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Forewords

This monograph is mainly intended to help my self-study of the theory of com-
plex analytic spaces. I do not claim any originality for the results in this mono-
graph. In writing this monograph, I drew on the following references: [GR-b]
(influencing my writing of chapters 2,3,4,6), [Fis] (chapters 1,3,5), [BS] (chapter 6),
[GPR] (chapters 3,4), [Vak17] (chapter 5), [Dem] (chapter 6).

The main goal of this monograph is to prove the semicontinuity theorem
and base change theorems in complex analytic geometry, mainly due to Grauert.
Namely: Thm. 6.6.2 and its immediate consequence Thm. 6.6.10, Thm. 6.7.4, and
Thm. 6.7.10. Thus, Sec. 6.6 and 6.7 are the climax of this monograph. And all pre-
vious results can be viewed as paving the way for the proof and understanding of
these theorems. I have tried to prove everything needed: the only exceptions are
Stein theory (e.g. Cartan’s Theorems) and Grauert direct image theorem, whose
references are given in Chapter 6.

Base change theorems and semicontinuity theorem give satisfying answers
to the following type of questions: Suppose that we have a complex manifold
X and a (finite-rank) holomorphic vector bundle & on X (namely, a locally-free
Ox-module &), and suppose we deform the complex structures of X and &. Un-
der what conditions can we extend an element of &(X) to global sections of the
nearby complex manifolds? In mathematical physics, one also considers defor-
mations of “(possibly) singular complex manifolds”, a.k.a. complex analytic spaces
(“complex spaces” for short). For instance, in 2-dimensional conformal field the-
ory and string theory, one considers deformations of compact curves with possi-
bly nodal singularities. Nodal curves are the “limits” of compact Riemann sur-
faces. (“Flat holomorphic maps” are a rigorous formulation of this limiting pro-
cess.) So, even if one is primarily interested in smooth complex manifolds, general
complex spaces are often inevitable.

Although, as mentioned at the beginning, this monograph was written to help
myself learn about the subject, I would be more than happy if others interested
in this subject could benefit from my writing.

December 2022



Chapter 1

Basic notions of complex spaces

1.1 Notations and conventions

The following notations and conventions are assumed throughout the mono-
graph.

All rings and algebras are assumed to have a unity 1. Their morphisms are
assumed to map 1 to 1. “Rings” and ”"C-algebras” are always assumed to be com-
mutative, unless otherwise stated. In general, an B-algebra .A means a morphism
of rings B — A. If A and B are already C-algebras, we require the morphisms to
be also C-linear.

N=1{0,1,2,3,...}and Z, = {1,2,3,... }.

i=+-1

{0},C,C?,C3,... are called (complex) number spaces.

Unless otherwise stated, all vector spaces are over C.

A neighborhood of a point x in a topological space means an open subset con-
taining x.

A precompact subset U of a topological space X is a subset such that the clo-
sure U% in X is compact. A nowhere dense subset of X is a subset whose closure
in X contains no non-empty open subsets of X.

C{z1,...,2,} denotes Ocny, the algebra of convergent power series of
Z1,...,%,. Itis clearly an integral domain. Clz,...,2,] denotes the algebra of
polynomials of zy, ..., z,.

We assume the readers are familiar with the basic notions of sheaves and
their maps (morphisms), sheafifications, image sheaves, kernels and cokernels
of sheaves. For each presheaf & on a topological space X, we let &, denote the
stalk of &, at z. The stalk of s € & at = is denoted by s,, or sometimes abbreviated
to s when no confusion arises.

If o : X — Y is a continuous map of topological spaces, then the direct image
& denotes the sheaf on Y whose space of sections over any open V < Y is



E(p 1(V)), e

(L&) (V) = E(p~ (V).

If ¢ : Y — Zis continuous, we clearly have

(1 0 9)u& = Pu(psE).

If f: & — & is an X-sheaf map, then we have a canonical ¢, f : .81 — @62 vs
is a left exact functor from the category of X-sheaves to that of Y-sheaves. (Cf.
Rem. 1.9.6.)

If .7 is an Oy-module, the inverse image ¢ !(.7) is the sheafification of the
presheaf on X associating to each open subsets of X:

U lim F (V)
Vop((U)

where the direct limit is over all open subset V' < Y containing ¢(U). For each
x € X there is a natural equivalence

(" F)e ~ Ppa)- (1.1.1)

8y, E1U, &y, & v all denote the restriction of an X-sheaf & to the open subset
U. If Y is a subset of X and ¢ : ¥ — X is the inclusion map, we define the set
theoretic restriction

E ty=17&). (1.1.2)
In particular, for each y € Y, we have a canonical identification
(& 1)y = & (11.3)

Warning: in the future, we will define the restriction &|y = &]Y when Y is a
complex subspace of a complex space X and & is an Ox-module. &Y will be
different from & !y. In particular, (&’|y), is not &,.

We also write &(U) as H(U, &).

Recall that the support of an X-sheaf &, denoted by Supp(&’), is the subset of
all z € X such that &, # 0.

Remark 1.1.1. If Y is a closed subset of a topological space X, then there is a
one-to-one correspondence between Y-sheaves .% and X-sheaves & satisfying
Supp(&’) < Y: For any open U X,

FUNY) =&(). (1.1.4)

Let . : Y < X be the inclusion. Then clearly ¢,.# = & and & |y= .%. We often
view & and .# as the same thing.



If U is an open subset of CV, then a holomorphic function f on U is, by def-
inition, a continuous function f : U — C which is separately holomorphic on
each variable (i.e., if zq,..., 2,1, 2i41,. .., 2y are fixed, then f(z.) = f(z1,...,2n)
is holomorphic with respect to z;).

Remark 1.1.2. The above definition agrees with our usual understanding of
analytic functions, i.e.,, f has convergent power series expansions f(z,) =
Zm .... e Oni an (21 — w)™ -+ (z2y — wy)™ if (w,) € U. To see this, choose a
holomorphic f on U. Let us assume for simplicity wy = --- = wy = 0, and U is
the pOIYdiSC ]D)R. = {(2.) € CN : |21| < Rl, RN |ZN| < RN} where Rl, R ,RN > 0.
Then for each 0 < r; < R; and z, € D,.,,

f(z) = jg ff (G —21) - (Cy —2zv)  (2im)N

[C1]=r1 ICn |=rN
by applying residue theorem successively to the variables (i, ..., (y. Write each
(G—2z)tas Y 2"/¢ " which converges absolutely and uniformly on |¢;| = r;

and z, on any compact subset of ID,,, and substitute them into the above integral,
we get the desired series expansion which is absolutely and uniformly convergent
on |z1| < r,...,|an| < ryforall 0 < r; < R;. This proves one direction. For
the other direction, namely absolutely convergent power series give holomorphic
functions, one simply applies Morera’s theorem to each complex variable.

Lemma 1.1.3 (Identitdtssatz). If X is a connected complex manifold, and if h is a non-
zero (i.e. not constantly zero) holomorphic function on X, then h is non-zero when re-
stricted to any open subset U of X.

Proof. Consider the special case that X, U are open polydiscs in C". We know the
lemma is true when n = 1 (by e.g. taking power series). For a general n, if h|;; = 0,
we may enlarge successively the disc-shape domains of each variable 2, . .., z, on
which h is constantly zero to get h = 0.

In general, we let €2 be the (clearly open) subset of all + € X such that h is
constantly zero on a neighborhood of z (i.e. the germ of & at z is zero). If z € X\,
then every neighborhood of z € X biholomorphic to an open polydisc must be
disjoint from (2, according to the previous paragraph. So X\(2 is open. Since X is
connected, 2 must be either ¢J or U. Thus Q2 = ¢ since h # 0. O

1.2 C-ringed spaces and sheaves of modules

1.2.1 C-ringed spaces

Definition 1.2.1. A C-ringed space is a topological space X together with a sheaf
of local C-algebras Oy on X (i.e., for eachopen U < X, 0x(U) is a C-algebra with
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unity, and the additions and multiplications are compatible with the restriction to
open subsets of U; each stalk Ox ., is a local C-algebra).

By saying that O , is a local C-algebra, we mean that there is a unique maxi-
mal ideal mx , of O ,, and that we have an isomorphism of vector spaces

Cicgc = ﬁx7z/mx7x, A — AL

We write my , as m, when no confusion arises. For each f € O ,, welet f(z) e C
denote the residue class of f in O ,/m,, called the value of f at z. In this way,
any section of Ox can be viewed as a function.

O is called the structure sheaf of X. Each open subset U — X is automatically
a C-ringed subspace of X with structure sheaf 0y := Ox|v. O

For the sake of brevity, we write
O0(X)=0x(X) (1.2.1)
The following important fact is obvious:

Proposition 1.2.2. An element f € Ox, is a unit (i.e. invertible in the ring Ox ,) iff
f(x) # 0.

Proof. f(x) = 0iff f € my, iff f is not a unit. O

Definition 1.2.3. A morphism of C-ringed spaces ¢ : X — Y is a continuous
map of topological spaces, together with a morphism of sheaves of C-algebras
©* . Oy — ¢,.0x (namely, ¢* is a sheaf map, and ¢# : Oy (V) — Ox(p7'(V))
is a morphism of C-algebras for each open V < Y), and for each x € X and
y = ¢(x), the restriction o Oy, — Ox, is a morphism of local C-algebras, i.e.
a morphism of C-algebras such that

o (my,) © mx,. (1.2.2)
The set of morphisms of C-ringed spaces X — Y is denoted by Mor(X,Y). If

¢ € Mor(X,Y) and ¢ € Mor(Y, Z), then their composition ) o p € Mor(X, Z) is the
usual composition of maps of sets, together with

(w © SD)# = SO# © w# : ﬁZ,wO(p(x) - ﬁX,x
forall x € X.
We leave it to the readers to define isomorphisms of C-ringed spaces.

Proposition 1.2.4. For each section f € Oy defined at y = ¢(x), we have
(™)) = foplx). (1.2.3)
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Proof. This is true when f = 1 since ¢* preserves 1. It is also true when f € my,,.
So it is true in general. O

Thus, ¢* may be viewed as the transpose of ¢. When studying morphisms
between complex spaces, we may write o7 f as f o ¢ (cf. Rem. 1.4.2).

Example 1.2.5. A complex manifold is a C-ringed space if we define the structure
sheaf 0 to be the sheaf of (germs of) holomorphic functions. If X and Y are
complex manifolds, then a holomorphic map from X to Y is a morphism of C-
ringed spaces.

1.2.2 Modules over C-ringed spaces

We begin this section with the following general observation:

Remark 1.2.6. If .#, .4 are two subsheaves of an X-sheaf such that .Z, = .4, for
all z € X, then # = 4. (Forany s € #, s, € M, = N, for all x on which s
is defined. So s € 4. So .# < ./, and vice versa.) Thus, we can talk about”
the unique subsheaf of a given sheaf whose stalks are...” where the unique part is
automatic.

Definition 1.2.7. A presheaf of 0x-modules & on a C-ringed space X is a sheaf
such that for each open U < X, &(U) is an ¢(U)-module, and that the linear
combination and the action of ¢'(U) on &(U) are compatible with the restriction
to open subsets of U. If & is a sheaf, we call & an €'x-module. We call the vector
space

Elr = &/mx 8, = 6, (Ox/mx ) (1.2.4)

the fiber of & at x. The right most expression of (1.2.4) will be explained in Rem.
1.9.3. The residue class of s € & in &|x is denoted by s(z) or s|z.

Definition 1.2.8. A morphism of (presheaves of) 0'x-modules ¢ : & — .7, where
& and . are (presheaves of) Ox-modules, is a sheaf map intertwining the actions
of Ox. More precisely, for each open U < X, ¢ : s € &(U) — ¢(s) € F(U) is a
morphism of &'(U)-modules; if V < U is open, then ¢(s|) = ¢(9)|v-

¢ is called injective resp. surjective if it is so as a sheaf map, namely ¢ : &, —

F, is injective resp surjective for all v € X. & 5> F Y, & is called exact if the

corresponding sequence of stalk map &, > .Z, Y, &, is exact for all z € X. ©
is an isomorphism of &x-modules iff ¢ has an inverse iff ¢ is both injective and
surjective. ]



Remark 1.2.9. In the following diagrams, assume that all objects are &'x-modules,
that all horizontal arrows are morphisms of 'x-modules, and that the two hori-
zontal lines are exact.

0 » & > F > G
O‘l l ”l (1.2.5)
0 y & > F' > G

If there are morphisms 3, v such that the second square in (1.2.5) commutes, then
{3 restricts to a (necessarily unique) morphism « such that the first square com-
mutes.

& s G s 0

> F
“l Bi Wl (1.2.6)
&' > F! > ' > 0
If there are morphisms «, 8 such that the first square in (1.2.6) commutes, then
3 descends to a (necessarily unique) morphism v such that the second square
commutes.

Of course, the same observations hold for morphisms of modules of any com-
mutative ring/algebra, and for general sheaf maps. O

Remark 1.2.10 (Gluing construction of sheaves). Let (V,).co be an open cover
of a topological space X. Suppose that for each o € A, we have a sheaf £, that
for any o, € A, we have a sheaf isomorphism ¢g. : &y, .y, — éﬂfamvﬁ, that
®a,o = 1, and that ¢, , = ¢, gds . when restricted to V,, n V3 n V,. Then we can
define a sheaf & on X as follows. For any open U < X, &(U) is the set of all
(5a)aent € [ [peq €*(U n'V,) (Where each component s, is in £*(U n V,,)) satisfying
that sglv, v, = @8.a(Salvany,) for any a, 8 € L. If W is an open subset of U, then
the restriction &'(U) — & (W) is defined by that of £*(UnV,,) — &*(W nV,). Then
for each 3 € %, we have a canonical isomorphism (trivialization) ¢3 : &y, = é‘}fﬂ
defined by (Sq)aeat — sg. It is clear that for each «a, 5 € A, we have ¢ = ¢p0a
when restricted to V, n V.

In the case that X is a C-ringed space, that each & is an 0y, -module, and that
$s,a s an equivalence of Oy, y,-modules, then & is a sheaf of &'x-modules. O

Let X be a C-ringed space.

Definition 1.2.11. A set of sections & < Ox (X)) is said to generate the &x-module
& if they generate each stalk &}, i.e., each element of &, is an O ,-linear combina-
tion of finitely many elements of &. Equivalently, this means that the &'x-module
morphism

@ Ox = &, Dsfs — Zfs ] (1.2.7)

se&

(where f, € Ox) is surjective. If it is also injective, we say & generates freely &'
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Definition 1.2.12. We say an 0x-module & is of finite type if each z € X is con-
tained in a neighborhood U such that the restriction &’|;; is generated by finitely
many elements of &(U), or equivalently, there is a surjective y-module mor-
phism 0}, — &|p.

Exercise 1.2.13. Show that if & is a finite type 0x-module, then each stalk &, is a

finitely generated Ox ,-module, and hence each fiber &|z is finite-dimensional.

Definition 1.2.14. If &1, & are Ox-submodules of an &'x-module .%. The sheafifi-
cation of the presheaf

(& + &P (U) = &(U) + &(U) (1.2.8)

is denoted by &; + &5. It is the unique subsheaf of .# (cf. Rem. 1.2.6) whose stalks
are (&1+6&,), = &1+ 6. It follows that if &) is generated by s1, s9, - - - € &1(X) and &
is generated by t1, %5, - - - € &3(X), then & + & is generated by s1, so, ..., 11,19, ...

We recall the well-known

Theorem 1.2.15 (Nakayama'’s lemma). Let (A, m) be a local ring with maximal ideal
m, and let M be a finitely generated A-module. Choose a finite set of elements sy, ..., s, €
M. Then the following are equivalent.

(1) s1,...,s, generate the A-module M (i.e. elements of M are A-linear combinations
of 51,-..,5n)
(2) The residue classes of s1, ..., s, span the (A/m)-vector space M /(mM).

Proof. Clearly (1) implies (2). Let us prove (2)=(1). Assume si,...,s, span
M/(mM). We extend the list sq,...,s, to s1,...,sx € M (where N > n) such
that they generate M. If N = n then there is nothing to prove.

Assume N > n. Then every element of M, and in particular sy, can be written

as
SN = Q181 + -+ apSp + 0
where a4, ..., a, € Aand 0 € mM. Since s, ..., sy generate the A-module M, we
have o = fis; + -+ + fysy where f1,..., fy € m. So
SN = G151+ -+ gNSN
where ¢,,41, gni2, ..., gy € m. Since g; € m, 1 — ¢; is invertible in A. So
N-1
sy = (1—gn) ! Z 9iSi-
=1
This proves that s;,...,gn_1 generate M. By repeating this procedure several
times, we conclude that sy, ..., s, generate M. O
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To apply Nakayama’s lemma to sheaves of modules, we need the following
observation:

Remark 1.2.16. Let & be a finite-type &'x-module. Let 54, ..., s, be sections of &
defined on a neighborhood of x € X. Suppose (the germs of) sy, ..., s, generate
the Ox ,-module &,. Then there is a neighborhood U of x such that sq,...,s,
generate &|y. In particular, “&, generates &|”.

Proof. Since & is finite-type, we may find U such that &|y is generated by

t1,...,tm € &U). Since sy, ...,s, generate 0,, the germs of t;,...,t,, are Ox .-
linear combinations of sq,...,s,. Thus, on a possibly smaller U, t4,...,t,, are
Ox (U)-linear combinations of s1, ..., s,. So sy, ..., s, generate &/ . O

Corollary 1.2.17. Let & be a finite-type O x-module. Then Supp(&) is a closed subset of
X.

Proof. Assume the setting of Rem. 1.2.16. If &, = 0 then the stalks of s4, ..., s, are
zero at . So we may shrink U so thats; = --- =5, =0in &(U). So &y = 0. O

Exercise 1.2.18. Use Nakayama’s lemma and Rem. 1.2.16 to show that if & is a fi-
nite type Ox-module, and if 54, ..., s, € &(U) (where U is a neighborhood of x) are
such that s;(z), ..., s,(z) span the fiber &|z, then they generate &'| for a possibly
smaller neighborhood V' of x. (The opposite direction is obvious.) Nakayama’s
lemma is most often used in this form.

Corollary 1.2.19. Let & be a finite-type O'x-module. Then the rank function v € X —
dim(&|z) is upper-semicontinuous.

Definition 1.2.20. We say that an &'x-module &’ is free if it is isomorphic to 0% for
some n € N. We say & is locally free if each x € X is contained in a neighborhood
U such that &|y is free (or equivalently, that &|; is generated freely by finitely
many elements of &(U)).

Exercise 1.2.21. Show that for a complex manifold X, locally free &'x-modules &
are the same as holomorphic vector bundles on X. Describe local trivializations
and transition functions in terms of local free generators of &.

Definition 1.2.22. An ideal sheaf 7 on a C-ringed space X is an 0'x-submodule
of Ox. In particular, each stalk Z, is an ideal of Ox ,. The zero set N (Z) is defined
to be

NZ):={rxeX: f(x)=0forall feZ,} ={re X : I, cmx,}

={reX:1¢Z,}={reX I, # Ox.,} = Supp(Oy/I). (1.2.9)

Note that this is a closed subset of X by Cor. 1.2.17.
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Proof. Note that (0y/Z), = Oy,/Z,. So x € Supp(Oy /1) iff Oy, /T, # 0itf T, <
Oy iff T, < m, (as m, is the unique maximal ideal) iff f(x) = O forall f e m,. [

Remark 1.2.23. If 7 is generated by fi, ..., f, € O(X), written as
T=/f0Ox+ -+ [,0x,
then clearly
N(Z) = {The common zeros of fi,..., fn}. (1.2.10)

We also write N(Z) as N(f1,..., fa)-

1.3 Complex spaces and subspaces
Definition 1.3.1. A (complex) model space is
Specan(0y /I) := (N(Z),(Oy/I) In) ) (1.3.1)

where U is an open subset of a number space C", 0y is the sheaf of holomorphic
functions on U, 7 is a finite-type ideal of ;. Specan(0y;/T) is called the analytic
spectrum of the sheaf &;/Z. Its underlying topological space is Supp(&y/Z) as a
subset of U, and its structure sheaf is (0 /T) | n(z), whose stalk at any x € N(Z) is
Ou../I. (cf. (1.1.3)). With abuse of notations, one also writes for simplicity

Specan(0y/I) := (N(ZI), Oy/I). (1.3.2)
The stalk at x € N(Z) of the structure sheaf is a local C-algebra

(ﬁU,Z‘/IJ:a mU,a:/Iac)

Definition 1.3.2. A C-ringed Hausdorff space X is called a complex space if each
point x € X is contained in a neighborhood V' such that the C-ringed space V'
(whose structure sheaf is defined by &y := Ox|y) is isomorphic to a model space.
Sections of Ox(X) are called holomorphic functions on X. Oy, is called an an-
alytic local C-algebra. Equivalently, an analytic local C-algebra is C{z1,. .., 2,}/]
for some finitely generated ideal I.!

If X,Y are complex spaces, a morphism ¢ : X — Y of C-ringed spaces is
called a holomorphic map. If ¢ has an inverse morphism Y — X, we say that ¢ is
a biholomorphism. Clearly, a holomorphic map ¢ is a biholomorphism iff it is a

homeomorphism of topological spaces and induces isomorphisms ¢# : Oy () —
Ox , foreach x € X. O

L As we shall see, C{z1,...,2n} is Noetherian. So the condition that I is finitely generated is
redundant.
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Definition 1.3.3. A morphism of (analytic) local C-algebras 0y, — Ox, is a
homomorphism of unital algebras sending my,, into mx .

Definition 1.3.4. Let X be a complex space. An open complex subspace is
(U, Ox|v) where U is an open subset of X. A closed complex subspace is

Specan(Ox/I) := (N(I),(Ox/I) I na) ) (1.3.3)

where 7 is a finite type ideal of Ox. The stalk of the structure sheaf at x € N(Z) is
a local C-algebra

(ﬁX,z/Ixa m:c/Ia:) .

Remark 1.3.5. Let X, = Specan(€0x/Z). The construction of Ox, = (Ox/I) In()
involves two sheafifications: one for quotient, and one for set-theoretic restriction.
It would be convenient to combine these two into one: O, is the sheafification of
the presheaf 0 * sending each open Uy = X, (more precisely, Uy = N(Z)) to

OF(Uy) = liny Ox(U)/Z(U) (13.4)
U>Uy

where the direct limit is over all open U < X containing Uy. Indeed, one can also
take the direct limit over all open U satisfying U n N(Z) = U.

Remark 1.3.6. We have an obvious inclusion map which is holomorphic:
t: Xog = Specan(Ox /T) — X

such that o# : Ox — 1,0x, = 1,47 (Ox/T) restricts to the quotient maps Ox, —
Ox /Ty = (st (Ox/T)), forall x € X.

Proof. We explain the existence of such sheaf map :#. Choose any open U < X.
Then by passing to direct limits (1.3.4), the quotient map Ox(U) — Ox(U)/Z(U)
becomes a map Ox(U) — O%°(U n N(Z)) whose composition with 05" — O,
gives Ox(U) — Ox,(U n N(I)) = (t.0x,)(U). O

Complex spaces arise from

Remark 1.3.7 (Gluing construction of complex spaces). Suppose X is a Haus-
dorff space with an open cover U = (V,). Suppose that for each V, there is a
homoemorphism ¢, : V,, — U, where U, is a complex space. Suppose also that
for each «, 3, the homeomorphism ¢sp, ! : 0o (Vo N Vs) — 05(Va N Vs) (Where
the source and the target are regarded as open subspaces of U, and Uz respec-
tively) can be extended to an isomorphism g, of C-ringed spaces satistfying the
cocycle condition: for all «, 3,7, we have ¢,, = 1 and ¢, = ¢, 393 (from
Va(Va n Vg n V) to vy (Vy n Vs n V). Then X is naturally a complex space such
that ¢, : V, — U, is extended to an isomorphism of C-ringed spaces such that
03 = Ppapa (from V, n Vs to v3(V, n Vp)). Indeed, Ox is constructed by gluing
all the V,-sheaves ¢, 'Oy, (cf. Rem. 1.2.10).
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Let us see some examples of complex spaces. We begin with an easier class of
examples:

Definition 1.3.8. Let X be a complex space, and let ¢’x be the sheaf of complex
valued continuous functions on X. Then there is a natural morphism of sheaves
of local C-algebras (i.e. a morphism of X-sheaves which preserve the linear struc-
tures and algebra multiplications when restricted to each open subset, and whose
stalk maps send the maximal ideals into maximal ones)

red: Ox — €x (1.3.5)

sending each f € Ox to f as a function (cf. Def. 1.2.1). red is called the reduction
map of X. If red : Ox, — €x, is injective, we say that X is reduced at z € X,
or equivalently that x is a reduced point of X. If X is reduced everywhere, X is
called a reduced complex space.

Exercise 1.3.9. Let X be a closed subspace of a reduced complex space Y. Show
that X = Yiffred(X) =Y.

A holomorphic function on a reduced complex space can be viewed as a gen-
uine continuous function without losing information. (Formally speaking: O
is a subsheaf of €x.) For non-reduced spaces, holomorphic functions cannot be
viewed as genuine functions.

Remark 1.3.10. In commutative algebra, there is a notion of reducedness: Ox
is called reduced if it has no non-zero nilpotent element. We will see later that
a complex space X is reduced at z iff O, is a reduced ring. This is the famous
Nullstellensatz.

Example 1.3.11. Let U < C™ x C" be open, and let Z = 2,0y + --- + 2,,0p.
Then X = Specan(0y;/T) is naturally equivalent to the complex submanifold U n
(0 x C") ~ U n C™ (whose structure sheaf is the sheaf of holomorphic functions

f(<17 SR Cn))

Proof. Clearly N(Z) = U n C" (cf. Rem. 1.2.23). Consider the identity map ¢ :
UnC" — X as a homeomorphism of topological spaces. In particular, we have an
isomorphism redyp? : €x — €yncn. We shall construct o* : Oy = Oy /T | yo—
Ou~cr such that ¢ is an isomorphism of C-ringed spaces.

By (1.1.3), foreach z € U n C",

Oxe = ((Ou)T) 'N@))e = Ocmin z/Ty =~ Ocny

where the last isomorphism can be seen by taking power series expansions of
f(ze,Ce) = f(z1,- -+, 2m, 1,y - - -, G) @t nand throwing away every terms containing
powers of (,. Define a sheaf map

#
o Ox =5 6y % Cuncn-
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Its stalk map is Ocn , — 6p~cn Sending each f to the function f itself. From this
we see that the stalk map is injective and has image 0y;cn .. This shows that ¢#
is an injective sheaf map with image Oy ~cn. So ¥ restricts to an isomorphism of
sheaves of local C-algebras Ox — Oy cn. O

Remark 1.3.12. The proof of Exp. 1.3.11 suggests a way of understanding a re-
duced model space X = Specan(0y/I): 1. Find the underlying topological space
N(Z). 2. Understand each stalk 0, = 0y ,/Z, and show thatred : Ox, — €x.
is injective. 3. Find a familiar sheaf of local C-subalgebras &/ — %y such that
o, =red(Ox ;). Then X ~ (N(I), o).

Exercise 1.3.13. Let U be a neighborhood of 0 € C2. Let z, w be the standard coor-
dinates of C?. Let Z = zw- Oy, the ideal sheaf generated by the function zw. Show
that Specan (0, /T) is equivalent to the C-ringed space whose underlying topolog-
ical space is N(Z) = {(z,w) € U : z = 0 or w = 0}, and whose structure sheaf is
the sheaf of continuous functions on open subsets of N(Z) that are holomorphic
when restricted respectively to the z-axis and to the w-axis.

Example 1.3.14. Let £ € Z,. Let U be a neighborhood of 0 € C. We call
Specan(Oy /2*0y) = (0,C{z}/2FC{z}) = (0,C[z]/2*C[z]) the k-fold point. It is
not reduced when k£ > 1. A single reduced point is precisely a 1-fold point, which
is the same as the connected 0-dimensional complex manifold C°.

We close this section by discussing a useful relationship between local-freeness
and rank functions. A locally-free sheaf clearly has locally constant rank. The
converse holds under some conditions which are often easy to verify:

Proposition 1.3.15. Let X be a reduced complex space, and let & be a finite-type O'x-
module. Then & is locally free if and only if the rank function R : x € X — dim(&|x) is
locally constant. Moreover, if R has constant value n, and if s1, ..., s, € &(X) generate
&, then sq,. .., s, generate & freely.

Proof. Suppose R has constant value n and s,...,s, € &(X) generate &. Then
for each open U < X and fi,..., f, € O(U) satisfying fis1 + --- + fos, = 0, we
have for each z € U that fi(x)s1(x) +- - -+ fu(2)s,(z) = 0 where s;(x) is the restric-
tion of s; to the fiber &|z. Clearly si(z), ..., s,(x) span &|z. Since dim(&|z) = n,

s1(x),...,sp(x) form a basis of &|z. So fi(x) = --- = f.(x) = 0. As holo-
morphic functions on a reduced space are determined by their values, we have
fi =--- = f, = 0. This proves that sy, .. ., s,, are Ox-free.

Assume in general that & is finite-type and R is locally constant. By shrinking
X to a neighborhood of z € X we may assume R has constant value n. Choose

$1,...,8y € & whose values at x form a basis of &|xz. By Nakayam’s lemma (Exe.
1.2.18), we may shrink X so that s,...,s, € &(X) generate &. So by the first
paragraph, & is locally-free. O
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1.4 Holomorphic maps

In order to construct complex spaces by gluing model spaces (Rem. 1.3.7),
and to understand holomorphic maps between complex spaces, we need
to understand morphisms (i.e. holomorphic maps) between model spaces
Specan(0y/I) — Specan(0y/J) (where U < C™ and V < C" are open). This
is a main goal of this section.

The first step is to understand the case that target is just V. As one may ex-
pect, holomorphic maps in this case are described by an n-tuple of holomorphic
functions. Recall that Mor (X, Y) is the set of holomorphic maps from the complex
space X to Y. Let zy,. .., %, be the standard coordinates of C".

Theorem 1.4.1. Let X be a complex space. Then the following map is bijective:
Mor(X,C") — 0(X)", o (p%21,..., 0% z). (1.4.1)

Remark 1.4.2. Due to this theorem, if ¢ : X — Y is a holomorphic map and
f e O(Y), then we may write

foyp=y*f (14.2)
by viewing f as a holomorphic map ¥ — C.

The proof of Thm. 1.4.1 relies on the Noetherian property of Ox ., whose proof
is deferred to the next section.

Proof that (1.4.1) is surjective assuming (1.4.1) is injective. Assume (1.4.1) is injective
for all complex spaces. Fix X and F' = (fi,..., fn) € O(X)". We claim that each
x € X is contained in a neighborhood U, such that F'|y, € &(U,)" corresponds to
some ¢, € Mor(U,,C"). By the injectivity, for every =,y € X, ¢, and ¢, agree on
U, n Uy. Gluing all ¢, together gives the desired ¢ corresponding to F'.

To prove the claim, we may assume U, is a model space Specan(&y /Z) where
V < C™ is open and Z is finite-type. Since the stalk (0y/Z)|, equals Oy, /Z,,
we can further shrink U, so that F|y, can be lifted to F|y, € ¢(V)". F can be
viewed as a holomorphic map V' — C". Its composition with the inclusion ¢ :
Specan(0y /I) — V gives the desired holomorphic map ¢. O

Proof that (1.4.1) is injective. Let @1, 92 € Mor(X,C") correspond to the same ele-
ment (fi,..., f,) of O(X)". By (1.2.3), z; 0 pu () = (9% 2)(x) = fi(x). So ¢, equals
@2 as set maps, i.e. g.(z) = (fi(z),..., fu(z)). Checking that they are equal as
morphisms of C-ringed spaces is equivalent to showing for any z that ¢7 = ¥
as maps from Ocn o, () = O{z1 — fi1(2), ..., 2, — fu(2)} to Ox .. We know that they
both send each z; — f;(z) to f; — fi(x). So they are equal by the uniqueness part of
the following proposition. ]
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The following proposition can be viewed as the infinitesimal version of Thm.
1.4.1. (This will become clear after the readers read Thm. 1.6.2.)

Proposition 1.4.3. Let Ox , be an analytic local C-algebra. Fix n € Nand f,..., f, €
Ox . Then there is a unique morphism of local C-algebras satisfying

P . ﬁ(C",O = C{Zl, ey Zn} - ﬁX@,, Zi > fz - fl(ZE) (143)
Note that as a morphism of local rings, ® is assumed to send mcny =
2?21 2;C{z1,...,2,} into mx ;.

Proof. Existence: By the second paragraph of the proof that (1.4.1) is surjective
(which does not rely on the injectivity of (1.4.1)), by shrinking X, we may choose
a holomorphic map ¢ : X — C” corresponding to (f1— fi(z), ..., fn— fu(x)). Then
the stalk map ¢# : Ocn g — Ox . gives ®.

Injectivity: Assume ®,, ®, both satisfy the requirement. Then they clearly
agree when restricted to the polynomial ring C|z,...,2,]. Now we choose
g € C{z}. For each k € N, we may write g as a polynomial of z, plus g; € m¢. .
So ®4(g) — D2(g) equals @y (gx) — P2(gx), which belongs to m’}m since ®; sends m¢
into mx ;. So ®1(g) — P2(g) belongs to (), mk ,, which is 0 due to the following
theorem and the fact that Ox , is Noetherian. O

Theorem 1.4.4 (Krull’s intersection theorem). Let (A, m) be a Noetherian local ring,
and let M be a finitely-generated A-module. Then (), .y m* - M = 0.

Proof. The submodule N = (), m* - M is also finitely generated as A is Noethe-
rian. Then N = 0 will follow from mA = N (equivalently, 0 spans the “fiber”
N /mN) and Nakayama’s lemma. That mN = N is due to Artin-Rees lemma (ap-
plied to the m-stable filtration (m* M)cy to show that (N n mFM)keny = (N)jen is
m-stable). O

Recall that if I is an ideal of a ring A, an [-filtration (M,,),en (of M)) is a
descending chain of A-modules M, > M; > M, > --- satisfying IM,, € M, 1,
for all n € N. It is called I-stable if for some N € N we have IM,, = M, for all
n = N.

Theorem 1.4.5 (Artin-Rees lemma). Let I be an ideal of a Noetherian ring A. Then
for any I-stable filtration (M.,,),en inside a finitely-generated A-module M, and for any
submodule N < M, (N n M,,)nen is I-stable.

Proof. The graded ring A, = @, I" (Where I° = A) is a quotient of the Noethe-
rian ring A[z1, ..., 2z, ] if I is generated by m elements. So A, is Noetherian.

Let M be a finitely-generated A-module, and let (M,,),en be an [-filtration
in M. Then each M,, is A-finitely-generated because A is Noetherian. Consider
the graded A,-module M, = @, _ M, defined by the condition that an element

neN
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a € I" in the n-th component of A, sends § € M, in the k-th component of M, to
a& € M, in the (n + k)-th component. We note that

The [-filtration (M, ),y is I-stable
) (1.4.4)
M., is a finitely generated graded A,-module

Indeed, if (M,,),en is [-stable, choose N € N such that IM,, = M, forall n >
N. Then M5V := @,y M, (which is A-finitely-generated) generates the A,-
module M,. So M, is A,-finitely-generated. Conversely, if M, is A,-finitely-
generated, we can find N € N such that M, is generated by MSN | Then it is not
hard to see that IM,, = M,,,; foralln > N.

Now suppose that (M,,),ey is I-stable. Then M, is A,-finitely-generated. So
its submodule N' n M, = @, N n M, is A,-finitely-generated because A, is
Noetherian. Therefore (N N M,,),cn is I-stable. O

The uniqueness part of Thm. 1.4.1 can be formulated in the following form.

Remark 1.4.6 (Substitution rule). Let X be a complex space, let 7 be a finite type
ideal of Ox containing fi—g1, ..., fn—g, where f., 9. € O(X). Let F' = (f1, ..., f»)
and G = (g1,...,9,). Let h € Ocn. Then F#h and G¥h restrict to the same (locally
defined) holomorphic function of Y = Specan(Ox/Z), i.e. they are equal as ele-
ments of Ox/T.

Proof. f; and g; are equal as holomorphic functions of Y. So by Thm. 1.4.1, F' and
G are the same holomorphic map X — C". So F#h equals G*h as elements of
Oy. O

Example 1.4.7. Let U = C? be open, let f € 0(U), and let Z be the ideal sheaf of
Oy generated by z, — f(z1, 22). Then for each h € O¢z, h(z1, 22) and h(z1, f(21, 22))
are equal as elements of 0y /7.

We have seen how a holomorphic map from a model space Specan(0y/Z)
to V. < C" looks like. The next question is when this map “has image in
Specan(0y/J)”? This is answered by the following theorem whose proof does
not rely on the Noetherian property.

Theorem 1.4.8. Let ¢ : X — Y be a holomorphic map of complex spaces. Let
Xo = Specan(0x /L) and Y,y = Specan(Oy /J) be closed complex subspaces of X and Y
respectively. Then the following are equivalent:

(a) There is a (necessarily unique) holomorphic map ) : Xo — Yy such that the follow-
ing diagram commutes:

X, —4 v,

[ [ (1.4.5)

X 2.y
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(b) Foreach z € X and y = ¢(x), the stalk map o* : Oy, — Ox . satisfies
v*(J,) = L.

Proof. Assume (a). If z € X, then each f € J, c Oy, is sent by the transpose Lfﬁo’Y

to 0. Also f is sent by ¢# to o#(f) € Ox, and then sent by i \ to o*(f) + Z, in
Oxyz = Ox../T,, which must be 0 since (1.4.5) commutes. So o7 (f) € Z,.

If z € X\X,, then z # N(Z). So Z, = Ox_,. Then clearly »#(7,) = Z,. (b) is
proved.

Now assume (b). If y ¢ N(J), then J, = Oy,. So1l € J, and so 1 = ¢#(1)
belongs to Z,. Therefore x ¢ N(Z). This proves p(N(Z)) < N(J). So 1 exists as a
continuous map of topological spaces, and such a map is clearly unique.

Choose = € Xji.e. x € N(Z). By (b), we have a commutative diagram

#
ﬁXo,m = ﬁX,x/Ix <w— ﬁYg,y = ﬁY,y/jy

I I

o
ﬁX,x < ﬁy’y

for a unique stalk map ¢* : Oy, , — Ox, ., which is clearly a morphism of local
C-algebras. It remains to show that these stalk maps can be assembled into a sheaf
map.

Recall the presheaves in Rem. 1.3.5. For each open V' < Y, (b) implies
(T (V) € Z(p1(V)). So the map o : Gy (V) — (p,0x)(V) = Ox(p (V)
descends to

Oy (V)/T(V) = Ox (o7 (V)/Z(¢7 (V).
By taking direct limit over all V' containing a fixed open Vj < Yj, we obtain
o3, (Vo) = 0%, (0™ (Vh))
Its composition with
0%, (W7 (Vo)) = Ox, (7 (Vo)) = (¥uOx,) (Vo)

gives a presheaf map 0}° — 1,0, whose sheafification is the desired ¢# : Oy, —
,l/}* ﬁXo . D

1.5 Weierstrass division theorem and Noetherian
property of Ox .

1.5.1 Main results

Now that we have seen the importance of the Noetherian property, we prove
this in this section. Since Ox , is a quotient of Ocn o, it suffices to prove that cn

20



is Noetherian. The proof relies on Weierstrass division theorem, which we state
below.

Definition 1.5.1. We say that f(z) € C{z} has order k € N U {o0} if f(2) = 2"(ax +
App12 + apg22® + -+ ) and a; # 0; f has order o iff f = 0. More generally, for
m € N, we say that f(w.,z) = f(wr,...,wn,2) € C{w,, z} has order k (in 2) if
f(0,2) € C{z} has order k. Equivalently, f(w.,z) = > -, ax(w.)z* where

(lo(O) == (lk_1<0) = 0, ak(O) # 0. (151)

That f has order « in z means «;(0) = 0 for all 7.

Recall that the degree of a polynomial p(w., z) € C{w, }|#] is the smallest power
of z whose coefficient is a non-zero element of C{w, }. The degree of zero polyno-
mial is set to be —o0. O

Remark 1.5.2. Let f(w., z) have order k < oo in z, defined on a neighborhood of
0. Then inside this neighborhood we can find a smaller one U x V' < C™ x C such
that f(0, z) has one zero in V' (namely z = 0) with multiplicity k. By Rouché’s
theorem, we may shrink U such that for each fixed w, € U, the holomorphic
function f(w., z) of z has k zeros in V' counting multiplicities; see Fig. 1.5.1.

1

N

Figure 1.5.1

In the following, we suppress the variable w, when necessary.

Theorem 1.5.3 (Weierstrass division theorem (WDT)). Suppose g € C{w,, 2} has
order k < oo in z. Then for each f € C{w,, 2}, there exist unique g € C{w.,, z} and
r € C{w,}|z] with degree < k such that f = gq + r.

We shall prove the Noetherian property using the following (almost) equiva-
lent form of WDT.

Theorem 1.5.4 (Weierstrass division theorem (WDT)). Suppose g € C{w,,z} =
Ocm+1 has order k < oo in z. Then Ogm+1/gO0cm+1 is a rank-k free Ocm-module.
1,2,...,281 are a set of free generators.

Theorem 1.5.5. Every analytic local C-algebra O , is Noetherian.

Proof. It suffices to discuss Ocn o. We prove this by induction on n. The case n = 0
is trivial. Suppose the case m = n — 1 is known. We prove the case m + 1. We
write 0, = Ocm g and O, 1 = Ocm+1 o for simplicity.
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e Claim: If g € 0),,1, is nonzero, then 0,,,,/90,,+1 is a Noetherian ring, equiv-
alently, a Noetherian &, ;-module.

Suppose the claim is true. Choose any non-zero ideal I < &,,,;. Choose
0 # g € I. By the claim, /90,1, as a 0,,,1-submodule of 0,,11/90,, 11,1 Opyi1-
finitely generated. Thus, the exact sequence

0 Hgﬁm_;'_l i ]_)]/gﬁm-‘rl - O

shows that I is &, ,,-finitely generated. This proves the case m + 1.

It remains to prove the claim. Choose 0 # g € 0,,+1. Then on a complex line
passing through 0, 0 must be an isolated zero of g. (Otherwise, on each line, g
vanishes on a neighborhood of 0. So g vanishes on each line (and hence each do-
main containing 0) by complex analysis.) By choosing new coordinates, we may
assume the last coordinate axis is that line. Namely, writing g = g(wy, ..., wn, 2),
g has finite order in z.

By case m, 0, is Noetherian. By WDT, 0,,,1.1/g0,,+1 is a finitely-generated 0,,-
module, hence a Noetherian &,,-module, and hence a Noetherian &,, ,;-module.

O

1.5.2 Proof of WDT
We prove the first version of WDT following [GR-b].

Proof of the uniqueness. Let f = gq1+11 = gg2+72. Then g(¢1 —g2) = r2—71. Choose
a small enough neighborhood U x V' < C™ x C as in Rem. 1.5.2 such that for all
fixed w, € U, ¢g(z) has k zeros in V' (counting multiplicities). So g(¢1 — ¢2) has > k
zeros in z. Since r; — r; has degree < k in z, for the fixed w,, the number of zeros
of r, — 7y is either < k (which is impossible), or is 0. Since the latter is the only
possible case, we conclude (1, — r2)(2) = 0 for all w,. And (¢; — ¢2)(2) = 0 since it
is so outside the (finitely many) zeros of g. (One can also deduce ¢; = ¢, from the
fact that Ocm+1 g is an integral domain.) O

Discussion. We now discuss the proof of the existence part. Let /3 be the first k
terms in their power series expansions of z. So

(W, 2) = ag + arz + - + ap_12° " F25(ag + apg1z + ap02® + )

@) 4

where all a; = a;(w,) € C{w,} and ao(0) = -+ = ax_1(0) = 0, ax(0) # 0. So
(9 — §)z" and similarly (f — f)z~* are naturally elements of C{w., z}. Moreover,
(g9 — 9)z " is a unit.
A naive attempt to find the decomposition f = gq + r is to write
-7

f=g —=+]
g
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since clearly fe C{w.}|z] has degree < k in z. This certainly works for single-
variable functions. However, when m > 0, the expression (f — f )/g might not be
continuous at the origin. (Take for instance the quotient to be 2?/(wz + 2?).) We
can only divide f — fby g — g, which gives an element of C{w., z}. So we write

f=(9—§)'f:{+f=g-f_{+f+ (—ﬁ-f_{>
99 9-7 99
fi

We then decompose fi, find f,, and then repeat this procedure again and again
to produce an infinite series, which we hope would converge to the expected
decomposition. Namely, we let fy = f. So the above defines f; in terms of f;,. We

define in a similar way f,, 41 in terms of f,:
ﬁ=a@:g+ﬁ+ﬁ% (1.5.2)

Substituting fo, fi, ..., f, into f, we get

f=<g~f0_fo+fo)+f1
g—4g
—<g-f0_fo—|—fo>+(g-fl_fl+f1>+f2—-~
g—4g g—4g
=g Y =L Y i+ fan (1.5.3)
i—0 979 i=0
O

In the following formal proof, we give careful analysis when n — oo.
S Tmy p) € R”) x Roy, define a

bi, jwi - wimz? then

Finishing the proof of WDT. For each (r., p) = (r1,
rep ON Clw,, 2} asfollows: if h =3, . ¢

norm ||-
[Bllrep= D5 [biglrit - rim g,
B genes Zm,jEN
which might take value cc. We have
[h1hallre o< 1Pallrep P2l 1B = Rllrs p< [Pl o0 (1.5.4)
We write (1.5.2) as
§ ~
_fn = ~ fn - fn
T g-9) ( )



~

9 —k r .
By the first paragraph in the previous Discussion, we have (,a,, € C{w., z}.
Choose 7., p such that f, g are defined (and holomorphic) and g — g has no ze-
ros in the polydisc D with multiradii r., p except at the origin. Then (1.5.5) shows
that all f,, are defined in this domain.
Slightly shrink p so that C' := || f||,, ,< . Now we use the condition that g has
order k in z in full power: it tells us that 5(0, z) = 0. So we may shrink r, such that

18]l o< L0F. Clearly || f — fullr p= £Flltnllr. - So by (1.5.4),

1 ~ 1
||fn+1 r.,p< §||fn - fn r.,p< é”frz”r.,p-
Thus || follr. < 27"C. S0 |25 (fo = fo)llrep< 270 *C and || f, |, ,< 27"C.
The uniform norm on the polydisc with multi-radii (7., p) is clearly < |||, ,-
So f, — 0 uniformly on the polydisc D. The infinite series Z;io % con-

verges uniformly to a continuous function ¢ on any compact subset of D. ¢
is holomorphic, since it is so on each variable by Morera’s theorem. Similarly,
Yo f; converges uniformly to a holomorphic . Residue theorem and the fact
that contour integrals commute with (uniformly convergent) infinite sum show
that » does not have > k powers of z (since each fn does not). Thus, we obtain the
decomposition f = gq + r by letting n — oo in (1.5.3). O

1.6 Germs of complex spaces

Definition 1.6.1. The category of germs of complex spaces denotes the one whose
objects are (X, z) where X is a complex space and z is a marked point. If U <
X is a neighborhood of z then (X, ) is identified with (U,z). A morphism of
germs from (X, z) to (Y, y) is a holomorphic map ¢ : U — Y where U < X isa
neighborhood of = such that ¢(z) = y. Two morphisms ¢1, @2 : (X,2) — (Y,y)
are regarded equal if there is a neighborhood U of z such that ¢, |y equals gs|¢
as holomorphic maps U — Y. Composition of morphisms are the usual one for
holomorphic functions (i.e. for C-ringed spaces).

An isomorphism of germs of complex spaces ¢ : (X,z) — (Y,y) is a mor-
phism of germs with inverses, namely, there is a morphism ¢ : (Y,y) — (X, )
such that ¢ o ¢ and ¢ o ¢ are 1 on neighborhoods of = and y respectively. Equiv-
alently, there are neighborhoods U > vz and V' s ysuchthat ¢ : U — Vis a
biholomorphism, and that ¢(z) = y. O

The category of analytic local C-algebras is understood in the obvious way:
the morphisms are defined by Def. 1.3.3.
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Theorem 1.6.2. The contravariant functor § from the category of germs of complex
spaces to the category of analytic local C-algebras, sending (X, x) to Ox, and send-
ing ¢ : (X,y) — (Y,y) to ¥ : Oy, — Ox,, is an antiequivalence of categories.
Namely:

(1) Foreach (X, x)and (Y,y), the following map is bijective
8{ : MOI‘((X, LIZ’), (Y7 y)) - Mor(ﬁY,w ﬁX,z)7 @ = ()0#' (161)

(2) Each analytic local C-algebra is isomorphic to F((X, x)) for some germ of complex
space (X, ).

Part (2) is obvious. Let us prove part (1).

Proof. Assume without loss of generality that Y is a model space Specan(0y/J)
where V' < C" is open and y = 0.

Suppose 7, 0% : Oy, = Ocny/Jy — Ox, are equal. Then for each j =
1,...,n, ¢} z; equals ¢} z; as elements of O ,. So they are equal on X if we shrink
X to a smaller neighborhood of z. By Thm. 1.4.1, ¢; and ¢ are equal as holomor-
phic maps X — V, and hence are equal as X — Y. So the map § in (1.6.1) is
injective.

Next, we choose a morphism ® : Ocn /Ty — Ox . Let f1 = O(z1),..., [, =
®(z,), which are elements of &(X) if we shrink X to a smaller neighborhood of
x. View F' = (f1,..., fn) € O(X)™ as a holomorphic map ¢ : X — C". Replace X
by o' (V) such that ¢ : X — V. Note that p(z) = 0. Soh € Ocng— hop = p¥he
O, is a morphism of local C-algebras. It agrees with Ocn g — Ocn o/ Jo 2 0 X
on z, ..., z, by the very definition of F'. So they agree on any element of J¢» o due
to Prop. 1.4.3. We conclude ¢#(h) = ®([h]) for all h € Ocn (where [h] denotes
the residue class of h in Ocn o/ Jp). In particular, we have ¢# 7, = 0in Ox .

Shrink V and X < ¢ (V), and choose gi,...,g9x € Ocn(V) generating the
ideal 7y and sent by ¢ to 0 € &(X). Since J is finite-type, by Rem. 1.2.16, we can
shrink V' such that ¢y, ..., g, generate J. Thus " J = 0in ¢, Ox. By Thm. 1.4.8,
¢ restricts to a holomorphicmap @ : X — Y. ¢% : Oy, = Ocn /Ty — Ox. equals

>H#
® since ¥ : Ocng — Ox, factors as Ocng — Ocn o)/ To ., Ox .. This proves that
§ is surjective. [

Corollary 1.6.3. Let X,Y be complex spaces, x € Y,y € Y, and ® : Oy, = Ox, be
an isomorphism of local C-algebras. Then there are neighborhoods U > x,V 3 y and a
biholomorphism ¢ : U = V whose transpose o* : Oy, — Oy, equals ®.

Definition 1.6.4. An analytic local C-algebra is called regular if it is isomorphic
to Ocng = C{zy,..., z,} for some n.

Corollary 1.6.5. Let X be a complex space and x € X. If Ox ,, is reqular, then there is a
neighborhood U of x biholomorphic to an open subset of C" for some n.
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Definition 1.6.6. We say that X is smooth at x (equivalently, x is a smooth point
of X) if Ox , is regular. We say that X is smooth (equivalently, X is a complex
manifold) if it is smooth everywhere.

1.7 Immersions and closed embeddings; generating
Ox . analytically
Definition 1.7.1. A holomorphic map ¢ : X — Y is called an immersion at z € X

if o : Oy, — Ox, is surjective. ¢ is called an immersion if it is an immer-
sion at every z € X. ¢ is called a closed (resp. open) embedding if there is a

commutative diagram
X - > Y
\24 / (1.7.1)
Yo

where Yj is a closed (resp. open) complex subspace of Y and X = Y} is a biholo-
morphic map.

A closed embedding is clearly an immersion. Moreover, an immersion is lo-

cally a closed embedding;:

Proposition 1.7.2. Let ¢ : X — Y be an immersion at x. Then there are neighborhoods
Vofy=o(x)and U < o= Y(V) of x such that p : U — V is a closed embedding. In
particular,  is an immersion on U.

Proof. By assumption, ¢ : Oy, — Ox, is surjective. Let J be its kernel, and
choose generating elements ¢, ..., g; € J. By shrinking Y to a neighborhood of y
(and shrink X accordingly), we assume g1,...,gx € Oy(Y). Let 7 = 10y + --- +
grOy. Then J, = J. Define a closed subspace Z = Specan(0y/J) of Y. Then ¢#
factors as

QD# . ﬁy7y - ﬁxy/(] = ﬁZJ/ %) ﬁxﬂj.

By Cor. 1.6.3, we may shrink X so that there is an open embedding ¢ : X — Z,
$(x) = y, such that 3% : 0z, — Ox, equals V. Let . : Z — Y be the inclusion.
Then (:@)* = ¢## . Oy, — Ox, equals ¢*. By Thm. 1.6.2, we may find open
U s z such that ¢ = 1 on U. Since $(U) is an open subset of Z, we may find open
VcYsuchthat p(U) =V nZ =V nN(J). So ¢ restricts to the biholomorphism
¢ :U — ¢(U) where ¢(U) is a closed subspace of V. N

We now discuss when an immersion is a closed embedding and give some
examples.
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Proposition 1.7.3. Let X be complex spaces and ¢ : X — Y a holomorphic immersion.
Assume that ¢ is an injective and closed map?* of topological spaces. Suppose we have a
finite type ideal J of Oy such that N (J) equals the image of p, and that

J, = Ker(Oy, 25 Ox.,) (1.7.2)

forall z € X and y = p(x). Then ¢ is a closed embedding. More precisely, ¢ restricts to
a biholomorphism

$: X = Specan(Oy /J). (1.7.3)

We will see in Cor. 2.7.8 that the assumption on the existence of J is redun-
dant.

