices to prove the case that X is irreducible at x, since the general
case will follow immediately from Rem. 4.8.8. So let us assume that x is an ir-
reducible point. Suppose that ν´1pxq contains two distinct points y1, y2. Since
pν˚O pXqx “ pOX,x is OX,x-torsion free, by Prop. 3.14.8, ν is open at y1 and y2. Choose
neighborhoods V1 of y1 and V2 and y2 such that V1 X V2 “ H. Then νpV1q X νpV2q
contains a neighborhood U of x. Therefore, for each x1 P U , the fiber ν´1px1q con-
tains at least two different points. This contradicts the fact that ν is a 1-sheeted
branched covering.

Corollary 4.12.2. x P X is an irreducible point of X if and only if ν´1pxq has only one
point. When this is true, ν is open at the only point of ν´1pxq.

Proof. This is immediate from Prop. 4.12.1 and its proof.

Corollary 4.12.3. X is locally irreducible if and only if ν : pX Ñ X is a homeomorphism.

Proof. If X is locally irreducible, then by Prop. 4.12.2, ν is an open map. Also, by
Prop. 4.12.2, ν is bijective. Therefore ν is a homeomorphism.

Conversely, if ν is homeomorphism, then ν is bijective, and Prop. 4.12.2 im-
plies immediately that each point of X is irreducible.

Theorem 4.12.4. Let x P X . Then the following are equivalent.

(1) X is irreducible at x.
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(2) Each neighborhood of x in X contains a smaller irreducible neighborhood of x.

Proof. Assume that x is an irreducible point. For each neighborhood U Ă X of
x, the normalization ν : pX Ñ X restricts to ν : pU Ñ U . By Cor. 4.12.2, ν´1pxq

has only one point px. Then by global decomposition Prop. 4.10.2, pU is a disjoint
union of two closed and open subsets pU “ W1 Y W2 where W1 is the connected
component of pU containing px, and W2 is the union of the other connected com-
ponents. Since W2 is closed in pU , and since ν : pU Ñ U is closed (since any finite
map is closed), νpW2q is a closed subset of U disjoint from x. Then V “ UzνpW2q

is a neighborhood of x contained in U . Clearly ν restricts to a biholomorphism
ν : W1zν´1pSgpXqq Ñ V zSgpXq. Therefore V zSgpXq is connected, and hence V is
irreducible.

Assume that x is not irreducible. Then we can shrink X to a neighborhood of
x such that X has local decomposition X “ X1 Y ¨ ¨ ¨ YXN at x (where N ě 2) such
that Thm. 3.3.5 holds. Let A “ SgpXq Y

Ť

i‰jpXi X Xjq, which is nowhere dense
in X . Then for each neighborhood U Ă X of x, U X A is thin in U , and we have
disjoint union UzA “

šN
i“1pUzAq X Xi where each pUzAq X Xi “ pUzAqz

Ť

j‰iXj

is a non-empty open subset of UzA. So UzA is not connected, and hence U is not
irreducible.

Corollary 4.12.5. Let X and Y be reduced complex spaces. Let x P X and y P Y . Then
x and y are irreducible points of X and Y respectively if and only if xˆy is an irreducible
point of X ˆ Y .

Proof. By Rem. 3.3.2, any holomorphic map sends irreducible germs of complex
spaces to irreducible ones. Therefore if x ˆ y is irreducible then x and y are irre-
ducible.

Conversely, assume that x and y are irreducible. For each neighborhood of
xˆ y, choose a smaller one of the form U ˆ V where U Ă X and V Ă Y are neigh-
borhoods of x and y respectively. By Thm. 4.12.4, there are smaller irreducible
neighborhoods U 1 Q x and V 1 Q y respectively. By Prop. 4.11.6, U 1 ˆ V 1 are irre-
ducible neighborhoods of x ˆ y in X ˆ Y . This proves that x ˆ y is irreducible,
thanks to Thm. 4.12.4.
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Chapter 5

Flatness

5.1 δ-functors

Let A be an abelian category, for instance, the category of (finitely-generated)
modules of a commutative ring, the category of (coherent) OX-modules where
X is a complex space, or more generally the category of X-sheaves of abelian
groups.

In this section, we describe how the homology and cohomology in complex ge-
ometry should look like. Roughly speaking, in a cohomology theory, one should
be able to get long exact sequences from short ones. For instance, given a short
exact sequence of OX-modules, one can get long exact sequences of vector spaces
being the cohomology groups of OX-modules. Moreover, the process of taking
long exact sequences should be compatible with the morphisms of short exact
sequences, i.e. a commutative diagram (5.1.2) where the top and the bottom se-
quences are exact. δ-functors are a precise way to describe such cohomology.

Another question is whether or in which sense the cohomology theories are
unique. (Those unique cohomologies are called universal δ-functors.) It turns
out that the cohomologies are determined by their degree-zero parts if the objects
in the categories (e.g. the OX-modules) can always be embedded into an acyclic
object, i.e., an object whose positive-degree cohomology groups vanish. This is
Thm. 5.1.6, the main result of this section.

Definition 5.1.1. A (cohomological covariant) δ-functor pH‚, δ‚q from an abelian
category A to another one B is a collection of additive functors Hn : A Ñ B
(n P N) together with δn : HnpGq Ñ Hn`1pEq for each short exact sequence in A

0 Ñ E Ñ F Ñ G Ñ 0 (5.1.1)

such that the following conditions hold.

(1) Each exact sequence of A-objects (5.1.1) gives a long exact sequence

0 Ñ H0
pEq Ñ H0

pFq Ñ H0
pGq
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δ0
ÝÑH1

pEq Ñ H1
pFq Ñ H1

pGq
δ1
ÝÑ H2

pEq Ñ ¨ ¨ ¨

In particular, the functor H0 : A Ñ B is left exact.

(2) For each morphism of short exact sequences in A

0 E F G 0

0 E 1 F 1 G 1 0

(5.1.2)

and each n P N, the following diagram commutes

HnpGq Hn`1pEq

HnpG 1q Hn`1pE 1q

δn

δn

We abbreviate δn to δ when no confusion arises.

Definition 5.1.2. Modify the statements in Def. 5.1.1 as follows. For each short
exact sequence (5.1.1) and each n P N. We have δn : HnpEq Ñ Hn`1pGq such that
the following hold, we say pH‚, δ‚q is a (cohomological) contravariant δ-functor,
if

(1) Each exact sequence of A-objects (5.1.1) gives a long exact sequence

0 Ñ H0
pGq Ñ H0

pFq Ñ H0
pEq

δ0
ÝÑH1

pGq Ñ H1
pFq Ñ H1

pEq
δ1
ÝÑ H2

pGq Ñ ¨ ¨ ¨

In particular, the contravariant functor H0 : A Ñ B is left exact.

(2) For each morphism of short exact sequences (5.1.2) and each n P N, the
following diagram commutes

HnpEq Hn`1pGq

HnpE 1q Hn`1pG 1q

δn

δn

Definition 5.1.3. Modify the statements in Def. 5.1.1 as follows. For each short
exact sequence (5.1.1) and each n P N, we have δn : Hn`1pGq Ñ HnpEq such that
the following hold. We say pH‚, δ‚q is a homological (covariant) δ-functor, if
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(1) Each exact sequence of A-objects (5.1.1) gives a long exact sequence

¨ ¨ ¨ Ñ H2pGq
δ1
ÝÑ H1pEq Ñ H1pFq Ñ H1pGq

δ0
ÝÑH0pEq Ñ H0pFq Ñ H0pGq Ñ 0

In particular, the functor H0 : A Ñ B is right exact.

(2) For each morphism of short exact sequences (5.1.2) and each n P N, the
following diagram commutes

Hn`1pGq HnpEq

Hn`1pG 1q HnpE 1q

δn

δn

Definition 5.1.4. A morphism of δ-functors Φ‚ : pH‚, δ‚q Ñ p qH‚, δ‚q associates to
each n P N and E P A a morphism of B-objects Φ “ Φn : HnpEq Ñ qHnpEq such
that:

(1) For each n P N, Φn is natural. Namely, for each morphism E Ñ F of A-
objects, the diagram commutes

HnpEq HnpFq

qHnpEq qHnpFq

Φn Φn

(2) Φ commutes with δ. More precisely, for each n P N and each exact sequence
(5.1.1) in A, the diagram commutes

HnpGq Hn`1pEq

qHnpGq qHn`1pEq

δn

Φn Φn

δn

We leave it to the readers to define morphisms of cohomological contravariant
and homological covariant δ-functors.

Hohomology and cohohomology in complex geometry are characterized
uniquely by the following property.
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Definition 5.1.5. A δ-functor pH‚, δ‚q from A to B is called universal if for any
other δ-functor p qH‚, δ‚q, any natural morphism of functors Φ0 : H0 Ñ qH0 can be
extended uniquely to a morphism of δ-functors Φ‚ : pH‚, δ‚q Ñ p qH‚, δ‚q. Universal
cohomological contravariant functors are defined in a similar way.

A homological covariant δ-functor pH‚, δ‚q from A to B is called universal if
for any other homological covariant δ-functor p qH‚, δ‚q, any natural morphism of
functors Φ0 : qH0 Ñ H0 can be extended uniquely to a morphism of homological
δ-functors Φ‚ : p qH‚, δ‚q Ñ pH‚, δ‚q.

It is clear that any two universal (co)homological covariant/contravariant δ-
functors with the same degree-zero part H0 resp. H0 are isomorphic.

Theorem 5.1.6. Suppose that pH‚, δ‚q is a cohomological covariant δ-functor from A to
B, and each E P A has a monomorphism E ãÑ E0 such that Hą0pE0q “ 0. Then pH‚, δ‚q

is a universal δ-functor.
The same statement holds for cohomological contravariant and homological covariant

δ-functors, except that one assumes instead that each E P A has an epimorphism E0 ↠ E
such that Hą0pE0q “ 0 resp. Hą0pE0q “ 0.

Thus, the uniqueness of (co)hohomology in complex geometry is addressed.
We will discuss the existence problem in the next section.

Proof. We prove the theorem only for cohomological covariant δ-functors, since
the other cases can be treated in a similar way. Choose a δ-functor p qH‚, δ‚q. We
construct Φn and verifies the desired properties by induction on n. The case n “ 0
is obvious. Assume the unique natural morphisms Φ0, . . . ,Φn intertwinined by
δ0, . . . , δn´1 are constructed. Let us construct a unique natural Φn`1 such that δn

intertwines Φn and Φn`1.

Step 1. For each E , find a monomorphism E ãÑ E0 such that Hą0pE0q “ 0.
Then we have an exact sequence 0 Ñ E Ñ E0 Ñ E0{E Ñ 0. Since Hn`1pE0q “ 0,
by Rem. 1.2.9, there is a unique morphism Φn`1 : Hn`1pEq 99K qHn`1pEq which
yields a morphism of long exact sequences

HnpE0q HnpE0{Eq Hn`1pEq 0

qHnpE0q qHnpE0{Eq qHn`1pEq

Φn Φn

δ

Φn`1

δ

(5.1.3)

Step 2. Choose any E ,F P A. Suppose that we have a commutative diagram

E E0

F F0

(5.1.4)
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where the horizontal arrows are monomorphisms and Hą0pE0q “ Hą0pF0q “ 0.
(Note that such diagram must exist: one first find F ãÑ F0 and E ãÑ rE0 such that
Hą0prE0q “ Hą0pF0q “ 0. Then let E0 “ rE0 ‘F0, let E0 Ñ F0 be the projection onto
the second component, and let E Ñ E0 be pE ãÑ rE0q _ pE Ñ Fq.) By Rem. 1.2.9
again, this diagram can be extended uniquely to a morphism of exact sequences

0 E E0 E0{E 0

0 F F0 F0{F 0

This gives rise to a diagram where all the vertical arrows are Φ:

HnpE0q HnpE0{Eq Hn`1pEq

HnpF0q HnpF0{Fq Hn`1pFq

qHnpE0q qHnpE0{Eq qHn`1pEq

qHnpF0q qHnpF0{Fq qHn`1pFq

(5.1.5)

By the assumption on case n, the middle vertical cell commutes. The right front
and the right back rectangles commute due to the construction of Φn`1 in Step 1.
The right top and the right bottom horizontal cells commute by the definition of
δ-functors. Since Hn`1pE0q “ 0, the morphism HnpE0{Eq Ñ Hn`1pEq on the top is
surjective. Therefore the rightmost vertical (green) parallelogram commutes. To
summarize, we have a commutative diagram

Hn`1pFq Hn`1pEq

qHn`1pFq qHn`1pEq

Φn`1 Φn`1 (5.1.6)

This proves that Φn`1 is natural, once we have shown that Φn`1 is independent of
the choice of inclusions E ãÑ E0.

To prove that Φn`1 is well-defined, choose monomorphisms α : E ãÑ E0 and
β : E ãÑ E1 such that Hą0pE0q “ Hą0pE1q “ 0. Then Hą0pE0 ‘ E1q “ 0. Let (5.1.4)
be

E E0 ‘ E1

E E0

α_β

“

α
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where the right vertical arrow is the projection onto the first component.
Then the commutativity of the corresponding diagram (5.1.6) shows that the
Φn`1 : Hn`1pEq Ñ qHn`1pEq defined by α _ β agrees with the one defined by α,
and hence similarly agrees with the one defined by β.

Step 3. We now check that δ intertwines Φn and Φn`1. Choose any exact se-
quence (5.1.1). Choose a monomorphism F ãÑ E0 where Hą0pE0q “ 0, and let
its composition with E Ñ F be the monomorphism E ãÑ E0 in the following
diagram.

0 E F G 0

0 E E0 E0{E 0

“

The first cell commutes. Thus there is a morphism G Ñ E0{E making the second
cell commute. This morphism of exact sequences gives

HnpFq HnpGq Hn`1pEq

HnpE0q HnpE0{Eq Hn`1pEq

qHnpFq qHnpGq qHn`1pEq

qHnpE0q qHnpE0{Eq qHn`1pEq

(5.1.7)

Due to the naturality of Φn and Φn`1, the vertical cells commute. By the defi-
nition of δ-functors, the top right and the bottom right horizontal cells commute.
By the construction of Φn in Step 1, the right front rectangle commutes. There-
fore, since qHn`1pEq Ñ qHn`1pEq is the identity, the right back (green) rectangle
commutes.

5.2 Derived functors

Let A be an abelian category. Recall that an object Q P A is called injective if
the contravariant functor Homp´,Qq is right exact (and hence exact), namely, for
each monomorphism E ãÑ F of objects of A and for each morphism E Ñ Q there
is a morphism F 99K Q such that the following diagram commutes

0 E F

Q
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Q is called projective if the functor HompQ,´q is right exact (and hence exact),
namely, for each epimorphism F ↠ G of objects of A and for each morphism
Q Ñ G, there is a morphism Q 99K F such that the following diagram commutes

Q

F G 0

Definition 5.2.1. We say that A has enough injectives if each object Q P A has a
monomorphism into an injective object. We say that A has enough projectives if
each object Q has an epimorphism from a projective object.

5.2.1 Main result

Choose another abelian category B.

Theorem 5.2.2. If A has enough injectives, then any left exact covariant functor T :
A Ñ B can be extended uniquely (up to isomorphism) to a universal covariant δ-functor.
If A has enough projectives, then any left exact contravariant functor T : A Ñ B can
be extended uniquely (up to isomorphism) to a universal contravariant δ-functor. In both
cases, this functor is denoted by R‚T and called the right derived functor of T .

If A has enough projectives, then any right exact covariant functor T : A Ñ B can be
extended uniquely (up to isomorphism) to a universal homological δ-functor L‚T , called
the left derived functor of T .

In the above three cases, Rą0T resp. Rą0T resp. Lą0T vanish on the injectives resp.
projectives resp. projectives of A.

Remark 5.2.3. By saying R‚T “ pRnT qnPN resp. L‚T “ pLnT qnPN extends T , we
mean R0T “ T resp. L0T “ T .

We need some preparations for the proof of this theorem.

Definition 5.2.4. Let E P A. A right resolution 0 Ñ E Ñ E‚ of E is an exact
sequence

0 Ñ E Ñ E0 φ0

ÝÑ E1 φ1

ÝÑ E2 φ2

ÝÑ ¨ ¨ ¨ (5.2.1)

If each En (but not necessarily E) is injective, we call 0 Ñ E Ñ E‚ an injective
resolution of E .

Similarly, a left resolution E‚ Ñ E Ñ 0 of E is an exact sequence

¨ ¨ ¨
φ3
ÝÑ E2

φ2
ÝÑ E1

φ1
ÝÑ E0 Ñ E Ñ 0 (5.2.2)

If each E‚ is projective, we call E‚ Ñ E Ñ 0 a projective resolution of E .
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Remark 5.2.5. If A has enough injectives (resp. projectives), then any E P A has
an injective (resp. projective) resolution.

Indeed, suppose that A has enough injectives. Then we have an exact sequence
0 Ñ E Ñ E0 Ñ E0{E Ñ 0 where E0 is injective. Embed E0{E into an inject object E1.

This gives an exact sequnce 0 Ñ E Ñ E0 φ1

ÝÑ E1. Embed Cokerpφ1q into an injective
E2, and repeat this procedure again and again to obtain the injective resolution.

5.2.2 Motivations

We now explain the ideas of constructing derived functors. Suppose that a left
exact functor T : A Ñ B can be extended to a δ-functor R‚T . Suppose moreover
that E has a right resolution (5.2.1) such that Rą0T vanishes on E‚. Then the short
exact sequence

0 Ñ E Ñ E0 φ0

ÝÑ Kerpφ1
q Ñ 0

produces a long exact sequence, which yields exact sequences

0 Ñ T pEq Ñ T pE0
q Ñ T pKerφ1

q
δ

ÝÑ R1T pEq Ñ 0 (5.2.3a)

RnT pKerφ1
q

δ
ÝÝÑ

»
Rn`1T pEq pn ě 1q (5.2.3b)

Thus, by (5.2.3a),

R1T pEq »
T pKerφ1q

Im
`

T pE0q
T pφ0q
ÝÝÝÑ T pKerφ1q

˘

(5.2.4)

Since T is left exact, the exactness of 0 Ñ Kerφ1 ι1
ÝÑ E1 φ1

ÝÑ E2 gives an exact
sequence

0 Ñ T pKerφ1
q
T pι1q
ÝÝÝÑ T pE1

q
T pφ1q
ÝÝÝÑ T pE2

q

Therefore, T pι1q sends T pKerφ1q isomorphically to Ker
`

T pE1q Ñ T pE2q
˘

, and
sends the bottom of the RHS of (5.2.4) isomorphically to the image of T pι1 ˝ φ0q :
T pE0q Ñ T pE1q. Thus, by (5.2.4) we obtain an isomorphism

R1T pEq »
Ker

`

T pE1q Ñ T pE2q
˘

Im
`

T pE0q Ñ T pE1q
˘ (5.2.5)

To compute RnT pEq when n ą 1, we use (5.2.3b), which says that it is isomor-
phic to Rn´1T pKerφ1q. Note that 0 Ñ Kerφ1 Ñ E1 Ñ E2 Ñ ¨ ¨ ¨ is a resolution of
Kerφ1 where all the terms after Kerφ1 are killed by Rą0T . Apply (5.2.3b) again
and repeat the same procedure, we obtain

RnT pEq » Rn´1T pKerφ1
q » Rn´2T pKerφ2

q » ¨ ¨ ¨ » R1T pKerφn´1
q. (5.2.6)
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Apply (5.2.5) to the resolution

0 Ñ Kerφn´1
Ñ En´1

Ñ En Ñ En`1
Ñ ¨ ¨ ¨

of Kerφn´1, we see that (5.2.6) is isomorphic to

RnT pEq »
Ker

`

T pEnq Ñ T pEn`1q
˘

Im
`

T pEn´1q Ñ T pEnq
˘ (5.2.7)

Since this is also true when n “ 1 and when n “ 0 if we set Eă0 “ 0, we conclude
R‹T pEq » H‹pT pE‚qq, namely, that R‹T pEq is isomorphic to the cohomology of the
complex T pE‚q. In the proof of Thm. 5.2.2, we will use injective resolutions and
H‹pT pE‚qq to construct right derived functors.

Exercise 5.2.6. Under the assumptions at the beginning of Subsec. 5.2.2, assume
moreover that F P A has a right resolution 0 Ñ F Ñ F‚ such that Rą0T vanishes
on F‚. Let Φ : E Ñ F be a morphism which can be extended to a commutative
diagram in A:

0 E E0 E1 E2 ¨ ¨ ¨

0 F F0 F1 F2 ¨ ¨ ¨

Φ

d0

Φ0

d1

Φ1

d2

Φ2

d0 d1 d2

For each q P N, show that under the identification RqT pEq » HqpT pE‚qq and
RqT pFq » HqpT pF‚qq, the morphism RqT pΦq : RqT pEq Ñ RqT pFq is equal to
HqpT pΦ‚qq.

(Hint: Case q “ 0: obvious. Case q “ 1: construct a morphism of exact se-
quences from (5.2.3a) to a similar one about F and F‚. Case q ą 1: by induction
and a suitable morphism of exact sequences from (5.2.3b).)

In the case that T : A Ñ B is a right exact functor and can be extended to a
homological δ-functor L‚T , the argument is slightly different: we use the fact that
for any morphisms of B-objects C1

f
↠ C2

g
ÝÑ C3 where f is an epimorphism and

the exactness of the sequence is not assumed, there is an isomorphism

f :
KerpC1

g˝f
ÝÝÑ C3q

KerpC1
f
↠ C2q

»
ÝÝÑ KerpC2

g
ÝÑ C3q (5.2.8)

Suppose that E has a left resolution (5.2.2) such that Lą0T vanishes on E‚. Then
we have a short exact sequence

0 Ñ Impφ1q
ι1
ÝÑ E0 Ñ E Ñ 0

whose long exact sequence gives exact sequences

0 Ñ L1T pEq
δ

ÝÑ T pImφ1q
T pι1q
ÝÝÝÑ T pE0q Ñ T pEq Ñ 0 (5.2.9)
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Ln`1T pEq
δ

ÝÝÑ
»

LnT pImφ1q pn ě 1q (5.2.10)

Thus L1T pEq » Ker
`

T pImpφ1qq
T pι1q
ÝÝÝÑ T pE0q

˘

. Since T is right exact and φ1 : E1 ↠
Imφ1 is surjective, the first morphism in the following non-necessarily exact se-
quence is surjective

T pE1q T pImφ1q T pE0q
T pφ1q T pι1q

Therefore, by (5.2.8),

L1T pEq »
KerpT pE1q Ñ T pE0qq

KerpT pE1q
T pφ1q
ÝÝÝÑ T pImφ1qq

where the bottom is clearly equal to ImpT pE2q Ñ T pE1qq because the right exact
functor T preserves the exactness of E2 Ñ E1

φ1
ÝÑ Imφ1 Ñ 0. This implies that

LnT pEq »
KerpT pEnq Ñ T pEn´1qq

ImpT pEn`1q Ñ T pEnqq
(5.2.11)

holds when n “ 1. It clearly holds when n “ 0 if we set Eă0 “ 0. Thus, similar
to the previous case of left exact functors, we can use (5.2.10) to show that (5.2.11)
holds for all n P N. Thus L‹T pEq » H‹pT pE‚qq, namely, L‹T pEq is isomorphic to
the homology of the complex T pE‚q.

5.2.3 δ-functors for complexes

We recall some basic facts from homological algebra. They can be found in
any textbook on algebraic topology (e.g. [Hat, Sec. 2.1]).

There is a canonical δ-functor pH‚, δ‚q from the category CompBq of (cochain)
complexes of B to B. (Here we assume ‚ P Z instead of ‚ P N.) If C‚ “ pCn dn

ÝÑ

Cn`1qnPZ is a complex in B (in particular dn`1 ˝dn “ 0 for all n), then H‹pC‚q is the
cohomology of this complex, namely

Hn
pC‚

q “
KerpCn Ñ Cn`1q

ImpCn´1 Ñ Cnq

Given any morphism of complexes f ‚ : B‚ Ñ C‚, namely, whenever we have
commutative diagram

¨ ¨ ¨ Bn´1 Bn Bn`1 ¨ ¨ ¨

¨ ¨ ¨ Cn´1 Cn Cn`1 ¨ ¨ ¨

fn´1 fn fn`1
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we have a canonical morphism Hnpf ‚q : HnpB‚q Ñ HnpC‚q for each n.
To finish constructing the δ-functor, we note that any short exact sequence of

complexes induces naturally a long exact sequence of their (co)homology. More
precisely, suppose we have a short exact sequence of complexes in B: 0 Ñ A‚ Ñ

B‚ Ñ C‚ Ñ 0, namely, a commuting diagram of morphisms in B where n runs
through all integers, see Fig. 5.2.1. Then we have a long exact sequence

...
...

...

0 An`1 Bn`1 Cn`1 0

0 An Bn Cn 0

0 An´1 Bn´1 Cn´1 0

...
...

...

Figure 5.2.1

¨ ¨ ¨ Ñ Hn´1
pC‚

q Ñ Hn
pA‚

q Ñ Hn
pB‚

q Ñ Hn
pC‚

q Ñ Hn`1
pA‚

q Ñ ¨ ¨ ¨

The connecting morphisms HnpC‚q
δn
ÝÑ Hn`1pA‚q are defined by “diagram chas-

ing”. Moreover, if we have a morphism of short exact sequences of complexes

0 A‚ B‚ C‚ 0

0 rA‚
rB‚

rC‚ 0

(namely, if we replace ‚ by each n, then this diagram commutes, and the two
horizontal sequences are exact), then we have a commutative diagram

¨ ¨ ¨ Hn´1pC‚q HnpA‚q HnpB‚q HnpC‚q Hn`1pA‚q ¨ ¨ ¨

¨ ¨ ¨ Hn´1p rC‚q Hnp rA‚q Hnp rB‚q Hnp rC‚q Hn`1p rA‚q ¨ ¨ ¨

(5.2.12)
So pH‚, δ‚q is a δ-functor where ‚ P Z.

It is important that homotopic maps of complexes give the same map on
(co)homology. To be more precise, let B‚, C‚ be a complexes of B, and let
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f, g : B‚ Ñ C‚ be morphisms of complexes. We say that f and g are ho-
motopic if there are morphisms w “ wn : Bn Ñ Cn´1 for all n such that
f ´ g “ dw ` wd: more precisely, f ´ g : Bn Ñ Cn equals dn´1wn ` wn`1dn

where dn : Bn Ñ Bn`1 and dn´1 : Cn´1 Ñ Cn. Then f and g induce the same map
Hnpfq “ Hnpgq : HnpB‚q Ñ HnpC‚q for all n.

If there are morphisms of complexes φ : B‚ Ñ C‚ and ψ : C‚ Ñ B‚ such that
ψ ˝φ is homotopic to 1B‚ and φ ˝ψ is homotopic to 1C‚ , we say that B‚ and C‚ are
homotopic. In that case, we clearly have an isomorphism

H‹
pφq : H‹

pB‚
q

»
ÝÑ H‹

pC‚
q

with inverse H‹pψq.

5.2.4 Proof of Thm. 5.2.2

Step 1 of the following proof is especially important: it gives an explicit way
of constructing derived functors using resolutions.

Proof of Thm. 5.2.2. We only prove the first case; the other two cases can be
treated in a similar way. Also, the uniqueness of derived functors is clear from
the definition of universal δ-functors. So it suffices to prove the existence.

Step 1. Assume that A has enough injectives and choose a left exact functor
T : A Ñ B. We construct the functor RnT for each n. For each E P A, we fix an
injective resolution 0 Ñ E Ñ E‚, and set Eă0 “ 0 so that pEnqnPZ is a complex in A.
We define

RnT pEq “ Hn
pT pE‚

qq “
Ker

`

T pEnq Ñ T pEn`1q
˘

Im
`

T pEn´1q Ñ T pEnq
˘ (5.2.13)

Choose any F P A together with an injective resolution 0 Ñ F Ñ F‚. If
φ : E Ñ F is a morphism, we need to construct RnT pφq : RnT pEq Ñ RnT pFq for
all n P N. We construct morphisms φn : En Ñ Fn by induction on n P N such that
the following diagram commutes

0 E E0 E1 E2 ¨ ¨ ¨

0 F F0 F1 F2 ¨ ¨ ¨

φ

d0

φ0

d1

φ1

d2

φ2

d0 d1 d2

(5.2.14)

The existence of φ0 follows easily from that F0 is injective and that E ãÑ E0 is a
monomorphism. Suppose φ0, . . . , φn are constructed. Then the commutativity of

En´1 En

Fn´1 Fn

φn´1 φn
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implies that φn descends to a morphism CokerpEn´1 Ñ Enq Ñ CokerpFn´1 Ñ Fnq.
Thus, by the injectivity of Fn`1, there is a morphism φn`1 such that the diagram

0 CokerpEn´1 Ñ Enq En`1

0 CokerpFn´1 Ñ Fnq Fn`1

φn φn`1

This finishes the construction of φn when n ě 0.
Let φn “ 0 if n ă 0. Then we have a morphism of A-complexes φ‚ : E‚ Ñ F‚,

and hence a morphism of B-complexes H‹pT pφ‚qq : H‹pT pE‚qq Ñ H‹pT pF‚qq. The
degree n morphism is simply defined to be

RnT pφq “ Hn
pT pφ‚

qq (5.2.15)

Step 2. To verify thatRnT is a functor, we still need to show thatRnT preserves
the composition of morphisms. This fact is clearly true if we can show thatRnT pφq

is independent of the choice of φ‚. Thus, it suffices to show that if ϕ‚ : E‚ Ñ F‚

also makes (5.2.14) commutes, then φ‚ and ϕ‚ are homotopic (Subsec. 5.2.3). Then
T pφ‚q and T pϕ‚q will be homotopic and hence HnpT pφ‚qq “ HnpT pϕ‚qq.

Recall that we set Eă0 “ Fă0 “ 0. So certainly we set wn : En Ñ Fn´1 to be 0
if n ď 0. Since φ0, ϕ0 : E0 Ñ F0 restrict to the same morphism φ : E Ñ F , φ0 ´ ϕ0

vanishes on E , and hence restricts to a morphism E0{E Ñ F0. The injectivity of
F0 implies that there is a morphism w1 : E1 Ñ F0 such that the diagram

0 E0{E E1

F0
w1

commutes. Then clearly φ0 ´ ϕ0 “ d´1w0 ` w1d0.
To avoid confusions, we write the coboundary maps of complexes as d‚

E : E‚ Ñ

E‚`1 and d‚
F : F‚ Ñ F‚`1. Suppose wďn`1 are constructed and φn´ϕn “ dn´1

F wn`

wn`1dnE where n P N. Let us construct wn`2. We compute that

pφn`1
´ ϕn`1

qdnE “ dnFpφn ´ ϕnq “ dnFpdn´1
F wn ` wn`1dnEq “ pdnFw

n`1
qdnE

where we have used the commutativity of (5.2.14) and its analog for ϕ‚ to derive
the first equality. This shows that φn`1 ´ ϕn`1 ´ dnFw

n`1 vanishes on ImdnE , and
hence descends to a morphism En`1{ImpdnEq Ñ Fn`1. Thus, by the injectivity of
Fn`1, there is a morphism wn`2 : En`2 Ñ Fn`1 such that the diagram

0 En`1{ImpdnEq En`2

Fn`1

wn`2
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commutes. This finishes the construction of the homotopy map w‚.
Consider the special case that F “ E and φ “ 1E in (5.2.14). (Namely, we

choose injective resolutions 0 Ñ E Ñ E‚ and 0 Ñ E Ñ F‚) Then the existence of
homotopy maps shows that E‚ is homotopic to F‚, and hence E‚ is homotopic to
F‚. Therefore, the equivalence class of RnT pEq is independent of the choice of in-
jective resolutions of E . In particular, if E is injective, since 0 Ñ E Ñ E Ñ 0 Ñ ¨ ¨ ¨

is an injective resolution of E , we have Rą0T pEq “ 0.

Step 3. Given a short exact sequence 0 Ñ E Ñ F Ñ G Ñ 0, if we find
morphisms for complexes such that the sequence 0 Ñ E‚ Ñ F‚ Ñ G‚ Ñ 0 is
exact, then we can define the connecting morphism δ : R‹T pGq Ñ R‹`1T pEq to be
the one δ : H‹pT pG‚qq Ñ H‹`1pT pE‚qq. To do this, we need to choose a different
injective resolution for F :

0 Ñ F Ñ E0
‘ G0

Ñ E1
‘ G1

Ñ E2
‘ G2

Ñ ¨ ¨ ¨

We explain the morphism F Ñ E0‘G0, since the others are clear. It is the diagonal
map of F Ñ E0 and F Ñ G0. The latter is the composition of F Ñ G and the
monomorphism G ãÑ G0. The first one is one that makes the following diagram
commutes, which exists because E0 is injective:

E0

0 E F

Set rFn “ En ‘ Gn. Then we have a commutative diagram

...
...

...

0 E1
rF1 G1 0

0 E0
rF0 G0 0

0 E F G 0

0 0 0

where all the rows are exact, the E-column and the G-column are (clearly) exact.
Then it is not hard to check that the middle column is exact. (A quick way to see
this is to view the above diagram as a short exact sequence of complexes 0 Ñ α Ñ

β Ñ γ Ñ 0, which induces a long exact sequence in which the cohomologies of α
and γ are zero. Therefore the cohomology of β vanishes, which means precisely
that the F-column in the above diagram is exact.)

183



Thus, we have δ : R‹T pGq Ñ R‹`1T pEq which clearly satisfies requirement (2)
of Def. 5.1.1. Since the functor H‹ ˝ T preserves the composition of morphisms of
complexes, we have a commutative diagram

Hn´1pT pG‚qq HnpT pE‚qq HnpT p rF‚qq HnpT pG‚qq Hn`1pT pE‚qq

Hn´1pT pG‚qq HnpT pE‚qq HnpT pF‚qq HnpT pG‚qq Hn`1pT pE‚qq

“ “ “ “

where the morphisms are either induced by the morphisms of complexes through
H‹ ˝ T , or are the previously defined δ. The first line is exact because H‹ is a δ-
functor (Subsec. 5.2.3). Therefore the second line is also exact. Thus pR‹T, δq also
satisfies condition (1) of Def. 5.1.1. So it is a δ-functor. We have shown at the end
of Step 2 that Rą0T vanishes on injective objects. So pR‹T, δq is universal by Thm.
5.1.6.

The following observation will be used in the proof of Prop. 5.9.3 and Thm.
5.9.7

Remark 5.2.7. Let A be a ring and A the category of A-modules ModpAq. Suppose
that T : A Ñ A is a left/right exact covariant/contravariant functor. We say that
T preserves multiplications if, for all a P A and E P A, if we let µa : E ˆa

ÝÑ

E denote the multiplication by a (which is clearly a morphism), then T pµaq is
the multiplication of a on T pEq. For instance, tensor product and Hom preserve
multiplications.

We will see that A has enough injectives and projectives. In (5.2.14), if we let
F “ E , F‚ “ E‚, and let φ be µa, then one can clearly choose all φ‚ to be µa.
It follows from (5.2.15) that if T preserves multiplications, then RnT resp. LnT
preserves multiplications for all n P N.

5.3 Ext and Tor

We fix a commutative ring A and let ModpAq be the category of A-modules.
It is clear that any A-object has an epimorphism from a free A-module. Since free
A-modules are clearly projective objects in ModpAq, we see that ModpAq has enough
projectives.

We shall prove that ModpAq has enough injectives, and we shall mainly focus
on the case that A is a C-algebra, since this is enough for the purpose of our notes.
First we need a lemma.

Lemma 5.3.1. Assume that A is a C-algebra. Then for any A-modules M,N and any
C-vector space V we have a canonical equivalence of A-modules

HomCpM bA N ,Vq » HomApM,HomCpN ,Vqq (5.3.1)
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where the A-module structure on HomCpM bA N ,Vq resp. HomCpN ,Vq is defined by
that of M bA N resp. N . In particular, taking N “ A, we have

HomCpM,Vq » HomApM,HomCpA,Vqq. (5.3.2)

Proof. The RHS of (5.3.1) is equivalently the A-module W of C-bilinear maps T :
M ˆ N Ñ V satisfying Φpaξ, ηq “ Φpξ, aηq for all ξ P M, η P N , a P A. The action
of a P A on Φ is Φpa¨, ¨q.

Given a C-linear map S : M bA N Ñ V , one can compose it with the obvious
map M ˆ N Ñ M bA N to get T . The correspondence S ÞÑ T is clearly injective.
To show that it is surjective, note that if the A-module structure on HomCpW ,Vq

is defined by that of W , then the map

M ˆ N Ñ HomCpW ,Vq

pξ, ηq ÞÑ
`

T P W ÞÑ T pξ, ηq
˘

is clearly A-bilinear, and hence gives rise to an A-module morphism

Φ : M bA N Ñ HomCpW ,Vq.

Each T P W gives rise to a canonical linear map HomCpW ,Vq Ñ V , whose com-
position with Φ is the desired S.

Remark 5.3.2. The above lemma can be easily generalized: assume A is a B-
algebra, namely, A,B are rings and a ring homomorphism B Ñ A is fixed. Let
M,N be A-modules and V be B-modules. Then we have a canonical A-module
isomorphism

HomBpM bA N ,Vq » HomApM,HomBpN ,Vqq

Proposition 5.3.3. ModpAq has enough injectives.

Proof. We prove the proposition only in the special case that A is an algebra over a
field (say C), and refer the readers to [Lang, Sec. XX.4] for the proof in the general
case. For each E P A,

E Ñ E0
“ HomCpA, Eq

ξ ÞÑ
`

a P A ÞÑ aξ
˘

is an A-module monomorphism. Since HomCp´, Eq is exact on ModpAq (and in-
deed on the category of C-vector spaces), by Lemma 5.3.1, HomAp´, E0q is exact.
Therefore E0 is injective.

Recall that for each E P ModpAq, HomApE ,´q is a left exact functor, and E bA ´

is a right exact functor.
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Definition 5.3.4. For each E P ModpAq, we define the functor ExtnApE ,´q (n P N)
to be the right derived functor of HomApE ,´q, and define the functor TorAn pE ,´q

to be the left derived functor of E bA ´. In particular, we have

Ext0ApE ,Fq “ HomApE ,Fq TorA0 pE ,Fq “ E bA F

Theorem 5.3.5. Choose any F P ModpAq. Then by defining its action on morphisms
and defining δ, Ext‚

Ap´,Fq can be extended to a right derived contravariant functor of
HomAp´,Fq, and TorA‚ p´,Fq can be extended to a left derived homological (covariant)
functor of ´ bA F .

Proof. We prove the theorem for Ext. Tor can be treated in a similar way. Also,
we suppress the subscript A for simplicity.

Fix an injective resolution 0 Ñ F Ñ F‚. For each morphism φ : M Ñ N in
ModpAq, we have an obvious morphism of complexes

0 HompM,F0q HompM,F1q HompM,F2q ¨ ¨ ¨

0 HompN ,F0q HompN ,F1q HompN ,F2q ¨ ¨ ¨

By Subsec. 5.2.2 or Step 1 in Subsec 5.2.4, Ext‹
pM,Fq “ H‹pHompM,F‚qq and

the same relation holds if we replace M with N . Thus H‹ acting on the above
morphism of complexes defines a morphism ExtnpM,Fq Ð ExtnpN ,Fq for all
n P N.

Suppose 0 Ñ M Ñ N Ñ P Ñ 0 is an exact sequence in ModpAq. Since each
Fn is injective, we get a short exact sequence of chain complexes

0 Ð HompM,F‚
q Ð HompN ,F‚

q Ð HompP ,F‚
q Ð 0

which yields a long exact sequence through H‹. In this way, we obtain a connect-
ing morphism δ : H‹pM,F‚q Ñ H‹`1pP ,F‚q. This makes Ext‚

Ap´,Fq a contavari-
ant δ-functor. One checks easily that Hą0pHompM,F‚qq vanishes when M is free.
Since any A-module has an epimorphism from a free module, we conclude from
Thm. 5.1.6 that Ext‚

Ap´,Fq is universal.

Thus, the isomorphism class of ExtnApE ,Fq can be defined either via the right
derived functor of HomApE ,´q or via the the right derived contravariant functor
of HomAp´,Fq. The isomorphism class of TorAn pE ,Fq can be defined using the left
derived functor of either E bA ´ or ´ bA F . Thus, as E bA F » F bA E , we see
immediately that:

Corollary 5.3.6. For each n P N and E ,F P ModpAq, we have an isomorphism of A-
modules

TorAn pE ,Fq » TorAn pF , Eq
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Using Ext, we give a criterion for projectivity.

Proposition 5.3.7. Let E P ModpAq. Then the following are equivalent.

(1) E is projective.

(2) Ext1ApE ,´q is zero on ModpAq. (It then follows automatically that Extą0
A pE ,´q is

trivial.)

(3) E is a direct summand of a free A-module.

Proof. Suppose (1) is true. For each F P ModpAq, Ext‚
Ap´,Fq is a right derived

contravariant functor. So by Thm. 5.2.2, Extą0
A p´,Fq vanishes on projective ob-

jects. This proves (2). Conversely, assume Ext1ApE ,´q is zero. Then since each
short exact sequence 0 Ñ F 1 Ñ F Ñ F2 Ñ 0 in ModpAq gives a long exact
sequence

0 Ñ HomApE ,F 1
q Ñ HomApE ,Fq Ñ HomApE ,F2

q Ñ Ext1ApE ,F 1
q,

HomApE ,´q is exact, and hence E is projective. We have finished proving (1)ô(2).
(1)ñ(3): Assume (1). Choose an epimorphism α : E 1 ↠ E where E 1 is a free

A-module. Since E is projective, HomApE , E 1q Ñ HomApE , Eq is surjective. Choose
β P HomApE , E 1q sent to 1E P HomApE , Eq. This means that α ˝ β “ 1E . So α splits.
Therefore E 1 » E ‘ Kerα. This proves (3).

(3)ñ(2): Assume that E 1 » E ‘ E0 where E 1 is free. Then for each F P ModpAq,

Ext1ApE ,Fq ‘ Ext1ApE0,Fq » Ext1ApE 1,Fq “ 0.

So Ext1ApE ,Fq “ 0.

Remark 5.3.8. It is not hard to check that taking direct limit is an exact func-
tor from the category of direct systems of A-modules to ModpAq. Namely, if
pEiqiPI , pFiqiPI , pGiqiPI are direct systems in ModpAq, and if we have an exact se-
quence of morphisms of direct systems

0 Ñ E‚ Ñ F‚ Ñ G‚ Ñ 0

then we have an exact sequence

0 Ñ lim
iPI

Ei Ñ lim
iPI

Fi Ñ lim
iPI

Gi Ñ 0

Using this fact, we prove:

Proposition 5.3.9. Let pEiqiPI be a direct system of A-modules and let F be an A-module.
Then for each n P N, we have a natural isomorphism

lim
ÝÑ
iPI

TorAn pEi,Fq » TorAn

´

lim
ÝÑ
iPI

Ei,F
¯

(5.3.3)
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Proof. Choose a projective resolution F‚ Ñ F Ñ 0. Then we have a chain complex
of systems in A

¨ ¨ ¨ Ñ E‚ bA F2 Ñ E‚ bA F1 Ñ E‚ bA F0 Ñ 0

More precisely, if i, j P I and i ď j, we have a commutative diagram

¨ ¨ ¨ Ei bA F2 Ei bA F1 Ei bA F0 0

¨ ¨ ¨ Ej bA F2 Ej bA F1 Ej bA F0 0

By Rem. 5.3.8, taking direct limit commutes with taking kernels and cokernels.
Therefore it commutes with talking homology. This proves

lim
ÝÑ
iPI

HnpEi bA F‚q » Hn

´

lim
ÝÑ
iPI

´

Ei bA F‚

¯¯

» Hn

´´

lim
ÝÑ
iPI

Ei
¯

bA F‚

¯

where the second equivalence is due to the fact that direct limit commutes with
tensor product (Rem. 1.9.2). This proves (5.3.3).

Example 5.3.10. Let I, J be ideals of a ring A. Let us compute TorA1 pA{I,A{Jq.
Tensoring A{I with the short exact sequence

0 Ñ J Ñ A Ñ A{J Ñ 0

we get a long exact sequence

0 Ñ TorA1 pA{I,A{Jq Ñ pA{Iq bA J Ñ pA{Iq bA A Ñ pA{Iq bA pA{Jq Ñ 0

Since tensor products commute with cokernels, we have natural equivalences
pA{IqbAA » A{I , pA{IqbAJ » J{IJ , and pA{IqbApA{Jq »

`

A{J
˘L`

pI`Jq{J
˘

»

A{pI ` Jq so that the above long exact sequence is equivalent to

0 Ñ TorA1 pA{I,A{Jq Ñ J{IJ Ñ A{I Ñ A{pI ` Jq Ñ 0

Therefore TorA1 pA{I,A{Jq is equivalent to the kernel of J{IJ Ñ A{I , which is
pI X Jq{IJ . We conclude

TorA1 pA{I,A{Jq »
I X J

IJ
(5.3.4)

Example 5.3.11. Let E be an A-module, and let I Ă A be an ideal. Since A is
A-free and hence projective, TorA1 p´,Aq “ 0. So we have a long exact sequence

0 Ñ TorA1 pE ,A{Iq Ñ E bA I Ñ E bA A (5.3.5)

which shows that

TorA1 pE ,A{Iq » Ker
`

E bA I Ñ E bA A
˘

(5.3.6)

So TorA1 pE ,A{Iq “ 0 iff E bA I Ñ E bA A is injective (i.e. the multiplication map
E bA I Ñ E is injective).
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5.4 Flatness

In this section, A,B denote commutative rings, and X, Y, S denote complex
spaces. Recall that by saying that A is a B-algebra, we mean that a morphism
of rings B Ñ A is fixed so that any A-module is also a B-module. We write
pA,mq when we mean that A is a local ring with maximal ideal m. Recall that by
definition, a morphism of local rings pB, nq Ñ pA,mq is a ring homomorphism
sending n into m.

Proposition 5.4.1. Let E be an A-module. Then the following statements are equivalent.

(1) The functor E bA ´ is exact on ModpAq.

(2) TorAn pE ,Fq “ 0 for each n ą 0 and F P ModpAq.

(3) TorA1 pE ,Fq “ 0 for each F P ModpAq.

(4) TorA1 pE ,A{Iq “ 0 for each ideal I Ă A.

If one of these statements holds, we say that E is a flat A-module.

Proof. (1)ñ(2): Suppose (1) is true. If we let T be the functor E bA ´, then by Thm.
5.1.6, L‚T is the universal δ-functor extending T if we set L0T “ T and Lą0T “ 0.
So L‚T “ TorA‚ pE ,´q. This proves (2).

(2)ñ(3): Obvious.
(3)ñ(1): If (3) is true, then any short exact sequence 0 Ñ M Ñ N Ñ P Ñ 0 in

ModpAq induces a long exact sequence

TorA1 pE ,Pq Ñ E bA M Ñ E bA N Ñ E bA P Ñ 0

where the first term is 0. So (1) follows.
(3)ñ(4): Obvious.
(4)ñ(3): Assume (3). Since any A-module is a union (i.e. direct limit) of

its finitely-generated A-submodules, by Prop. 5.3.9, it suffices to show that
TorA1 pE ,Fq “ 0 whenever F is finitely generated. We prove this by induction
on n, the minimal number of elements generating F . The case n “ 0 is trivial.
Assume case ď n ´ 1 is proved. Let F be A-generated by n elements, and let F 1

be its submodule generated by the first n ´ 1 elements. Denote the last element
by x. Then we have an exact sequence

0 Ñ F 1
Ñ F Ñ A{I Ñ 0

where I “ ta P A : ax P F 1u. We obtain an exact sequence

TorA1 pE ,F 1
q Ñ TorA1 pE ,Fq Ñ TorA1 pE ,A{Iq

where the first term vanishes by induction and the third term vanishes by (4). So
the middle term vanishes. This proves (3).
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The following property was used in the proof of Lemma 3.8.2.

Theorem 5.4.2. Let pA,mq be a Noetherian local ring. Let E be a finitely-generated
A-module. Then the following are equivalent.

(1) E is a free A-module of finite rank.

(2) E is a projective A-module.

(3) E is a flat A-module.

(4) TorA1 pA{m, Eq “ 0.

Proof. Clearly (1)ñ(2). By Thm. 5.2.2, if E is projective then TorAą0pE ,´q “ 0.
Therefore (2)ñ(3). Clearly (3)ñ(4).

Assume (4). Choose x1, . . . , xn P E forming a basis of the pA{mq-vector space
E bA pA{mq. By Nakayama’s lemma 1.2.15, the morphism An Ñ M sending the
j-th basis of An to xj is surjective. Let N be the kernel of this morphism. Then the
short exact sequence 0 Ñ N Ñ An Ñ E Ñ 0 gives a long one

0 Ñ TorA1 pA{m, Eq Ñ N bA pA{mq Ñ pA{mq
n »

ÝÑ E bA pA{mq Ñ 0

That the second last morphism is an isomorphism is due to the fact that x1, . . . , xn
are a basis. Since TorA1 pA{m, Eq “ 0, we have N bA pA{mq “ 0. Hence N “ 0 by
Nakayama’s lemma. Therefore An Ñ M is an isomorphism. This proves (1).

Definition 5.4.3. Let φ : X Ñ Y be a holomorphic map and E be an OX-module. If
x P X , we say that E is flat (over Y ) at x or φ-flat at x, if Ex is a flat OY,φpxq-module.
If E is φ-flat for all x P X , we say that E is flat over Y or that E is φ-flat.

If OX is flat over Y at x, we say that φ is flat at x. If OX is flat over Y , we say
that φ is a flat holomorphic map.

Example 5.4.4. If Y is a reduced point, then OY “ C. So any OX-module is clearly
flat over Y .

Example 5.4.5. By Thm. 5.4.2, a finite holomorphic map φ : X Ñ Y is flat iff φ˚OX

is a locally free OY -module. In particular, by Thm. 2.5.4, Weierstrass maps are flat.

Example 5.4.6. Let φ : X Ñ Y and ψ : Y Ñ Z be holomorphic maps of complex
spaces. Let E be an OX-module. Let x P X . Suppose that ψ is flat at φpxq and E is
φ-flat at x. The E is clearly pψ ˝ φq-flat at x.

Example 5.4.7. Let I be an idea of OY , and let X “ SpecanpOY {Iq. Suppose x P X
(i.e. x P NpIq) and Ix ‰ 0, then ι : X Ñ Y is not flat at x.

Indeed, if ι is flat at x, then OX,x “ OY,x{Ix is not OY,x-flat. By Exp. 5.3.10,

0 “ Tor
OY,x
1 pOY,x{Ix,OY,x{Ixq “ Ix{I2

x.

Therefore I2
x “ Ix, and hence mX,xIx “ Ix. So Ix “ 0 by Nakayama’s lemma

1.2.15. This contradicts the assumption Ix ‰ 0.

190



Proposition 5.4.8. Let φ : X Ñ Y be a finite holomorphic map. Consider the following
statements:

(1) φ is flat.

(2) φ˚OX is a locally free OY -module (of finite rank).

(3) The map

y P Y ÞÑ
ÿ

xPXy

dimC OXy ,x (5.4.1)

(where Xy “ φ´1pyq) is locally constant.

Then (1)ô(2) and (2)ñ(3). If Y is reduced, then (1)ô(2)ô(3).

Proof. Since φ˚OX is OY -coherent (Thm. 2.7.1), the local freeness of φ˚OX is equiv-
alent to that pφ˚OXqy is OY,y-free for all y P Y . Choose any y P Y . By Prop. 2.4.5,
we have pφ˚OXqy »

À

xPXy
OX,x, which is OY,y-free iff OX,x is OY,y-free for all

x P Xy. So (2) means that for all x P X and y “ φpxq, OX,x is OY,y-free, which is
equivalent to that OX,x is OY,y-flat by Thm. 5.4.2. This proves (1)ô(2).

The RHS of (5.4.1) is the dimension of
à

xPXy

OXy ,x »
à

xPXy

OX,x bOY,y pOY,y{mY,yq

»pφ˚OXqy bOY,y pOY,y{mY,yq “ φ˚OX |y

If φ˚OX is locally free then y ÞÑ dimC φ˚OX |y is locally constant, and vice versa if
Y is reduced (due to Prop. 1.3.15). This proves that (2)ñ(3), and that (3)ñ(2) if Y
is reduced.

Example 5.4.9. Let X be a connected compact Riemann surface and f a non-
constant meromorphic function on X . So f can be viewed as a holomorphic map
f : X Ñ P1. Then f is open by Thm. 4.11.4. By basic complex analysis, for each
x P X and y “ fpxq, the map f on a neighborhood of x is biholomorphic to z ÞÑ zk

(for some k P Z`) on a neighborhood of 0, which is a Weierstrass map and hence is
flat by Thm. 2.5.4. (We remark that “openness ñ flatness” also follows in general
from Cor. 5.10.8.) This local picture also shows that f´1pyq is a discrete set, and
hence a finite set because X is compact. Therefore f is finite.

Now, by Prop. 5.4.8,
ř

xPXy
dimC OXy ,x is independent of y. So we have

ÿ

fpxq“0

dimC OX0,x “
ÿ

fpxq“8

dimC OX8,x

This relation simply states the well known fact that the number of zeros of f is
equal to the number of poles of f , counting multiplicities. (To see this, note that
if f near x is biholomorphic to z ÞÑ zk near 0, then OXy ,x “ OX,x{mY,yOX,x »

OC,0{z
kOC,0 has C-dimension k.)
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5.5 Flatness is preserved by base change

Let X, Y be complex spaces.
The goal of this section is to show that flatness is preserved by base change

(Thm. 5.5.3). Its proof relies on the following crucial theorem, which allows us to
reduce the study of arbitrary base changes to finite ones.

Theorem 5.5.1. Let pB, nq Ñ pA,mq be a morphism of Noetherian local rings. Let E be
a finitely-generated A-module. Assume that there exists k0 P N such that E bB pB{nkq is
pB{nkq-flat for all k ě k0. Then E is B-flat.

Proof. We shall prove TorB1 pE ,B{Jq “ 0 for each ideal J Ă B. Namely (Exp. 5.3.11),
we shall prove that E bB J Ñ E bB B is injective. The natural idea is to tensor it by
B{nk, where we choose k ě k0. But this is not a good choice, since J Ñ B tensored
by B{nk is not even injective. Indeed, by Exp. 5.3.10, if we tensor B{nk with the
short exact sequence 0 Ñ J Ñ B Ñ B{J Ñ 0, we get a long one

0 Ñ TorB1 pB{nk,B{Jq Ñ J{nkJ Ñ B{nk Ñ B{pnk ` Jq Ñ 0 (5.5.1)

But we clearly have an exact sequence

0 Ñ J{pnk X Jq Ñ B{nk Ñ B{pnk ` Jq Ñ 0 (5.5.2)

where J{pnk X Jq “ pnk ` Jq{nk is the kernel of the subsequent morphism.
One may tensor E with (5.5.2). But since we know that E bB pB{nkq is pB{nkq-

flat, namely, TorB{nk

1 pE bB pB{nkq,´q vanishes, and since (5.5.2) is clearly an exact
sequence in ModpB{nkq, we pB{nkq-tensor E bB pB{nkq with (5.5.2) to get an exact
sequence as the second line of the following diagram:

E bB J E bB B E bB pB{Jq 0

0 E bB
`

J{pnk X Jq
˘

E bB pB{nkq E bB
`

B{pnk ` Jq
˘

0

ϕ (5.5.3)

The first row is clearly exact, and we can easily find canonical morphisms as the
vertical arrows making the above diagram commutes.

Choose any ξ in the kernel of E bB J Ñ E bB B. Our goal is to show that ξ “ 0.
By the commutativity of the first cell in (5.5.3), ξ is sent by ϕ to 0 in EbB

`

J{pnkXJq
˘

for each k P Z`. Now, by Artin-Rees lemma 1.4.5, there exists s P Z` such that

ntpns X Jq “ nt`s X J

for all t P N. So nt`s X J Ă ntJ . Assume for simplicity that s ě k0. Then for each
k ě s we have

nk X J Ă nk´sJ.
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Therefore we have a surjection EbB
`

J{pnkXJq
˘

Ñ EbBpJ{nk´sJq. (To summarize,
we are using Artin-Rees lemma to replace the J{pnk X Jq in (5.5.2) with the J{nkJ
in (5.5.1)!) Compose this morphism with ϕ, and we see that ξ is sent to 0 in

E bB pJ{nk´sJq »
E bB J

nk´spE bB Jq

for all k ě s. So ξ belongs to ntpE bB Jq for all t P N.
Consider E bB J as an A-module. Then it is clearly finitely-generated. Since

ntpE bB Jq Ă mtpE bB Jq, we have ξ P
Ş

tPN m
tpE bB Jq “ 0 by Krull’s intersection

Thm. 1.4.4.

Let us phrase Thm. 5.5.1 in the language of complex analytic geometry.

Theorem 5.5.2. Let φ : X Ñ Y be a holomorphic map, and let E be a finite-type OX-
module. Let x P X , y “ φpxq. Let Yk “ SpecanpOY {mk

Y,yq where mY,y is considered
as the ideal of all g P OY vanishing at y. Suppose that there exists k0 P N such that the
Oφ´1pYkq-module E |φ´1pYkq is flat over Yk at x for all k ě k0. Then E is flat over Y at x.

Recall that by Rem. 1.12.3, there is a canonical OX-module isomorphism

E |φ´1pYkq » E bOY pOY {mk
Y,yq

Theorem 5.5.3. Let φ : X Ñ S and ψ : Y Ñ S be holomorphic maps, and let E be a
coherent OX-module. Consider the Cartesian product

X X ˆS Y

S Y

φ prY

prX

ψ

Choose x P X, y P Y such that t “ φpxq equals ψpyq. Assume that E is flat over S at x.
Then pr˚

XE is flat over Y at px, yq.

Proof. We first consider the special case that ψ is finite. By Thm. 2.7.2, we can
shrink X,S to neighborhoods of x, t respectively and replace Y by ψ´1pSq, so
that x is the single point of the set φ´1ptq. Then px, yq is the single point of the
set pr´1

Y pyq. By Prop. 2.4.5, we have isomorphisms of OS,t-modules and of OY,y-
modules

pφ˚E qt » Ex pprY,˚pr
˚
XE qy » ppr˚

XE qxˆy

Thus, by Thm. 2.8.2 (and Rem. 2.8.1), we have an OY,y-module isomorphism

ppr˚
XE qxˆy » Ex bOS,t OY,y
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Since Ex is OS,t-flat, ExbOS,tOY,y is clearly OY,y-flat. Therefore ppr˚
XE qxˆy is OY,y-flat.

Now consider the general case. For each k P Z`, let Yk “ SpecanpOY {mk
Y,yq.

Then we have a commutative diagram

X X ˆS Y pr´1
Y pYkq

S Y Yk

φ prY

prX rι

ψ ι

where the two cells are Cartesian squares. So the largest rectangle is also Carte-
sian. Since Yk Ñ S is clearly finite, by the first paragraph,rι˚pr˚

XE “ ppr˚
XE q|pr´1

Y pYkq

is flat over Yk at px, yq for all k P Z`. Therefore, by Thm. 5.5.2, pr˚
XE is flat over Y

at px, yq.

Example 5.5.4. Let prY : X ˆ Y Ñ Y be the projection onto the Y -component.
Then prY is flat, because it is the pullback of X Ñ t0u (which is clearly flat) along
Y Ñ t0u.

Example 5.5.5. Any holomorphic submersion of complex manifolds is flat be-
cause it is locally equivalent toXˆY Ñ Y whereX, Y are open subsets of number
spaces.

5.6 Slicing criterion for flatness

In this section, we give more useful criteria on flatness.

Lemma 5.6.1. Fix a ring morphism B Ñ A. Let

0 Ñ E2
Ñ E 1

Ñ E Ñ 0

be an exact sequence in ModpAq. Then for every M P ModpBq, we have an isomorphism
of B-modules

Coker
´

TorB1 pM, E 1
q Ñ TorB1 pM, Eq

¯

»Coker
´

TorA1 pM bB A, E 1
q Ñ TorA1 pM bB A, Eq

¯ (5.6.1)

Proof. Apply M bB ´ to the above short exact sequence to get a long one

TorB1 pM, E 1
q Ñ TorB1 pM, Eq Ñ M bB E2

Ñ M bB E 1

Applying M bB A bA ´ instead, we get a long exact sequence

TorA1 pM bB A, E 1
q Ñ TorA1 pM bB A, Eq Ñ M bB E2

Ñ M bB E 1

These two exact sequences imply (5.6.1).
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We will be mainly interested in the case that A “ B{I for some ideal I , and
there is an epimorphorphism of pB{Iq-modules pB{Iqn ↠ E . (There must be such
an epimorphism for every finitely-generated pB{Iq-module E) In this case, since
Tor

B{I
1 p´, pB{Iqnq “ 0 because free modules are clearly flat, (5.6.1) reads

Tor
B{I
1

`

M b pB{Iq, E
˘

» Coker
´

TorB1 pM,B{Iq
n

Ñ TorB1 pM, Eq

¯

(5.6.2)

The following is an application of (5.6.2).

Proposition 5.6.2. Let M be a B-module, and let F be a pB{τBq-module where τ P B.
Assume that τ is a non zero-divisor of both B and M. Then

Tor
B{τB
1

`

M bB pB{τBq,F
˘

» TorB1 pM,Fq (5.6.3)

Proof. Again we choose an epimorphism F 1 Ñ F Ñ 0 where F 1 is a free
pB{τBq-module. Then (5.6.3) follows immediately from (5.6.2) if we can show
that TorB1 pM,F 1q “ 0. Since F 1 is a direct sum of B{τB, by Prop. 5.3.9, it suffices
to show TorB1 pM,B{τBq “ 0. This follows from the next result.

Lemma 5.6.3. Let B be a ring and let τ P B be a non zero-divisor of B. Let M be a
B-module. Then the following are equivalent.

(1) τ is a non zero-divisor of M.

(2) TorB1 pM,B{τBq “ 0.

Proof. By Exp. 5.3.11, TorB1 pM,B{τBq is isomorphic to the kernel of M bB τB Ñ

M bB B. Since τ is a non zero-divisor of B, B ˆτ
ÝÑ τB is an isomorphism of B-

modules. So is M bB B 1bpˆτq
ÝÝÝÝÑ M bB τB. The composition of this isomorphism

with M bB τB Ñ M bB B is M bB B 1bpˆτq
ÝÝÝÝÑ M bB B, which is equivalent to the

multiplication of τ on M. We conclude

TorB1 pM,B{τBq » KerpM ˆτ
ÝÑ Mq (5.6.4)

The equivalence of (1) and (2) follows immediately.