Proof. Let Y| := Specan(0y /J). By Thm. 1.4.8, the restriction (1.7.3) as a holomor-
phic map exists, i.e., we have a commutative diagram

X<:§f

The underlying topological space of Y{, := Specan(0x/J) is N(J). So ¢ is a con-
tinuous closed bijection from X to N(J), which is therefore a homeomorphism.
For each z € X,y = p(z), the stalk map &% : Oy, , = Oy, /T, — Ox is surjective
since ¢ is an immersion, and is injective by (1.7.2). So ¢ is a biholomorphism. [

Example 1.7.4. The holomorphicmap ¢ : 0 x C* — C™ x C" is an immersion and
a closed injective map, and the kernels of (# at the level of stalks are the stalks
of the ideal 7 = 2 0¢cm+n + -+ + 2, 0cm+n. Thus, by Prop. 1.7.3, ¢ restricts to a
biholomorphism 0 x C* = Specan(&¢m+n/I). This reproves Exp. 1.3.11.

Example 1.7.5. Let X be a complex space, and let Z, J be finite-type ideals of O’x.
LetY = Specan(ﬁX/I). So ﬁy = (ﬁX/I”N(I) Then

J=(Z+I))I) Ina

is a finite-type ideal of 0y, and is the unique ideal whose stalk at each z € N(Z)
equals (Z, + J,)/Z,. Then there is a biholomorphism

Specan(Ox /(L + J)) % Specan(Oy /). (1.7.4)

which equals N(Z+7) — N(Z)nN(J) as maps of topological spaces, and whose
stalk maps are

7 ﬁX,z/Im ~
ﬁY,x/jx - (Ix T jx)/:z-m ﬁX,x/(Ix + jx)

2o is called closed if it maps closed subsets to closed subsets.
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Proof. The key point is to show that the above stalk isomorphisms can be assem-
bled into a sheaf isomorphism. Consider the diagram

Specan(0y /)
]
Specan(Ox/(Z + J)) ——— Y
\ e
By Thm. 1.4.8, there is a holomorphic map « such that the lower triangle com-
mutes. The stalk maps are o : Ox /I, — Ox./(Z.+J.), withkernel (Z,+7./Z,).
These kernels can be assembled into the ideal sheaf 7 on N(Z). Thus, Prop. 1.7.3

guarantees that there is a biholomorphism making the upper triangle in (1.7.5)
commutes. ]

(1.7.5)

Exp. 1.7.5 shows that a closed complex subspace of a closed subspace is again
a closed subspace of the original space. Thus, we have more generally:

Corollary 1.7.6. If o : X — Y and 5 : Y — Z are closed embeddings, then so is the
composition foa : X — Z.

Let us consider the special case ¢ : X — C", where ¢ is represented by
(fi,-.., fn) € O% (cf. Thm. 1.4.1). Then ¢ is an immersion at = iff the morphism of
analytic local C-algebras defined in Prop. 1.4.3, namely C{z,} — O, sending z;
to f; — fj(x), is surjective. This actually mean that fi,..., f, generate (analytically)
the analytic local C-algebra Ox ,. (They certainly do not generate the ring Ox , al-
gebraically. But one can imagine that the subalgebra generated algebraically by
fo is “dense” in Ox ,, where the density means approximation by power series
of fi,..., fn.) The situation is similar to the case of a surjective morphism of C-
algebras C[z,] — A, whose algebro-geometric meaning is that the affine scheme
Spec(A) is embedded into the affine plane C™.

We must find a criterion about whether fi, ..., f, generate Ox , (analytically).
At first sight, this problem seems not easy even if X is smooth. (For instance,
take f1,..., f, to be some arbitrary holomorphic functions and deduce whether
they generate Ox ,.) There is indeed a simple criterion, which is proved using the
(holomorphic version of) inverse function theorem. To begin with, we define:

Definition 1.7.7. If X is a complex space and = € X, the vector space my , /mﬁm,
is called the cotangent space of X at z, and its dual space (m,/m?2)* is called the
tangent space. Since Oy, is Noetherian, my , is finitely-generated, and hence
my ,/m% , is finite-dimensional.
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It is inspiring to write the residue class of f — f(z) (where f € (X)) in the
cotangent space my ,/m% , as d. f.

Theorem 1.7.8. Let X be a complex space and x € X. Let fi,..., f, € O(X). Consider
(f1,..., fn) as a holomorphic map ¢ : X — C" (¢f. Thm. 1.4.1). The following are
equivalent.

(1) @ is an immersion at .

(2) The morphism of analytic local C-algebras ® : Ocn , ) — Ox , sending each z; to
fi (cf. Prop. 1.4.3) is surjective.

(3) (The residue classes of) f1 — fi(z),..., fa — fu(z) span mx ,/m% .
(4) (The germs of) f1 — fi(x), ..., fn — fn(x) generate the ideal my .

If any of these conditions holds, we say that f1,..., f, generate (the algebra) Ux ,
analytically.

Proof. Assume for simplicity that ¢(xz) = 0. Clearly (1)<(2) and (3)<(4). (Note
that (3)=(4) follows from Nakayama’s lemma.) It remains to prove (2)<(3).

Assume (2). Choose any g € my,. Then there is h(z,) € Ocn o sent by @ to g.
We may write h(z,) = Y}, a;2; + an element of mZ,, , where a; € C. Since ®(z;) = f;
and ®(mz) c m% ,, we have g € 3}, a;f; + m% . This proves (3).

Asume (3). By discarding some elements, we may assume that fi, ..., f, form
a basis of myx ,/m% ,. Assume X is a model space Specan(&y/Z) where U ¢ CV is
openand z = 0. So Ox , = Ocn /Ty, mx, = men o/Zy, and hence

My g/My, = m(cN70/(m(%N70 + Zp). (1.7.6)

Lift f, to elements of Ocn , still denoted by f,. Then we can extend fi,..., f,
to a list fi,..., fy whose residue classes form a basis of ch’O/m%N’O such that
fot1,-.., [n € Zyp. By the inverse function theorem, we may assume z = 0 and
f1,--., [ are the standard coordinates 21, ..., 2y of CV. By shrinking U, we may
assume z,41,...,2y € Z(U).

Assume for simplicity that 7 is generated by z,.1,...,2y together with
g1,---.9xr € Z(U). LetZy = 2,110y + --- + 2y0Opy. Then by Exp. 1.7.5, X =
Specan(0y /) is naturally a closed subspace of X; = Specan(0y/Z;) (defined by
g1,---,9k). By Exp. 1.7.4, X, is naturally equivalent to U n (C" x 0). So the map
(21,...,2n) : X1 — C"is an open embedding. ¢ is its restriction to X, which is
therefore an immersion at 0. This proves (1) and hence (2). O]

Remark 1.7.9. Assume that X, Y are complex manifolds and ¢ : X — Y isa closed
embedding of complex spaces. Let z € X. Then by Thm. 1.7.8, ¢ is an immersion
at  in the sense of complex differential manifolds, namely, it induces an injective
map of tangent spaces (since its transpose is a surjective map of cotangent spaces).
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Therefore, since ¢ is also a homeomorphism from X to its image in Y/, as in the
case of real differential manifolds, one can use inverse function theorem to find a
neighborhood V of y = ¢(x), a biholomorphic map 5 from V' to a neighborhood

V of 0 € C", and biholomorphism « from U = ¢ !(V) to a neighborhood U of

0 € C™ (where m < n), such that fopoa™: U — V is the restriction of the closed
embedding C™ ~ C™ x {0} — C™ x C"™™.

We give an application of analytically generating elements.

Proposition 1.7.10.

Let &,V : Oy, — Ox, be morphisms of analytic local C-algebras. Assume fi,..., f, €
Oy, generate the algebra Oy, analytically.

(1) If &(f;) = V(fi) foralli =1,... n, then & = V.

(2) Let I be the ideal of O, generated by ®(f;) — V(f;) for all i. Then I contains
®(h) — U(h) for every h € Oy,,.

Proof. (1): By Prop. 1.4.3, we have a (unique) morphism T : O¢» o — Oy, sending
zito fi — fi(z). So®o YT and W o T agree at z1,...,2,. So® o T = Vo T by Prop.
1.4.3. By assumption, T is surjective. So ¢ = V.

(2): Apply (1) to the restriction &,V : Oy, — Ox /1. O

Prop. 1.7.10-(2) is the stalk version of a geometric construction called equalizer.

1.8 Equalizersof X 3 Y

Definition 1.8.1. Let ¢,9 : X — Y be holomorphic maps of complex spaces. A
©

kernel or an equalizer of the double arrow X — < Y is a complex space E
¥

and a holomorphic map ¢ : £ — X such that ¢ ot = 9 0, and that for every
complex space S and holomorphic map 1 : S — X satisfying ¢ o pp = 1 o i there
is a unique holomorphic fi : S — E such that y = v o [i.

~ X (1.8.1)

It is easy to see that equalizers are unique up to isomorphisms.

The main result of this section is:

30



Theorem 1.8.2. Every double arrow X ﬁ Y of holomorphic maps has an equal-

izer which is the inclusion map of a closed subspace v : E = Specan(Ox /L) — X. This
is called the canonical equalizer. The finite-type ideal T is uniquely determined by the
fact that forall x € X:

(a) If o(x) # Y(x), then I, = Ox .

(b) If o(x) = (), then by considering * ,* as stalk maps O,y — Ox, I, is
the ideal of Ox , generated by all 0¥ (f) — #(f) (where f € Oy y()).

Moreover, N (Z), the underlying set of E, is A = {x € X : p(x) = ¢(z)}.

From Prop. 1.7.10, it is clear that Z, is generated by o (f;) — v#(f;) if
fis..., fa € Oy, generate the algebra 0y, analytically, e.g. 21,...,2, if YV is a
model space in C".

Remark 1.8.3. From Thm. 1.8.2, itis clear thatif £y — X is an equalizerof X 3 Y,
then it is a closed embedding, and equals the composition of a unique biholomor-
phism E; = E and the inclusion map E — X where F is the canonical equalizer.

Construction of E. We define a finite-type ideal 7 satisfying (a) and (b). We shall
tirst define it locally and then glue the pieces. Then 7 gives E.

Let Q© = X\A which is open. We set Z, = Ox|q. For each x € A, we choose
a neighborhood V,, Y of y = ¢(x) biholomorphic to a model space. So we can
choose finitely many fi,... f, € Oy (V,) embedding V,, onto a closed subspace of
an open subset of C". U, = ¢ (V) n ¢ *(V,) is a neighborhood of z, and we
set Zy, to be the ideal of Oy, generated by o (f1) — Y#(f1),..., 7 (fu) — V¥ (fn)
(defined on U,).

We claim that these locally defined finitely-generated ideals are compatible. If
p € Uy n A then, as ¢(p) = ¥(p), by Prop. 1.7.10 or by substitution rule (Rem.
1.4.6), the stalk (Zy;,), is the ideal generated by all ¢*(f) — v#(f) € Ox, where
f e Ovyp. Ifpe U, nQ, then as p(p) # ¥(p) and (fi,..., fn) is an embedding,
there is some f; among f1, ..., f, such that o (f;) — ¢#(f;) has non-zero value at
p, and hence its germ at p is not in mx ,. This proves (Zy,), = Ox,. Combining
these two cases together, we see that 7, and 7y, (for all z € A) are compatible.
This defines 7.

If p(x) # (), then Z, = Ox, shows z ¢ N(I). If p(x) = (x), then o7 (f) —
Y#(f) vanishes at z by (1.2.3). So Z, vanishes at z. So z € N(Z). This proves
A = N(ZI). O

Proof that E is an equalizer. Itis easy to check por = 1por. Choose any holomorphic
p:S — X suchthat popu =1 opu. Forany s e S, letx = pu(s). Then p(z) = ¢(z).
Choose any f € Oy ;). Then p o i = 1 o pu shows that u# sends o#(f) — v#(f)
to 0 € Os,. Thus u* : Ox, — Os, vanishes on Z,. Thus, by Thm. 1.4.8, there is a
unique holomorphic ji : S — E such that the triangle in (1.8.1) commutes. [
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The proof of Thm. 1.8.2 is finished. From the proof, we know:

Remark 1.8.4. Assume the setting of Thm. 1.8.2. Assume ¢(z) = ¢(x) =: y. Let
V, be a neighborhood of y biholomorphic to a model space. More precisely, we
choose (fi,..., fa) € Oy(V,)” which, considered as a holomorphic map V,, — C",
is a closed embedding of V, into an open subset of C". Let U, = ¢ (V) ny~ (V).
Then the ideal sheaf Z|, is generated by o (f1) — v#(f1), ..., 07 (fn) — V7 (fn) €
oU,).

1.9 g@ﬁX F, Homﬁx(éa, 9), and %mﬁx(éa, g?)

We fix a C-ringed space X.

1.9.1 Tensor product

Definition 1.9.1. Let & and .# be 0x-modules. Consider the presheaf ¢ of O'x-
modules defined by 4 (U) = &(U) ®sw) # (U). The tensor product of restriction
maps &' (U) — &(V) and F(U) — .7 (V) gives the restriction map ¢ (U) — 4 (V).
The sheafification of ¢ is denoted by & ®¢, -# or simply & ® .# and called the
tensor product of & and .#.

Remark 1.9.2. Let A be a commutative ring, and fix an A-module N. Recall the
following basic facts:

1. Tensor products commute with direct limits. More precisely, let (M,)
be a direct system of A-modules. Then the canonical map Mg ®4 N —
(lim_M,) ®4 N (for each fixed () defines, by passing to the direct limit, an
isomorphism

lm(M @4 N) = (im Mo) @4 N (1.9.1)

(Proof: Construct the inverse map explicitly.)
2. The tensor product functor — ® N is right exact. Namely, if
My My L M —0
is an exact sequence of A-modules, then so is
MNP My @ N 225 M@ N — 0.

Identify M; with Cokerf = My/f(M;). Then the right exactness of tensor
product is equivalent to that tensor products commute with cokernels: we
have an equivalence of A-modules

Coker(M; @4 N L5 My @4 N) =5 Coker(My 5 M,) @4 N (1.9.2)
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descended from the canonical morphism

Mo @4 N — N, (1.9.3)

M,
fMy)
]

Proof. We have a well-defined map sending 725 <\ to % (i.e. the LHS

of (1.9.2)) sending [¢] x 1 to [ ®4 1], where |- -] stands for the residue classes,
and £ € My, € N. This map is clearly A-biinvariant. So it gives an A-module
morphism from the RHS to the LHS of (1.9.2), which is clearly the inverse of the
map in (1.9.2) from LHS to RHS. So (1.9.2) is an isomorphism. O

Remark 1.9.3. We can now use (1.9.2) to explain the last equality of (1.2.4):

(g)m ®0X,z (ﬁxﬂj/mm) = 6} X Coker(mw — ﬁX@)
~Coker(&; @m, — &, ® Ox,) ~ Coker(&, @m, — &,) = &,/m,; &,

since the image of the multiplication map &, ® m, — &, is m,&,.
Proposition 1.9.4. The canonical morphism of €' (U )-modules
EWU) Qow) F(U) = & Qo Fu

(where U 3 x is open and the map is the tensor product of & (U) — &, and F(U) — F,)
induces an isomorphism

(E®F), =linéU)@ow) F(U) — & ®ox, Fu (1.94)

Usx

Proof. Define a canonical map from &, x #, tolim & (U) ®s() # (U) and show
that it is Ox ,-biinvariant. This descends to the inverse map of (1.9.4). O

Corollary 1.9.5. For each O'x-module .7, the functor — ® .% on the abelian category of
Ox-modules is right exact: if

éal - ébg i gs — 0
is exact, then so is
ERF - EHERQF - EQF — 0.

Proof. Exactness of sheaves can be checked at the level of stalks. Then this follows
from the isomorphism (1.9.4) and the right exactness of — ®¢, , F.. O
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1.9.2 Hom

We leave it to the readers to check the following easy facts:
Remark 1.9.6. Let A be a commutative ring, and fix an A-module NV:

1. Homyu (N, —) is a left exact functor. Namely, for any exact sequence of A-
modules

0— ML My 5 M, (1.9.5)
we have an exact sequence
O — HOHlA(N, ./\/ll) f—*> HOH]A(N,MQ) g_*) HOIHA(N,M;;)

where f, sends T to f o T and g, is defined similarly. Equivalently,
Hom (N, —) commutes with kernels: there is a equivalence

Hom 4 (N, Ker(Ms % Ms)) ~ Ker(Homa (N, Ms) £ Homu (N, Ms3))
(1.9.6)

induced by the obvious inclusion

Hom 4 (N, Ker(Ms % Ms)) < Homu (N, Ms).

2. Homy(—, ) is a left exact contravariant functor. for any exact sequence of
A-modules

ML My S My >0 (1.9.7)
we have an exact sequence
0 — Homy (M3, N) g, Hom s (My, N) EAR Hom (M, N)

where f* sends T to T o f and g* is defined similarly. Equivalently,
Homy(—, ) turns cokernels into kernels: there is a canonical equivalence

Hom 4 (Coker(M; ER My), N) ~ Ker(Hom 4 (My, N) EARN Hom (M, N))
(1.9.8)

induced by the obvious inclusion

HomA(Coker(./\/l1 ER Mg),N) — Homy (Mg, N).
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Definition 1.9.7. Let &,.# be Ox-modules. The hom space Homg, (&,.%) is de-
tined to be the space of all &x-module morphims from & to .%.

The presheaf of 0x-modules sending each open U < X to the &(U)-module
Homg, (éy,-#u), and whose restriction map is the obvious restriction of sheaf
morphisms, is automatically a sheaf of &x-modules. It is called the hom sheaf
and denoted by 24, (&, F).

The dual and the double dual of & is defined by

EY = Home, (8,0x), EVY = (&), (1.9.9)
O

Exercise 1.9.8. Describe canonical equivalences
E~ERoy Ox =~ Ox Qpy & ~ Home(Ox,E). (1.9.10)

In general, the stalks of sy, (&, #) cannot be identified with
Homg, (&, #,). But good things happen when & is coherent, as we will see
in Cor. 2.2.4.

1.10 (Ox—mod) ®g, (Os—mod); pullback sheaves

Definition 1.10.1. Let ¢ : X — S be a holomorphic map of complex spaces. Let &
be an Ox-module and .# an 0s-module. Then & ®g, A4 = H R4, & denotes the
sheafification of the presheaf of &'x-modules sending each open U < X to

(6 Qgs A)(U) = lim EU) Qpyvy A (V) (1.10.1)

Vop(U)

where the direct limit is over all open subset IV < S containing ¢(U), and g €
Os(V)actsong e &U) as

#(g) - <. (1.10.2)
For each x € X, we have a canonical equivalence

(8 ®ps M)z ~ 6 Qo 0y Mp(a)- (1.10.3)
Thus # — & ®¢, A and & — & Qg A are right exact functors.
Definition 1.10.2. The pullback sheaf of ./ along ¢ is the &'x-module defined by

oM = Ox ®gy, M (1.10.4)
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whose stalk at zis O, Q0. o0 M. It can be viewed as the induced representation
of .# . Thus we may write

E Ry M= E Ry, oM. (1.10.5)

If V < Sisopenand o € .#(V), then the pullback section p*(c) € *.# (o= (V))
is the image of

1@ace O (V) Qo) A (V) — (Ox pg M)~ (V) = (pup™ ) (V).
(1.10.6)

This gives a canonical morphism of &s-modules
M — " M. (1.10.7)

If g : M — > is a morphism of Og-modules, we define an &x-module
morphism

gp*g =1 ®g : ﬁX ®ﬁx ,ﬂl - ﬁX ®ﬁx ,ﬂg, (1108)
called the pullback of g.

The notation & ®, .# is a generalization of & ®¢ W for a (C-)vector space
W by viewing C as the structure sheaf of the single reduced point {0}, and by
viewing the holomorphic map as the obvious one X — {0}.

Proposition 1.10.3. (¢*, v..) is a pair of adjoint functors between the categories of O'x-
modules and Os-modules (with ¢* the left adjoint and .. the right one). Namely, there is
a natural isomphism

Homg, (¢* A , &) = Homg, (M , 0.E). (1.10.9)

The word natural means that for any morphisms g : My — # of Os-modules and
f: & — & of Ox-modules, p*g and ¢, f induce a commutative diagram

HOHI@X (gp*%l, 51) ; Homﬁs (%1, QO*gl)
l l (1.10.10)
HOH’I@X (90*%27 (’?2) ; Homﬁs (%27 ¢*éa2)

Proof. Given a morphism F' : ¢*.# — &, the composition of . # — p.p* # with
O F 2 pup* M — 9. & gives a morphism G : A4 — ¢,.&. Informally,
Glo)=F(1®o). (1.10.11)

We leave it to the readers to check that /' — @ is natural.
Conversely, given G : # — ¢,&. The 0(U)-module morphisms

OU) o) AV)—EU),  [f®ow f-Go)ly

forallopen U < X and V' o p(U) pass to F' : p*.# — &. This gives the inverse of
the above construction. ]
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Proposition 1.10.4. Let ¢ : X — S be a holomorphic map of complex spaces. Let & and
F be Og-modules. Then we have a canonical isomorphism of O'x-modules

Proof. The ¢'(V)-module morphisms
EV) ®a) F(V) = (¢ (V) Qoe-1(vy) ¢*F (07 (V)
@0 — " (s) ®¥*(0)

(for all open V' < S) pass to a morphism & Qg F — w«(¢*E Ru, ¢*.%), and
hence, by Prop. 1.10.3, a morphism (1.10.12). Its stalk map at each z € X is
(setting t = ¢(x)) the canonical morphism

(6t ®os, F1) Ros, Ox.e — (6 ®os, Ox) Qox., (Fi Ros, Oxt)
which is an isomorphism by Lem. 1.10.5. O]

Lemma 1.10.5. Let B — A be a ring morphism. Let £, F be B-modules. Then there is a
canonical A-module isomorphism

(E®@F)@sA— (E@sA) @ (F®sA) (1.10.13)
Proof. We have

ERF)RpA~EQRARXBRF ~EQp (AR A) ®s F
~(ERpA) Q4 (AR F)

]

Definition 1.10.6. Let ¢ : Y = Specan(0x/Z) — X be a closed subspace of X. Let
& be an Ox-module. Then the (sheaf theoretic) restriction of & to Y, denoted by
Ely or &Y is

(g)|y = L*ng = (ﬁx/z) FN(I) ®ﬁX(gg. (11014)

Remark 1.10.7. If . : Y = Specan(0x/Z) — X is an embedding of closed complex
subspace, one may view an 0y-module .# as the corresponding &'x-module ¢,..%.
A more precise statement is that the functor ¢, from the category of &y-modules to
the category of 'x-modules annihilated by the multiplication of Z, sending each
morphism ¢ to ¢.¢, is an equivalence of categories. (Cf. Thm. 1.6.2 or Thm. 2.2.2
for the precise meaning.) An inverse functor can be chosen to be .*. In particular,
we have a canonical equivalence . ~ (*1,.# for any Oy-module .# and & ~ 1,..*&
for any 0'x-module & annihilated by Z (so that & = /28 ~ £®e, (Ox/I)). These
equivalences are the identity maps at the level of stalks.
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Moreover, the functor ¢, is an equivalence of tensor categories. Namely, we
have natural isomorphisms

L(F1 Qo Fa) ~ (LeF1) oy (14:F2).

Note that since 0x , — Oy, is surjective (if y € V), we have
Ty Roy., Foy = F1yQox, Fay- (1.10.15)

If & is an Ox-module, we also have a natural isomorphism
L(Ely) = (Ox/T) ®oy &. (1.10.16)

Thus, the study of the restriction &y can be turned into the study of an Ox-
module. O

1.11 Fiber products

Definition 1.11.1. Let ¢ : X — Sand ¢ : Y — S be holomorphic maps of complex
spaces. A fiber product of these two maps is a complex space X xg Y together
with holomorphic maps pry : X xgY — X and pry : X xgY — Y satisfying:

(1) popry = opry.

(2) For each complex space Z and holomorphicmapsa : Z - Xandf:Z - Y
satisfying poa = 1o/ there is a unique holomorphicmap avp : Z — X xgY
such that a = pry o (o v ) and that 5 = pry o (a v ().

(1.11.1)

S+—Y

The commutative square diagram above involving S, X,Y, X xg Y is called a
Cartesian square. pry : X xgY — Y is called the pullback/base change of
p: X - Salongy:Y — 5. O

The following is easy to check:

Proposition 1.11.2. In Def. 1.11.1, let vy : Z' — Z be a holomorphic map. Then

(avB)oy=(aoy)v (Boy):Z - X xgY. (1.11.2)
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Fiber products are clearly unique up to isomorphisms. The following is easy
to check.

Remark 1.11.3. Suppose that the following two small commuting square dia-
grams are both Cartesian, then the largest rectangular square is also Cartesian.

X(—XXSY<— (XXSY) XyZ

I |

S < Y <« Z

Namely, (X xgY) xy Z, together with its maps to X and Z, is a pullback of
X — Salong Z — S. This can be generalized to more complicated situations. For
instance, if the following 4 small cells are Cartesian squares, then so is the largest
square diagram.

X < YARR: L3
I A
X < Z < Zo
L
S < Y < Yi

Example 1.11.4. Let U,V be open subsets of a complex space X. Then U n V is a
tiber product U x x V: we have Cartesian square

U+——UnV

L

X +—V

Definition 1.115. Let ¢ : X - S, v : Y - S, a: X' - X, :Y — Y be
holomorphic maps of complex spaces. Assume X x g Y exists. Assume we have
a fiber product X’ xgY' of poa: X' — Sand o 5:Y" — S. Then

axfB: X' xgY' - X xgY (1.11.3)

denotes (o pry/) v (f opry.), the unique holomorphic map making the following
diagram commute.

Pry/

X' X' XSY/

-
/ axf lpry/
'
v (1.11.4)

X ¢ X xgV
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The following is easy to check:

Proposition 1.11.6. In Def. 1.11.5, let . : Z — X', v : Z — Y be holomorphic maps of
complex spaces such that ¢ o aco i = 1) o 5 o v. Then we have equality

(axp)o(pvr)=(aop)v (fov): Z - X xgY. (1.11.5)

Let & : X" — X', B : Y" — Y" be holomorphic maps of complex spaces, and assume that
a fiber product X" x g Y" exists for poaoa : X" — Sandpofof:Y" — S. Then

(axB)o(@xfB)=(aod)x (Bof): X" xgY" - X xgY. (1.11.6)

Remark 1.11.7. There are no canonical fiber products of give holomorphic ¢ :
X — S,9¢ Y — 5. But suppose that a fiber product X x g Y exists and is fixed.
Then for each open U < X and X c Y, there is a unique (open) fiber product
U xsV inside X x g Y. which is the open complex subspace

UxgV :=pry (U) npry' (V)

of X xgY. The projections pr;; : U xgV — U and pry, : U xg V — V are defined
respectively by the restrictions of pry, pry-.

Moreover, assume that o : X’ — X, f: Y’ — Y are holomorphic, and a fiber
product X’ x g Y"is fixed. Let U" = X" and V' < Y’ be open such that a(U’) < U,
B(V') < V. Let U’ xg V' be the fiber product inside X’ xg Y’. The we have a
commutative diagram

axf

X' xgY —2C s X xgY

I [ (1.11.7)

U’ X g V! alyr xBlys U Xg vV
]

Proof. Show that the inclusion U xg V' < X xgY is the product of U — X and
V—Yand U xg V' X' xgY’similarly. Then apply Prop. 1.11.6. O

With the help of the above observation, we can prove:

Lemma 1.11.8 (Gluing fiber products). Let ¢ : X — Sand ¢ : Y — S be holo-
morphic maps of complex spaces. Let (U,)icz and (V;)wex be open covers of X and Y
respectively. Suppose that for each i € J and t € T there exists a fiber product U; xg V.
Then a fiber product X xg'Y exists.
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Proof. 1t suffices to assume (V;) has only one member, which is Y. So each U; xgY
exists. To simplify notations, for each i,j,k € Jweset U;; = U; nU;, Ui, =
UinU; nUg. Welet U; x; Y and U, x; Y denote the corresponding open fiber
products inside U; xgY. So U;; x; Y and U;; x; Y are isomorphic but not identical.

We now apply the gluing construction Rem. 1.3.7 to construct X x Y by gluing
all U; x Y together. As gluing of topological spaces the process is trivial. To glue
the structures of complex spaces, we must assign an isomorphism 7;; : Uj; x; Y =
Ui x; Y for all 4, j. This is chosen to be 1y,, x;; 1y defined by Def. 1.11.5. (Note
that this is not an identity map since the source does not equal the target. The
symbol x;; reflects the fact that this product relies on both 7 and j.)

Clearly T, ; is the identity. To finish checking the cocycle condition, we must
show that the holomorphic maps 7; and 7 ; o 7;, are equal when restricted to
open subsets Uy, x; Y — Uy, x;, Y. By Rem. 1.11.7, m; restricts to 1y, x4 1y,
and 7 j o m;; restricts to (1y,, Xx; 1y) o (1y,, x;: 1y), which equals 1y, , xz; 1y
by Prop. 1.11.6.

Thus the complex space X x g Y is constructed. We leave it to the readers to
define pry and pry.. O

1.12 Fiber products and inverse images of subspaces

Proposition 1.12.1. Let ¢ : X — S be a holomorphic map of complex spaces, and let J
be a finite type ideal of Os. Then we have a Cartesian square

X +—— ¢ 1(Sy) := Specan(Ox /T Ox)

Wl gl (1.12.1)

S +—— Sy := Specan(Os/J)

where J Ox is the (necessarily unique) finite- type ideal of Ox whose stalks (JOx).,
are generated by j¢ (@) (more preczsely, by o (Jpw)), of (1.10.2). ¢ 1(Sy) :
Specan(0x /J Ox) is called the inverse image of So along ®.

Proof. If V. < S is open and J|y is generated by finitely many gi, g0, - €
J(V), then (J0x)|,1(v) is defined to be the ideal of Ox|,-1() generated by
©*(91), 9% (g2),.... Clearly the stalks of (JOx)|,-1(v) satisfy the requirement.
Thus, these ideals are compatible for different V, and can be glued together and
form the desired ideal JO0x. To check that (1.12.1) is Cartesian one uses Thm.
1.4.8. O

Remark 1.12.2. Using the explicit construction of 7 in the proof of Prop. 1.12.1,
one sees that the underlying set of p~!(Sy) is the usual preimage of Sy, i.e., {x €

X : p(x) € Sp}.
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Remark 1.12.3. As an Ox-module, 0,15, has a natural equivalence

Op1(50) = Ox /T Ox ~ Ox gy (O5/T) = 9*(Os,) (1.12.2)

Thus, for any &'x-module &, we have canonical equivalences of &'x-modules

Elo-1(50) = € Qo Op-1(50) = € Qo5 (Os/T) =~ E|TE (1.12.3)

Proof. Using the right exactness of Oy ®¢, —, we have

Ox Qo5 (0s5/T) = Ox ®gg Coker(J — Ofs)
~Coker(Ox ®os J — Ox Qpy Og) ~ Coker(Ox Q®py, I — Ox)
which equals Ox/J Ox since the term insider the last Coker is the multiplication

map. (Compare Rem. 1.9.3.) This proves (1.12.2). (1.12.3) follows from a similar
argument. [

Example 1.12.4. Let Z, J be finite-type ideals of 0s. Using Thm. 1.4.8 again,
one easily checks that there is a Cartesian square that breaks into two commuting
triangles.

X = Specan(ﬁs/z) +—— XnNnY := Specan(ﬁg/(IJr j))
1 S l (1.12.4)
R > Y = Specan(0s/J)

Thus, the inverse image of Y along X is naturally equivalent to the closed sub-
space X NnY := Specan(0s/(Z + J)) of S, called the intersection of X and Y.
(Compare this with Exp. 1.7.5.) In view of this equivalence, we shall view X nY
as closed subspaces of X and Y in the future.

Proposition 1.12.5. Let o : X — Sand ) : Y — S be holomorphic, and let X, and Y,
be complex subspaces of X,Y respectively. Assume that X xgY is a fiber product of ¢
and 1. Recall pry : X xgY — X and pry : X xgY — Y. Then the intersection

Xo xg Yy = pr;(l(Xo) o) pr;l(Yo)

is a fiber product of Xo < X 5> Sand Yy — Y Y S, called the (closed) fiber product
inside X xg Y. The projections of pry'(Xo) n pry' (Yy) to Xo and Yy are respectively
the restrictions of pry and pry.. Moreover, the inclusion Xy xg Yy — X xgY equals the
product of Xg — X and Yy — Y.
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Proof. The four cells are Cartesian squares. So is the largest one (Rem. 1.11.3).

XO — pl";(l(Xo) — XO XS}/O

| ! |

X 2 X xgY +—— pry (Yp) (1.12.5)
@l o | |
S < ¢ Y <« > Yy

The claim about inclusions is obvious. O]

Remark 1.12.6. The closed fiber product X xg Yy € X xgY can be written more
explicitly. Choose finite-type ideals Z < Ox and J < Oy defining Xy, Y; respec-
tively. Then X, x g Y is defined by the ideal K Oy, .y generated by pr’ (Z) and
pri (7). More precisely: each stalk K, is generated by pr (Z,) and pr? (.7, ).

In practice, we may assume X and Y are small enough such that 7 is generated
by fi,..., fm € O0(X) and J is generated by ¢;,...,9, € O(Y). Then all pr??(fi)
and pr?(g;) generate K. O

Remark 1.12.7. Similar to Rem. 1.11.7, suppose we have holomorphica : X' — X,
B:Y Y, op: X —>519v:Y >S5S LetXgoc X, Yy <Y X) < X'Y] <Y be
closed subspaces such that « restricts to o : X; — X and f restricts to 8 : Yj — Yj
(in the sense of Thm. 1.4.8). Then for the closed fiber products X xgYy © X xgV
and X|,, the following diagram commutes.

X' xgV — 2 L X %Y
[ I (1.12.6)
a|X/ Xﬁ|y/

0 0
Xixg Vi —2 0 Xy xs Yy

1.13 Fiber products, direct products, and equalizers

Definition 1.13.1. Let X, Y be complex spaces. A direct product of X, Y, or simply
a product of XY, is a fiber product of X — 0 and Y — 0 and denoted by X x Y
(together with the projections pry : X x Y — X and pry : X xY = Y).

To spell out the definition: For each complex space Z and holomorphic « :
Z — X,B:7Z — Y, there is a unique holomorphicmap a v 8 : Z — X x Y such
that the following diagram commute.

Z
a avﬁl 8
X ¢+— XxY —Y
Prx Pry
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If fe Ox and g € Oy, we write

fOL=pri%(f), 1®g:=pfg), [f®g:=p%(f)pf(g). (113.1)

If r € X and y € Y, we define the completed tensor product

ﬁX,J:@ﬁY,y = ﬁXXY,;th
which is well-defined up to isomorphisms by Cor. 1.6.3. O

Remark 1.13.2. One can also view Ox .y 4y as ﬁX7x®ﬁS’5 Oy, (if s = ¢(z) = ¢¥(y)),
a completed tensor product over Js ;. In the case that either ¢ or v is “finite”, the
stalk Ox xsy,2xy 1S actually equal to the usual tensor product Ox , ®g,, Oy,,. This
will be studied in the next chapter.

Example 1.13.3. C"™*" is naturally a product of C™ and C".
Proof. Apply Thm. 1.4.1. O
Lemma 1.13.4. For every complex spaces X,Y there is a product X x Y.

Proof. We know this is true when X, Y are number spaces, and hence when X, Y
are open subspaces of number spaces (cf. Exp. 1.11.7), and hence if X,Y are

model spaces (due to Prop. 1.12.5), and hence for all complex spaces (by Lemma
1.11.8). O

Remark 1.13.5. If X and Y are model spaces Specan(0y;/Z) and Specan(0y/J)
where U < C™ and V < C" are open, T is generated by fi, f>,--- € Z(U), and J is
generated by g1, ¢2,--- € J(V), then X x Y as a closed direct product inside U x V'
can be written down explicitly with the help of Rem. 1.12.6: it is the model space
Specan(0y«v/K) where K is the ideal generated by all f; ® 1 and 1 ® g;.

In the following, we give two proofs that fiber products always exist. We need
the following notion:

Proposition 1.13.6. Let ¢ : X — Y be a holomorphic map. Then 1x v o : X - X xY

is an equalizer:

1vp POpr x
X 25 XxY —=2 Y (1.13.2)
PTy

The canonical equalizer &(p) of X x Y =3 Y (which is a closed subspace of X x Y) is
called the graph of .

Proof. Let Z be a complex space. Any holomorphic map Z — X x Y isa v 3 for
somea : Z — X and 8 : Z — Y. Suppose that the compositions of a v § with
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@ o pry and with pry- are equal. Then ¢ o o = 3. Then we may find a holomorphic
map Z — X such that the following diagram commutes.

Z

| X

1ve

X — X xY

Indeed, we can choose this map to be «. Then by Prop. 1.11.2, (1 v ) ca =
avVv (poa) = av . On the other hand, if we have another such holomorphic map
Y+ Z — X. Composing the above triangle with pry : X x Y — X shows that
Y =pryo(lvep)orequalspryo(av )= a. This proves the uniqueness of such

. O

Remark 1.13.7. Using Thm. 1.8.2, one can give a more explicit description of the
graph of ¢ : X — Y. We write it as Specan(Ox «y/J) for a finite-type ideal J. Let
reX,yeY.lfy # ¢o(x) then Jyxy = Oxxyvaxy Ify = ¢(z) then J,, is the ideal
of Oxyy.xy generated by

(fep)®1-1Q f (1.13.3)

forall f € Oy, (equivalently, for a set of f generating the algebra 0y, analytically).
The underlying topological space of the graphis {z x y e X x Y : y = p(x)}.

Remark 1.13.8. The graph construction shows that every holomorphic map ¢ :

X — Y is the composition of a closed embedding X e X xy (cf. Rem. 1.8.3)

and a projection of direct product X x Y ©% Y. Thus, very often, the study of
general holomorphic maps reduces to the studies of these two special types of
maps. As an application of this observation, we prove:

Theorem 1.13.9. For any holomorphic maps of complex spaces p : X — S, : Y — S,
there exists a fiber product X xgY.

Proof. We want to show that the pullback of ¢ along 1 exists. We know it exists
when 1) is a closed embedding due to Prop. 1.12.1. It also exists when % is a
projection S x Y7 — S:in that case X xg Y is given by the Cartesian square

X +— X xY;
% Wll (1.13.4)
S+— SxY
(We leave it to the readers to check that this commutative diagram is indeed Carte-

sian.) The general case follows from Rem. 1.13.8 and the fact that the pullback of
a pullback is a pullback (Rem. 1.11.3). O
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We now give another way of constructing fiber products. This construction is
very explicit when X and Y are model spaces.

Proposition 1.13.10. Let ¢ : X — S, : Y — S be holomorphic maps of complex
spaces. Let pry : X xY — X and pry : X x Y — Y be the projections of X x Y. Then
the canonical equalizer E of the following double arrow is a fiber product X xgY:

popr
Ee‘ys XxY —28 (1.13.5)
popry

The projections of E to X,Y are pry o ¢ and pry o ¢ respectively. We call E the (closed)
fiber product of XY inside the direct product X x Y.

Proof. That E is an equalizer means that ¢ o (pry o ¢) = 9 o (pry o ¢), and that for
every holomorphic o v 8 : Z — X x Y whose compositions with ¢ o pry and
with 1 o pry- are the same (namely, ¢ o a = 1 o 3) there is a unique holomorphic
v : Z — Esuchthatioy = avf (namely, (pryot)oy = aand (pryor)oy = f3). This
means precisely that £ equipped with pry o ¢ and pry o ¢ is a fiber product. O

Remark 1.13.11. Using Thm. 1.8.2, we can describe the fiber product X xg Y
inside a given X x Y easily: It is Specan(0x«y/J) where J is a finite-type ideal.
Letz e X,ye Y. If p(z) # ¢(y) then Toxy = Oxxyuxy. If ©(x) = ¥(y) then T, is
the ideal of Ox v, «, generated by

(for)®@1—1®(fov) (1.13.6)

forall f € Os (. (equivalently, for a set of f generating the algebra 0y ,(,) analyti-
cally). The underlying topological space of X xgY is {zxy e X xY : p(x) = 9 (y)}.

From this, it is clear that given a fiber product X x5V, if z € X,y € Y and
¢(x) = ¢¥(y), then there is a unique point of X xg Y, denoted by (z,y) or z x y,
whose projections to X, Y are x, y respectively. Moreover, all points of X xgY are
in this form. O

Exercise 1.13.12. Show that the pullback of ¢ x ) : X x Y — S x S along the
diagonal map Ag defined by 15 v 15: S — S x S'is a fiber product X xg Y.

We have seen that fiber products can be constructed from equalizers. Con-
versely, equalizers can also be viewed as special cases of fiber products:

Proposition 1.13.13. Let o, : X — Y be holomorphic maps, and let Ay : Y — Y xY
be the diagonal map of Y with image Y being a closed subspace of Y x Y, called the
diagonal of Y x Y. Then the inverse image E of Y along p v ¢ : X — Y x Y is the

. . (p
canonical equalizer of X —< Y.
P
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Proof. Write Y as Specan(Oyyy,J). Then by Rem. 1.13.7, J,,, = Oyyyyxy if
y #y,and J,, is generated by all f ® 1 —1® f where f € Oy,

Write E as Specan(0x/T). Then by Prop. 1.12.1, if p(z) # 1 (z) then Z, equals
Ox e (since Ty i) = Ovxvp@xe@); if o(x) = ¥(x) then 7, is generated by
(f®1-1® f)o(pv ) (e by fop— foy)forall fe Oy, Comparing this
description with Thm. 1.8.2, we see that E is the canonical equalizer. [
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Chapter 2

Finite holomorphic maps and
coherence

2.1 Coherent sheaves

We fix a C-ringed space X.

Definition 2.1.1. An 0x-module & is called coherent if the following conditions
are satisfied:

1. & is of finite-type.

2. For every open set U < X, any n € N, and any 0y-module morphism ¢ :
Op — &|u, the kernel Kery is a finite-type -module.

Set 51 = ¢(1,0,---,0),...,8, = ©(0,0,...,1). Then Kergp is called the sheaf of
relations of sy, ..., s, and denoted by %/(s.) = %/(sl, ey Sn)-

In other words, Ms.) is the sheaf of all (fi,..., f,) € O} such that fis; +
-+ fus, = 0. A coherent &x-module is a finite-type &x-module such that any
sheaf of relations is finite-type.

Remark 2.1.2. It is clear that a finite type submodule of a coherent &'x-module is
coherent.

Theorem 2.1.3. Let 0 — & — .F 5 4 — 0 be an exact sequence of Ox-modules. If
two of the three sheaves are coherent, then the remaining one is also coherent.

We view & as a subsheaf of .%.

Proof of &, .# coherent = & coherent. Since .7 is finite-type and ¢ is surjective, ¢ is
finite-type. Choose any = € X, any neighborhood U = z,and any ¢4, ... ,t, € 4(U).
We shall show that %/{t.) is generated by finitely many global sections after
shrinking U to a smaller neighborhood of .
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Shrink U so that we can find s4,...,s, € #(U) sent to ti,...,t, by ¢, and
that &|y is generated by some elements ey,...,e;, € &(U). As .F is coherent,
%ot (es, s4) is finite-type. So we can further shrink U so that %/Je., s.) is gen-
erated by (fl,..., fl,g\,...,g.) € O(U)F*" for finitely many I.

Clearly (¢!,...,g.) € O(U)" are in %/{t.). We claim that they generate
%/(t.). Choose any y € U and hy, ..., h, € Ox, such that hit; + --- + hypt,, = 0in
.. SO hisy + -+ 4+ hyps, € &,. SO piey + -+ + pgeg + hisy + - + hys, = 0in %,
for some pu, ..., jir € Ox.y. SO (fte, he) € %ot ea, 84),. SO (fie, h4) is an O ,-linear
combination of (f!, g.). Hence (h,) is an Oy ,-linear combination of (g). O

Proof of % ,% coherent = & coherent. As & is a subsheaf of .# and .# is coherent,
the sheaves of relations of & are clearly finite-type. Let us prove that & is finite-
type. Choose = € X and a neighborhood U = z such that .#|y is generated by
81,...,5, € F(U). Then each t; = ©(s;) is in 4(U). Since ¢ is coherent, %/ {t,) is
finite-type. Thus, after shrinking U to a smaller neighborhood, %/1t.) is gener-
ated by (f1,..., f) e O(U)" for finitely many [.

Let ¢! = fls; + - + fls,. Then ¢(e') = 0, and hence ¢! € &£(U). We claim
that e',e?,... generate &|y. Choose any y € U and o € &,. Then ¢(c) = 0 and
0 =151+ -+ gnSy, forsome gy, ..., g, € Ox,y. SO (g.) € %/(t.)y. Hence (g.) is an
O ,~linear combination of (f,), (f2),.... So o is the same O ,-linear combination
of el e?, .. .. O

Proof of &,% coherent = % coherent. Step 1. We prove that % is finite-type.
Choose z € X and a neighborhood U s z. Shrink U so that we can find
S1,...,8, € F(U) such that t; = ¢(s1),...,t, = ¢(s,) generate ¢|;;, and that
there are ej,...,e; € &(U) generating &|y. Then for each y € U and 0 € &,
(o) = fiti + - + fut, for some fi,..., f, € Ox,. So o — fis; — -+ — fus, be-
longs to &,, which is an Ox ,-linear combination of ey, ..., e;. This shows that
S1,...,8n,€1,...,€; generate F|y.

Step 2. We prove that all sheaves of relations of .7 are finite-type. Again
we choose z € X and a neighborhood U > z. Choose any sy,...,s, € .#(U),
and let t, = ¢(s.). Since %/{t,) is finite-type, we may shrink U to a smaller
neighborhood such that we can find G € 0(U)"** (i.e. an O(U)-valued n x k
matrix) such that the columns G. 1, ..., G, € O(U)" generate %/t.). Set

(€1, ek) = (S1,...,8,)G e Z(U)*,

namely, ¢; = > | 5;,G; ;. Theney, ..., e, are killed by ¢, i.e. they are in &(U). As
%/ e.) is finite-type, we may shrink U and find a k x m matrix £ € &(U)>"
whose columns generate %/ (c.). Let F = GE (which is in ¢(U)"*™). We claim
that the columns of F generate %/ {s.).

Choose any y € U and an element of %¢{s.),, written as an n x 1 matrix
Ae 0% So (s1,...,s,)A = 0. Hence (t1,...,t,)A = 0. So A € %/{t.),. Since
G.1,...,G.; generate Z/(t.),, we may write A = G B for some B € ﬁf(fyl. So

49



(e1,...,ex)B = 0. Thus,as E. 1, . .., E. ,, generate %/{e.),, we may write B = EC

mx 1

forsome C e Oy . Thus A = FC. So Ais an Ox ,-linear combination of columns
of F. O]

Remark 2.1.4. The above proof shows that if & and ¢ are of finite type, then so is
F.
Corollary 2.1.5. &1, & are coherent Ox-modules if and only if & @ &, is coherent.

Proof. The exactness of 0 — & — & @ &2 — & — 0 shows that “&, & coherent”
= “& @ & coherent”, and that if & @ &5 is coherent then & is finite type and the
sheaves of relations of & are finite-type. Exchanging the roles of &7, &> shows that
“& @ & coherent” = “&, & coherent”. l

Corollary 2.1.6. Let ¢ : F — & be a morphism of coherent Ox-modules. Then
Imep, Kery, Cokery are coherent.

Proof. Imy is finite-type since .# — Imy is surjective and .# is finite-type. The
sheaves of relations of Imy are finite-type because ¢ is coherent and Im¢ is its
Ox-submodule. So Imy is coherent. That Keryp and Cokery are coherent follows
from Thm. 2.1.3 and the exact sequences 0 — Keryp — # — Imp — 0 and
0 — Imp - ¥4 — Cokeryp — 0. [

Corollary 2.1.7. If &, .F are coherent O x-submodules of a coherent O x-module &, then
&+ F and & n F are coherent.

Note that the intersection sheaf & n .7 is defined to be the sheaf of all sections
of 4 whose germ at each = € X belongs to &, n.%,. Itis easy to check that (§'n.%),
is canonically equivalent to &, n .Z,.

Proof. Clearly & + .7 is finite-type and hence coherent. So by Cor. 2.1.6, &/(& n
F) ~ (& + F)/Z is coherent, and hence & n % is coherent. O

Definition 2.1.8. Let ¢ : .# — ¢ be a morphism of Ox-module. If . is an Ox-
submodule of ¢, we define (&) to be the &x-module such that for each open
UcX,

o HL)U)={se F{U):¢(s), € &L forallz e U} (2.1.1)
where ¢(s), is the germ of ¢(s) at z.

We have an obvious canonical equivalence
Lo > 07 (L) (2.1.2)
Therefore, by checking at the level of stalks, we see that the sequence
0 — Ker(p) - ¢ H(ZL) - £ —0 (2.1.3)
is exact. Thus, by Thm. 2.1.3 and Cor. 2.1.6, we have:
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Corollary 2.1.9. Let ¢ : % — ¢ be a morphism of Ox-module. If £ is a coherent
Ox-submodule of 4, then ¢~ (£ is Ox-coherent.

Theorem 2.1.10. Assume that O is a coherent Ox-module. Then an Ox-module &
is coherent if and only if for each x € X there is a neighborhood U > x such that &y
is isomorphic to Cokery for some morphism of free Oy-modules ¢ : O — O (where
m,n € N).

Indeed, the “only if” part does not need Ox to be coherent.

Proof. “If”: Since O}, is coherent, 07} and &} are coherent. So Cokery is coherent
by Cor. 2.1.6.

“Only it”: Let & be coherent. Choose » € X. Since & is finite-type, we may
find a neighborhood U such that there is a surjective ¢ : &} — &|y. Since &
is coherent, Kert is finite-type. Thus, after shrinking U, we may find a surjective
7 O — Kery. Then &|y ~ Coker(com) where ¢ : Keryp — O} is the inclusion. [

Corollary 2.1.11. For any coherent O'x-modules &, %, the tensor product & ®¢,, F is
coherent.

Proof. Choose any z € X. By Thm. 2.1.10, we may shrink X to a neighborhood of
x such that & ~ Cokery where ¢ : 0% — 0% is a morphism. By the right exactness
of — ® .7 (cf. Prop. 1.9.5), & ® .Z is equivalent to Coker(0% ® F — 0% ® .F),
which is Coker(#™ — #"). By Cor. 2.1.5, #™, #" are coherent. So the cokernel
is coherent by Cor. 2.1.6. O]

We end this section with some more criteria on coherence.

Proposition 2.1.12. Let ¢ : X — S be a morphism of C-ringed spaces, and let & be
a finite-type Os-module. Then p*& is a finite type Ox-module. If moreover & is Og-
coherent and O'x is Ox-coherent, then p*& is a coherent O x-module.

Proof. 1f & is finite-type, then for each = € X, we may shrink X to a neighborhood
of x such that & is generated by finitely many sy, s9,--- € £(X). So p*& = Ox Qg
& is generated by all p*s; = 1 ® s;. So ¢*& is finite-type.

Now assume & is Og-coherent and Ox is Ox-coherent. By Thm. 2.1.10, we
may shrink X so that & ~ Coker(0¢ — 0%). Then

©*E ~ Ox ®p, Coker(Og — 0F) ~ Coker(Ox Qs O — Ox Qpy UF)
~Coker(0Y — O%)

which is Ox-coherent by Thm. 2.1.10 O

Proposition 2.1.13 (Extension principle). Let Y = Specan(Ox/Z) be a closed com-
plex subspace of a complex space X where 1L is finite-type. Let v : Y — X be the inclusion,
and let & be an Oy -module. Assume that O is a coherent O'x-module. Then & is a co-
herent Oy-module if and only if 1.& is a coherent € x-module.
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Extension principle is an important special case of Finite mapping Thm. 2.7.1
which we will prove later.

Proof. We identify & with (& and 0y with 1,0y = Ox/I. (Cf. Rem. 1.10.7.)
Clearly 7 is O'x-coherent. So 0y is Ox-coherent by Cor. 2.1.6.

Assume ¢, & is Ox-coherent. Then by Prop. 2.1.12, & ~ 1*1,.& is Oy-coherent.
Conversely, assume & is Oy-coherent. Then by Thm. 2.1.10, & ~ Coker(0y" —
0% ) after shrinking X to a neighborhood of z € Y < X. Since 0y is Ox-coherent,
by Cor. 2.1.5, 0y, 0% are Ox-coherent. So & is Ox-coherent by Cor. 2.1.6. O

Corollary 2.1.14. Let Y be a closed complex subspace of X. Assume Ox is Ox-coherent.
Then Oy is Oy -coherent.

Proof. Write Y = Specan(0x/T) where T is a finite-type ideal of Ox. So T is Ox-
coherent. Hence 0y = 0x /T is Ox-coherent, and hence 0y-coherent by Extension
principle. O

Thus, if we can show that 0cn is coherent for any n, then all model spaces, and
hence all complex spaces have coherent structure sheaves.

2.2 Germs of coherent sheaves; coherence of hom
sheaves

Let X be a C-ringed space.

An important reason for studying coherent sheaves is that germs of coherent
sheaves are equivalent to finitely-generated modules of local analytic C-algebras,
just as germs of complex spaces are equivalent to local analytic C-algebras (Thm.
1.6.2). Let us be more precise.

Definition 2.2.1. Let X be a C-ringed space and = € X. The category of germs of
coherent modules at z is the category whose objects are coherent &y;-modules &
where U 3 z is open. If V' < U is a neighborhood of z, then &y and &y := &y|y are
viewed as the same object.