As another application of (5.6.2), we prove a variant of Thm. 5.5.1

Theorem 5.6.4. Let pB, nq Ñ pA,mq be a morphism of Noetherian local rings. Let E be
a finitely-generated A-module. The following are equivalent.

(1) E is B-flat.

(2) TorB1 pE ,B{nq “ 0.
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Proof. Clearly (1) implies (2). Assume (2). To prove that E is B-flat, by Thm. 5.5.1,
it suffices to prove that

Tor
B{nk

1 pE bB pB{nkq,N q “ 0

for any k P Z` and any pB{nkq-module N (equivalently, any B-module N such
that nkN “ 0). By (5.6.2) (applied to the case I “ B{nk), it suffices to prove
TorB1 pE ,N q “ 0 whenever nkN “ 0 for some k ą 0.

If nN “ 0, then N “ N {nN » N bB pB{nq is a vector space over the field B{n.
Thus N is a direct sum of B{n. So clearly TorB1 pE ,N q “ 0 by assumption (2) and
Prop. 5.3.9. The general case follows by induction on k and the exact sequence

TorB1 pE , nN q Ñ TorB1 pE ,N q Ñ TorB1 pE ,N {nN q

where the last term is 0 because N {nN is annihilated by n.

Theorem 5.6.5 (Slicing criterion). Let pB, nq Ñ pA,mq be a morphism of Noetherian
local rings. Let E be a finitely-generated A-module. Let τ P n be a non zero-divisor of B.
The following are equivalent.

(1) E is B-flat.

(2) τ is a non zero-divisor of E , and E bB pB{τBq is pB{τBq-flat.

Proof. Assume (1). Then TorB1 pE ,B{τBq “ 0 implies that τ is a non zero-divisor
of E (by Lemma 5.6.3). And Tor

B{τB
1 pE bB pB{τBq,´q is trivial by Prop. 5.6.2.

Conversely, assume (2). Then by Prop. 5.6.2,

TorB1 pE ,B{nq » Tor
B{τB
1 pE bB pB{τBq,B{nq “ 0

So E is B-flat by Thm. 5.6.4.

Let us phrase Thm. 5.6.5 in the language of complex geometry.

Theorem 5.6.6 (Slicing criterion). Let φ : X Ñ Y be holomorphic and let E be a
finite-type OX-module. Choose τ P OpY q. Let T “ SpecanpOY {τOY q. Choose y P T
and x P φ´1pT q, and assume that τ is a non zero-divisor of OY,y. Then the following are
equivalent.

(1) E is flat over Y at x.

(2) τ is a non zero-divisor of Ex, and E |φ´1pT q is flat over T at x.

Corollary 5.6.7. Let f P OpXq and x P X . Let E be a finite-type OX-module. Let z be
the standard coordinate of C. Then the following are equivalent.

(1) E is f -flat at x.
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(2) f ´ fpxq is a non zero-divisor of Ex.

Proof. In this case, T “ SpecanpOC{zOCq is a single reduced point. So E |f´1pT q is
clearly flat over T .

We now give a new

Proof of Prop. 3.7.2. It suffices to show that if f P OpXq is a non zero-divisor
of OX,x then f b 1 is a non zero-divisor of OXˆY,xˆy. This is clearly true when
fpxq ‰ 0. So let us assume fpxq “ 0. By Cor. 5.6.7, f : X Ñ C is flat at x. Since
fb1 : XˆY Ñ C is the composition of the projectionXˆY Ñ X (which is flat by
Exp. 5.5.4) and f , f b1 is flat at xˆ1. By Cor. 5.6.7, f b1 is a non zero-divisor.

Cor. 5.6.7 can be easily generalized to a criterion for the flatness of a holo-
morphic map from a complex space to a complex manifold (Cor. 5.6.9), as shown
below.

Definition 5.6.8. Let E be an A-module. A finite sequence a1, . . . , an P A is called
an E-regular sequence if the following are satisfied:

(1) For each 1 ď i ď n, ai is a non zero-divisor of
E

ř

jăi ajE
. In particular, a1 is a

non zero-divisor of E .

(2)
řn
i“1 aiE ‰ E .

We are mainly interested in the case that pA,mq is a Noetherian local ring and
a1, . . . , an P m. In this case, if E is a non-zero finitely-generated A-module, then
mE ‰ E by Nakayama’s lemma 1.2.15. Then condition (2) is redundant.

Corollary 5.6.9. Let E be a finite-type OX-module, and let f1, . . . , fn P OpXq. Let
x P X . Set F “ pf1, . . . , fnq : X Ñ Cn. Then E is F -flat at x if and only if the germs at
x of f1 ´ f1pxq, . . . , fn ´ fnpxq form an Ex-regular sequence.

Proof. By induction on n. The case n “ 0 is obvious. Assume case n ´ 1 holds
where n P Z`. Now consider case n. Assume for simplicity that f1pxq “ ¨ ¨ ¨ “

fnpxq “ 0. Let pz1, . . . , znq be the standard coordinates of Cn. Then Cn´1 » 0ˆCn´1

is SpecanpOCn{z1OCnq. Note that that z1 is a non zero-divisor of Ex is the same as
that f1 is a non zero-divisor of Ex. Thus, by Slicing criterion (5.6.6), E is F -flat at
x if and only if f1 is a non zero-divisor of Ex and E |F´1pCn´1q » E {z1E is flat over
Cn´1 at x. By induction, the second condition is equivalent to that f2, . . . , fn is an
pEx{z1Exq-regular sequence.
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5.7 Flatness, openness, and dimensions of fibers I

In this section, X, Y denote complex spaces.

Theorem 5.7.1. Let φ : X Ñ Y be a holomorphic map, and let x P X . Suppose that φ is
flat at x P X . Then the following Dimension Formula holds

dimxXφpxq “ dimxX ´ dimφpxq Y (5.7.1)

and φ is open at x.

Recall that Xy (where y P Y ) means the inverse image φ´1pyq of the reduced
point tyu.

Proof-Step 1. Let y “ φpxq. We prove (5.7.1) by induction on dimy Y . The case
dimy Y “ 0 is obvious. Assume the theorem is proved when dimYy ď n ´ 1,
where n P Z`. Assume dimy Y “ n. Note that if we let Y0 be the reduction redpY q,
and let X0 “ φ´1pY0q, then φ : X0 Ñ Y0 is flat at x by Thm. 5.5.3, and it suffices
to prove (5.7.1) where X, Y are replaced by X0, Y0 (since dimensions are invariant
under reductions). Therefore, by replacing X, Y with X0, Y0, we may well assume
that Y is reduced.

By Rem. 3.10.5, we may shrink Y to a neighborhood of y and shrink X to
φ´1pY q so that there exists τ P OY vanishing at y which is a non zero-divisor of
OY,y. Let Y 1 “ SpecanpOY {τOY q and X 1 “ φ´1pY 1q “ SpecanpOX{τOXq. By Active
lemma,

dimy Y
1

“ dimy Y ´ 1.

Clearly Xy “ X 1
y. By Thm. 5.5.3, the restriction φ : X 1 Ñ Y 1 is flat at x. Therefore,

by case n ´ 1,

dimxXy “ dimxX
1
´ dimy Y

1.

Since φ is flat at x, by Slicing criterion 5.6.6 (indeed, here we do not use the full
power of Slicing criterion), τ is a non zero-divisor of OX,x. So by Active lemma,

dimxX
1

“ dimxX ´ 1.

Dimension Formula (5.7.1) follows.

Proof-Step 2. We now prove that φ is open at x. As in Step 1, we may well assume
that Y is reduced. If Y is locally irreducible, then the openness of φ at x follows
immediately from Dimension Formula (5.7.1) and Thm. 3.13.1. In the general
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case, we let ν : pY Ñ Y be the normalization of Y , and consider the Cartesian
square

X Z

Y pY

φ

π

ψ

ν

Choose any neighborhood U Ă X of x. The commutativity of the above diagram
implies

ψpπ´1
pUqq Ă ν´1

pν ˝ ψpπ´1
pUqqq “ ν´1

pφ ˝ πpπ´1
pUqqq Ă ν´1

pφpUqq

But note that as a set, Z is tpx, pyq P X ˆ pY : φpxq “ νppyqu. From this observation,
we see

ψpπ´1
pUqq “ ν´1

pφpUqq. (5.7.2)

Note that π is finite (Prop. 2.4.11). By Thm. 5.5.3, ψ is flat at any point of
the finite set π´1pxq. So ψ is open at any point of π´1pxq because pY is locally
irreducible (Prop. 4.9.1). Note that ψpπ´1pxqq “ ν´1pyq. So ψpπ´1pUqq contains
a neighborhood of ν´1pyq, which (due to Prop. 2.4.1) can be of the form ν´1pV q

where V Ă Y is a neighborhood of y. By (5.7.2), ν´1pV q Ă ν´1pφpUqq. Hence
V Ă φpUq because ν is surjective. So φpUq contains a neighborhood of y.

We shall give a converse of Thm. 5.7.1. We first need a preparatory result on
reducedness.

Proposition 5.7.2. Choose f P OpXq and x P X such that fpxq “ 0. Assume that f
is active at x, and that SpecanpOX{fOXq is reduced at x. Then X is reduced at x, and
hence f is a non zero-divisor of OX,x.

Proof. By Prop. 3.4.1, we may shrink X to a neighborhood of x so that Npfq is
nowhere dense in X . We claim that

a

0X,x Ă fx
a

0X,x. Then
a

0X,x “ mX,x

a

0X,x
and hence

a

0X,x “ 0 by Nakayama’s lemma 1.2.15. Hence X is reduced at x.
To prove the claim, choose any g P

a

0X,x. By shrinking X further, we have
g P OpXq and g takes value 0 at any point of X . In particular, g vanishes on Npfq.
So gx P fxOX,x because OX,x{fxOX,x is reduced by assumption. Shrink X so that
g “ fh where h P OpXq. Since Npfq is nowhere dense in X and g vanishes at
every point, h also vanishes at every point. Thus hx P

a

0X,x.

Theorem 5.7.3. Let φ : X Ñ Y be a holomorphic map where Y is a complex manifold.
Assume that one of the following equivalent conditions holds:

(1) Dimension Formula (5.7.1) holds for all x P X .

(2) φ is open.
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Choose x P X , let y “ φpxq, and assume that Xy “ φ´1pyq is reduced at x. Then X is
reduced at x, and φ is flat at x.

Recall that the equivalence of (1) and (2) is due to Cor. 3.12.3.

Proof. By shrinking Y to a neighborhood of y and shrinking X to φ´1pXq, we
assume that Y is an open subset of Cn. We prove the theorem by induction
on n. The case n “ 0 is obvious. Assume case n ´ 1 is proved. Assume for
simplicity that y “ 0. Let pz1, . . . , znq be the standard coordinates of Cn. Let
Y 1 “ SpecanpOY {z1OY q, namely, Y 1 is the intersection of Y and Cn´1 » 0 ˆ Cn´1.
Let X 1 “ φ´1pY 1q “ SpecanpOX{z1OXq. Then by case n´ 1, X 1 is reduced at x, and
OX 1,x is OY 1,0-flat. If we can show that z1 is active in OX,x, then by Prop. 5.7.2, X
is reduced at x, and hence z1 is a non zero-divisor of OX,x. Therefore φ is flat at x
due to Slicing criterion 5.6.6.

Let us show that z1 is active in OX,x. In other words, we need to show that
z1 ˝ φ is active at x. But this follows immediately from Prop. 3.13.5 and the fact
that z1 ˝ φ : X Ñ C is open.

The assumption on the reducedness of fibers is sometimes too strong for ap-
plications. For instance, all Weierstrass maps are flat, but their fibers are not nec-
essarily reduced even when the base spaces are smooth. We will give a different
criterion for flatness later (cf. Thm. 5.10.7), in which the reducedness condition in
Thm. 5.7.3 is replaced by assuming that OX,x is Cohen-Macaulay. Indeed, the rest
of this chapter is devoted to proving and understanding Thm. 5.10.7.

5.8 Associated primes

We fix a Noetherian ring A.

5.8.1 General facts

Definition 5.8.1. Let E P ModpAq. An associated prime of E is a prime ideal p of
the form AnnApξq where ξ P E . The set of associated primes is denoted by AssApEq

or simply AsspEq (if no confusion arises).

For instance, if X is a complex space and E is a coherent OX-module, then by
Def. 2.3.3, for each σ P E we have SupppOXσq “ SpecanpOX{ Ann OX pσqq. So the
complex subspace SupppOXσq is irreducible at x iff AnnOX,xpσxq is prime.

Example 5.8.2. Note that the nilradical
?
0 of A is inside every prime of A. By

Prop. 3.1.7, we know that if
?
0 “ p1 X ¨ ¨ ¨ X pN is the prime decomposition of?

0 Ă A, then

AssApA{
?
0q “ AssA{

?
0pA{

?
0q “ tp1, . . . , pNu (5.8.1)
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Recall that prime ideals are assumed to be not A. And AnnApξq “ A iff ξ “ 0.
There is a simple criterion for whether the ideal AnnApξq is prime.

Lemma 5.8.3. Let E P ModpAq and assume that ξ P E is non-zero. Then the following
are equivalent.

(1) AnnApξq is prime.

(2) For each a P A, if aξ ‰ 0 then AnnApaξq “ AnnApξq.

Proof. In general, an ideal I Ĺ A is prime iff each a P A not inside I is a non
zero-divisor of A{I. In the case that I “ AnnApξq, a is a zero-divisor of A{I iff
AnnApaξq Ľ AnnApξq.

Proposition 5.8.4. Let E P ModpAq. Then for any non-zero ξ P E , there exists a P A
such that (aξ ‰ 0 and) AnnApaξq is prime. In particular, if E is non-zero then AsspEq is
non-empty.

Note that for every ξ ‰ 0, the set of prime AnnApaξq equals the set of associated
primes of A ¨ ξ. So the word “in particular” above is actually “equivalently”.

Proof. The Noether property of A implies that any chain inside the partially or-
dered set tAnnApaξq : a P A, aξ ‰ 0u must be stationary, and hence has an up-
per bound. By Zorn’s lemma, this set contains a maximal element, which we
denote by AnnApaξq. If b P A and abξ ‰ 0, then the maximality shows that
AnnApabξq “ AnnApξq. Therefore AnnApaξq is prime by Lemma 5.8.3.

Note that set of non zero-divisors of E is

NzdApEq “ A
I

ď

ξPEzt0u

AnnApξq (5.8.2)

We now have a better description of NzdApEq which also generalizes Cor. 3.1.6:

Corollary 5.8.5. Let E P ModpAq. Then

NzdApEq “ A
I

ď

pPAssApEq

p (5.8.3)

Proof. “Ă” is obvious. If x P A is a zero-divisor of E , then xξ “ 0 for some non-
zero ξ P E . By Prop. 5.8.4, we may find a P A so that AssApaξq is prime, which
clearly contains x. This proves “Ą”.

An advantage of (5.8.3) is that AsspEq has finitely many associated primes if E
is finitely-generated, as we now show.

Proposition 5.8.6. Let 0 Ñ E 1 Ñ E Ñ E2 Ñ 0 be an exact sequence in ModpAq. Then

AsspE 1
q Ă AsspEq Ă AsspE 1

q Y AsspE2
q
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Proof. Clearly AsspE 1q Ă AsspEq. Let us prove the second inclusion.
Choose ξ P E such that AnnApξq is an associated prime of E . We view E2 as E{E 1,

and let rξs be the residue class of ξ in E{E2. Then AnnAprξsq “ ta P A : aξ P E 1u.
Clearly AnnApξq Ă AnnAprξsq. Assume that AnnApξq does not belong to AsspE2q.
Then AnnApξq ‰ AnnAprξsq, otherwise AnnAprξsq would be an associated prime of
E2.

Pick a P A belonging to AnnAprξsq but not AnnApξq. So aξ is a non-zero element
of E 1. Since AnnApξq is prime, by Lemma 5.8.3, AnnApξq equals AnnApaξq, and
hence is an associated prime of E 1.

Theorem 5.8.7. Let E be a finitely-generated A-module. Then E has finitely many asso-
ciated primes.

Proof. If N is a submodule of E and N ‰ E , then by the fact that E{N has at least
one associated prime, we can find ξ P EzN such that AnnAprξsq is prime. Here
rξs denotes the residue class of ξ in E{N . Let N1 be generated by N and ξ. Then
N1{N » A{AnnAprξsq.

The above discussion shows that we can find a chain of submodules 0 “ E0 Ĺ

E1 Ĺ E2 Ĺ ¨ ¨ ¨ of E such that each Ei{Ei´1 is equivalent to A{pi for some prime ideal
pi. Since E is finitely-generated and A is Noetherian, this chain must have finite
length. So it is of the form 0 “ E0 Ĺ E1 Ĺ E2 Ă ¨ ¨ ¨ Ĺ En “ E . By Exp. 5.8.2, pi is the
only associated prime of Ei{Ei´1 » A{pi. Thus, by Prop. 5.8.6 we have

AsspEq Ă tp1, p2, . . . , pnu (5.8.4)

So E has finitely many associated primes.

5.8.2 A characterization of AssApAq

Remark 5.8.8. Let E P ModpAq. Then clearly

AssApEq “
ď

ξPEzt0u

AssApAξq

Thus, to determine AssApEq, one should know first of all how to find AssApAξq

where ξ P Ezt0u. Note that the A-module Aξ is isomorphic to A{I where I “

AnnApAξq. Thus, it suffices to determine

AssApA{Iq “ AssA{IpA{Iq

for every ideal I Ĺ A. Replacing A{I by A, it suffices to know how to find
AssApAq. This is the goal of this subsection.

The following lemma is useful.
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Lemma 5.8.9. Let p be a prime ideal of A. Let E P ModpAq and ξ P E . Choose x P Azp.
Then AnnApξq Ă p if and only if AnnApxξq Ă p.

Proof. “ð” is obvious since Asspξq Ă Asspxξq. Assume that Asspξq Ă p. Choose
y P Asspxξq. Then xyξ “ 0. So xy P Asspξq Ă p. Since x R p, we have y P p. This
proves “ñ”.

Note that if E P ModpAq and ξ P Ezt0u, then we can find a prime p Ă A
containing Annpξq: Take prime decomposition

a

Annpξq “ p1 X ¨ ¨ ¨ X pN (cf. Thm.
3.1.3) and take p to be one of p1, . . . , pN . Thus, the following lemma generalizes
Lem. 5.8.3.

Lemma 5.8.10. Let E P ModpAq, let ξ P Ezt0u, and choose a prime ideal p Ă A satisfy-
ing AnnApξq Ă p. Then the following are equivalent.

(1) AnnApξq is prime.

(2) For each a P A, if AnnApaξq Ă p, then AnnApaξq “ AnnApξq.

Proof. Assume (1). If Annpaξq Ă p and if b P Annpaξq, then since ab belongs to the
prime ideal Annpξq, and since a R Annpξq (otherwise Annpaξq “ A Ć p), we have
b P Annpξq. This proves (2).

Assume (2). To prove that Annpξq is prime, by Lem. 5.8.3, it suffices to prove
that every a P AzAnnpξq satisfies that Annpaξq “ Annpξq, equivalently (by (2)),
that Annpaξq Ă p.

Fix a R Annpξq. Let us prove Annpaξq Ă p. Choose any b P Annpaξq. Then
a P Annpbξq. But a R Annpξq (otherwise, Annpaξq “ A is not in p). So Annpξq ‰

Annpbξq. So by (2) we have Annpbξq Ć p. Since Annpξq Ă p, by Lem. 5.8.9, b P p.

Theorem 5.8.11. Let
?
0 “ p1 X ¨ ¨ ¨ X pN be the prime decomposition of the nilradical?

0 Ă A (cf. Thm. 3.1.3). Then

AssApAq “ AssAp
?
0q Y tp1, . . . , pNu (5.8.5)

Proof. By Exp. 5.8.2, (5.8.5) is equivalent to

AssApAq “ AssAp
?
0q Y AssApA{

?
Iq (5.8.6)

By Prop. 5.8.6, it suffices to prove that AssApA{
?
Iq Ă AssApAq, namely, that

pi P AsspAq for each 1 ď i ď N . Clearly AnnAp1q “ t0u Ă pi. As in the proof of
Prop. 5.8.4, we can use Zorn’s lemma (thanks to the fact that A is Noetherian) to
find a maximal AnnApfq inside pi where f P A. Then AnnApfq is prime by Lem.
5.8.10. So AnnApfq “ pi by Prop. 3.1.9.

We thus obtain a refinement of Prop. 5.8.4:
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Corollary 5.8.12. Let E P ModpAq, let ξ P Ezt0u, and let
a

Annpξq “ p1 X ¨ ¨ ¨ X pN be
the prime decomposition. Then p1, . . . , pN are inside AssApAξq.

Proof. By Rem. 5.8.8, to determine AnnApAξq, it suffices to assume E “ A and
ξ “ 1. Then AnnApAξq “ 0. The proof is thus completed by Thm. 5.8.11.

Example 5.8.13. Let X be a complex space. Let E be a coherent OX-module, and
choose σ P E pXq. Let A be the reduction of SupppOXσq (cf. Def. 2.3.3), i.e., A is
the analytic subset

A “ tp P X : σp ‰ 0u

Choose x P A, and shrink X to a neighborhood of x so that we have local decom-
position A “ A1 Y ¨ ¨ ¨ Y AN of A at x (cf. Thm. 3.3.3). Then by Cor. 5.8.12,

IA1,x, . . .IAN ,x P AssOX,xpOX,xσxq (5.8.7)

5.9 Depth

In this section, we fix a Noetherian local ring A with maximal ideal m.

Definition 5.9.1. For any A-module E , the depth of E , written as depthApEq or
simply depthpEq, is

depthpEq “ suptn : there exists an E-regular sequence a1, . . . , an P mu

In particular, E has a non zero-divisor in m iff depthpEq ą 0.

Our starting point of analysis is the following application of associated primes.
Interestingly, the statement of this lemma does not involve associated primes, but
the proof actually does.

Lemma 5.9.2. Let E P ModpAq be finitely generated. Then the following are equivalent.

(1) depthpEq ą 0, i.e., E has a non zero-divisor in m.

(2) HomApA{m, Eq “ 0.

Proof. We first observe that HomApA{m, Eq is equivalent to KerpHomApA, Eq Ñ

HomApm, Eqq. In particular, if we identify HomApA, Eq naturally with E , then

HomApA{m, Eq » tξ P E : mξ “ 0u

It follows that (2) is equivalent to m R AsspEq.
By Cor. 5.8.5, (1) holds iff m

H
Ť

pPAsspEq
p ‰ 0, iff mzp ‰ 0 for each p P AsspEq

(due to Lem. 3.4.6). Since for each prime p Ă A we have p Ă m, (1) is equivalent
to that m ‰ p for all p P AsspEq, i.e. m R AsspEq.
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Starting from Lemma 5.9.2, we can establish a cohomological characterization
of depth. This is achieved with the help of the following fact:

Proposition 5.9.3. Let E P ModpAq, and let a P m be a non zero-divisor of E . Then for
each n P Z,

ExtnApA{m, E{aEq » ExtnApA{m, Eq ‘ Extn`1
A pA{m, Eq (5.9.1)

TorAn pA{m, E{aEq » TorAn pA{m, Eq ‘ TorAn´1pA{m, Eq (5.9.2)

Proof. We first observe that by Rem. 5.2.7, the Ext functor preserves multiplica-
tions on both components since Hom clearly does. Therefore, for each x P m and
each q P Z, the endomorphisms ExtqApˆx, Eq and ExtqApA{m,ˆxq on the A-module
ExtqApA{m, Eq are both equal to the multiplication of x on this module. Thus, as
ˆx is zero on A{m, it is zero on ExtqApA{m, Eq. So ExtqApA{m, Eq is a module over
A{m, i.e. a vector space over the field A{m. The same is true if Ext is replaced by
Tor or E is replaced by any A-module.

The short exact sequence 0 Ñ E ˆa
ÝÑ E Ñ E{aE Ñ 0 yields a long exact se-

quence

ExtnApA{m, Eq Ñ ExtnApA{m, Eq Ñ ExtnApA{m, E{aEq Ñ Extn`1
A pA{m, Eq

Ñ Extn`1
A pA{m, Eq

The first paragraph implies that the first and the last morphisms above are zero.
Thus we have an exact sequence

0 Ñ ExtnApA{m, Eq Ñ ExtnApA{m, E{aEq Ñ Extn`1
A pA{m, Eq Ñ 0

which splits because the objects are vectors spaces over A{m. This proves (5.9.1).
A similar argument proves (5.9.2).

Now we can generalize Lemma 5.9.2 as follows.

Lemma 5.9.4. Let E P ModpAq be finitely generated. Let k P N, and let a1, . . . , ak P m
be an E-regular sequence. Then the following are equivalent.

(1) a1, . . . , ak can be extended to an E-regular sequence a1, . . . , ak, ak`1 P m.

(2) Extďk
A pA{m, Eq “ 0.

Proof. By Prop. 5.9.3, HomApA{m, E{pa1E ` ¨ ¨ ¨ ` akEqq (which, by Lemma 5.9.2, is
zero iff (1) holds) is a direct sum (with multiplicities ě 1) of ExtqApA{m, Eq where
q goes through 0, . . . , k.

Theorem 5.9.5. Let E P ModpAq be finitely generated. Then depthpEq is the smallest
n P N such that ExtkApA{m, Eq “ 0 for all k ă n.
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Proof. Apply Lemma 5.9.4 to any longest E-regular sequence in m.

Corollary 5.9.6. Let E P ModpAq be finitely generated, and let a1, . . . , ak P m be an
E-regular sequence. Then

depthpEq “ depth
`

E{pa1E ` ¨ ¨ ¨ ` akEq
˘

` k

Namely, a1, . . . , ak can be extended to an E-regular sequence in m of length depthpEq.

Proof. Immediate from Lemma 5.9.4 and Thm. 5.9.5.

Theorem 5.9.7. Let X be a complex space and let x P X . Let E ,M be coherent OX-
modules. Assume that

depthOX,x
pExq “ n, dimx SupppM q “ m.

Then we have

ExtkOX,xpMx,Exq “ 0 @k ă n ´ m. (5.9.3)

This theorem (as well as the subsequent corollary) also holds for any finitely-
generated modules of Noetherian local rings. And the proof for the general case
is similar to the one below. (See [Vak17, Sec. 26.1].) Since we have established
dimension theory only for analytic local C-algebras, we shall focus on this special
case, which is clearly sufficient for our applications.

Proof. First note that if we have an exact sequence of morphisms of coherent OX-
modules 0 Ñ M 1 Ñ M Ñ M 2 Ñ 0, then we clearly have

SupppM q “ SupppM 1
q Y SupppM 2

q

as analytic subsets of X . (Namely, for each p P X , Mp “ 0 iff M 1
p “ M 2

p “ 0.)
Therefore, by Prop. 3.10.8, we have

dimx SupppM q “ max
␣

dimx SupppM 1
q, dimx SupppM 2

q
(

(5.9.4)

Recall that the germs of coherent OX-modules at x are equivalent to finitely-
generated OX,x-modules (Thm. 2.2.2). We now prove the theorem by induction
on dimx SupppM q. (5.9.3) clearly holds whenever dimx SupppM q “ ´8, i.e. when
Mx “ 0. It also holds when Mx “ C “ OX,x{mX,x due to Thm. 5.9.5. Thus, if
dimx SupppM q “ 0, then x is a single point of SupppM q. Hence ml

X,xMx “ 0 for
some l P Z` by Nullstellensatz (Rem. 2.10.4-3). Then an induction on l and the
exact sequence

ExtkOX,xpmX,xMx,Exq Ñ ExtkOX,xpMx,Exq Ñ ExtkOX,xpMx bOX,x C,Exq

proves (5.9.3) whenever dimx SupppM q “ 0.
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Now suppose that the theorem holds whenever dimx SupppM q ă m. Assume
dimx SupppM q “ m. As in the proof of Prop. 5.8.7, we may shrink X to a neigh-
borhood of x and find a chain of coherent OX-modules 0 “ M0 Ă M1 Ă M2 Ă

¨ ¨ ¨ Ă Ml “ M such that for each 1 ď i ď l, Mi{Mi´1 is equivalent to OX{Pi

where Pi is a coherent ideal of OX such that Pi,x is prime. Therefore, by (5.9.4),

dimx SupppM q “ sup
i

dimxNpPiq.

So dimxNpPiq ď m for all i. Since we have an exact sequence

ExtkOX,xpMi´1,x,Exq Ñ ExtkOX,xpMi,x,Exq Ñ ExtkOX,xpOX,x{Pi,x,Exq

if we can show that ExtkOX,xpOX,x{Pi,x,Exq “ 0 for all i, then by induction on i, we
obtain ExtkOX,xpMx,Exq “ 0.

Therefore, it suffices to prove (5.9.3) in the special case that M “ OX{P where
P is a coherent ideal of OX , Px is prime, and dimxNpPq “ m ě 1. Shrink
X further so that we can choose a P OpXq with apxq “ 0 such that the germ
ax P mX,x is not in Px. So ax is a non zero-divisor of Mx. Thus we have a short
exact sequence

0 Ñ Mx
ˆax
ÝÝÑ Mx Ñ Mx{axMx Ñ 0

which gives rise to a long one

ExtkOX,xpMx,Exq Ñ ExtkOX,xpMx,Exq Ñ Extk`1
OX,x

pMx{axMx,Exq

The support of Mx{axMx has dimension m ´ 1 at x by Active lemma 3.10.3. As-
sume k ă n ´ m. Then by case m ´ 1, Extk`1

OX,x
pMx{axMx,Exq is zero. So the en-

domorphism ExtkOX,xpˆax,Exq on ExtkOX,xpMx,Exq is surjective. By Rem. 5.2.7, this
endomorphism is the multiplication of ax on the OX,x-module ExtkOX,xpMx,Exq.
Since ExtkOX,xpMx,Exq is finitely generated (because we can choose a finite-rank
free resolution of Mx), and since ax P mX,x, ExtkOX,xpMx,Exq must be zero by
Nakayama’s lemma 1.2.15.

We shall only use the following very special case of Thm. 5.9.7:

Corollary 5.9.8. Let X be a complex space and x P X . Let E be a coherent OX-module.
Then

depthpExq ď inf
␣

dimOX,x{p : p P AsspExq
(

In particular, depthpExq ď dimxX .
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Proof. Choose any associated prime p of Ex. Let m “ dimOX,x{p and n “

depthpExq. If n ą m, then HomOX,xpOX,x{p,Exq “ 0 by Thm. 5.9.7. But

HomOX,xpOX,x{p,Exq » Ker
`

HomOX,xpOX,x,Exq Ñ HomOX,xpp,Exq
˘

»tξ P Ex : pξ “ 0u

and the set tξ P Ex : pξ “ 0u is non-zero by the very definition of associate primes.
This is impossible. So n ď m.

5.10 Flatness, openness, and dimensions of fibers II:
Cohen-Macaulay

In this section, X is a complex space. Note that if x P X , then depthpOX,xq ď

dimxX by Cor. 5.9.8.

Definition 5.10.1. Let x P X . We say that X is Cohen-Macaulay at x or that OX,x

is a Cohen-Macaulay ring, if

depthpOX,xq “ dimxX.

If X is Cohen-Macaulay at every x P X , we say that X is a Cohen-Macaulay
complex space.

Example 5.10.2. If X is smooth of dimension n at x, then there clearly exists an
OX,x-regular sequence in mX,x of length n. (Take the coordinate functions.) There-
fore, complex manifolds are Cohen-Macaulay.

Example 5.10.3. If dimxX “ 0 then X is clearly Cohen-Macaulay at x.

Proposition 5.10.4. Choose f1, . . . , fn P OpXq vanishing at x, and assume that their
germs f1,x, . . . , fn,x form an OX,x-regular sequence. Then the following are equivalent.

(1) X is Cohen-Macaulay at x.

(2) Y “ Specan
`

OX{pf1OX ` ¨ ¨ ¨ ` fnOXq
˘

is Cohen-Macaulay at x.

Proof. By Active lemma 3.10.3, dimxX “ dimx Y ` n. Then the equivalence of the
two statements follows immediately from Cor. 5.9.6.

Proposition 5.10.5. Suppose that X is Cohen-Macaulay at x. For each associated prime
p of OX,x, we have dimOX,x{p “ dimxX .

Proof. Clearly, in general we have dimOX,x{p “ dimxNppq ď dimxX . That we
have “ ě ” when OX,x is Cohen-Macaulay is due to Cor. 5.9.8.

The miracle of Cohen-Macaulayness lies in the following fact:
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Theorem 5.10.6. Let f P OpXq vanish at x. Let Z “ SpecanpOX{fOXq. Suppose that
X is Cohen-Macaulay at x. Then the following are equivalent.

(1) f is a non zero-divisor of OX,x.

(2) dimxX “ dimx Z ` 1.

If one of them holds, then Z is Cohen-Macaulay at x.

Proof. (1)ñ(2): By Active lemma 3.10.3. Then by Prop. 5.10.4, Z is Cohen-
Macaulay at x.

Not (1) ñ Not (2): Assume that the germ fx is a zero-divisor of OX,x. Then
by Cor. 5.8.5, fx belongs to some associated prime p of OX,x. We shrink X to a
neighborhood of x so that p “ Px for a coherent ideal P of OX , and that f P

PpXq. Let n “ dimxX . Then by Prop. 5.10.5, dimxNpPq “ n. Hence

dimx Z “ dimxNpfq ě dimxNpPq “ n.

So (2) does not hold.

We are now able to prove the following remarkable result which is parallel to
Thm. 5.7.3.

Theorem 5.10.7 (Miracle flatness theorem). Let φ : X Ñ Y be a holomorphic map
where Y is a complex manifold. Assume that X is Cohen-Macaulay at x P X . Then the
following are equivalent.

(1) The following Dimension Formula holds

dimxXφpxq “ dimxX ´ dimφpxq Y (5.10.1)

(2) φ is flat at x.

Moreover, if any of them holds, then Xφpxq “ φ´1
`

φpxq
˘

is Cohen-Macaulay at x.

Proof. That (2)ñ(1) is due to Thm. 5.7.1. To prove (1)ñ(2), we may assume that Y
is an open subset of Cn, and that φpxq “ 0. Then φ is represented by pf1, . . . , fnq P

OpXqn. For each 1 ď k ď n, let

Zk
“ SpecanpOX{pf1OX ` ¨ ¨ ¨ ` fkOXqq.

Set Z0 “ X . Then Zk “ SpecanpOZk´1{fkOZk´1q. So by the definition of dimen-
sions (Def. 3.9.1),

dimx Z
k

` 1 ě dimx Z
k´1.
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Thus we have (noting that Zn “ φ´1p0q “ Xφpxq)

dimx Z
n

` n ě dimx Z
0 equivalently dimxXφpxq ` n ě dimxX

and “ě” becomes ““” whenever

dimx Z
k

` 1 “ dimx Z
k´1

@1 ď k ď n (5.10.2)

Since we assume (1) is true, we have (5.10.2). By assumption, Z0 is Cohen-
Macaulay at x. Suppose we have proved that Zk´1 is Cohen-Macaulay at x where
1 ď k ď n, then by (5.10.2) and Thm. 5.10.6, fk is a non zero-divisor of OZk´1,x

and Zk is Cohen-Macaulay at x. Therefore, by induction, we see that the germs
f1,x, . . . , fn,x form an OX,x-regular sequence, and Zn “ Xφpxq is Cohen-Macaulay
at x. Hence φ is flat at x by Cor. 5.6.9.

Corollary 5.10.8. Assume that X is a Cohen-Macaulay complex space (e.g. a complex
manifold) and Y is a complex manifold. Let φ : X Ñ Y be a holomorphic map. Then the
following are equivalent:

(1) Dimension Formula (5.10.1) holds for all x P X .

(2) φ is open.

(3) φ is flat.

Proof. By Cor. 3.12.3 and Thm. 5.10.7.

210



Chapter 6

Cohomology and base change

6.1 Sheaf cohomology and higher direct images

Let X be a ringed space with structure sheaf OX . Let ModpOXq and CohpOXq

(or simply ModpXq and CohpXq) be respectively the category of OX-modules
and the category of coherent OX-modules. Note that if OX equals Z, the sheaf of
locally constant Z-valued functions, then ModpOXq is the category of sheaves (of
abelian groups) on the topological space X .

6.1.1 ModpOXq has enough injectives

Our aim of this section is to construct various derived functors from ModpOXq.
The first step is to show that ModpOXq has enough injectives. (In general,
ModpOXq need not have enough projectives.) We first note the following elemen-
tary fact:

Remark 6.1.1. If pEαqα is a family of OX-modules, we can define the direct product
ś

α Eα in a natural way, i.e. whose space of sections on each open subset U Ă X is
ś

α EαpUq. (It is in general not true that the stalk of the direct product equals the
direct product of stalks.)

If F P ModpOXq, then a morphism φ : F Ñ
ś

α Eα is equivalently a collection
of morphism F Ñ Eα for all α. Namely, we have a natural equivalence

HomOX pF ,
ź

α

Eαq »
ź

α

HomOX pF ,Eαq (6.1.1)

From (6.1.1), it is clear that if each Eα is injective, then
ś

α Eα is injective.

Definition 6.1.2. Let E P ModpOXq. We view each stalk Ex as an OX-module: if
U Ă X is open and f P OXpUq, and if s P Ex, then fs “ 0 if x ‰ U and fs “ fxs if
x P U . Then the OX-module

GodepE q “
ź

xPX

Ex (6.1.2)
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is called the Godement sheaf of E . More explicitly, if U Ă X is open, then

GodepE qpUq “
ź

xPU

Ex (6.1.3)

namely, a section s P GodepE qpUq is equivalently a function on U whose value at
each x P X is an element of E .

We have an obvious monomorphism E ãÑ GodepE q sending each s P E pUq to
the function on U whose value at each x P U is the stalk sx.

Proposition 6.1.3. ModpOXq has enough injectives, namely, for each OX-module E ,
there is an injective object E 0 P ModpOXq and a monomorphism E ãÑ E 0.

Proof. For each x P X , we choose a monomorphism Ex ãÑ Ix of OX,x-modules
such that Ix is injective, which exists due to Prop. 5.3.3. Set

E 0
“

ź

xPX

Ix

and define the monomorphism E ãÑ E 0 to be the composition

E ãÑ
ź

xPX

Ex ãÑ
ź

xPX

Ix.

To show that E 0 is injective, by Rem. 6.1.1, it suffices to show that each Ix is
an injective OX-module. But this is clear because Ix is injective in ModpOX,xq, and

HomOX pF ,Ixq » HomOX,xpFx,Ixq

for each F P ModpOXq.

6.1.2 HqpX,E q and Rqφ˚pE q

Thanks to Prop. 6.1.3, we can make the following definition:

Definition 6.1.4. Let H‚pX,´q be the right derived functor (cf. Thm. 5.2.2) of
the functor H0pX,´q from ModpOXq to ModpOpXqq, sending E to H0pX,E q “

E pXq. For each q P N, HqpX,E q is called the q-th cohomology group of X with
coefficients in E . As usual, we set HqpX,E q “ 0 if q ă 0.

Note that if OX is a sheaf of F-algebras where F is a field, then HqpX,E q is a
vector space over F.

Remark 6.1.5. If U Ă X is open and V Ă U is open, then as H‚pU,´q is a univer-
sal δ-functor, the natural morphism H0pU,´q Ñ H0pV,´q defined by restriction
extends uniquely to a morphism of δ-functors H‚pU,´q Ñ H‚pV,´q. (See Def.
5.1.5.)
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Namely (Def. 5.1.4), we have a unique collection of morphisms HqpU,E q Ñ

HqpV,E q for all q P N and E P ModpOXq satisfying the following: If E Ñ F is a
morphism in ModpOXq, the following diagram commutes

HqpU,E q HqpU,F q

HqpV,E q HqpV,F q

(6.1.4)

If 0 Ñ E Ñ F Ñ G Ñ 0 is a short exact sequence in ModpOXq, the following
diagram commutes

HqpU,G q Hq`1pU,E q

HqpV,G q Hq`1pV,E q

δ

δ

(6.1.5)

Definition 6.1.6. Let φ : X Ñ Y be a morphism of ringed spaces. Note that the
direct image functor φ˚ : ModpOXq Ñ ModpOY q sending E to φ˚E is left exact.
Note that for each open V Ă Y , we have

φ˚E pV q “ E pφ´1
pV qq “ H0

pφ´1
pV q,E q

by our notations. For each q P N, the sheafification of the presheaf of OY -modules
associating to each open set V Ă Y the OY pV q-module

pRqφ˚pE qq
pre

pV q “ Hq
pφ´1

pV q,E q

is denoted by Rqφ˚pE q and called the q-th higher direct image of φ.
Clearly R0φ˚pE q “ φ˚E , and the stalk of Rqφ˚pE q at each y P Y is

Rqφ˚pE qy “ lim
ÝÑ
V Qy

Hq
pφ´1

pV q,E q (6.1.6)

where the direct limit is over all neighborhoods of y.

Since H‚pφ´1pV q,´q is a δ-functor, for each short exact sequence 0 Ñ E Ñ

F Ñ G Ñ 0 in ModpOXq we have a long exact sequence

0 Ñ H0
pφ´1

pV q,E q Ñ H0
pφ´1

pV q,F q Ñ H0
pφ´1

pV q,G q

δ
ÝÑ H1

pφ´1
pV q,E q Ñ H1

pφ´1
pV q,F q Ñ H1

pφ´1
pV q,G q

δ
ÝÑ H2

pφ´1
pV q,E q Ñ ¨ ¨ ¨ (6.1.7)

By Rem. 6.1.5, if W Ă V is open, we have a morphism of exact sequences from
(6.1.7) to a similar one about φ´1pW q. Therefore, since direct limit preserves ex-
actness, we obtain an exact sequence in ModpOY q

0 Ñ φ˚E Ñ φ˚F Ñ φ˚G
δ

ÝÑ R1φ˚E Ñ R1φ˚F Ñ R1φ˚G
δ

ÝÑ R2φ˚E Ñ ¨ ¨ ¨ (6.1.8)
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since its stalk at each y P Y is the direct limit of (6.1.7) over all neighborhoods V
of y.

Proposition 6.1.7. pR‚φ˚, δq is the universal δ-functor (cf. Def. 5.1.5) from ModpOXq

to ModpOY q extending φ˚. Therefore, it is the right derived functor of φ˚.

Proof. Since H‚pφ´1pV q,´q is a δ-functor, a morphism of short exact squences in
ModpOXq

0 E F G 0

0 E 1 F 1 G 1 0

(6.1.9)

gives rise to a commutative diagram

Hqpφ´1pV q,G q Hq`1pφ´1pV q,E q

Hqpφ´1pV q,G 1q Hq`1pφ´1pV q,E 1q

δ

δ

for each q P N and open V Ă Y . By passing to direct limits, we obtain a commu-
tative diagram

Rqφ˚pG q Rq`1φ˚pE q

Rqφ˚pG 1q Rq`1φ˚pE 1q

δ

δ

This verifies that pR‚φ˚, δq is a δ-functor.
To show that it is universal, by Thm. 5.1.6 and that ModpOXq has enough injec-

tives, it suffices to show thatRqφ˚pI q is zero whenever q ą 0 and I is an injective
object in ModpOXq. But this is obvious since Hą0 vanishes on injective objects (as
right derived functors do, cf. Thm. 5.2.2), which shows that Hą0pφ´1pV q,I q “ 0
for every open V Ă Y .

6.2 Čech cohomology

Fix a ringed topological space pX,OXq. In this section, we introduce Čech co-
homology as an easier way to compute sheaf cohomology. We follow mainly the
approach of [Dem]. Čech cohomology is equivalent to sheaf cohomology in most
cases. Čech cohomology is easier to compute, while sheaf cohomology is more
functorial and can easily explain why other cohomology theories (e.g. de Rham
cohomology, Dolbeault cohomology) agree with Čech cohomolgy in explicit situ-
ations.

Most part of this section is self-contained in the sense that it does not assume
the knowledge of sheaf cohomology or derived functors. Indeed, it is recom-
mended that the readers read this section before they read the more abstract ap-
proach of sheaf cohomology.
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6.2.1 Čech cohomology qHqpU,E q

Fix an open cover U “ pUαqαPI of X . For each α0, α1, . . . , αq P I , set

Uα0α1¨¨¨αq “ Uα0 X Uα1 X ¨ ¨ ¨ X Uαq

Definition 6.2.1. For each q P N, the (alternate) Čech q-cochain is the OpXq-
module

Cq
pU,E q “

!

pcα0α1¨¨¨αqq P
ź

pα0,...,αqqPIq`1

E pUα0α1¨¨¨αqq :

cα0¨¨¨αq “ sgnpσq ¨ cασp0q¨¨¨ασpqq
for all σ P Autt0, 1, . . . , qu

)

where sgnpσq denotes the sign of the permutation σ.1 The q-th coboundary oper-
ator δ “ δq : CqpU,E q Ñ Cq`1pU,E q is an OpXq-module morphism defined by

pδqcqα0¨¨¨αq`1 “
ÿ

0ďjďq`1

p´1q
jcα0¨¨¨xαj ¨¨¨αq`1

ˇ

ˇ

Uα0¨¨¨αq`1

(6.2.1)

We set CqpA,E q “ 0 if q ă 0.
It is not hard to check that dq`1dq “ 0. So pC‚pU,E q, δq is a complex. Its coho-

mology

H‹
pU,E q :“ H‹

pC‚
pU,E qq

is called the Čech cohomology groups of U with coefficients in E .

Remark 6.2.2. The boundary operators can be defined in a similar way as the
exterior derivative of differential forms. Choose any s P E pUα0¨¨¨αqq. We define

s ¨ dα0dα1 ¨ ¨ ¨ dαq P Cq
pU,E q

to be

s ¨ dα0 ¨ ¨ ¨ dαq|ασp0q¨¨¨ασpqq
“ sgnpσq ¨ s P E pUσp0q ¨ ¨ ¨ασpqqq

s ¨ dα0 ¨ ¨ ¨ dαq|β0¨¨¨βq “ 0 pβ0, . . . , βq is not a permutation of α0, . . . , αqq
(6.2.2)

It is helpful to view s ¨ dα0dα1 ¨ ¨ ¨ dαq as the multiplication of s P E pUα0¨¨¨αqq and
dα0 ¨ ¨ ¨ dαq P CqpU,OXq.

Clearly, for each permutation σ P Autt0, 1, . . . , qu,

s ¨ dα0 ¨ ¨ ¨ dαq “ sgnpσqs ¨ dασp0q ¨ ¨ ¨ dασpqq.

1One can also define Čech cohomology without assuming the alternate condition. The coho-
mology theory one gets is equivalent to the alternate one. See [Dem] Sec. IV.5.D.
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And δq : CqpU,E q Ñ Cq`1pU,E q can be defined to be the OpXq-module morphism
determined by

δps ¨ dα0 ¨ ¨ ¨ dαqq “
ÿ

βPI

s ¨ dβdα0 ¨ ¨ ¨ dαq. (6.2.3)

It is well defined, namely, it is compatible with the expression of δps ¨

dασp0q ¨ ¨ ¨ dασpqqq for any permutation σ of t0, 1, . . . , qu.

6.2.2 Partition of unity and vanishing of qHą0pU,E q

Fix an open cover U “ pUαqαPI of X . An important feature of Čech cohomol-
ogy is that qHą0pU,´q vanishes when one can construct partition of unity. More
precisely:

Definition 6.2.3. A partition of unity in OX subordinated to U is a collection
pψαqαPI where each ψα P OpXq, satisfying the following conditions:

• Supppψαq Ă Uα for each α P I .

• The family of subset pSupppψαqqαPI is locally finite, namely, each x P X is
contained in a neighborhood which intersects only finitely many members
of pSupppψαqqαPI .

•
ř

αPI ψαpxq “ 1 for each x P X .

Proposition 6.2.4. Suppose that E P ModpOXq is also an RX-module where RX is a
sheaf of rings on X (possibly different from OX). Suppose that there is a partition of unity
in RX subordinate to U. Then qHą0pU,E q “ 0.

Proof. Let pψαqαPI be a partition in RX subordinate to U. For each q P Z`, define
an RXpXq-module morphism

wq : Cq
pU,E q Ñ Cq´1

pU,E q

wqps ¨ dα0 ¨ ¨ ¨ dαqq “

q
ÿ

j“0

p´1q
jψαjs ¨ dα0 ¨ ¨ ¨ydαj ¨ ¨ ¨ dαq (6.2.4)

where each ψαjs, a priori an element of E pUα0¨¨¨αqq, is extended by zero to an el-
ement of E pUα0¨¨¨xαj ¨¨¨αqq. (Also, (6.2.4) is well-defined, i.e. is invariant under a
permutation of t0, 1, . . . , qu.)

For each q ą 0, it is a routine check that

δq´1wq ` wq`1δq “ 1.

Therefore, the identity map on CqpU,E q is homotopic to 0. Thus HqpC‚pU,E qq

vanishes when q ą 0.
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The analog of Prop. 6.2.4 for sheaf cohomology (namely, the degreeą 0 sheaf
cohomology groups of fine sheaves are zero) is also true. See [Voi, Prop. 4.36].

Using a similar idea, we prove:

Lemma 6.2.5. For each x P X , choose an OX,x-module Fx, and view it as an OX-module.
Let

F “
ź

xPX

Fx

Then qHą0pU,F q.
In particular, for each E P ModpOXq, if we let E 0 P ModpOXq be the Godement sheaf

GodepE q, then qHą0pU,E 0q “ 0.

Proof. F is clearly an RX-module, where

RX :“ GodepOXq “
ź

xPX

OX,x.

An easy application of Zorn’s lemma shows that we have a disjoint union X “
š

αPI Eα (over the same index set I as that of U) such that Eα Ă Uα for each α P I .
For each α P I , define ψα P RXpXq to be the characteristic function of Uα, namely,
ψα “ pψαpxqqxPX where ψαpxq “ 1 if x P Uα and ψαpxq “ 0 if x P XzUα. Though the
support of ψα (which is U cl

α ) is not contained in Uα, we still have that for each open
V Ă X and s P E pV XUαq, ψαs extends by zero to an element of V . Thus, for each
q ą 0 we can define an RXpXq-module morphism wq : CqpU,F q Ñ Cq´1pU,F q

by (6.2.4) and show again that δq´1wq ` wq`1δq “ 1.

Definition 6.2.6. We say that E P ModpOXq is a fine sheaf if E is over a sheaf
RX of rings on X , where RX satisfies that for every open cover U of X there is a
partition of unity in RX subordinate to U.

For instance, if X is a smooth manifold and E is over the sheaf C 8
X,R of real

valued smooth functions, then E is fine.
By Prop. 6.2.4, if E is a fine sheaf, then for every open cover U of X ,

qHą0pU,E q “ 0.

6.2.3 Long exact sequences for Čech cohomology

A short exact sequence 0 Ñ E Ñ F Ñ G Ñ 0 in ModpOXq gives an exact
sequence of complexes

0 Ñ C‚
pU,E q Ñ C‚

pU,F q Ñ C‚
F pU,G q Ñ 0

where

Cq
F pU,G q “ Im

`

Cq
pU,F q Ñ Cq

pU,G q
˘

(6.2.5)
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This gives a long exact sequence of their cohomologies

¨ ¨ ¨ Ñ qHq´1
F pU,G q

δ
ÝÑ qHq

pU,E q Ñ qHq
pU,F q Ñ qHq

F pU,G q
δ

ÝÑ qHq`1
pU,E q Ñ ¨ ¨ ¨

(6.2.6)

where we set

qHq
F pU,G q “ Hq

pC‚
F pU,G qq

and recall that qHqpU,´q “ HqpC‚pU,´qq. Clearly, a morphism of short exact se-
quences (6.1.9) gives a morphism of long exact sequences from (6.2.6) to a similar
one for E 1,F 1,G 1.

Remark 6.2.7. According to the definition (6.2.5), an element of Cq
F pU,G q is pre-

cisely an element g “ pgα0¨¨¨αqq of CqpU,G q such that each gα0¨¨¨αq P G pUα0¨¨¨αqq can
be lifted to an element fα0¨¨¨αq P F pUα0¨¨¨αqq, and that the lifting can be chosen in
such a way that the skew-symmetry condition

fα0¨¨¨αq “ sgnpσqfασp0q¨¨¨ασpqq
(6.2.7)

is satisfied for each pα0, . . . , αqq P Iq`1 and each permutation σ of t0, 1, . . . , qu.
The skew-symmetry condition is redundant. For if a lift fα0¨¨¨αq is chosen for

each ordered tuple pα0, . . . , αqq P Iq`1, then the alternating sum

rfα0¨¨¨αq “
1

pq ` 1q!

ÿ

σPAutt0,...,qu

sgnpσqfασp0q¨¨¨ασpqq

is also a lift of gα0¨¨¨αq , and the skew-symmetry condition is satisfied: rfα0¨¨¨αq “

sgnpσq rfασp0q¨¨¨ασpqq
.

Remark 6.2.8. The connecting morphism δq : qHq
F pU,G q Ñ qHq`1pU,E q is described

as follows.

1. Choose any element rgs of qHq
F pU,G q, represented by some g “ pgα0¨¨¨αqq P

Cq
F pU,G q which is a cocycle, i.e. satisfies δg “ 0. (Here δ is defined by

(6.2.3).) According to the definition (6.2.5) of Cq
F pU,G q, we can lift g to an

element f “ pfα0¨¨¨αqq of CqpU,F q.

2. That δg “ 0 implies that δqf P Cq`1pU,F q is sent to zero by Cq`1pU,F q Ñ

Cq`1pU,G q. So δqf P Cq`1pU,F q belongs to the image of Cq`1pU,E q Ñ

Cq`1pU,F q.

3. Choose an arbitrary e P Cq`1pU,E q which is sent to δf . Then δ ˝ δf “ 0

implies δe “ 0. Then res P qHq`1pU,E q is δrgs.
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Unfortunately, qH‚pU,G q and qH‚
F pU,G q are not equal in general. So (6.2.6) does

not give a δ-functor. There are two ways to overcome this difficulty:

(a) Take direct limit of qHpU,´q and qHF pU,´q over all open covers U. Then these
two spaces agree when X is paracompact.

(b) For many important examples of sheaves, one can choose a nice cover U

such that qHpU,´q and qHF pU,´q are equal. Then there is a chance that
qHpU,´q equals the sheaf cohomology.

We first explain approach (a) in the next section.

6.3 Čech cohomology on paracompact spaces

Let X be a ringed space.

6.3.1 Čech cohomology qHqpX,E q

Suppose that V “ pVβqβPJ is another open cover of X which is a refinement of
U “ pUαqαPI . This means that there is a map ρ : J Ñ I satisfying Vβ Ă Uρpβq for all
β P J . Then we obtain an OpXq-module morphism

ρq : Cq
pU,E q Ñ Cq

pV,E q

pρqcqβ0¨¨¨βq “ cρpβ0q¨¨¨ρpβqq|Vβ0¨¨¨βq
(6.3.1)

Proposition 6.3.1. Assume that rρ : J Ñ I satisfies Vβ Ă U
rρpβq for all β P J . Then ρ‚

and rρ‚ induce the same OpXq-module morphism (called restriction map)

Hq
pρ‚

q “ Hq
prρ‚

q : qHq
pU,E q Ñ qHq

pV,E q. (6.3.2)

Proof. (6.3.2) is obvious when q “ 0. Let q ą 0. For each c P CqpU,E q, define
wqc P

ś

pβ0,...,βq´1q
E pVβ0¨¨¨βq´1q by

pwqcqβ0¨¨¨βq´1 “
ÿ

0ďjďq´1

p´1q
jcρpβ0q¨¨¨ρpβjqrρpβjq¨¨¨rρpβq´1q|Vβ0¨¨¨βq´1

Using the definition of δ in (6.2.1), one checks that δq´1wq ` wq`1δq equals rρq ´ ρq

on CqpU,E q. (See [Kod] Sec. 3.3 Lemma 3.2 for the details of computation.)
Thus, if δqc “ 0, then rρqc ´ ρqc equals δq´1wqc. Let b be the alternating sum of

wqc, namely

bβ0¨¨¨βq “
1

q!

ÿ

σPAutt0,...,q´1u

sgnpσq ¨ pwqcqβσp0q¨¨¨βσpq´1q
.

Then b P Cq´1pV,E q, and rρqc ´ ρqc “ δq´1b. This finishes the proof.
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Thanks to Prop. 6.3.1, we can make the following

Definition 6.3.2. For each E P ModpOXq and q P N,

qHq
pX,E q “ lim

ÝÑ
U is an open cover of X

qHq
pU,E q

is called the q-th Čech cohomology group of X with coefficients in E . Clearly

qH0
pX,E q “ qH0

pU,E q “ E pXq.

Any morphism of OX-modules E Ñ F gives a canonical morphism qHqpX,E q Ñ

qHqpX,F q.

Let 0 Ñ E Ñ F Ñ G Ñ 0 be a short exact sequence in ModpOXq. The proof of
Prop. 6.3.1 (together with Rem. 6.2.7) implies that

Hq
F pρ‚

q “ Hq
F prρ‚

q : qHq
F pU,G q Ñ qHq

F pV,G q. (6.3.3)

Thus, we can also define

qHq
F pX,G q “ lim

ÝÑ
U is an open cover of X

qHq
F pU,G q

Then the direct limit of (6.2.6) over all U gives an exact sequence (note that direct
limit is an exact functor)

¨ ¨ ¨ Ñ qHq´1
F pX,G q

δ
ÝÑ qHq

pX,E q Ñ qHq
pX,F q Ñ qHq

F pX,G q
δ

ÝÑ qHq`1
pX,E q Ñ ¨ ¨ ¨

(6.3.4)

which is functorial in the sense that a morphism of short exact sequences (6.1.9)
gives a morphism of long exact sequences from (6.3.4) to a similar one for
E 1,F 1,G 1.

The monomorphism of complexes C‚
F pU,G q Ñ C‚pU,G q gives a natural mor-

phism of their cohomology groups

qHq
F pU,G q Ñ qHq

pU,G q

which is compatible with restricting to a finer open cover V. Thus, passing to the
direct limit over all open cover U, we obtain a natural morphism

qHq
F pX,G q Ñ qHq

pX,G q (6.3.5)

Theorem 6.3.3. Assume that X is paracompact. Then (6.3.5) is an isomorphism. There-
fore, by (6.3.4), p qH‚pX,´q, δq is a δ-functor, which is indeed universal, and hence is
isomorphic to the sheaf cohomology pH‚pX,´q, δq
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Recall that a paracompact space is a Hausdorff space satisfying that any
open cover has a refinement which is locally finite. For instance, every second-
countable locally compact Hausdorff space is paracompact. Therefore, every
second-countable complex space is paracompact.

Proof. Step 1. Once we have proved that (6.3.5) is an isomorphism, then by Thm.
5.1.6, the δ-functor p qH‚pX,´q, δq is universal because that each E P ModpOXq has a
monomorphism into its Godement sheaf E 0 “ GodepE q, and that qHą0pX,E 0q “ 0
by Lemma 6.2.5.

To show that (6.3.5) is an isomorphism, it suffices to show that for each open
cover U of X and each c “ pcα0¨¨¨αqq P CqpU,G q, there is a refinement V “ pVβqβPJ

together with a map ρ : J Ñ I satisfying Vβ Ă Uρpβq for all β P J , such that
ρqc P CqpV,G q (as defined in (6.3.1)) belongs to Cq

F pV,G q. By Rem. 6.2.7, the last
sentence is equivalent to that ρqc is liftable in F , namely, for each β0, . . . , βq P J ,

pρqcqβ0¨¨¨βq “ cρpβ0q¨¨¨ρpβqq|Vβ0¨¨¨βq

lifts to an element of F pVβ0¨¨¨βqq.

Step 2. Since X is paracompact, by replacing U with a refinement, we may
assume that U “ pUαqαPI itself is locally finite. For each x P X , we choose a
neighborhood Vx such that

(a) If x P X and α P I is such that x P Uα, then Vx Ă Uα.

(b) If x P Uα0¨¨¨αq , (note that Vx Ă Uα0¨¨¨αq ) then cα0¨¨¨αq |Vx (which belongs to G pVxq)
lifts to an element of F pVxq.

Thus, if an open subset Ω Ă Uα0¨¨¨αq satisfies that Ω Ă Vx for some x P Uα0¨¨¨αq , then
cα0¨¨¨αq |Ω is liftable in F .

Let V “ pVxqxPX . For each x P X , choose ρpxq P I such that Vx Ă Uρpxq. By the
end of Step 1, it suffices to show that for each x0, . . . , xq P X , cρpx0q¨¨¨ρpxqq|Vx0¨¨¨xq

lifts
to an element of F pVx0¨¨¨xqq. It suffices to prove that

x0 P Uρpx0q¨¨¨ρpxqq p@x0, . . . , xq P X such that Vx0¨¨¨xq ‰ Hq

because it would then imply (by (a)) that Vx0 Ă Uρpx0q¨¨¨ρpxqq, and (by (b)) that
cρpx0q¨¨¨ρpxqq|Vx0 lifts to an element of F pVx0q. Therefore, it suffices to prove that
for each x, y P X ,

Vx X Vy ‰ H ùñ x P Uρpyq (6.3.6)

To show (6.3.6), we need to shrink each Vx further. SinceX is paracompact, we
may choose an open subcover W “ pWαqαPI of U with the same index set I such
that W cl

α is a subset of Uα for each α P I . Clearly W is also locally finite. Therefore,
we may shrink each Vy further so that
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(c) For each y P X there exists α P I such that Vy Ă Wα. Then we let ρpyq “ α.

Therefore, since Vy Ă Wρpyq, it remains to prove that for each x P X,α P I ,

Vx X Wα ‰ H ùñ x P Uα (6.3.7)

This is certainly true if for each x P X we shrink Vx further: We first shrink Vx so
that Vx intersects finitely many members of U, say Uα1 , . . . , Uαk . If 1 ď j ď k is
such that x ‰ Uαj , since W cl

αj
Ă Uαj , we may shrink Vx so that Vx XWαj “ H. Then

(6.3.7) is clearly fulfilled.

Definition 6.3.4. Let E P ModpOXq. A resolution 0 Ñ E Ñ E ‚ is called a fine
resolution of E if each E q is a fine sheaf.

Example 6.3.5. Let X be a paracompact (e.g. second countable) topological (resp.
smooth) manifold. For every open cover U of X there is a continuous (resp.
smooth) partition of unity of X subordinated to U. Therefore, every X-sheaf over
the sheaf of germs of continuous (resp. smooth) functions on X is a fine sheaf.