A morphism between two objects &y, . % is an element ¢ € Homg,, (&y, #y)
for a possibly smaller neighborhood V' 5 x. Two morphisms are regarded as equal
if then agree when restricted to a possibly smaller neighborhood of x on which
both are defined. Compositions of morphisms are defined in the obvious way.
Thus, in this category the set of morphisms from & to .y is precisely the stalk
jfmﬁl](éay,g‘}])x of %mlﬁU(éaU,ﬁU). O

Theorem 2.2.2. Let X be a C-ringed space and x € X. Assume that Ox is a coherent O'x-
module, and O ,, is Noetherian. Then the functor § from the category of germs of coherent
modules at x to the category of finitely-generated Ox ,-modules, sending &, to the Ox -
module &, and sending each p € Hzs2 6, (Ey, Fur ). (namely, each p € Homg, (&v, Fy)

52



for a possibly smaller neighborhood V' > x) to the corresponding stalk map &, — F,, is
an equivalence of categories. Namely, the following two statements hold:

(1) For each objects &, Fy, the following O'x ,-module morphism is bijective:

% . %WZ@’U (gU, }\U)I = Homﬁx’w (gx, 321) (221)

(2) Each finitely-generated O ,-module is isomorphic to §(&y) for some object &y.
Namely, it is isomorphic to &y .

Remark 2.2.3. If only (1) resp. (2) is satisfied, we say § is fully-faithful resp.
essentially surjective. These names also apply to contravariant functors.

From the proof, we shall see that the § in (2.2.1) is an isomorphism even with-
out assuming that O, % are coherent or O , is Noetherian.

Proof of (2). Choose any finitely generated Oy ,-module M. Then we have a
surjective morphism o : 0%, — M. Kera is an Ox ,-submodule of 0%,
which is finitely-generated since 0, is Noetherian. Thus we have a surjective
B 0%, — Kera. Lety : 0%, — 0%, be the composition of 3 and the inclusion
v: Kera — 0% .. Then M ~ Cokery.

We can extend v to an 0y-module morphism ¢ : 07 — OF; for some neigh-
borhood U = z. Namely, the stalk map of ¢ at = is 7. (For instance, choose U
such that s, = 7(1,0,...,0),...,s, = 7(0,0,...,1) € 0%, can be defined on U.
Then ¢ is defined to be the &y-module morphism sending (1,0,...,0) € O(U)™
tos; € O(U)", etc., and (0,0,...,1) to s,.) Then Cokeryp is a coherent &;-module
(Cor. 2.1.5 and 2.1.6) whose stalk at x is Cokery ~ M. H

Proof of (1). Choose an &y-module morphism ¢ : &y — %y such that §(¢) = 0.
So the stalk map ¢ : &y, — Fy, is zero. Since & is finite-type, &y, is finitely-
generated. So we may choose si,...,s, € &y, generating &,. We may find a
neighborhood V' 5 z in U such that s4,...,s, € &(V), that p(s1) = --- = ¢(s,) =0
in .7 (V), and that (by Rem. 1.2.16 and that &} is finite-type) sy, ..., s, generate
&yv. So ¢ sends all sections of &y to 0. This proves that § is injective and uses only
the condition that & is finite-type.

We now prove that § is surjective. Choose any € Homg, (&, %,). By Thm.
2.1.10, there is a neighborhood V' 5 z inside U and an &y-module morphism
a: Oy — Oy such that & = Coker(a). Let 7, : Oy, — &, = Coker(a, : O7', —
0y ,) be the quotient map. Let o be 07, ™ &, > #,. Then as argued in the
proof of part (2), the stalk map 1’ can be extended to an ¢y -module morphism
n . Oy — Fy after shrinking V. 77 o o : 07 — %y has stalk map n o 7, o o, at
x, which is 0. So by the injectivity of §, we may shrink V' so that 7 o & = 0. So

i/ equals 0% 5 &, = Coker(a) 3, F, for some 6y -module morphism 7. Then
Ne = n,i.e. §() =n. O
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Let us emphasize the following crucial special case of Thm. 2.2.2:

Corollary 2.2.4. Let X be a C-ringed space and x € X. Let & and .¥ be Ox-modules.
Then the canonical Ox ,-module morphism

8’ . jfmﬁx ((o(d, ﬁ):c - I‘IOIH/}XYI ((gaz, gcc) (222)
is injective if & is finite-type, and is bijective if & is coherent.
Corollary 2.2.5. Let .# be an O x-module.

1. The contravariant functor 5z ¢, (—, F ) on the category of coherent O x-modules
is left exact, where the contravariant functor sends each ¢ € Homg, (&7, 6) to
%mﬁx (527 y) e ’}fmﬁx (67@17 y)ﬂ/’ = ¢ ° .

2. Assume that . is coherent. Then the functor s (% ,—) on the category
of Ox-modules is left exact, where the functor sends each ¢ € Homg, (&1, &) to
Hem ox(F,E1) = Hom oy (F,6), ¢ — po .

Note that these two exactness is equivalent to saying that we have equiva-
lences

%Mﬁx (Coker(@@l - @ﬁg), 9) st Ker(%mgx (éaQ, g) - %Mﬁx ((g}l, ,?))
(2.2.3a)

%m(jx (?, Ker(@‘ﬁ - éag)) =~ Ker(%mﬁx (f, @@1) - %ﬂmﬁx (ﬁ, 0?2)) (223b)
induced by the obvious inclusions

%mﬁx (Coker(éﬁ — éag), ﬁ) — %mﬁx(c%, ﬁ),
%mﬁx (ﬁ, Ker(é"l - gg)) —> %mﬁx (ﬁ, @("1)

Proof. Let & — &, — &3 — 0 be an exact sequence of coherent &'x-modules.
Then we have 0 — 0w (F,E3) — Howe(F,E) — Howre(F,E) which, thanks
to Cor. 2.2.4, gives stalk maps 0 — Homg,  (F,, &) — Homg, (Fo, &) —
Homg, ,(F., 61,.) at each v € X which is exact by Rem. 1.9.6. This proves part 1.
Part 2 is proved in a similar way. O

Corollary 2.2.6. Assume that &,.% are coherent Ox-modules. Then 5z, (&, F) is
coherent. So & is coherent if &, O'x are coherent.

Proof. It & = 0% then 5o (&, F) ~ F" is coherent by Cor. 2.1.5. In the general
case, choose z € X. Then by Thm. 2.1.10 we may shrink X to a neighborhood of
x such that & ~ Coker(&] — &) where &7, &, are free x-modules. The coherence
of A (&,.F) follows from (2.2.3a) and Cor. 2.1.6. O

54



2.3 Supports and annihilators of coherent sheaves;
image spaces

In this section, we assume X, Y are complex spaces.

From Rem. 1.10.7, we know that if 7 is a finite-type ideal of Ox annihilating
an Ox-module &, then the study of & is equivalent to the study of the &y -module
&|y where Y = Specan(0x /). A natural question is whether we can find a largest
such 7, i.e., a smallest such Y. To study this problem, we introduce:

Definition 2.3.1. Let & be an &'x-module. Then the annihilator sheaf of &, written
as @l g, (&) or simply @/s.2.(&), is the ideal sheaf of Ox defined to be the kernel
of the Ox-module morphism Ox — Hirep (E,8) =: End, (&) sending each
[ € Ox to the multiplication of f on &. So we have an exact sequence

0 — Srng (&) — Ox — Endy (). (2.3.1)

If & and Ox are coherent then so is @274, (£) (due to Cor. 2.1.6 and 2.2.6).
Similarly, if A is a commutative ring and M an A-module, then the annihilator
Anny (M) is defined to be the kernel of A — End4(M). O

Remark 2.3.2. (2.3.1) gives an exact sequence of stalk maps at each 2. Assume that
& is Ox-coherent. Then by Prop. 2.2.4, &ne/, (&), ~ Endg, , (&;). This shows that
we have a canonical equivalence of Ox ,-modules

ez g (& )z ~ Annﬁx’s(é‘;) (2.3.2)
if & is coherent.

Definition 2.3.3. Assume Oy is coherent. Given a coherent &'x-module &, we
define the support of &, written as Supp(¢&’), to be the complex space

Supp(&) = Specan (O | oere gy (E)). (2.3.3)

Remark 2.3.4. Ann(&,) = Ox . iff 1 € Ann(&,) iff 1 annihilates &, iff &, = 0. This
shows that the underlying topological space of Supp(&’) defined above (i.e. the
set of all  such that O,/ @720.(&), # 0) agrees with the usual one (i.e. the set of
all x such that &, # 0) when & is coherent.

Remark 2.3.5. We know that the support (as a set) of a finite-type &'x-module is
a closed subset of X (Cor. 1.2.17). Now we know that if &, Ox are coherent, then
Supp(&’) as a set is an analytic subset of X, which means that it is N(Z) for a
finite-type ideal Z.

Our definition of analytic subsets seems stronger than the usual one, which
says that a subset A — X is analytic if each x € X is contained in a neighborhood
U such that AnU is the zero set of finitely many elements of &'(U). These two def-
initions are indeed equivalent, which follows from the coherence of the radicals
of coherent ideals. See Cor. 3.2.8.
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Convention 2.3.6. If &, 0x are coherent, we understand Supp(&’) as a complex
subspace of X, unless when we explicitly say that we are considering Supp(&’) as
a set or an analytic subset. (So “the set Supp(&’)” means Supp(&’) as an analytic
subset (i.e. red(Supp(&)), cf. Def. 3.2.9), but not the RHS of (2.3.3).) The same
convention applies to ¢(X) in Def. 2.3.8.

Example 2.3.7. If 7 is a finite-type (and hence coherent) ideal of O, then
Supp(Ox/T) = Specan(Ox /T). (2.3.4)

Definition 2.3.8. Let ¢ : X — Y be a holomorphic map of complex spaces. As-
sume that Oy, p.0x are coherent Oy-modules and Im(¢) = {¢(z) : v € X} isa
closed subset of Y. We define the image space ¢(X) of ¢ to be

©(X) = Supp(p.Ox) = Specan(ﬁy/ 22726, (P ﬁx)). (2.3.5)
Then ¢# : O,x) — ¢+Ox is clearly injective.

The notation ¢(X) and the name “image space” is justified by the following
lemma.

Lemma 2.3.9. The underlying topological space of ¢(X) is the usual one Im(yp) =
{o(x) : x € X}. In particular, Im(yp) is an analytic subset of Y.

Proof. Choose y € Y. We show that (p.0x), = 0iff y ¢ Im(p). First as-
sume (¢.0x), = 0. Choose a neighborhood V' of y. The non-zero element
1€ (pOx)(V) = Ox(¢ ' (V)) becomes 0 in (¢.Ox),, which means that we may
shrink V so that 1 = 0 in Ox (¢ *(V)). So ¢ (V) = &. Hence y ¢ Im(p). Con-
versely, suppose y ¢ Im(p). Since Im(yp) is closed, we may find a small enough
neighborhood V' 5 y such that ¢~ }(V) = &. So (p.0x), = 0. O

Remark 2.3.10. In the setting of Def. 2.3.8, using (2.3.2), it is easy to see that we
have a canonical equivalence of 0y ,-modules

rere gy, (PO )y ~ Ker(¢# :Oyy — (SO*ﬁx)y)- (2.3.6)

Exercise 2.3.11. Assume that ¢, 0x and 0y are 0y -coherent and ¢ is a closed map.
Show that if X is reduced then the complex space ¢(X) is reduced. (Recall Def.
1.3.8.) Show that if A is an analytic subset of X, then the set ¢(A) is analyticin Y.

To study a coherent sheaf & one can restrict the underlying complex space
to Supp(&’). Likewise, to study ¢ when ¢.0x and Oy are coherent and Im(yp) is
closed, one can restrict the codomain of ¢ to p(X):
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Proposition 2.3.12. Let ¢ : X — Y be holomorphic. Assume that Oy, p.Ox are co-
herent Oy-modules and Im(y) is closed in Y. Then there is a unique holomorphic map
@+ X — p(Y) (the restriction of ) such that the following diagram commutes:

X — 5y

\/

Proof. This follows immediately from Thm. 1.4.8. O

Let us give another application of supports of coherent sheaves. Recall that
if A is a commutative ring and M is an A-module, an element a € A is called a
zero divisor of M if a{ = 0 for a non-zero { € M. Equivalently a is a zero divisor

iff Ker(M =% M) is non-zero. If a is not a zero divisor of M, we call it a non
zero-divisor of M, not to be confused with a non-zero zero divisor, which is by
definition a zero divisor which itself is not zero. Finally, a zero divisor means a
zero divisor of A.

In the following we assume O is coherent, which is redundant after Oka’s
coherence theorem is proved.

Proposition 2.3.13. Let X be a complex space, & a coherent Ox-module, and choose
feO(X). Then

= {x € X : The germ of f at x is a zero divisor of &}

is an analytic subset of X. In particular, the set of v € X such that f is a non zero-divisor
of &, is open in X.

Proof. Let # = Ker(& X, g ), which is coherent by Cor. 2.1.6. Then Supp(.%) is

a complex subspace of X. A point z € X belongs to Supp (%) iff %, = Ker(&, X1,
&) is non-zero iff f is a zero divisor of &,. This shows that Z equals Supp(.#") as
sets. [

2.4 Finite maps and proper maps

The proof of coherence of the structure sheaves of complex spaces is closely
related to the study of finite holomorphic maps ¢ : X — Y and the coherence of
¢, Ox. In this section, we discuss finite maps in the purely topological setting.

We assume X, Y are topological spaces. Recall that a continuous map ¢ : X —
Y is called closed if ¢ sends closed subsets of X to closed subsets of Y.

Proposition 2.4.1. Let ¢ : X — Y be a continuous map. Then the following are equiva-
lent.
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(1) ¢ is a closed map.
(2) ForeachyeY,

{¢"'(V) : V = Y is a neighborhood of 3}

is a basis of neighborhoods of ' (y) , which means that for each open U < X
containing o~ (y) there is a neighborhood V' 5 y such that o= (V) < U.

Proof. Assume (1). For each open U = X containing ¢~ !(y), let V < Y be defined
by Y\V = p(X\U) where ¢(X\U) is closed because ¢ is closed. So V' is open and
clearly contains y. Since V N o(X\U) = &, ¢ (V) n (X\U) = &.So ¢~ }(V) < U.
This proves (2).

Assume (2). Choose any closed subset £ < X. We shall show that p(£) is
closed in Y. Choose any y € Y\p(E). Then X\FE is a neighborhood of ¢ ~!(y).
So we can choose a neighborhood V' < Y of y such that o=(V) < X\E. So
¢ N (V)nE =, and hence V n ¢(E) = &. This proves that y is an interior point
of Y\p(E). So Y\¢(F) is open, and (1) is proved. O

Remark 2.4.2. The above proposition shows that closedness is a local property
(with respect to the base Y): If Y has an open cover (V,,),, then ¢ : X — Y is
closed iff the restriction ¢ : p~!(V,) — V, is closed for each «.

Definition 2.4.3. A continuous map ¢ : X — Y is called finite if it is a closed map
and if ¢~ !(y) is a finite set for all y € Y. The composition of two finite maps is
clearly finite. If ¢ : X — Y is a holomorphic map of complex spaces which is
finite as a continuous map of topological spaces, we say ¢ is a finite holomorphic
map.

Remark 2.4.4. A main reason that we require finite maps to be closed is the fol-
lowing: Suppose ¢ is finite. Given y € Y, choose mutually disjoint neighborhoods
U, < X forall x € ¢ '(y). Then by Prop. 2.4.1, there is a sufficiently small neigh-
borhood V' < Y of y such that

(V)= ] ¢ (V). (2.4.1)

zep~1(y)

In other words, we can shrink each U, to a smaller neighborhood of = such that

V)= ] Ua (2.4.2)
)

zEQP—1
From this it is clear that the restriction ¢|¢, : U, — Y is finite.

As applications of this observation, we prove several important facts about
direct images.
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Proposition 2.4.5. Let ¢ : X — Y be a finite continuous map, and let & be an X-sheaf.
Then for each y € Y, we have an isomorphism of abelian groups

P:(pu8)y — P & (2.4.3)
)

rep~t(y
defined componentwise by the obvious restriction maps.

If ¢ is a morphism of C-ringed spaces and & is an y-module, then @ is clearly
an isomorphism of Oy,-modules. Moreover, ® is an isomorphism of (.Ox),-
modules if we let (9. Ox)y ~ @,c,1(,) Ox, act on the codomain of  component-
wise.

TEP™

Proof. V is defined by passing to the direct limit of the map

Py &P (V) > P & (2.4.4)

zep~t(y)

over all open V 3 y. If s € &(¢~*(V)) and Py (s) = 0, then we may find disjoint
neighborhoods U, 3 x such that s|;;, = 0. After shrinking V' such that (2.4.1) holds,
we have s = 0. So @ is injective.

On the other hand, choose s, € &, for each z € ¢~'(y). Then we may choose
small enough neighborhoods U, > x and V' 5 y such that s, € &(U,) and (2.4.2)
holds. Let s € &(¢~1(V)) be s, when restricted to U,. Then ®y(s) = s,. So @ is
surjective. [

Recall that for an arbitrary continuous map ¢, the functor ¢, is left exact.

Corollary 2.4.6. Let ¢ : X — Y be a finite continuous map. Then p, is an exact
functor (i.e. a left and right exact functor) from the category of X-sheaves to that of
Y -sheaves. Namely: if a sequence of maps of X-sheaves

0—>&8—>F -9 —0, (2.4.5)
is exact, then the following is exact:
0= (0u8)y = (05T )y = (9:9)y — 0. (2.4.6)
Indeed, (2.4.5) is exact if and only if (2.4.6) is exact.
Proof. By Prop. 2.4.5, (2.4.6) is the same as

o- P &— P %> P %% —o.

zep~1(y) zep~1(y) zep~1(y)

The equivalence of the exactness of (2.4.5) and (2.4.6) follows. O
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Proposition 2.4.7 (Base change proposition). Let 7 : X — S be a finite holomorphic
map of complex spaces. Let & be an Ox-module and .# an Os-module. Then we have a
(clearly natural) Os-module isomorphism

T (18 Qog M — Tu(E Qpy M)

5@ S W) Buson AV) > oD (6B )W)
forall open W < S.
Note that the stalk map of ® at any ¢ € S is the canonical morphism
T (7:8) Rog, My — T:(E Rog M ) (2.4.8)

Proof. By Prop. 2.4.5, the stalk map (2.4.8) can be extended to a commutative
diagram

(748 Qg My i (& oy M),

-| J= (2.4.9)

(Brerii &) Bty Me — Bpeqry (& @05 M),

where the other three morphisms of &s;-modules are isomorphisms. So (2.4.8) is
an isomorphism. O

Lemma 2.4.8. Let ¢ : X — Y be a finite holomorphic map of complex spaces. Assume
that & is a coherent Ox-module. Then each y € Y is contained in neighborhood V < Y
such that & |.-1(vy is the cokernel of a morphism of free € -1 -modules.

Proof. Choose V such that (2.4.2) holds and U, is a small enough neighborhood
of x € ¢~ !(y) such that &|y, is equivalent to Coker(0;} — &7 ). The natural
numbers m,n might initially depend on z, but we can enlarge m,n so that they
do not. Then &-1(v) is clearly the cokernel of a morphism 07", ;) — O (). 0

Definition 2.4.9. A continuous map ¢ : X — Y is called proper if for each com-
pact subset K < Y, o '(K) is compact.

Finite maps are special cases of proper maps as shown by the following propo-
sition. Indeed, a deep theorem by Grauert says that if ¢ is a proper holomorphic
map then ¢, & is Oy-coherent whenever & is Ox-coherent. In particular, ¢, 0x is
Oy-coherent. So we can study f(X). In the special case that ¢ is finite, the study of
the coherence of ¢, O is crucial to the proof of coherence of all structure sheaves
of complex spaces.

Proposition 2.4.10. Let ¢ : X — Y be a continuous map of locally compact Hausdorff
spaces. The following are equivalent.
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(1) o is proper.
(2) pis closed, and o~ (y) is compact for each y € Y.
Thus, a finite map is precisely a proper map whose fibers ¢~ (y) are all discrete sets.

Proof. Assume (1). Let us prove that ¢ is closed by proving part (2) of Prop. 2.4.1.
Choose y € Y and any neighborhood U o ¢~ !(y). Since Y is locally compact, we
can fix a precompact neighborhood V; < Y of y. Then E := (X\U) n o 1(V{) is
compact by the properness of . Let U be the set of all precompact open subsets
of ¥, containing y. Then [,y V< = {y} since Y is Hausdorff, and hence E n
Nyven ¢ 1 (V) = &. So by the compactness of E, there is V € U such that E n
e 1 (V) =0.S0 o H(V) = U.

Assume (2). For each y € Y, since ¢ (y) is compact and X is locally compact,
we may find a precompact neighborhood U < X of ¢!(y). By Prop. 2.4.1, we can
find a neighborhood V of y such that ¢! (V) < U. So ¢~ (V)9 is compact since it
is closed in U". From this we conclude that any compact K < Y can be covered
by finitely many open sets V1, Vs, ... such that ¢=!(V;)? is compact. Then ¢! (K)
as a closed subset of [ J; ™" (V;)* is compact. O

The following important fact says that properness and finiteness are preserved
by base changes.

Proposition 2.4.11. Let 7 : X — Sand+ : Y — S be holomorphic maps of complex
spaces. If 7 is proper resp. finite, then pry : X xgY — Y is proper resp. finite.

Proof. As a topological space, X x ¢V is the closed subset of all z x y € X x Y such
that 7(z) = ¥ (y) (Rem. 1.13.11). The relation pry*(y) = 7' (¢(y)) x y shows that
the fibers of pr,- are finite sets if those of 7 are finite. It also shows thatif K < Y
is compact then pry'(K) is a (clearly closed) subset of 7—1(¢)(K)) x K which is
compact if 7 is proper. So pry- is proper if 7 is so. O

2.5 Weierstrass maps and Weierstrass preparation
theorem

The goal of this section is to study an important class of finite holomorphic
maps called Weierstrass maps.

Definition 2.5.1. Let S be a complex space. Let £ € N. For eachi = 1,...,k, we
choose a polynomial of degree n;

pi(zi) =1®a 0+ (1®a1)z + + (1 ®a;,)z" € ﬁ(@k x S)|[z]
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where a; j € 0(S), n; € Z,,and a; ,,(t) # 0 for all £ € S. Consider p; as an element
of 0(CF x 9). Let

X = Specan(Ock . 5/7) T =p0Ocrys+ -+ 00ckys. (2.5.1)

Then the holomorphic map 7 : X — S defined by restricting the projection prg :
C! x S — S'is called a Weierstrass map.

Recall that by our notations, 1 ® a, ; means pra; ; = a, ; o prg. We shall write
1®a,; as a; ; if no confusion arises.

Proposition 2.5.2. Weierstrass maps are finite.

Proof. Clearly each fiber of 7 : X — S'is a finite set. To check that = is closed, by
Rem. 2.4.2, it suffices to check it locally with respect to the base.

By Rem. 1.5.2 we can shrink S and find an open disc D < C such that for
each ¢ € S and each i, the polynomial p;(z;,t) of z; has n; zeros in D counting
multiplicities. So X (as a topological space, namely N(Z)) is a closed subset of
(DY* x S. Therefore 7 : X — S is the restriction of the projection (D9)k x S — S
to a closed subset, which is closed because the projection (D?)* x S — S is proper
and hence closed (Prop. 2.4.10). O

The next proposition says that a canonical pullback Y — 7' of a Weierstrass
map X — S along a holomorphic map ¢ : T' — S'is Weierstrass.

Proposition 2.5.3. Assume the setting of Def. 2.5.1. Let ¢ : T" — S be a holomorphic
map of complex spaces. Set

61'0' = ai,j o 1/} S ﬁ(T)
ﬁl(zz) =1 ®6i,0 + (1 ®’di71)zi + e+ (1 ®527n1)2?2 S ﬁ((Ck X T)[ZZ]
and set
Y = Specan(Ock 1/ T) J =010ckyr + + + PrOckyr- (2.5.2)

Then the Cartesian square
Chx S L CkxT
S+——7T

restricts to a Cartesian square

Xy
‘A
S+———T
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Proof. By Prop. 1.12.1 we have a Cartesian square

X+——Y

! !

ChxS+—CFxT
which, together with Rem. 1.11.3, proves our proposition. O

The following theorem is the first major result of this chapter. Many subse-
quent major results in this chapter are proved using this theorem.

Theorem 2.5.4 (Fundamental theorem of Weierstrass maps). Assume the setting
of Def. 2.5.1. Then

(22 0<y <ng—1forall 1 <i<k} (2.5.3)
(or more precisely, these elements acted on by prjéék 5] 18 a set of free generators of the
O's-module 7, 0.

In particular, 7, O is a free Os-module of rank nns - - - ng.

Lemma 2.5.5. If Thm. 2.5.4 holds when S is smooth, then Thm. 2.5.4 holds when S is
any complex space.

Proof. Note that Thm. 2.5.4 is local by nature since it can be checked at the level
of stalks. So we may assume S is so small that it is a closed subspace of an open
subset (2 < C™, and that each q; ; is the restriction of an element of €(£2). There-
fore, by Prop. 2.5.3, we have a Weierstrass map Y — CF x Q — Q (which we also
denote by 7) such that the following two squares are Cartesian.

X —Y

{ {
CFkFx S —— CkxQ
{ {

S e—Q

In particular, 7 : X — S is the base changeof 7: Y — (2 to S.

Write S = Specan(0q/Z). Then by Rem. 1.12.3, Ox is Oy ®g, O (if we regard
Ox as an Oy-module and 05 as an 0g-module). By Base change Prop. 2.4.7, we
have canonical isomorphisms of &o-modules

T:Ox ~ T (Oy Qg, Os) ~ 1. Oy Rg,, Us.

Equivalently, 7.0x ~ m,0y|s as Os-modules. Since we assume that Thm. 2.5.4
holds for 7 : Y — 2, we know that 7,0y is generated freely by (2.5.3). So 7.0 is
generated freely by (the restrictions to S of) (2.5.3). O
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Due to Lemma 2.5.5, we can assume that:

Convention 2.5.6. In the remaining part of this section, S is an open subset of C".
Lett, = (t1,...,t,) be the variables of S.

To prepare for the proof, we let N(p;) = C x S be the subset of all (z;,t,) such
that p;(z;,t.) = 0. For each (¢,) € S, the fiber

N(p;):. = {The set of all z; € C satisfying p;(z;,t.) = 0}
Then by Prop. 2.4.5, we have an obvious isomorphism of 0, -modules

(MeOx )t =~ @B Ocruswetn)/Liwets) (2.5.4)
wi€N(pi)ta
1<i<gk

where

Tiwats) = P10Ckx S (warte) T+ PEOCE RS, (wa t0)-

Our goal is to show that (2.5.3) generates (2.5.4) freely.

2.5.1 Proof of Thm. 2.5.4,1

In this subsection, we assume (t,) = 0 € S < C™ for simplicity, and show that
(2.5.3) generate (7,0x)o. We let (7.) denote a set of general variables of S. (2.5.4)
reads

(meOx)o~ @B Ocrrs we0)/Liwe0)- (2.5.5)

'lUiEN(pi)O
1<i<k

Lemma 2.5.7. (2.5.3) generates (7.0 )o.

Proof-special case. We consider the special case that for each i, N(p;)o is the single
point 0. In this case, p;(2;, 7.) has order n; in z; (recall Def. 1.5.1). (Namely, p; is,
up to multiplication by a nowhere zero element of &/(.S), a Weierstrass polynomial
of z;.) Now (2.5.5) reads

(7T* ﬁx)o ~ Ock xs,(o,o)/I(O,O)-

We explain the proof when k = 2. The general case follows from exactly the same
argument.
Choose f(z1,22,Ta) € Oc2x5,0,0)- Then by WDT (Weierstrass division theorem),

ni—1

f(21,22,70) Z 21 g] 22, Ts) mod p1ﬁc2xs7(o,0)
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where g; € Ocys,0,0)- Apply WDT again, we have

no—1

22,7'. Z 2’2 hl 7'. mod Pz@cw,(o,o)
where h; € Os. This finishes the proof. O
To prove the general case, for each w; € N(p;), we define integer
pi(w;) = {The multiplicity of the root z; = w; of p;(2;,0)}

So 0 < pi(w;) < n;.

Lemma 2.5.8. For each i, choose w; € N(p;)o. Then there is an Ogq-coefficient-
polynomial qi(z.,7s) Of 21, . . ., 2, with multi-degree < (ny — pa(w1), ..., ny — pu(wy))
satisfying the following conditions.

(1) Its germ at (w,,0) is an invertible element of the ring Ock s (w. 0)/L(we,0)-

(2) Its germ at (w,,0) is 0 in the ring Ockysw.0)/Lw.0) for any (@,) =
(@1, ..., W) € CF such that @; € N(p;)o (for all i) and that (@.) # (w.).

This lemma can be viewed as a partition of unity of (7.0x),. We postpone the
proof of this lemma until after proving Lemma 2.5.7.

Proof of Lemma 2.5.7-general case. In view of (2.5.5), it suffices to prove the follow-
ing claim:

e Choose any (w,) € C* such that w; € N(p;)o, and choose any f(z.,7.) €
(m+Ox )o which is zero in Ok 5 (4. .0)/Z(w.,0) Wwhenever (w,) # (w.). Then f
belongs to the 0 y-submodule of (7,.0x ), generated by (2.5.3).

— Namely, there is an Ogg-coefficient-polynomial ¢(z.,7.) of z, with

multi-degree < (n; —1,...,n; — 1) whose germ at (w,, 0) is equal to the
germ of f mod Z,, o), and whose germ at (., 0) (Where (w,) # (w.)) is
in I(ﬁ,,o) .

Let ¢; be as in Lemma 2.5.8, whose germ at (w,,0) is an invertible element of
Ok s,(wa,0)- Note that f/q is in Ocryg (4, 0) (but not in (7,0 )o). We now apply
the proof of the special case to f/¢;. Then by WDT (noting that p;(z;, 7.) has order
wi(w;) in z; —w;), there is an O -coefficients polynomial ¢z (2., 7.) of z, with multi-
degree < (p1(n1) —1,..., pux(ni) — 1) which equals f/q1 in Ocr 5 (1. 0)/Z(w..0)- Then
fand ¢ := qiq, are clearly equal in Ockyg (4, ,0)/L(w.0)- They are also equal in
Ok s,(w0,0)/ L 0) Since both are 0. O

We are done with the proof of Lemma 2.5.7.
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2.5.2 Proof of Lemma 2.5.8

Definition 2.5.9. A polynomial ¢(z, 7.) € C{7.}|z] is called a Weierstrass polyno-
mial of z if it is monic and the degree equals the order in z. Namely,

q(2,7) = ao(7e) + ay(7)z + -+ ap_1(1e)2" 1+ 2" (2.5.6)
where ag, ..., a,-1 € C{r.}, and
ao(O) = Cll(()) == an,l(()) = 0.

Theorem 2.5.10 (Weierstrass preparation theorem (WPT)). Choose f(z,7.) €
C{z, 7.} with finite order n in z. Then there exist a unique invertible u € C{z, 7.} and a
Weiertrass polynomial g € C{1,}|#] of z such that in C{z, 7.} we have

f=uq.

Proof. Uniqueness: f = ug can be written as ¢ = u~'f. Write ¢(z,7.) = 2" —r
where the polynomial r € C{7,}[z] of z has degree < n. Then 2" = u~! f + r gives
the unique Weierstrass division of 2" by f. So u, ¢ are unique.

Existence: By WDT, we have 2" = af + r where o € C{z, 7.} and r € C{7.}|2]
has degree < n. Now, 2" = «a(z,0)f(z,0) + r(z,0) gives the unique Weierstrass
division of 2" by f(z,0). Since f has order n in z, we may write f(z,0) = 2"h(z)
where h € C{z} is invertible. So z" = h(z)™! - f(2,0) also gives a Weierstrass
division. Therefore r(z,0) = 0 and a(z,0) = h(z)™'. So «a(0,0) # 0, i.e. «is
invertible in C{z,7,}. We have f = a~'q where ¢ = 2™ — 1. O

We are ready to prove Lemma 2.5.8.

Proof of Lemma 2.5.8. Recall the polynomials p; in Def. 2.5.1. By WPT, for each
w; € N(p;)o, in the ring C{z; — w;, 7}, pi(2;, 7o) equals a unit times a Weierstrass
polynomial 7; ., (2;, 7a) of 2; — w;. SO 74, (2, Te) € Ospl2:] has degree p;(w;) in z;,
and 74, (2;,0) = (2 — w;)""). So in the ring Ocr s (@..0)/L(w..0) Tiw; 1S invertible
when @; # w; (since 7; ., (W;,0) # 0), and is 0 when w; = w;. Thus

R; = H T'i,w;

WieN (pi)o
Wi FW;

is invertible in Ock g (4. 0) (a0 when w; = w; and is zero when w; # w;. R; €

Os[z] has degree n — p;(w;) in z;. So py = []I_, R; gives the desired polynomial.
O
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2.5.3 Proof of Thm. 2.5.4, I1

Finishing the proof of Thin. 2.5.4. We have already shown that the set (2.5.3)
(which has n; - - - n;, elements) generate 7, 0. In particular, 7,0y is a finite-type
OUs-module. To show that (2.5.3) generates 7.0y freely, by Prop. 1.3.15, it suffices
to show that the fiber (7.0x)|y = (7.0x) ®gy (Os/mg,) has dimension n; - - - n
foreach y € S.

By Base change Prop. 2.4.7, (7. 0Ox )|y is canonically equivalent to

T+(Ox ®og (Os/msy)),

which equals 7,0x, = 0(X,) (wWhere X, = 77'(y) is the inverse image of y and
is a closed subspace of X) by Rem. 1.12.3. By Prop. 2.5.3, 7 : 7 '(y) — {y} is a
Weierstrass map. It is the restriction of C¥ — {y} to the complex subspace of C*
defined by the ideal sheaf generated by p;(z;, v) = aio(y)+ai1(y)zi+- - +ain, (y)z"

i

for all 1 < i < k. Thus, it suffices to prove the following lemma. O

Lemma 2.5.11. Let X = Specan(Ock/I) where I is the ideal sheaf generated by
D1, - - ., Dk Where each p;(z;) € C|z;] has degree n;. Then €(X) has dimension n - - - ny.

Proof. We are still in the setting of Def. 2.5.1, but assuming that S is a single point
0. S0 N(pi)o = N(p:). By (2.5.5),

0X)~ @D Ocru./Tu.

w;EN (p;)
1<i<k

Clearly Z,, is the ideal generated by (z; — w;)*(*) forall 1 <i < k. So
k
{n(% —w;)" 0 < vy < pi(w;) — 1}
i=1

is a basis of O ,, /L, . This calculates the dimension of &'(X). O

2.6 Coherence of Oy

The goal of this section is to prove that O is coherent for every complex space
X. By Cor. 2.1.14, it suffices to prove that 0~ is coherent. The role that Thm. 2.5.4
plays in the proof of coherence of &¢n is similar to the role that WDT plays in the
proof that O¢r o is Noetherian.

Lemma 2.6.1. Assume that X is an open subset of C". Assume that for each open con-
nected U < X and each non-zero h € O(U), Oy /hOy is a coherent Oy /hOy-module.
Then O« is a coherent O~ -module.
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More precisely, our assumption is that the structure sheaf of Specan(&y/hOy)
is coherent.

Proof. Step 1. By shrinking X to a connected open subset if possible, it suffices to
show that for each &x-module morphism ¢ : % — Oy, its kernel & is of finite
type. Let hy = ¢(1,0,...,0),...,hxy = ¢(0,0,...,1), which are in (X). So

©(81,82,...,8N) = S1hy + Soho + -+ + syhy

If p =0, then & = 0¥ is clearly of finite-type. So we assume ¢ # 0, i.e., one of
hi,..., hy, say hy, is nonzero.
For each = € X, the germ of h; at z is nonzero by Identitdtssatz 1.1.3, and Ox ,
is an integral domain. So Ker(y) = 0if N = 1. In the following, we assume N > 1.
Let Y = Specan(0x/h1Ox). For each f € Ox, let [ f] denote its residue class in
Oy . Define an 0'x-module morphism 7 : 0% — 0} ! by

m(s1,82...,8n) = ([s2],- -, [sn])
Then ¢ descends to ¢ : O ' — Oy satisfying
QXJ([SQ], Ceey [SN]) = [Sghg + -+ SNhN]

Let # = Ker(¢)) and let 7 be the restriction of 7 to &. Then we have a commutative
diagram of &'x-module morphisms

0 y & y O —2— Ox
0 y F y 0N L oy

Step 2. Let us prove that 7 is an epimorphism by proving the surjectivity of

each stalk map 7 : &, — .%,. An element of .%, is precisely ([s2],. .., [sn]) (Where
Sa,...,SN € Ox,) satisfying that sqhe + --- + syhy belongs to hyOx ,, i.e. of the
form —s;h; for some s; € Ox,. Then (s1,...,sy) belongs to &, and is sent to

([s2],--.,[sn]) by 7.
Step 3. Let .#" = Ker(7). By Step 2, we have an exact sequence

0N -EL T 50

By assumption, 0y is Oy-coherent. So .# is Oy -finite-type (by Cor. 2.1.5 and Cor.
2.1.6), and hence Ox-finite-type. To prove that & is of finite-type, by Rem. 2.1.4, it
remains to prove that ./ is a finite type &'x-module. Let us prove that

& = (—=ho, h1,0,...,0), & = (=h3,0,h1,...,0), ..., & = (—hn,0,0,...,hq)
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(which are clearly inside ./") generate .4".
Choose any = € X and (s.) = (s1,82,...,5n) € Ay SO S9,...,5n € hiOx,
because (s,) is killed by 7. Choose ¢, ..., gy € Ox, such that

Sy = goh1, ..., Sy =gnh
Since s1hy + sahg + - - + syhy = 0 because (s.) is killed by ¢, we have
(s1+ g2ho + -+ gnvhn)hy =0

By Identitdtssatz 1.1.3, the germ of hy at x is non-zero. Thus, since Oy, is an
integral domain, we have s; + gohs + - - - + gnvhy = 0. So

(51,82, ...,5N) = g2€a + -+ + gnén

The proof is completed. O

Theorem 2.6.2 (Oka’s coherence theorem). For every complex space X, Ox is a co-
herent O'x-module.

Proof. We prove the coherence of Oc» by induction on m. The case m = 0 is
obvious. Assume that Ocm is coherent. Let us prove that Ocm+1 is coherent.

By Lemma 2.6.1, it suffices to show that for each open connected U < C™*!
and non-zero h € O(U), if we write Y = Specan(0y/h0y) then Oy is a coherent
Oy-module. Let Z" be the kernel of a morphism 0y — Oy. Then we have an
exact sequence of Jy-modules

We need to show that for each = € U, say « = 0, after shrinking U to a neighbor-
hood of z, # is 0y-generated by finitely many elements of 7 (U).

The germ of h in 0y, is non-zero by the Identitédtssatz 1.1.3. Thus, by choosing
a new set of coordinates (z,1y,...,%,) of U such that + = 0, we may assume that
the germ of h at 0, which is an element of C{z,ty,...,%,}, has finite order n in
z. (Cf. the proof of Thm. 1.5.5). Thus, by WPT, after shrinking U to a smaller
neighborhood of 0 we may assume that i € C{t.}[z] is a Weierstrass polynomial
of degree=order n in z.

We assume U = V x W where V < Cand W < C™ are neighborhoods of 0.
By Rem. 1.5.2, we may assume that N(h) = {(z,t.) € C x W : h(z,t,) = 0} is like
Fig. 1.5.1: for each (t,) € W, the polynomial i(z,t.) of z has n zeros in V' counting
multiplicities. Thus N(h) < U. Therefore

Ou/hOy = Ocxw /hOcxw .

So the projection of 7 : ¥ — W (inherited from C x W — W) is a Weierstrass
map. By the Fundamental Thm. 2.5.4 of Weierstrass maps, 7.0y and hence
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T (OY) = (7. 0y)N are Oy -free. So they are Oy -coherent by our assumption that
Ocm is coherent. Therefore .. %" is Oy-coherent by Cor. 2.1.6 and the exactness of

0— me — W*ﬁ{/\/ — T, Oy .
So J is Oy-finite-type by the following lemma. O

Lemma 2.6.3. Let m : X — S be a finite morphism of C-ringed spaces, and let & be an
Ox-module. If 7, & is Os-finite-type, then & is Ox-finite-type.

Proof. Choose any t € S. By shrinking S to a neighborhood of ¢ (and shrinking X
tor1(9)), wecan find oy, ...,04 € &(X) = (m.&)(S) which Os-generate 7,.&. For
each z € X, by Prop. 2.4.5, &, is a direct summand of the O ,(,)-module (7,&) z(a).
So &, is Os (y)-generated (and hence Ox ,-generated) by o4, ..., 0;. This proves
that & is Ox-generated by o4, ..., 0y. O

Corollary 2.6.4. Let X be a complex space. An ideal of O is finite-type if and only if it
is coherent.

2.7 Finite mapping theorem

The following two theorems are the main results of this section.

Theorem 2.7.1 (Finite mapping theorem). Let 7 : X — S be a finite holomorphic
map of complex spaces, and let & be an Ox-module. Then the following are equivalent.

(1) & is Ox-coherent.
(2) ©,.& is Og-coherent.

Theorem 2.7.2. Let 7 : X — S be a holomorphic map of complex spaces. Let t € S,
and assume that x € 7 (t) is an isolated point of w=*(t). Then there are neighborhoods
Uc Xofxand W < S of w(U) such that m restricts to a finite holomorphic map
m:U—>W.

Remark 2.7.3. It follows immediately from Thm. 2.7.2 that if 7 : X — S is holo-
morphic and if ¢ € S is such that 771 (¢) is a finite set, then there are neighborhoods
Uc X of m7'(t) and W < S of n(U) such that the restriction 7 : U — W is finite.

Corollary 2.7.4. Let X be a complex space which, as a set, is {x}. Then an Ox-module &
is Ox-coherent if and only if & (or more precisely & ({x})) is a finite-dimensional vector
space.

Proof. Let m : X — {0} be the obvious map where {0} is the reduced single point.
(Note that z is not assumed to be reduced.) Then 7 is clearly finite. That & is
finite-dimensional is equivalent to that 7.& is 0 -coherent. Thus the proof is
finished by Thm. 2.7.1. O
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2.7.1 Proof of the main results

We begin with the following preliminary lemma.

Lemma 2.7.5. Given a finite holomorphic 7 : X — S, if m,Ox is Ogs-coherent, then for
each coherent Ox-module &, 7,& is Og-coherent.

Proof. Choose any ¢ € S. By Lemma 2.4.8, we can shrink S to a neighborhood of ¢
and shrink X to 771(9) so that & ~ Coker(0% — 0%) for a morphism 0% — O%.
Thus, by the (right) exactness of =, (Cor. 2.4.6), 7.8 ~ Coker(n,.0% — m.0%),
which is coherent since 7,0y is coherent. O]

The crucial part of the proof is the following lemma.

Lemma 2.7.6. Choose open subsets R = C¥ and S = C™. Let X = Specan(Opxs/T)
where T is a coherent ideal of Orys. Let m : X — S be the holomorphic map restricted
from the projection R x S — S. Let t € S and assume that x € 7w~ (t) is an isolated point
of m=1(t). Then there are neighborhoods U < R of x and W < S of n(U) such that the
restriction w: (U x W) n X — W is finite, and that .0y «w)~x is Ow-coherent.

We assume z = Oz and t = Og for simplicity, and prove the lemma by induction
on k.

Proof for the case k = 1. Shrink R to a neighborhood of 0 such that 7*(0g) = (R x
0s) N N(Z) is {0}. So we may shrink R further so that we can find f € Z(R x 5)
such that (R x 0g) n N(f) = {0}. So f, as an element of C{z, 1, ...,t,}, has finite
order in z. So by WPT, we may shrink R, S further and replace f by a Weierstrass
polynomial of z, which we still denote by f.

Let J = fORrxs and Y = Specan(Ory«s/J). Let T : Y — S be the restriction
of R x § — S toY. Asin the proof of Oka’s coherence Thm. 2.6.2, we may
shrink R and S so that Fig. 1.5.1 holds, and hence that 7 is a Weierstrass map. So
T = T o Ly,y is finite since both 7 and the inclusion map ¢ = ¢x y are finite.

By the Fundamental Thm. 2.5.4 of Weierstrass maps (and Oka’s coherence the-
orem), 7.0y is Ug-coherent. So by Lemma 2.7.5, 7, sends coherent &y-modules
to coherent Og-modules. But ¢, 0x is Oy-coherent by Extension principle 2.1.13.
So m,.0x = T, Ox is Og-coherent. O

Proof that case k = case k + 1. Assume that case k is true. Now assume R is an
open subset of C¥*!. By shrinking R to a neighborhood of 0y we assume R = U x
V where U = C and V' < CF are open subsets containing Oc and Ocx respectively,
and that 771(0s) = (U x V x 0g) n N(Z) equals {0}.

Let a : X — V x S be the restriction of the projection U x V x S — V x S.
Then a ! (Oyxs) = (U x Oy x 0g) x N(Z) is {0}. So by the case k = 1, we may
shrink U, V, S to smaller neighborhoods of 0/, 0y, 05 respectively so that « is finite
and o0y is Oy g-coherent. By Def. 2.3.8, we can define the image space «(X)
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whose underlying topological space is Im(«), and by Prop. 2.3.12, a factors as the
composition of a holomorphic & : X — «(X) and the inclusion a(X) — V x S.
We thus obtain a commutative diagram

S
/ v prs

X = Specan(Opyxyxs/T) . S

a(X)

where 7 is the restriction of prg to a(X). We have 7 = prgoa =T o a.

Clearly 7'(0g) = {Oy«s}. Thus, by our assumption on case k, we may shrink
V, S so that 7 is finite and (by case k£ and Lemma 2.7.5) 7, sends coherent &, x)-
modules to coherent 0g-modules. Note that we still have that « is finite and
L0 Ox = o, Ox is Oy s-coherent after shrinking V, S (but not U is not shrunken).
So a is finite, and by Extension principle 2.1.13, &, Ox is Oy(x)-coherent. So 7 =
7 o & is finite, and 7, 0x = T,a,Ox is Os-coherent. We are done with the proof of
Lemma 2.7.6. ]

We are now ready to prove Thm. 2.7.2 and more:

Lemma 2.7.7. Thm. 2.7.2 is true. Moreover, in Thm. 2.7.2, U and W can be chosen so
that (besides that  is finite) 7.0y is also Oy/-coherent.

Proof. 1t suffices to assume that X is a model space, say a closed subspace of an
open R < C*. We first assume S is an open subset of C™. Define ¢ : X — R x S
so that the following triangular diagram commutes

X xS )
lvm %RX
X/ 2 )RXST5>S

By Prop. 1.13.6 and Prop. 1.12.5, 1 v 7 and tx,z v 1 are closed embeddings. So
their composition ¢ is a closed embedding (Cor. 1.7.6). By Prop. 1.11.6,

prgop =prgo(tx1)o(lvm)=prgo(tvm) =m.

Thus, by identifying X with ¢(X), the assumptions of Lemma 2.7.6 are satisfied.
The conclusions of Lemma 2.7.6 prove what we want to prove.

In the general case, we may shrink S' (and shrink X accordingly) so that S is
a closed subspace of an open (2 < C™. Let: : S —  be the inclusion. Then
by shrinking X and 2 (and S accordingly) to neighborhoods of any given points,
tom : X — (is finite and ¢, 7, Ox is Oqg-coherent. Clearly = is finite, and by
Extension principle 2.1.13, 7. 0x is Os-coherent. ]
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Proof of Thm. 2.7.1, (1)=(2). Let us prove that 7,.0x is coherent. Choose any ¢ €
S. By Lemma 2.7.7, for each x € 7~ !(¢) we can choose neighborhoods U, > = and
W, o w(U,) such that 7,0, is Oy, -coherent, and that U, n U, = Jif z # o'
So for each open W < ﬂweﬂ_l(t) W,, we have that 7.0y, ~—1w) is Ow-coherent.
Therefore, if we set U = | J U,, then

zer—1(t)

W*ﬁUmrl(W)z @ 7r>x<ﬁU,m7r*1(W)

zer—1(t)

is Oy -coherent.

Since 7 : X — S is finite, by Prop. 2.4.1, there is a neighborhood W > t inside
Maer—1(y) We such that 71 (W) = U n 771 (W). So muOr-1w) = (T:0x)lw is Ow-
coherent. O

The proof of (2)=(1) is similar to that of Oka’s coherence Thm. 2.6.2:

Proof of Thm. 2.7.1, (2)=(1). Assume that 7.& is coherent. Then & is Ox-finite-
type by Lemma 2.6.3. Let us show that the sheaves of relations of & are finite-type.
By Prop. 2.4.1 or Rem. 2.4.4, we have a neighborhood W of ¢ such that

W)= 1] U
(1)

rer—1

where each U, is a small enough neighborhood of . Shrink Y to W and X to
7~} (W). So we have an equivalence of &y -modules

Te& ~ 6—) (& v, )-

zem—1(t)

Suppose « : O} — &, is a morphism of &y,-modules. Let # = Ker(a) so
that we have an exact

We regard 7, 0y, , 6y, as Ox-modules by identifying them with their direct im-
ages under U, — X. Clearly 0y, is Ox-coherent. So 7.0y, is Os-coherent. Also
T8y, is Us-coherent since it is a direct summand of the coherent sheaf 7,.& (cf.
Cor. 2.1.5). Thus, the exact sequence of 's-modules

N
0 - mH — m 0y — Ty,

together with Cor. 2.1.6 show that 7, is Og-coherent. Therefore, by Lemma
2.6.3, X is Ox-finite-type. l

We are done with the proofs of Thm. 2.7.1 and 2.7.2. In the following, we give
some applications.
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2.7.2 Applications

Corollary 2.7.8. Let ¢ : X — Y be a holomorphic map of complex spaces. Then the
following are equivalent.

(1) ¢ is a closed embedding.

(2) ¢ is an immersion of complex spaces, and it is a closed and injective map of topo-
logical spaces.

Proof. (1)=(2) is obvious. Assume (2). Then as ¢ is finite, p.0x is Oy-coherent.
By (2.3.6), the coherent ideal

J = nnoy(9:0x)
satisfies the assumptions in Prop. 1.7.3. Thus (1) follows from Prop. 1.7.3. O

Rem. 1.13.8 tells us that any holomorphic map factors as the composition of
a closed embedding and the projection of a direct product. When the holomor-
phic map is finite, such decomposition might not be useful because, although
closed embeddings are finite, projections are usually not. The following proposi-
tion gives a refinement of this decomposition. It says that any finite holomorphic
map locally factors as the composition of a closed embedding and a Weierstrass
map. This result will be used e.g. in the proof of Base change Thm. 2.8.2.

Proposition 2.7.9. Let 7 : X — S be a finite holomorphic map of complex spaces. Then
each t € S is contained in a neighborhood W < S such that the restriction T : 7= 1(W) —
W is equivalent to the restriction of a Weierstrass map. More precisely, there exist a
Weierstrass map x : Y — W and a closed embedding ¢ : 7='(W) — Y such that the
following diagram commutes.

7r —>Y

\ / (2.7.1)

Proof-Step 1. By Finite mapping theorem, 7.0 is coherent. So we may shrink
S to a neighborhood of ¢ and shrink X accordingly (i.e. replace X by the new
7~1(S)) so that 7, Ox is Os-generated by fi,. .., fr € 0(X). Indeed, we only need
to choose fi, ..., fx such that 7, 0x is Os-generated by C|[f.] = C[fi,..., fx]. Con-
sider I = (fi,..., fx) as a holomorphic map F : X — C* (Thm. 1.4.1). Then we
have a commutative diagram

X 27, Cckx S

\ / 2.7.2)
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We want to show that F' v 7 is a closed embedding.

Since 7 is closed, one checks easily using (2.7.2) that F' v 7 is closed. To show
that F' v 7 is injective, it suffices to show that F' is injective when restricted to each
fiber 7!(7) (where 7 € S). By Prop. 2.4.5, we have

(M Ox )7 ~ @ Ox (2.7.3)
zer—1(7)

which is O s-generated by f1,. .., fr. If x,2' € 77!(7) and z # 2/, then an element
of Os.[f.]is 1in Ox, and 0 in Ox .. So an element of C[f,] takes value 1 at =
and 0 at 2’. Thus, at least one of fi,..., f; takes different values at = and z’. So
F(x) # F(2').

To show that F' v 7 is an immersion, note that by (2.7.3), the C-algebra mor-
phism

F# : ﬁCk,F(I) - ﬁX,x
sends 21, ..., 2z to (the germs at = of) f1,. .., fi respectively. So the morphism
(F Vv 7T># : ﬁCkXS,$XT = ﬁ({lk,m®ﬁ5,7’ - ﬁX,x

sends z; ® 1 to f;. Thus, this morphism is surjective since O, is Og ,-generated
by polynomials of f1,..., fg. So F' v 7 is an immersion. By Cor. 2.7.8, F' v wis a
closed embedding. O

Proof-Step 2. Since (7.0 ), is a finitely generated module of the Noetherian ring
Us,4, for each i, the O ;-submodule of (7, 0x): generated by all non-negative pow-
ers of f; is finitely generated. So f; is integral over Js,. Namely, we may find
n; € Z,. such that

a0 + i fi+ o+ Qi f7T S =0 (2.7.4)

where each a; ; € Os;.
Shrink S to a neighborhood of ¢ (and shrink X to 7—!(5)) so that all a;; are
elements of (5), and that (2.7.4) holds at the level of &/(X). Then

n;—1 n;
pi(zi) = @i, + aipzi + -+ Q12+ 2

is a monic polynomial of z;, viewed as in &(C* x S). Note that F' v 7 is still a
closed embedding. We let Z be the ideal of O¢r, g generated by py,...,pr, and
let Y = Specan(Ock,s/Z). Then prg : CF x S — S restricts to a Weierstrass map
k:Y — S. By Thm. 148, F v 7 : X — C* x S restricts to ¢ : X — Y, which is
clearly a closed embedding. And we clearly have a commutative diagram

X —“5v

N\

This finishes the proof. O
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2.8 Base change theorem for finite holomorphic maps

In algebraic geometry, if X,Y,S are affine schemes, then (X xgVY) =~
0(X) ®asy €(Y). In complex analytic geometry, fiber products are in general
related to completed tensor products. But in the case that one holomorphic map
is finite, the usual (algebraic) tensor products are sufficient. The goal of this sec-
tion is to explore the relationship between X xg Y and tensor products in the
analytic setting and at the level of stalks. This goal will be achieved in Cor. 2.8.4
which is crucial to the future proof that “flatness of holomorphic maps is pre-
served by base change”. We shall prove Cor. 2.8.4 as a consequence of the Base
change theorem of finite holomorphic maps.