Corollary 6.3.6. Assume that X is paracompact. Let E P ModpOXq, and let 0 Ñ

E Ñ E ‚ be a fine resolution of E . Set E q “ 0 if q ă 0. Then there are OpXq-module
isomorphisms

qHq
pX,E q » Hq

pX,E q » Hq
pE ‚

pXqq

Proof. The first equivalence is due to Thm. 6.3.3. Since qHą0pX,E ‚q “ 0 by Prop.
6.2.4, the second equivalence holds (cf. Subsec. 5.2.2 and especially (5.2.7)).

Example 6.3.7. Let X be a paracompact smooth manifold. Let F be R or C. Then
we have a resolution of the constant sheaf F called de Rham resolution:

0 Ñ F d
ÝÑ

ľ0

F
X

d
ÝÑ

ľ1

F
X

d
ÝÑ

ľ2

F
X

d
ÝÑ ¨ ¨ ¨ (6.3.8)

where
Źq

FX is the sheaf of germs of F-valued differential q-forms, and d is the
differential operator. Let

Źq
FX “ 0 if q ă 0. The exactness of (6.3.8) is due

to Poincaré’s lemma. Then by Exp. 6.3.5,
Źq

FX is a fine sheaf since it is over the
sheaf of F-valued smooth functions C 8

X,F. Define the de Rham cohomology group

Hq
dRpX,Fq :“ Hq

´

H0
`

X,
ľ‚

F
X
˘

¯

. (6.3.9)

Then by Cor. 6.3.6, we have isomorphisms of F-vector spaces

qHq
pX,Fq » Hq

pX,Fq » Hq
dRpX,Fq.
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Example 6.3.8. Let X be a paracompact complex manifold. Let C 8
X,C be the sheaf

of germs of complex smooth functions on X . Let
Źp,qX be the sheaf of germs

of complex differential forms on X of degree pp, qq. Locally, by choosing a set
of coordinates pz1, . . . , znq of X , a section of Ωp,q

X is a sum of those of the form
fdzi1 ^ ¨ ¨ ¨ ^ dzip ^ dzj1 ^ ¨ ¨ ¨ ^ dzjq where f P C 8

X,C. Then we have a resolution

0 Ñ Ωp
X Ñ

ľp,0
X

B
0

ÝÑ
ľp,1

X
B
1

ÝÑ
ľp,2

X
B
2

ÝÑ ¨ ¨ ¨ (6.3.10)

called the Dolbeault resolution of Ωp
X , where Ωp

X is the sheaf of germs of holo-
morphic p-forms (which are locally a sum of those of the form fdzi1 ^ ¨ ¨ ¨ ^ dzip
where f P OX), and B

q
is a C-linear sheaf map determined by

Bpfdzi1 ^ ¨ ¨ ¨ ^ dzip ^ dzj1 ^ ¨ ¨ ¨ ^ dzjqq

“
ÿ

k

Bf

Bzk
dzk ^ dzi1 ^ ¨ ¨ ¨ ^ dzip ^ dzj1 ^ ¨ ¨ ¨ ^ dzjq

The exactness of (6.3.10) is due to Dolbeault lemma.
In (6.3.10), set p “ 0. Then Ω0

X “ OX . Choose any locally free OX-module (i.e.
holomorphic vector bundle) E and tensor it with (6.3.10). Since E is OX-flat, we
obtain an exact sequence

0 Ñ E Ñ E bOX

ľ0,0
X

1bB
ÝÝÑ E bOX

ľ0,1
X

1bB
ÝÝÑ E bOX

ľ0,2
X

1bB
ÝÝÑ ¨ ¨ ¨

(6.3.11)

called the Dolbeault resolution of E . This is a fine resolution since each E bOX
Ź0,1X is over C 8

X,C (cf. Exp. 6.3.5). Define the Dolbeault cohomology group

Hq

B
pX,E q :“ Hq

´

H0
`

X,E bOX

ľ0,‚
X
˘

¯

Then by Cor. 6.3.6, we have isomorphisms of C-vector spaces

qHq
pX,E q » Hq

pX,E q » Hq

B
pX,E q (6.3.12)

6.4 Leray’s theorem; Stein spaces

In this section, we explain approach (b) at the end of Subsec. 6.2.3. Again, we
assume X is a ringed space. Let U “ pUαqαPI be an open cover of X .

6.4.1 Leray’s theorem

Theorem 6.4.1 (Leray’s theorem). Assume that X is paracompact. Let E P ModpOXq

and assume that

qHą0
pUα0¨¨¨αn ,E q “ 0 (6.4.1)
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for all n P N and α0, . . . , αn P I . Then for each q P N, the natural OpXq-module
morphism

qHq
pU,E q Ñ qHq

pX,E q (6.4.2)

(defined by passing to direct limit over all open covers) is an isomorphism.

Proof. (6.4.2) is clearly an isomorphism when q “ 0, since they are both identified
with E pXq. We now prove Leray’s theorem by induction on q. We know it holds
when q “ 0. Assume it holds for case q where q P N. Let us prove it for case q ` 1.
Let F “ GodepE q so that we have a monomorphism E ãÑ F where F is killed
by qHą0pU,´q and by qHą0pX,´q (cf. Lemma 6.2.5). Let G “ F {E . Then we have
a short exact sequence 0 Ñ E Ñ F Ñ G Ñ 0.

Since qH1pUα0¨¨¨αn ,E q “ 0, we have an exact sequence

0 Ñ E pUα0¨¨¨αnq Ñ F pUα0¨¨¨αnq Ñ G pUα0¨¨¨αnq Ñ 0

showing C‚
F pU,G q “ C‚pU,G q (Rem. 6.2.7) and hence qH‚

F pU,G q “ qH‚pU,G q.
Therefore, by (6.3.4) and its functoriality, we have a morphism of exact sequences

qHqpU,F q qHqpU,G q qHq`1pU,E q 0

qHqpX,F q qHqpX,G q qHq`1pX,E q 0

» (6.4.3)

The first vertical arrow is an isomorphism: It is clearly so if q “ 0, and it is so
when q ą 0 because the domain and the codomain are both 0. Clearly, for each
p P N, we have an exact sequence

qHp
pUα0¨¨¨αn ,F q Ñ qHp

pUα0¨¨¨αn ,G q Ñ qHp`1
pUα0¨¨¨αn ,E q

where the third term is zero by assumption (6.4.1) and the first term is zero when
p ą 0 by Lemma 6.2.5. Therefore qHą0pUα0¨¨¨αn ,G q “ 0. So by case q of Leray’s
theorem (applied to G ), the middle vertical arrow of (6.4.3) is an isomorphism. So
the third vertical arrow is also an isomorphism due to Five lemma. This proves
case q ` 1 for E .

Without assuming that X is paracompact, Thm. 6.4.1 still holds if we replace
qHą0pUα0¨¨¨αn ,E q with Hą0pUα0¨¨¨αn ,E q, replace qHqpX,E q with HqpX,E q, and de-
fine the map (6.4.2) in an appropriate way. Indeed, this sheaf cohomology ver-
sion is the common one that people refer to when talking about Leray’s theorem.
This version is especially useful in algebraic geometry, since schemes are not even
Hausdorff. It also allows us to compute the sheaf cohomology of coherent sheaves
over a complex space X which is non-necessarily paracompact by computing the
Čech cohomology of a Stein open cover of X . We present this version in the fol-
lowing subsection.
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6.4.2 Sheaves of Čech cochains CqpU,E q and Čech resolution

Let us consider the sheaf of Čech q-cochains CqpU,E q , which is an OX-module
associating to each open W Ă X the OXpW q-module

CqpU,E qpW q “ Cq
pW X U,E q (6.4.4)

pwhere W X U “ tW X UαuαPIq

Then pCqpU,E q, δq is a cochain complex of OX-modules.
Note that we have an obvious inclusionH0pW,E q ãÑ C0pU,E qpW q, which gives

rise to a monomorphism E ãÑ C0pU,E q. Moreover, we have:

Proposition 6.4.2. The following is an exact sequence

0 Ñ E Ñ C0
pU,E q

δ0
ÝÑ C1

pU,E q
δ1
ÝÑ C2

pU,E q
δ2
ÝÑ ¨ ¨ ¨ (6.4.5)

In other words, 0 Ñ E Ñ Cě0pU,E q is a right resolution of E .
Moreover, if F P ModpOXq, then a morphism φ P HomOX pE ,F q gives rise to a

natural morphism of cochain complexes C‚pU,E q Ñ C‚pU,F q. Therefore, C‚pU,´q is
an (additive) functor from ModpOXq to the category of complexes of OX-modules.

To summarize, we have a right resolution E ãÑ Cě0pU,E q for all E P ModpOXq

which is functorial. This is called the Čech resolution of E with respect to U.

Proof. We only prove (6.4.5). The remaining part of the proposition is obvious.
Choose any x P X , and choose β P I such that x P Uβ . Then for each neighborhood
W of x contained inside Uβ , there is a partition of unity in OW subordinate to
W X U “ pW XUαqαPI : since W XUβ “ W , one can take ψβ “ 1, and take ψα “ 0 if
α ‰ β. Therefore, by Prop. 6.2.4, qHą0pW X U,E q is zero, namely, the sequence

Cq´1
pW X U,E q

δq´1

ÝÝÑ Cq
pW X U,E q

δq
ÝÑ Cq`1

pW X U,E q

is exact if q ą 0. By taking direct limit over all such W , we see that the stalk of
(6.4.5) at x is exact.

Theorem 6.4.3 (Leray’s theorem). Let E P ModpOXq and assume that

Hą0
pUα0¨¨¨αn ,E q “ 0 (6.4.6)

for all n P N and α0, . . . , αn P I . Then for each q P N, there is a natural OpXq-module
isomorphism

qHq
pU,E q » Hq

pX,E q (6.4.7)

Proof. (6.4.6) implies that (6.4.5) is an acyclic resolution of E , namely,

Hą0
pX,CppU,E qq “ 0 (6.4.8)

for all p ě 0. Therefore, by (5.2.7), we have an isomorphism (6.4.7) which is
natural by Exe. 5.2.6.

225



6.4.3 Stein spaces and Cartan’s theorems

In this subsection, we assume X is a complex space.
An important situation to which Leray’s theorem can be applied is when E is

OX-coherent and each Uα is a Stein space. The definition of Stein spaces is quite
technical and will not be used in our notes. Instead, we use the following im-
portant fact about Stein spaces. Indeed, every complex space satisfying Cartan’s
theorem B is a Stein space.

Theorem 6.4.4 (Cartan’s theorem B). Suppose that X is a Stein space. Then for each
E P CohpOXq we have Hą0pX,E q “ 0.

An immediate consequence of Thm. B is:

Theorem 6.4.5 (Cartan’s theorem A). Suppose that X is a Stein space. Then for each
E P CohpOXq and each x P X , the germs at x of the elements of E pXq generate the
OX,x-module Ex.

Proof. By Nakayama’s lemma, it suffices to show that E pXq spans the fiber E |x “

Ex{mX,xEx. We view mX,x is the ideal sheaf of all sections of OX vanishing at x.
Then E |x as a coherent OX-module. We have a short exact sequence

0 Ñ mX,xE Ñ E Ñ E |x Ñ 0

showing that mX,xE is coherent and hence H1pX,mX,xE q “ 0 by Cartan’s theorem
B. Therefore, H0pX,E q Ñ H0pX,E |xq is surjective.

We refer the readers to [Tay, Chapter 10, 11] for a proof of Cartan’s theorem B.
See also [GR-a] for a comprehensive account of the theory of Stein spaces.

Corollary 6.4.6. Let X be a Stein complex space and E a coherent OX-module. Then for
each precompact open subset U Ă X , the OU -module E |U is generated by finitely many
elements of E pXq.

Proof. By Cartan’s theorem A, E is OX-generated by the elements of E pXq. Thus,
we have an ascending chain of coherent submodules pEαqαPI of E , where I is the
set of finite subsets of E pXq, and Eα is OX-generated by the elements of α. By
Thm. 3.11.5, pEαqαPI is stationary on U , i.e., there is α P I such that Eα “ Eβ for all
β ě α. Thus E |U is generated by the elements of α.

Example 6.4.7. The following are some important examples of Stein spaces. We
let X, Y, S denote complex spaces. Cf. [GR-a, Sec. V.1].

(a) Every connected non-compact Riemann surface is Stein.

(b) If X, Y are Stein, then X ˆ Y is Stein.
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(c) If Y is Stein and φ : X Ñ Y is a finite holomorphic map (in particular, if X is
a closed complex subspace of Y ), then X is Stein.

From (a) and (b) we see that every polydisc is Stein. Therefore, for every complex
space X , the set of Stein open subsets of X form a base of topology of X .

We also have:

(d) If φ : X Ñ S and ψ : Y Ñ S are holomorphic maps, and if X, Y are Stein,
then X ˆS Y is Stein.

(e) If U1, . . . , Un are Stein open subsets of X , then U1 X ¨ ¨ ¨ X Un is Stein.

(f) If φ : X Ñ Y is a holomorphic map, U Ă X and W Ă Y are open subsets
which are Stein, then U X φ´1pW q is Stein.

Indeed, (d) is due to that X ˆ Y is Stein and that X ˆS Y is a closed subspace of
X ˆ Y (by Prop. 1.13.10). (f) follows from (d) because U X φ´1pW q is the fiber
product of φ ˝ ιU,X : U Ñ Y and ιW,Y : W Ñ Y . To show (e), it suffices to assume
n “ 2. Then (e) is a special case of (f). Furthermore, we have (cf. [GR-a, Sec.
V.4.3])

(g) X is Stein if and only if its reduction redpXq is Stein.

Definition 6.4.8. An open cover U “ pUαqαPI of a complex space X is called a
Stein cover if each Uα is Stein.

If U is a Stein cover, then by Exp. 6.4.7-(e), each intersection Uα0¨¨¨αn is a Stein
open subset of X . Therefore, by Cartan’s theorem B and Leray’s Thm. 6.4.3, we
have:

Corollary 6.4.9. Suppose that X is a complex space and U is a Stein open cover of X .
Then there is a natural equivalence of OpXq-modules for each E P CohpOXq:

qHq
pU,E q » Hq

pX,E q.

6.5 Higher direct images and formal completion

Beginning with this section, all complex spaces are assumed to be paracom-
pact. Thus, for complex spaces, we identify sheaf cohomology and Čech coho-
mology.

Let X and Y be complex spaces. Let φ : X Ñ S be a holomorphic map. The
following deep result is due to Grauert. See [GR-b, Chapter 10], [BS, Sec. 3.2], or
[Dem, Sec. IX.5] for proofs. This theorem will be implicitly used in the remaining
part of our notes. Especially, all major results of this chapter rely in an essential
way on this theorem.
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Theorem 6.5.1 (Grauert direct image theorem). Let φ : X Ñ S be a proper holomor-
phic map. For every E P CohpOXq and every q P Z, Rqφ˚pE q is a coherent OS-module.

In the special case that S is a reduced point, the direct image theorem says:

Corollary 6.5.2 (Cartan-Serre theorem). Suppose that X is compact and E P

CohpOXq, then dimCH
qpE q ă `8.

6.5.1 Higher direct images and tensor product

Let E P CohpOXq and M P CohpOSq. Then there is a natural morphism of
OS-modules

Rqφ˚pE q bOS M Ñ Rqφ˚pE bOS M q (6.5.1)

defined as follows. If V is an open subset of S and U Ă φ´1pV q is open, we have
a natural OSpV q-module morphism

E pUq bOSpV q M pV q Ñ pE bOS M qpUq.

Thus, if U “ pUαqαPI is an open cover of φ´1pV q, we have a canonical OSpV q-
module morphism

Cq
pU,E q bOSpV q M pV q Ñ Cq

pU,E bOS M q

which gives canonical morphisms

Hq
pC‚

pU,E qq bOSpV q M pV q Ñ Hq
pC‚

pU,E q bOSpV q M pV qq

ÑHq
pC‚

pU,E bOS M qq.

Passing to the direct limit over all open covers U, we get a canonical OSpV q-
module morphism

Hq
pφ´1

pV q,E q bOSpV q M pV q Ñ Hq
pφ´1

pV q,E bOS M q

Sheafifying this map gives (6.5.1).
A fundamental question about higher direct images is when the map (6.5.1) is

an isomorphism. It is a main goal of this chapter to give a satisfying answer to
this question. This question has important geometric implications. Choose t P S
and take M “ OS{mS,t where, as usual, mS,t is understood as the OS-ideal of all
sections vanishing at t. Then (6.5.1) reads

Rqφ˚pE q|t Ñ Hq
pXt,E |Xtq (6.5.2)
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where we set

Xt “ φ´1
ptq

as usual. That (6.5.2) is surjective means, in the case q “ 0, that any global sections
of E |Xt on Xt can be extended holomorphically to sections on the nearby fibers of
Xt.

In the next section, we will prove a deep result saying that if E is φ-flat and
(6.5.2) is surjective, then (6.5.2) must be an isomorphism, and more generally, the
stalk map of (6.5.1) at t is an isomorphism for every M P CohpOSq. To prove this
fact, we need to show that a formal version of (6.5.1) is an isomorphism. This is
the task of this section.

6.5.2 Higher direct images and formal completion

Fix t P S and write mS,t as mt for simplicity. Let the M in (6.5.1) be OS,t{m
k
t and

OS,t{m
l
t where l ě k. Then we have a commutative diagram

Rqφ˚pE qt{m
l
tR

qφ˚pE qt Rqφ˚pE {ml
tE qt

Rqφ˚pE qt{m
k
tR

qφ˚pE qt Rqφ˚pE {mk
t E qt

where the horizontal maps are defined by (6.5.1). In other words, we get a mor-
phism of inverse systems Rqφ˚pE qt{m

‚
tR

qφ˚pE qt Ñ Rqφ˚pE {m‚
tE qt. Passing to the

inverse limit gives an OS,t-module morphism

lim
ÐÝ
kPN

Rqφ˚pE qt{m
k
tR

qφ˚pE qt ÝÑ lim
ÐÝ
kPN

Rqφ˚pE {mk
t E qt (6.5.3)

It is a deep result that this morphism is indeed an isomorphism. To show this fact,
we need to show:

Lemma 6.5.3. Assume that φ : X Ñ S is a proper holomorphic map and E P CohpOXq.
Then for each k P N there exists l P N such that

Ker
`

Rqφ˚pE qt Ñ Rqφ˚pE {ml
tE qt

˘

Ă mk
t ¨ Rqφ˚pE qt (6.5.4)

Note that if (6.5.4) holds, then it holds if l is replaced by any rl ě l. This is
because m

rl
t Ă ml

t and hence we have a commutative diagram

Rqφ˚pE qt Rqφ˚pE {ml
tE qt

Rqφ˚pE {m
rl
tE qt
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Theorem 6.5.4 (Grauert comparison theorem). Assume that φ : X Ñ S is a proper
holomorphic map and E P CohpOXq. Then (6.5.3) is an OS,t-module isomorphism.

Indeed, we will only use the injectivity of (6.5.3). (See Thm. 6.6.2 (e)ñ(d) and
(c)ñ(f).) So we postpone the proof of surjectivity to the end of this section.

Proof that (6.5.3) is injective. Choose pσkqkPN in lim
ÐÝkPNR

qφ˚pE qt{m
k
tR

qφ˚pE qt.
Namely, each σk belongs to Rqφ˚pE qt{m

k
tR

qφ˚pE qt, and σl is sent to σk if l ě k.
Suppose that pσkqkPN is sent to 0 by the map (6.5.3). Fix any k P N, and let l

be as in Lemma 6.5.3. Since we can safely make l larger, we assume l ě k. Then
σl (which is in Rqφ˚pE qt{m

l
tR

qφ˚pE qt) is sent to 0 in Rqφ˚pE {ml
tE qt. Lift σl to an

element ςl P Rqφ˚pE qt. Then ςl is sent to 0 by the map

Rqφ˚pE qt Ñ Rqφ˚pE {ml
tE qt

By Lemma 6.5.3, ςl belongs to mk
tR

qφ˚pE qt. But ςl is clearly sent to σk by the map
Rqφ˚pE qt Ñ Rqφ˚pE qt{m

k
tR

qφ˚pE qt. So σk “ 0.

6.5.3 Proof of Lemma 6.5.3

To prove Lemma 6.5.3 we first need a lemma.

Lemma 6.5.5. Let X be a complex space and E P CohpOXq. Let f P OpXq. Then for
each precompact open subset U Ă X there exists d P Z` such that the multiplication of f
is injective on fdE |U , namely, the map

fdE |U
ˆf
ÝÝÑ fd`1E |U

is injective.

Proof. Fn “ KerpE
ˆfn
ÝÝÑ E q is an ascending chain of coherent OX-submodules

of E (as n increases). Therefore, by the Noether property of coherent sheaves
(Thm. 3.11.5), this chain is stationary at some n “ d when restricted to U . So
Fd|U “ Fd`1|U . If s P E |U and fds is such that fˆfds “ 0, then s P Fd`1|U “ Fd|U ,
and hence fds “ 0. So ˆf is injective on fdE |U .

Proof of Lemma 6.5.3. Step 1. Shrink S to a neighborhood of t P S and choose
g1, . . . , gn P OpSq generating the ideal mt.

Claim: It suffices to show that for each k P N there exists λ1, . . . , λn P N such
that

Ker
´

Rqφ˚pE qt Ñ Rqφ˚

`

E {

n
ÿ

i“1

gλii E
˘

t

¯

Ă

n
ÿ

i“1

gki ¨ Rqφ˚pE qt
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Suppose the claim is proved. For each k P N, choose the corresponding λ1, . . . , λn,
and let l “ λ1 ` ¨ ¨ ¨ ` λn. Then

ml
tE Ă

n
ÿ

i“1

gλii E

and hence we have a commutative diagram

Rqφ˚pE qt Rqφ˚pE {
řn
i“1 g

λi
i E qt

Rqφ˚pE {ml
tE qt

Thus (6.5.4) follows from the claim.

Step 2. Fix k P N. For ν “ 1, . . . , n, we construct inductively λν such that

Ker
´

Rqφ˚pE q Ñ Rqφ˚

`

E {

ν
ÿ

i“1

gλii E
˘

¯

t
Ă

ν
ÿ

i“1

gki ¨ Rqφ˚pE qt (6.5.5)

In this step, we do this for ν “ 1. Namely, after shrinking S to a precompact
neighborhood of t (and shrinking X correspondingly to φ´1pSq), we find λ1 P N
such that

Ker
´

Rqφ˚pE q Ñ Rqφ˚

`

E {gλ11 E
˘

¯

Ă gk1 ¨ Rqφ˚pE q (6.5.6)

By Lemma 6.5.5, we can shrink S and find b1 P N so that ˆg1 is injective on
gb11 E . So ˆgk1 is also injective on gb11 E . Therefore, we have a short exact sequence

0 Ñ gb11 E
ˆgk1
ÝÝÑ E Ñ E {gb1`k

1 E Ñ 0 (6.5.7)

and hence an exact sequence

Rqφ˚pgb11 E q
Rqφ˚pˆgk1 q
ÝÝÝÝÝÝÑ Rqφ˚pE q Ñ Rqφ˚pE {gb1`k

1 E q

Set λ1 “ b1`k. Then the LHS of (6.5.6) equals the image ofRqφ˚pgb11 E q Ñ Rqφ˚pE q,
and hence is a subsheaf of gk1 ¨ Rqφ˚pE q since the following diagram commutes

Rqφ˚pgb11 E q Rqφ˚pE q

Rqφ˚pE q

Rqφ˚pˆgk1 q

Rqφ˚pιq ˆgk1
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where ι : gb11 E ãÑ E is the inclusion.

Step 3. Let ν P t2, . . . , nu, and assume that λ1, . . . , λν´1 are chosen such that

Ker
´

Rqφ˚pE q
π
ÝÑ Rqφ˚

`

E {G
˘

¯

Ă

ν´1
ÿ

i“1

gki ¨ Rqφ˚pE q (6.5.8)

where we write

G “

ν´1
ÿ

i“1

gλii E .

(Namely, we assume (6.5.5) holds for ν ´ 1 instead of ν.) By Lemma 6.5.5, after
shrinking S, there is bν such that ˆgν is injective on gbνν ¨ pE {G q. Similar to (6.5.7),
for each dν P N (to be determined later) we have a short exact sequence

0 Ñ gbνν pE {G q
ˆgdν`k

ν
ÝÝÝÝÑ E {G Ñ E {pG ` gbν`dν`k

ν E q Ñ 0

Since we also have short exact sequences 0 Ñ G Ñ E Ñ E {G Ñ 0, we obtain a
diagram where the row and the column are exact:

Rqφ˚pE q

Rqφ˚

`

gbνν pE {G q
˘

Rqφ˚pE {G q Rqφ˚

`

E {pG ` gbν`dν`k
ν E q

˘

Rq`1φ˚pG q

π

ρ

δ

Set λν “ bν ` dν ` k. Then Kerpρ ˝ πqt is the LHS of (6.5.5). We want to show
that it is a subset of the RHS of (6.5.5). Choose any

ς P Kerpρ ˝ πqt

Then πpςq P Rqφ˚pE {G qt belongs to Kerpρqt. Thus, as argued in Step 2, we have

πpςq P gdν`k
ν Rqφ˚pE {G qt

Choose σ P Rqφ˚pE {G qt such that

πpςq “ gdν`k
ν σ

Then gdν`k
ν ¨ δpσq “ δpgdν`k

ν σq “ δ ˝ πpςq “ 0.
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By Lemma 6.5.5, we can find dν such that ˆgν is injective on gdνν R
q`1φ˚pG q.

(Note that the coherence of Rq`1φ˚pG q is due to Grauert direct image Thm. 6.5.1.)
Therefore, from gdν`k

ν ¨ δpσq “ 0 we conclude

δpgdνν σq “ gdνν ¨ δpσq “ 0.

Thus, there exists ς 1 P Rqφ˚pE qt such that πpς 1q “ gdνν σ, and hence

πpgkν ς
1
q “ gdν`k

ν σ “ πpςq

So ς ´ gkν ς
1 P Kerpπqt. Thus, by (6.5.8),

ς P Kerpπqt ` gkν ς
1

Ă

ν´1
ÿ

i“1

gki ¨ Rqφ˚pE qt ` gkν ς
1

Ă

ν
ÿ

i“1

gki ¨ Rqφ˚pE qt

This proves (6.5.5).

6.5.4 Inverse limit and exactness

In general, the inverse limit functor is only left exact. It preserves exactness
when certain “Mittag-Leffler condition” is satisfied. We do not need this general
version of exactness result. We are satisfied with the following version which will
be used, together with Grauert comparison theorem, to prove the base change
theorem in the next section.

Proposition 6.5.6. Let A be a ring and let

0 Ñ pM1
nqnPN Ñ pMnqnPN Ñ pM2

nqnPN Ñ 0

be an exact sequence of inverse systems of A-modules, indexed by N. Assume that each
M1

n is Artinian. Then the following sequence is exact:

0 Ñ lim
ÐÝ
nPN

M1
n Ñ lim

ÐÝ
nPN

Mn Ñ lim
ÐÝ
nPN

M2
n Ñ 0

We are mainly interested in the case that A “ OX,x where dimxX “ 0 (so that
dimC OX,x ă `8) and each M1

n is a finitely-generated OX,x-module. Then M1
n is

Artinian because it is a finite-dimensional C-vector space.

Proof. The only non-trivial part is the surjectivity of lim
ÐÝ

Mn Ñ lim
ÐÝ

M2
n. Since

each Mn is Artinian, there is k ě n such that for all l ě k the image of M1
l Ñ M1

n

agrees with that of M1
k Ñ M1

n. Thus, we may find a subsequence pM1
nk

qkPN of
pMnqnPN such that for each k and each l,rl ą k, the images of M1

nl
Ñ M1

nk
and

M1
n
rl

Ñ M1
nk

are equal. It suffices to show that lim
ÐÝk

Mnk Ñ lim
ÐÝk

M2
nk

is surjective.
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Thus, by replacing the original sequence by the subsequence, we assume that for
each n P N and each m ą n,

ImpM1
m Ñ M1

nq “ ImpM1
n`1 Ñ M1

nq

We assume for simplicity that M1
n is a submodule of Mn and M2

n “ Mn{M1
n.

If m P M2
n, we denote its residue class in Mn{M1

n by rms.
Choose pm2

kqkPN P lim
ÐÝ

M2
k. It suffices to prove, by induction on n P N, that if

mn`1 P Mn`1 is chosen such that rmn`1s “ m2
n`1 and if mn is the image of mn`1

under Mn`1 Ñ Mn, then there exists mn`2 P Mn`2 such that rmn`2s “ m2
n`2, and

that mn`2 is sent to mn by the map Mn`2 Ñ Mn. We prove this for the case n “ 0,
since the general case can be proved in the same way.

So we are given m2
‚ P lim

ÐÝk
M2

k and m1 P M1 such that rm1s “ m2
1. And we let

m0 be the image of m1 under M1 Ñ M0. Choose α2 P M2 such that rα2s “ m2
2,

and let α1 P M1 be the image of α2 under M2 Ñ M1. Then rα1s “ m2
1. So

rm1 ´ α1s “ 0, namely m1 ´ α1 P M1
1.

Let α0 be the image of α1 under M1 Ñ M0. Since ImpM1
1 Ñ M1

0q “ ImpM1
2 Ñ

M1
0q, m0 ´α0 (which is the image of m1 ´α1 under M1

1 Ñ M1
0) can be lifted to an

element β2 P M1
2. Then m2 “ α2 ` β2 satisfies that rm2s “ m2

2 and that its image
under M2 Ñ M0 is m0. See the following diagrams.

α2 m2
2

α1 m1 m2
1

α0 m0 m2
0

β2

m1 ´ α1

m0 ´ α0

We are now ready to prove the second half of Grauert comparison theorem.

Proof that (6.5.3) is surjective. Let αk denote the map

αk : R
qφ˚pE qt{m

k
tR

qφ˚pE qt Ñ Rqφ˚pE {mk
t E qt

Then we have a short exact sequence of inverse systems of OS,t-modules

0 Ñ Kerpα‚q Ñ Rqφ˚pE qt{m
‚
tR

qφ˚pE qt Ñ Impα‚q Ñ 0

Since each Rqφ˚pE qt{m
k
tR

qφ˚pE qt is a coherent OS,t{m
k
t -module, by Cor. 2.7.4, it

is C-finite dimensional. So Kerpαkq is a finite-dimensional C-vector space, and
hence Artinian. Therefore, by Prop. 6.5.6, we obtain a short exact sequence

0 Ñ lim
ÐÝ
k

Kerpαkq Ñ lim
ÐÝ
k

Rqφ˚pE qt{m
k
tR

qφ˚pE qt Ñ lim
ÐÝ
k

Impαkq Ñ 0
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Since each Impαkq is a submodule of Rqφ˚pE {mk
t E qt, limÐÝk

Impαkq is a submod-
ule of lim

ÐÝk
Rqφ˚pE {mk

t E qt. Therefore, to prove that (6.5.3) is surjective, it suffices
to prove that for each element

pσkqkPN P lim
ÐÝ
k

Rqφ˚pE {mk
t E qt

we have σk P Impαkq for all k.
Choose any k. Note that Impαkq equals the image of the map Rqφ˚pE qt Ñ

Rqφ˚pE {mk
t E qt. So Impαkq “ Kerpδkq where δk is the connecting map in the follow-

ing commutative diagram

Rqφ˚pE qt Rqφ˚pE qt

Rqφ˚pE {ml
tE qt Rqφ˚pE {mk

t E qt

Rq`1φ˚pml
tE qt Rq`1φ˚pmk

t E qt Rq`1φ˚pmk
t E {ml

tE qt

“

δl δk

µ η

where l ě k. Apply Lemma 6.5.3 to the sheaf mk
t E . We see that for each r P N,

there exists l ě k such that Impµq “ Kerpηq is a subset of mr
tR

q`1φ˚pmk
t E qt. For

the element σ‚ chosen above, we have µδlpσlq “ δkpσkq. So ηδkpσkq “ ηµδlpσlq “ 0.
Therefore δkpσkq belongs to Kerpηq, and hence belongs to mr

tR
q`1φ˚pmk

t E qt. Since
this is true for all r P N, by Krull’s intersection Thm. 1.4.4, we obtain δkpσkq “ 0
and hence σk P Kerpδkq “ Impαkq, finishing the proof.

6.6 Base change theorems

Let X,S be complex spaces and φ : X Ñ S be a holomorphic map. The main
reference of this section is [BS, Sec. III.3].

Notice that if M P ModpOXq, we have a pullback map

φ˚ : Hq
pS,M q Ñ Hq

pX,φ˚M q (6.6.1)

which is a natural OpSq-module morphism described as follows. If W Ă S is
open, then we have a pullback morphism (cf. Def. 1.10.2)

φ˚
“ M pW q Ñ pφ˚M qpφ´1

pW qq

Thus, if W “ pWαqαPI is an open cover of S, then φ˚W “ pφ´1pWαqqαPI is an open
cover of X , and the above map yields a morphism of complexes C‚pW,M q Ñ

C‚pφ˚W, φ˚M q. Taking cohomology and passing to the direct limit over all open
covers W, we obtain (6.6.1).
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6.6.1 Base change maps

Recall that for each E P CohpOXq and M P CohpOSq we have an OS-module
morphism

Rqφ˚pE q bOS M Ñ Rqφ˚pE bOS M q (6.6.2)

defined in Subsec. 6.5.1. Let us call it the (algebraic) base change map. The goal
of this section and next one is to give useful criteria about whether this map is an
isomorphism.

There is a geometric version of base change map. Let ψ : Y Ñ S be a holomor-
phic map of complex spaces. Let Z “ X ˆS Y be the fiber product with Cartesian
square

X Z

S Y

φ

rψ

rφ

ψ

(6.6.3)

Then we have the (geometric) base change map

ψ˚
pRqφ˚E q Ñ Rq

rφ˚p rψ˚E q (6.6.4)

equivalently

Rqφ˚E bOS OY Ñ Rq
rφ˚pE bOX OZq

which is a natural OY -module morphism defined as follows. Choose any open
W Ă S. Then by (6.6.1), we have pullback map

rψ˚ : Hq
pφ´1

pW q,E q Ñ Hq
prφ´1ψ´1

pW q,E bOX OZq

Sheafifying this map gives an OS-module morphism

Rqφ˚pE q Ñ ψ˚pRq
rφ˚pE bOX OZqq

which is equivalent to (6.6.4) because ψ˚ is the left adjoint of ψ˚ (Prop. 1.10.3).

Remark 6.6.1. Suppose that the following two cells are Cartesian squares of com-
plex spaces

X Z Z 1

S Y Y 1

φ

rψ

rφ

α

β

ψ γ

(6.6.5)
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Again we choose E P CohpOXq. Consider the base change maps

Φ : ψ˚
pRqφ˚E q Ñ Rq

rφ˚p rψ˚E q

Ψ : γ˚
pRq

rφ˚p rψ˚E qq Ñ Rqβ˚pα˚
rψ˚E q

The second one is the base change map for rψ˚E and the second Cartesian square.
It is not hard to check that the pullback of Φ

γ˚Φ : γ˚ψ˚
pRqφ˚E q Ñ γ˚Rq

rφ˚p rψ˚E q

composed with Ψ gives the base change map for E and the largest Cartesian
square

Ψ ˝ γ˚Φ : γ˚ψ˚
pRqφ˚E q Ñ Rqβ˚pα˚

rψ˚E q

6.6.2 Base change theorem

The main result of this section is the following theorem. For any Noetherian
ring A, we let Modf

pAq be the abelian category of finitely-generated A-modules.
We write mS,t as mt.

Theorem 6.6.2 (Base change theorem). Let φ : X Ñ S be a proper holomorphic map.
Let E P CohpOXq, and assume that E is φ-flat. Let q P Z. Choose t P S. Then the
following are equivalent.

(a) The functor M ÞÑ Rqφ˚pE bOS Mq on Modf
pOS,tq is right exact.

(b) The functor M ÞÑ Rq`1φ˚pE bOS Mq on Modf
pOS,tq is left exact.

(c) For each M, the base change map

Rqφ˚pE q bOS M Ñ Rqφ˚pE bOS Mq (6.6.6)

is an isomorphism.

(d) For each M, the base change map (6.6.6) is an epimorphism.

(e) The canonical map Rqφ˚pE qt Ñ Rqφ˚pE {mtE qt is surjective.

(f) For any holomorphic map of complex spaces ψ : Y Ñ S, if we let (6.6.3) denote the
Cartesian square, then for each y P ψ´1ptq, the base change map

ψ˚
pRqφ˚E qy Ñ Rq

rφ˚p rψ˚E qy (6.6.7)

is an isomorphism.
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The notations in (6.6.6) are understood as follows. Recall that finitely-
generated OS,t-modules are equivalently germs at t of coherent OS-modules (cf.
Thm. 2.2.2). After shrinking S to a neighborhood of t, there is M P CohpOSq such
that Mt “ M, Then we set

Rqφ˚pE q bOS M :“
`

Rqφ˚pE q bOS M
˘

t
» Rqφ˚pE qt bOS,t M

Rqφ˚pE bOS Mq :“ Rqφ˚pE bOS M qt

Definition 6.6.3. If any of the equivalent statements in Thm. 6.6.2 holds, we say
that E satisfies base change property in order q at t.

Remark 6.6.4. Suppose that E P CohpOXq satisfies base change property in order
q at t. Notice that rψ˚E is OZ-coherent, and that rψ˚E is rφ-flat by Thm. 5.5.3. Then
rψ˚E satisfies base change property in order q at any y P ψ´1ptq.

Indeed, consider (6.6.5) where the two cells are Cartesian squares. We use the
notations of Rem. 6.6.1. Then by the equivalence condition (f) of Thm. 6.6.2, Φ
and Ψ ˝ γ˚Φ (both are base change maps) are isomorphisms. Therefore Ψ is an
isomorphism.

6.6.3 Preliminary discussions

We recall the following basic fact which can be proved by diagram chasing:

Lemma 6.6.5 (Four lemma). Suppose we have a commutative diagram in an Abelian
category

A B C D

A1 B1 C 1 D1

α β γ δ

Suppose that the rows are exact.

(1) If α, γ are epimorphisms and δ is a monomorphism, then β is an epimorphism.

(2) If β, δ are monomorphisms and α is an epimorphism, then γ is a monomorphism.

Assume the setting of Thm. 6.6.2. Since M P Modf
pOS,tq, we have a short exact

sequence in Modf
pOS,tq:

0 Ñ N Ñ On
S,t Ñ M Ñ 0 (6.6.8)

Since E is φ-flat, we have a short exact sequence

0 Ñ E bOS N Ñ E bOS On
S,t Ñ E bOS M Ñ 0
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in Cohpφ´1pW qq for some neighborhoodW Ă S of t. Thus we have a commutative
diagram in Cohpφ´1pW qq:

Rqφ˚pE q bOS N Rqφ˚pE bOS N q

Rqφ˚pE q bOS On
S,t Rqφ˚pE bOS On

S,tq

Rqφ˚pE q bOS M Rqφ˚pE bOS Mq

0

»

Γ

Φ

(6.6.9)

where the columns are exact.

Observation 6.6.6. By Four lemma (or by easy diagram chasing), Φ is surjective if
and only if Γ is surjective.

6.6.4 Proof of Thm. 6.6.2

Proof of (a)ô(b). Let 0 Ñ M1 Ñ M Ñ M2 Ñ 0 be a short exact sequence in
Modf

pOS,tq. Then since E is φ-flat, we have a short exact sequence 0 Ñ E bOSM1 Ñ

E bOS M Ñ E bOS M2 Ñ 0 and hence an exact sequence

Rqφ˚pE bOS M1
q Ñ Rqφ˚pE bOS Mq Ñ Rqφ˚pE bOS M2

q

δq
ÝÑRq`1φ˚pE bOS M1

q Ñ Rq`1φ˚pE bOS Mq Ñ Rq`1φ˚pE bOS M2
q

So the second map is surjective iff δp is zero iff the fourth map is injective. This
proves that (a) and (b) are equivalent.

Proof of (a)ñ(d). Choose a short exact sequence (6.6.8). By (a), the map Γ in
(6.6.9) is surjective. So Φ is surjective.

Proof of (d)ñ(c). Again, we choose a short exact sequence (6.6.8). By (d), we
know that in the diagram (6.6.9), the map Φ is surjective. Since, similarly, the
first row is also surjective, by Four lemma, Φ is injective. This proves (c).

Proof of (c)ñ(a). The functor M ÞÑ Rqφ˚pE q bOS M is right exact.

We have finished proving the equivalence of (a,b,c,d).

Proof of (d)ñ(e). Set M “ OS,t{mt. Then (d) says that Rqφ˚pE qt{mtR
qφ˚pE qt Ñ

Rqφ˚pE {mtE qt is surjective. This proves (e).
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Proof of (e)ñ(d). Step 1. We first prove that the base change map (6.6.6) is sur-
jective when mk

tM “ 0 for some k P Z`. We prove it by induction on k. First
consider the case k “ 1. Then mtM “ 0. So M as an OS,t-module is equivalently a
module over OS,t{mt “ C, which is finite direct sum of OS,t{mt. So we may assume
without loss of generality that M “ OS,t{mt. Then (e) clearly implies that (6.6.6)
is surjective.

Assume that (6.6.6) is surjective whenever mk
tM “ 0. Now consider case k`1,

namely, assume M is such that mk`1
t M “ 0. Since E is φ-flat, we have a short

exact sequence

0 Ñ E bOS mtM Ñ E bOS M Ñ E bOS pM{mtMq Ñ 0

Therefore, similar to (6.6.9), we have a commutative diagram

Rqφ˚pE q bOS mtM Rqφ˚pE bOS mtMq

Rqφ˚pE q bOS M Rqφ˚pE bOS Mq

Rqφ˚pE q bOS pM{mtMq Rqφ˚pE bOS pM{mtMqq

0

where the columns are exact. By case k, the first and the third rows are surjective.
Therefore, by Four lemma, the second row is surjective.

Step 2. We consider the general case. By Step 1, for each k, the map

Rqφ˚pE q b M b OS,t{m
k
t Ñ Rqφ˚pE b M b OS,t{m

k
t q

is surjective. Since its kernel is a finitely-generated OS,t{m
k
t -module and hence has

finite C-dimension (Cor. 2.7.4), by Prop. 6.5.6, the inverse limit over k P N of the
above map is still surjective. Therefore, we have a commutative diagram

lim
ÐÝ
kPN

Rqφ˚pE q b M b OS,t{m
k
t lim

ÐÝ
kPN

Rqφ˚pE b Mq b OS,t{m
k
t

lim
ÐÝ
kPN

Rqφ˚pE b M b OS,t{m
k
t q

where the lower left arrow is surjective. By Grauert comparison Thm. 6.5.4, the
lower right arrow is injective. Therefore the horizontal arrow is surjective. Thus,
the base change map Rqφ˚pE q b M Ñ Rqφ˚pE b Mq is surjective by Lemma
6.6.7.
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Lemma 6.6.7. Let pA,mq be a Noetherian local ring. Let φ : M Ñ N be a morphism of
finitely-generated A-modules. If the induced map

pφ : lim
ÐÝ
kPN

M{mkM Ñ lim
ÐÝ
kPN

N {mkN

is surjective, then φ is surjective. If pφ is injective, then φ is injective.

Proof. Suppose that pφ is surjective. Since we have a commutative diagram

lim
ÐÝ
kPN

M{mkM lim
ÐÝ
kPN

N {mkN

M{mM N {mN

pφ

where the vertical arrows are surjective, M{mM Ñ N {mN is surjective. So φ is
surjective by Nakayama’s lemma.

Suppose that pφ is injective. Choose ξ P Kerpφq. Then ξ corresponds to the zero
element of lim

ÐÝk
M{mkM. So ξ “ 0 by Krull’s intersection Thm. 1.4.4.

Proof of (f)ñ(e). Let Y “ SpecanpOS{mtq and let ψ : Y Ñ S be the inclusion map.
Let y “ t. Then the geometric base change map (6.6.7) becomes

Rqφ˚E bOS OS,t{mt Ñ Rqφ˚pE bOS OS,t{mtq

whose surjectivity clearly implies (e).

Proof of (c)ñ(f). Step 1. Consider the Cartesian square

X Z

S Y

φ

rψ

rφ

ψ

(6.6.10)

We consider the case that Y and S are (non-necessarily reduced) single points.
Then by Cor. 2.8.3, we have a natural equivalence of OX-algebras

φ˚ψ˚OY » rψ˚OZ (6.6.11)

We identify Y and S as topological spaces through the map ψ. Then Z can be
identified with X as topological spaces through rψ. Now there are two different
sheaves of local C-algebras on X “ Z, namely OX and OZ . And we have a mor-
phism OX Ñ OZ so that OZ is an OX-algebra. Similar things can be said about S
and Y .
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Now (6.6.11) reads φ˚OY » OZ (as an equivalence of OX-algebras). By replac-
ing OZ with φ˚OY (namely, defining φ˚OY to be the new structure sheaf of Z), we
may assume OZ “ φ˚OY .

Thus, for E P CohpOXq,

Rq
rφ˚p rψ˚E q “ Rqφ˚pE bOX OZq “ Rqφ˚pE bOX φ

˚OY q “ Rqφ˚pE bOS OY q

Thus the geometric base change map ψ˚pRqφ˚E qy Ñ Rq
rφ˚p rψ˚E qy is equal to the

algebraic one

Rqφ˚pE q bOS OY Ñ Rqφ˚pE bOS OY q

which is an isomorphism by (c). This proves (f) in this special case.

Step 2. We consider the case that Y is a single point but S is not necessarily
so. Write Y “ tyu. Let T “ Supppψq (recall Def. 2.3.3). So T equals ttu (where
t “ ψpyq) as a set, and OT “ OS{J where J “ Ann OSpψ˚OY q. So T is a closed
complex subspace of S, andψ : Y Ñ S equals ιαwhere α : Y Ñ T is the restriction
of ψ (cf. Thm. 1.4.8) and ι : T Ñ S is the inclusion map.

Thus, we have commutative diagrams

X φ´1pT q Z

S T Y

φ

ι α

where the two cells are Cartesian squares, and the largest rectangle is equal to
(6.6.10). The (geometric) base change map for E and the first cell is

Rqφ˚pE q bOS OT Ñ Rqφ˚pE bOS OT q

which, by (c), is an isomorphism if we shrink S to a neighborhood of t. We claim
that the base change map for E |φ´1pT q “ E bOS OT and the second cell is an iso-
morphism. Then the base change map for E and the largest rectangle (namely
(6.6.10)) is an isomorphism by Rem. 6.6.1, which finishes the proof of (f) in this
case.

To prove the claim, notice the commutative diagram

Rqφ˚pE q bOS OT bOT OT {mT,t Rqφ˚pE bOS OT q bOT OT {mT,t

Rqφ˚pE bOS OT bOT OT {mT,tq

»

»

where the horizontal and the lower left arrows are isomorphisms by (c) (after
shrinking S). Thus the lower right arrow is an isomorphism. Thus E bOS OT
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satisfies base change property-condition (e) in order q at t. Therefore, by Step 1, it
satisfies base change property-condition (f). This proves the claim.

Step 3. Choose any k P Z`, let Y 1 “ SpecanpOY {mk
Y,yq, and let γ : Y 1 Ñ Y be

the inclusion map. We consider the Cartesian squares

X Z Z 1

S Y Y 1

φ

rψ

rφ

α

β

ψ γ

and let Φ and Ψ be as in Rem. 6.6.1. By Step 2, Ψ ˝ γ˚Φ, the base change map for
E and the largest Cartesian square, is an isomorphism. We have

γ˚Φ “ Φ b 1 : ψ˚
pRqφ˚E qy b OY,y{m

k
Y,y Ñ Rq

rφ˚p rψ˚E qy b OY,y{m
k
Y,y

Ψ : Rq
rφ˚p rψ˚E qy b OY,y{m

k
Y,y Ñ Rq

rφ˚p rψ˚E {mk
Y,y

rψ˚E qy

Taking inverse limit over all k, we have a commutative diagram

lim
ÐÝ
k

ψ˚
pRqφ˚E qy b OY,y{m

k
Y,y lim

ÐÝ
k

Rq
rφ˚p rψ˚E qy b OY,y{m

k
Y,y

lim
ÐÝ
k

Rq
rφ˚p rψ˚E {mk

Y,y
rψ˚E qy

»

where the lower left arrow is an isomorphism. By Grauert comparison Thm. 6.5.4,
the lower right arrow is injective. Therefore the horizontal arrow is an isomor-
phism. Therefore, by Lemma 6.6.7, the stalk map

Φy : ψ
˚
pRqφ˚E qy Ñ Rq

rφ˚p rψ˚E qy

is an isomorphism. This finishes the proof of (f).

6.6.5 Applications

Let φ : X Ñ S be a proper holomorphic map. Let E P CohpOXq, and assume
that E is φ-flat. Let q P Z and t P S.

Definition 6.6.8. We say that E is cohomologically flat in order q at t, if E satisfies
base change property in orders q and q ´ 1 at t.

Proposition 6.6.9. The following are equivalent.
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(a) E is cohomologically flat in order q at t.

(b) The functor M Ñ Rqφ˚pE bOS Mq on Modf
pOS,tq is exact.

(c) E satisfies base change property in order q at t, and Rqφ˚pE qt is a (finite-rank) free
OS,t-module.

Proof. (a)ô(b) is obvious.
(c)ñ(b): Since Rqφ˚pE qt is OS,t-free, the functor M Ñ Rqφ˚pE qt b M is ex-

act. Since E satisfies base change property in order q, Rqφ˚pE b Mq is naturally
equivalent to Rqφ˚pE qt b M, and hence is exact over M. This proves (b).

(a,b)ñ(c): Rqφ˚pE qtbM is naturally equivalent toRqφ˚pE bMq, and the latter
is exact over M. So Rqφ˚pE q b ´ is exact on Modf

pOS,tq. By Exp. 5.3.11, we have
Tor

OS,t
1 pRqφ˚pE qt,OS,t{Iq “ 0 for each ideal I Ă OS,t. Therefore, by Prop. 5.4.1,

Rqφ˚pE qt is a flat OS,t-module. So it is free by Thm. 5.4.2.

Recall that Xt “ φ´1ptq “ SpecanpOX{mS,tOXq. We now give an extremely
useful criterion for cohomological flatness.

Theorem 6.6.10. Suppose that HqpXt,E |Xtq “ 0. Then Rqφ˚pE qt “ 0, and E is coho-
mologically flat in order q at t.

The semicontinuity theorem 6.7.4, to be proved in the next section, implies that
if HqpXt,E |Xtq “ 0, then HqpXs,E |Xsq “ 0 for each s in a neighborhood of t. Then
this theorem implies that E satisfies base change property in order q ´ 1 on that
neighborhood.

Proof. The canonical map from Rqφ˚pE qt to Rqφ˚pE {mtE qt “ HqpXt,E |Xtq is sur-
jective since the latter is 0. So E satisfies condition (e) of Base change Thm. 6.6.2.
Thus E satisfies base change property in order q at t. By (c) of Thm. 6.6.2, the map

Rqφ˚pE qt bOS,t OS,t{mt Ñ Rqφ˚pE bOS OS{mtqt “ 0

is bijective. Hence Rqφ˚pE qt{mtR
qφ˚pE qt “ 0. So Rqφ˚pE qt “ 0 by Nakayama’s

lemma. Therefore E is cohomologically flat in order q at t by Prop. 6.6.9-(c).

Corollary 6.6.11. Assume that Hq`1pXt,E |tq “ Hq´1pXt,E |Xtq “ 0. Then Rqφ˚pE q

is a finite-rank free OS,t-module, and the canonical map

Rqφ˚pE q|t Ñ Hq
pXt,E |Xtq

is an isomorphism of C-vector spaces.

Proof. By Thm. 6.6.10, E satisfies base change property in orders q ´ 1, q, q ` 1 at
t. So it is cohomologically flat in order q at t.
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6.7 Semicontinuity and base change theorem

In this section, we let φ : X Ñ S be a proper holomorphic map of complex
spaces, and let E P CohpOXq be φ-flat.

The material of this section is adapted from [GR-b, Sec. 10.5].

Remark 6.7.1. Choose any precompact open subset W Ă S. Then there exists
q0 P N depending only on φ : X Ñ S (but not on E ) such that for every q ą q0,
Hqpφ´1pV q,E q “ 0 and HqpXt,E |Xtq “ 0 whenever V is a Stein open subset of W
and t P W . In particular, for each t P W , Rqφ˚pE qt “ 0.

Proof. Since φ is proper, we can cover the compact set φ´1pW q by finitely many
Stein open subsets of X , denoted by U “ pUαqαPI . Let q0 ` 1 be the cardinality of
I . Then for each Stein open subset V Ă W , φ´1pV q X U “ pφ´1pV q X UαqαPI is a
Stein cover of φ´1pV q. (Recall Exp. 6.4.7). Therefore, by Leray’s Thm. 6.4.1 and
Cartan’s Thm. B (Thm. 6.4.4), we haveH‚pφ´1pV q,E q “ H‚pφ´1pV qXU,E q. By the
alternate condition of Čech cochains, if q ą q0 then Cqpφ´1pV q X U,E q “ 0. Hence
Hqpφ´1pV q,E q “ 0. Likewise, for q ą q0 and t P W we have HqpXt,E |Xtq “ 0.

Thanks to the above observation, for each t P S we can define the character of
the sheaf E |Xt to be

χpXt,E |Xtq “
ÿ

qPN

p´1q
q dimCH

q
pXt,E |Xtq

which is a finite sum on each precompact Stein open subset of S.

Theorem 6.7.2 (Invariance of characters). The character function

t P S ÞÑ χpXt,E |Xtq

is locally constant.

We will not use this theorem in this chapter, and we refer the readers to [BS,
Sec. III.4] for the proof. In the next chapter, we will prove this result under the
assumption that φ is projective. (See Thm. 7.3.10.)

Definition 6.7.3. We say that E satisfies base change property (resp. is cohomo-
logically flat ) in order q, if it does so at every t P S.

6.7.1 Semicontinuity theorem

Theorem 6.7.4 (Semicontinuity theorem). For each q P Z, the dimension function

d : t P S ÞÑ dimCH
q
pXt,E |Xtq (6.7.1)

is upper-semicontinuous.
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We divide the proof into several steps.

Proposition 6.7.5. Let p P Z, and assume that Rqφ˚pE q is locally free for every q ě p.
Then for every q ě p, E is cohomologically flat in order q, and the dimension function
t P S ÞÑ dimHqpXt,E |Xtq is locally constant.

Proof. Shrink S to any precompact Stein open subset. Then by Rem. 6.7.1, this
lemma is clearly true for sufficiently large q. Now choose q ě p and assume that
E is cohomologically flat in order q ` 1. Then E satisfies base change property
in order q and, as Rqφ˚pE q is locally free, E is cohomologically flat in order q by
Prop. 6.6.9.

Since Rqφ˚pE q is locally free, its fibers have locally constant dimensions. By
base change property, HqpXt,E |Xtq » Rqφ˚pE q|t. So HqpXt,E |Xtq is locally con-
stant with respect to t.

Lemma 6.7.6. Suppose that ψ : Y Ñ S is a surjective finite holomorphic map of (non-
necessarily reduced) complex spaces. Let

X Z

S Y

φ

rψ

rφ

ψ

be the Cartesian square. Suppose that the semicontinuity theorem holds for rψ˚E , namely,
y P Y ÞÑ dimHqpZy, rψ

˚E |Zyq is upper-semicontinuous. Then the semicontinuity theo-
rem holds for E .

Proof. For each y P Y , since we have Cartesian squares

X Z Zy

S Y y

φ

rψ

rφ

ψ

where the largest Cartesian square is also equivalent to

X Xψpyq

S ψpyq

φ

we have equivalences of vector spaces

Hq
pZy, rψ

˚E |Zyq » Hq
pXψpyq,E |Xψpyq

q (6.7.2)
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Choose any t P S, and let r “ dimHqpXt,E |Xtq. Then ψ´1ptq is a non-empty
finite set. By (6.7.2), for each y P ψ´1ptq, we have dimHqpZy, rψ

˚E |Zyq “ r. Since
rψ˚E satisfies the semicontinuity theorem, there is a neighborhood V Ă Y of ψ´1ptq

such that for each y1 P V we have dimHqpZy1 , rψ˚E |Zy1 q ď r. By Prop. 2.4.1, there is
a neighborhoodW Ă S of t such that ψ´1pW q Ă V . Then by (6.7.2), for each t1 P W
we have dimHqpXt1 ,E |Xt1 q ď r. This proves that E satisfies the semicontinuity
theorem.

The starting point of the proof of Semicontinuity theorem is the following spe-
cial case:

Lemma 6.7.7. The Semicontinuity Thm. 6.7.4 holds whenever S is a smooth 1-
dimensional complex manifold, i.e. a Riemann surface.

Proof. We may well assume that S is an open subset of C. Let z P OpCq be the
standard coordinate function of C. We note that for each t P S, the map

Φq
t : R

qφ˚pE q|t Ñ Hq
pXt,E |Xtq (6.7.3)

is injective. Indeed, consider the short exact sequence

0 Ñ OS
ˆpz´tq
ÝÝÝÝÑ OS Ñ OS{mS,t Ñ 0

as a special case of (6.6.8). Then (6.6.9) becomes the commutative diagram

Rqφ˚pE q Rqφ˚pE q

Rqφ˚pE q Rqφ˚pE q

Rqφ˚pE q bOS OS{mS,t Rqφ˚pE bOS OS{mS,tq

0

“

ˆpz´tq ˆpz´tq

“

Γqt

Φqt

(6.7.4)

where the columns are exact. The map Φq
t in the above diagram is precisely the

map Φq
t in (6.7.3). And Φq

t is injective by Four Lemma 6.6.5.
By Rem. 6.7.1, for sufficiently large q we haveRqφ˚pE q “ 0 andHqpXt,E |Xtq “

0 for all t P S. Thus, by Thm. 3.8.3, there is a nowhere dense analytic subset A
of S such that Rqφ˚pE q is locally free outside A for all q. By Ritt’s Lemma 3.10.7,
dimA “ 0. So A is an isolated Hausdorff space, and hence is a discrete subset of
S.
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By Prop. 6.7.5, the dimension function

d : t P S ÞÑ dimHq
pXt,E |Xtq

is locally constant on SzA. It is clear that the function

r : t P S ÞÑ dimRqφ˚pE q|t

is upper-semicontinuous (cf. Cor. 1.2.19). For each t P A, choose a neighborhood
W Ă S of t such that W X A “ ttu and that r|W ď rptq. Since the map Φq

t in (6.7.3)
is injective, we have rptq ď dptq. By Prop. 6.7.5, E satisfies base change property
in all orders outside SzA. So d “ r outside A. Therefore d|W ď dptq. This proves
that d is upper-seminicontinuous at every point of A, and hence everywhere on
S.

Let us make some comments on the above proof, which will be helpful for the
following proof of base change theorem.

Remark 6.7.8. As noticed in Obs. 6.6.6, by Four Lemma, the map Φq
t in (6.7.3)

is surjective iff the map Γqt in (6.7.4) is surjective. Since we have a long exact
sequence

Rqφ˚pE qt
Γqt
ÝÑ Rqφ˚pE bOS OS{mS,tqt Ñ Rq`1φ˚pE qt

ˆpz´tq
ÝÝÝÝÑ Rq`1φ˚pE qt

induced by 0 Ñ E b OS
ˆpz´tq
ÝÝÝÝÑ E b OS Ñ E b OS{mS,t Ñ 0, we see that Γqt is

surjective iff pz´tq is a non zero-divisor ofRq`1φ˚pE qt. And the latter is equivalent
to that Rq`1φ˚pE qt is OS,t-flat (by Cor. 5.6.7 or by Slicing Criterion 5.6.6), and is
equivalent to that Rq`1φ˚pE qt is free of finite-rank (Thm. 5.4.2). We conclude that

Φq
t is surjective (and hence bijective) ðñ Rq`1φ˚pE qt is OS,t-free (6.7.5)

Remark 6.7.9. Suppose that the dimension function d : t P S ÞÑ dimHqpXt,E |Xtq

is locally constant. Using the notations in the last paragraph of the proof of
Lemma 6.7.7, for each t P A, the neighborhood W can be chosen such that d is
constant on W . So for each s P W zttu we have dptq “ dpsq “ rpsq ď rptq. Since
r ď d, we conclude dptq “ rptq. So d “ r on A, and hence on S. So Φq

t is bijective
for all t P S. It follows that E satisfies base change in order q. We conclude that

d is locally constant ùñ Φq
t is bijective for all t P S (6.7.6)

Proof of Semicontinuity Thm. 6.7.4. It suffices to assume dimS ă `8. We prove
the theorem by induction on n “ dimS. Since redpSq Ñ S is finite and surjec-
tive, by Lemma 6.7.6, it suffices to assume that S is reduced. Similarly, since the
normalization pS Ñ S is finite and surjective, by Lemma 6.7.6 again, it suffices to
assume that S is (reduced and) normal. By Prop. 4.10.2, S is then a disjoint union
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of connected (equivalently, irreducible) normal open subspaces. So we may well
assume that S is normal and connected.

Assume dimS ď 1. If we assume that S is normal and connected, then by
Thm. 4.9.4, S is either a single reduced point or a connected Riemann surface.
Then Thm. 6.7.4 follows from Lemma 6.7.7.

Choose n P Z` and assume that Thm. 6.7.4 holds whenever dimS ď n. Now
assume that dimS “ n ` 1 and S is normal and connected. Note that by Prop.
4.9.1, S has pure dimension n`1. By Thm. 3.8.3 and Prop. 6.7.5, there is a nowhere
dense analytic subset A of S such that Rqφ˚pE q is locally free outside A for all q.
By Prop. 6.7.5, the dimension function d in (6.7.1) is locally constant on SzA. By
Prop. 4.10.1, SzA is connected. So

d is a constant on SzA.

Choose any t P A. It remains to show that d|W ď dptq for some neighborhood
W of t. By Ritt’s Lemma 3.10.7, dimA ď n. Thus, by induction on case n, we can
find a neighborhood W such that

d|WXA ď dptq.

We claim that we can shrink W to a smaller neighborhood of t such that there
exists f P OSpW q satisfying that the germ pNpfq, tq is not inside the germ pA, tq,
and that the germ ft is a non-zero element of OS,t. (Recall that Npfq is the zero set
of f .)

Suppose this claim is true. Then ft is a non zero-divisor of OS,t because OS,t

is normal and hence an integral domain (Prop. 4.9.1). Then by Active Lemma
3.10.3, we have dimtNpfq “ dimt S ´ 1 “ n. By Cor. 3.9.4, we may shrink W
further so that dimNpfq “ n. By assumption on case n, we may shrink W so that
d|WXNpfq ď dptq. Since W X Npfq Ć A X Npfq, there exists p P pW X NpfqqzA.
Then since d|SzA is constant, we have d|SzA “ dppq ď dptq. This, together with
d|WXA ď dptq, shows d|W ď dptq. The proof is then finished.