2.8.1 The setting

Consider a Cartesian square of holomorphic maps of complex spaces.

X & X xgY

”l lpry (2.8.1)

Sty

Let & be an 0x-module. Then we have an £y -module morphism
U p*m & — pry,pry &, (2.8.2)
namely, a morphism
U (1:6) Qg Oy — DIy (€ Qo Oxxgy) (2.8.3)
such that for each open V' < Y and each open W < S containing /(V'), ¥ sends
c®g e E(r (W) ®aswy Oy (V) (2.84)
to
o@prig € ET W) @oyiriwy) Oxxsy (pry' (V). (2.8.5)

(Note that pry (pry'(V)) < 7=1(W).) It is easy to see that ¥ is natural. We call ¥
the base change morphism.

Remark 2.8.1. The stalk map of ¥ at each y € Y is the 0y, ,-module morphism
determined by

Vs (M8 py) @054y Oy — Py ald ®oy Oxxsy)y (2.8.6)
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2.8.2 Base change theorem

The following theorem is the main result of this section. Note that in the Carte-
sian square (2.8.1), if 7 is finite then pry is finite (Prop. 2.4.11).

Theorem 2.8.2 (Base change theorem). In the setting of Subsec. 2.8.1, assume that
m: X — Sis finite and & is a coherent Ox-module. Then the base change morphism ¥
(cf. (2.8.3)) is an isomorphism of Oy-modules.

Note that this theorem is local by nature. Namely, in the proof we may shrink
S to a neighborhood of any given point, and replace X by 7—!(S) and Y by ¢~ *(S).
In the special case that & = Ox, we have:

Corollary 2.8.3. Let (2.8.1) be a Cartesian square of holomorphic maps of complex spaces.
Assume that m : X — S is finite. Then we have an Oy-module isomorphism

U (1.0x) Qg Oy — Py« Ox x5y (2.8.7)
whose stalk map at each y € Y is an Oy,-module morphism determined by

U (M Ox )y(y) 5,40y Oy — Plye(Oxxsv)y

(2.8.8)
f®1 — prkf

Clearly (2.8.7) is also an isomorphism of Oy -algebras.

Corollary 2.8.4. Let (2.8.1) be a Cartesian square, and assume that w : X — S is finite.
Then for each x € X and y € Y such that w(x) equals t = 1 (y), there is an isomorphism
of Us-algebras

Oxs ®os, Oy > Oxnsviany 289)

f®g — prif-prig

First Proof. By Thm. 2.7.2, we may shrink X and S to neighborhoods of = and ¢
respectively, and shrink Y to ¢~1(5), so that 77%(t) = {z} (as sets) and 7 is still
tinite. Then in view of Prop. 2.4.5, we see that (2.8.8) becomes exactly (2.8.9). [

Second Proof. By Prop. 2.4.5, for each y and ¢ = ¢(y), (2.8.8) is precisely the direct
sum of (2.8.9) over all v € 771(t) = pry' (y). m

The second proof shows that Cor. 2.8.3 and Cor. 2.8.4 are indeed equivalent.
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2.8.3 Proof of Base change Thm. 2.8.2

Lemma 2.8.5. Assume that Thm. 2.8.2 holds when & = Ox. Then Thm. 2.8.2 holds for
any coherent O'x-module &.

Proof. 1f Thm. 2.8.2 holds when & = O, then it holds when & is Ox-free. Now in
the general case, by Lemma 2.4.8 we can assume that S is so small that there is an
exact sequence of Ox-modules

F -4 —->E—-0

where .# and ¥ are Ox-free. By the right exactness of ¥* and , (Cor. 2.4.6), we
have an exact sequence

V71 F —> P 1, Y — V¥, E — 0.
Since the base change map V is natural, we have a commutative diagram

VT —— PG —— . E ——— 0

v~ ¥~ v

Pry . pry# —— Pry,pry¥y —— pry,pryé —— 0

where the first two ¥ are isomorphisms by assumption. So the third ¥ is an
isomorphism by Five Lemma. O

Lemma 2.8.6. Cor. 2.8.3 holds if m : X — S is a Weierstrass map.

Proof. By Prop. 2.5.3, we may assume that pry : X xgY — Y is a Weierstrass
map. More precisely, we may assume that (2.8.1) factors as

X +— X xgY

{ )
ChxS +——CkxYy
{ {

S+——Y

where the two small squares are Cartesian. By the Fundamental Thm. 2.5.4 of
Weierstrass maps, 7, Ox is Os-freely generated by (2.5.3), and so (7.0x) ®¢, Oy
is Oy-freely generated by (2.5.3) ® 1. Also, pry,Ox 4y is Oy-freely generated by
(2.5.3). Using e.g. (2.8.8) one checks that ¥ sends the given free generators of
(m:O0x) ®oy Oy bijectively to those of pry., Oxsy. So ¥ must be an isomorphism.

[l
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Proof of Thm. 2.8.2. By Lemma 2.8.5, it suffices to prove Cor. 2.8.3. By Prop. 2.7.9,

we may assume S is so small that 7 : X — S factors as X — Z 5 S where X
is a closed subspace of Z and 7 is equivalent to a Weierstrass map. Thus, (2.8.1)
factors as the combination of two Cartesian squares

X ¢ X xgY

I

PPN (2.8.10)

| o

Sty

where pry : X xgY — Yispry o (v x 1).

We have proved that Cor. 2.8.3 holds (and hence Thm. 2.8.2 holds, cf. Lemma
2.8.5) for the lower Cartesian square. Cor. 2.8.3 also holds for the upper Cartesian
square: Write X = Specan(0;/Z) and let J = P} (Z) - Oy, .y (the ideal sheaf of
Oz« sy generated by er"; (Z)), then we have canonical isomorphisms

1Ox ®p, Ozxsy = (O2/1) Qp, Ozx sy
~Coker(Z ®q, Ozxsy — Oz ®0, Ozxsy)
2ﬁZxSY/ny =~ (L X 1)*ﬁX><SY

where the last isomorphism is due to Prop. 1.12.1.
Apply Thm. 2.8.2 to the lower square and the coherent &;-module ¢, 0x: The
domain of the isomorphism V is

(TatsOx) Qpg Oy = 1 Ox Qpy Oy
and the codomain is
Pry . (txOx Ro, Ozxsy) ~ pNI‘y,*((b X 1)*ﬁXxSY) = Py« Oxxsy-

By checking stalkwise with the help of (2.8.6) and (2.8.8) (and possibly Prop.
2.4.5), one sees that this morphism (i.e. the base change map for the lower square
of (2.8.10) and the &z-module ¢, Ox) agrees with the morphism ¥ in Cor. 2.8.3. So
the latter must be an isomorphism. O

2.9 Analytic spectra Specan

We fix a complex space S.
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2.9.1 Main results

Definition 2.9.1. A morphism from a finite holomorphic map 7 : X — Stoa
tinite holomorphic « : ¥ — S is a holomorphic map ¢ : X — Y such that the
following diagram commutes.

X —“5yY
& / (2.9.1)
S

The set of morphisms is denoted by Morg(X,Y’). This defines the category of
finite holomorphic maps to S.

Definition 2.9.2. An Us-algebra is an S-sheaf of C-algebras </ together with a
morphism of sheaves of C-algebras 0y — 7. Since #/ is an .&/-module, it becomes
an Og-module. We say that <7 is a coherent 0 s-algebra if it is an & s-algebra which
is coherent as an s-module.

A morphism of 0s-algebras from % to </ is by definition a morphism ¢ : %4 —
</ of sheaves of C-algebras such that the following diagram commutes.

A 2 B

\ / (2.9.2)

The commutativity of (2.9.2) is equivalent to saying that the morphism of sheaves
of C-algebras @ is also a morphism of &s-modules. The set of morphisms is de-
noted by Mor,, (%, <7). This defines the category of coherent 0s-algebras. [

We have avoided using the symbol Homg (%, /), which is the set of Os-
module morphisms but not &s-algebra morphisms.

Theorem 2.9.3. The contravariant functor § from the category of finite holomorphic
maps to S to the category of coherent Us-algebras is an antiequivalence of categories. The
functor § sends each finite holomorphic map = : X — S to the coherent Us-algebra
7. Ox. At the level of morphisms the functor is

§ : Morg(X,Y) — Morg, (k« Oy, m:Ox), @ — o (2.9.3)

Thus, for each coherent Os-algebra 7 there is, up to isomorphisms, a unique
finite holomorphic map 7 : X — S such that 7,0x = /. We write this map as
Specan(%/) — S and call this map (or simply call the complex space Specan(/))
the analytic spectrum of .o

Note that when &/ = 0s/Z where 7 is a coherent ideal of g, as before,
Specan(27) denotes the unique analytic spectrum as a closed subspace of S. For a
general .o/, Specan(/) is not unique.
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Corollary 2.9.4. Let ¢ : Z — S be a holomorphic map of complex spaces. Let </ be a
coherent Os-algebra. Then

Specan(e/ Qg Oz) ~ Specan(&f) xg Z

Proof. This is just a rephrasing of Cor. 2.8.3. O

2.9.2 Proof of Thm. 2.9.3

Proof that (2.9.3) is injective. Let ¢,1) € Morg(X,Y') such that ¢*, p* : k. Oy —
m.Ox are equal. By Prop. 2.4.5, for each t € S, ¥ : (k.Oy); — (T.Ox); is an
Us;-module morphism of the form

@ Oyy — @ Ox

yer—1(t) xer—1(t)

whose restriction to 0y, — Ox, is non-zero iff y = ¢(x). A similar description
holds for ¢#. It follows that ¢ and ¢ must be equal, first of all as maps of sets,
and then clearly as holomorphic maps. O

Proof that (2.9.3) is surjective. Choose any ¢ € Morg, (k.Oy,m.Ox). It suffices
to show that ® is locally realized by ¢y, i.e., that each t € S is contained in a
neighborhood W < S such that, after shrinking S to W, X to 7 '(X), and V'
to k~1(X), ® equals ¢j;,. Then by the injectivity of (2.9.3), ¢w and @y~ agree on
W n W'. So these ¢y can be glued together to realize ® globally.

To find ¢ locally, we first assume that « is a Weierstrass map, which factors

as Kk : Y — CFx S 25 S Consider z,...,2 as elements of ¢(C* x S) and
also of O(Y) = (k.Oy)(S) by restriction. Let f; = ®(z;), which is an element of
(m:0x)(S) = O(X). Regard F = (fy,..., fx) as a holomorphic map X — C* (Thm.
1.4.1). Then by Thm. 1.4.8, the holomorphic map F v prg : X — CF x S restricts to
a holomorphic ¢ : X — Y. (This is similar to the Proof-Step 2 of Prop. 2.7.9. Note
that one needs the commutativity of (2.9.2) to check condition (b) of Thm. 1.4.8!)
Then (2.9.1) commutes because ko ¢ = prgo (F v m) = 7. Both ¢# and ® send
each z; € (k.Oy)(S) to fi. So p# = ® because the powers of zy, .. ., z; generate the
OUs-module ., 0y by Thm. 2.5.4.

Now, in the general case, by Prop. 2.7.9 we may assume S is small enough
such that « factors as

k'Y >2Z25 8

where w : Z — S is a isomorphic to a Weierstrass map and Y = Specan(€0/J) is
a closed subspace of Z. We have a sequence of morphisms of ¢s-algebras

(<] s
W*ﬁx «— fﬂ*ﬁy <~ w*ﬁZ'
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By the previous paragraph, there is ¢ € Morg(X, Z) such that ¢# : @, 0, — 7,.0x
equals ® o .# and hence vanishes on @, J. Thus, by Prop. 2.4.5, for each z € X,
Y Oz.4(x) — Ox vanishes on Jy ;). So Thm. 1.4.8 tells us that ) restricts to a
holomorphic ¢ : X — Y. Namely ¢) = ¢ 0 . Clearly ¢ € Morg(X,Y).

We have ¢ o/ # = ¢# = & o,#. Thus, to show that o# = ®, it suffices to show
that «* : @,07 — k.Oy is surjective. This is clear from Prop. 2.4.5 and the fact
that Y is a closed subspace of Z. O

The above two proofs together show that § is fully faithful.

Proof that § is essentially surjective. Given any coherent Ogs-algebra </, our
goal is to find a finite holomorphic map 7 : X — § (for some complex space
X) such that 7,0x is equivalent to &7 as Us-algebras.

We first show that the construction of 7 is local by nature. Suppose that we
have an open cover (5;);e; of S such that for each ¢ we have a finite holomorphic
m; « X; — S such that there is an isomorphism of 0g,-algebras

(I)i . Wi,*ﬁXi — ,Qf|51

Write S;; = S; n S, ij = 7, '(S;;), and let ij : ij — S;; be the restriction
of m;. Then by the full-faithfulness of §, there is a unique isomorphism ~;; €
Morg,, (X}, X7,) such that 7]#1 : wf'j’*ﬁng — wfj7*ﬁxfj equals @;! s,;- One
checks easily that these v;; satisfy the cocycle condition so that they can be used
as the gluing maps to glue all 7; together and form a desired 7 : X — S.

Let us construct 7 locally. Choose t € S. Using the methods in the proof of
Prop. 2.7.9, one shows that if S is sufficiently small then there exist a Weierstrass
map k : Y — S and ¢ : Morg,(k+Oy,</) which is surjective as an 0s-module
morphism. 7 = Ker(®) is an ideal of .0y, i.e., an Os-submodule of k., 0y whose
stalk at each 7 € S is invariant under (k.0y),. So T, = T, - (k+Oy),. Thus, by

Prop. 2.4.5, we have an (k. 0y ).-module isomorphism

Si; © q)j

ku(TOY):~ @ (TOv)y= @ TOvy=T  (kOy). =T,

yer—1(7) yer~1(7)

such that each o € 7; corresponds to ¢ - 1 on the LHS.

T Oy is a finite-type ideal of 0y since T is Os-coherent by Cor. 2.1.6. Define
X = Specan(Oy /T Oy ), and let 7 : X — S be the restriction of x. This gives the
desired finite holomorphic map since, by the exactness of «., we have an x,0y-
module isomorphism

W*ﬁx = I{*(ﬁy/Tﬁy) ~ I{*ﬁy//{*(Tﬁy) ~ H*ﬁY/T ~ o .

(These isomorphisms are explicit at the level of stalks.) O
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2.10 Nullstellensatz

In this section, we give another application of Finite mapping Thm. 2.7.1 and
Thm. 2.7.2: we prove the complex analytic version of Hilbert Nullstellensatz,
called Riickert Nullstellensatz in [GR-b] and [GPR]. Nullstellensatz will be used
in an essential way to prove that every complex space X has an associated re-
duced complex space X,.q, and that if X is reduced at x then X is reduced near
x.

2.10.1 Equivalent forms of Nullstellensatz

Theorem 2.10.1 (Nullstellensatz). Let X be a complex space. If f € O(X) satisfies
that f(x) = 0 for all x € X, then the germ of f at each x € X is a nilpotent element of
Ox 4.

The converse is clearly true: If f is nilpotent at Ox , for each z, then f a zero
continuous function.
Recall that if [ is an ideal of a commutative ring 4, then its radical v/ is

VI={aeA:ad"elforsomeneZ,}.
Similarly:

Definition 2.10.2. If X is a C-ringed space and Z is an ideal of O, then the radical
of 7 is the ideal v/Z of Oy defined by

VI(U)={feOU): fe~/I,forallze U}
So 7 is determined by (vZ), = v/Z, forall z € X.

Then there is an equivalent way of stating Nullstellensatz:

Theorem 2.10.3 (Nullstellensatz). Let X be a complex space. Then the kernel of the
reduction map red : Ox — €x (where € is the sheaf of germs of continuous functions)
equals /Ox, the radical of the zero ideal of O’x.

We call \/0x the nilradical of Oy (or of X).
Remark 2.10.4. There are some other equivalent statements of Nullstellensatz:

1. Let Z be a coherent ideal of &x. Then f € &/(X) vanishes on the subset N(Z)
if and only if f € v/Z.

2. Let Ox, be an analytic local C-algebra, and let I be an ideal. Then f € Ox
is an nilpotent element of / if and only if f vanishes on the Specan(0x /1),
the germ of complex subspace of X defined by /.
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3. If & is a coherent sheaf on a complex space X. Then f € ¢(X) vanishes on
the subset Supp(&’) if and only if for each x € X there is n € Z, such that
fré&, = 0.
Proof. 1<Thm. 2.10.1: Let Y = Specan(0x/Z). Then f € Ox ., belongs to v/Z, iff
the residue class of f in Oy, = Ox ,/Z, is nilpotent.
1<2: Obvious. 3= 1: Take & = Ox/Z. 1=3: Take I = Ao (&). O

2.10.2 Proof of Nullstellensatz

We start by proving a special case.

Lemma 2.10.5. Let X be a neighborhood of 0 € C™ ! where m € N. Let (2, w, ta, ..., ty)
be the standard coordinates of C™ . Let T be a coherent ideal of O such that

N(Z) c {(z,w,t,) € X : z = 0}.
Then (the germ at 0 of) z is an element of \/Ty, the stalk of \/T at 0.

Proof. We prove by induction on m € N. The base case m = 0 is elementary and is
hence omitted. Assume the lemma holds for m — 1 where m > 1. Let us prove it
for m. Let Y = Specan(0x /).
We first assume that 7, contains
0
h(z,w,t,) = Z an(w, te)2" (2.10.1)
n=0

where ay # 0. Then as in the proof of Thm. 1.5.5, we may choose a new set of
coordinates (w, t,) for C™ such that ag(w, t,) = h(0,w, t,) has finite order in w, i.e.
a(w, 0) is non-zero. So Ocm+1 is an isolated point of the fiber at Oc of the holomor-
phic map 7 : Y — C™ defined by the restriction of C"*' — C™, (z,w, t.) — (2, t.).
We shrink X to a neighborhood of 0 so that O¢m+1 is the only point of that fiber,
and that (by Thm. 2.7.2) 7 : Y — V is finite where V is a neighborhood of 0 € C™.
See Fig. 2.10.1.

w

Figure 2.10.1

By Finite mapping Thm. 2.7.1, 7.0y is a coherent &y,-module. By assumption,
the Nullstellensatz holds for any coherent ideal .7 of &y such that

N(J)c{(z,ts) eV : 2= 0}.
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Choose J = 7 ¢, (1. Oy ). Then the assumption tells us that thereis n € Z, such
that 2™ € Ocm g kills the stalk (7,0y )y ~ Oy, (Prop. 2.4.5). So 7% 2" (or simply 2"
as an element of &(C™*1)) kills Oy, = Ocm+1 o/Zy. Therefore 2" € I,,.

Now, in the general case, note that it suffices to prove that z is nilpotent in
20Ty = {f € Ocm+1 g : 2F f € Ty, k € Z, }. This statement is true if we can h € 2<%,
whose series expansion as in (2.10.1) has non-zero constant term. This follows by
choosing a non-zero g € 1, letting k be the smallest power of z such that the series
expansion of g in z has non-zero coefficient before z*, and setting h = 2 %g. [

Proof of Nullstellensatz. Let X be a complex space, and assume that f € (X)
vanishes at every z € X. We now fix x € X and show that f is nilpotent in
Ox .. Consider the graph &(f) of f, namely the image of the closed embedding
fv1:X — CxX(cf. Prop. 1.13.6). Assume X is a small enough neighborhood
of x so that X is a closed subspace of an open U < C™ and x = Ocm. Then &(f) is
a closed subspace of C x U.

As a set, &(f) is contained in 0 x U. Let z € 0(C) be the standard coordinate
of C. Then by Lemma 2.10.5, 2 ® 1 € Ocxu,oxo is nilpotent in g s) 0x0- But the
restriction f v 1 : X — ®&(f) is a biholomorphism, and it pulls z ® 1 = prfz
(where pr¢ : C x U — C is the projection) back to z opreo (f v 1) =zo0f = f.So
f is nilpotent in O . O

2.10.3 Examples

We give an interesting situation to which Nullstellensatz can be applied.

Example 2.10.6. Let X be a complex spaceand p e X. Let A€ 0(X). Let & « &
be a pair of coherent 'x-modules. Assume that £ € .7 (X) satisfies that for each
z € X\N(A), the germ ¢, belongs to &,. Then A} - ¢, € &, for some k € N.

Proof. Let # = Ox - £ + &, which is coherent. Then & < %, and &, = %,
when z ¢ N(A). Thus Supp(# /&), as a set, is inside N(A). So A vanishes on
the set Supp(.#'/&). By Rem. 2.10.4, there is k € N such that A% kills .%,/&,. So
Al J, < &, and hence A% - ¢, € &, O

Remark 2.10.7. The above example is particularly interesting when X is irre-
ducible at p (cf. Def. 3.2.10) and A, # 0. In that case, the example shows that
&y is an K-linear combination of elements of &), where K is field of fractions of the
integral domain O .

This example suggests why Nullstellensatz is important. Nullstellensatz tells
us that in coherent sheaves, all poles are of finite orders. (In Exp. 2.10.6, we
consider poles at A = 0, since ¢ belongs to & when restricted to X\N(A).) In the
following, we give another compelling example. O
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Example 2.10.8. Choose a neighborhood U of 0 € C. Choose f € ¢(U\{0}) with
infinite poles at 0, i.e., the Laurant series expansion f(z) = >, _,a,2" satisfies
inf{n : a, # 0} = —oo. Define an Oy-module & = fOy + Oy. More precisely, &
is the sheafification of the presheaf associating to each open V' U the set of all
fa + Bl where o € O0(V\{0}),8€ O(V).

& is clearly of finite type. But & is not coherent: Otherwise, then &/0y is
coherent. Since &/0y clearly has support in {0}, by Nullstellensatz we have
2*& < Oy In particular, (¥ f)y € Oy . This is impossible.

If, however, f € ¢(U\{0}) has finite poles at 0, then it is not hard to show that
& is coherent: see Prop. 4.1.5.

2.A Kernels and cokernels in categories of modules

In a category C, if ¢, 1) : X — Y are two morphisms of objects, then the equaliz-

©
ers of double arrow X ——<¢ Y can be defined in the same way as in Def. 1.8.1.
¥

Likewise, a coequalizer of this double arrow is an object C' € C and a morphism
m Y — C such that 7 o ¢ = 7o, and that for every object 7" and morphism
v Y — T satisfying v o ¢ = v o1 there is a unique morphism 7 : C' — T such that
v="rVom.

X—=y "5 ¢
v \ ' 2.A.1)
T

Thus, if a functor (resp. contravariant functor) § : C — D is an equivalence
(resp. antiequivalence) of categories (cf. Thm. 1.6.2 and 2.2.2), then § sends the

(co)equalizer of a double arrow X ﬁ Y (on the C side) to a (co)equalizer of
P

5(») 3()
F(X) :wi §(Y) (resp. sends equalizers to coequalizers of F(Y) :@i F(X)
3(¥) 3(¥)

and coequalizers to equalizers).

The category of modules of a commutative rings and the one of (coherent) &'x-
modules (where X is a C-ringed space) are both additive categories, which means
roughly that one can take direct sums, that the morphism spaces are abelian
groups, and that there is a zero object. A functor between additive functions,
called an additive functor, is assumed to preserve the abelian group structures of
the morphism spaces.

Moreover, the above categories are abelian categories. This means that the
kernel of a morphism ¢ : M — N (which is an object together with the “in-

clusion” morphism) is equivalent to the equalizer of M i; N and that the
0
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cokernel is equivalent to the coequalizer of this double arrow. From this, it is
clear that if a functor (resp. contravariant functor) § : C — D is an equivalence
(resp. antiequivalence) of abelian categories, then § must be an exact functor, be-
cause § commutes with kernels and cokernels (resp. sends kernels to cokernels
and cokernels to kernels).

We refer the readers to [Vak17, Chapter 1] for a more detailed introduction to
abelian categories.
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Chapter 3

Local decomposition, singular loci,
and dimensions

3.1 Prime decomposition

We fix a commutative ring A. Recall that A is called reduced if A has no non-
zero nilpotent elements. This is equivalent to saying that {0} = /{0}. If I is an
ideal of A, then A/I is reduced iff /T = 1.

Remark 3.1.1. Recall the general fact that for any ideals I, ..., I; of A we have

\/h"’fk:\/hﬂ“'ﬁfk: ]1m...m\/ﬁ. (3.1.1)

In view of Nullstellensatz, the first equality says that “the zero sets defined by
I, - -- I and defined by I n- - - n I}, are equal” (namely, they are equal to the union
of the zero sets of I, ..., I). The second equality implies that if /; = /I; for each
i, then I n --- N I}, is its own radical.

Proof. The two equalities in (3.1.1) are clearly c. If f € n;\/I; then f™ e I; for
some n; € Z,. Then fm**" e [, ... I}, and hence f € /I, ---I;. This proves
(3.1.1). O

Proposition 3.1.2. Assume A is reduced. Let p & A be an ideal. Then the following are
equivalent.

(a) pis a prime ideal." Equivalently, A/p is an integral domain.
(b) p = /. Moreover, ifp = I, N I, where I, I, are ideals of A, then I, = por I, = p.

(c) p = \/p. Moreover, if p = I n I, where Iy, Iy are ideals of A satisfying I, = /I
and Iy = /I, then I, = por I, = p.

!Recall that a prime ideal p is required not to be the whole ring A.
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We leave it to the readers to figure out the geometric meaning of this lemma
(in the case that A is an analytic C-algebra).

Proof. By replacing A by A/p, we may assume p = {0}. Clearly (b)=(c).

(a)=(b): Assume {0} is prime. Then clearly {0} = 1/{0}. Suppose {0} = I, n I,
and I;,l, # {0}. Then we may choose non-zero f; € I;. And fif; € I - I,
I n I, = {0}. So fifo = 0, contradicting that {0} is prime. So (b) follows.

(c)=(a). Assume (c). Suppose that there are non-zero f, g € A such that fg €
{0}, i.e. fg = 0. Then as A is reduced, {0} = 1/{0} = /fA - gA = /fA " /gA

0

This contradicts (c).

Theorem 3.1.3. If A is Noetherian and reduced, then there are prime ideals p;, ..., py
of A such that

{0} =p1n-npy (3.1.2)
and that for each 1 < i < N,
{0} = [, (3.1.3)
J#i

Moreover the prime ideals p,, ..., py satisfying (3.1.2) and (3.1.3) are unique. We call
this unique decomposition the prime decomposition of {0} < A.

The geometric meaning of (3.1.2) is that an element f € A is zero iff f restricts
to zero on A/p; (i.e. “f vanishes on the zero set N (p;)”) for all i.

Note that if a = y/a is an ideal of a Noetherian ring .4, then Thm. 3.1.3 applied
to A/a says that there are prime ideals p, ..., py of A such that

a=p;N---NPpy (3.1.4a)
a+()p, VI<i<N (3.1.4b)
J#i

called the prime decomposition of a.

Proof of the existence. We first note that if we can find prime ideals p;,...,py sat-
isfying (3.1.2), then by discarding some members of these ideals so that the inter-
section of the remaining ones is still {0} until we cannot do this anymore, (3.1.3)
is automatically satisfied. So we only need to find prime ideals satisfying (3.1.2).

Let 2 be the set of all ideals a not equal to A such that a = /a and thata < A
has no prime decomposition (equivalently, a is not a finite intersection of prime
ideals). Note that if a € 2, then a = /a and a is not prime. So by Prop. 3.1.2,
a = b n ¢ where the ideals b, ¢ are not a and are the radicals of themselves. One of
b, ¢ is not a finite intersection of prime ideals, otherwise a is a finite intersection of
prime ideals. So one of b, ¢ is in 2L.

The above argument shows that if a; = {0} belongs to %, then we can con-
struct a strictly increasing infinite chain of elements of A: a; < a; < a3 & - -+,
contradicting that A is Noetherian. So {0} ¢ 2. O
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Remark 3.1.4. In Thm. 3.1.3, (3.1.2) and (3.1.3) imply that

ﬂpj\pi # .

J#
This means that we can find f € A which is non-zero when restricted to A/p; (i.e.
“non-zero on N(p;)”) and zero in the other A/p;. Thus, by taking sums, we see
that there always exists f € A which is non-zero precisely when restricted to the
given ones of A/py,..., A/py.

We remark that when A is not necessarily reduced, there is a generalization
called primary decomposition, cf. [AM]. We will not use this notion in out notes.
To prove the uniqueness part of Thm. 3.1.3 we first need:

Lemma 3.1.5. In Thm. 3.1.3, for each f € A, the annihilator Ann 4(f) equals
Anna(f) = [ (3.1.5)

1<i<N
fépi
Recall that Ann4(f) = Annu(f.A) is the ideal of all a € A satisfying af = 0
(Def. 2.3.1). Then (3.1.5) says that af = 0 iff a “vanishes on all N(p;) where f is
non-zero on N (p;)”. See also Prop. 3.6.3 for a geometric interpretation.

Proof. Suppose a € A and af = 0. Then af restricts to 0 on the integral domain
A/p;. If f ¢ p; then f isnonzeroin A/p;. So ais 0in A/p;. Hence a € p;. Conversely,
if a € p; for all 7 such that f ¢ p;, then af belongs to p; forall 1 < ¢ < N. So
af € nip; = {0}. O

Note that when A is reduced, f is a non zero-divisor iff Ann4(f) = {0}. Thus:

Corollary 3.1.6. In Thm. 3.1.3, f € A is a non zero-divisor if and only if f ¢ p; for all
1<e< N

Now the uniqueness of prime decomposition follows immediately from the
following fact:

Proposition 3.1.7. In Thm. 3.1.3, p1, ..., pn are precisely the associated primes of A,
i.e. prime ideals of the form Ann 4(f) for some f € A.

Proof. We first note that an intersection of more than one members of p;,...,py
is not prime. This together with Lemma 3.1.5 would imply that Ann4(f) is prime
only if Ann4(f) = p; for some i, and hence that the associated primes are among
p1,...,pn. To prove the claim, consider for instance p = p; N P2 N - - N pi, where
k > 1. Suppose p is prime. Then by Prop. 3.1.2, either p; or p, N --- N p;, equals p,
contradicting (3.1.3). So p cannot be prime.

For each i, by Rem. 3.1.4 we can choose f € A non-zero on A/p; but zero on
A/p; whenever j # i. Then p; = Anny(f) by Lemma 3.1.5, which shows that p;
must be an associated prime. [
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We now give another characterization of the prime components of a reduced
Noetherian ring.

Lemma 3.1.8. Let A be Noetherian and reduced with prime decomposition {0} = p; N
-~ pn. Let p = Abea prime ideal. Then p; < p for some 1 <i < N.

Proof. Suppose that for each i we have p; ¢ p. Then there exists f; € p;\p. The
primeness of p implies that f = f;--- fy isnotin p. But fisinp; n--- npy = {0}
So 0 ¢ p, impossible. O

Proposition 3.1.9. Let A be Noetherian and reduced with prime decomposition {0} =
p1 - npy. Let p < Abea prime ideal. The following are equivalent.

(1) p =p,; for some 1 < i < N.
(2) pis a minimal prime ideal of A. Namely, if q is a prime ideal of A and if q < p, then
q=p.

Proof. (1)=(2): Let us prove for instance that p; is minimal. Suppose q < p; is a
prime ideal of A, then {0} = qnpan--- N py. Then some members of q, po, ..., py
give the prime decomposition of {0} — A. By the uniqueness of prime decompo-
sition, the number of these members must be N, and q = p;.

(2)=(1): By Lem. 3.1.8. O

3.2 Reduction red(X) and coherence of /T

In this section we study the reduction of complex spaces. The main results
Thm. 3.2.1 and equivalently Thm. 3.2.2 are originally due to Oka and H. Cartan.
Some key ingredients of the proof are prime decomposition, Nullstellensatz, and
the ranks of Jacobian matrices (which are a guise for embedding dimensions to be
studied later). Our approach follows [GPR].

3.2.1 Main results and consequences

Theorem 3.2.1. Let X be a complex space reduced at a point x. There X is reduced on a
neighborhood U of x.

This theorem is equivalent to:

Theorem 3.2.2. Let X be a complex space. Then for each coherent ideal T of O, its
radical /T is coherent.
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Remark 3.2.3. Note that Thm. 3.2.2 is equivalent to the seemingly special case
that for each complex space X, 1/0x is coherent. Indeed, if this special case is
true, let Y = Specan(0x /Z). Then /0y is (or more precisely, vy, x «+/0y is)

VOy =\ZI/I =VI/T. (3.2.1)
So \/Z/T is coherent, and hence 1/Z is coherent. Therefore Thm. 3.2.2 holds.

Proof that Thm. 3.2.1 and 3.2.2 are equivalent. Assume Thm. 3.2.2. Assume X is re-
duced at z. Then /T is coherent and its stalk at z is 0. So its stalks are zero
everywhere on a neighborhood U of z. Then X is reduced everywhere on U.

Assume Thm. 3.2.1. Choose any complex space X and coherent ideal 7.
Choose © € X. Since Oy, is Noetherian, v/Z, is generated by finitely many el-
ements f1, f2,.... By shrinking X to a neighborhood of z, we assume fi, fo, - €
VZ(X). Let J be the ideal generated by f1, f2,.... Then J < VI and J, = VZ,.
This implies that Y = Specan(0x/J) is reduced at z (since /Oy, = v/ T/ Tz)-

J. = VI, also implies Z, = J,. Therefore, since Z is coherent, by Rem. 1.2.16
we may shrink X so that Z < J. We conclude that

chcx/fcx/?.

By Thm. 3.2.1, we may shrink X so that Y is reduced everywhere on X. This
means J = +/J, which proves that v/Z equals J and is therefore coherent. O

Corollary 3.2.4. Let X be a complex space. Then for each analytic subset A of X, the
ideal associated to A defined by

IANU) = {feOx(U): f(xr) =0 VzeAnU} (3.2.2)
(for all open U < X) is coherent.
Proof. If A = N(Z) for some coherent ideal Z then
Iy =VI. (3.2.3)
O

Remark 3.2.5. Let X be a reduced complex space. By Nullstellensatz, we have a
bijection

{Analytic subsets of X} <> {Coherent ideals T c Ox satisfying Z = VZ}

A F0 N T (3.2.4)

If A, B are analytic subsets of X then clearly
Ac B <«— 94,> 95

A n Band A u B are both analytic subsets of X, and we indeed have
jAmB:’\/jA+jB JAUB:fAﬁjB:\/JAwﬂB (325)
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Proof. 1t is clear that the coherent ideals (cf. Cor. 2.1.7 for the coherence) .#4 + .75
has zero set An B and .%4 - Y has zeroset A U B. And /.94 - I = I4 N I by
Rem. 3.1.1. O

Remark 3.2.6. We often identify an analytic subset A with the corresponding re-
duced complex subspace Specan(0x/.#4). In that case “analytic subsets” and “re-
duced complex subspaces” are synonymous. But there is one exception. The
intersection of analytic subsets A n B is usually not the intersection of two (re-
duced) complex spaces (as defined in Exp. 1.12.4): In the former case A n B is
determined by the ideal Z4~p = v/ #4 + 5 and the latter case Y4 + #5. So
we will make distinctions between analytic subsets and reduced complex subspaces when
taking intersections.

There is no such a problem when taking unions: We haven’t defined unions
for closed complex subspaces, since both Z; n Z, and Z; - Z, are reasonable ideals
for defining the union. Certainly, for analytic subspaces, .#4 5 is the correct ideal
defining the union. O

Corollary 3.2.7. Let X be a complex space. Then the set of all non-reduced points of X
is an analytic subset of X.

Proof. x € X is not reduced iff € Supp(1/0x). O

Corollary 3.2.8. Let A be a subset of a complex space X. Then the following are equiva-
lent:

(1) Ais an analytic subset of X. (Recall this means that A = N(Z) for a coherent ideal
1 c ﬁx)

(2) Each x € X is contained in a neighborhood U such that A n U is analytic in U.

Therefore A is analytic iff each z € X is contained in a neighborhood U such
that A n U is the zero set of finitely many elements of &'(U).

Proof. Clearly (1)=(2). Assume (2). Let .74 be defined by (3.2.2). For each z € X
there is a neighborhood U of z such that A n U is analytic, i.e. AnU = N(Zy)
for a coherent ideal Z;; of &y;. Then 4|y equals #u~y = +/Zy which is coherent.
Therefore .7, is coherent. We have N(.%4) = A since N(F4) nU = N(Ianv) =
AnU. So Ais analytic. O

Definition 3.2.9. Let X be a complex space. Then the reduced space

red(X) = Specan(Ox/v/0x)

is called the reduction of X.
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3.2.2 Proof of Thm. 3.2.1

Definition 3.2.10. We say that a complex space X is irreducible at z if O, is an
integral domain. (Note that if X is irreducible at = then X is reduced at z.) We say
that X is locally irreducible if X is irreducible at every point of X. If X is not irre-
ducible at 2, we say that X is reducible at z. (Note that “reducible”#"“reduced”!)

Lemma 3.2.11. Suppose that Thm. 3.2.1 holds whenever X is irreducible at x. Then
Thm. 3.2.1 holds in general.

Proof. Assume O , is reduced. Apply prime decomposition (Thm. 3.1.3) to A =
Ox . to get {0} = p; n--- npy. By shrinking X to a neighborhood of z we assume
each p; is the stalk %, , of a coherent ideal &; of Ox. Let Y; = Specan(0x/%;).
Then Y; is irreducible at . Since ﬂf\i | & is Ox-coherent (Cor. 2.1.7), we may
shrink X so that (), &;, = {0} forall y € X.

By assumption, we can shrink X further so that each Y; is reduced everywhere.
This means that for each y € X we have &, , = 1/, ,. Therefore by Rem. 3.1.1,
the zero ideal of O, is its own radical. So O, is reduced. [

Lemma 3.2.12. Let X be a model space irreducible at 0 € X. Then after shrinking X to
a neighborhood of 0, there exists A € (X)) whose germ at 0 is non-zero such that X is
smooth outside N(A).

Proof of Thm. 3.2.1. By Lemma 3.2.11, it suffices to assume that X is a complex
model space irreducible (and hence reduced) at 0. Assume that the statement
in Lemma 3.2.12 holds. Since A is non-zero in the integral domain Oy, A is
a non zero-divisor of Oxy. Therefore, by Prop. 2.3.13, we may shrink X to a
neighborhood of 0 so that A is a non zero-divisor of O, forall x € X.

Choose any open V < X and f € /0x(V). Since X\N(A) is a complex man-
ifold, /0x\n(a) = 0. So the support of f, or more precisely Supp(fOy), is inside
N(A). So A vanishes on Supp(f &y ). Therefore, by Nullstellensatz (Rem. 2.10.4-
3), for each x € V there is n € N such that fA" = 0in Ox,. This proves f = 0 in
O, because A is a non zero-divisor. Therefore \/0x = 0. O

We shall give two proofs of Lemma 3.2.12. The first one is given in Sec. 3.5
which relies on the following preliminary Lemma. The second proof is given in
Subsec. 4.5.4.

Lemma 3.2.13. Let (wy, ..., W, 21, ..., 2,) be the standard coordinates of C™*". Let I
be an ideal of &/ = Ogmn such that I # <f. Suppose that 0,1 < I,...,0,,1 < I.
Then I c wy o + - + wy, A .

Proof. Note that I # o/ means that all elements of / vanish at 0. Now 0,1 < I
implies that all higher partial derivatives over z;,...,z, of f € I are in I, and
hence vanish at 0. Therefore the restriction of f to Ocm x C" must be constantly
zero, since its power series expansion at 0 is zero. But the ideal of elements of &/
vanishing on 0 x C" is precisely w147 + - - - + w,, /. This finishes the proof. = [
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3.3 Local decomposition of reduced complex spaces

3.3.1 Germs of analytic subsets and ideals

Fix a complex space X. Suppose that X is reduced and = € X. Then similar to
Rem. 3.2.5, we have a bijection A — 4, N(I) < I:

(1) Germs of analytic subsets of X at x.
(2) Ideals I = Ox, satisfying I = /1.

Indeed, (1) are precisely the germs of closed reduced complex subspaces of X
passing through z, and (2) are precisely the germs of coherent ideals 7 < O at z
satisfying Z = \/Z (cf. Thm. 2.2.2).

Remark 3.3.1. To be more explicit, if a germ A in (1) is represented by an analytic
subset A closed in a neighborhood U of z, then the stalk at z of ¥4 = {f € Oy :
f(y) = 0,Vy € A} gives the corresponding ideal 7, in (2). Conversely, given an
ideal  in (2) which is finitely generated because Ox , is Noetherian, let fi, ..., fi €
I generate I, and choose a neighborhood U < X of x such that fi, ..., fy € Ox(U).
Then the germ at x of N(f10y + - - + fiOy) gives the germ N([I) in (1).

Remark 3.3.2. We list some easy but useful facts about this correspondence. Let
(X, z) be a germ of reduced complex space.

L4 IAUB =Isnlg=+/14"1Ipg.

* By Prop. 3.1.2-(c), Ox, is an integral domain if and only if (X, z) is an ir-
reducible germ, namely if (X,z) = (4,z) u (B, z) where (A, ), (B,x) are
germs of analytic subsets then (A, z) = (X, z) or (B,z) = (X, z).

— More precisely, Ox . is an integral domain iff for every neighborhood
U of x written as U = A U B where A, B are analytic subsets of U, one
of A and B contains a neighborhood of z € X.

3.3.2 Local decomposition

Theorem 3.3.3. Let X be a reduced complex space and x € X. Then after shrinking X
to a neighborhood of =, we have

X=X U UXy (3.3.1)
where each X; is an analytic subset of X which is irreducible at x, and for each 1 <i < N,

U X, contains no neighborhoods of = € X. (3.3.2)
Jj#i
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Such decomposition of X is unique up to shrinking X to smaller neighborhoods of x. We
call it the local decomposition (or irreducible decomposition) of X at x. Moreover,
we have

{0} = Ixie 00 Ixya (3.3.3)
which gives the prime decomposition of {0} < Ox ;.
Note that (assuming (3.3.1) then) (3.3.2) is equivalent to saying that
X \ U X, = Xi\ U X, intersects every neighborhood of = € X. (3.3.4)
i i

Proof. Uniqueness: Every local decomposition (3.3.1) clearly gives a prime de-
composition (3.3.3), where the condition (), ; #x, . # 0 corresponds precisely to
(3.3.2). The uniqueness of prime decomposition implies the uniqueness of local
decomposition.

Existence: Let {0} = p; n -+ n py be the prime decomposition of {0} < Ox .
By shrinking X, for each i we may find a coherent ideal &?; whose stalk at z is
p;. Since #; n --- n Py is coherent (Cor. 2.1.7), we can shrink X further so that
D0 Py =0x.S50by Rem. 3.1.1,

X=N0O0x)=N(P1n---nPNy)=N(P - Pn)=X1U-UXy.
This gives a local decomposition. O

Lem. 3.1.5 has the following geometric interpretation:

Proposition 3.3.4. Let X be a reduced complex space and f € €(X). Then Supp(fOx)
(cf. Def. 2.3.3) is reduced. Suppose that X has local decomposition X = X; U --- U Xn
at x. Then

(Supp(fOx),z) = | ) (Xi2) (3.3.5)
<IN
falséfxi,z

Proof. The germ of the complex space Supp(f0x) at z is Ox/,/Anng,  (f). By
Lem. 3.1.5, the ideal Anng, (f) is its own radical (cf. (3.1.1)), and the germ of
zero set of Anng, _(f) equals the RHS of (3.3.5) by Rem. 3.3.2. O

Property (3.3.2) can be upgraded to the following form:

Theorem 3.3.5. Let X = X; U --- U Xy be a local decomposition of a reduced complex
space X at x. Then after shrinking X to a neighborhood of x, for each i # j,

X; n X, is nowhere dense in X; (3.3.6)

In that case, X is reducible at each point of X; n X; where i # j.
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Note that (3.3.6) implies, for instance, thatif 1 <k < N then (X; u--- U Xj) N
(Xk+1 U - --uXy) is nowhere dense in every X;. Hence it is nowhere dense in any
union of subclass of X1,..., Xy.

We will prove Thm. 3.3.5 in Sec. 3.4. Note that (cf. Rem. 3.2.6) here X; n X
means set-theoretic intersection (i.e. intersection of analytic subsets), not intersec-
tion of complex spaces. But this is not really a big issue here; we are just reminding
the readers of the conventions we set before.

It is easy to see that if X;,..., Xy are irreducible at x and if (3.3.6) is satisfied
for all ¢ # j, then (3.3.2) is satisfied, and hence X = X; U --- U Xy is the unique
local decomposition of X at 2. This observation can be generalized:

Proposition 3.3.6. Let X = X; U ---u Xy be a decomposition of reduced complex space
X into analytic subsets. Choose v € X1 N --- n Xy. Assume X is small enough such
that for each 1 < ¢ < N, X; has a local decomposition

Xi:Xi,1UXi,2U"'

at x. Assume that (3.3.6) holds forall 1 < i # j < N. Then
X = JXix
ik

is the local decomposition of X at x.

Proof. It suffices to show that, after shrinking X to a neighborhood of z, X ;, n X,
is nowhere dense in X, if (i,k) # (j,/). By Thm. 3.3.5, we may shrink X so
that this is true whenever i = j. So let us assume 7 # j. Suppose that X;; n X,
contains a non-empty open subset U of X ;. Let A = | J,,;, Xix. Then U\A is an
open subset of X; ;,\A = X;\A and hence is open in X;. U\ A is nonempty because
Xk n Ais nowhere dense in X; ;. So U\ A is a nonempty subset of X; n X; and is
open in X;, impossible. O

34 Non zero-divisors and nowhere dense analytic
subsets

As an application of local decomposition, we give an extremely useful geo-
metric characterization of non-zero divisors:

Proposition 3.4.1. Let X be a reduced complex space and x € X. Choose f € O(X).
Then the following are equivalent.

(1) f is a non zero-divisor of Ox .

(2) There is a neighborhood U < X of x such that N(f) n U is nowhere dense in U.
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Proof. Assume (1) is true. Then by Prop. 2.3.13, after shrinking X to a neighbor-
hood of z, f is a non-zero divisor of Ox , for all p € X. If N(f) contains an open
subset V' of X, then f takes value zero everywhere on V. So f|,, = 0 because X is
reduced, contradicting the fact that f is a non zero-divisor of 0y, when p € V. So
(2) must be true.

Assume that (1) is not true. By shrinking X, we may find a local decomposition
X =X ju---uXyatz. By Cor. 3.1.6, the germ of f at x belongs to .#x, , for some <.
Shrink X so that f € Zx,(X). Then f vanishes on X;. Thus, by (3.3.4), N(f) o X;
contains the non-empty open subset X\ | J;,, X; of X. So (2) is not true. O

Thus, we get a function-theoretic characterization of irreducible points. One
may compare this characterization with its global version Thm. 4.11.3.

Corollary 3.4.2. Let X be a reduced complex space and x € X. The following are equiv-
alent:

(1) X is irreducible at x.

(2) For every nonzero f € Ox , there is a neighborhood U < X of x such that N(f)nU
is nowhere dense in U.

The following can be compared with Cor. 4.11.2.

Corollary 3.4.3. Let X be a reduced complex space and x € X. The following are equiv-
alent:

(1) X isirreducible at x.

(2) For every germ of analytic subset (A, x), either (A, z) = (X, x), or there is a neigh-
borhood U of v € X such that A n U is nowhere dense of U.

Proof. Assume (1). For each (A4, z) & (X, z), since _#4, # 0, we choose a nonzero
f € Za, By Cor 3.4.2, there is a neighborhood U of z € X such that N(f) n U
(which contains A n U) is nowhere dense analytic in U. This proves (2).

Assume (2). Then for every nonzero f € Oy, since (N(f),z) & (X, x), thereis
a neighborhood U of z such that N(f) n U is nowhere dense in U. So (1) follows
from Cor. 3.4.2. O

We are now ready to prove Thm. 3.3.5.

Proof of Thm. 3.3.5. We set A = X;, B = X for simplicity. Since their germs
satisfy (A,z) ¢ (B,z), we have (A n B,z) & (A,z). So, by Cor. 3.4.3, after
shrinking X to a neighborhood of #, A n B is nowhere dense in A. This proves
(3.3.6).

Now assume that (3.3.6) holds for all ¢ # j. Lety € A n B. Since A n B
is nowhere dense in B, we have (A,y) < (A u B,y). Similarly, since A n B is
nowhere dense in A, we have (B, y) & (A u B,y). This proves the last sentence of
Thm. 3.3.5, thanks to Rem. 3.3.2. ]
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Remark 3.4.4. Prop. 3.4.1 can be used in the following way.

* Suppose A is an analytic subset of a reduced space X. To show that A is
nowhere dense, it suffices to prove that for each = € A there is a non zero-
divisor f € Ox , vanishing on A n U for a neighborhood U of z. Then after
shrinking U, N(f) n U is nowhere dense. So its subset A n U is nowhere
dense.

Actually, if A is expected to be nowhere dense, then one must be able to find such
[ due to the following generalization of Prop. 3.4.1 (which can be viewed as the
complex-analytic version of prime avoidance lemma, cf. [Vak17, Sec. 11.2] or [Eis,
Sec. 3.2]):

Proposition 3.4.5. Let X be a reduced complex space and I a coherent ideal of O'x. Let
A = N(Z). The following are equivalent.

(1) A is nowhere dense in X.

(2) Foreach x € X, T, contains a non zero-divisor of Ox .

Another description of nowhere dense analytic subsets is given by Ritt’s
lemma 3.10.7.

Proof. (2)=(1) is already explained in Rem. 3.4.4. Let us prove (1)=(2).

Assume that A is nowhere dense. By shrinking X to a neighborhood of = we
may find a local decomposition X = X; U --- U Xy at 2. For each ¢, we have
(Xi,z) & (A, ), namely, we cannot find any neighborhood U < X of = such
that X; n U < A n U: Otherwise, by (3.3.4), X; contains an open subset (namely
Xi\[;; X;) which intersects U, contradicting the fact that A is nowhere dense.

Therefore, we have .4, ¢ Zx, , for all i. Since \/Z, = 4, and Fy, , is its
own radical, we have 7, ¢ .Zx, ,. The existence of a non zero-divisor follows from
the next lemma. O

Lemma 3.4.6. Let X = X' U --- U XV be a decomposition of reduced complex space X
into analytic subsets. Let x € X, and assume that each X7 has a local decomposition at x:

X =XluXju--
Suppose that we have a linear subspace W < Ox , such that

V&I, (Vi, j)
Then there is an element of W which is a non zero-divisor of Ox1 , ..., Oxn ;.
Proof. Since each #' n .7y, , is not the full space ¥, the finite union [ J; ;(%" n
ng’m) =W N (U” JXM) is not #. So there is an element f € % which is not in
Ui,j ng-,z. By Cor. 3.1.6, f is a non zero-divisor of each Oy; ,. O

Note that in the above proof we have used the fact that C is an infinite field.
Over a finite field, a finite union of proper linear subspaces might be the full linear
space.
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3.5 Ranks of Jacobian matrices and singular loci

This section can be read immediately after Sec. 3.2. The goal of this section is
to prove Lemma 3.2.12, a crucial ingredient in the proof that any complex space
reduced at a point is reduced near that point (Thm. 3.2.1). Indeed, even if we as-
sume that a complex space is reduced everywhere, this lemma still tells us some-
thing interesting: it says that if X is irreducible at 0 then, after shrinking X to a
neighborhood of 0, X is smooth outside a nowhere dense analytic subset (due to
Prop. 3.4.1).

The proof of Lemma 3.2.12 relies on Jacobian matrices, which are very useful
for determining the singular locus of a complex space.

Definition 3.5.1. If X is a complex space, we define the singular locus of X to be
the closed (cf. Cor. 1.6.5) subset

Sg(X) = {z € X : X is not smooth at x}.

3.5.1 Jacobian matrices

Assume X = Specan(0y/T) is a closed subspace of an open U — C™, where Z
is generated by f',..., f" € O(U). Let (21, ..., zn) be the standard coordinates of
C™, and consider the Jacobian matrix function

o= ()

which is an m x n matrix valued function on U whose i x j entry is 0., f7.
For each k e N, let

Zr ={xeU:rank 0., (f*)(z) < k}. (3.5.1)
Then clearly
Lo C W C " C Ll C Ly =Lips1 = Lo == U. (3.5.2)

Each Z;, is an analytic subset of U, because

7y = N N (det .. (f*)

1<i1<---<ik+1<m
Iji<<jr+1<n

e j) (3.5.3)

3.5.2 Proof of Lemma 3.2.12

Proof-Step 1. Assume the setting of Subsec. 3.5.1, and assume 0 € X. In this first
step, we construct A. Fix r € N to be

r = “the smallest number such that (Z, n X,0) = (X,0)”
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where (Z, n X,0), (X, 0) are germs of sets at 0. Namely, r is the smallest number
such that Z, n X contains a neighborhood of 0 € X. Thus, we may shrink? U so
that

XcZ,

at the level of sets. More precisely, N(Z) c Z,.
Since Z,_; n X containes no neighborhoods of 0 € X, by (3.5.3) we can choose
an r x r-submatrix, say the first » rows and the first » columns:

<r A I<g<r
0| = (0F)
<r 1<i<r
such that the zero set of its determinant

A = det 0., (f*)

<

<r

e 0(U)
<r
intersected with X contains no neighborhoods of 0 € X. (Note that Z,_; < N(A).)
This implies that A is non-zero in Ox,. Our goal is to show that X\N(A) is
smooth. N

Proof-Step 2. Set
wy = Y. w = 7, Wygl = Zpgly .oy Wiy = Zm.