Let us prove the claim. Suppose that dimtA ą 0. Then by Rem. 3.10.5, OA,t “

OS,t{IA,t contains a non zero-divisor g. We lift it to an element f P OS,t. So
Npgq “ Npfq XA. By Active Lemma, we have dimtNpfq XA “ dimtA´1 ď n´1.
So pNpfq, tq is not inside pA, tq, otherwise we have

dimtNpfq “ dimtNpfq X A ď n ´ 1 “ dimt S ´ 2

which is impossible since, according to the definition of dimensions (Def. 3.9.1),
we must have dimtNpfq ě dimt S ´ 1.

Suppose dimtA “ 0. We shrink W and choose f P OSpW q such that ft ‰ 0.
Then since dimtNpfq ě n ą 0 “ dimtA, pNpfq, tq cannot be inside pA, tq. Thus, in
both cases we have proved the claim.
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6.7.2 Base change theorem

Theorem 6.7.10 (Grauert base change theorem). Let q P Z. Consider the following
statements:

(a) E is cohomologically flat in order q.

(b) The dimension function

d : t P S ÞÑ dimCH
q
pXt,E |Xtq (6.7.7)

is locally constant.

Then (a)ñ(b). If S is reduced, then (b)ñ(a).

Proof of (a)ñ(b). By Prop. 6.6.9, Rqφ˚pE q is locally free, and its fiber at t is iso-
morphic to HqpXt,E |Xtq since E satisfies base change property in order q. So (b)
follows.

We shall only prove (b)ñ(a) in the case that S is smooth. See [BS, Sec. III.4] for
the proof of the general case.

Lemma 6.7.11. Assume that S is smooth and d is locally constant. Then Rq`1φ˚pE q is
a torsion free OS-module.

Proof. Recall that the torsion sheaf of any coherent sheaf is coherent by Cor. 3.14.5.
Assume that the complex manifold S has pure dimension. We prove the lemma
by induction on dimS. If dimS “ 0, then the lemma is trivial. If dimS “ 1 then
Rq`1φ˚pE q is locally free by (6.7.5) and (6.7.6). So it is torsion free.

Now assume that the lemma holds whenever dimS ď n (n P Z`). Assume
that dimS “ n ` 1. Let T be the torsion sheaf of M :“ Rq`1φ˚pE q. Suppose that
T is non-zero. We assume for simplicity that S is an open subset of Cn`1 and
T0 ‰ 0, and we shall find a contradiction.

Step 1. Since M is locally free outside a nowhere dense analytic subset of S
(Thm. 3.8.3), the support A “ SupppT q must be a nowhere dense analytic subset
of S. By our assumption, 0 P A. By shrinking S, we assume that S is an open ball
centered at 0. Then there must be a hyperplane H of S passing through 0 whose
intersection with A is nowhere dense in H : otherwise, by Prop. 4.11.2, for each H
we have AXH “ H , and hence A “ S (here we use the fact n`1 ą 1), impossible.
By an invertible linear transform, we assume that H “ Npz1q “ tt P S : z1ptq “ 0u

where pz1, . . . , zn`1q are the standard coordinates of Cn`1.
So A X Npz1q is a nowhere dense analytic subset of Npz1q. Note that

SupppT {z1M X T q Ă SupppT q X Npz1q “ A X Npz1q
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We consider T {z1M XT as a coherent sheaf on H “ Npz1q. Then by Prop. 3.14.3,
T {z1M X T is the OH-torsion sheaf of itself. In other words, every element of
T {z1M X T is a torsion element of OH .

T0{z1M0 X T0, the stalk of T {z1M X T at 0, is non-zero. Otherwise, we have
T0 Ă z1M0. Every s P T0 can be written as z1γ for some γ P M0, and since s kills
a non-zero element of OS,0, so does γ. This implies T0 Ă z1T0, and hence T0 “ 0
by Nakayama’s lemma, which is impossible.

Step 2. To summarize, we have shown that T0{z1M0 XT0 is a non-zero torsion
OH,0-module. It is clearly a submodule of M0{z1M0, the stalk at 0 of

M bOS OS{z1OS “ Rq`1φ˚pE q bOS OS{z1OS

We claim that the canonical map

Φ : Rq`1φ˚pE q bOS OS{z1OS Ñ Rq`1φ˚pE bOS OS{z1OSq “ Rq`1φ˚pE |φ´1pHqq

is a monomorphism. Then the stalk at 0 of Rq`1φ˚pE |φ´1pHqq has non-zero
OH,0-torsion elements. So the OH-module Rq`1φ˚pE |φ´1pHqq is not torsion free.
But the function t P H ÞÑ dimHqpXt,E |Xtq is locally constant. So by assumption
on case n, Rq`1φ˚pE |φ´1pHqq is OH-torsion free. This gives a contradiction.

Step 3. The argument that Φ is injective is similar to that in the proof of Lemma
6.7.7: the short exact sequence

0 Ñ OS
ˆz1
ÝÝÑ OS Ñ OS{z1OS Ñ 0 (6.7.8)

gives, by (6.6.9), a commutative diagram where the columns are exact

Rpφ˚pE q Rpφ˚pE q

Rpφ˚pE q Rpφ˚pE q

Rpφ˚pE q bOS OS{z1OS Rpφ˚pE bOS OS{z1OSq

0

“

ˆz1 ˆz1

“

Γ

Φ

(6.7.9)

and p “ q ` 1. So by Four lemma, Φ is injective.

Proof of Thm. 6.7.10 (b)ñ(a) when S is smooth. We assume without loss of gen-
erality that S is an open subset of Cn. Assume that (b) holds. The short exact
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sequence (6.7.8) gives a commutative diagram (6.7.9) with exact columns, where
we choose p “ q. We also have a long exact sequence

Rqφ˚pE q
Γ
ÝÑ Rpφ˚pE bOS OS{z1OSq Ñ Rq`1φ˚pE q

ˆz1
ÝÝÑ Rq`1φ˚pE q

where the endomorphism ˆz1 on Rq`1φ˚pE q is injective because Rq`1φ˚pE q is tor-
sion free by Lemma 6.7.11. Therefore, Γ is surjective. So by Five lemma, the map
Φ in (6.7.9) is an isomorphism. Thus, noting that Npz1q “ 0 ˆ Cn´1, we have a
canonical isomorphism

Rqφ˚pE q|0ˆCn´1 » Rqφ˚pE |φ´1p0ˆCn´1qq

Thus, an easy induction on n shows that the canonical map Rqφ˚pE q|0 Ñ

Rqφ˚pE |X0q “ HqpX0,E |X0q is an isomorphism. The same argument shows that
for each t P S, the canonical map

Rqφ˚pE q|t Ñ Hq
pXt,E |Xtq (6.7.10)

is an isomorphism. This shows that E satisfies base change property in order q
and that, since d is locally constant, the function t P S ÞÑ dimRqφ˚pE q|t is locally
constant. Thus Rqφ˚pE q is locally free by Prop. 1.3.15. Therefore, by Prop. 6.6.9,
E is cohomologically flat in order q.

Thm. 6.7.10 is often used in the following form:

Corollary 6.7.12. Let q P Z. Assume that S is smooth and the dimension function
d : t P S ÞÑ dimHqpXt,E |Xtq is locally constant. Then Rqφ˚pE q is locally free, and the
canonical map (6.7.10) is an isomorphism of C-vector spaces for all t P S.

In other words, the conclusion of the above corollary is that all HqpXt,E |Xtq

(where t P S) form a holomorphic vector bundle over S, namely Rqφ˚pE q.
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Chapter 7

Projective morphisms

A holomorphic map φ : X Ñ S can be viewed as a holomorphic family of
complex spaces: the family of the fibers Xt “ φ´1ptq “ SpecanpOX{mS,tOXq for all
t P S. In this chapter, we study projective families, i.e., a family whose fibers can
be embedded into a projective space PN in a coherent way.

We use the notation that XW “ φ´1pW q if W is an open or closed complex
subspace of S.

7.1 Definitions and basic properties

7.1.1 Definitions

Definition 7.1.1. The complex projective space PN is CN`1,ˆ{ „ where

CN`1,ˆ :“ CN`1
zt0u (7.1.1)

„ is the equivalence relation on CN`1,ˆ such that for any ξ “ pz0, z1, . . . , zNq and
η “ pw0, w1, . . . , wNq

ξ „ η ðñ Dλ P Cˆ such that ξ “ λη

The equivalence class of ξ “ pz0, z1, . . . , zNq in PN is written as rξs “

rz0, z1, . . . , zN s. For each 0 ď i ď N , let

Ωi “ trz0, z1, . . . , zN s : zi ‰ 0u (7.1.2)

Then PN becomes a complex manifold defined by the biholormorphisms

ϖi : Ωi
»
ÝÑ CN

rz0, z1, . . . , zN s ÞÑ

ˆ

z0
zi
, . . . ,

zi´1

zi
,
zi`1

zi
, . . . ,

zN
zi

˙ (7.1.3)

We thus have a surjective holomorphic map

π : CN`1,ˆ
Ñ PN ξ ÞÑ rξs (7.1.4)
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Remark 7.1.2. Let L be a 1-dimensional complex vector space. Then for each ξ, η P

L, if η ‰ 0, we let ξ{η denote the unique complex number whose multiplication
with η equals ξ. Thus, if ξ0, . . . , ξN P L, and if some of them (say ξi) is nonzero, we
can define

rξ0, . . . , ξN s “

”ξ0
ξi
, . . . ,

ξN
ξi

ı

P PN

Clearly, this definition is independent of the choice of nonzero ξi.

Definition 7.1.3. More generally, let S be a complex space. Let

PNS “ PN ˆ S

Then we have a proper map

pr ” prS : PNS Ñ S (7.1.5)

projecting onto the S-component. We let

CN`1,ˆ
S “ CN`1,ˆ

ˆ S (7.1.6)

and abbreviate π ˆ 1S to π, namely,

π ” π ˆ 1S : CN`1,ˆ
S Ñ PNS

ξ ˆ t ÞÑ rξs ˆ t
(7.1.7)

We let

Ωi,S “ Ωi ˆ S (7.1.8)

Note that

ϖi ˆ 1S : Ωi,S
»
ÝÑ CN

ˆ S (7.1.9)

Let ζi be the standard coordinate

ζi : CN`1,ˆ
S Ñ C

pz0, . . . , zNq ˆ t ÞÑ zi
(7.1.10)

Definition 7.1.4. Let X,S be complex spaces. A holomorphic map φ : X Ñ S
is called a family of (closed complex) subspaces of PN if there exists a closed
embedding µ : X Ñ PNS such that the following diagram commutes:

X PNS

S

µ

φ pr
(7.1.11)

Clearly φ is proper since pr and µ are so. If S is the single reduced point, we say
that X is a projective complex space.
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7.1.2 Basic facts about morphisms of proper families

Consider a commutative diagram of holomorphic maps of complex spaces

X Y

S

µ

φ ψ
(7.1.12)

Note that for each t P S, the restriction µ|Xt : Xt Ñ Y can be further restricted to
µ|Xt : Xt Ñ Yt by Thm. 1.4.8.

Lemma 7.1.5. Assume that ψ is proper. Then φ is proper iff µ is proper.

Proof. Clearly φ is proper if µ is so. Now assume that φ is proper. Let K Ă Y be
compact. Then µ´1pKq is a closed subset of φ´1pψpKqq where the latter is compact
because φ is proper.

Lemma 7.1.6. In (7.1.12), for each t P S, the restriction µ|Xt : Xt Ñ Yt is canonically
equivalent to the pullback of µ : X Ñ Y along the inclusion Yt ãÑ Y .

Proof. Recall that Yt has structure sheaf OY {mS,tOY . Thus, by Prop. 1.12.1, the
pullback of µ : X Ñ Y along Yt ãÑ Y is µ|

rXt
: rXt Ñ Yt where rXt is a complex

subspace of X defined by

rXt “ SpecanpOX{mS,tOY ¨ OXq “ SpecanpOX{mS,tOXq “ Xt

Theorem 7.1.7. In (7.1.12), assume that φ and ψ are proper. Let t P S. The following
are true.

1. Suppose that the restriction µ|Xt : Xt Ñ Yt is finite (resp. a closed embedding).
Then there is a neighborhood W ot t such that µ|XW : XW Ñ YW is finite (resp. a
closed embedding).

2. Suppose that φ is flat, and that the restriction µ|Xt : Xt Ñ Yt is a biholomorphism.
Then there is a neighborhood W ot t such that µ : XW Ñ YW is a biholomorphism.

Proof. Part 1-(a). Suppose that µ|Xt : Xt Ñ Yt is finite. Then for each y P Yt, we
have that µ´1pyq Ă φ´1pµpyqq “ Xt, and hence µ´1pyq “ pµ|Xtq

´1pyq is a finite set
since µ|Xt is finite. Thus, by Thm. 2.7.2, there are neighborhoods Vy of y P Y and
Uy of µ´1pyq in X such that µpUyq Ă Vy and that µ restricts to a finite map Uy Ñ Vy.
Since µ is proper (by Lem. 7.1.5) and hence closed (by Prop. 2.4.10), by Prop.
2.4.1, we may assume that Uy “ µ´1pVyq. Since Yt is compact, it can be covered by
Uy1 , . . . , Uyn such that µ is finite when restricted to each µ´1pUyiq Ñ Vyi . Since ψ is

255



proper and hence closed, by Prop. 2.4.1, there is a neighborhood W Ă S of t such
that YW “ ψ´1pW q is a subset of Vy1 Y ¨ ¨ ¨ Y Vyn . Then, using Rem. 2.4.2, we see
that µ restricts to a finite map XW X µ´1pVyiq Ñ YW X Vyi for every i, and hence
that µ|XW : XW Ñ YW is finite.

Part 1-(b). By Part 1-(a), we can shrink S to a neighborhood of t and replace
X, Y by φ´1pSq, ψ´1pSq respectively so that µ is finite. Then by Thm. 2.7.1, µ˚OX

is a coherent OY -module.
Now we assume that µ|Xt is a closed embedding. Then for each y P Yt we

have µ´1pyq “ txu for some x P Xt. We claim that µ : X Ñ Y is an immersion
at x. Indeed, since µ|Xt is an immersion at x, the OY,y-module morphism µ# :
OY,y Ñ OX,x{mS,tOX,x is surjective. By the commutativity of (7.1.12), we have
mS,tOX,x Ă mY,yOX,x. So µ# gives an epimorphism of OY,y-module morphism
OY,y Ñ OX,x{mY,yOX,x. Since µ˚OX is OY -coherent, OX,x is a finitely generated
OY,y-module. Therefore, by Nakayama’s lemma, µ# : OY,y Ñ OX,x is surjective.
This proves the claim.

In other words, we have proved that the morphism of coherent OY -modules
µ# : OY Ñ µ˚OX is surjective at every point of Yt. Let J “ Kerpµ#q “

Ann OY pµ˚OXq, which is a coherent OY -ideal. Then µ# : OY {J Ñ µ˚OX is an
isomorphism everywhere on Yt. Thus, by the properness of ψ, we can shrink S to
a smaller neighborhood of t so that µ# : OY {J Ñ µ˚OX is an isomorphism. Note
that this µ# is induced by the morphism of finite holomorphic map indicated by
the commutative diagram

X SpecanpOY {J q

Y

µ

µ
(7.1.13)

Thus, by Thm. 2.9.3, µ gives a biholomorphism of complex spaces
X Ñ µpXq “ SpecanpOY {J q. This proves that µ : X Ñ Y is a closed em-
bedding.

Part 2. By shrinking S, we assume that µ : X Ñ Y is a closed embedding.
Assume that φ is flat and µ|Xt : Xt Ñ Yt is a biholomorphism. We claim that for
each x P Xt, the map µ# : OY,y Ñ OX,x is bijective. Then the same argument as in
the proof of Part 1-(b) proves that µ : X Ñ Y is a biholomorphism after shrinking
S.

Let J “ Kerpµ#q as in Part 1-(b). Then we have an exact sequence of OY,y-
modules

0 Ñ Jy Ñ OY,y Ñ OX,x Ñ 0

Tensoring this exact sequence with OS,t{mS,t and using the flatness of φ, we obtain
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an exact sequence of OS,t-modules

0 Ñ Jy{mS,tJy Ñ OY,y{mS,tOY,y Ñ OX,x{mS,tOX,x Ñ 0

Since µ|Xt : Xt Ñ Yt is a biholomorphism, the map OY,y{mS,tOY,y Ñ OX,x{mS,tOX,x

is bijective. So Jy{mS,tJy “ 0. Similar to the proof of Part 1-(b), we have Jy “ 0
by Nakayama’s lemma, and hence J “ 0 after shrinking S.

Corollary 7.1.8. In (7.1.12), assume that φ and ψ are proper. Consider the following
statements:

(1) µ : X Ñ Y is finite (resp. a closed embedding).

(2) For each t P S, the restriction µ|Xt : Xt Ñ Yt is finite (resp. a closed embedding).

(a) µ : X Ñ Y is a biholomorphism.

(b) For each t P S, the restriction µ|Xt : Xt Ñ Yt is a biholomorphism.

Then (1)ô(2) and (a)ñ(b). If φ is flat, then (a)ô(b).

Proof. (1)ñ(2) and (a)ñ(b) follow from Lem. 7.1.6 and the fact that base change
perserves finiteness (Prop. 2.4.11), closed embeddings (Prop. 1.12.1), and biholo-
morphisms. The other directions follow from Thm. 7.1.7.

7.2 Very ample line bundles

Let X,S be complex spaces.

7.2.1 The line bundle Opnq

Definition 7.2.1. An OX-module L is called invertible (also called a line bundle)
if L is locally free of rank 1. In this case,

L ´1
“ L _

“ Hom OX pL ,OXq

satisfies that there is a natural OX-module isomorphism L bL _ Ñ OX . If n P Z`,
then L n “ L bn is understood in the obvious way, and

L bp´nq
“ pL ´1

q
bn

We understand L b0 as OX .

Recall Def. 7.1.3 for the notations.
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Definition 7.2.2. For each n P Z, define OPNS
pnq to be an OPNS

-submodule of
π˚OCN`1,ˆ

S
such that for each 0 ď i ď N ,

OPNS
pnq

ˇ

ˇ

ˇ

ΩiˆS
is generated (freely) by ζni

One checks easily that OPNS
pnq is well-defined (i.e. Opnq|ΩiˆS and Opnq|ΩjˆS agree

on pΩi X Ωjq ˆ S) and is invertible. Note that there is a natural isomorphism

OPNS
»
ÝÑ OPNS

p0q f ÞÑ f ˝ π

We abbreviate OPNS
pnq to Opnq (and in particular OPNS

p0q to O) when no confusion
arises

Remark 7.2.3. For each m,n P Z, we have a canonical isomorphism of OPNS
-

modules

Opmq bOPN
S

Opnq
»
ÝÑ Opm ` nq (7.2.1a)

whose restriction to each Ωi ˆ S is given by

OpmqpΩi ˆ Sq bOpΩiˆSq OpnqpΩi ˆ Sq
»
ÝÑ Opm ` nqpΩi ˆ Sq

ζmi b ζni ÞÑ ζm`n
i

(7.2.1b)

In particular, we have canonical isomorphisms of OPNS
-modules

Opnq
_

» Op´nq Opnq » Op1q
bn

7.2.2 Very ampleness

Remark 7.2.4. If L is a line bundle on X , and if ξ, η P L pXq are such that η
is nowhere zero on X . (Namely, for each x P X , the element ηpxq P L {mX,xL is
nonzero.) By Nakayama’s lemma, η is the (free) generator of L . Then ξ{η denotes
the unique element of OpXq whose multiplication with η equals ξ. Clearly

ξ1
η

`
ξ2
η

“
ξ1 ` ξ2
η

ξ

η
¨
η

ψ
“
ξ

ψ

if η, ψ are nowhere zero.

The following construction is a generalization of Rem. 7.1.2.

Definition 7.2.5. Let L be a line bundle on a complex space X . Let N P Z`.
Let ξ0, ξ1, . . . , ξN P L pXq. Assume that ξ0, . . . , ξN have no common zeros on X .
Namely, for each x P S, there is 1 ď i ď N such that the element ξipxq P L {mX,xL
is nonzero. (Hence, by Nakayama’s lemma, there is a neighborhood U of x such
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that L |U is generated (freely) by ξi.) Then there is a well-defined holomorphic
map

rξ‚s ” rξ0, . . . , ξN s : X Ñ PN (7.2.2a)

such that if U is a nonempty open subset of X on which ξi vanishes nowhere (and
hence is a free generator of L |U ), we have that rξ‚spUq Ă Ωi, and (recall Thm.
1.4.1)

ϖi ˝ rξ‚s
ˇ

ˇ

U
: U Ñ CN

equals
´ξ0
ξi
, . . . ,

ξi´1

ξi
,
ξi`1

ξi
, . . . ,

ξN
ξi

¯ (7.2.2b)

Proposition 7.2.6. Assume the setting of Def. 7.2.5. Assume that φ : X Ñ S is a
holomorphic map. Define a holomorphic map

µ “ rξ‚s _ φ : X Ñ PNS (7.2.3)

which clearly satisfies φ “ prS ˝ µ. Then there is a unique OX-module isomorphism

Ψ : µ˚OPNS
p1q

»
ÝÝÑ L (7.2.4a)

determined by

Ψ|µ´1pΩi,Sq : µ˚
`

OPNS
p1q

ˇ

ˇ

Ωi,S

˘

ÝÑ L |µ´1pΩi,Sq

µ˚ζi ÞÑ ξi
(7.2.4b)

for all 0 ď i ď N .

It is clear that

µ´1
pΩi,Sq “ rξ‚s

´1
pΩiq “ tx P X : ξipxq ‰ 0u (7.2.5)

and that the diagram (7.1.11) commutes (i.e. φ “ prS ˝ µ). Note also

µ˚OPNS
p1q “ rξ‚s

˚OPN p1q

µ˚
`

OPNS
p1q

ˇ

ˇ

Ωi,S

˘

“ rξ‚s
˚
`

OPN p1q
ˇ

ˇ

Ωi

˘

µ˚ζi “ rξ‚s
˚ζi

(7.2.6)

Proof. First, note that the section ζj{ζi P H0pΩi X Ωj,OPNS
q is pulled back by µ# to

µ#
pζj{ζiq “ rξ‚s

#
pζj{ζiq “ ξj{ξi P H0

pµ´1
pΩi,S X Ωj,Sq,OXq (7.2.7)

Thus, the Oµ´1pΩi,Sq-module morphism (7.2.4b), when restricted to µ´1pΩi,SXΩj,Sq,
sends µ˚ζj “ µ˚ppζj{ζiq ¨ ζiq “ pξj{ξiq ¨ µ˚ζi to pξj{ξiq ¨ ξi “ ξj . Therefore, we have
a well-defined Ψ. Since ζi and ξi are respectively the free generators of Op1q|Ωi,S
and L |µ´1pΩi,Sq, from (7.2.4b) it is clear that Ψ is an isomorphism.
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Theorem 7.2.7. Let φ : X Ñ S be a proper holomorphic map. Let L be a line bundle on
X . Let N P Z`. The following are equivalent.

(1) There is a closed embedding µ : X Ñ PNS such that the diagram (7.1.11) commutes
(i.e. φ “ prS ˝ µ), and that we have an isomorphism of OX-modules

L » µ˚OPNS
p1q

(2) There exist ξ0, ξ1, . . . , ξN P L pXq “ H0pS, φ˚L q satisfying the following condi-
tions:

(2a) ξ0, . . . , ξN have no common zeros on X .

(2b) For each t P S, the holomorphic map

rξ‚|Xts “ rξ0|Xt , . . . , ξN |Xts : Xt Ñ PN (7.2.8)

is a closed embedding.

Moreover, if (2) is true, then (7.2.3) is a closed embedding satisfying the properties in (1).

Proof. (1)ñ(2): We may assume that X is a closed complex subspace of PNS , that µ
is the inclusion map, and that L “ µ˚Op1q “ Op1q|X . Let ξi “ ζi|X for 0 ď i ď N .
Then (2) is clearly satisfied.

(2)ñ(1): Assume (2). Then (7.2.3) is a closed embedding by Cor. 7.1.8. (1)
follows immediately from Prop. 7.2.6.

Definition 7.2.8. Let φ : X Ñ S be a proper holomorphic map. A line bundle
L on X is called φ-very ample or very ample over S, if S has an open cover W
such that for each W P W, the restriction L |XW and the map φ : XW Ñ W satisfy
condition (1) or (2) of Thm. 7.2.7 for some N P Z`. In the case that S is a reduced
single point, we simply say that L is a very ample line bundle on X .

Definition 7.2.9. A proper holomorphic map φ : X Ñ S is called projective (or
called a projective morphism) if there exists a φ-very ample line bundle L P

CohpXq. In the case that S is a reduced single point, we simply say that X is
a projective complex space. This is equivalent to that X is biholomorphic to a
closed complex subspace of PN for some N .

Example 7.2.10. The holomorphic map

ςN,K : PN ˆ PK Ñ PpN`1qpK`1q´1

rz0, . . . , zN s ˆ rw0, . . . , wKs ÞÑ rziwjsiďN,jďK

is a closed embedding of complex manifold, called Segre embedding. Thus, PN ˆ

PK is a projective manifold.
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Proposition 7.2.11. Let φ : X Ñ S be a proper holomorphic map. Let L ,K be line
bundles on X . Assume that ξ0, . . . , ξN P L pXq both satisfy condition (2) of Thm. 7.2.7.
Assume that η0, . . . , ηK P K pXq have no common zeros on X . Then pξi b ηjqiďN,jďK

satisfy condition (2) of Thm. 7.2.7. In particular, L b K is φ-very ample.

Proof. It is clear that pξi b ηjqiďL,jďK has no common zeros. We want to prove
that the map X Ñ PpN`1qpK`1q´1

S they give is a closed embedding. By Cor. 7.1.8,
it suffices to check it fiberwise. Therefore, we assume that S is a single reduced
point, and hence X is compact.

The map rξi b ηjsiďL,jďK is clearly the composition of rξ‚s _ rη‚s : X Ñ PN ˆPK
and the Segre (closed) embedding ςN,K : PN ˆ PK Ñ PpN`1qpK`1q´1. Since we have
a commutative diagram

X PN ˆ PK

PN

rξ‚s_rη‚s

rξ‚s pr1

where pr1 is the projection onto the first component, the fact that rξ‚s is an injective
immersion implies that rξ‚s_rη‚s is an injective immersion. So rξ‚s_rη‚s is a closed
embedding because X is compact.

7.2.3 Basic properties about very ampleness

Theorem 7.2.12. Let φ : X Ñ S be a proper holomorphic map. Let L be a φ-very
ample line bundle on X . Assume that S is Stein. Then for every precompact open subset
W Ă S, the restriction L |XW and φ : XW Ñ W satisfy condition (1) or (2) of Thm.
7.2.7 for some N P Z`.

Proof. By Grauert direct image theorem, φ˚L is OS-coherent. Thus, by Cor. 6.4.6,
there exist ξ0, . . . , ξN P L pXq “ H0pS, φ˚L q generating the OW -module φ˚L |W .
Let us prove that ξ0, . . . , ξN satisfy condition (2) of Thm. 7.2.7 for φ : XW Ñ W .

Choose any t P W . By assumption, there is a neighborhood V Ă W and finitely
many η0, η1, ¨ ¨ ¨ P L pXV q with no common zeros on XV (and in particular on Xt)
such that rη‚|Xts : Xt Ñ PN is a closed embedding. Note that

L bOX OXt “ L bOX pOX bOS OS{mS,tq “ L bOS pOS{mS,tq (7.2.9)

So each ηj|Xt is a section of

H0
pXt,L |Xtq “ φ˚pL bOS pOS{mS,tqqt (7.2.10)

Indeed, it is in the range of the base change map

φ˚L bOS pOS{mS,tq Ñ φ˚pL bOS pOS{mS,tqqt (7.2.11)
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This range is C-spanned by the images of ξ0, . . . , ξN since φ˚L bOS pOS{mS,tq

is C-spanned by them. Therefore, each ηj|Xt is a C-linear combination of
ξ0|Xt , . . . , ξN |Xt . So ξ0|Xt , . . . , ξN |Xt have no common zeros on Xt, and rξ‚|Xts :
Xt Ñ PN is a closed embedding.

Theorem 7.2.13. Let φ : X Ñ S be a proper flat holomorphic map. Let L be a line
bundle on X . Let t P S. Assume that L satisfies base change property in order 0 at t.
Assume also that L |Xt is an ample line bundle on Xt. Then there is a neighborhood W of
t such that L |XW is very ample with respect to φ : XW Ñ W .

For example, L satisfies base change property in order 0 at t ifH1pXt,L |Xtq “

0 (by the base change Thm. 6.6.10).

Proof. Since L |Xt is very ample, there exists finitely many elements of (7.2.10)
with no common zeros and give a closed embedding of Xt into PN . Since the base
change map (7.2.11) is surjective (by the assumption on the base change property),
after shrinking S to a neighborhood of t, we can find ξ0, . . . , ξN P L pXq whose
restriction to Xt have no common zeros and give a closed embedding rξ‚|Xts :
Xt Ñ PN .

We know that for each x P Xt, some ξi spans L {mX,xL , and hence (by
Nakayama’s lemma) is a (free) generator of L on a neighborhood of x in X .
Therefore, by the properness of φ, there is a neighborhood W of t such that
ξ0, . . . , ξN generate the OXW -module L |XW , and hence have no common zeros on
XW . Shrink S toW . Then we have a holomorphic map µ “ rξ‚s_φ : X Ñ PNS such
that φ “ prS ˝ µ, and that it restricts to the closed embedding rξ‚|Xts : Xt Ñ PN .
By Thm. 7.1.7, we can shrink S further so that µ is a closed embedding. Then
ξ0, . . . , ξN satisfy condition (2) of Thm. 7.2.7 (recall Cor. 7.1.8).

Corollary 7.2.14. Let φ : X Ñ S be a proper flat holomorphic map. Let L be a line
bundle on X . Assume that for each t P S, we have that H1pX,L |Xtq “ 0, and that L |Xt
is a very ample line bundle on Xt. Then L is φ-very ample.

Proof. Immediate from Thm. 7.2.13.

7.3 Serre’s vanishing theorem

Let X,S be complex spaces.

Definition 7.3.1. Suppose that I is a coherent ideal of OX satisfying that for
each x P NpIq, Ix is generated by a non zero-divisor of OX,x. By Prop. 2.3.13,
this is equivalent to that the coherent sheaf I is a line bundle on X . Let D “

SpecanpOX{Iq. Define the line bundle OXpnDq (where n P Z) as follows: For each
n P N we define

OXp´nDq “ Ibn OXpnDq “ OXp´nDq
_ (7.3.1)
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In particular, OXp0Dq “ OX . So have have an obvious isomorphism

OXpmDq bOX OXpnDq » OXppm ` nqDq

Also, by checking stalkwise, we see that the multiplication gives an isomorphism

Ibn
» In “ I ¨ ¨ ¨ I

loomoon

n

pif n P Nq

If E is an OX-module, we define

E pnDq “ E bOX OXpnDq (7.3.2)

Example 7.3.2. Let H be a hyperplane of PN , namely, there exists pλ0, . . . , λNq P

CN`1,ˆ such that

H “ trz0, . . . , zN s : λ0z0 ` ¨ ¨ ¨ ` λNzN “ 0u

Then H is a closed submanifold of PN`1 biholomorphic to PN . We let

HS “ H ˆ S

Recall that IHS is the ideal of holomorphic functions vanishing on HS . Then we
have an OPNS

-module isomorphism

OPNS
p´1q

»
ÝÝÑ OPNS

p´HSq “ IHS

ζ´1
i ÞÑ λ0 ¨

ζ0
ζi

` ¨ ¨ ¨ ` λN ¨
ζN
ζi

pon Ωi,Sq
(7.3.3)

Lemma 7.3.3. If q ě 1 and n ě 0, then HqpPN ,OPN pnqq “ 0.