Then by inverse function theorem, each point x € U\N(A) has a neighborhood on
which wy, ..., w,, are a set of coordinates. Recall that Z, is generated by wy, ..., w,
and [, ..., f". If we can show for each z € X\N(A) that Z, is generated by
wy, . .., w,, then X is smooth at z, since X is near = the (m — r)-dimensional sub-
manifold defined by w; = --- = w, = 0. Thus Sg(X) < N(A).

* Claim: After possibly shrinking X to a neighborhood of 0, for each z €
X\N(A) we have

Ow, [ €T, (Vi,j >r)

If this is proved, then for each i > r, 0,,f’ belongs to Z, for all j since it is
zero when j < r. Then 0,,Z, < Z,. Thus by Lemma 3.2.13, Z, is generated by
wy, ..., w,, finishing the proof. (We warn the reader that 0,, is not equal to 0,
even if i > r, and is not defined on N(A).)

Let us take a closer look at the relationship between the Jacobians of (f*) over
z, and over w,. On U\N(A) we have

0w, (f°) (3.54)

2This is the only place we shrink U in Step 1 and 2 of the proof.
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and also

O (f*)

* ]
- (3.5.5)

>r

where * € O(U) and & € O(U\N(A)). From these two relations we observe:

Ob1. 2.,(f°) i: - & equals the upper right block of 0., (f*) which is holomorphic
on U. So by Cramer’s rule, A - & can be extended to an element of &(U). So
the same can be said about A - d,,, (f*) i: (Look at the lower right block of
0., (f*).) We conclude

0w, =hl/A  forsomehle OU)  (Vi,j>r)

Ob 2. Ateach z € X\N(4Q) < Z,\Z,_4, the rank of J,,(f*) equals that of 0, (f*),
which is r. Therefore, by (3.5.5), for all i, j > r, 0y, f7 vanishes on X\N(4),
and hence h] vanishes on X\ N (A).

O

Observation 2 shows that if we already know that X is reduced, then every
holomorphic function vanishing on X\N(A4), in particular d,, f* where i,j > r,
must be an element of Z(X\N(A)). Then the Claim in Step 2 follows and hence
Sg(X) © N(A). But since we cannot assume what we want to prove, we need a
little more effort to prove the Claim.

In Step 1 and 2, we have not used the fact that X is irreducible at z. This
condition enters Step 3 of the proof. Indeed, we only need the weaker condition
that X is reduced at z.

Proof-Step 3. Assume that Oy is an integral domain, and hence reduced. For
each i, 5 > r, the two observations in Step 2 show that the holomorphic function
A - h! on U takes value zero at every point of X. So its germ at 0 is a nilpotent
element of 0x ( by Nullstellensatz, and hence is zero. We can thus shrink U to a
neighborhood of 0 so that A - i/ is zero in Ox(X) for all i,j > r. If z € X\N(A4),
then A(z) # 0 and hence A is invertible in Ox .. Therefore in Ox , we have hf =0
and hence 0, f7 = 0if i, j > r. This proves the claim in Step 2 that d,, f/ is in
ZL,. O

We are done with the proof of Lemma. 3.2.12.
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3.5.3 Additional comments

Assume the setting of Subsec. 3.5.1, and assume moreover that X is reduced.
Assume U is small enough so that X < Z,. Then Proof-Step 1&2 show that
Sg(X) € X n N(A) (see the comments before Step 3), and that X\N(4) is an
m — r dimensional complex manifold. Note that in the proof we take A to be the
determinant of one r x r submatrix of J,, f*, and we may well take other sub-
matrices. By (3.5.3), Z,_; is the intersection of N(A) where A runs through the
determinants of all £ x k submatrices of 0, f*. Therefore Sg(X) < X n Z,_;.

It is natural to ask if we have Sg(X) = X n Z,_;. In Sec. 3.6, we will prove
Lemma 3.5.2 saying that this is indeed true if X n Z,_; is nowhere dense in X.
Note that if X is irreducible at 0, then A is non-zero in O and hence is a non
zero-divisor. Thus, by Prop. 3.4.1, we can shrink X to a neighborhood of 0 so that
X n N(A) and hence X n Z,_; are nowhere dense in X.

Lemma 3.5.2. Assume the setting of Subsec. 3.5.1.

(1) Assume that X is reduced, that X < Z,, and that X n Z,_, is nowhere dense in
X. Then

Se(X)=XnZ. (3.5.6)
and X\Z,_, is an (m — r)-dimensional complex manifold.

(2) If the X in Subsec. 3.5.1 is irreducible at 0 € X, then we can shrink U to a neigh-
borhood of 0 € U (and replace X by X n U) so that the assumptions in (1) are
satisfied for some r € N.

The only thing in Lemma 3.5.2 unproved so far is Sg(X) > X n Z,_;. We will
prove this in Subsec. 3.6.2.

3.6 Embedding dimensions and singular loci

The rank of 7, f* in Subsec. 3.5.1 depends on how X is embedded into an
open subset of a number space. Using Jacobi criterion, we can relate this rank to
intrinsic numbers of X call embedding dimensions.

3.6.1 Embedding dimensions

Definition 3.6.1. Let X be a complex space and = € X. The embedding dimen-
sion of X at z, denoted by emb, X or embOx ., is the smallest n such that a neigh-
borhood U of x can be closely embedded to an open subset of C”.

Equivalently (Prop. 1.7.2), emb, X is the smallest n such that there is a neigh-
borhood U of = and a holomorphic f : U — C" which is an immersion at . O
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Proposition 3.6.2. For each complex space X and x € X,
emb, X = embOy, = dimc mX@/m%(,r (3.6.1)

Proof. If ¢ : X — C" is an immersion at x, then by Thm. 1.7.8, n > dimmx, /mg(z
We can choose 7 to be dim my ,/m% , by shrinking X to a neighborhood of , and
choosing fi, ..., f, € 0(X) forming a basis of mx ,/m% .. Then ¢ = (f1,..., f,) is
an immersion at = due to Thm. 1.7.8. ]

As an immediate consequence of Prop. 3.6.2, C" has embedding dimension n
everywhere. Thus, for complex manifolds, embedding dimensions agree with the
usual dimensions.

Proposition 3.6.3. Let Z be a complex space and I a coherent ideal of 0;. Let X =
Specan(0z/I) and x € X, and define the quotien map d, : mz, — my,/m  (the
differential map of Z at x:). Then

emb, X + dim¢ d,(Z,) = emb, Z. (3.6.2)

Proof. We have an exact sequence

Z, +m? m m
0> 22 22, 28 (3.6.3)
mZ,x mZ,:v II + mZ,x
where Iﬁiﬁz = my,/m% , since mx, = my,/Z,. Thus (3.6.2) follows. O

Corollary 3.6.4 (Jacobi criterion). Let U be an open subset of C™, let T be the ideal of
Oy generated by f',.... f" e O(U), and let X = Specan(Oy/I). Then for each x € X,

emb, X + rank, (0Z.f') = m. (3.6.4)

Proof. There is clearly a well-defined linear injective map
m(gm@ cm
Mem o (3.6.5)
dy(h) = (0:.h)(2)

v dx(m(cm@) =

(where h € mgm ). Thus d,.(Z,) and ¥(d.(Z,)) have the same dimension. The fact
thateach € Z, is an Ocm ,-linear combination of the germs f}, ..., f? implies that
(0,,h)(z) is a C-linear combination of (2., f!)(x), ..., (0., f")(x), since f'(x) = 0. So
U (d,(Z,)) is spanned by (0., f')(x), ..., (0., f")(x). This proves

rank,, (8Z.f') = dim¢ d,.(Z,) (3.6.6)

and hence finishes of the proof of the corollary, thanks to Prop. 3.6.3. O
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As an easy application of Jacobi criterion, we prove:

Proposition 3.6.5. Let X, Y be complex spaces and x € X,y € Y. Then
emb, ., X x Y = emb, X + emb,Y. (3.6.7)

Proof. Let U ¢ C™ and V < C" be open subsets such that X = Specan(0y,/T)
and Y = Specan(0y/J), where 7 is an ideal of 0}, generated by finitely many
fHf2%,...0(U), and J is an ideal of 0y generated by finitely many g',¢*,--- €
O (V). Let z, be the set of coordinates of C™ and w, the set of coordinates of C".
Then by Rem. 1.12.6, X x Y is the closed subspace of U x V' defined by the ideal of
Oyxv generated by f1(z.), f(z.), ... and g'(w.), g*(w.), . ... By Jacobi criterion,

emb, ., X xY =m + n —rank,., O(Zhw.)(f'(z.), g'(w.))
=m + n — rank, 0,, f*(z.) — rank, 0,,9°(w,.) = emb, X + emb,Y.

3.6.2 Analysis of singular loci

Proof of Lemma 3.5.2. Under the assumptions of (1), we need to show that each
x € XnZ,_ isasingular point. If z is smooth, we can find a neighborhood W < X
of  which is a complex manifold. In particular, the embedding dimensions of W
must be constant on W. Thus, by Jacobi criterion, the ranks of 0., f* are constant
on V.

Notice the assumptions in (1) that X n Z,_; is nowhere dense in X. So W &
X n Z,_1. From the definition of Z,, we know that the ranks of 0., f* on Z,_; (and
in particular at z € W) are < r — 1, and that the rank on the non-empty set W\ Z,_;
is r (since X < Z,). This is impossible. So z is singular. O

Lemma 3.5.2 shows that if X is irreducible at 0, then the singular locus of a
neighborhood of 0 € X is a nowhere dense analytic subset of that neighborhood.
This property can be generalized.

Proposition 3.6.6. Let X be a complex space reduced at x. Then after shrinking X to a
neighborhood of x, there is a local decomposition X = Xy u --- u Xy at x such that

Sg(X) = ( Jxin Xj) U ( U Sg(Xi)> . (3.6.8)

In particular, after shrinking X further, Sg(X) is a nowhere dense analytic subset of X.

Note that each Sg(X;) can be described by Lemma 3.5.2. We thus have an
explicit local description of singular loci of reduced complex spaces.
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Proof. Clearly we have c in (3.6.8). To show > we only need to show that Sg(X) o
X; n X if ¢ # j and after shrinking X. This is due to Thm. 3.3.5, since a reducible
point must be singular. This proves (3.6.8). Thm. 3.3.5 says that X;nX; isnowhere
dense in X. By Lemma 3.5.2, Sg(X;) is nowhere dense in X; (and hence in X) after
shrinking X. So Sg(X) is nowhere dense. O

Theorem 3.6.7. Let X be a complex space. Then Sg(.X) is an analytic subset of X. If X
is reduced, then Sg(X) is nowhere dense in X.

Proof. Prop. 3.6.6 shows that if X is reduced, then each z € X is contained in a
neighborhood U, < X such that Sg(X) n U, is analytic and nowhere sense in U,
Therefore by Cor. 3.2.8, Sg(X) is analytic and nowhere dense in X. In the general
case, X = X' u (X\X’) where X’ is the set of non-reduced points of X, which is
an analytic subset by Cor. 3.2.7. Clearly

Sg(X) = X' U Sg(X\X"). (3.6.9)
So Sg(X) must be analytic. O

3.7 Products of reduced spaces are reduced

In this section, we give our first application of Thm. 3.6.7: We study the re-
ducedness of complex spaces with the help of their singular loci.

Proposition 3.7.1. Let X be a complex space and x € X. Let T be a coherent ideal of Ox
such that N(Z) = Sg(X). (For instance, T = Ysq(x).) Then the following are equivalent.

(1) X is reduced at x.

(2) I, contains a non zero-divisor of O'x .

Proof. Assume (1). By Thm. 3.2.1, we may shrink X to a neighborhood of x so
that X is reduced. Then by Thm. 3.6.7, N(Z) is nowhere dense in X. Thus (2)
follows from Prop. 3.4.5.

Assume (2). Shrink X so that there is f € Z(X) which is a non zero-divisor
of Ox .. To prove (1), we need to show that every g € /0x, is zero. Shrink X
further so that g € 0(X) and ¢" is zero in &/(X) for some n € Z,. Since X\N(Z)
is smooth, g|x\n () = 0. So Supp(g) = Supp(gCx) is inside N(ZI). Since f vanishes
on N(Z), by Nullstellensatz (Rem. 2.10.4-3), there is k € Z, such that in Oy, we
have f¥g = 0, and hence g = 0 because f is a non zero-divisor. O

Note that the proof of (2)=(1) is similar to that of Thm. 3.2.1. (See the proof
above Lemma 3.2.13.)

We shall prove that the direct product of two reduced complex spaces is re-
duced. To prove this fact, we first need a result on completed tensor product of
non zero-divisors.
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Proposition 3.7.2. Let X, Y be complex spaces and x € X,y € Y. Let f € Ox, bea
non zero-divisor of Ox , and g € Ox , be a non zero-divisor of Oy,,. Then f ® g is a non
zero-divisor of Ox ,Q@0yy = Ox xy zxy-

Recall the meaning of f ® g in (1.13.1). Since f ® g = (f ® 1)(1 ® ¢g) and the
product of two non zero-divisors is a non zero-divisor, it suffices to prove that
f ® 11is a non zero-divisor.

A different proof of this proposition is given in Sec. 5.6, after Cor. 5.6.7.

Proof-Step 1. We prove Prop. 3.7.2 under the assumption that y is the only point
of Y. Then the obvious projection Y — {0}, where {0} is the reduced single point,
is finite. Therefore, by Cor. 2.8.4, we have a canonical equivalence

ﬁXXY,ny =~ ﬁX,:p ®(C ﬁY,y-

Note that by Thm. 2.7.1, Oy, is a finite-dimensional vector space. Then one checks
easily that f®1 is a non zero-divisor: choose any element of 'y , ®c Oy, and write
itas a finite sum i = ), h;®@e; where {e;} is abasis of Oy,,. If (f®1)h = >, fh;®e;
is zero, then each fh; = 0, and hence h; = 0. O

Proof-Step 2. We now prove the general case. Choose any h € Ox .y zxy such that
(f ® 1)h = 0. We shall prove that h € m’;y - Oxxyaxy for all k € N. Then since
My, - Oxxyaxy © Wy, We have h = 0 by Krull’s intersection Thm. 1.4.4.

Let J be .#,, the ideal sheaf of all sections of &y vanishing at y. Then J, =
my,,. Thus, what we need to prove is that & is zero in Oy xy;xy/ jyk Ox xv,zxy for all
k. Let Y* = Specan(0y /J*) whose underlying topological space is {y} but might
be non-reduced. Let pry : X x Y — Y be the projection. Then by Prop. 1.12.1 and
1125, ﬁXxY,xxy/jykﬁXxY,xxy is the stalk at z x Yy of

Oxuy | T"Ox v = Otvky = Oxxyk-

Note that by Prop. 1.12.5, the inclusion ¢,y x«y equals 1x x ty+y. Thus, the
residue class of f ® 14y, = Pr .y x /I Ox vk zxy 18

(1x x LYk,Y)*pri(xY,Xf = pr}xyk,xf =/® 1ﬁyk,y

which, by Step 1, is a non zero-divisor of Oy vk ;. S0 his 0in Ox vk 4y, This
tinishes the proof. O

Theorem 3.7.3. Let X, Y be (non-empty) complex spaces. Then X and Y are reduced if
and only if the direct product X x Y is reduced.

Proof. First, if one of X, Y (say X) is not reduced, then there is a nonzero f € Ox
such that f vanishes everywhere on X. So f® 1 = prﬁ f is nonzero but vanishes
everywhere on X x Y. S0 X x Y is not reduced.
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Now we assume that X and Y are reduced and prove that X x Y is reduced
at every point = x y. By Prop. 3.7.1, we may shrink X,Y to neighborhoods of
x,y respectively so that we can find f € Z5,(x)(X) which is a non zero-divisor of
Ox 4, and find g € Fg5v)(Y) which is a non zero-divisor of Oy,,. Since f takes
value zero on Sg(X), f®1 takes value zero on Sg(X) x Y, and similarly 1®g takes
value zero on X x Sg(Y). Thus f ® g = (f ® 1)(1 ® g) vanishes on

(Sg(X) xY) u (X xSg(Y)) o Sg(X xY). (3.7.1)

The above o is due to the fact that the product of smooth spaces is smooth, ac-
cording to Exp. 1.13.3.

Now we have f ® g € Fsyxxv)(X x Y). By Prop. 3.7.2, f ® g is a non zero-
divisor of Ox v zxy. So by Prop. 3.7.1, X x Y is reduced at z x y. l

We remark that the “>” in (3.7.1) is actually “=". See Cor. 3.10.11.

3.8 Non locally-free loci of coherent sheaves

In this section, we use (co)rank functions to study the non locally-free loci of
coherent sheaves.

Definition 3.8.1. Let X be a complex space and & an &x-module. We say that &
is locally free at x if there is a neighborhood U < X of x such that &y is Oy-free.
(Recall our convention that free sheaves are assumed to have finite ranks). When
& is Ox-coherent, then this is equivalent to saying that &, is a free Ox ,-module
(Thm. 2.2.2).

The (clearly closed) subset of all z € X at which & is not locally free is called
the non locally-free locus of &. O

Lemma 3.8.2. Let A be a commutative Noetherian local ring and M an A-module to-
gether with a surjective morphism of A-modules ¢ : A" — M. Then M is A-free if and
only if the morphism

¢s : Hom (M, A") — Hom 4(M, M), a—poaq
is surjective.

Proof. If M is free then ¢, is surjective because Hom 4(M, —) is right exact. Con-
versely, if ¢, is surjective, then the fact that 1, is in the image of ¢, means that
there is a lift ¢ : M — A" such that p o ¢) = 1. This proves that M is a direct
summand of A". Therefore M is a projective A-module by Prop. 5.3.7, and hence
is free of finite rank by Thm. 5.4.2. O
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Theorem 3.8.3. Let X be a complex space and & a coherent Ox-module. Then
E = {z e X : & is not locally free at x}

is an analytic subset of X. If X is reduced, then E is nowhere dense.

Proof-Step 1. Let us prove that £ is analytic. By Cor. 3.2.8, it suffices to show that
each z € X is contained in a neighborhood U such that £ n U is analytic in U.
So let us assume X is so small that there is a surjective &x-module morphism
¢ : 0% — &. This yields a morphism of coherent modules (cf. Cor. 2.2.5)

oo (E,00) — Hoome (E,8).

The support of the cokernel of this morphism is, by Lemma 3.8.2, the set of all x
such that &, is not Ox ,-free, namely E. So E is analytic since it is (as a set) the
support of a coherent sheaf. O

Proof-Step 2. Assume that X is reduced. We need to show that £ contains no
nonempty open subsets of X. By shrinking X, it suffices to prove that £ # X. So
let us assume F = X and find a contradiction.

Now our assumption is that & is nowhere locally free on X. By shrinking X,
we assume that

& ~ Coker(p : OF — O%).

Let & = ¢(1,0,...,0),...,&n = ¢(0,0,...,1), which are elements of &(X)".
Then F' = (&,...,&,) can be viewed as an element of (X)"*™, i.e. ann x m
matrix-valued holomorphic function on X. And for each z € X, setting C, =
ﬁX@/mX@ ﬁxw, we have

n — rankF'(x) = dim Coker(¢(z) : CI' — C%)
=dim Coker(p®1: 0¢ ®c C, — 0% ®c C,)
=dim Coker(p : 0% — 0%) ®c C, = dim(&|x).

As in Subsec. 3.5.1, for each k € N, the set
Iy ={z e X :rankF(z) < k}

is an analytic subset of X. We let r be the smallest number such that I, contains a
nonempty open subset of X. Then I',\I',_; also contains a non-empty open subset
U < X. By restricting X to U, we assume that X = I',. So the dimensions of the
fibers dim(&'|x) are constant on X. Therefore, since X is reduced, Prop. 1.3.15
implies that & is locally free on X. Impossible. O

Exercise 3.8.4. Let X be a reduced complex space irreducible at x € X. Show that
after shrinking X to a neighborhood of z, there is r € N such that X = I', and that
I',_; is nowhere dense in X. Show that if X = I', and if I',_; is nowhere dense
then I',_; is the non locally-free locus of &.
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3.9 Dimensions

Definition 3.9.1. Let X be a complex space and = € X. The (Chevalley) dimen-
sion of Ox ., also called the dimension of X at x and denoted by dim O, or
equivalently dim, X, is the smallest n € N such that:

* There exists a neighborhood U of = and fi, ..., f, € O(U) such that x is an
isolated point of N(fi,..., f,).

It is clear that dim, X = 0 iff z is an isolated point of X. We set dim, ¢J = —o0.
The global dimension is defined to be

dim X = supdim, X.

zeX

We say that X is (resp. locally) pure dimensional if x € X — dim, X is a (resp.
locally) constant function. We say that X has pure dimension n at = if X has
dimension n at every point of a neighborhood of z. O

3.9.1 Basic facts about dimensions
Proposition 3.9.2. Let X be a complex space and x € X. Then
dim, X = dim, red(X).
Equivalently, for o/ = Ox ,, we have
dim & = dim &/ /1/0,.

Proof. If X is small enough such that fi, ..., f, € €(X) makes z an isolated point
of N(f.), then their restrictions to red(X) (i.e. their residue classes in red(X)) also
make z an isolated point of the zero set.

Conversely, if fi,..., f, € O(red(X)) makes = an isolated point of N(f.), then
after shrinking X to a neighborhood of x, we can assume f, ... f,, are the restric-
tions of elements of &'(X), whose zero set also has = as an isolated point. O

Proposition 3.9.3. We have dim, X < n if and only if there exist a neighborhood U,,
X of x, an open subset V < C", and a finite holomorphic map F' : U, — V.

Proof. The “if” partis clear. The “only if” part follows by choosing ' = (fi, ..., f,)
(where f, are in Def. 3.9.1) and applying Thm. 2.7.2 to deduce the finiteness. [

Corollary 3.9.4. For each complex space X, the dimension function
X —>N r — dim, X

is upper semicontinuous.
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Proof. Fix any p € X and let n = dim, X. Then by Prop. 3.9.3, we may shrink X
to a neighborhood of p and find an open subset VV < C" such that there is a finite
map ¢ : X — C". Then clearly dim, X < n for each z € X. O]

Corollary 3.9.5. Let ¢ : X — Y be a finite holomorphic map. Then for each x € X,
dim, X < dim@(l,) Y. (3.9.1)

Proof. Let y = ¢(z) and n = dim, Y. By Prop. 3.9.3, after shrinking Y and re-
placing X by ¢~ (YY), we have a finite holomorphic map 7 : Y — V where V is
an open subset of C". Since F'o ¢ : X — V is finite, by Prop. 3.9.3 we conclude
dim, X < n. O

Proposition 3.9.6. Let X be a complex space and x € X. The following are equivalent.
(1) dim, X = 0, namely, x is an isolated point of X.
(2) Ox,, is a finite-dimensional vector space.
(3) Ox, is an Artinian ring.
(4) There exists k € Z.. such that m% , = 0.

Proof. (1)=(2): By shrinking X, we assume z is the only point of X. Let {0} be the
reduced single point (whose structure sheaf is C). Then the obvious holomorphic
map X — {0} is finite. Therefore, by Thm. 2.7.1, O , is C-coherent, i.e., C-finite-
dimensional.

(2)=(3): Obvious.

(3)=(4): The decreasing chain my, > m%, > m%, > --- must be stationary
as Ox, is Artinian. So there is k € Z, such that m% = m{"}. Somk = 0 by
Nakayama’s lemma 1.2.15.

(4)=(1): Assume for simplicity that X is a closed subspace of an open subset
Uof C", and x = 0. Let z, ..., 2z, be the coordinates of C". Since m’_§(7$ = 0, the
germ of zF in Oy, is zero. Thus, after shrinking U to a neighborhood of 0, we
have that that 2¥|x is zero in Oy for all i. So for each p € X we have (z;(p))* = 0.
So p = 0. This proves X = {0} = {z}. O

3.10 Active lemma for dimensions

Let X be a complex space.
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3.10.1 Active lemma

Definition 3.10.1. An element f € 0(X) is called active at = or active in O, if f
(or more precisely red(f)) is a non zero-divisor of Oreq(x)e = Ox,2/+/0xc -

Non zero-divisors are always active, but the converse is not true.
Proposition 3.10.2. If f € 0(X) is a non zero-divisor of O ,, then f is active in Ox .

Proof. Let o = Ox,. Suppose that f is not active at z, i.e. f is a zero-divisor of
27 //0. Then fg € 1/0 for some g € o/ and g ¢ /0. So for some n € Z, we have
f"g" = 0in «/. Notice that g" # 0. So we can find k£ € N such that in &/ we have
fEgm # 0and f - fF¢" = 0. Therefore f is a zero-divisor of .<7. O

Theorem 3.10.3 (Active lemma). Let f € O(X) and v € N(f). If f is a non zero-
divisor of Ox ,, then

dim, N(f) = dim, X — 1. (3.10.1)
Thus, by Prop. 3.9.2, if f is active at x then (3.10.1) also holds.

One may also compare Active lemma with Prop. 3.6.3.

Proof. Let m = dim, N(f) and n = dim, X. Then, after shrinking X to a neighbor-
hood of z, there are ¢, ..., g, € O(X) such that N(f) n N(g1,...,9m) = {z}. Thus
n<m+ 1.

Let us prove m < n — 1. Let A = N(f). By Prop. 3.9.3, we may shrink X and
find a finite holomorphic map ¢ : X — Y sending = to 0, where Y < C" is open.
By Exe. 2.3.11, ¢(A) is an analytic subset of Y. So m < dimg ¢(A) by Cor. 3.9.5.
Therefore, it suffices to prove dim, p(A) <n — 1.

By Thm. 2.7.2, we may shrink Y to a neighborhood of 0 and replace X by
¢ 1Y) so that ¢ '(0) = z and hence Oy, = (¢.0x)o. By Thm. 2.7.1, 0.0x
is Oy-coherent. Hence Ox, is a finitely-generated 0y -module. Thus, as Oy
is Noetherian, the germ of f in Oy, is integral over Oy, (see the argument for
(2.7.4)), i.e.

féVJraN,lféV*l%—---Jrakff:O

for some ay,...,an_1 € Oyo where q; is non-zero in Oy,. Since f is a non zero-
divisor of O ., we conclude that a;, (or more precisely ¢*a;,) equals
N—k N—k-1
—f —an-1f — = agf

in Ox .. So a;, belongs to Anng, (Oa,) = Anng, ((¢+04),). By shrinking X,Y
further, we have ay, € e, (9.04)(Y). By Def. 2.3.8, a;, vanishes on p(A), i.e.
©(A) < N(ay). So it suffices to prove dimg N(ax) < n — 1.
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Since ay, is non-zero in Oy, as in the proof of Thm. 1.5.5 we may choose a new
set of coordinates (21, ..., z,) of C" such that a; has finite order in z;. So O¢~ is an
isolated point of the fiber 77*(0cn-1), where 7 : N(a;) — C"~! is the restriction of
pren—t 1 € x C*' — C"~!. This proves dimg N(a;) < n — 1. O

Remark 3.10.4. Active lemma is a key result in dimension theory. As one has seen
above, there are two crucial ingredients in the proof of Active Lemma:

(1) Suppose that ¢ : X — Y is a finite holomorphic map, Y is reduced (it
suffices to take Y to be an open subset of C"), y € Y, o '(y) = {z},
f € O0(X) vanishes at = and is a non zero-divisor of Ox .. Then one shows
(p(N(f)),y) < (Y, y) with the help of the coherence of ¢, 0.

(2) One shows that every proper subgerm of (C",0) has dimension < n — 1.

Remark 3.10.5. Assume dim, X > 0. By taking local decomposition of red(X) at =
and using Cor. 3.1.6 or Lemma 3.4.6, we can find f € mx, which is an active germ
of X at z. By Active lemma, we can repeat this procedure to obtain fi,..., f, €
my ., such that, after shrinking X to a neighborhood of z, each f; isin (X ) and is
an active germ of N(fi,..., f;—1) at z. And x is an isolated point of N(f1,..., f.).

Contrary to active elements, if Ox , is not reduced then mx , might not contain
a non zero-divisor of Ox ,. Thus, we may not be able to find f,. .., f, € mx, such
that each f; is a non zero-divisor of Ox ,./(f1Ox .. + - + fi-10x ). In the case that
we can, we will call Ox , a Cohen-Macaulay ring.

3.10.2 Consequences of Active lemma
Corollary 3.10.6. If v € C" then
dim, C" = n.

Proof. This is clear when n = 0. That dim, C" = n implies dim, C"™! = n + 1
follows from Active lemma. H
Corollary 3.10.7 (Ritt’s lemma). Let A be an analytic subset of a complex space X. The
following are equivalent.

(1) A is nowhere dense in X.

(2) dim, A < dim, X forall z € X.

Proof. By Prop. 3.9.2, it suffices to assume that X is reduced. Clearly (2)=(1).
Assume (1). Then by Prop. 3.4.5, for each x there is a non zero-divisor f € Ox,
vanishing on the germ (A, z). Therefore dim, A < dim, N(f) = dim, X — 1 by
Active lemma. This proves (2). [

113



Proposition 3.10.8. Let X = A; U --- U Ay be a union of analytic subsets. Then

dim, X = sup dim, 4; (3.10.2)

1<i<N

Proof. By Prop. 3.9.2, we may assume that X is reduced. “>" clearly holds. We
prove “<” by induction on m = sup, dim, A;. We may assume that x is in each A4,
and hence dim, A; > 0.

The base case m = 0 is obvious. Assume that (3.10.2) holds for any decompo-
sition such that sup, dim, A; = m — 1. Now assume sup, dim, A; = m > 0. We may
shrink X to a neighborhood of x and discard those 7 satisfying dim, A; = 0. Thus,
we may assume dim, A; > 0 for all 4. Shrink X further so that each A; has a local
decomposition A; = B;; U B;2 u --- at x. Then for each 1, j, clearly z is not an
isolated point of B; ;. This implies my, ¢ #, ;.. Therefore, by Lemma 3.4.6, we
can find f € my , which is a non zero-divisor of 0, and of every 0y, ,. Thus, by
Active lemma, dim, N(f) = dim, X — 1 and sup, dim, N(f) n A; = m — 1. These
two numbers are equal by assumption on case m — 1. So dim, X = m. O

Proposition 3.10.9. Let X, Y be complex spaces and x € X,y € Y. Then
dimgy, X x Y = dim, X + dim, Y. (3.10.3)

Proof. We prove this by induction on m = dim, X. The case dim, X = 0is obvious.
Suppose (3.10.3) holds whenever dim, X = m — 1. In the case that dim, X = m,
choose f € my , active in Ox , (Rem. 3.10.5). Then by Prop. 3.7.2, f®1 € My yzxy
is active in O,y xy. By shrinking X to a neighborhood of + we may assume
[ € O(X). Therefore, by Active lemma, dim, ., N(f) x Y = dim,,, N(f® 1) =
dim, (X xY)—1, and dim, N(f) = dim X —1. By assumption, dim, ., N(f)xY =
dim, N(f) + dim, Y. This proves (3.10.3). O

Note that in the above proof, one can also use Prop. 3.4.1 to show that f ® 1 is
active if f is so.

3.10.3 Comparing different versions of dimensions

We first compare (Chevalley) dimensions and embedding dimensions.

Theorem 3.10.10. Let X be a complex space and x € X. Then dim, X < emb,X.
Moreover, X is smooth at x if and only if dim, X = emb, X.

Proof. Clearly dim, X < emb,X in general (Recall Def. 3.6.1) and dim, X =
emb, X if X is smooth at x. We now assume n := emb, X equals dim, X and
prove that X is smooth at z.

By Def. 3.6.1, after shrinking X to a neighborhood of x, we may view X as a
closed subspace of an open subset V' of C". Write X = Specan(0y/Z). We claim
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that Z, = 0. Then we can choose a neighborhood W < V' of z such that Z|y = 0
(Rem. 1.2.16), and clearly the complex subspace X n W of X is smooth. Hence X
is smooth at .

Suppose Z, # 0. Then Z, contains a nonzero element f, which is a non zero-
divisor of the integral domain Ocn . Since f vanishes on the germ (X,0), by

Active lemma we have dim, X < n — 1, which is impossible. [
Corollary 3.10.11. Let X, Y be complex spaces. Then
Sg(X xY) = (Sg(X) xY)u (X x Sg(Y)). (3.10.4)

Proof. We need to prove that for every x € X and y € Y, X x Y is smooth at z x y
iff X is smooth at x and Y is smooth at y. This is immediate from Prop. 3.6.5,
3.10.9, and Thm. 3.10.10. N

In algebraic geometry, the dimension of a commutative ring usually means
Krull dimension. Fortunately, it agrees with Chevalley dimension when the ring
is an analytic local C-algebra.

Definition 3.10.12. Let A be a commutative ring. The Krull dimension of A is the
largest n € N such that there exists a chain py & p; & - - - & p,, of prime ideals of A.
If such n can be arbitrarily large, we set the Krull dimension to be + .

Lemma 3.10.13. Let p’ < p be prime ideals of Ox ;. Then

Recall that a prime ideal of Oy, is not equal to O ,, and hence is contained in
my .

Proof. By replacing O, by Ox,/p’ (and replacing X by a closed subspace of a
neighborhood of z), it suffices to assume that p’ = 0 and that & = 0x, is an
integral domain. Then 0 < p < /. Choose a non-zero f € p. Then f is a non
zero-divisor of </. Thus by Active lemma, dim.//p < dim&//f&/ = dim &/ — 1.
This proves (3.10.5). O

Proposition 3.10.14. dim, X equals the Krull dimension of O .

Proof. Lemma 3.10.13 shows that n = dim, X is no less than the Krull dimension
of O ,. To prove the equality, we need to show the existence of a chain of prime
ideals py < p1 & --- < p,. We prove this by induction on n. The case n = 0 is
obvious. Assume this is true whenever dim, X = n— 1. Now assume dim, X = n.
By Rem. 3.10.5, we can find an active germ f € my, at z. Then dim, N(f) =n—1
by Active lemma. By Prop. 3.10.8, in the prime decomposition of fO0x , < Ox,
there is a prime component p, such that dim Ox ,/po = n — 1. By assumption,
we have a strictly increasing chain of n prime ideals of Ox ,/po. These are prime
ideals of Ox , containing p,. In this way, we get a strictly increasing chain of n + 1
prime ideals of Ox . O
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3.11 Noether property for coherent sheaves

Let X be a complex space. In this section, we use dimension theory and Active
lemma to prove the Noether property for coherent sheaves of X. This result will
be used in the proof of Grauert comparison theorem. (See the proof of Lemma
6.5.5.)

Definition 3.11.1. Let & be a coherent &x-module. An ascending chain of co-
herent 0'x-submodules of & is a collection (&}),c; where J is a directed set, and
&; < &;if i < j. We say that the chain is stationary at z € X if there is a neigh-
borhood U < X of x and i € J such that &;|y = &j|y for all j > i. We say that &
satisfies Noether property at = every every ascending chain of coherent submod-
ules of & is stationary at . We say that & satisfies Noether property if it satisfies
Noether property at every z € X.

It is clear that if & satisfies Noether property, then any ascending chain of
coherent submodules of & is stationary on any precompact open subset of X.

Lemma 3.11.2. Let 0 — & — .F 5 & — 0 be an exact sequence of Ox-modules. If F
satisfies Noether property at x then so does 4. If & and ¢ satisfy Noether property at x
then so does .7 .

Proof. Assume that .7 satisfies Noether property at z. Let (¥;);c; be an ascend-
ing chain of coherent submodules of 4. By Cor. 2.1.9, v (%) is Ox-coherent.
So we have an ascending chain (%;);c; which is stationary at z. Then (¥,);c; =
(Y ("H;)))ies is stationary at x.

Now assume that & and ¢ satisfy Noether property at z. Let (.%;);c; be an
ascending chain of coherent submodules of .. We regard & as a submodule of
F. Then (Y(#;))ies and (& N %),y are ascending chains of coherent submodules
of ¢4 and & respectively, where the coherence is due to Cor. 2.1.6 and 2.1.7. So
they are stationary at x. From this one deduces that (.%,),c; is stationary at z. [

Lemma 3.11.3. Let ¢ : X — Y be a finite holomorphic map of complex spaces, and let
& be an Ox-module. Let x € X. If v, & satisfies Noether property at y = ¢(x), then &
satisfies Noether property at x.

Proof. Let (&;)ic; be an ascending chain of coherent submodules of &. Then
(p+&;)ies is an ascending chain of coherent (Thm. 2.7.1) submodules of ¢.&. By
assumption, after shrinking V" to a neighborhood of y and shrinking X to ¢~!(Y),
there is i € J such that for all j > i we have ¢.&; = ¢.&;, namely (¢.&;)y = (p+&)),
for all y € Y. This means, by Prop. 2.4.5, that &, = &, forallr € ¢ !(y) and j > i.
So &; = & when j > 1. O

Lemma 3.11.4. Let X be a connected complex manifold, and let T be a coherent ideal of
Ox.IfT # Ox, then I, # 0 for every x € X.
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Proof. We know that Supp(Z) is a (closed) analytic subset of X. If we can show
that Supp(Z) is open in X, then Supp(Z) = X, which finishes the proof of the
lemma.

Choose any z € Supp(Z). Then Z, # 0. There exist a connected neighborhood
U of x and f € Z(U) such that f is non-zero in 0y ,. By Identitdtssatz 1.1.3, f is
non-zero in Oy, for all p € U, which shows U < Supp(Z). ]

Theorem 3.11.5. Let X be a complex space and & a coherent Ox-module. Then & satis-
fies Noether property.

Proof. We need to prove that any coherent module & satisfies Noether property at
x. We prove this by induction on dim, X. Then case dim, X = 0 is obvious since
& is a finite-dimensional vector space (Cor. 2.7.4). Now assume that coherent
sheaves satisfy Noether property at x (for all X and = € X) whenever dim, X <
n—1and n € Z,. Let us prove that this is true when dim, X < n.

By Prop. 3.9.3, after shrinking X to a neighborhood of x, we may find a finite
map from X to an open subset of C". Therefore, by Lemma 3.11.3, it suffices to
assume that X is an open subset of C". Let & be a coherent 0x ,-module. After
shrinking X further, & is the cokernel of a morphism of free &'y-modules (Thm.
2.1.10). Thus, by Lemma 3.11.2, it suffices to assume that & is Ox-free, and hence
that & = 0 X-

Let (Z;)ic5 be an ascending chain of ideals of x. We need to show that it
is stationary at z. It suffices to assume that 7, # Ox for some k. By Lemma
3.114, Z),, # 0. Shrink X so that we can find f € Z;(X) non-zero in Ox ,. By
discarding all ¢ < k, we assume that fOx < 7, foralli € J. Let J, = 7,/ f O,
which is an Ox-submodule of Ox/fCx. Identify J; with its restriction to Y =
Specan(Ox/fOx). Then (J;)e; is an ascending chain of coherent ideals of Oy
Since Ox, is an integral domain, we have dim 0y, = dim0x, —1 = n — 1 by
Active lemma. Thus, by assumption, (7;):c; is stationary at x. Therefore (Z;);c; is
stationary at z. O

3.12 Openness and dimensions of fibers I

Definition 3.12.1. Let ¢ : X — Y be a continuous map of topological spaces. We
say that ¢ is open at = € X if for each neighborhood U < X of z, ¢(U) contains a
neighborhood of ¢(z). We say that ¢ is open (on X) if ¢ is open at every point of
X.

It is clear that ¢ is open at z iff

{U < X : U is aneighborhood of X and ¢(U) is open in Y’}

is a base of neighborhoods of . O
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3.12.1 Dimension Formula (3.12.2)

In the following, ¢ : X — Y always denotes a holomorphic map of complex
spaces. For each y € Y, the fiber X, means the inverse image ¢ '(y) (cf. Prop.
1.12.1), namely

X, = @’I(y) = Specan(Ox /I, Ox).

Recall that .7, is the ideal of all g € €/(Y") vanishing at y, and can also be written
as my, by abuse of notations.

Proposition 3.12.2. The following are true for ¢ : X — Y.
(1) Foreachx € X,

dim, Xgp(x) > dim, X — dimw(z) Y. (3.12.1)

(2) The function v € X — dim, X, is upper semicontinuous.
Note that part (1) generalizes Cor. 3.9.5, and part (2) generalizes Cor. 3.9.4.

Proof. Fix x € X. Let m = dim, X, and n = dim,(,) Y. By the definition of
dimensions, we may shrink Y to a neighborhood of y = ¢(z) and X to a neigh-
borhood of z inside ¢~!(Y') such that there exist fi,. .., f,, € O(X) such that x is
the only point of N(fi,..., f,,) n X,. Consider (f,) € €(X)™ as a holomorphic
map X — C™, andlet ¥ = (f,) v ¢ : X — C™ x Y. Then z is the only point
of U=H(W¥(z)) = ¥ (0 x y). Therefore, by Thm. 2.7.2, we may shrink X and Y
turther so that V is finite. Then by Cor. 3.9.5 and Prop. 3.10.9,

dim,; X < dimgy, C" xY =m + n.

This proves (1) .
Since V is finite, each p € X is an isolated point of ¥~!(¥(p)). Since

UHET(p) = N(fr = A1(D), - fn = [m(D)) 0 X

we must have dim,, X,y < m. This proves (2). O

Our main goal of this section and the next one is to understand when the
following Dimension Formula holds:

dimx X«p(:v) = dimx X — dimw(x) Y ] (3122)

More precisely, our goal is to understand the following result of Remmert which
relates the openness of ¢ and (3.12.2).
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Corollary 3.12.3. Assume that Y is locally irreducible. Then ¢ : X — Y is open if and
only if Dimension Formula (3.12.2) holds for all x € X.

Proof. This follows from Thm. 3.13.1 and 3.13.3, together with the fact that every
locally irreducible space is locally pure dimensional (Thm. 3.14.10). O

The following proposition is helpful for the proof of Thm. 3.13.1 and 3.13.3.

Proposition 3.12.4. Assume that X and Y are locally pure dimensional. If Dimension
Formula (3.12.2) holds at xy € X, then it holds everywhere on a neighborhood of x.

Proof. Since X and Y are locally pure dimensional, we may shrink X to a neigh-
borhood of z; so that the RHS of (3.12.2) is constant over all z € X. By Prop.
3.12.2-(2), after further shrinking X, dim, X ) < dim,, X, forall z € X. As-
sume that (3.12.2) holds at zy. Then by Prop. 3.12.2-(1), dim, X, ;) = dim,, X,
for all z € X. So “=" holds. So dim, X, is constant over x € X. Therefore
(3.12.2) holds for all x € X. O]

3.12.2 Openness and Dimension Formula: the finite case

In this subsection, we study the relation between Dimension Formula and
openness when ¢ is finite. Note that when ¢ : X — Y is finite and y € Y, by
Rem. 2.3.10 and Prop. 2.4.5,

Ann[fyyy< @( )ﬁXJ) = Ker(gp# :Oyy — @ ﬁX,a:) (3.12.3)

zep~(y zep~1(y)

The following important lemma tells us that when ¢ is finite, openness means
“locally surjective”.

Lemma 3.12.5. Assume that ¢ : X — Y is finite and Y is reduced. Let x € X and y =
o(z), and assume that x is the only point of ¢~ '(y). Then the following are equivalent.

(1) ¢ is open at x.
(2) The set (X)) contains a neighborhood of y in Y. Equivalently, (p(X),y) = (Y, y).

(3) The ideal Anng, (Ox,) is zero. Equivalently (by (3.12.3)), * : Oy, — Ox,isa
monomorphism.

Proof. (1)<(2): Clearly (1)=(2). Assume (2). By Prop. 2.4.1 and the fact that
¢ (y) = {a}, for each neighborhood U < X of z there is a neighborhood V < Y’
of y such that ¢ 1(V) = U. Then ¢(U) contains (o 1(V)) = V n p(X), and
V' n ¢(X) contains a neighborhood of y € Y by (2). This proves (1).

(2)=(3): By Def. 2.3.8, ©(X) has structure sheaf Supp(¢.0x). So ¢(X), has
structure ring Oy,,/Anng, (p«O0x). So (p(X),y) = (Y,y) iff Anng, (0.0x) = 0
(since (Y, y) is reduced). N
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Theorem 3.12.6. Assume that ¢ : X — Y is finite, and let x € X. Consider the
following statements:

(1) ¢ is open at x.
(2) Dimension Formula (3.12.2) holds at x, namely

dim, X = dimy,) Y. (3.12.4)

Then (1)=(2). If Y is irreducible at p(z), then (2)=(1).

Proof of (1)=(2). Assume for simplicity that X,Y" are reduced, and that (by Thm.
2.7.2) x is the only point of ¢~ !(y) where y = p(x). Assume (1). We prove (3.12.4)
by induction on dim, X. If dim, X = 0 then y contains a neighborhood of itself.
So y is isolated in Y and hence (3.12.4) holds.

Now assume dim, X > 0. By Prop. 2.4.1, after shrinking Y to a neighborhood
of y and shrinking X to ¢~*(Y), we may assume that X has local decomposition
X = Xju---uXy atz. Then z is not an isolated point of any X, otherwise (3.3.4)
does not hold. Thus dim, X; > 0.

By Cor. 3.9.5, it suffices to prove dim, X > dim, Y. By assumption (1), (Y,y) =
U, (Yi,y). Thus, by Prop. 3.10.8, there exists ¢ such that dim, Y; = dim, Y. Then
it suffices to prove dim, X; > dim, Y;. By Lem. 3.12.5, ¢ : X; — Y] is open at z.
Thus, by replacing X;, Y; with X, Y, we may assume that X is irreducible at z and
prove dim, X > dim, Y.

By Rem. 3.3.2 (or by the fact that the inverse image of a prime ideal under
a ring homomorphism is prime), Y is irreducible at y. Since (Y,y) # ({v},vy)
(because dim, Y > dim, X > 0) and hence my,, # 0, after shrinking XY, there
exists g € O(Y') such that g(y) = 0 and that the stalk g, is nonzero in 0y,,. Then
(g o ), is nonzero in Ox ,. Thus, by Active lemma, we have

dim, N(go ) = dim, X — 1 dim, N(g) = dim, Y — 1.

Therefore, it suffices to prove that dim, N(goy) > dim, N(g). Since ¢ : N(goyp) —
N(g) is open at = (by Lem. 3.12.5), one can now apply the induction. O

Proof of (2)=(1). Assume that (1) is not true and that Y is irreducible at y = ¢(z).
By Thm. 2.7.2, we may assume that x is the only point of ¢~ *(y). By Lemma 3.12.5,
(¢(X),y) and (Y,y) are not equal. So .%,x), is not 0 in Oy, (cf. Subsec. 3.3.1).
After shrinking Y and shrinking X to ¢~(Y), we may find g € &(Y’) non-zero in
Oy, and vanishing on ¢(X). Since Y is irreducible at y, g is a non zero-divisor of
Oy,,. So by Cor. 3.9.5 and Active lemma,

dim, X < dim, p(X) < dim, N(g) = dim, Y — 1.
This disproves (2). [
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Example 3.12.7. Consider analytic subsets X =0 x 0x C*and Y = (C? x 0 x 0) u
(0x 0x C?) of C*, viewed as reduced complex spaces. Then Y is pure dimensional
but is reducible at 0. Dimension Formula (3.12.2) holds for the inclusion map ¢x y
at every point of X, but ¢x y is not open at 0. Therefore, in Thm. 3.12.6, to deduce
(2)=(1) one cannot remove the irreducibility condition.

Corollary 3.12.8 (Invariance of dimensions). Assume that ¢ : X — Y is finite, and
let yeY. Then

dim, p(X) = sup dim, X. (3.12.5)

reXy

Proof. By Rem. 2.4.4, we may assume Y is small enough such that ¢~ '(Y) is a
disjoint union [ [ .y U, where each U, is a neighborhood of z € X, and each
restriction ¢ : U, — Y is finite. Then ¢(X) = (J,.x, ¢(U.), and so by Prop. 3.10.8,
we have dim, p(X) = sup,cy, dim, p(U,). By Lemma 3.12.5, ¢ : U, — ¢(U,) is
open at z. Thus, by Thm. 3.12.6, dim, ¢(U,) = dim, U, = dim, X. O

3.13 Openness and dimensions of fibers II

We fix a holomorphic map of complex spaces ¢ : X — Y.

3.13.1 Openness and Dimension Formula: the general case

The following theorem generalizes the part (2)=(1) of Thm. 3.12.6.

Theorem 3.13.1. Let x € X, and assume that Y is irreducible at p(z). If Dimension
Formula (3.12.2) holds at x, then ¢ is open at x.

Proof. Let y = ¢(z) and dim, X, = m, and assume that (3.12.2) holds at z. We
may shrink X to a neighborhood of z so that there exist fi,..., f,, € €(X) such
that N(fi,..., fm) n X, = {z}. Consider F' = (fi,..., fn) as a holomorphic map
X - C™" ThenT = ¢ v F: X — Y x C™ satisfies that x is the only point of
YT~!(y x 0). Since the projection pry : ¥ x C™ — Y is open and ¢ = pry o T, in
order to show that ¢ is open at x it suffices to show that T is open at z.

By Thm. 2.7.2, we may shrink X further so that T is finite map from X to a
neighborhood of y x 0in Y x C™. By assumption, Dimension formula holds for T
at z. Thus, T is open at by Thm. 3.12.6 and the fact that Y x C™ is irreducible at
y x 0 (due to Lemma 3.13.2). O

Lemma 3.13.2. If Y is irreducible at y, then Y x C™ is irreducible at y x 0.

In fact, the product of any two irreducible points is irreducible. See Cor. 4.12.5.
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Proof. By induction, it suffices to assume m = 1. Let & = Oy, and # = Oy «c yxo-
It suffices to prove that there is a monomorphism of C-algebras &4 — .&/[[z]]
where o/[[z]] is the algebra of formal power series of z whose coefficients are
elements of 7. Then since < is an integral domain, ./[|z]] is clearly also an
integral domain, and so is .

We may write &/ = Ocno/J where J is an ideal of 0¢n, and write y = 0
(in C"). Let (w1, ..., w,, 2) be the set of coordinates of C"*!. Then we have a C-
algebra monomorphism @ : Ocni1 g — Ocnl[2]] defined by taking power series
expansions with respect to z. More precisely, if f(w., z) is in Ocn+1 o, then ®(f) =
Y ken @k (wa) 2" where

ar(w,) = Res,—o f (w., 2)2 " dz.

This formula shows that if f(w., 2) belongs to JOcn+14 (i.e. f is a (finite) Ocn+1 o-
linear combination of elements g(w,) € .J) then each coefficient a; belongs to J.
Thus @ restricts to a morphism

U B = Ocnsi o) JOcnsr g — A[[2]] = (Ocno/J)][2]]

If ¥ sends the residue class [ f| € Z of f € Ocn+1 g to the zero element of <7 [[z]],
then each a;, belongs to J. The power series expansion f = Y, a;2" shows that [f]
belongs to z¥% < mjy ¢, for all k € N. Thus [f] = 0 by Krull's intersection Thm.
1.4.4. This proves that ¥ is injective. O

Theorem 3.13.3. Assume that'Y is locally pure dimensional. If ¢ : X — Y is open, then
Dimension Formula (3.12.2) holds for every x € X.

This theorem can not be proved by Thm. 3.12.6. Instead, a prototype of this
theorem is Prop. 3.13.5-A which can be proved before we prove Thm. 3.13.3.

Proof. Assume that Y has pure dimension n. Fixx € X and y = ¢(z). Then (3.12.2)
obviously holds when n = 0. Now assume n > 0. To prove (3.12.2) by induction
on n, it suffices to show that after shrinking Y to a neighborhood of y and X to
© 1Y), there exists g € 0(Y) with g(y) = 0 such that

(@) N(g) has pure dimension n — 1.
(b) dim, N(go ¢) = dim, X — 1.

Then (3.12.2) holds at z for the restriction of ¢ to N(g o ¢) — N(g) (since it is
clearly open), and hence holds for ¢ : X — Y.

By Rem. 3.10.5, we may shrink Y (and shrink X accordingly) so that there
exists g € O(Y') with ¢g(y) = 0 such that g is active in Oy,,,. Then by Active lemma,
Dimension Formula (3.12.2) holds for g : ¥ — C at y. Thus, by Prop. 3.124,
(3.12.2) holds for g at every point of Y. This proves (a). It also proves, together
with Thm. 3.13.1, that g : ¥ — Cis open. So go ¢ : X — Cis open. Thus, by Prop.
3.13.5-A to be proved in the next subsection, g o ¢ is active in O ,. This proves
(b) by Active lemma. [
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Corollary 3.13.4. Let ¢ : X — Sand ) : Y — S be open holomorphic maps of complex
spaces. Assume that S is locally pure dimensional. Then for each v € X,y € Y such that

s = ¢(x) equals Y(y),
dim,y, X x5 Y = dim, X + dim, Y — dim, 5. (3.13.1)

Proof. By Thm. 3.13.3, Dimension Formula (3.12.2) holds at = x y for both ¢ x 1 :
X xY — xS (which, together with Prop. 3.10.9, shows that as an analytic subset
of X x Y the fiber X x Y, = (X xgY), has dimension dim, X + dim, Y —2dim, S
atz x y)and X xgY — S (which shows that dim,,, X xg Y equals dim,,,(X xg
Y)s + dimg S). O

3.13.2 Openness and active elements

Active lemma tells us that Dimension Formula (3.12.2) holds if Y = C and
¢ : X — C (considered as a holomorphic function) satisfies that ¢ — () is active
at x. This suggests that active elements are related to openness. Let us give a
result indicating their relationship.

Proposition 3.13.5. Let f € 0(X). Consider the following conditions for x € X.
(1) The holomorphic map f : X — Cis open at x.
(2) f— f(z)isactive in O .

Then the following are true.

If (1) holds for all x € X then (2) holds for all x € X.
If (2) holds for a given x € X then (1) holds for the same point x.

Proof of | A| Assume that f is open on X. Choose any x € X. Let us prove (2) for
x. Assume for simplicity that X is reduced and f(z) = 0. If f is not active at z,
then by Prop. 3.4.1, N(f) contains a nonempty open subset U. Then f is not open
everywhere on U. O

Proof of | B]. Assume that (2) is true for a given 2 € X. Then by Active lemma,
(3.12.2) holds for f : X — C at z. Thus f is open at « by Thm. 3.13.1. O]

The proof of B shows that for any f € 0(X),

f— f(z)isactivein Ox,

|
Dimension Formula (3.12.2) holds for f : X — Catx (3.13.2)

U
f:X —Cisopenatx
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The following example shows that in Thm. 3.13.3, knowing that ¢ is open at
a point z is not sufficient to imply Dimension Formula (3.12.2) at x. It also shows
that in Prop. 3.13.5, knowing that (1) holds at x is not sufficient to imply (2) at x.

Example 3.13.6. Let X be reduced with local decomposition X = X; U --- U Xy
at z where N > 2. Let n = dim, X > 0. By Rem. 3.1.4, we may shrink X to a
neighborhood of x and find f € ¢ (X) which belongs to .Zx, ., ..., Zx, . but not
to Zx, .. Then f|y, is active in the integral domain O, , = Ox ,/#x, ., and hence
f(X1) contains a neighborhood of 0 = f(x) in C by Prop. 3.13.5-B. This shows that
f is open at x. However, by Cor. 3.1.6, f is not active in O .

Now we assume that dim, X; = dim, Xy = n. By Active lemma, dim, N(f) n
X; = n—1and dim, N(f)n Xy = n. Apply Prop. 3.10.8 to N(f) = J,(N(f) n X;).
Then we see that dim, N(f) = n. So Dimension Formula (3.12.2) does not hold
for f: X — Catuz.

Corollary 3.13.7 (Open mapping theorem). Assume that X is reduced, and choose
feO(X)and x € X. If f is not a constant function on any neighborhood of x € X, then
f:X — Cisopenat x.

Note that the condition that f is not constant on neighborhoods of = means
precisely that f — f(z) is not zero in Ox ,.

Proof. We may assume X is small enough such that there is a local decomposition
X =X, u---u Xy atz, corresponding to the prime decomposition {0} = .Zx, , N
- N Ixy - Since f— f(x) is not zero in Ox ,, it does not belong to .#, ,, for some
i. So f — f(x) is active in O, , = Ox ,/#x, ». Therefore, for each neighborhood U
of z € X, Prop. 3.13.5 implies that f(X; n U) contains a neighborhood of f(z) € C.
So f(U) contains a neighborhood of f(x). f is open at . O

3.14 Openness and torsion sheaves; irreducible and
pure dimensional

If p : X — Y is a finite holomorphic map and Y is reduced, in the case that
0 1(y) = {z}, Lem. 3.12.5 says that the openness of ¢ at z is equivalent to that
Arre, (0:Ox) is zero at y. In the general case that ¢~ '(y) is not a single point,
this ideal sheaf does not tell us whether ¢ is open at every point of »'(y). In
this section, we show that the torsion sheaf .75, (¢.0x) is a good alternative to
rr e, (psOx) for the study of openness when Y is irreducible at y (cf. Prop.
3.14.8). As an application, we show that any complex space X irreducible at x is
pure dimensional on a neighborhood of x.

In Prop. 4.5.7, we will continue to discuss what @4, (p.Ox) = 0 and
Ty (p+0x) = 0 mean geometrically.
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3.14.1 Coherence of torsion sheaves

Definition 3.14.1. Let A be a commutative ring and M an A-module. A torsion
element of M is an element £ € M such that a{ = 0 for a non zero-divisor a € A
of A. The set of torsion elements clearly form an .A-submodule, and is denoted
by T.4(M) or simply T'(M) and called the torsion module of M. We say that M
is torsion free if 7'(M) = 0. In general, M /T (M) is always torsion free.

Definition 3.14.2. Let X be a complex space and & an &x-module. The torsion
sheaf of &, denoted by 75, (&) or simply .7 (&), is the sheaf associating to each
open U — X:

Tox (E)(U) ={se &) : thestalk s, € Ty, (&), Vv € U}
We have a canonical equivalence

Note that to show (3.14.1) one needs the fact that any s € .7 (&) torsion in &, is
torsion in &), for all p in a neighborhood of . This follows from Prop. 2.3.13.
There is a geometric description of torsion elements:

Proposition 3.14.3. Let X be a reduced complex space, & a coherent Ox-module, and
s € &(X). Then s belongs to 7 (&)(X) if and only if Supp(s) := Supp(sOy) is nowhere
dense in X.

Applying this proposition to sufficiently small neighborhoods of x, we see
that the stalk s, belongs to 7'(&;) iff Supp(s) n U is nowhere dense in U for a
neighborhood U of . When X is irreducible at z, then by Cor. 3.4.3, s, € T'(&;) iff
Supp(s) contains no neighborhoods of z € X.

Proof. Assume thats € .7 (&)(X). Theneach z € X is contained in a neighborhood
U such that there is f € 0(U) such that fs = 0 and that f is a non zero-divisor of
Ox . Then Supp(s) n U < N(f), and by Prop. 3.4.1, N(f) is nowhere dense after
shrinking U to a smaller neighborhood of z. This proves that Supp(s) is nowhere
dense.

Conversely, suppose that Supp(s@x) is nowhere dense. Recall that Supp(s)
is the zero set of @/2s2(s0x). Thus, by Prop. 3.4.5, there is a non zero-divisor
f € Ox,suchthat f € @ses.(s0x), = Ann(sOx ;). So fs = 0. Therefore s belongs
to T'(&,) for every z. O

In the following discussion of torsion sheaves, we are mainly interested in
integral domains and locally irreducible spaces.

Proposition 3.14.4. Let M be a finitely generated module of an integral domain A. Then
T4(M) is the kernel of the canonical morphism M — MY, where M"" is the double
dual of M.
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Proof. Choose any £ € M. Then { belongs to the kernel of ¢ : M — MYV iff
(&) = 0forall p € MY = Homy(M, A). If £ € T(M) then af = 0 for a nonzero
ae€ A Soay(€) =(af) = 0, and hence 1(£) = 0 because a is a non zero-divisor.

Conversely, choose any { € M\T'(M). We need to show that there exists ¢ €
MY such that (&) # 0. Let (A*)~'M be the localization of M by A* = {a € A:
a # 0}, which is a vector space over the factional field Q = (A*)~'A. (So elements
of (A*)~1 M are of the form &/a,n/b, ... where {,7 € M and a,b e A*. {/a = n/b
iff ca§ = cbn for some ¢ € A*. See [AM, Chapter 3] for details). So £/1 is not zero
in (A*)"' M. We can thus choose a Q-linear functional X : (A4*)"'M — Q such
that A({/1) # 0.

Since M is A-generated by finitely many elements 7,75, ..., we may find a #
0 in A such that a\(n;) € A for each i. Then

Wi Mo (A)TITM S A
is an A-module morphism non-zero at &. O

From this proposition it follows immediately that:

Corollary 3.14.5. Let X be a locally irreducible complex space and & a coherent O'x-
module. Then T, (&) is the kernel of the canonical morphism & — &V . Consequently,
o (&) is Ox-coherent.

Remark 3.14.6. In Cor. 3.14.5, note that the support of .7 (&) (as a set) is an ana-
lytic subset of X (Rem. 2.3.5). It is clearly inside the non locally-free locus of &
Therefore, by Thm. 3.8.3, the support of .7 (&) is nowhere dense in X.

3.14.2 Openness and torsion sheaves

Lemma 3.14.7. Let ¢ : X — Y be a finite holomorphic map. Let f € €(X), and consider
fOy as an Oy-submodule of p.Ox. Then

Suppg, (fOy) = ¢(Suppy, (fOx)) (3.14.2)
at the level of analytic subsets (i.e. both sides have the same reduction).

Proof. By Prop. 2.4.5, for each y € Y, we have an isomorphism ¢.0x =~
@mew,l(y) Ox ., which identifies f, as an element of (¢.0x), with @,c,-1(y) fz as

an element @), ,1(,) Ox,.- It is clear that f, # 0 iff f, # 0 for some z € o y).
This means that y belongs to the LHS iff y belongs to the RHS of (3.14.2). O

Proposition 3.14.8. Let ¢ : X — Y be a finite holomorphic map of complex spaces where
Y is reduced. Let y € Y. Consider the following statements:

(1) (p+Ox), is a torsion free Oy,,~-module.
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(2) @ is open at every x € X, = o '(y).
Then the following are true.
It Y is irreducible at y € Y then (1)=(2).
If X is irreducible at every x € X, then (2)=(1).

Recall that .0y is Oy-coherent by Thm. 2.7.1. Also, note that (¢.0x), =
@D.ex, Oxo by Prop. 2.45. Thus (¢.0x), is Oy,-torsion-free iff Ox, is Oy,
torsion-free for every z € X,

Proof of | A]. Assume that Y is irreducible at y € Y and (2) is not true. Then ¢ is not
open at some z € X,,. By Thm. 2.7.2 there is a neighborhood U of x and V" of ¢(U)
so that ¢ restricts to a finite holomorphic map ¢ : U — W such that z is the only
point of U, = U n ¢~ *(y). By Lemma 3.12.5, the germ of analytic space (¢(U), y)
does not equal (W,y). Since (W,y) is irreducible, by Cor. 3.4.3, we may shrink
U, W so that p(U) = Supp(¢. 0y ) is nowhere dense in 1. Hence every section of
¢, Oy is a torsion element by Prop. 3.14.3. So (¢.Ox), is not torsion free. O

Proof of | B]. Assume that X is irreducible at every z € X, and (2) is true. We
shall show that Oy, is Oy ,-torsion free. By Thm. 2.7.2, we may shrink X, Y so
that ¢~!(y) = {z}. Choose any nonzero f € Ox,. By further shrinking XY,
we assume that f € &(X), and that Supp,, (f0x) = X by Prop. 3.3.4 and the
fact that X is irreducible at z. By assumption (2) and Lem. 3.12.5, (¢(X),y) =
(Y,y). So we can shrink Y further so that ¢(X) = Y. So by Lem. 3.14.7, we have
Suppy,. (fOy) =Y. By Prop. 3.14.3, f is not a torsion element of (¢.0x),. O

Example 3.14.9. Every Weierstrass map 7 : X — S is open. One can check that
this follows from Rem. 1.5.2. But it also follows from Prop. 3.14.8, as explained
below.

Proof. By Thm. 2.5.4, 71,0 is Os-free. So by Prop. 3.14.8, 7 is open if S is smooth.
In the general case, we may assume that S is small enough such that it is a closed
subspace of an open subset €2 of C". Then by Prop. 2.5.3, we have a Cartesian
square

X ——Y
. lw (3.14.3)

S —— Q

(so @ (S) = X, cf. Prop. 1.12.1) where w is a Weierstrass map. So w@ is open.
Choose any open U < X. ThenU = X nV foran open V < Y. w(V) is open in
Q2 Sow(V)nS=w(Vnw(S)) =wU)=n(U)isopenin S. This proves that
7 is open. [
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3.14.3 Irreducible and pure dimensional

Theorem 3.14.10. Let X be a complex space irreducible at x. Then X is pure dimensional
at x.

Recall Def. 3.9.1 for the definition of pure dimensionality at a point.

Proof. By Thm. 3.2.1, we may shrink X so that X is reduced. Let n = dim, X.
Then after shrinking X further, we may find a finite holomorphicmap ¢ : X — V
such that V is open in C", p(z) = 0, and z is the only point of ¢~*(0) (due to
Thm. 2.7.2). By Thm. 3.12.6, ¢ is open at z. So by Prop. 3.14.8, (p.0x)o is Oy,o-
torsion-free. By Cor. 3.14.5, 7 (¢.0Ox) is Oy-coherent. Thus, after shrinking V/
to a neighborhood of 0 and replacing X by ¢ '(V), ¢.0x is Oy-torsion-free. By
Prop. 3.14.8, ¢ is open at every point of X. Therefore, by Thm. 3.12.6, X has pure
dimension n. [

Corollary 3.14.11. Let X be a complex space and x € X. Let n € N. Then the following
are equivalent.

(1) In the prime decomposition \/0x , = p1 N --- NPy 0f 1/0x » < Ox , we have
dim Ox . /p; = n
forall1 <i < N.

(2) X has pure dimension n at x.

Proof. This is clear from Thm. 3.14.10, Prop. 3.10.8, and (3.3.4) (for the direction
(2)=(1)). ]

Example 3.14.12. Let ¢ : X — Y be a finite holomorphic map of complex spaces.
Assume that Y is locally irreducible. Let x € X and y = ¢(z). If X is pure
dimensional at x and ¢ is open at z, then ¢ is open on a neighborhood of X.

Proof. By Thm. 3.14.10, Y is locally pure dimensional. By Thm. 2.7.2, we may
shrink X and Y to neighborhoods of = and y respectively such that X has pure
dimension m and Y has pure dimension n, and that ¢ is still finite. By Thm. 3.12.6,
Dimension Formula (3.12.2) holds for ¢ at . Thus m = n. By Prop. 3.12.4, we
may shrink X and Y further so that ¢ is finite and (3.12.2) holds at every point of
X. So ¢ is open by Thm. 3.12.6. O

3.15 More on smoothness, dimensions, and codimen-
sions
As an application of Thm. 3.14.10, we use global dimensions of complex man-

ifolds (i.e. the largest dimensions of connected components, recall Def. 3.9.1) to
describe dimensions of points of complex spaces:
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Theorem 3.15.1. Let X be a reduced complex space and x € X. Then there is a neigh-
borhood U of x such that for every neighborhood V < U of x,

dim, X = dim V\Sg(X) (3.15.1)
Consequently, we have dim X = dim X\Sg(X).

Proof. Let n = dim, X. By Cor. 3.9.4, we can shrink X to a neighborhood of x
so that for any neighborhood V, we have n > dim V\Sg(X). Shrink X further
so that X has local decomposition X = X; U --- U Xy at z. By Prop. 3.10.8,
we have dim, X; = n for some i. By Thm. 3.14.10, we can shrink X further so
that X; has pure dimension n. By (3.3.4), for each neighborhood V of z € X,
W =V n (X)\{U; X;) is non-empty. Since Sg(W) is nowhere dense in W (by
Thm. 3.6.7), W\Sg(W) is a non-empty open complex submanifold of V\Sg(X)
with pure dimension n. This proves n < dim V\Sg(X). O

Corollary 3.15.2. Let X be a reduced complex space and x € X. Then the following are
equivalent.

(1) X is smooth at x.
(2) There is a neighborhood U of x such that the embedding dimension function
emb: X - N p — emb, X
is constant on U.

Proof. Clearly (1)=(2). Assume that (1) is not true. We disprove (2) by proving
that emb is not constant on any neighborhood U of z. Let n = dim, X. Then
by Thm. 3.15.1, there is a smooth point p € U such that dim, X = n and hence
emb, X = n. Since z is not a smooth point, we have emb, X > dim, X = n by Thm.
3.10.10. O

Remark 3.15.3. Let X = Specan(0y/Z) be a closed subspace of an open U <
C™, where 7 is generated by f',..., f" € O(U). Let (z1,..., zn) be the standard
coordinates of C™. Then by Cor. 3.15.2 and Jacobi criterion (Cor. 3.6.4), a point
x € X is a smooth point of X if and only if the rank of 0,, (f*) € C**™ ®¢ O(U) is
constant on a neighborhood of z. In that case, the constant rank equals m—dim, X.

Remark 3.15.4. It is clear that Rem. 3.15.3 gives a retrospective explanation of
Lem. 3.5.2-(1). I didn’t call it a “proof”, because the argument in Rem. 3.15.3
relies on Thm. 3.15.1, whose proof in turn relies on the fact that for every reduced
complex space X, the singular locus Sg(X) is nowhere dense in X. This fact was
proved in Thm. 3.6.7, and the latter was originally proved using Lem. 3.5.2.

But actually, the nowhere dense property of Sg(X) follows easily from Lem.
3.2.12: Note that Sg(.X) is closed in X since the set of smooth points is clearly open
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in X. Now, it suffices to show that for each x € X, after shrinking X to a neigh-
borhood of =, Sg(.X) is nowhere dense. In the special case that X is irreducible at
z, this follows immediately from Lem. 3.2.12 and Prop. 3.4.1. The general case
follows from the special case and (3.6.8) (whose proof does not rely on Lem. 3.5.2).

To summarize, Rem. 3.15.3 gives an actual proof of Lem. 3.5.2-(1). Crucial
ingredients of this proof are Thm. 3.15.1 (which is a consequence of Thm. 3.14.10)
and Lem. 3.2.12. The main point I am trying to make is that Lem. 3.2.12 can
be proved without using the analysis in Subsec. 3.5.2: see Subsec. 4.5.4. Thus,
the same can be said about Lem. 3.5.2-(1), especially about the relation Sg(X) <
X nZ,_1. As a consequence, all the properties about Sg(X) proved in Sec. 3.6 and
afterwards can be proved using the theory of branched coverings as in Subsec.
4.5.4, instead of using the argument in Subsec. 3.5.2. O

We give a criterion for smoothness in terms of codimensions. The following
theorem will be used in the proof that the singular locus of a normal complex
space is thin of order 2; see Thm. 4.9.4. The readers may assume for simplicity
that the following X is (also) irreducible at z, since this is the main case we are
interested in.

Theorem 3.15.5. Let X be a complex space such that red(X) has local decomposition
red(X) =X, u---uXyatxe X. Let Y be an analytic subset of X containing x such
that Y irreducible at x. Define the codimension of (Y, x) in (X, z) to be

codim, (Y, X) = sup dim, X; —dim, Y (3.15.2)
1<i<N
(Xi,z)o(Y,x)

Then the following are equivalent.

(1) (Y,z) ¢ (Sg(X),z). Namely, every neighborhood of x in Y contains a smooth
point of X.

(2) After shrinking X to a neighborhood of x, there is a nowhere dense analytic sub-
set A < Y such that for each p € Y\A, the ideal Py, of Ox, is generated by
codim, (Y, X) elements.

If either (1) or (2) is true, we say that X is smooth at the germ (Y, x).

Proof. Define analytic subsets of X

B = U X, C = U X; (3.15.3)
(Xi,x)D(Y,:E) (vax):b(yvm)

Let n = dim, B and m = dim, Y. Then by Prop. 3.10.8 and (3.15.2), we have
codim, (Y, X) =n —m.
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By Cor. 3.9.4, we can shrink X to a neighborhood of z so that dim B < n. Since
X\C = B\C, we have

dim X\C' < n (3.15.4)

Choose i such that (X;,z) o (Y, ) and dim, X; = n. So we can shrink X further
so that Y < X; and that (by Cor. 3.4.3) Y n C is nowhere dense in Y. By Thm.
3.14.10, we can shrink X further so that X; and Y have pure dimensions n and m
respectively. Therefore, since

Y\C < X;\C < X\C,
for each p € Y\C' we have n = dim,, X; = dim, X;\C < dim, X\C < n. Hence
dim, X =n dim,Y =m (Vpe Y\CO) (3.15.5)

We shall use (3.15.5) and the nowhere-density of Y n C'in Y to prove (1)<(2).
(1)=(2): Define analytic subset

A=Y nSg(X))u (Y nC)uSgY)

of Y. Then by (1) and Cor. 3.4.3 and Thm. 3.6.7, after shrinking X, A is nowhere
dense in Y. Since each p € Y\ A is a smooth point of both X and Y/, (2) follows
immediately from (3.15.5) and Rem. 1.7.9.

(2)=(1): We shrink X to a neighborhood of = so that the statement of (2) is
true. Suppose that (1) is not true. Then we can shrink X further so that Y <
Sg(X). Note that (2) is still true. Let A be the nowhere dense analytic subset of Y’
described in (2). Since Sg(Y') is nowhere dense in Y (by Thm. 3.6.7), Y'\(Sg(Y") u
A v C) is not empty. Choose p € Y\(Sg(Y) u Au C). By (2), #y,, is generated by
n —m elements fi,..., f,—m € Ox,. By Prop. 3.6.3, we have

emb,Y +n —m = emb, X

By (3.15.5) and Thm. 3.10.10, we have emb,Y = m and emb,X > n (since p €
Sg(X)). This is impossible. O

Remark 3.15.6. Let X,Y, x be as in Thm. 3.15.5. Let C be as in (3.15.3). As in
the proof of Thm. 3.15.5, we shrink X to a neighborhood of x so that (3.15.4) and
(3.15.5) hold, and that Y n C' is nowhere dense in Y.

For each p € Y\C, by inequality (3.12.1) (applied to a suitable map V — C!
where V' is a neighborhood of p in X\C), the smallest number ! of generators of
Ay, is no less than dim, X — dim, Y = n — m. We conclude that for all p € Y\C,

codim, (Y, X) < the smallest number of x ,-generators of .y, (3.15.6)
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Thus, one may view Thm. 3.15.5 as a generalization of Thm. 3.10.10. In-
deed, when Y = {z}, Thm. 3.15.5 becomes exactly Thm. 3.10.10, because
emb, X = dim¢my, /mg(m is the smallest number of generators of the ideal mx ,
by Nakayama’s lemma.

We remark that in the viewpoint of algebraic geometry, the prime ideal .%y, is
a point of the scheme Spec(CO ), and codim, (Y, X) is the Krull dimension of the
localization of O , at Hy . O

132



Chapter 4

Normalization, branched coverings,
and global decomposition

4.1 Sheaves of meromorphic functions .Zy

We fix a reduced complex space X. So non zero-divisors and active elements
are synonymous.

Definition 4.1.1. The sheaf of (germs of) densely defined holomorphic functions
of X is the sheaf 20y associated to presheaf 20%° such that for each open U — X,

WrEU) =y OU\A)

nowhere dense
analytic subsets AcU

where the direct limit is defined by the obviously injective inclusion maps
O(U\A) — O(U\B) if A, B c U are nowhere dense analytic subsets and A < B.

Wy clearly contains Ox and, more generally, contains €x\4 as subsheaves
where A is any nowhere dense analytic subset of X. Moreover, we have an obvi-
ous identification

Wy (X) = Wy (X\A) (4.1.1)
O

Remark 4.1.2. 20y is a torsion-free &'x-module.

Proof. Choose = € X, f € Wy ,, and a non zero-divisor v € Oy, such that vf = 0.
By shrinking X to a neighborhood of z, we may assume that v € &(X), that
f e O(X\A) where A c X is a nowhere dense analytic subset, and that (by Prop.
3.4.1) N(v) is nowhere dense in X. So f must be zero outside A U N(v). Thus f is
zero in O(X\A). N
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4.1.1 The sheaf of meromorphic functions .Zx

Definition 4.1.3. The sheaf of (germs of) meromorphic functions on X is the
subsheaf .#Zx of Wx defined by

Mx(U) ={f e Wx(U) : Vo € U there is an active v € Ox ,
such thatvf, € Ox .}

where U < X is open and f, denotes the stalk of f at x.

If A a commutative ring, we let
Nzd(A) = {Non zero-divisors of A}. (4.1.2)

Recall that if M is an A-module, then the localization of M by Nzd(A) , which is
denoted by Nzd(A)~!'M, is the set of elements of the form s/u where s € M and
u € Nzd(A), and s/u = §'/u’ iff u's — us’ is annihilated by an element of Nzd(A). In
the case that M is torsion free (e.g. A = M = Ox ), s/u = s'/u iff u's = us’.

Remark 4.1.4. Note that for any active v € O, one can find a neighborhood
V < X of z so thatv € 0(V) and N(v) is nowhere dense in V' (Prop. 3.4.1). From
this, it is clear that each f/v where v € Nzd(Ox ) and f € O, can be extended to
an element of .#x (U). Therefore, we have a canonical equivalence

My » ~Nzd(Ox ) Ox, (4.1.3)
In particular, if X is irreducible at z, then .#x , is the field of fractions of O .
Proposition 4.1.5. Every finite-type O x-submodule of .#x is Ox-coherent.

Proof. Let & be a finite-type Ox-submodule of .#x. It suffices to show that
the sheaves of relations of & are finite-type. Choose any open U < X and
$1,...,8, € &(U). Let us show that for each x € U, after shrinking U to a
smaller neighborhood of z, Msl, ...,8p) is Opy-coherent. It is clear that we
can shrink U and find v € &(U) which is a non zero-divisor of &, such that
vsy,...,vs, € O(U). By Prop. 3.4.1, we may shrink U further so that N(v) is
nowhere dense in U. Then it is clear that %/(31, ..., 5,) equals Mvsl, c o, USy),
which is locally finitely generated because 0x is coherent. O

Example 4.1.6. Let X be a reduced complex space with local decomposition X =
Xiu---uXy at z such that Thm. 3.3.5 holds. Then we can define the characteristic
function

X, € ﬁ(X\ U Xin Xj) < Wy (X)

1<i<j<N

b (1 X\ Uyzyon X
XX 0 otherwise

(4.1.4)

Then the stalk of x x, at « belongs to .#x .
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Proof. When N =1, xx, = 1in Ox(X). So let us assume N > 1. We assume k = 1
for simplicity. Apply Rem. 3.1.4 to the prime decomposition 0 = Fx, , N --- N
Ixyaz 0f 0 € Ox .. Then we can find

fe ﬂ fxi\fxl,z ge fxl,x\ U Xz

i>1 i>1

Then f + g ¢ Fx, forall 1 < j < N. Therefore f + g € Nzd(Ox ) by Cor. 3.1.6.
We can thus shrink X to a neighborhood of x to get f, g € 0(X) satisfying that f
vanishes on X, U --- U Xy and that g vanishes on X;. Then (f + ¢g)xx, and [ are

equal on X\ U<i<j<n Xi n X}, and hence are equal as elements of Wx (X). This
proves xx, » € Ax z- [

4.2 Sheaves of weakly holomorphic functions Ox

We fix a reduced complex space X.

Definition 4.2.1. We say that f € 2x(X) is locally bounded at z if there is a
neighborhood U < X of x and a nowhere dense analytic subset A — U such that
flina € O(U\A), and that

sup |f(p)| < +oo.
peU\A

We say that f € 2 x (X) is a weakly holomorphic function if f is locally bounded
at every point of X. The x-module Ox defined by

ﬁX(U) ={feWx(U) : fislocally bounded at every z € U}

(for any open U < X) is called the sheaf of (germs of) weakly holomorphic
functions.

Let us consider the question of whether a holomorphic map of reduced com-
plex spaces induces a morphism of 20-sheaves or .#-sheaves or -sheaves.

Proposition 4.2.2. Let ¢ : X — Y be a holomorphic map of reduced complex spaces.
Assume that for any open subset V. < Y and nowhere dense analytic subset B < V,
the analytic subset A = o' (B) is nowhere dense in U = o' (V). Then the map % :
Oy (V\B) — Ox(U\A) induces a morphism of Oy-algebras

" Wy — 0, Wy (4.2.1a)
which restricts to morphisms of Oy -algebras

ot My — (4.2.1b)

o* Oy — 0, Ox 4.2.1¢)

135



Proof. ¢* : Oy(V\B) — Ox(U\A), when passing to the direct limit over all
nowhere dense analytic B < V, gives 207°(V) — 205°(U), hence 20V°(V) —
Wy (U) = ¢ Wx(V), hence W, ° — ¢. Wy, and hence (4.2.1a). It clearly restricts
to (4.2.1¢).

If g € #y(V), then by shrinking V' to a neighborhood of y = ¢(z) for any
x € U, we can find v € Oy (V) such that N(v) is nowhere dense in V, and that
vf € Oy (V). Then ¥ (v)p*(f) € Ox(U), and N(p*(v)) = ¢ 1(N(v)) is nowhere
dense in U = ¢~ (V). By Prop. 3.4.1, the stalk ¢*(v), at every p € U is a non
zero-divisor of Ox ,. Therefore o (f) € .#x(U). This gives (4.2.1b). O

Exercise 4.2.3. Under the assumption of Prop. 4.2.2, suppose moreover that ¢ is
surjective. Show that o Wy — 0, Wy is injective.

Theorem 4.2.4. Assume X = Xq U --- u Xy where Xy, ..., Xy are analytic subsets
of X, and assume for each 1 < i # j < N that X; n X, is nowhere dense in X;. Then
the closed embedding «; : X; — X satisfies the assumption in Prop. 4.2.2. Moreover, we
have isomorphisms of O x-algebras

D Wy — P Wy, (4.2.2a)
i 1<i<N

@ Oty = 1 @N My, (4.2.2b)
% SIS

D ox > P Oy (4.2.2¢)
% 1<i<N

Proof-Step 1. Let us show that ¢; satisfies the assumption in Prop. 4.2.2. Let U < X
be open and A be a nowhere dense analytic subset of U. Then we need to show
that A n X; is nowhere dense in U n X;. SetY = U and Y; = U n X;, which is
an analytic subset of Y. Then A is a nowhere dense analytic subset of Y, and we
need to show that A n'Y; is nowhere dense in Y;. We assume for simplicity that
1= 1.

Consider the open subset Y;” = YV1\(You ---uYy) = Y\(Y2u --- U Yn) Of Y.
Then ANY7}° contains no open subsets of Y,". If () is an open subset of ¥; contained
inside A nY3, then 2 n Y} is an open subset of Y}° contained inside A n Y}, which
is empty. Thus Q < Y] where Y/ = Y1\Yy". But Y/ = J;_, Y1 n'Y; is nowhere dense
in Y; since J i1 X, n X, is nowhere dense in X;. So (2 is empty. Thus A n Y; is
nowhere dense in Y. O

Proof-Step 2. That (4.2.2a) and (4.2.2c) are isomorphisms is not hard to check and
is left to the readers. Since (4.2.2b) is the restriction of (4.2.2a), (4.2.2b) is injective.
Let us show that the stalk map of (4.2.2b) at any x € X is surjective. By discarding
those X; not containing x, we assume x € ﬁf\il X;. Also, if (4.2.2b) is surjective
(and hence isomorphic) in the special case that each X; is irreducible at z, then it
is isomorphic in the general case due to Prop. 3.3.6 and the special case. So we
may well assume that each Xj is irreducible at z.
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It suffices to show that each .Zx, , (which is inside Wy, . = D, Wx, . ~ Wx )
belongs to .#x ,. Set i = 1 for simplicity. Then we need to show that the zero-
extension of each f; € .#x, , from the germ (X, z) to (X, z), still denoted by f;
but now belonging to 2 ,, is inside .#x ,.

Choose v, € Nzd(0Y, ) such that g, := v, f; € Ox, . Since Ox, , = Ox../ Fx, 2,
we can lift (i.e. extend) v; and g; to elements

V1,01 € ﬁX,x'

We add ™ since 7; and §; are not necessarily the zero-extensions of v; and ¢;. By
contrast, 7, f1 (as an element of Wy ,) is the zero-extension of ¢;.

We write the characteristic function yx, (cf. Exp. 4.1.6) as x;, which is in .#x .
Then x171 f1 = x161 in Wy .. Also, itis clear that x; f1 = 0in Wy, if 7 > 1. Let

u=x101+Xx2+ -+ XN e Mx .

Then uf; = x161 holds in Wx ,. Since §; € Ox, and x; € #x,, we conclude
ufi € Mx.

To show that f; € .#x,, it now remains to show that u is a unit of .#x,,
namely, u is the quotient of two elements of Nzd(Jx ;). Shrink X to a neighbor-
hood of = so that v; € Ox(X) and x1,...,xn € ///X( ). Then u € Mx(X). u
equals v; € Ox, (X;) on X;\X| where X{ = X, u--- U Xy, and equals 1 on X{\X;.
Since v; is a non zero-divisor of O, ,, by Prop. 3.4.1, we can shrink X further so
that N(v;) is nowhere dense in X;. Choose w € Nzd(€x ) such that wu € Ox,,
and shrink X so that w € €/(X) and that N(w) is nowhere dense in X (again by
Prop. 3.4.1). Then

N(wu) < (N(v1) n (X1\X7)) u (X1 n X7) u N(w)
is nowhere dense in X, which implies that wu is a non zero-divisor of O . O

A main goal of this chapter is to show that O is a coherent Ox-module, that

O’X < M, and that € O’X » 15 the integral closure of Ox , in W, (and hence in Mx ;).
We first recall some facts about integral elements.

Recall that if A is a commutative ring and B is a commutative A-ring, i.e. a
commutative ring with a homomorphism A — B, an element z € B is called
integral over A if

T4 2"+ iz +ag=0 (4.2.3)

for some n € Z, and ay, ...,a,-1 € A. We collect some facts about integral ele-
ments.

Proposition 4.2.5. Assume that A is Noetherian.
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1. x € B is integral over A if and only if = is contained in an A-subalgebra C < B
which is a finitely-generated A-module.

2. Let A < B be an A-subalgebra of B. Assume that 2 is a finitely-generated A-
module. Then an element x € B is integral over A if and only if x is integral over
2

3. If xy,...,x, € B are integral over A, then Alxy,...,x,] (the A-subalgebra of B
generated by 1, . .., x,) is a finitely generated A-module.

Note that an A-subalgebra of B is a subset of B closed under multiplications
and A-linear combinations.

Proof. 1. Let X be the A-subalgebra generated by z, namely & = A[z]. Then z
being integral means precisely that &’ is a finitely-generated .A-module. Then part
1 is obvious, because A is Noetherian.

2. The “only if” part is obvious. Suppose that x is integral over 2. Then [x]
is a finitely-generated 2A-module. Since 2 is A-finitely generated, 2[x] is clearly
A-finitely generated. Thus x is integral over A due to part 1.

3. Induction on n. The case n = 1 is clear. Assume case n — 1 is true. Let
T1,...,%, € Bbeintegral over A. Then X = Alzy,...,x,_1] is A-finitely gener-
ated, and (since z,, is clearly integral over X) A[xy,...,z,| = X[z, ] is X-finitely
generated. Therefore X'[x,] is A-finitely-generated. O

Definition 4.2.6. Assume that A is Noetherian. The set of all elements of B
which are integral over A is called the integral closure of A in B, which is an
A-subalgebra of B by Prop. 4.2.5. If A is the integral closure of A, we say A is
integrally closed in B. If A is integrally closed in Nzd(A) !4, we say that A is a
normal ring.

Remark 4.2.7. Assume A is Noetherian, and let A be the integral closure of A in
B. Then A is integrally closed in B.

Proof. Let x € B be integral over A. Then we can find n € N and €Oy vy Cn_1 € A
such that 2" + ¢, 12" ' + -+ cyx + ¢ = 0. Let C = Alco,cy, ..., ¢ 1], which is
a finitely-generated .A-module by Prop. 4.2.5. Clearly C|z] is C-finitely-generated,
and hence A-finitely-generated. So z is integral over A. O

Example 4.2.8. Let A be a Noetherian integral domain with field of fractions K =
Nzd(A)~ A, and let A be the integral closure of A in K. Let p(z) = 2" +a, 12" +
-4+ a1z + ap € Alz]. Suppose that p(z) = pi(2) - - - py(2) where each p;(z) € K|z]
is monic. (For instance, since K[z] is a UFD (unique factorization domain), we
may take the irreducible decomposition of p(z) in K[z].) Then p;(z) € Alz]. In
particular, if A is normal, then p;(z) € Alz].
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Proof. Let Kbea field extension of K in which p(z) splits as p(z) = (2 —by) -~ (2 —
b,) where each b; € K. Since p(b;) = 0, each bi is integral over A. The coefficients
of p;(z) are contained in the .A-subalgebra of K generated by 0y, ..., b,, and hence

are integral over 4 due to Prop. 4.2.5. So these coefficients are in A. O
From this example, we see immediately that

Corollary 4.2.9. Assume that A is a Noetherian and normal integral domain, and let K
be its field of fractions. Then a monic polynomial p(z) € A|z] is irreducible in A|z] if and
only if it is irreducible in K| z].

We have promised to prove that % .« is the integral closure of O, in Wy ,.
Now we prove a half of this result.

Lemma 4.2.10. Let x € X. Then the integral closure of O , in Wy, is contained inside
Ox z.

Proof. Let f € 2Wx , be integral over Ox ,. Then by shrinking X to a neighborhood
of z, we may find a nowhere dense analytic A < X and ag,a4,...,a,-1 € O(X)
such that f € 0(X\A) and that on X\ A we have

fr=ao+af+-+anfr"

By further shrinking X, we find M > 0 such that for all 0 < i < n — 1 we have
sup,cx ai(p) < M. Therefore, if p € X\ A is such that [f(p)| = R > 1, then

R*<M(IA+R+- -+ RN <nMR",
and hence R < nM. This shows |f(p)| < max{l,nM} for all p € X\ A, and hence
fe Oy (X). 0
4.3 Riemann extension theorems; 0¢»  is normal

Let X be a reduced complex space. Recall that the singular locus Sg(X) is a
nowhere dense analytic subset of X by Thm. 3.6.7.

Theorem 4.3.1 (First Riemann extension theorem). If X is smooth, then
Ox = O

It follows that for a general reduced complex space, we have for every open
Uc X that Ox(U) c Ox(U\Sg(X)). And hence

Ox © Ox\sg(x) (4.3.1)
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Proof. We need to prove that for any (small enough) pure n-dimensional complex
manifold X and any nowhere dense analytic subset A, if f € 0(X\A) is locally
bounded at every point of A, then f can be extended (necessarily uniquely) to an
element of &'(X). We prove this by induction on dim A. The case dim A = —oo (i.e.
A = () is obvious. Assume the case dim A < m — 1 is true. Consider the case
dim A = m. Note that m < n by Ritt’s lemma 3.10.7. It suffices to prove that any
locally bounded f € (X \A) can be extended to an element of &'(X\Sg(A)). Then
since dim Sg(A) < m —1 (due to Thm. 3.6.7 and Ritt’s lemma 3.10.7), we can apply
the assumption on case < m — 1 to conclude f € 0(X).

Thus, by replacing X by X\Sg(A), it suffices to assume that A is an m-
dimensional smooth complex subspace of X. Since what we want to prove is
local by nature, in view of Rem. 1.7.9, we may choose any x € X and shrink X to
a neighborhood of z so that X is an open subset of C" with coordinates (z.,() =
(z1,..+,2n-1,(), thatz = 0,and that A = {(z.,{) € X : zjpy1 =+ = 2,1 = ( = 0}.
We assume moreover that X is of the form U x Dy, where U is a neighborhood of
0eCtrland Dy, = {CeC:[C] < 2r}.

Define

~ f(ze,w) dw
Sz 0) = w—C 2in

|w]|=r

which is a holomorphic function on U x D,. The proof is finished if we can show
that f equals f on U x D). Namely, we shall show that for each fixed z, € U,
g(¢) = f(z., ¢) and g(¢) = f(z., () are the same holomorphic function on ID;*. This
is clear, because g is locally bounded at 0 € C, and is hence a holomorphic function

on D,. So g = g by Cauchy’s integral formula. O
Corollary 4.3.2. O¢n  is a normal ring.

Proof. By Lemma 4.2.10, the integral closure of Ocn o in Nzd(Ocn ) ' Ocn g is be-
tween Ocn o and Ocr o, which are equal by Thm. 4.3.1. O

Definition 4.3.3. A closed subset A — X is called thin if each € X (equivalently,
each z € A) has a neighborhood U, such that A n U, is contained in a nowhere

dense analytic subset ,’4} of U, whose dimension at x is necessarily less than that
of U, by Ritt’s lemma 3.10.7. We say that A is thin of order £ if for each x we can

find ﬁx such that dim, U, — dim, A, > k.

Corollary 4.3.4. Assume that X is smooth and A is a thin subset of X. Then X is
connected if and only if X\ A is connected.

Proof. If X is not connected, then X is a disjoint union of non-empty open subsets
X = UuV. Then X\A is the disjoint union of U\ A and V'\ A which are non-empty
because A is nowhere dense in U and in V. So X\ A is disconnected.
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Conversely, assume that X\ A is disconnected, and write it as a disjoint union
of non-empty open subsets X\A = U u V. Define f € 0(U u V) to be constantly 1
onU and Oon V. Then f e ﬁX(X), and hence f € Ox(X) by Thm. 4.3.1. Namely,
[ can be extended to a holomorphic function on X. Since A is nowhere dense
in X, X\A is dense in X. So the range of the continuous function f : X — Cis
{0, 1}. Therefore X is not connected, otherwise the intermediate value theorem is
violated. O

We give an interesting application of Cor. 4.3.2.
Theorem 4.3.5. O¢n g isa UFD.

Proof. To prove that Oc» o is a UFD, we need to show that each non-zero f € 0¢n
factors as the product of a unit and some prime elements of &cn . This is clearly
true when n = 0. So let us assume n > 0.

Since f # 0, we may change the coordinate of C" to a new one (w.,2) =
(wy,...,wy_1,2) such that f has finite order in z. (Cf. the proof of Thm. 1.5.5).
Thus, by WPT, we may write f = ug where u € Oga-1[z] is a unit and ¢ is a
Weierstrass polynomial. In particular, ¢ is monic. So, as .#¢n-1 2] is a UFD, we
have ¢(z) = p1(2) - - - pn(2) where each p;(z) € A1 [2] is monic and irreducible.
By Cor. 4.3.2, the Noetherian integral domain &¢n-1 ( is normal. So by Rem. 4.2.8,
each p;(z), which is irreducible in .#¢n-1 o[ 2], is a monic polynomial in O¢n-1 4[2].
It remains to prove that each p;(z) is a prime element of &¢n . This follows from
Prop. 4.3.6. [

Proposition 4.3.6. Let X be a complex space irreducible at x € X, let K be the field of
fractions of &/ = Ox ., and let p(z) be a monic polynomial in < |z] which is irreducible
in K[z]. Then p(z) is a prime element of B = Ox «c zxo-

Proof. Since p(z) is monic, it has finite order & in z. We need to prove that if
a,b € A and p(z) divides a(z)b(z) in %, then p divides one of a,b in A. By
WDT, #/p(z)%# is «/-generated by 1, z,...,2""1. Thus, it suffices to assume that
a(z), b(z) are polynomials in .o7[z] of degrees < k.

We claim that p(z) divides ab in o7 [z]. Then it follows that p(z) divides one of
a,b in K[z] because, in the UFD K]z], p(z) is irreducible and hence prime. Let’s
say p(z) divides a(z) in K[z]. Since the degree of p(z) is larger than that of a(z),
a(z) must be zero. Then clearly p(z) divides a(z) in 27(z], which finishes the proof.

By Euclidean division (which is available because p(z) is monic), ab = gp + r
where ¢(z),r(z) € &/[z] and r(z) has degree < k. This gives the unique Weierstrass
division of ab by p (cf. Thm. 1.5.3). Since p divides ab in %, we have ab = hp for
some h € %, which also gives the Weierstrass division. So h = g € </|[z]. This
proves the claim. O

Theorem 4.3.7 (Second Riemann extension theorem). If X is smooth and A is a
thin subset of X of order 2, then

Ox\a = Ox

141



Proof. We shall prove that ¢(U\A) = ¢(U) for any sufficiently small neighbor-
hood U of any z € X. In that case, A n U is contained in a thin (i.e. nowhere
dense) analytic subset of U, and we may well assume that A n U is that analytic
subset. Thus, by shrinking X to a neighborhood of x and extending A, we assume
A is a thin analytic subset of X.

As in the proof of Thm. 4.3.1, by an inductive argument, it suffices to assume
that X is an open subset of C* with coordinates (z., (1, () = (#1,- -, Zn—2, (1, (2),
and that A = {(z,,(1,() € X @ zpy1 = -+ = 2,2 = (4 = (o = 0}. Note that
m < n — 2. We assume moreover that X is of the form U x Dy, x Dy, where U is a
neighborhood of 0 € C""% and Dy, = {¢ € C : || < 2r}. To show that f € 0(X\A)
is actually in (X ), by Thm. 4.3.1, it suffices to show that f is locally bounded at
any point of A.

For each z, in a precompact subset V < U and ¢; € D = D,\{0}, applying the
maximal principle to the holomorphic function f(z., (i, (2) of (» (defined on Dy,
since (7 # 0), we have for all |(,| < r that

1f(2e,C1, G| < sup [ f(ze, Gy we)| < M

|wa|=r
where

M= s [f(ewy,w)| < +o0.

YoV, w1 |, Jwe|=r

]

The study of O for singular (reduced) complex spaces is more difficult and
relies on the notion of branched coverings.

4.4 Resultants and discriminants

Let A be a commutative ring. In this section, we collect some facts about poly-
nomials that will be helpful for the subsequent study of branched coverings.

Definition 4.4.1. Let f(2) = ap + a1z + -+ + apz™ and g(z) = bg + b1z + -+ - + b, 2"
be polynomials in A[z] of degree m, n respectively. Then the resultant res(f, ) of
f and g is the determinant of the (m + n) x (m + n) matrix

B a’O a]_ .. P am T
ao al P P a/m
ag a A,
S (4.4.1)
bO bl c. bn
bo b b
i by by by




where the first block has n rows and the second one has m rows. Let f/(z) be the
derivative of f(z). Then

D(f) =res(f, [")
is called the discriminant of f.!
Now we assume A = K is a field.

Proposition 4.4.2. Let K be any field extension of K in which f(z) and g(z) split. Then
the following are equivalent.

(a) res(f,g) # 0.
(b) f and g have no common zeros in K.
(c) 1isa gcd (greatest common divisor) of f, g in K|z].

Proof. Recall that a gcd of f, g in A = K|[z] is equivalently an element in fA + g A
dividing f and g in A, which is therefore also a ged of £, g in K[z]. So (b)<(c). In
the following, we prove (a)<(b), and it suffices to assume that f, g split in K.

Clearly, f, g have common zeros in K iff there exist u(z) = ¢y + c12 + --- +
Cn12" tand v(z) = do + diz + -+ + dp12™ 1 in K[2] such that uf = —vg. This is
equivalent to that det (4.4.1) = 0, because uf + vg = 0 iff

(Co, Cly...,Cpn—1, do, dl; c. ,dmfl) : (441) = 0.
[

Corollary 4.4.3. Let K be a field extension of K in which f # 0 splits. Then D(f) # 0 if
and only if each zero of f in K has multiplicity 1.

Proof. This follows from Prop. 4.4.2, because each zero of f in K has multiplicity
liff lisa ged of f and f/in K[z]. O

Definition 4.4.4. If f(z) € K[z] is monic, we define its reduction red(f) € K[z] as
follows. Since K[z] is a UFD, we can write f(z) = pi(2)™ - - pn(2)™ in a unique
way where ny,...,ny € Zy, p1,...,py € K[z] are monic and irreducible, and
pi # pjifi # j. We set

red(p)(2) = pi(2) -~ - pn(2) (4.4.2)

Remark 4.4.5. The discriminant D(red(p)) is a non-zero element of K. Equiva-
lently (by Cor. 4.4.3), the multiplicity of any zero of p in Kis 1.

10ur definition of D(f) is a non-zero constant times the usual definition of D(f). Such differ-
ence is unimportant for the purpose of our notes.
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Proof. By Prop. 4.4.2. it suffices to show that 1 is a gcd of red(p) and red(p)’ in
K[z]. If not, then a gcd must be divided by p; for some i, say divided by p;. So
p1 divides red(p)’ = pip2 -+ pn + p1phy - DN + -+ + p1pa - - - Py, and hence divides
Pip2 - - pn. Since all p; are irreducible and p; # p; if i > 1, we must have that p,
divides p} (in K[z]), which is impossible because the degree of p/ is less than that
of P1. L]

Remark 4.4.6. Clearly red(p) and p have the same zero sets in any field extension
K in which p splits. Thus, if p(z) = (z — 21)™ - - - (z — z,)™ in K[z], then by Rem.
445,

red(p)(z) = (z —z1) - (2 — 2x)-

In particular, the expression of red(p) is unchanged if we replace K by any field
extension of K.

4.5 Branched coverings

Definition 4.5.1. A holomorphic map of complex spaces ¢ : X — Y is called
a local biholomorphism at z € X if there is a neighborhood U of z such that
V = ¢(U) is open in Y and that the restriction ¢ : U — V is a biholomorphism;
equivalently (cf. Cor. 1.6.3), ¥ : Oy ) — Ox, is an isomorphism of local C-
algebras. We say that ¢ is a local biholomorphism if it is so at every point of
X.

Definition 4.5.2. A finite surjective holomorphic map of reduced complex spaces
m: X — Siscalled a branched covering (of ) if there is a thin subset A = S such
that 771(A) is thin in X, and that the restriction 7 : X\n~'(A) — S\A is a local
biholomorphism. We say that A is the branch locus of 7. Then if V' — Y is open,
7w }(V) — V is clearly a branched covering with branch locus V' n A.

If A = &, we say that 7 is an unbrached covering. O

Remark 4.5.3. The restriction 7 : X\7 '(A) — S\A is clearly an unbranched
covering. Using Prop. 2.4.1, it is easy to see that each y € S\A is contained in a
neighborhood V such that 7=!(V) is disjoint union of open subsets U; U - - - U Uy,
where each 7 : U; — V is a biholomorphism. In particular, this map is a covering
map of topological spaces.

Remark 4.5.4. It is clear that a branched covering 7 : X — Y satisfies the assump-
tion in Prop. 4.2.2. In particular, the inverse image under 7 of a thin subset of Y
is a thin subset of X. This means any thin subset of ¥ containing a given branch
locus A can also be a branch locus. Also, it is easy to see that 7 sends thin subsets
of X to thin subsets of Y.
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Remark 4.5.5. Let 7 : X — S be a finite holomorphic map of reduced complex
spaces. Let Q be the set of all ¢ € S such that 7 : #7*(V) — V is a local biholo-
morphism (equivalently, an unbranched covering) for some neighborhood V' < §
of t. It is clear that 7 is a branched covering if and only if the (obviously) closed
subset S\ is thin in S, and 7' (S\Q) is thin in X. In that case, S\(2 is the smallest
branch locus.

Remark 4.5.6. By Rem. 4.5.5, it is clear that the property of being a branched
covering is local with respect to the base space: If S is covered by some open
subsets (V,,)aen such that the restriction 7 : 7=1(V,) — V, is a branched covering
for every a, then 7 : X — S'is a branched covering.

When constructing branched coverings, once one has found a thin A < S and
know that 7 is unbranched outside A, one can use the following criterion to show
that 7 is surjective and that 7—'(A) is thin:

Proposition 4.5.7. Let m : X — S be a finite holomorphic map of complex spaces where
S is reduced. Consider the following statements:

(i) The Os-module morphism 7# : 05 — m,Ox is injective.
(ii) m is surjective.
(a) m.Ox is Os-torsion free.

(b) For every nonempty open subset V- S and every thin subset A < V, 71 (A) is
thin in 7= 1(V).

Then (i)<=(ii) and (a)=(b). If X is reduced, then (b)=(a).

This proposition can be viewed as a geometric characterization of the condi-
tions e g, (1.0x) = 0 and Jy,(1.0x) = 0. (The readers may compare this
proposition with Prop. 3.14.8.) We see that both hold when 7 is a branched cov-
ering.

Proof. (i)<(ii): The zero locus of s gy (m.Ox) equals red(Supp(r.Ox)) and
hence equals the set p(X) (cf. Def. 2.3.8). But this zero locus is S iff @2z 5 (7. Ox)
is zero, due to the reducedness of S. So the equivalence follows immediately from
Rem. 2.3.10.

(a)=(b): Assume (a). Shrink S to any nonempty open subset and let A a thin
analytic subset of S. If 7~ (A) is not thin, then there is x € X such that 7~ !(A) con-
tains a neighborhood U of z. Lett = w(x). Define f € (7.0x); tobe 1in Ox, and 0
in Ox , whenever y € 7~'()\{z}. Then the germ of analytic subset Supp,,,(fTs,)
equals 7(Suppy,  (fOx.)) by Lem. 3.14.7, and hence is inside (A,?). So f is a
non-zero torsion element of (7,0 ), by Prop. 3.14.3.
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Now assume that X is reduced and that (a) is not true. Choose ¢ € S such that
(7.0x ), contains a non-zero Og -torsion element f. Shrink S to a neighborhood
of ¢ and shrink X to 7'(5) so that f € 0(X) and f € J,,(m.Ox). By Prop.
3.14.3, A = Suppy,, (fOs) is nowhere dense in S. Since f # 0 and X is reduced,
U= {ze X : f(z) # 0} is a nonempty open subset of X. Since Supp, (fOx)
contains U, by Lem. 3.14.7, 7~!(A) contains U. So (b) is false. O

4.5.1 Main results
The goal of this section is to prove:

Theorem 4.5.8. Let X, S be pure n-dimensional reduced complex spaces, and let 7 :
X — S be a finite holomorphic map which is surjective. Then 7 is a branched covering.

Corollary 4.5.9. Let 7 : X — S be a finite surjective open holomorphic map of reduced
complex spaces. Assume that S is locally irreducible. Then w is a branched covering.

Proof. By Thm. 3.14.10, we may shrink S and assume that S has pure dimension
n. Then since 7 is open, finite, and surjective, we see that X has dimension n
everywhere due to Thm. 3.12.6. O

A converse of Thm. 4.5.8 is easy to prove:

Proposition 4.5.10. Let 7 : X — S be a branched covering, and assume that S has pure
dimension n. Then X also has pure dimension n.

Proof. Let A < S be a branch locus. Then X clearly has pure dimension n outside
the thin subset 7 *(A). If x € 7~*(A), then dim, X < n by Prop. 3.9.5, and
dim, X > n by the upper-semicontinuity of dimensions (Cor. 3.9.4). O

4.5.2 Weierstrass branched coverings

Assume the setting of Def. 2.5.1. So 7 : X — S is a Weierstrass map defined by
polynomials p;(21),...,pr(2;). We assume that S is reduced. We do not assume
that X is reduced. Then we have discriminants

D(p;) € O(S).
We set
A = U N(D(p:)) = N(D(p1) - -~ D(px))

2

Lemma 4.5.11. The restriction © : X\m ' (A) — S\A is a local biholomorphism. In
particular, X\m(A) is reduced.
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Proof. Let + € X such that ¢ = w(z) is not in A. Then for each i, D(p;(t)) =
D(p;)(t) # 0. By Prop. 4.4.3, (for the fixed t) each zero of p;(t, z) has multiplicity 1.
Thus, if we write x = (¢, (1, ..., (x), then (; is a zero of p;(t, z) with multiplicity 1.
Assume for simplicity that (; = --- = ¢, = 0. Then by WPT, in O ., p; is a unit
times ¢; = z; — b; where b; € mg;. Therefore

k
Oxu = ﬁSka,m/ZQiﬁSka,m
i=1

which, by Thm. 2.5.4, is a free 0s,-module generated by 1. Therefore 7% : O, —
O is an isomorphism of local C-algebras. So 7 is a local biholomorphism at
x. [

Proposition 4.5.12. Assume that A is nowhere dense in S (equivalently, that each
N(D(p;)) is nowhere dense in S). Then X is reduced, and the Weierstrass map m :
X — S'is a branched covering with branch locus A.