Lemma 7.3.4. Let φ : X Ñ S be a proper holomorphic map. Let L be a line bundle on
X satisfying condition (1) or (2) of Thm. 7.2.7 for some N . The following are true.

(a) For each n ě 0, the OX-module L bn is generated by N ` 1 elements of L bnpXq.

(b) Let n0 P Z such that the OX-module E bL bn0 is generated by finitely many global
sections. Then for every n ě n0, the OX-module E b L bn is generated by finitely
many global sections.

Proof. Let ξ0, . . . , ξN P L pXq satisfy condition (2) of Thm. 7.2.7. If n ě 0, then
ξbn
0 , . . . , ξbn

N generate L bn. This proves (a). Part (b) follows from (a), since both
E b L bn0 and L bpn´n0q (where n ě n0) are generated by finitely many global
sections.
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7.3.1 Serre’s vanishing theorem

Theorem 7.3.5 (Serre’s vanishing theorem). Let φ : X Ñ S be a proper holomorphic
map. Let L be a φ-very ample line bundle on X . Let E be a coherent OX-module. Let W
be any precompact open subset of S. Write

E pnq “ E bOX L bn (7.3.4)

Then the following are true.

(A) If S is Stein, then there exists n0 P N such that for every n ě n0, the OXW -module
E pnq

ˇ

ˇ

XW
is generated by finitely many elements of H0pX,E pnqq.

(B) There exists n0 P N such that for every n ě n0 and every q ě 1, we have

Rqφ˚pE pnqq
ˇ

ˇ

W
“ 0

(C) If E is φ-flat, then there exists n0 P N such that for every n ě n0, the sheaf E pnq

satisfies base change in all orders at every t P W , and

Hq
pXt,E pnq|Xtq “ 0 p@q ě 1, @t P W q

Remark 7.3.6. By Prop. 1.10.4, there is a canonical isomorphism

E pnq|Xt » E |Xtpnq
def

ùùù E |Xt bOXt
pL |Xtq

bn (7.3.5)

(cf. also Lem. 7.4.3.) If X “ PNS and φ “ PrS , and if H is a hyperplane of PN , then
by Prop. 1.10.4, there is a canonical isomorphism

E pnq|HS » E |HSpnq (7.3.6)

where the RHS is defined in view of the canonical equivalence of HS Ñ S and
PN´1
S Ñ S.

Proof of (A), (B) in Thm. 7.3.5. Step 1. We claim that (B’) implies (B) and (A’) im-
plies (A) where

(A’) For each t P S and x P Xt, and for any E P CohpXq, there exists n P N such
that the following restriction map is surjective:

φ˚pE pnqqt ÝÑ E pnq|x “ E pnqx{mX,xE pnqx (7.3.7)

(B’) For each t P S, and for any E P CohpXq, there exist n0 P N and a neighbor-
hood V Ă S of t such that for every n ě n0 and every q ě 1, we have

Rqφ˚pE pnqq
ˇ

ˇ

V
“ 0
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Indeed, (B’) clearly implies (B). Suppose (A’) is true. Then by Nakayama’s lemma
and by the properness of φ, for every t P S and x P Xt there exist n0 P N and
neighborhoods V Ă S of t and U Ă XV of x such that E pn0q|U is OU -generated by
elements of H0pXV ,E pn0qq. By Lem. 7.3.4-(a), we can shrink V and U so that for
each n ě n0, the sheaf E pnq|U is OU -generated by elements ofH0pXV ,E pnqq. Thus,
by the compactness of φ´1pW q, we have:

(A”) There exists n0 P N such that for each t P W , x P Xt, and n ě n0, the map
(7.3.7) is surjective.

For each n P Z, by Grauert direct image theorem, the OS-module φ˚pE pnqq

is coherent. Therefore, since S is Stein, by Cor. 6.4.6, the sheaf φ˚pE pnqq|W is
OW -generated by a finite subset of H0pS, φ˚pE pnqqq “ E pnqpXq. Let n0 be as in
(A”). Then for each n ě n0, a finite subset of E pnqpXq spans E pnq|x for all x P XW ,
and hence OXW -generates E pnq|XW by Nakayama’s lemma.

Step 2. To prove (A’) and (B’), it suffices to assume that X is a closed sub-
space of PNS , that φ is the restriction of prS : PNS Ñ S, and that L “ Op1q|X . By
identifying E with its direct image under the inclusion X ãÑ PNS , we view E as
a coherent OPNS

-module. Therefore, by replacing X with PNS , it suffices to assume
that X “ PNS and φ “ prS .

We now prove (A’) and (B’) for X “ PNS and φ “ prS by induction on N . The
case N “ 0 is obvious. Suppose that case N ´ 1 has been proved. Let us prove
case N . We first prove (A’). Choose t P S and x P Xt. For each n, tensoring any
E P CohpXq with the exact sequence

0 Ñ IHS Ñ OPNS
Ñ OHS Ñ 0

gives an exact sequence

0 Ñ K Ñ E p´1q Ñ E Ñ E |HS Ñ 0 (7.3.8)

where K “ Ker
`

E p´1q Ñ E
˘

.
We claim that SupppK q “ SpecanpOX{ Ann pK qq is a (closed) complex sub-

space of HS . This means that for each x P X “ PNS , we need to show IHS ,x Ă

Ann OX,xpKxq. Indeed, since Kx “ Tor
OX,x
1 pEx,OHS ,xq, and since the action of OX,x

on Kx is given by that on OHS ,x (because Tor preserves multiplications, cf. Rem.
5.2.7), Kx is killed by elements of IHS ,x since OHS ,x is so. This proves the claim.

Tensoring (7.3.8) with OPNS
pnq gives an exact sequence

0 Ñ K pnq Ñ E pn ´ 1q Ñ E pnq Ñ E |HSpnq Ñ 0 (7.3.9)

which breaks into two exact sequences

0 Ñ K pnq Ñ E pn ´ 1q Ñ Fn Ñ 0 (7.3.10a)
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0 Ñ Fn Ñ E pnq Ñ E |HSpnq Ñ 0 (7.3.10b)

(7.3.10a) gives a long exact sequence of OS,t-modules

R1φ˚pE pn ´ 1qqt Ñ R1φ˚pFnqt Ñ R2φ˚pK pnqqt

Since K pnq has support in HS » PN´1
S , by case N ´ 1 of (B’), for sufficiently large

n we have that R2φ˚pK pnqqt “ 0, and hence that R1φ˚pE pn´ 1qqt Ñ R1φ˚pFnqt is
surjective. Similarly, (7.3.10b) gives an exact sequence

R1φ˚pFnqt Ñ R1φ˚pE pnqqt Ñ R1φ˚pE |HSpnqqt (7.3.11)

where, for large enough n, R1φ˚pE |HSpnqq is zero by case N ´ 1 of (B’).
Therefore, there exists n0 P Z` such that we have epimorphisms of OS,t-

modules

R1φ˚pE pn0qqt ↠ R1φ˚pFn0`1qt ↠ R1φ˚pE pn0 ` 1qqt ↠ R1φ˚pFn0`2qt ↠ ¨ ¨ ¨

Write M “ R1φ˚pE pn0qq. Then the above sequence can be written as

M ↠
M
J1

↠
M
I1

↠
M
J2

↠
M
I2

↠ ¨ ¨ ¨

where J1 Ă I1 Ă I2 Ă J2 Ă ¨ ¨ ¨ is a chain of submodules of M, which must
be stationary because M is a finitely-generated module (due to Grauert direct
image theorem) of the Noetherian ring OS,t. Thus, for sufficiently large n, the
map M{Jn Ñ M{In is an isomorphism. This is just saying that the first map in
the exact sequence (7.3.11) is an isomorphism. Therefore, there is n0 P N such
that for all n ě n0, the long exact sequence induced by (7.3.10b) gives an exact
sequence

φ˚pE pnqqt Ñ φ˚pE |HSpnqqt Ñ 0 (7.3.12)

Now, by case N ´1 of (A’), we may enlarge n0 such that for all n ě n0, the map

φ˚pE |HSpnqqt Ñ E |HSpnq|x » pE pnq|HSq|x » E pnq|x

is surjective. Hence, the restriction φ˚pE pnqqt Ñ E pnq|x is surjective. This proves
(A’) in case N .

Step 3. It remains to prove (B’) in case N . Choose any t P S. By Rem. 6.7.1, we
may shrink S to a precompact neighborhood of t so that there exists q0 (depending
only on prS : PNS Ñ S) such that Rqφ˚p´q “ 0 on CohpPNS q for all q ě q0. To prove
(B’), it suffices to prove:

(B”) For every 1 ď q ď q0 and E P CohpPNS q, there exist n0 P N and a neighbor-
hood V of t such that for every n ě n0 we have Rqφ˚pE pnqq|V “ 0.
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(Note that we have moved the phrase “for all 1 ď q ď q0” to the beginning, which
is legitimate because there are only finitely many such q.) Let us prove (B”) by
induction on q. The base case q “ q0 is obvious. Suppose that case q ` 1 has been
proved (where 1 ď q ď q0 ´ 1). Now consider case q.

Note that (A) is true in case N by Step 1. Therefore, we can shrink S to a
neighborhood of t and find n0 P Z` such that each E pn0q is OS-generated by
m elements of H0pX,E pn0qq (where m P Z`). Thus, we have an epimorphism
O‘m

PNS
Ñ E pn0q, and hence an exact sequence of OPNS

-modules

0 Ñ G Ñ OPNS
p´n0q

‘m
Ñ E Ñ 0 (7.3.13)

where G is the kernel of the morphism to its right. Choose any n ě n0. Then by
Lem. 7.3.3, we have Hě1pPN ,OPN pn ´ n0q‘mq “ 0. By Exp. 5.5.4, the morphism
prS : PNS Ñ S is flat. Thus, by the base change Thm. 6.6.10, we have

Rě1φ˚pOPNS
pn ´ n0q

‘m
q “ 0

Therefore, the long exact sequence of “(7.3.13)bOpnq” gives an isomorphism

Rqφ˚pE pnqq » Rq`1φ˚pG pnqq (7.3.14)

for all n ě n0. By case q ` 1 of (B’), after shriking S further, we may enlarge n0 so
that for all n ě n0, we have Rq`1φ˚pG pnqq “ 0 and hence Rqφ˚pE pnqq “ 0. This
proves the case q of (B”).

Proof of (C) in Thm. 7.3.5. Choose n0 as in (B). Then for each t P W and q ě 1 and
n ě n0, we have Rqφ˚pE pnqqt “ 0. By Prop. 6.7.5, E pnq satisfies base change in all
orders at t. Thus, the map

Rqφ˚pE pnqqt bOS,t pOS,t{mS,tq Ñ Rqφ˚pE pnq bOS pOS{mS,tqqt » Hq
pXt,E pnq|Xtq

is bijective, proving that HqpXt,E pnq|Xtq “ 0.

Corollary 7.3.7. Let φ : X Ñ S be a proper holomorphic map. Let L be a φ-very ample
line bundle on X . Let E Ñ F be an epimorphism of coherent OX-modules. Then for
every precompact open subset W Ă S, there exists n0 P N such that for all n ě n0, the
following map is an epimorphism of OW -modules

φ˚pE pnqq
ˇ

ˇ

W
Ñ φ˚pF pnqq

ˇ

ˇ

W

Proof. Let K be the kernel of E Ñ F . Then we have an exact sequence

φ˚pE pnqq Ñ φ˚pF pnqq Ñ R1φ˚pK pnqq

By Thm. 7.3.5-(B), there is n0 such that R1φ˚pE pnqq|W “ 0 for all n ě n0.
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7.3.2 Hilbert polynomials

As a byproduct of the proof of Thm. 7.3.5 we are able to prove:

Theorem 7.3.8. Let X be a projective complex space. Let E P CohpXq. Then there is a
(necessarily unique) p P Qrns such that

χpX,E pnqq “ ppnq (7.3.15)

for all n P Z. p is called the Hilbert polynomial of E .

Proof. Since X can be embedded into PN , we assume for simplicity that X “ PN .
We prove by induction on N that χpX,E pnqq is a polynomial of n of degree at
most N . Then case N “ 0 is obvious: in this case ppnq “ dimC E . Now assume
case N ´ 1 has been proved. Consider case N . Let H be any hyperplane in PN .
Then by the proof of Thm. 7.3.5 we have an exact sequence (7.3.9) where K has
support in H . Thus, we have

χpH,K pnqq ´ χpX,E pn ´ 1qq ` χpX,E pnqq ´ χpH,E |Hpnqq “ 0

where χpH,K pnqq and χpH,E |Hpnqq are polynomials of n of degree ď N ´ 1. The
proof is finished by the next lemma.

Lemma 7.3.9. Let f : Z Ñ Z be a function such that fpnq ´ fpn ´ 1q “ qpnq for some
q P Qrns of degree d ě 0. Then f P Qrns and f has degree d ` 1.

Proof. Choose any k P Z. Then for any n ą k we have fpnq “ fpkq `
řn
i“k`1 qpiq. It

follows that there is a polynomial pk of degree d ` 1 such that fpnq “ pkpnq for all
n ą k. Since polynomials of degree d ` 1 are determined by their values at d ` 2
distinct points, and since pkpnq “ pk`1pnq whenever n ą k ` 1, we see that pk is
independent of k.

Theorem 7.3.10. Let φ : X Ñ S be a proper holomorphic map. Let L P CohpXq be
φ-very ample. Let E P CohpXq. Assume that E is φ-flat. Then each t0 P S is contained
in a neighborhood W Ă S such that for each n, the following function is constant:

W Ñ Z t ÞÑ χpXt,E |Xtpnqq (7.3.16)

Proof. Since E is φ-flat, by Thm. 7.3.5-(C), we can shrink S to a neighborhood of
t0 and find n0 P N such that for any n ě n0, E pnq satisfies base change in all orders
on S, andH0pXt,E pnq|Xtq “ χpXt,E |Xtpnqq for all t P S. By (a)ñ(b) of Thm. 6.7.10,
H0pXt,E pnq|Xtq is locally constant with respect to t. Thus, for all n ě n0, (7.3.16)
is locally constant.

Shrink S further so that X can be embedded into PNS and L » OPNS
p1q. Shrink

S further so that (7.3.16) is constant for n P E “ tn0, n0 ` 1, . . . , n0 ` Nu. By Thm.
7.3.8, for each t P S there exists a polynomial pt of degree at most N such that
ptpnq “ χpXt,E |Xtpnqq for all n P Z`. Since t ÞÑ ptpnq is constant for all n P E, all
the coefficients of ptpnq are constant with respect to t.
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7.4 Base change theorems for projective morphisms

Projective morphisms are similar to finite holomorphic maps in many ways.
For example, coherent sheaves over finite holomorphic maps have trivial higher
order direct images. We know that the same is true for E pnq when E is over a
projective morphism and n is sufficiently large (Thm. 7.3.5). Similarly, finite holo-
morphic maps (whose flatness is not assumed) satisfies base change (cf. Prop.
2.4.7 and Thm. 2.8.2). In this section, we prove similar results for projective mor-
phisms, generalizing Thm. 7.3.5-(C).

We fix in this section a proper holomorphic map of complex spaces φ : X Ñ S
together with a φ-very ample line bundle L onX . Fix E P CohpXq. Recall E pnq “

E bOX L bn.

Theorem 7.4.1. For every precompact open subset W Ă S and every M P CohpSq,
there exists n0 P N such that for every n ě n0, the following base change morphism (of
OS-modules)

φ˚pE pnqq bOS M ÝÑ φ˚pE pnq bOS M q (7.4.1)

is an isomorphism on W .

Note that the number n0 depends on M . However, if E is φ-flat, then n0 can
be independent of M due to Thm. 7.3.5-(C).

Proof. Since the theorem can be checked locally with respect to the base, it suffices
prove that each t P S is contained in a neighborhood W such that the statements
in Thm. 7.4.1 hold. Moreover, after shrinking S to a neighborhood of t, we can
identifyX with a closed subset of PNS and view E as a coherent sheaf on PNS . Thus,
we assume X “ PNS and φ “ prS .

Choose precompact Stein neighborhoods W,Ω,Γ Ă S of t satisfying

W Ă Ω Ă Ω Ă Γ

By Thm. 7.3.5-(A), there is an epimorphism O‘k1
XΓ

pn1q Ñ E |Γ. Applying the same
argument to the kernel of this map gives an exact sequence of OXΩ

-modules

Ok2pn2q Ñ Ok1pn1q Ñ E |XΩ
Ñ 0 (7.4.2)

on Ω, where k1, k2 P Z` and n1, n2 P Z.
Write F1 “ Ok1pn1q and F2 “ Ok2pn2q. Since prS is flat (cf. Exp. 5.5.4), by

Thm.7.3.5-(C), there is n0 such that for all n ě n0, the sheaves F1pnq,F2pnq satisfy
base change in all orders on W . (In fact, in view of Lem. 7.3.3 and the base change
Thm. 6.6.10, it suffices to choose n0 such that n0 ` n1 ě 0, n0 ` n2 ě 0.) Therefore,
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for each n ě n0 and M P CohpSq, when restricted to W , we get a commutative
diagram

φ˚pF2pnqq b M φ˚pF1pnqq b M φ˚pE pnqq b M 0

φ˚pF2pnq b M q φ˚pF1pnq b M q φ˚pE pnq b M q 0

» »

where the first two vertical arrows are isomorphisms. By Cor. 7.3.7, we can en-
large n0 to a number (depending on M ) such that for all n ě n0, the two hori-
zontal sequences are exact. Thus, by Five lemma, the third vertical arrow is an
isomorphism.

Remark 7.4.2. Let ψ : Y Ñ S be a holomorphic map. Consider the Cartesian
square

X X ˆS Y

S Y

φ

prX

prY

ψ

(7.4.3)

Using Thm. 7.2.7-(2) and the transitivity of pullbacks (Rem. 1.11.3), one sees
easily that pr˚

XL is prY -very ample. More precisely, if ξ0, . . . , ξN P L pXq and φ
satisfy condition (2) of Thm. 7.2.7, the same is true for pr˚

Xξ0, . . . , pr
˚
XξN and prY .

Thus:

• The pullback of a very ample bundle is very ample. The pullback of a pro-
jective morphism is projective.

Therefore, for each F P ModpOXˆSY q, we can define

F pnq :“ F bOXˆSY
ppr˚

XL q
bn

“ F bOX L bn (7.4.4)

Lemma 7.4.3. There is a canonical isomorphism of OXˆSY -modules

pr˚
XpE pnqq

»
ÝÝÑ ppr˚

XE qpnq (7.4.5)

Proof. Immediate from Prop. 1.10.4.

Theorem 7.4.4. For every holomorphic map ψ : Y Ñ S (where Y is a complex space)
and every precompact open subset V Ă Y , there exists n0 P N such that, in view of the
Cartesian square (7.4.3), the following base change morphism (of OY -modules)

ψ˚φ˚pE pnqq ÝÑ prY,˚pr
˚
XpE pnqq (7.4.6)

is an isomorphism on ψ´1pV q.

270



Proof. It suffices to prove that every y P S is contained in a neighborhood V such
that the statements in Thm. 7.4.4 are true. As in the proof of Thm. 7.4.1, we
assume that X “ PNS , φ “ PrS ; we can find precompact Stein neighborhoods W,Ω
of t “ ψpyq such that W Ă Ω, and that there is an exact sequence of OXΩ

-modules
F2 Ñ F1 Ñ E |XΩ

Ñ 0 where F1,F2 are locally free; we can find n0 such that
for all n ě n0, the sheaves F1pnq,F2pnq satisfy base change in all orders on W .
Choose any precompact neighborhood V of y contained in ψ´1pW q. Then for each
n ě n0 and ψ : Y Ñ S, when restricted to V , we get a commutative diagram

ψ˚φ˚pF2pnqq ψ˚φ˚pF1pnqq ψ˚φ˚pE pnqq 0

prY,˚pr
˚
XpF2pnqq prY,˚pr

˚
XpF1pnqq prY,˚pr

˚
XpE pnqq 0

» »

where the first two vertical arrows are isomorphisms (recall Thm. 6.6.2). By Cor.
7.3.7 and Lem. 7.4.3, we can enlarge n0 to a number (depending on ψ) such that
for all n ě n0, the two horizontal sequences are exact. Thus, by Five lemma, the
third vertical arrow is an isomorphism.

We give an interesting application of the base change theorem to flatness: the
following property is parallel to Exp. 5.4.5.

Proposition 7.4.5. The following are equivalent:

(1) E is φ-flat.

(2) For each precompact open subset W Ă S there exists n0 P N such that for every
n ě n0, the OS-module φ˚pE pnqq is locally free on W .

Proof. Assume that E is φ-flat. By Thm. 7.3.5-(C), for sufficiently large n, E pnq

satisfies base change in all orders on W , and hence is locally free by Prop. 6.6.9.
This proves (1)ñ(2).

Now assume (2). Choose any t P S. To show that Ex is flat over OS,t for all
x P Xt, by Prop. 5.4.1 and (5.3.6), it suffices to prove that for each ideal J Ă OS,t,
the kernel of the morphism Ex bOS,t J Ñ Ex bOS,t OS,t is trivial. Thus, it suffices to
shrink S to an arbitrary neighborhood of t, choose a coherent ideal J of OS , and
show that K is trivial where K is defined by the exact sequence

0 Ñ K Ñ E bOS J Ñ E bOS OS

For each n P Z, we have a commutative diagram

0 φ˚pK pnqq φ˚pE pnq bOS J q φ˚pE pnq bOS OSq

φ˚pE pnqq bOS J φ˚pE pnqq bOS OS
β

α »
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where the first row is exact. After shrinking S to a precompact neighborhood
of t we have the following: for sufficiently large n, the base change map α is
an isomorphism (by Thm. 7.4.1), and the map β is injective by assumption (2).
Therefore, for sufficiently large n, φ˚pK pnqq is trivial, and hence K pnq is trivial
due to Thm. 7.3.5-(A). So K “ 0.
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Čech cochains, 215
Čech resolution, 225
Active elements, 112
Active lemma, 112
Acyclic resolution, 225
Adjoint functors, 36
Analytic local C-algebra OX,x, 13
Analytic spectra Specan, 13, 14, 80
Analytic subsets(=reduced complex

subspaces), 55, 93
Analytically generating OX,x, 29
Annihilator sheaf Ann OX pE q, 55
Annihilators of modules AnnApMq, 55
Antiequivalence of categories, 25
Artin-Rees lemma, 18
Associated primes, 90, 200
b-sheeted (branched) covering, 151
Base change maps, 236
Base change property, 238, 245
Base of neighborhoods of a subset, 58
Biholomorphism, 13
Branch loci, 144
Branched coverings, 144
Canonical equalizers, 31
Cartan’s theorems, 226
Cartan-Serre theorem, 228
Cartesian square, 38
Closed embeddings, 26
Closed maps, 57
Codimension, 130
Coequalizers, 86
Cohomological δ-functors, 170
Cohomologically flat, 243, 245

Complex spaces, 13
Complex subspaces (open or closed), 14
Composition of morphisms of C-ringed

spaces, 8
Cotangent space mx{m2

x and tangent
space pmx{m2

xq˚, 28
De Rham cohomology Hq

dRpX,Fq, 222
De Rham resolution, 222
Depth, 204
Derived functors, left and right

R‚T, L‚T , 176
Diagonal of X ˆ X , 46
Dimension dimX (global dimension),

110
Dimension at a point dimxX “

dimOX,x, 110
Direct image φ˚E , 5
Direct product sheaf

ś

α Eα, 211
Discriminants Dpfq, 143
Dolbeault resolution, 223
Dolbeauly cohomology Hq

B
pX,E q, 223

Dual sheaf E _, 35
Embedding dimension embxX “

embOX,x, 103
Enough injectives/projectives, 176
Equalizers, 30
Equivalence of categories, 53
Essentially surjective, 53
Exact (contravariant) functors, 59
Families of (closed complex) subspaces,

254
Fiber E |x “ Ex{mX,xEx “ Ex b

pOX,x{mX,xq, 9

273



Fiber Xy “ φ´1pyq, 118
Fiber products inside a fiber product,

40, 42
Fiber products inside direct products,

46
Fiber products/pullbacks/base

changes X ˆS Y , 38
Fine resolutions, 222
Fine sheaves, 217
Finite (holomorphic) maps, 58
Flat holomorphic maps, 190
Flat modules, 189
Flat over Y , 190
Four lemma, 238
Fully faithful, 53
Fundamental theorem of Weierstrass

maps, 63
gcd=greatest common divisor, 143
Global decomposition of reduced com-

plex spaces, 164, 165
Godement sheaf GodepE q, 212
Graded modules, 18
Graphs of holomorphic maps, 44
Grauert comparison theorem, 230
Grauert direct image theorem, 228
Hilbert polynomial, 268
Holomorphic maps, 13
Homotopic complexes, 181
Homotopic morphisms of complexes,

181
Hyperplane of PN , 263
Ideal IA associated to an analytic sub-

set, 92
Ideal sheaves, 12
Identitätssatz, 7
Image complex space φpXq, 56
Immersions, 26
Injective objects/modules, 175
Integral elements over a ring, 75, 137
Intersection of closed subspaces, 42
Intersection sheaves, 50
Inverse image sheaf φ´1pY q, 6

Inverse images of closed subspaces
φ´1pS0q, 41

Invertible OX-modules, 257
Irreducible (reduced) complex spaces,

163, 164
Irreducible at a point, 94
Jacobi criterion, 104
Krull’s intersection theorem, 18
Left exact (contravarient) functor, 34
Leray’s theorem, 223, 225
Line bundles, 257
Local biholomorphisms, 144
Local/irreducible decomposition of X

at x, 96
Localization of modules, 126, 134
Locally bounded at a point, 135
Locally finite family of subsets, 216
Locally free at a point, 108
Locally irreducible, 94
Locally uniform convergence, 154
Miracle flatness theorem, 209
Model spaces, 13
Morphism of sheaves of local C-

algebras, 15
Morphisms of δ-functors, 172
Morphisms of (analytic) local C-

algebras, 14
Nakayama’s lemma, 11
Natural morphisms, 36
Nilradical

?
0X , 83

Noether property for coherent sheaves,
116

Non locally-free loci, 108
Normal (reduced) complex spaces, 156
Normal points of reduced complex

spaces, 156
Normal rings, 138
Normalization pX of reduced complex

space X , 160
Nowhere dense subsets, 5
Nullstellensatz, 83
Oka’s coherence theorem, 69
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Open embeddings, 26
Open mapping theorem, 124, 167
Open maps, 117
Orders of elements of Ctw‚, zu, 21
Paracompact spaces, 221
Partition of unity in OX subordinated to

U, 216
Polar set P pfq, 158
Precompact subsets, 5
Preserves multiplications, 184
Prime decomposition, 89
Primitive elements, 151
Projective (morphism), 260
Projective objects/modules, 176
Proper maps, 60
Pullback sheaf φ˚M , pullback of sec-

tions and morphisms, 35
Pure dimensional and locally pure di-

mensional complex spaces, 110
Pure dimensional at a point, 110
Radicals

?
I,

?
I, 83

Rank function, 12
Recular analytic local C-algebras OCn,0,

25
Reduced complex spaces and reduced

points, 15
Reduced ring, 88
Reducible at a point, 94
Reduction redpXq of a complex spaceX ,

93
Reduction map red : OX Ñ CX , 15
Refinements of open covers, 219
Regular sequences, 197
Resolutions, injective and projective,

176
Resolutions, left and right, 176
Restriction of sheaves of modules

E |Y ” E |Y , 37
Right exact, 32
Ritt’s lemma, 113
Semicontinuity theorem, 245
Serre’s vanishing theorem, 264

Set theoretic restriction E æY , 6
Sheaf of Čech cochains CqpU,E q, 225
Sheaves of relations Rel ps1, . . . , snq, 48
Singular locus SgpXq, 100
Slicing criterion, 196
Smooth at a point, 26
Smooth complex spaces=complex man-

ifolds, 26
Stein spaces, 226
Support of a sheaf, cf. Conv. 2.3.6,

SupppE q, 6, 55
Tensor product E bOS M » E bOX φ

˚M ,
35

Tensor product E bOX F , 32
Thin subsets (of order k), 140
Torsion elements and torsion modules

TApMq, 125
Torsion free, 125
Torsion sheaf TOX pE q, 125
UFD: unique fractional domains, 138
Unbranched coverings, 144
Universal δ-functors, 173
Universal denominators, 150
Very ample, 260
WDT: Weierstrass division theorem, 21
Weierstrass (branched) coverings, 147
Weierstrass convergence theorem, 155
Weierstrass polynomials, 66
WPT: Weierstrass preparation theorem,

66
Zero divisors and non zero-divisors, 57
Zero sets NpIq, 12
Zero sets Npf1, . . . , fnq, 13

AssApEq “ AsspEq, the set of associated
primes, 200

CqpU,G q, 217
CN`1,ˆ :“ CN`1zt0u, 253
CN`1,ˆ
S “ pCN`1zt0uq ˆ S, 254

codimxpY,Xq, 130
CohpOXq “ CohpXq, the category of co-

herent OX-modules, 211

275



CqpU,E q, sheaf of Čech cochains, 225
CX , 15
Cx :“ OX,x{mX,x, 8
Crz1, . . . , zns, 5
Ctz1, . . . , znu :“ OCn,0, 5

depthApEq “ depthpEq, 204

E1 ` E2, 11
E pnDq, 263
E pxq, 264
End OX pE q “ Hom OX pE ,E q, 55

f b g P OXˆY , 44

GodepE q: Godement sheaf, 212

H‹pC‚q and H‹pC‚q, the cohomology
and the homology of com-
plexes, 179

HomOX pE ,F q, Hom OX pE ,F q, 35
HqpX,E q, sheaf cohomology, 212
qHqpU,E q, qHqpX,E q, Čech cohomology,

215, 220

IA, 92

ModpOXq “ ModpXq, the category of
OX-modules, 211

Modf
pAq, the category of finitely-

generated A-modules, 237
MorpX, Y q, 8
MX , sheaf of meromorphic functions,

134
mX,x “ mx, 8

NzdpAq “ NzdApAq, the set of non zero-
divisors of A, 134

NzdApEq, the set of non zero-divisors of
E in A, 201

Opnq “ OPNS
pnq, 258

pOX , the sheaf of weakly holomorphic
functions, 135

OpXq :“ OXpXq, 8

PNS , 254

redpfq, the reduction of the polynomial
f , 143

respf, gq: the resultant, 142
Rqφ˚E , higher direct image, 213

sdα0dα1 ¨ ¨ ¨ dαq P CqpU,E q, 215
Segre embedding, 260

WX , sheaves of densely defined holo-
morphic functions, 133

Wpre
X , presheaves of densely defined

holomorphic functions, 133

Xt “ φ´1ptq, the fiber of φ : X Ñ S at
t P S, 229

x ˆ y P X ˆS Y , 46

α ˆ β : X 1 ˆS Y
1 Ñ X ˆS Y , 39

α _ β, 38
χpX,E q “

ř

qp´1qq dimCH
qpX,E q, 245

χXk , the characteristic function, 134
φ# : OY Ñ φ˚OX , 8
φ´1pL q, 50
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