The branched covering 7 in Prop. 4.5.12 is called a Weierstrass (branched)
covering.

Proof. By Lemma 4.5.11, X is reduced at z € X if 7(z) # A. Now assume 7 (x) =
A. To show that X is reduced at =, by Prop. 3.7.1, it suffices to show that 75, (x) »
contains a non zero-divisor of O .

By Lemma 4.5.11, we have Sg(X) < 7 !(B) where

B =Sg(Y)uA.

Since Y is reduced, by Thm. 3.6.7, Sg(Y') is nowhere dense in B. Since A is
nowhere dense by assumption, B is also nowhere dense in Y. Thus, by Prop.
3.4.5, we can find g € £, which is a non zero-divisor of 0y,. By Thm. 2.5.4,
Ox, is a free Og -module. (We only need the torsion freeness.) Therefore
7%¢ is a non zero-divisor of Ox .. This proves that 0x , is reduced, because
ﬂ#g € fﬂ—l(B)J c ng(X),x-

Since A is thinin Y, 77! (A) is thin in X by Prop. 4.5.7 or by the fact that every
Weierstrass map is open (cf. Exp. 3.14.9). So 7 is a branched covering by Lemma
4.5.11. O

Theorem 4.5.13. Let t € S, and assume that Os; is a normal integral domain (e.g. S is
smooth, cf. Cor. 4.3.2). Then we can shrink S to a neighborhood of t € S and replace X
by m1(S) so that the restriction 7 : red(X) — S is a Weierstrass covering.

Proof. We may assume that pq,...,p; are monic. Let K = .#s,; be the field of
fractions of Os;, and view each p;(z;) € Os.|z] as a polynomial in K[z;]. As in
Def. 4.4.4, we have irreducible decomposition

Pi =DPiiDio (4.5.1)
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in K[z;] where e denote elements of Z.., each p; . € K[z;] is monic and irreducible,
and p; ; # p;; if j # . Then ¢; = red(p;) equals

¢i = PiiPi2- - (4.5.2)

Since Us; is normal, by Exp. 4.2.8, we have p; . € Og,[2].

Shrink S to a neighborhood of ¢ (and shrink X accordingly to 7—!(S)) so that
pix € O(S)[z] for all i, and that (4.5.1) and (4.5.2) hold in Os[z;]. Then from these
two formulas, it is clear that N(p;) = N(¢;). Thus, red(X) (as an analytic subset
of X) equals N(q1,...,q). LetY = Specan(Ogycr/ Y. ¢;0sxcr). Then we have a
Weierstrass map 7 : Y — S such that the underlying set of Y equals that of X.

We now show that, after shrinking S further, ¥ is reduced and 7 : ¥ — §
is a branched covering. This will imply that 7 : ¥ — S equals 7 : red(X) —
S, finishing the proof. Indeed, by Rem. 4.4.5, the discriminant D(g;) (which is
an element of 0s; < K since the coefficients of ¢; are in Og;) is non-zero. So
D(q1)--- D(gx) is non-zero in the integral domain 0y, and hence is a non zero-
divisor. So by Prop. 3.4.1, we may shrink S further so that A = N(D(q;) - -- D(qx))
is nowhere dense in S. This proves the claim with the help of Prop. 4.5.12. O

A similar argument implies the following criterion for reducedness, which can
be compared with Prop. 4.3.6 (a criterion for irreducibility).

Proposition 4.5.14. Let t € S. For each 1 < i < k, assume that p;(z;) € Os4|z]
is monic, and that the discriminant D(p;) is a non zero-divisor of Os;. Then for each
x € pry'(t) (where prg : S x Ck — S is the projection), the following ring is reduced:

k
ﬁSka,x/Zpi : ﬁswk,x

=1

Proof. Immediate from Prop. 4.5.12 and 3.4.1. O]

4.5.3 Proof of Thm. 4.5.8

Lemma 4.5.15. Let ¢ : X — Y and ¢ : Y — Z be surjective finite holomorphic maps
of reduced complex spaces. Assume that ¢ and ) o ¢ : X — Z are branched coverings.
Then ¢ is a branched covering.

Proof. The branch loci of ¢ and ¢ o ¢ are both thin subsets of Z. So their union
A is also thin in Z. By Rem. 4.5.4, we can enlarge a branch locus to any larger
thin subset. So we may assume that ¢) and ¢ o ¢ have common branch locus
A. Clearly ¢ : X\p "9 1(A) —» Y\¢p"(A) is a local biholomorphism. So ¢ is a
branched covering with branch locus ¢! (A). O
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Proof of Thm. 4.5.8. In view of Rem. 4.5.6, it suffices to choose any ¢t € S and
show that we can shrink S to a neighborhood of ¢ and shrink X to 7!(.9) so that
7 is a branched covering.

We first consider the case when S is smooth. By Prop. 2.7.9, we may shrink
S and X so that there is a Weierstrass map ¢ : ¥ — S and a closed embedding
a : X — Y such that 7 = 9 o a. By Thm. 4.5.13, we may shrink S, and shrink
X to 7 (S) and Y to ¢~ 1(S), so that ¢ : red(Y) — S is a Weierstrass covering.
Thus, as a(X) (which is reduced, cf. Exe. 2.3.11) is a closed subspace of red(Y’),
we may replace Y by red(Y’) so that (Y is reduced and) ¢ : Y — S is a Weierstrass
covering. Let A be a branch locus.

By Thm. 3.12.6, 7 is open. Therefore 7='(A) is a thin subset of X. To prove
that 7 is a branched covering with branch locus A, it suffices to show that 7 is a
biholomorphism atevery z € X\n~*(A). Lety = a(z) and s = 7(x). Using the fact
that v is a biholomorphism from a neighborhood of y € Y to a neighborhood of
s € S and the fact that 7 is open at z, it is easy to see that the closed embedding «
is open at z. Thus, the reduced subspace «(X) of Y contains a neighborhood of .
So the germs of analytic sets (a(X), y) and (Y, y) are equal. Namely, the inclusion
of reduced complex spaces ¢ : «(X) — Y is a local biholomorphism at y. So ais a
local biholomorphism at x. This finishes the proof of the smooth case.

Now we consider the general case. Since S has pure dimension n, by Prop.
3.9.3, we can shrink S and X so that there is a finite holomorphicmap @w : S — W
where W is an open subset of C". By the smooth case, both @ and @ o 7 are
branched coverings. Thus, by Lemma 4.5.15, 7 is a branched covering. O

4.5.4 Another proof of Lem. 3.2.12

Using the techniques developed so far in this chapter, we can give another
proof of Lem. 3.2.12, which is the crucial part of the proof of Thm. 3.2.1.

Proof of Lem. 3.2.12. Step 1. We claim that, after shrinking X to a neighborhood
of z, there is a finite holomorphic map ¢ : X — S where S is a neighborhood of
0 € C" such that ¢'(0) = {z}, and that ¢ is open at z. Indeed, by shrinking X so
that X is a model space, we have a finite ¢; : X — S} where 5 is a neighborhood
of 0 € CV and (by Thm. 2.7.2 and shrinking X, S, further) ©;'(0) = {z}. If ¢
is open at = then we are done. Otherwise, by Lem. 3.12.5, we have (¢;(X),0) #
(S1,0). Thus, by shrinking X, S; we can find g € &(S;) nonzero in s, 5. As in
the proof of Thm. 1.5.5, we may choose a new set of coordinates of S; and shrink
X, 51 so that g has finite order in the last variable. By Thm. 2.7.2, after further
shrinking X, S;, the projection C¥ — C"~! on the first N — 1 variables restricts to
a finite holomorphic map S; — S, where S, is a neighborhood of 0 € C¥~2. By
Thm. 2.7.2 again, after shrinking X, S;, S, we obtain a finite holomorphic map
©o 1 X — Sy with 05 1(0) = {z}.
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By repeating the above procedure until impossible, we get a finite holomor-
phic map ¢ : X — S where S is a neighborhood of 0 € C*, such that ¢~ = {z},
and that either ¢ is open at « or n = 0. But in the latter case, X as a set is a single
point. So ¢ is also open at x. This finishes the proof of the claim.

Step 2. Since X is irreducible at =, by Prop. 3.14.8, the torsion sheaf Z5, (¢.Ox)
has zero stalk at 0 € S. Since Jy,(+Ox) is Os-coherent (Cor. 3.14.5), we can
shrink X, S so that J4,(¢.0x) = 0. Thus, by Prop. 3.14.8 again, ¢ is open.

By Prop. 2.7.9, after shrinking X, S, ¢ is the restriction of a Weierstrass
map. Namely, there are monic polynomials p; € 0(S5)[z;] (where 1 < i < k)
such that ¢ : X — S equals 7 o+ where ¢ is a closed embedding of X into
Z = Specan(Ock g/ Zle piOcrys), and m : Z — S is the restriction of the pro-
jection C* x S — S. We may assume for simplicity that X is a closed complex
subspace of Y.

The fact that p; vanishes on X implies, by Nullstellensatz, that a positive
power of p; vanishes in Oy ,. Since Ox, is an integral domain (because X is
irreducible at z), we conclude that ¢; = red(p;) has zero germ in 0x ,. Thus, by
shrinking X, Z, S, we have that ¢, ..., s restrict to zero on X. So X is a com-
plex subspace of Y = Specan(@grys/ S+, ¢;0crys). Then, as in the proof of Thm.
4513, Y is reduced, and 7 : Z — S restricts to a branched covering @ : ¥ — S
with branch locus D. Since ¢ : X — S'is open, as in the proof of Thm. 4.5.8, we
conclude that the inclusion X — Y is an open embedding outside ¢ (D). Thus
X\w HD) = X\¢ !(D) is smooth since Y\ww (D) (as an unbranched covering
of S\D) is smooth. So Sg(X) = ¢ '(D).

Since D is thin in S, after shrinking S, X, there is g € /(S) with nonzero germ
at 0 € S such that g € .#p. Since (9.Ox)o = Ox is Osp-torsion free, A = p#gisa
non zero-divisor of Ox . Since Sg(X) < ¢ '(D), X is smooth outside N(4). [

4.6 ﬁAX,x is the integral closure of Oy, in #x ,

Let X be a reduced complex space. The main result of this section (Cor. 4.6.10)
is indicated in the title. This is an immediate consequence of Thm. 4.6.9 which
says that the two equivalent conditions in Lemma 4.6.1 always hold.

Lemma 4.6.1. Let x € X. Then the following are equivalent.

(1) There exists § € Nzd(Ox ) satisfying that ¢ - ﬁAX,x c Ox . We call § a universal
denominator of Ox .

(2) % X« 15 a finitely-generated O ,-submodule of M x .

Proof. Assume (1). Then clearly ﬁAX@ c Mx,. The Ox,-module morphism
M O '\« 1s injective, and it sends ﬁAX@ to ¢ ﬁAX@ which is an ideal of O,
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and hence O ,-finitely-generated because Ox , is Noetherian. Therefore % X 18
O ,-finitely-generated. (2) is true.

Assume (2). Then @(,x is Ox ,-generated by fi,...,f, € ﬁAXw. Since each
[iOx , belongs to A, there is ; € Nzd(0x ;) such that 0,f; € Ox,. Then § =

01 - -+ 0, is a universal denominator. ]

4.6.1 Primitive elements

Definition 4.6.2. A branched covering 7 : X — §'is called a b-sheeted (branched)
covering (where b € Z.) if for each t € S\A, 7!(¢) has b distinct elements. Note
that the function

te S\A — |77 (1)]

is clearly locally constant. Therefore, if a branched covering 7 : X — S satisfies
that S\A is connected, then 7 is b-sheeted for some b.

In the following part of this section, we assume that 7 : X — S is a branched
covering and S is a connected complex manifold. Then by Cor. 4.3.4, S\A is
connected. So 7 is b-sheeted for some b.

Choose e € 0(X). We can define v.(z) € 0(S\A)[z] such that for each t € S\A,

Ye(t,2) = ] (z—e(@)) (4.6.1)
zer—1(t)
Clearly v.(z) is a monic polynomial with degree b.
Lemma 4.6.3. 7.(z) is an element of 0(S)|z].
Proof. eis (uniformly) bounded on any compact subset of X. Since 7 is finite and
hence proper (Prop. 2.4.10), the coefficients of 7. (z) are bounded on V\A for each
precompact open subset IV < S. So these coefficients belong to s(S), and hence
belong to 0s(S) by Riemann extension Thm. 4.3.1. O

Definition 4.6.4. We say that e is a primitive element of &'(X) over &/(9) if the dis-
criminant D(7.(z)) € €(S) is non-zero at some ¢ € S. In that case, by Identitdtssatz
1.1.3, the zero set of D(7.(z)) is nowhere dense in S. By Cor. 4.4.3, e is primitive
if and only if there is some ¢ € S\A such that the restriction e : 77'(¢t) — C is
injective.

(In the general case that S is a reduced complex space, we say e € 0(X) is a
primitive element over 0(S) if the zero locus of D(7.) is nowhere dense in S.) [

Lemma 4.6.5. If X is biholomorphic to a closed analytic subset of an open subset U of
CN, then there exists a primitive element e € O(X ) over O(S).

Proof. Let X be a closed analytic subset of U = CV. Let (zy, ..., zy) be the standard

coordinates of C". Choose any ¢ € S\A. Then one can easily find a1, ...,ay € C
such that e = a1z + - - + anzy is injective on 7! (¢). The restriction of e to X is a
primitive element. O
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4.6.2 Main results

Theorem 4.6.6. Let m : X — S be a b-sheeted branched covering where X is reduced and
S is a connected complex manifold. Assume that there is a primitive element e € 0(X)
over O(S). Then O(X) contains an element whose stalk at each x € X is a universal
denominator of ﬁAXw.

Proof. Let A < S be a branch locus. By enlarging A, we assume that A contains
the zero set of D(7.(z)). Therefore, for each t € S\A, (¢, z) has b distinct zeros
for 2.

For each t € S\A, write 771 (t) = {x1,..., 1}, and let

1 e(xy) e(xl)z e(:cl)’;j
M) = det | e(z2) 6(1’;2) o elm) (4.6.2)
1 e(zy) e(xp)? -+ e(xy)?

be the Vandermonde determinant. Then M(¢)? is independent of the order
T1,...,x, of elements of 71 (¢). Therefore, by varying t € S\A, we get § € O(S\A)
such that

forallt € S\A. Since e is continuous on X and hence bounded on compact subsets

of X, and since 7 is proper (Prop. 2.4.10), 6 must belong to 0s(S). Thus, by
Riemann extension Thm. 4.3.1, § € 0(S). Clearly N(0) is contained in A (by the
basic properties of Vandermonde determinant), so

N(7#6) c n=H(A) (4.6.3)
Since 7!(A) is thin in X, by Prop. 3.4.1, for each z € X we have

(7#8), € Nzd(Ox ) (4.6.4)

Let us show that 7#§ € ¢(X) is a universal denominator of o - Choose any
fe 5)(@. By Prop. 2.4.1, we may shrink S to a neighborhood of 7(z) and shrink X
to 771(9) so that f € (X \A) for some thin subset A = X, and that f is bounded
on X\A. Note that 7(A) is thin in S (Rem. 4.5.4). Foreach 1 < j < band t €
S\(A u m(A)), let K;(t) be the determinant of the matrix defined by replacing the
j-th column of the Vandermonde matrix in (4.6.2) with (f(z1),..., f(x))". Then

wi(t) = M(OK;(t) (4.6.5)
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is independent of the order zy,...,x,. Thus, by varying ¢, w; becomes a (clearly
bounded) holomorphic function on S\(A um(A)). Thus, we have w; € 0(S5), again
by Riemann extension Thm. 4.3.1. By Cramer’s rule, for each z; € 77%(¢),

b
O(t) - i) = Y wilt) - e(wi)’™!
j=1
Therefore, the following relation holds in &(X\(7*(A) U A))
b
Tt f = 2 W#wj el (4.6.6)
j=1

where the RHS is an element of &/(X). O

Remark 4.6.7. Recall that if F < K is a field extension, an element € € K is called
a primitive element of F ¢ K if K = F(e), i.e., if elements of K are F-coefficiented
rational functions of e. Therefore, (4.6.6) implies that for each t € S and z € 7~ (¢),
the germ e, is a primitive element of the field extension .#s, — .#x , provided
that X is irreducible at z (so that .Zx , is a field).

To apply Thm. 4.6.6 we need the following simple observation:

Lemma 4.6.8. Let X be a pure n-dimensional reduced complex space. Choose v € X.
Then, after shrinking X to a neighborhood of x, there is a connected open subset S — C"
and a branched covering w : X — S, together with a primitive element e of 0'(X) over
o(9).

Proof. By Prop. 3.9.3, there is a finite map 7 : X — S where S is a connected
open subset of C". By Thm. 3.12.6, 7 is an open map. Thus, we may replace S by
7(X) so that 7 is surjective (and clearly still finite). By Thm. 4.5.8, 7 is a branched
covering. By Prop. 2.4.1, we may shrink S to a neighborhood of 7(z) and shrink
X to 771(S) so that X is biholomorphic to a model space. Therefore, by Lemma
4.6.5, there is a primitive element e € (X)) over 0(S). O

Theorem 4.6.9. Let X be a reduced complex space and x € X. Then ﬁAXJ is a finitely-
generated Ox z-submodule of M x ;.

Proof. By Thm. 4.2.4 and local decomposition (Thm. 3.3.5), it suffices to assume
that X is irreducible at . Thus, we can shrink X to a neighborhood of z so that
(by Thm. 3.14.10) X has pure dimension n. We can shrink X further so that
the conclusions in Lemma 4.6.8 holds. So by Thm. 4.6.6, there is a universal
denominator of O ,. This proves the theorem with the help of Lemma 4.6.1. [

Corollary 4.6.10. For each reduced complex space X and each x € X, o x . 15 the integral
closure of Ox , in Mx .
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Proof. Thm. 4.6.9 shows that % X« 1s included in the integral closure of Ox . That
it contains the integral closure is already shown in Lemma 4.2.10. O

The proof of Thm. 4.6.6 implies the following generalization of Second Rie-
mann extension Thm. 4.3.7. It will be used in Prop. 4.10.2 to obtain global decom-
position of reduced complex spaces.

Theorem 4.6.11. Let X be a reduced locally pure-dimensional complex space and let A
be a thin subset of X of order 2. Then Ox\4 < Ox.

Proof. We may shrink X so that it has pure dimension n. Let us check that

Ox\az © Ox, for each x € X. As in the proof of Thm. 4.6.9, we may shrink
X to a neighborhood of = to get a b-sheeted branched covering 7 : X — S where
S is a connected open subset of C" and there is a primitive e € /(X). As in the
proof of Thm. 4.6.6, we have § € €(S5). Let us show that 7#§ - Ox\az © Ox 5. Then
the argument in Lemma 4.6.1 shows that 0x\ 4, belongs to the integral closure of
Oxin Mx,, namely Ox\ 4, < 5)(@.

If f € Ox\a,., wemay shrink X and S so that f € (X\A). Thenw; € O(S\(Au
m(A))) is locally bounded at each point of A\r(A), because f is continuous at each
point of 7 '(A)\A. Therefore, w; is holomorphic on S\7(A) by First Riemann
extension Thm. 4.3.1. Since A is thin in X of order 2, by Cor. 3.12.8, 7(A) is thin in
S of order 2. Therefore w; € &(S) by Second Riemann extension Thm. 4.3.7. Thus
7#4 - f belongs to Ox , by (4.6.6). O

4.7 Uniform convergence of holomorphic functions

Let X be a reduced complex space. In this section, we give another application
of the proof of Thm. 4.6.6. The results in this section will not be used in the rest of
this monograph and can therefore be skipped on first reading.

Proposition 4.7.1. Under the assumptions of Thm. 4.6.6, the € s-module morphism
P Ty é)\X - ﬁg

471
f'_)(ﬂ#wlw"aﬂ#wb) ( ’ )

(where w; is defined by (4.6.5)) is injective. Moreover, the restriction of ® to 7.0 is
continuous in the sense that if W < S is open and (f,,)nen is a sequence in O (7=*(W))
converging locally uniformly to f € O(x—(W)), then ®(f,,) converges locally uniformly

to d(f).

The locally uniform convergence of (f,).cy means that each z € 7= (W) is
contained in a neighborhood on which f, converges uniformly to f. Since X
is locally compact, this is equivalent to saying that f,, converges uniformly to f
on every compact subset of 7~ !(W). The locally uniform convergence in 7% is
defined componentwise.
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Proof. The continuity of ® follows from the construction of w;. The injectivity of
¢ follows from (4.6.6) and the fact that (4.6.4) holds at every z € X. O

Theorem 4.7.2 (Weierstrass convergence theorem). Let X be a reduced locally pure
dimensional complex space. Let (f,)nen be a sequence in O(X) converging locally uni-
formly to a function f : X — C. Then f € O(X).

Proof. It is clear that f is continuous. Since it suffices to prove the theorem locally,
we may assume (by Lemma 4.6.8) that X is small enough such that the assump-
tions of Thm. 4.6.6 hold. So Prop. 4.7.1 can be applied to X. Let ® be as in
Prop. 4.7.1. Since ¢ is continuous, lim,_,,, ®(f,) converges locally uniformly to
a continuous function ¢ : S — C° which must be holomorphic (i.e. £ € €(5)")
because, by Morera’s theorem, Weierstrass convergence theorem clearly holds for
the complex manifold S. Let .# = Im(®) be the image sheaf of ®.

* Claim: There exists o € .#(S) such that £ = lim,, ®(f,,) equals o.

Suppose that the claim is true. Since @ is injective and hence ® : 7,.0x(S) —
A (S) is bijective, there exists g € 7, 0x(S) = 0(X) such that 0 = ®(g). To show
that f is holomorphic, it suffices to show that f equals g as functions. Indeed,
since ®(f,) converges locally uniformly to ®(g), by (4.6.6), we have that 7% -
fn converges locally uniformly to 7#¢ - g. Since 7% - f,, also converges locally
uniformly to 7#§ - f, we have 7#§ - g = 7#§ - f. Therefore g = f outside the
nowhere dense subset 7*(A) due to (4.6.3). So g = f everywhere because f and
g are continuous.

The proof of Claim follows from the following lemma. O

Lemma 4.7.3. Let S be a complex manifold and b € N. Let .4 be an Os-submodule of 0.
Then .2 (S) is a close subset of €'(S)® under the topology of locally uniform convergence.

Proof. By shrinking S, it suffices to assume that S is an open subset of C" con-
taining 0. Then the topology of &(S)" is metrizable since S is second-countable
(though we do not need this fact in order to prove Thm. 4.7.2). Thus, it suffices
to prove that if (§,).en is a sequence in .Z(S) converging locally uniformly to
€€ 0(S)’, then ¢ e . (S). Tt suffices to show that & € ., for each t € S. For sim-
plicity, let us assume ¢ = 0 and prove &, € .#,. If we take power series expansions
of &, and £, which can be calculated by contour integrals, then each coefficient
of £, converges to the corresponding coefficient of £. Therefore, for each k € Z.,
the residue class of &, in 0f/mf,0f converges to that of £ as n — . Given that
the germ of each ¢, at 0 is an element of .#, the proof is finished thanks to the
following general fact. O

Proposition 4.7.4. Let (A, m) be a Noetherian local C-algebra. Let P be a finitely-
generated A-module, and let M be an A-submodule of P. Then P is weakly closed in
M.
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By saying that M is weakly closed in P, we mean that if (&, ).y is a sequence
in M satisfying that for each k € Z,, the residue class of ¢, in P/m*P (which is
clearly a finite-dimensional C-vector space and is equipped with the Euclidean
topology) converges to that of £ as n — o, then £ € M.2

Proof. For each k € Z ., consider the following commutative diagram

M—"—— P » P/ M

| |

P/mtP —=— P/(M + mFP)

Since the composition of the two maps in the first row is zero, we have womor = 0.
Choose a sequence (&,,)nen in P converging weakly to £ € P, namely, for each £,
the residue class of &, in P/m*P converges to that of . Then lim,, 7 0 +(&,,) = 7(£).
Since every linear subspace (and in particular 7 o ((M)) is closed in the finite
dimensional C-vector space P/m P, we have 7 () € mo1(M) and hence wo () €
w o7 o (M) = 0. Therefore, the residue class of ¢ in
P/M
P Py = —L——
/(M + m"P) W (P M)
is zero for each k. By Krull's intersection Thm. 1.4.4, the residue class of £ in P/ M
is zero. So £ € M. O

4.8 Coherence of ﬁAX; the normalization X

Let X be a reduced complex space. We say that z € X is normal if Oy, is
normal, i.e. Ox, = ﬁAXJ (cf. Cor. 4.6.10). We say that X is a normal (reduced)
complex space if every point of X is normal.

The first goal of this section is to prove:

Theorem 4.8.1. ﬁAX is a coherent O'x-module.

Corollary 4.8.2. The set of non-normal points of X is a nowhere dense analytic subset of
X.

Proof. The non-normal locus of X is the support of the coherent sheaf Ox)Ox. O

The construction of the normalization X (defined by SpecanﬁAX) will be an
immediate consequence of (the proof of) Thm. 4.8.1.

2Tt is easy to find a metric on P under which the convergence of sequences is described in this
Yy g q
way.
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4.8.1 Non-normal loci

It turns out that in order to prove Thm. 4.8.1 we need to first prove Cor. 4.8.2.
In fact, we only need the fact that the set of normal points are open. Cor. 4.8.2
follows easily from the following criterion.

Theorem 4.8.3. Let T be a coherent ideal of Ox such that N(Z) is nowhere dense in X,
that Sg(X) = N(ZI), and that T = ~/Z. Then the set of non-normal points of X is equal
to the support of

End i (T)
Enc g (I) O p(Ox)

where (O ) is the image of O'x under the morphism . : Ox — Enci, (I) sending each
f to the multiplication map x f.

Such 7 exists: one simply take 7 = %, x), since Sg(X) is nowhere dense in X
(by Thm. 3.6.7).
Thm. 4.8.3 follows immediately from the following stronger result:

Proposition 4.8.4. Choose any x € X. Let T be a coherent ideal of O'x such that N (I) is
nowhere dense in X. Consider the following statements:

(1) Oxqo = Ox,

(2) Endgy ,(Z;) < u(Ox ), namely, each element of End g, , (Z,) is the multiplication
map of an element of O ,.

Then (1)=(2). If Sg(X) = N(Z) and T = VI, then (2)=(1).

Proof. Part 1. Assume that (1) is true and N(Z) is nowhere dense in X. Choose
any Ox ,-module endomorphism « of Z,. Then « is the multiplication by f for
some f € .#x,. Indeed, since N(Z) is nowhere dense in X, by Prop. 3.4.5 we can
tind g € Z, which is a non zero-divisor of Ox , and hence of .#Zx .. Set f = %.
Then for each h € Z,, since « is a homomorphism, we have

fh = alg)h _ alhg) _ a(h)g _ a(h)

g g g

which shows that « is the multiplication of f on Z,.

Since O, is Noetherian and Endy, , (Z,) is a finitely-generated O ,-module,
the Ox ,-submodule generated by 1,a,a?,... is finitely-generated. Therefore
a is integral over O ,. Thus, a monic O ,-polynomial of f multiplied by the
non zero-divisor ¢ is zero, which implies that f is integral over Ox,. Thus

f e 5)@ = Ox,. Therefore « is the multiplication of an element of Ox ,. This
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proves (2).

Part 2. Assume that (1) is not true and Sg(X) < N(Z). Choose f € ﬁ’AX@ not in

O . Shrink X to a neighborhood of z so that f € 5X(X ) € Mx(X),and that 7 is
generated by finitely many sections g1, g2, - - - € Z(X). The polar set

P(f)=1{pe X : f, ¢ Ox,} (4.8.1)

is contained in Sg(X') due to First Riemann extension Thm. 4.3.1. So P(f) < N(Z).
By Prop. 4.1.5, Ox f + Ox is a coherent 0x-submodule of .#Zx. Applying Exp.
2.10.6 to the pair of coherent sheaves Ox < Ox f + Ox, we see that thereisn € Z
such that (¢7' f), € Ox,, for all i. Thus f,7I} < Ox , for a larger n.

Since f, ¢ Ox ., we can find the smallest n € Z, such that f,Z} < Ox ,. Choose

any f € fZ" ! not in Ox,. (But note that f belongs to ﬁXI since f does.) Then
fI = ﬁX:E
We now assume furthermore that Z = v/Z and claim that fZ, < Z,. Suppose

that the claim is true. Let a € Endg, ,(Z,) be the multiplication by /. Then o ¢
u(Ox ) and hence (2) is not true. Indeed, if o € (0x ), then o« = u(k) for some

k € Ox,. Let gbe as in Part 1. Then fg = xg. Since g is a non zero-divisor of Ox
and hence of .Zx o We have f = k and hence f € Ox,, 1mposs1b1e
Let us prove fI c ZI,. Shrink X further so that f € ﬁX( ) and that fg; €

0(X) for each i. By Thm. 4.3.1 again, Vi belongs to &'(X\Sg(X)) and is locally
bounded on X. Thus, for each p € N (I) we can choose a sequence (pk)keN in

X\Sg(X) converging to p such that sup | f (pn)\ < 4o and hence that (fg;)(p) =
keN

klim f(pk) gi(pr) = 0 (because fg: and g; are continuous, and g¢; (p) = 0.) So each
—00

fg; vanishes on N (Z), and hence must belong to Z(X ) by Nullstellensatz and that
= +/Z. This proves fZ, c T,. O

Remark 4.8.5. In the above proof, we have actually shown that if N(Z) is a
nowhere dense analytic subset of X and z € X, then each element of Endy, , (Z.)

is the multiplication map of an element of % X -

4.8.2 Proof of Thm. 4.8.1

Proposition 4.8.6. Let m : X — S be a 1-sheeted branched covering of reduced complex
space. Then we have an isomorphism of Os-algebras (cf. Prop. 4.2.2)

. Og —> 1,0y

Proof. Outside the branch locus A, 7 : X\n'(A) — S\A is a 1-sheeted un-
branched covering, i.e. a biholomorohism. For each ¢t € S, an element g € Oy,
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is of the form g € 0g(V\B) where V is a neighborhood of ¢ € S, B is a thin an-
alytic subset of V, and g is bounded. Since g is determined by its values outside
the nowhere dense subset (V. n A) u B of V, g is non-zero if g is non-zero. So
7 is injective at ¢.

If f e (m ﬁAX)t, choose a neighborhood V' of ¢ such that f € ﬁ}(w”(V)). By
Prop. 2.4.1, we may shrink V' and find a thin analytic subset A < 7 !(V) such
that f € Ox (7~ '(V)\A) and f is bounded. So f restricts to a holomorphic map
on 7 (V)\(A u 71(A)) which is sent biholomorphically by 7 to V\(7(A) u A).
Define g € Os(V\(7(A) u A)) to be f o 7!, which is bounded and hence belongs
to Os(V). Then 7% g = f. This shows that 7 is surjective at . O

We are now ready to give the

Proof of Thm. 4.8.1. Choose any x € X. We show that ﬁAX is coherent up to
shrinking X to a neighborhood of x. By Thm. 4.6.9, ﬁ’AXx is O ,-generated by
tinitely many elements fi,..., f,, € ﬁX@. Since each f; is integral over Ox ,, we
can find a monic Ox ,-polynomial P; such that P;(f;) = 0. Shrink X so that each
/i belongs to 5X(X ), that the coefficients of each P, belong to €/(X), and that
P,(f;) = 0 holds in Oy (X).

Let </ be the Ox-subalgebra of ﬁAX generated by fi,..., f,, namely, it is the
unique subsheaf of O'x whose stalk at each p € X is the ¢ x p-subalgebra generated
by the stalks of fi,..., f, at p. Then P;(f;) = 0 implies that <7 is a finite-type O'x-
module, and hence coherent by Prop. 4.1.5. Thus, by Thm. 2.9.3, we can define
a finite holomorphic map ¢ : Y = Specan(%/) — X such that the equivalence of
U'x-algebras 1,0y ~ </ holds. Clearly each stalk of .27 has no non-zero nilpotent
elements. So each stalk Oy, (¢ € Y), which is a direct summand of (1. 0y )yq)
(Prop. 2.4.5), is reduced. Therefore Y is reduced.

Since & x equals Oy outside the thin analytic subset A = Sg(X) by First Rie-
mann extension Thm. 4.3.1, & equals Oy outside A. Therefore Y\A = X\A.
Thus, by Prop. 4.5.7, ¢ is a 1-sheeted branched covering. By Prop. 4.8.6, we
obtain an isomorphism of 0'x-algebras % X Yy ﬁy

We know that (¢, 0y ), = <7, is the integral closure ﬁX,x of OUx , in Mx . So by
Rem. 4.2.7, o7, is the integral closure of itself in .#x ,. So <7, = @yewfl(x) Oy, is a
normal ring. (Note that the elements of Nzd(<7,) <, belong to .# ,.) Therefore
Oy, is normal for each y € ¢y"*(z). By Cor. 4.8.2 (implied by Thm. 4.8.3), each
y € ¥~ !(z) is contained in a normal open subset of Y. Therefore, by Prop. 2.4.1,
we may shrink X to a neighborhood of z and shrink Y to ¢/ ~*(X) so that Y is
normal. Therefore & x =~ 1,0y, and ¢, Oy is Ox-coherent by Finite mapping Thm.
2.7.1. [
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The normalization X
Using the coherence of i x, we immediately obtain

Theorem 4.8.7. For any reduced complex space X, there is, up to isomorphisms (in the
sense of Def. 2.9.1), a unique 1-sheeted branched covering v : X — X such that X is
normal. This covering (or simply the complex space X) is called the normalization of
X. Specanﬁx — Ox 18 a normalization.

Proof. By Prop. 4.8.6, we have an isomorphism of 0'x-algebras v, 05 ~ % . So the
equivalence class of the Ox-algebra v, 0 is unique. Therefore the normalization
is unique due to Thm. 2.9.3.

Let X be Specan@. Then the proof of Thm. 4.8.1 shows that X is reduced and
normal, and v : X — X is a 1-sheeted covering with branch locus Sg(X). ]

Remark 4.8.8. Suppose that we have decomposition X = X; u---u Xy of X into
analytic subsets such that X; n X; is nowhere dense in X, for all i # j. Then by

Thm. 4.2.4, or more precisely by (4.2.2c), Xisa disjoint union of open subsets
AN N A
X=[1x

=1

where each )A(, is the normalization of Xj.

4.9 Basic properties of normal complex spaces

Let X be a reduced complex space.

Proposition 4.9.1. Assume that X is normal. Then X is locally irreducible. In particu-
lar, X is locally pure dimensional (by Thm. 3.14.10).

Proof. Suppose that X is not irreducible at x. Shrink X so that we have local
decomposition X = X; U --- U Xy at x (where N > 2) and Thm. 3.3.5 holds for
all i # j. The characteristic function xy, (cf. Exp. 4.1.6) clearly belongs to % x(X).
But it cannot be extended to a continuous function on X, otherwise its value at
xz would be both 1 and 0. So it is not in €¢(X). This contradicts the normality

Ox = Ox. ]

Our next goal is to prove that if X is normal then Sg(.X) is thin of order 2. We
tirst need some preparations.

Lemma 4.9.2. Let Y be an analytic subset of X, and choose x € Y. Assume that
dim, X = nand dim, Y = n — 1, and that Y irreducible at x. Choose f € Py, which is
a non zero-divisor of Ox ,, and let (N(f),z) = \U,.(Zk, ) be the local decomposition of
(N(f),x). Then (Y,x) = (Zy, ) for some k.
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Proof. Since (Y, z) is irreducible, by Rem. 3.3.2, we have (Y, z) = (Y n Z, x) for
some k, and hence (Y, z) < (Z,x). (Cf. also Lem. 3.1.8.) Suppose that (Y, z) #
(Zy, z). Then, since dim, Y = n — 1, by Prop. 3.10.14, the (Krull) dimension of Z;
at x is > n (since we can find a chain of n + 1 strictly increasing irreducible germs
in (Zy, z) where the n-th one is (Y, z)). However, since f € Nzd(0x ), we have
dim, Z, < dim, N(f) = n — 1 by Active lemma. This is impossible. o

Lemma 4.9.3. Assume that X is normal with pure dimension n. Let Y be an analytic
subset of X. Assume that v € Y satisfies that Y is irreducible at x and that dim, Y =
n — 1. Let {fi1,..., fn} be a set of non-zero generators of the ideal %y ,. Then, after
shrinking X to a neighborhood of x, we have fi,..., fn € Fyv(X), and there exists a
nowhere dense analytic subset A of Y such that for each p € Y\ A, the ideal %y, of Ox,
is generated by the germ f; ,, for some 1 < i < N.

The last sentence of this proposition implies, in particular, that for each p €
Y\A, #y, is a principal ideal of O .

Proof. Step 1. The case n = 0 is obvious. So we assume n > 0. Note that fi, ..., fx
are non zero-divisors of O, because X is irreducible everywhere (Prop. 4.9.1).
Thus, we may shrink X to a neighborhood of = so that fi,..., fy € #(X), that
(by Prop. 2.3.13 and Rem. 1.2.16) fi,,..., fy, are non zero-divisors generating
Hy,, for each p € X, and that (by Thm. 3.14.10) Y has pure dimension n — 1.

By Lemma 4.9.2, for each i, the germ (Y, z) is a component in the local decom-
position (N(f;),z) = |, (Zk, ). Therefore, by Thm. 3.3.5, we can shrink X further
so that all the germs not equal to (Y, z) in the local decomposition of (N(f;), x) are
analytic subsets of X whose intersections with Y are nowhere dense in Y. Let
B be the union of these thin analytic subsets. Recall that Sg(}’) is a thin analytic
subset of Y (Thm. 3.6.7). Let A = B u Sg(Y). Then Y\ A is a complex manifold
with pure dimension n — 1. Choose any p € Y\ A. Then for all i we have

Step 2. Our goal is to prove that .#y,, is generated by some f;,. It suffices
to show that for every 1 < i,j < N, either f;,/f;, or f;,/fip isin Ox,. If this
is true, then for any i, j there must be an inclusion relation between f; ,0x , and
[ipOx p. Consequently, among the ideals f, ,0x,, ..., fn,0x,p there is a largest
one f; ,0x,. Then f; , generates %y,

Soletustakei = 1, j = 2 for simplicity, and show that either f,,/f2, or f2,/f1,
is inside Oy ,. (Note that they are inside .# ,.) We can assume without loss of
generality that there is a sequence (p,,)nez, in X\Y converging to p such that

sup | f1(pn)/ fo(pn)| < 400, (4.9.2)

otherwise, there must exist such a sequence for fo/f;. Let f = f1/f.. Let us show
that f, belongs to O ).
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Suppose that f, ¢ Ox,. Recall (4.8.1) for the definition of the polar set P(f).
Then by (4.9.1) we have the relation (P(f),p) < (Y, p) for germs of subsets of X at
p. As argued after (4.8.1), Exp. 2.10.6 implies that f,.#}  — Ox, for some k € Z...
We let £ > 0 be the smallest such number, and find g = f;,,--- fi,_,» (Where
1<iy,...,ig_1 < N)such that f = fp-9¢ Ox,. Notice ffyp < Ox .

For each f;, by (4.9.2), ffie O vanishes at p. But N(J?fi) c (Y,p) by (49.1).
Thus, N(f f;) is a germ of analytic subset inside (Y, p) passing through p. Since (by
Active lemma) both (N(ff;), p) and (Y, p) have dimension n — 1, these two germs
must be equal. (Otherwise there is a non-zero element of the integral domain
Oy, ~ Ocn-1, vanishing on (N (ff:),p), which contradicts Active lemma.) We
conclude that ff;,, € .#, for all i. Therefore f.%, — %,

Now, the multiplication of f gives an &x ,-endomorphism a of .#,,. We know
that f ¢ Ox . So there does not exist k € Ox, such that « is the multiplication
p(k). (Otherwise, since Y is nowhere dense in X by Ritt’s lemma, ., contains
a non zero-divisor of O ,, which is also a non zero-divisor of .#x ;. So its multi-
plication with fequals that with «, and hence f = &, impossible.) Thus, by Prop.
4.8.4, Ox, is not normal. This is a contradiction. O

Theorem 4.9.4. Assume that X is normal. Then Sg(X) is thin of order 2.

Consequently, a reduced complex curve (i.e. reduced 1-dimensional complex
space) is smooth iff it is normal.

Proof. Fix x € Sg(X) and let n = dim, X. Since Sg(X) is nowhere dense in X
(Thm. 3.6.7), dim, Sg(X) < n — 1 by Ritt’s lemma 3.10.7. Let us assume that
dim, Sg(X) = n — 1 and find a contradiction.

Shrink X to a neighborhood of = so that Sg(X) has local decomposition
Sg(X) =Y uYyu - at z. By Prop. 3.10.8, there is ¢ such that dim, Y; = n — 1.
LetY =Y. By Prop. 4.9.1 (and Thm. 3.14.10), X is irreducible at z, and X, Y have
pure dimensions n,n — 1 respectively after shrinking X further. By Thm. 3.15.5
and Lem. 4.9.3, we have (Y, z) ¢ (Sg(X), ). This gives a contradiction. O

Theorem 4.9.5. Let ¢ : X — Y be a holomorphic map of reduced complex spaces.
Assume that Y is normal and ¢ is a homeomorphism. Then ¢ is a biholomorphism.

For example, if ¢ is a holomorphic map of complex manifolds which is a home-
omorphism, then ¢ is a biholomorphism.

Proof. SinceY is locally irreducible, by Cor. 4.5.9, ¢ is a 1-sheeted branched cover-
ing with branch locus A < Y. Let ¢ : Y — X be the inverse of ¢. Then v restricts
to a holomorphic map ¢ : Y\A — X\¢(A).

Choose any y € A and let z = ¢(y). Let us show that ¢ is holomorphic on a
neighborhood of y. By shrinking X to a neighborhood of x replacing Y by ¢(X),
we assume that X is a closed subspace of an open ball U in C". Let . : X — C" be
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the inclusion map. Then ¢ o ¢ can be viewed as a continuous map ¥ — C" which
satisfies . 0 ¢)(Y") < X and is holomorphic outside A. By First Riemann extension
Thm. 4.3.1, 1 o p|y\a : Y\A — C" can be extended to a holomorphic function
Y — C", which must equal ¢ o ¢ as continuous maps. Thus to¢ : Y — C" is
holomorphic and satisfies ¢ 0 )(Y) < X. Thus, by the reducedness of Y and by

Thm. 1.4.8, ¢ o 9 restricts to a holomorphic map ¥ : Y — X, which clearly equals

¢ as set maps. Therefore ¢ o J = 1y and {Z o ¢ = lx as set maps, and hence as
holomorphic maps because X and Y are reduced. O

410 Global decomposition of reduced complex
spaces

Let X be a reduced complex space.

4.10.1 Global decomposition: the normal case

Proposition 4.10.1. Let X be normal, and let T' be a thin subset of X. Then the following
are equivalent.

(1) X is connected.

(2) X\T is connected.
If X satisfies these conditions, we say that X is irreducible.

Note that in the special case that 7 = Sg(X'), we have that X is connected iff
the complex manifold X\Sg(X) is so.

Proof. If X is a disjoint union of two non-empty open subsets, the same is true for
X\T because T is nowhere dense in X. This shows (2)=-(1). On the other hand,
if X\T is a disjoint union of non-empty open subset U 1 V, define f : X\T' — C
tobe 0 on U and 1 on V. Since X is normal and f is locally bounded, f can be
extended to a holomorphic function on X because % x = Ox. But the range of this
function must be {0, 1}. So X is not connected. This proves (1)=(2). ]

Proposition 4.10.2. Let X be normal. Then X is locally connected. Equivalently, X
is a disjoint union of open connected subspaces (which are clearly normal, and hence
irreducible)

X =][Xa (4.10.1)
ae
If T is a thin subset of X, then
X\T = [ [X\T (4.10.2)
ae
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is the decomposition of X\T into connected components. Each X, is the closure of X, \T
in X.

We call (4.10.1) the global decomposition of the normal complex space X. It
follows that (4.10.2) is the global decomposition of X\7.

Proof. That X is locally connected is equivalent to the existence of decomposition
into connected components (4.10.1) is a basic fact in point-set topology. Once we
have (4.10.1), then we clearly have (4.10.2) where each X,\T is connected by Prop.
4.10.1. Since T' n X,, is nowhere dense in X, X, is the closure of X,\T.

To prove that X is locally connected, we choose any z € X and shrink X to
a neighborhood of x so that X is a model space. In particular, the complex man-
ifold X\Sg(X) is second countable, and hence has countably many irreducible
components

X\Sg(X) =[] Q.

HEZ+

Define f € 0(X\Sg(X)) to be constantly n on €2,,. Since X is normal, Sg(X) is thin
of order 2 by Thm. 4.9.4. Therefore, by Thm. 4.6.11, f € €/(X). By continuity, f

has range Z, .

Let Q.1 =, ; . Then X\Sg(X) = €; U 2.,. Hence

n>1

X = (X\Sg(X))! = 0f v Qg

Since Q! « A := N(f —1)and QY, <« B := {x € X : f(x) # 1}, and since
X = Au B, we must have Q¢! = A and Q¢; = B. This proves that N(f — 1) = Q¢
and is open in X. The same argument shows that for each n, Q< = N(f —n) and
is open in X. Note that Q¢ is connected because (2, is so. We thus have

X=][N(f-n=1]]

n€Z+ n€Z+
where each Q¢ is a connected open subset of X. This proves the existence of
(4.10.1). O
4.10.2 Global decomposition: the general case

Proposition 4.10.3. Let T be a thin subset of X containing Sg(.X). Let v : X — X be
the normalization of X. Then the following are equivalent.

(1) X is irreducible.
(2) The complex manifold X \T is connected.

If X satisfies these conditions, we say that X is irreducible.
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Again, if we set T = Sg(X), we see that X is irreducible iff X\Sg(X) is con-
nected.

Proof. Since smooth points of X are normal, v restricts to a biholomorphism
v: X\v{(T) - X\T. Since v~!(T) is thin in X, by Prop. 4.10.1, X\v (T is
connected iff X is irreducible. O

Remark 4.10.4. If X is irreducible then X , which is locally pure dimensional by
Prop. 4.9.1, must be pure n-dimensional for some n. Therefore X is also pure
n-dimensional due to Cor. 3.12.8.

Proposition 4.10.5. Let v : X — X be the normalization of X. Let

-1]%.

ael

be the global decomposition of X. Let X, = v(X.). Assume that T is a thin subset of X
containing Sg(X). The following are true.

1. The restriction v, : )A(a — X, of v is the normalization of X,. T n X, is a branch
locus of the 1-sheeted branched covering v,,.

2. Each X, is the closure of the complex manifold X,\T in X, and

X\T = [ [X\T

ae

is the (disjoint) decomposition of the complex manifold X \T into connected compo-
nents.

We clearly have X = |}y Xo. This is called the global decomposition of X.

ac

Note that each X, is an analytic subset of X (cf. Exe. 2.3.11).
To summarize, Prop. 4.10.5 says that the global decomposition of X can be
obtained in two equivalent ways: either by taking the image of the connected

components of X under the normalization map v, or by taking the closures of the
connected components of X\T'.

Proof. Since smooth points are normal, the restriction
v: X\v Y(T) S X\T
is a biholomorphism, which further restricts to a biholomorphism

v X\ HT) S v(X\v H(T)) = Xo\T.
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Since X, is an open and closed connected component of X, v I(T) n X, is
nowhere dense in X,. So X,\v"!(T) is dense in X,. Therefore X, must be the
closure of X,\T in X. So T' n X, is a thin subset of X,. Thus v, : X, — X,

is a 1-sheeted covering with branch locus 7' n X,,. Since X, is normal, v, is the
normalization of X,.
By Prop. 4.10.2, we have global decomposition

X\ (1) = [ [Xa\w (D).

s

v sends this decomposition biholomorphically to X\7T" = [ [ o Xo\7" O

ae

4.11 Basic properties of irreducible complex spaces

Let X be a reduced complex space. In this section, we collect some useful facts
about irreducible complex spaces.

Proposition 4.11.1. If X is irreducible, then X is pure dimensional.

Proof. By definition of irreducible complex spaces, the normalization X is con-

nected. Thus, by Prop. 4.9.1, X has pure dimension n. Therefore X has pure
dimension n by Cor. 3.12.8. O

Proposition 4.11.2. The following are equivalent.
(1) X is irreducible.
(2) Any analytic subset A of X is either nowhere dense in X or A = X.

(3) Whenever we have X = A u B where A and B are analytic subsets of X, then
X=AorX =D.

Proof. (1)=(2): Let X be irreducible. First assume that X is a connected complex
manifold. Then by Lemma 3.11.4, either .#4 = Oy (namely, A = X) or Z4, # 0
for each z € X. In the latter case, A is clearly nowhere dense in X.

Now assume that X is irreducible but not necessarily smooth. Since X\Sg(X)
is connected, the smooth case implies that either A o X\Sg(X) or A\Sg(X) is
nowhere dense in X\Sg(X). In the former case, clearly A = X. In the latter case,
one checks easily that A is nowhere dense in X.

(2)=(3): Assume (2). If X = A U B where A and B are analytic, then one of A
and B must equal X, otherwise both A and B are nowhere dense in X due to (2),
which is impossible.
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(3)=(1): Assume that (1) is not true. Let v : X - X be the normalization.
Then X is not connected. We have X = A L B where A, B are non- empty open
and closed subsets of X. A = v/(A) is the closure in X of 4y = v(A\v~(Sg(X))),
and similarly B = I/(é) is the closure of B, = V(é\yfl(Sg(X))). Since v :
X\v1(Sg(X)) — X\Sg(X) is a biholomorphism, A, and B, are disjoint non-
empty open subsets of X\Sg(X). So A # X and B # X. This disproves (3). O

The following theorem gives a sheaf-theoretic characterization of irreducible
complex spaces. Compare this with Cor. 3.4.2.

Theorem 4.11.3. The following are equivalent.
(1) X is irreducible.

(2) Every coherent Ox-module & whose support Supp(&’) contains a nonempty open
subset U of X satisfies Supp(&’) = X.

(3) Every coherent ideal Z vanishing on a nonempty open subset of X is the zero ideal.

In the special case that Z = fOx where f € &(X), this corollary implies that if
f is not constantly zero on X then f is not zero when restricted to any non-empty
open subset of X. Thus, this theorem generalizes Lemmas 1.1.3 and 3.11.4.

Proof. Assume (1). Obvious from Prop. 4.11.2, since Supp(&’) is a complex sub-
space of X (cf. Def. 2.3.3).

(2)=3): Apply (2) to & = Ox/Z, noting that Z vanishes on an open subset U
iff N(Z) (which is the reduction of Supp(&x/Z)) contains U.

Assume that (1) is not true. By Prop. 4.11.2, there is an analytic subset A & X
containing a non-empty open subset U < X. Then .#4 # 0 but .Z4|y = 0. (3) is
not true. [

Theorem 4.11.4 (Open mapping theorem). Assume that X is irreducible, Y is a
Riemann surface, and f : X — Y is non-constant holomorphic map. Then f is open.

In particular, when Y = C and f is considered as a holomorphic function, the
openness of f implies that the absolute value function |f| : X — [0, +o0) does not
achieve maximum when restricted to any open subset of X.

Proof. Choose any = € X and let y = (x). To show that f is open at x, we may
shrink Y to a neighborhood of y biholomorphic to an open subset of C and shrink
X to f71(Y). So we may assume that Y is open in C. Since f is not constant, by
Thm. 4.11.3, f, is not constant in Ox .. Thus f is open at x by Cor. 3.13.7. O

Corollary 4.11.5. Let ¢ : X — Y be a surjective holomorphic map of reduced complex
spaces. If X is irreducible, then Y is also irreducible.
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Proof. Immediate from Prop. 4.11.2. O

Proposition 4.11.6. Let X and Y be reduced complex spaces. Then X x Y is irreducible
if and only if both X and Y are irreducible.

Proof. Applying Cor. 4.11.5 to the projections of X x Y to X and Y shows that
if X x Y is irreducible then X and Y are irreducible. Conversely, assume that
X and Y are both irreducible. Then X\Sg(X) and Y\Sg(Y) are connected. So
(X\Sg(X))x(Y\Sg(Y)) is connected. But this complex manifold is (X xY")\Sg(X x
Y') by Cor. 3.10.11. Therefore X x Y is irreducible. O

4.12 Normalization and local irreducibility

Let X be a reduced complex space, and let v : X — X be the normalization of
X. In this section, we use normalization and global irreducibility to study (local)
irreducible points of X.

Proposition 4.12.1. For each x € X, the number of points in v=*(z) is equal to the
number of irreducible components in the local decomposition of X at x.

Proof. It suffices to prove the case that X is irreducible at x, since the general
case will follow immediately from Rem. 4.8.8. So let us assume that x is an ir-
reducible point. Suppose that v~!(z) contains two distinct points 1, y». Since
(VxOg)y = % Xz 18 Ox ,-torsion free, by Prop. 3.14.8, v is open at y; and y,. Choose
neighborhoods V; of y; and V5 and y, such that Vi n Va2 = 5. Then v(V4) n v(V2)
contains a neighborhood U of z. Therefore, for each 2’ € U, the fiber v~!(2’) con-
tains at least two different points. This contradicts the fact that v is a 1-sheeted
branched covering. O

Corollary 4.12.2. = € X is an irreducible point of X if and only if v=*(z) has only one
point. When this is true, v is open at the only point of v ().

Proof. This is immediate from Prop. 4.12.1 and its proof. ]
Corollary 4.12.3. X is locally irreducible if and only if v : X - Xisa homeomorphism.

Proof. If X is locally irreducible, then by Prop. 4.12.2, v is an open map. Also, by
Prop. 4.12.2, v is bijective. Therefore v is a homeomorphism.

Conversely, if v is homeomorphism, then v is bijective, and Prop. 4.12.2 im-
plies immediately that each point of X is irreducible. O

Theorem 4.12.4. Let x € X. Then the following are equivalent.

(1) X is irreducible at x.
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(2) Each neighborhood of x in X contains a smaller irreducible neighborhood of x.

Proof. Assume that z is an irreducible point. For each neighborhood U < X of
z, the normalization v : X — X restricts to v : U — U. By Cor. 4.12.2, v~ ()
has only one point z. Then by global decomposition Prop. 4.10.2, Uisa disjoint
union of two closed and open subsets U = Wy u W, where W, is the connected
component of U containing 7, and W, is the union of the other connected com-
ponents. Since W, is closed in U, and since v : U — U is closed (since any finite
map is closed), v(W5>) is a closed subset of U disjoint from z. Then V' = U\v(W5)
is a neighborhood of z contained in U. Clearly v restricts to a biholomorphism
v: Wi\r~(Sg(X)) — V\Sg(X). Therefore V\Sg(X) is connected, and hence V is
irreducible.

Assume that z is not irreducible. Then we can shrink X to a neighborhood of
x such that X has local decomposition X = X; u---u Xy atz (where N > 2) such
that Thm. 3.3.5 holds. Let A = Sg(X) u {J;,,;(Xi n Xj), which is nowhere dense
in X. Then for each neighborhood U < X of z, U n A is thin in U, and we have
disjoint union U\A = [ [, (U\A) n X; where each (I\A) n X; = (D\A)\,.; X;
is a non-empty open subset of U\ A. So U\ A is not connected, and hence U is not
irreducible. O

Corollary 4.12.5. Let X and Y be reduced complex spaces. Let x € X and y € Y. Then
x and y are irreducible points of X and Y respectively if and only if x x y is an irreducible
point of X x Y.

Proof. By Rem. 3.3.2, any holomorphic map sends irreducible germs of complex
spaces to irreducible ones. Therefore if x x y is irreducible then x and y are irre-
ducible.

Conversely, assume that = and y are irreducible. For each neighborhood of
x x y, choose a smaller one of the form U x V where U < X and V < Y are neigh-
borhoods of = and y respectively. By Thm. 4.12.4, there are smaller irreducible
neighborhoods U’ 5 x and V' 5 y respectively. By Prop. 4.11.6, U’ x V' are irre-
ducible neighborhoods of x x y in X x Y. This proves that = x y is irreducible,
thanks to Thm. 4.12.4. O
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Chapter 5

Flatness

5.1 J-functors

Let 2 be an abelian category, for instance, the category of (finitely-generated)
modules of a commutative ring, the category of (coherent) &x-modules where
X is a complex space, or more generally the category of X-sheaves of abelian
groups.

In this section, we describe how the homology and cohomology in complex ge-
ometry should look like. Roughly speaking, in a cohomology theory, one should
be able to get long exact sequences from short ones. For instance, given a short
exact sequence of Ox-modules, one can get long exact sequences of vector spaces
being the cohomology groups of &'x-modules. Moreover, the process of taking
long exact sequences should be compatible with the morphisms of short exact
sequences, i.e. a commutative diagram (5.1.2) where the top and the bottom se-
quences are exact. 6-functors are a precise way to describe such cohomology.

Another question is whether or in which sense the cohomology theories are
unique. (Those unique cohomologies are called universal j-functors.) It turns
out that the cohomologies are determined by their degree-zero parts if the objects
in the categories (e.g. the Ox-modules) can always be embedded into an acyclic
object, i.e., an object whose positive-degree cohomology groups vanish. This is
Thm. 5.1.6, the main result of this section.

Definition 5.1.1. A (cohomological covariant) j-functor (H*,§*) from an abelian
category 2( to another one ‘B is a collection of additive functors H" : A — ‘B
(n € N) together with 6" : H"(G) — H"(&) for each short exact sequence in 2

0—-&—-F—-G—-0 (5.1.1)
such that the following conditions hold.
(1) Each exact sequence of 2(-objects (5.1.1) gives a long exact sequence

0— HYE) - H'(F) — H(G)
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L HAE) > -

L HY(E) — H'(F) — HY(G)
In particular, the functor H° : 2l — 9B is left exact.

(2) For each morphism of short exact sequences in 2

0 > £ > F s g > 0
l l l (5.1.2)
0 s &/ s F s g’ s ()

and each n € N, the following diagram commutes

H™(G) —— H"(€)

! !

H™(G') —— H"(&)

We abbreviate 4" to § when no confusion arises.

Definition 5.1.2. Modify the statements in Def. 5.1.1 as follows. For each short
exact sequence (5.1.1) and each n € N. We have §" : H"(€) — H""'(G) such that
the following hold, we say (H*,4*) is a (cohomological) contravariant j-functor,
if
(1) Each exact sequence of A-objects (5.1.1) gives a long exact sequence
0— H(G) —» H°(F) —» H°(€)
TH'(G) — H(F) - H'(€) > H(G) = -
In particular, the contravariant functor H : 2 — 9B is left exact.

(2) For each morphism of short exact sequences (5.1.2) and each n € N, the
following diagram commutes

H(&) —2 H"(G)

| |

Hn(g/) o H”'H(g’)

Definition 5.1.3. Modify the statements in Def. 5.1.1 as follows. For each short
exact sequence (5.1.1) and each n € N, we have ¢,, : H,+1(G) — H,(€) such that
the following hold. We say (H., d.) is a homological (covariant) é-functor, if
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(1) Each exact sequence of -objects (5.1.1) gives a long exact sequence
<= Ho(G) 2 Hi(€) = Hh(F) = H(G)
> Hy(€) = Ho(F) — H(G) — 0
In particular, the functor H, : 2 — ‘B is right exact.

(2) For each morphism of short exact sequences (5.1.2) and each n € N, the
following diagram commutes

Definition 5.1.4. A morphism of -functors ¢* : (H*,4°*) — (ﬁ *,§°) associates to
each n € N and £ € 2 a morphism of B-objects & = ¢ : H*(£) — H"(E) such
that:

(1) For each n € N, ®" is natural. Namely, for each morphism £& — F of -
objects, the diagram commutes

(2) @ commutes with . More precisely, for each n € N and each exact sequence
(5.1.1) in ¥, the diagram commutes

H™(G) —2s H"Y(E)

o |

~

a(G) —— H"™(€)

We leave it to the readers to define morphisms of cohomological contravariant
and homological covariant J-functors.

Hohomology and cohohomology in complex geometry are characterized
uniquely by the following property.
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Definition 5.1.5. A j-functor (H*,§*) from 2 to B is called universal if for any
other é-functor (H*,§*), any natural morphism of functors ®° : H° — H° can be
extended uniquely to a morphism of J-functors ®* : (H*,6*) — (H*,6*). Universal
cohomological contravariant functors are defined in a similar way:.

A homological covariant §-functor (H,,d,) from 2 to B is called universal if
for any other homological covariant j-functor (ﬁ ., 0.), any natural morphism of
functors @, : Hy — Hy can be extended uniquely to a morphism of homological
§-functors @, : (H.,d8.) — (H.,?.). O

It is clear that any two universal (co)homological covariant/contravariant -
functors with the same degree-zero part H" resp. Hy are isomorphic.

Theorem 5.1.6. Suppose that (H*®,§*) is a cohomological covariant -functor from 2 to
B, and each £ € A has a monomorphism & — E° such that H>°(E®) = 0. Then (H*,0°*)
is a universal d-functor.

The same statement holds for cohomological contravariant and homological covariant
d-functors, except that one assumes instead that each € € U has an epimorphism &, — &
such that H>°(&y) = 0 resp. H~o(&) = 0.

Thus, the uniqueness of (co)hohomology in complex geometry is addressed.
We will discuss the existence problem in the next section.

Proof. We prove the theorem only for cohomological covariant J-functors, since

the other cases can be treated in a similar way. Choose a J-functor (H*,6%). We
construct " and verifies the desired properties by induction on n. The case n = 0
is obvious. Assume the unique natural morphisms ®°; ... ®" intertwinined by
6%, ..., 6" ! are constructed. Let us construct a unique natural ®"*! such that 6"
intertwines ®" and ®"*1.

Step 1. For each &, find a monomorphism £ — &° such that H~°(£%) = 0.
Then we have an exact sequence 0 — & — &% — £°/& — 0. Since H"(£°) = 0,
by Rem. 1.2.9, there is a unique morphism ®"+! : H"*1(&) -—» H™(£) which
yields a morphism of long exact sequences

H"(E%) —— H"(E°/&) —— H™Y(E) —— 0
‘I’"l @nl pret | (5.1.3)

+

H"(EY) —— H™(E0/E) —2 H™1(E)
Step 2. Choose any &£, F € 2. Suppose that we have a commutative diagram

E — &Y

l l (5.1.4)

Fe—s F
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where the horizontal arrows are monomorphisms and H>°(£%) = H>°(F") = 0.
(Note that such diagram must exist: one first find F < F° and £ < £° such that
H>%(£%) = H>°(F°) = 0. Thenlet £ = £°@ F?, let £ — F° be the projection onto
the second component, and let £ — £° be (€ — £°) v (£ — F).) By Rem. 1.2.9
again, this diagram can be extended uniquely to a morphism of exact sequences

0 y & £° y E9/6 —— 0

|

0 > F > FO > FO/JF —— 0

This gives rise to a diagram where all the vertical arrows are ®:

H"(£°) » H"(E0/€) ——— H™(€)

- | —
H"(F°) ————— H"(F°/F) y HTL(F) l
(5.1.5)

l H"(£°) l > H™(E°/€) —l—> HHL(€)
/ / o
A (FY) ———s H'(F°/F) y H'(F)

By the assumption on case n, the middle vertical cell commutes. The right front
and the right back rectangles commute due to the construction of ®"*! in Step 1.
The right top and the right bottom horizontal cells commute by the definition of
d-functors. Since H"™(£%) = 0, the morphism H"(£°/E) — H™™(E) on the top is
surjective. Therefore the rightmost vertical (green) parallelogram commutes. To
summarize, we have a commutative diagram

HnJrl(JT_') - HnJrl(g)
Il ll (5.1.6)
j’_/[n-i-l(F) ﬁn+1(5)

This proves that ®"*! is natural, once we have shown that ®"*! is independent of
the choice of inclusions &€ — &°.
To prove that "' is well-defined, choose monomorphisms « : £ — £ and
B: E — E' such that H7°(E%) = H>Y(E') = 0. Then H°(EY @ &) = 0. Let (5.1.4)
be
g2 goge
E—"—¢&°
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where the right vertical arrow is the projection onto the first component.
Then the commutativity of the corresponding diagram (5.1.6) shows that the
o+l . HrtL(E) — HL(E) defined by a v 3 agrees with the one defined by a,
and hence similarly agrees with the one defined by /.

Step 3. We now check that ¢ intertwines ®" and ®"'. Choose any exact se-
quence (5.1.1). Choose a monomorphism F — &° where H>%(£%) = 0, and let
its composition with & — F be the monomorphism £ — &£ in the following
diagram.

o
+
™
+

&Y y E9/6 —— 0

The first cell commutes. Thus there is a morphism G — £°/€ making the second
cell commute. This morphism of exact sequences gives

H"(F) >y H'(G) ————— H"TY(E)
H" (&) ——— H"(EY/E) ———— H"T(E) l
(5.1.7)

l H"(F) l y H™(G) l% HH(€)
K / /
H"(EY) ——— H"(Y/§) —— H"L(€)

Due to the naturality of ®" and ®"*!, the vertical cells commute. By the defi-
nition of J-functors, the top right and the bottom right horizontal cells commute.
By the construction of ®" in Step 1, the right front rectangle commutes. There-
fore, since H™*'(€) — H™'(€) is the identity, the right back (green) rectangle
commutes. O

5.2 Derived functors

Let 2 be an abelian category. Recall that an object Q € 2 is called injective if
the contravariant functor Hom(—, Q) is right exact (and hence exact), namely, for
each monomorphism £ — F of objects of 2 and for each morphism £ — Q there
is a morphism F --+ Q such that the following diagram commutes

0 > F

s £
7
.
.
K/
Q
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Q is called projective if the functor Hom(Q, —) is right exact (and hence exact),
namely, for each epimorphism F — G of objects of 2 and for each morphism
Q — G, there is a morphism Q --» F such that the following diagram commutes

7z
.
7z
7z
,
,
%

F > G > 0

Definition 5.2.1. We say that 2 has enough injectives if each object Q € 2( has a
monomorphism into an injective object. We say that 2 has enough projectives if
each object Q has an epimorphism from a projective object.

5.2.1 Main result
Choose another abelian category ‘B.

Theorem 5.2.2. If A has enough injectives, then any left exact covariant functor T :
2 — B can be extended uniquely (up to isomorphism) to a universal covariant d-functor.
If A has enough projectives, then any left exact contravariant functor T : A — B can
be extended uniquely (up to isomorphism) to a universal contravariant é-functor. In both
cases, this functor is denoted by R*T and called the right derived functor of T.

If A has enough projectives, then any right exact covariant functor T : A — ‘B can be
extended uniquely (up to isomorphism) to a universal homological é-functor LT, called
the left derived functor of T

In the above three cases, R™°T resp. R°T resp. L-oT vanish on the injectives resp.
projectives resp. projectives of .

Remark 5.2.3. By saying R*T = (R"T),en resp. LT = (L, T),en extends T', we
mean R°T = T resp. LyT =T.

We need some preparations for the proof of this theorem.

Definition 5.2.4. Let £ € 2. A right resolution 0 — £ — £° of £ is an exact
sequence

0>€ 0 Pgt e gz, (5.2.1)

If each £" (but not necessarily &) is injective, we call 0 — £ — £° an injective
resolution of €.
Similarly, a left resolution &, — £ — 0 of £ is an exact sequence

If each &, is projective, we call £, — £ — 0 a projective resolution of £. O
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Remark 5.2.5. If 2 has enough injectives (resp. projectives), then any £ € 2 has
an injective (resp. projective) resolution.

Indeed, suppose that 2 has enough injectives. Then we have an exact sequence
0— & — &Y — Y€ — 0 where £ is injective. Embed £°/€ into an inject object £'.
This gives an exact sequnce 0 — & — &° £, &', Embed Coker(p!) into an injective
&?, and repeat this procedure again and again to obtain the injective resolution. [J

5.2.2 Motivations

We now explain the ideas of constructing derived functors. Suppose that a left
exact functor 7" : 2 — ‘B can be extended to a -functor R*T. Suppose moreover
that £ has a right resolution (5.2.1) such that R°T vanishes on £°. Then the short
exact sequence

0—»5—>€0§0—O>Ker(301)—>0

produces a long exact sequence, which yields exact sequences

0— T(E) > T(E°) — T(Kerg') & R'T(E) — 0 (5.2.3a)
R"T(Kerg') = R™T(E)  (n=1) (5.2.3b)
Thus, by (5.2.3a),
1
R'T(E) ~ T(Kerp) (5.2.4)

Im(T(£9) 2920 T(Kerg!))

Ll 1 .
Since T is left exact, the exactness of 0 — Kerp' > &' %> £2 gives an exact
sequence

0 — T(Kerp') 2 1ery T8, g2y
Therefore, T(:') sends T'(Kery') isomorphically to Ker(T(€') — T(£?)), and
sends the bottom of the RHS of (5.2.4) isomorphically to the image of T'(:! o ¢°) :
T(E°) — T(E'). Thus, by (5.2.4) we obtain an isomorphism

N Ker(T(E) — T(£%))

R'T(E) ~ i (T(€%) = T(€) (5.2.5)

To compute R"T'(£) when n > 1, we use (5.2.3b), which says that it is isomor-
phic to R"'T(Kery?!). Note that 0 — Kerp' — &' — €2 — .- is a resolution of
Kerp! where all the terms after Kerp! are killed by R°T. Apply (5.2.3b) again
and repeat the same procedure, we obtain

R'"T(E) ~ R" '"T'(Kerp') ~ R" T (Kerg?) ~ -+ ~ R'T(Kerp" ™). (5.2.6)
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Apply (5.2.5) to the resolution
0— Kergp”_l el L egn o gntl
of Kerp" ™!, we see that (5.2.6) is isomorphic to

. N Ker(T(é’”) — T(S”“))
R'T(E) ~ Im(T(E71) — T(EM))

(5.2.7)

Since this is also true when n = 1 and when n = 0 if we set £<° = 0, we conclude
R*T(E) ~ H*(T(€°)), namely, that R*T'(£) is isomorphic to the cohomology of the
complex T'(£*). In the proof of Thm. 5.2.2, we will use injective resolutions and
H*(T'(£°)) to construct right derived functors.

Exercise 5.2.6. Under the assumptions at the beginning of Subsec. 5.2.2, assume
moreover that F € 2 has a right resolution 0 — F — F* such that R>°T vanishes
on F*. Let ® : £ — F be a morphism which can be extended to a commutative
diagram in :

0— & — & Lot dy g2 &

3] 0 ol 2]

0> F =8 pd ;2 b
For each ¢ € N, show that under the identification RIT'(£) ~ HY(T(E°*)) and
RYT(F) ~ HYT(F*)), the morphism RT(®) : RT(E) — RYT(F) is equal to
HIUT(D*)).

(Hint: Case ¢ = 0: obvious. Case ¢ = 1: construct a morphism of exact se-

quences from (5.2.3a) to a similar one about F and F*. Case ¢ > 1: by induction
and a suitable morphism of exact sequences from (5.2.3b).) O

In the case that T : A — B is a right exact functor and can be extended to a
homological é-functor L,T, the argument is slightly different: we use the fact that

for any morphisms of B-objects C'; 1, ¢y 4 Oy where fis an epimorphism and
the exactness of the sequence is not assumed, there is an isomorphism
Ker((]l ﬂ) 03)

- = Ker(Cy 2 Cy) (5.2.8)
Ker(Cy = Cs)

Suppose that € has a left resolution (5.2.2) such that L. ;7" vanishes on &,. Then
we have a short exact sequence

0—Im(p) HE —E—0

whose long exact sequence gives exact sequences

0 — LiT(E) & T(lmpy) 2% T(&) — T(E) — 0 (5.2.9)

178



Lo T(€) = L,T(Imgy) (> 1) (5.2.10)

Thus L, T(£) ~ Ker(T(Im(¢1)) ), T(&)). Since T is right exact and ¢; : & —»

Im; is surjective, the first morphism in the following non-necessarily exact se-
quence is surjective

7(&) 2% Tme,) 2 (&)

Therefore, by (5.2.8),

Ker(T(&)) — T(&))
Ker(T'(&) Lo, T(Imy,))

LT(E) ~

where the bottom is clearly equal to Im(7'(&) — T'(£1)) because the right exact
functor T" preserves the exactness of & — &; REN Imy; — 0. This implies that

N Ker(T'(&,) — T(En-1))
Im(T'(Eps1) = T(En))

L, T(€) (5.2.11)
holds when n = 1. It clearly holds when n = 0 if we set £y = 0. Thus, similar
to the previous case of left exact functors, we can use (5.2.10) to show that (5.2.11)
holds for all n € N. Thus L,7(€) ~ H.(T(&.)), namely, L,T(€) is isomorphic to
the homology of the complex T'(&,).

5.2.3 J-functors for complexes

We recall some basic facts from homological algebra. They can be found in
any textbook on algebraic topology (e.g. [Hat, Sec. 2.1]).

There is a canonical J-functor (#°, 6°) from the category Com(*B) of (cochain)
complexes of B to B. (Here we assume o € Z instead of e € N.) If C* = (C" z,
C"1),ez is a complex in B (in particular d"*! o d™ = 0 for all n), then H*(C*) is the
cohomology of this complex, namely

Ker(C™ — C™*)

) = e = o

Given any morphism of complexes f* : B* — C°, namely, whenever we have
commutative diagram

- — prt . pr 5 Bl
| o]

= ot 5 o — O —
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we have a canonical morphism H"(f*) : H"(B*) — H"(C*) for each n.

To finish constructing the j-functor, we note that any short exact sequence of
complexes induces naturally a long exact sequence of their (co)homology. More
precisely, suppose we have a short exact sequence of complexes in B: 0 — A* —
B* — C* — 0, namely, a commuting diagram of morphisms in 8 where n runs
through all integers, see Fig. 5.2.1. Then we have a long exact sequence

S

0 — Al — B+l 5 Ontl 50
T T T
0 > A" > B™ > O™ > 0
T T T
00— A1 — Bl 5 ot 50
T T T
Figure 5.2.1

o> HTHC®) > HY(AY) - HY(B®) - H'(C®) — HTHAT) — -

The connecting morphisms H"(C*) 2%, H+1(A%) are defined by “diagram chas-
ing”. Moreover, if we have a morphism of short exact sequences of complexes

0 s A s B* s C° s 0

I

0 > A > B° > C* > 0

(namely, if we replace e by each n, then this diagram commutes, and the two
horizontal sequences are exact), then we have a commutative diagram

C— HHC®) — HY(A®) — HM(B®) — H(C*) — H"H(A®) — .-
| | | | |
o= HTYCY) — WA — HY(BY) — HN(C®) — HHAY) — -
(5.2.12)
So (H*, %) is a d-functor where o € Z.

It is important that homotopic maps of complexes give the same map on
(co)homology. To be more precise, let B*,C* be a complexes of B, and let
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f,g + B* — (C* be morphisms of complexes. We say that f and g are ho-
motopic if there are morphisms w = w" : B" — C™! for all n such that
f — g = dw + wd: more precisely, f — g : B" — C" equals d" 'w" + w"™d"
where d" : B" — B! and d"~! : C"~! — C". Then f and g induce the same map
H™(f) = H"(g) : H"(B*) — H"(C*) for all n.

If there are morphisms of complexes ¢ : B* — C* and ¢ : C* — B* such that
1 o ¢ is homotopic to 1z. and ¢ o 9 is homotopic to 1¢., we say that B* and C* are
homotopic. In that case, we clearly have an isomorphism

H*(p) : H*(B*) = H*(C*)
with inverse H*(¢)).

5.2.4 Proof of Thm. 5.2.2

Step 1 of the following proof is especially important: it gives an explicit way
of constructing derived functors using resolutions.

Proof of Thm. 5.2.2. We only prove the first case; the other two cases can be
treated in a similar way. Also, the uniqueness of derived functors is clear from
the definition of universal §-functors. So it suffices to prove the existence.

Step 1. Assume that 2 has enough injectives and choose a left exact functor
T : A — B. We construct the functor R"T for each n. For each £ € 2, we fix an
injective resolution 0 — & — £°, and set £~ = 0 so that (£"),,cz is a complex in 2.
We define
Ker(T(E™) — T(E™))
R"T(&E) =H"(T(E®)) =
&= e~ 1)

Choose any F € 2 together with an injective resolution 0 — F — F*. If
¢ : & - F is a morphism, we need to construct R"T'(y) : R"T'(£) — R"T(F) for
all n € N. We construct morphisms ¢" : £ — F" by induction on n € N such that
the following diagram commutes

(5.2.13)

0 1 2
0 y £ N SN o) B S o S

wl “"Ol g,ll S”Ql (5.2.14)

0 1 2
0 y F N AN SN SN SN, o S

The existence of ¢ follows easily from that F° is injective and that £ — &% is a
monomorphism. Suppose ¢, ..., ¢" are constructed. Then the commutativity of

gl ¢gn
o1 w"l

Frt — Fn
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implies that ¢™ descends to a morphism Coker(E"! — ") — Coker(F" 1 — Fm).
Thus, by the injectivity of 7"*!, there is a morphism ¢"*! such that the diagram

0 —— Coker(E"! — &) ——— £ntl

L’Dnl ¢n+1l

0 —— Coker(F" ! — F") —— Fntl

This finishes the construction of ¢ when n > 0.

Let " = 0if n < 0. Then we have a morphism of A-complexes ¢* : £* — F°,
and hence a morphism of B-complexes H*(T'(¢*)) : H*(T(E°)) — H*(T'(F*)). The
degree n morphism is simply defined to be

R'T(p) = H'(T(¢")) (5.2.15)

Step 2. To verify that R"T is a functor, we still need to show that R"T" preserves
the composition of morphisms. This fact is clearly true if we can show that R"7'(¢)
is independent of the choice of *. Thus, it suffices to show that if ¢* : £* — F*
also makes (5.2.14) commutes, then ¢* and ¢* are homotopic (Subsec. 5.2.3). Then
T'(¢*) and T'(¢*) will be homotopic and hence H™(T'(¢*)) = H™(T'(¢*)).

Recall that we set £<0 = F=° = (. So certainly we set w™ : £" — F"* ! to be
if n < 0. Since ¢°, ¢" : £2 — FO restrict to the same morphism ¢ : £ — F, ¢° — ¢°
vanishes on &, and hence restricts to a morphism £°/€ — F°. The injectivity of
F? implies that there is a morphism w' : &' — F° such that the diagram

0— &Y€ — &

i/wl
fO

commutes. Then clearly ¢" — ¢° = d~'w? + w'd’.

To avoid confusions, we write the coboundary maps of complexes as d; : £* —
E**land d% : F* — F**L. Suppose w<"*! are constructed and " — ¢" = d’ 'w" +
w1 d% where n € N. Let us construct w"*2. We compute that

(§0n+1 _ ¢n+1) g _ d?:(g&n _ ¢n) _ d?:(d?‘lw" + wn-‘rldg) _ (dgz__wn-i-l)dg

where we have used the commutativity of (5.2.14) and its analog for ¢* to derive
the first equality. This shows that ¢! — ¢"*! — d%w"*! vanishes on ImdZ, and
hence descends to a morphism £"*!/Im(d%) — F"'. Thus, by the injectivity of
Fm*1, there is a morphism w2 : £7*2 — F+! guch that the diagram

0 —— E1/Im(d2) —— EN+2

=

f"+1
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commutes. This finishes the construction of the homotopy map w*.

Consider the special case that 7 = £ and ¢ = 1¢ in (5.2.14). (Namely, we
choose injective resolutions 0 — £ — £* and 0 — £ — F*) Then the existence of
homotopy maps shows that £° is homotopic to F*, and hence £* is homotopic to
F*. Therefore, the equivalence class of R"T'(£) is independent of the choice of in-
jective resolutions of £. In particular, if £ is injective, since0 - & - &€ -0 — ---
is an injective resolution of £, we have R7T'(€) = 0.

Step 3. Given a short exact sequence 0 — & — F — G — 0, if we find
morphisms for complexes such that the sequence 0 — £* — F* — G* — 0is
exact, then we can define the connecting morphism ¢ : R*T(G) — R**'T(€) to be
the one § : H*(T(G*)) — H**Y(T'(E*)). To do this, we need to choose a different
injective resolution for F:

0-F-E0¢" »£'ag -0 -

We explain the morphism F — £°@®G°, since the others are clear. It is the diagonal
map of F — &% and F — G°. The latter is the composition of F — G and the
monomorphism G — G°. The first one is one that makes the following diagram
commutes, which exists because £° is injective:

50
TN

0 — & — F

Set 7" = £" @ G". Then we have a commutative diagram

T T 0
00— €& —F —G—0
T T T
0 0 0

where all the rows are exact, the £-column and the G-column are (clearly) exact.
Then it is not hard to check that the middle column is exact. (A quick way to see
this is to view the above diagram as a short exact sequence of complexes 0 — x —
B — v — 0, which induces a long exact sequence in which the cohomologies of o
and v are zero. Therefore the cohomology of 3 vanishes, which means precisely
that the F-column in the above diagram is exact.)
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Thus, we have § : R*T(G) — R**'T(£) which clearly satisfies requirement (2)
of Def. 5.1.1. Since the functor H* o T preserves the composition of morphisms of
complexes, we have a commutative diagram

HUT(GY) — HIT(E) — HHT(F?) — HAT(G) — HHT(E)
. . ! -l .
HIUT(G) — HNT(EY) — HUT(F?) — HAT(G) — HHT(E)

where the morphisms are either induced by the morphisms of complexes through
H* o T, or are the previously defined 6. The first line is exact because H* is a -
functor (Subsec. 5.2.3). Therefore the second line is also exact. Thus (R*7T, J) also
satisfies condition (1) of Def. 5.1.1. So it is a )-functor. We have shown at the end
of Step 2 that R~°T vanishes on injective objects. So (R*T, ¢) is universal by Thm.
5.1.6. ]

The following observation will be used in the proof of Prop. 5.9.3 and Thm.
59.7

Remark 5.2.7. Let A be a ring and 2 the category of .A-modules Mod(A). Suppose
that 7' : 24 — 2 is a left/right exact covariant/contravariant functor. We say that

T preserves multiplications if, for alla € A and € € %, if we let p, : £ =%
& denote the multiplication by a (which is clearly a morphism), then 7'(y,) is
the multiplication of a on T'(€). For instance, tensor product and Hom preserve
multiplications.

We will see that 2 has enough injectives and projectives. In (5.2.14), if we let
F =&, F* = &, and let ¢ be 1,, then one can clearly choose all ¢* to be .
It follows from (5.2.15) that if 7" preserves multiplications, then R"T resp. L,T
preserves multiplications for all n € N. O

5.3 Ext and Tor

We fix a commutative ring A and let Mod(.A) be the category of .A-modules.
It is clear that any .4-object has an epimorphism from a free A-module. Since free
A-modules are clearly projective objects in Mod(.A), we see that Mod(.A) has enough
projectives.

We shall prove that Mod(.A) has enough injectives, and we shall mainly focus
on the case that A is a C-algebra, since this is enough for the purpose of our notes.
First we need a lemma.

Lemma 5.3.1. Assume that A is a C-algebra. Then for any A-modules M, N and any
C-vector space V we have a canonical equivalence of A-modules

Hom¢(M ®4 N, V) ~ Homy (M, Home (N, V)) (5.3.1)
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where the A-module structure on Homc(M ®4 N, V) resp. Home(N, V) is defined by
that of M @ N resp. N. In particular, taking N = A, we have

Homge(M, V) ~ Homy (M, Home (A, V)). (5.3.2)

Proof. The RHS of (5.3.1) is equivalently the A-module W of C-bilinear maps 7" :
M x N — V satisfying ®(a&,n) = ®(£,an) forall { e M,n e N,a € A. The action
ofae Aon ®is ®(a-, ).

Given a C-linear map S : M ®4 N — V, one can compose it with the obvious
map M x N —> M ®4 N to get T. The correspondence S — T is clearly injective.
To show that it is surjective, note that if the .A-module structure on Hom¢(W, V)
is defined by that of WV, then the map

M x N'— Homc(W, V)
&n) — (TeW—T(n))

is clearly A-bilinear, and hence gives rise to an .A-module morphism
O : M@y N — Homec(W, V).

Each T' € W gives rise to a canonical linear map Hom¢(W, V) — V, whose com-
position with ® is the desired S. ]

Remark 5.3.2. The above lemma can be easily generalized: assume A is a B-
algebra, namely, A, B are rings and a ring homomorphism B — A is fixed. Let
M, N be A-modules and V be B-modules. Then we have a canonical A-module
isomorphism

Homg(M @4 N, V) ~ Hom4(M, Homp(N,V))
Proposition 5.3.3. Mod(.A) has enough injectives.

Proof. We prove the proposition only in the special case that A is an algebra over a
tield (say C), and refer the readers to [Lang, Sec. XX 4] for the proof in the general
case. Foreach £ € A,

£ — &% = Home(A4, E)
€ (0eAmat)
is an .A-module monomorphism. Since Hom¢(—, £) is exact on Mod(A) (and in-

deed on the category of C-vector spaces), by Lemma 5.3.1, Hom4(—, £°) is exact.
Therefore £° is injective. O

Recall that for each £ € Mod(.A), Hom4 (&, —) is a left exact functor, and £ ® 4 —
is a right exact functor.
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Definition 5.3.4. For each £ € Mod(.A), we define the functor Ext’y(€, —) (n € N)
to be the right derived functor of Hom (&, —), and define the functor Tor? (£, —)
to be the left derived functor of £ ® 4 —. In particular, we have

Ext) (€, F) = Homy(€,F)  Tort (€, F) = E@4F

Theorem 5.3.5. Choose any F € Mod(A). Then by defining its action on morphisms
and defining 0, Ext%(—, F) can be extended to a right derived contravariant functor of
Homy(—, F), and Tor(—, F) can be extended to a left derived homological (covariant)
functor of — @ F.

Proof. We prove the theorem for Ext. Tor can be treated in a similar way. Also,
we suppress the subscript A for simplicity.

Fix an injective resolution 0 — F — F*. For each morphism ¢ : M — A in
Mod(.A), we have an obvious morphism of complexes

0 — Hom(M, F°) — Hom(M,F') — Hom(M,F?) — -

T T T
0 — Hom(N,F°) — Hom(N, F') — Hom(N, F?) — ---

By Subsec. 5.2.2 or Step 1 in Subsec 5.2.4, Ext*(M,F) = H*(Hom(M, F*)) and
the same relation holds if we replace M with V. Thus H* acting on the above
morphism of complexes defines a morphism Ext"(M, F) « Ext"(N,F) for all
n e N.

Suppose 0 - M — N — P — 0 is an exact sequence in Mod(.A). Since each
JF" is injective, we get a short exact sequence of chain complexes

0 < Hom(M, F*) < Hom(N, F*) < Hom(P, F*) < 0

which yields a long exact sequence through #*. In this way, we obtain a connect-
ing morphism ¢ : H*(M, F*) — H**(P, F*). This makes Ext% (—, F) a contavari-
ant d-functor. One checks easily that H>%(Hom(M, F*)) vanishes when M is free.
Since any A-module has an epimorphism from a free module, we conclude from
Thm. 5.1.6 that Ext®%(—, F) is universal. O

Thus, the isomorphism class of Ext’y (£, F) can be defined either via the right
derived functor of Hom4(&, —) or via the the right derived contravariant functor
of Hom 4(—, F). The isomorphism class of Tor;}(£, F) can be defined using the left
derived functor of either £ ® 4 — or — ®4 F. Thus,as £ @4 F ~ F ®4 &, we see
immediately that:

Corollary 5.3.6. For each n € N and £, F € Mod(.A), we have an isomorphism of A-
modules

Tor (€, F) ~ Tor(F, )
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Using Ext, we give a criterion for projectivity.
Proposition 5.3.7. Let £ € Mod(.A). Then the following are equivalent.
(1) & is projective.

(2) Ext (€, —) is zero on Mod(A). (It then follows automatically that Ext7°(E, —) is
trivial.)

(3) & is a direct summand of a free A-module.

Proof. Suppose (1) is true. For each F € Mod(A), Ext%(—,F) is a right derived
contravariant functor. So by Thm. 5.2.2, Ext7’(—, F) vanishes on projective ob-
jects. This proves (2). Conversely, assume Exth(é’ ,—) is zero. Then since each
short exact sequence 0 — 7' — F — F” — 0in Mod(A) gives a long exact
sequence

0 — Homy (€, F') — Homy(E, F) — Homu(E, F") — Extl (€, F)),

Hom4(&, —) is exact, and hence £ is projective. We have finished proving (1)<(2).
(1)=(3): Assume (1). Choose an epimorphism « : £ — £ where £’ is a free
A-module. Since £ is projective, Hom4(&,E’) — Homu (&, £) is surjective. Choose
B € Homy(E,E') sent to 1z € Homy4(&, £). This means that a o 5 = 1¢. So a splits.
Therefore &' ~ £ @ Kera. This proves (3).
(8)=(2): Assume that &' ~ £ @ & where &’ is free. Then for each F € Mod(.A),

ExtY (€, F) ® Ext!y (&, F) ~ Ext' (&', F) = 0.
So Ext} (£, F) = 0. O

Remark 5.3.8. It is not hard to check that taking direct limit is an exact func-
tor from the category of direct systems of A-modules to Mod(.A). Namely, if
(&i)iers (Fi)ier, (Gi)ier are direct systems in Mod(A), and if we have an exact se-
quence of morphisms of direct systems

0—-& —F.—G,—0
then we have an exact sequence

0—-1limé& —limF, - 1limG, — 0
el el el

Using this fact, we prove:

Proposition 5.3.9. Let (&;)e; be a direct system of A-modules and let F be an A-module.
Then for each n € N, we have a natural isomorphism

lim TorA(&;, F) ~ Tor? ( lim &;, .7-“) (5.3.3)
iel iel
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Proof. Choose a projective resolution 7, — F — 0. Then we have a chain complex
of systems in A

o E®@aFr > Ee®@aF1 > Ee®uFo— 0
More precisely, if 7, j € I and i < j, we have a commutative diagram
> &i®aFy — E®aF1 — Ei®aF0 — 0

{ { {
. _>€j®A.F2 —>8j®AF1 _>8j®AFU — 0

By Rem. 5.3.8, taking direct limit commutes with taking kernels and cokernels.
Therefore it commutes with talking homology. This proves

lim H (€ ©4 F2) > Hn(h_r? (&ear)) = Hn((h_r?s) ®uF.)

where the second equivalence is due to the fact that direct limit commutes with
tensor product (Rem. 1.9.2). This proves (5.3.3). [

Example 5.3.10. Let I, .J be ideals of a ring .A. Let us compute Tor{'(A/I, A/J).
Tensoring A/I with the short exact sequence

0—-J—->A—-A/J—-0
we get a long exact sequence
0 — Tor{'(A/I, A/J) = (A/T) @4 ] — (A/T) @1 A — (A/T) @ (A/T) = 0

Since tensor products commute with cokernels, we have natural equivalences
(A/D®aA =~ A/ (A/1)®aJ =~ J/IJ,and (A/1)®4(A/J) ~ (A)])/((I+])]]) ~
A/(I + J) so that the above long exact sequence is equivalent to

0 — Tor(A/I,A)J) — J/IJ — A/ - A/(I+J)—0
Therefore Tor;'(A/I,.A/J) is equivalent to the kernel of J/IJ — A/I, which is
(I nJ)/IJ. We conclude

InJ
1J

Example 5.3.11. Let £ be an A-module, and let I < A be an ideal. Since A is
A-free and hence projective, Tor{'(—, A) = 0. So we have a long exact sequence

0— Tor}(E,A/I) > ERQUT - ER@4 A (5.3.5)

Tor(A/I, A)T) ~

(5.3.4)

which shows that
Tor{{(€, A/I) ~ Ker(EQal — E®4A) (5.3.6)
So Tor{ (€, A/I) = 0iff E®4 I — £ ®4 A is injective (i.e. the multiplication map

E®a 1 — € isinjective).
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5.4 Flatness

In this section, A, B denote commutative rings, and X, Y, S denote complex
spaces. Recall that by saying that A is a B-algebra, we mean that a morphism
of rings B — A is fixed so that any .A-module is also a B-module. We write
(A, m) when we mean that A is a local ring with maximal ideal m. Recall that by
definition, a morphism of local rings (B,n) — (A, m) is a ring homomorphism
sending n into m.

Proposition 5.4.1. Let £ be an A-module. Then the following statements are equivalent.
(1) The functor £ ® 4 — is exact on Mod(A).
(2) Tor (€, F) = 0 for each n > 0 and F € Mod(A).
(3) Tor (€, F) = 0 for each F € Mod(A).
(4) Tor (€, A/I) = 0 for each ideal I — A.
If one of these statements holds, we say that £ is a flat A-module.

Proof. (1)=(2): Suppose (1) is true. If we let 7" be the functor £® 4 —, then by Thm.
5.1.6, L,T is the universal é-functor extending 7" if we set LyT' = T'and L., = 0.
So L,T = Tor(€, —). This proves (2).

(2)=(3): Obvious.

(3)=(1): If (3) is true, then any short exact sequence 0 > M - N — P — 0in
Mod(.A) induces a long exact sequence

Torfl(E,P)—>5®AM—>5®AN—>5®AP—>O

where the first term is 0. So (1) follows.

(3)=(4): Obvious.

(4)=(3): Assume (3). Since any A-module is a union (i.e. direct limit) of
its finitely-generated .A-submodules, by Prop. 5.3.9, it suffices to show that
Tor;'(€,F) = 0 whenever F is finitely generated. We prove this by induction
on n, the minimal number of elements generating . The case n = 0 is trivial.
Assume case < n — 1is proved. Let F be A-generated by n elements, and let 7’
be its submodule generated by the first n — 1 elements. Denote the last element
by x. Then we have an exact sequence

0->F >F—>A/I—-0
where I = {a € A : ax € F'}. We obtain an exact sequence
Tor (€, F') — Tor(E, F) — Tor{ (€, A/I)

where the first term vanishes by induction and the third term vanishes by (4). So
the middle term vanishes. This proves (3). [
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The following property was used in the proof of Lemma 3.8.2.

Theorem 5.4.2. Let (A, m) be a Noetherian local ring. Let £ be a finitely-generated
A-module. Then the following are equivalent.

(1) & is a free A-module of finite rank.

(2) & is a projective A-module.

(3) Eisa flat A-module.

(4) Tor{'(A/m, &) = 0.
Proof. Clearly (1)=(2). By Thm. 5.2.2, if £ is projective then Tord,(€,~) = 0.
Therefore (2)=(3). Clearly (3)=(4).

Assume (4). Choose z,...,z, € £ forming a basis of the (\A/m)-vector space

€ ®4 (A/m). By Nakayama’s lemma 1.2.15, the morphism A" — M sending the

j-th basis of A" to z; is surjective. Let A/ be the kernel of this morphism. Then the
short exact sequence 0 — A" — A" — £ — 0 gives a long one

0 — Torf (A/m, &) = N Q4 (A/m) —» (A/m)" = ER4 (A/m) — 0

That the second last morphism is an isomorphism is due to the fact that z4, .. ., z,
are a basis. Since Tor7'(A/m,&) = 0, we have N ®,4 (A/m) = 0. Hence N’ = 0 by
Nakayama’s lemma. Therefore A" — M is an isomorphism. This proves (1). [

Definition 5.4.3. Let ¢ : X — Y be a holomorphic map and & be an &x-module. If
xr € X, we say that & is flat (over Y) at x or p-flat at z, if &, is a flat Oy, ,(,)-module.
If & is p-flat for all z € X, we say that & is flat over Y or that & is ¢-flat.

If Ox is flat over Y at x, we say that ¢ is flat at x. If O is flat over Y, we say
that ¢ is a flat holomorphic map. [

Example 5.4.4. If Y is a reduced point, then &y = C. So any 0'x-module is clearly
flat over Y.

Example 5.4.5. By Thm. 5.4.2, a finite holomorphic map ¢ : X — Y isflatiff p.0x
is alocally free y-module. In particular, by Thm. 2.5.4, Weierstrass maps are flat.

Example 5.4.6. Let ¢ : X — Y and ¢ : Y — Z be holomorphic maps of complex
spaces. Let & be an &x-module. Let = € X. Suppose that ¢ is flat at p(z) and & is
p-flat at . The & is clearly (¢ o p)-flat at .

Example 5.4.7. Let Z be an idea of 0y, and let X = Specan(0y /Z). Suppose z € X
(i.e.z e N(Z))and Z, # 0, then ¢ : X — Y is not flat at x.
Indeed, if ¢ is flat at x, then Ox , = Oy, /I, is not Oy ,-flat. By Exp. 5.3.10,

0 = Tor! " (Oy.o/Ts, Oy/T,) = T.)I2.

Therefore Z? = Z,, and hence mx ,Z, = Z,. So Z, = 0 by Nakayama’s lemma
1.2.15. This contradicts the assumption Z, # 0. O
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Proposition 5.4.8. Let ¢ : X — Y be a finite holomorphic map. Consider the following
Statements:

(1) ¢ is flat.
(2) . Ox is alocally free Oy-module (of finite rank).
(3) The map
yeY — Y dime Ox,, (5.4.1)

T€Xy
(where X, = ¢~ *(y)) is locally constant.
Then (1)=(2) and (2)=(3). If Y is reduced, then (1)<(2)<(3).

Proof. Since ¢, Ox is Oy-coherent (Thm. 2.7.1), the local freeness of ¢, O is equiv-
alent to that (¢.0x), is Oy,-free for all y € Y. Choose any y € Y. By Prop. 2.4.5,
we have (p.0x), ~ @,cx, Ox which is Oy free iff Ox, is Oy,free for all
x € X,. So (2) means that for all z € X and y = ¢(x), Ox , is Oy,-free, which is
equivalent to that Oy , is Oy -flat by Thm. 5.4.2. This proves (1)<(2).

The RHS of (5.4.1) is the dimension of

D Ox,o ~ @D Oxo @y, (Oyy/my,y)

reXy reXy
:(SO*ﬁX)y ®ﬁy,y (ﬁYy/mY,y) = @*ﬁX|y

If ¢, Ox is locally free then y — dim¢ ¢, Ox|, is locally constant, and vice versa if
Y is reduced (due to Prop. 1.3.15). This proves that (2)=(3), and that (3)=(2) if Y’
is reduced. O

Example 5.4.9. Let X be a connected compact Riemann surface and f a non-
constant meromorphic function on X. So f can be viewed as a holomorphic map
f: X — P Then f is open by Thm. 4.11.4. By basic complex analysis, for each
r e X and y = f(z), the map f on a neighborhood of z is biholomorphic to z — z*
(for some k € Z ) on a neighborhood of 0, which is a Weierstrass map and hence is
flat by Thm. 2.5.4. (We remark that “openness = flatness” also follows in general
from Cor. 5.10.8.) This local picture also shows that f~'(y) is a discrete set, and
hence a finite set because X is compact. Therefore f is finite.
Now, by Prop. 5.4.8, > . X, dim¢ O, . is independent of y. So we have

Z dim@ ﬁXo,x = 2 dim(c ﬁxw’x
f(z)=0 f(z)=o0
This relation simply states the well known fact that the number of zeros of f is
equal to the number of poles of f, counting multiplicities. (To see this, note that
if f near z is biholomorphic to z — 2% near 0, then Ox,n = Oxa/My,Ox, ~
Oc0/7" Oc o has C-dimension k.)
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5.5 Flatness is preserved by base change

Let X, Y be complex spaces.

The goal of this section is to show that flatness is preserved by base change
(Thm. 5.5.3). Its proof relies on the following crucial theorem, which allows us to
reduce the study of arbitrary base changes to finite ones.

Theorem 5.5.1. Let (B,n) — (A, m) be a morphism of Noetherian local rings. Let £ be
a finitely-generated A-module. Assume that there exists ko € N such that £ ®p (B/n*) is
(B/v*)-flat for all k = ko. Then € is B-flat.

Proof. We shall prove Tor? (€, B/.J) = 0 for eachideal J = B. Namely (Exp. 5.3.11),
we shall prove that £ ®z J — £ ®3 B is injective. The natural idea is to tensor it by
B/n*, where we choose k > k. But this is not a good choice, since J — B tensored
by B/n* is not even injective. Indeed, by Exp. 5.3.10, if we tensor B/n* with the
short exact sequence 0 — J — B — B/J — 0, we get a long one

0 — Tor?(B/n* B/J) — J/nkJ — B/m* — B/(n* +J) -0 (5.5.1)
But we clearly have an exact sequence
0—J/(mw*nJ)—Bmn" - B/ +J)—0 (5.5.2)

where J/(n¥ n J) = (n* + J)/n* is the kernel of the subsequent morphism.
One may tensor & with (5.5.2). But since we know that € ®g (B/n¥) is (B/n)-

flat, namely, TorB/ " (€ ®p (B/n*), —) vanishes, and since (5.5.2) is clearly an exact
sequence in Mod(B/nk), we (B/n")-tensor £ ®g (B/n*) with (5.5.2) to get an exact
sequence as the second line of the following diagram:

ERp ————— E@pB ——— E® (B/J) —— 0

¢l l l (5.5.3)

0— E®p (J/m"nJ)) — EQp (B/*) — E@p (B/(n*+J)) — 0

The first row is clearly exact, and we can easily find canonical morphisms as the
vertical arrows making the above diagram commutes.

Choose any ¢ in the kernel of £ ®3 J — £ ®p B. Our goal is to show that § 0.
By the commutativity of the first cell in (5.5.3), { is sentby ¢ to 0in EQg(J/(n*nJ))
for each k € Z,. Now, by Artin-Rees lemma 1.4.5, there exists s € Z, such that

nfn®nJ)=n*nJ

forall t € N. So n'** n J < n'J. Assume for simplicity that s > k. Then for each
k > s we have

nF A Jcnfsg
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Therefore we have a surjection EQz(J/(n* nJ)) — E@p(J/mF~*J). (To summarize,
we are using Artin-Rees lemma to replace the J/(n* 1 J) in (5.5.2) with the J/n*.J
in (5.5.1)!) Compose this morphism with ¢, and we see that ¢ is sent to 0 in

E®pJ

k—s ~
ERp (J/MT) ~ —nk*s(f,’@B 7)

for all k > s. So ¢ belongs to n'(€ ®g J) for all t € N.

Consider £ ®gz J as an A-module. Then it is clearly finitely-generated. Since
n(E®pJ) c m(E®gp J), wehave £ € [,y m' (€ ®p J) = 0 by Krull’s intersection
Thm. 1.4.4. [

Let us phrase Thm. 5.5.1 in the language of complex analytic geometry.

Theorem 5.5.2. Let ¢ : X — Y be a holomorphic map, and let & be a finite-type O'x-
module. Let v € X,y = ¢(z). Let Yy, = Specan(Oy/mi. ) where my,, is considered
as the ideal of all g € Oy vanishing at y. Suppose that there exists ko € N such that the
O s-1(vi-module &|,-1(y,) is flat over Yy, at x for all k > ko. Then & is flat over Y at x.

Recall that by Rem. 1.12.3, there is a canonical &'x-module isomorphism
Elp1v) = € Qoy (Oy/my.,,)

Theorem 5.5.3. Let ¢ : X — Sand ) :' Y — S be holomorphic maps, and let & be a
coherent Ox-module. Consider the Cartesian product

X &% X xgY

wl [

St vy

Choose x € X,y € Y such that t = ¢(x) equals 1 (y). Assume that & is flat over S at x.
Then pr’ & is flat over Y at (x,y).

Proof. We first consider the special case that ¢ is finite. By Thm. 2.7.2, we can
shrink X, S to neighborhoods of x,t respectively and replace Y by ¢~(S5), so
that z is the single point of the set ¢~ '(¢). Then (z,y) is the single point of the
set pry' (y). By Prop. 2.4.5, we have isomorphisms of &s,-modules and of Oy~
modules

(0s8)r ~ &, (prx*pr}'}é")y = (pr}’}@@)my
Thus, by Thm. 2.8.2 (and Rem. 2.8.1), we have an 0y,,-module isomorphism

(pr}é")xxy ~ &, R0, ﬁY,y
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Since &, is Os-flat, £,®g,, Oy,, is clearly Oy, ,-flat. Therefore (pr &), x, is Oy, -flat.
Now consider the general case. For each k € Z,, let Y}, = Specan(&y/m{., ).
Then we have a commutative diagram

X & X xgY o pry! (Vi)

1

S Y < = > Yy

where the two cells are Cartesian squares. So the largest rectangle is also Carte-
sian. Since Y}, — S'is clearly finite, by the first paragraph, 7*pr, & = (pri &) |pr;1 Vi)
is flat over Y}, at (z,y) for all k € Z, . Therefore, by Thm. 5.5.2, pri, & is flat over Y’
at (x,y). O

Example 5.5.4. Let pry : X x Y — Y be the projection onto the Y-component.
Then pry is flat, because it is the pullback of X — {0} (which is clearly flat) along
Y — {0}.

Example 5.5.5. Any holomorphic submersion of complex manifolds is flat be-
cause itis locally equivalent to X xY — Y where X, Y are open subsets of number
spaces.

5.6 Slicing criterion for flatness
In this section, we give more useful criteria on flatness.
Lemma 5.6.1. Fix a ring morphism B — A. Let
08" -8 —-E-0

be an exact sequence in Mod(.A). Then for every M € Mod(B), we have an isomorphism
of B-modules

Coker <Tor§g(/\/l7 £ — Tor¥(M, 8))
(5.6.1)
~Coker (Tor“f‘(/\/l Qs A,E) — Tort (M ®g A, 5))

Proof. Apply M ®g — to the above short exact sequence to get a long one
Tor® (M, &) — Torf (M, E) > M®pE" - M®p &’
Applying M ®3 A ®,4 — instead, we get a long exact sequence
Tord( M ®g A,E) - Torf (M @p A E) > MRRE" - M®gpE'

These two exact sequences imply (5.6.1). O
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We will be mainly interested in the case that A = B/I for some ideal /, and
there is an epimorphorphism of (B/7)-modules (B/1)" — £. (There must be such
an epimorphism for every finitely-generated (5B/I)-module £) In this case, since

Tor?/ "(=,(B/I)") = 0 because free modules are clearly flat, (5.6.1) reads
Tor/! (M®(B/I),E) =~ Coker(Torf(./\/l, B/I)" — Torf(M,S)) (5.6.2)

The following is an application of (5.6.2).

Proposition 5.6.2. Let M be a B-module, and let F be a (B/7B)-module where T € .
Assume that T is a non zero-divisor of both B and M. Then

Tor™/™® (M ®s5 (B/TB),F) ~ Tor} (M, F) (5.6.3)

Proof. Again we choose an epimorphism 7' — F — 0 where F' is a free
(B/TB)-module. Then (5.6.3) follows immediately from (5.6.2) if we can show
that Tor (M, F’) = 0. Since F" is a direct sum of B/71, by Prop. 5.3.9, it suffices
to show Tor? (M, B/7B) = 0. This follows from the next result. O

Lemma 5.6.3. Let B be a ring and let T € B be a non zero-divisor of B. Let M be a
B-module. Then the following are equivalent.

(1) 7 is a non zero-divisor of M.
(2) Tor¥(M,B/TB) = 0.

Proof. By Exp. 5.3.11, Tor} (M, B/7B) is isomorphic to the kernel of M ®5 78 —
M ®g B. Since 7 is a non zero-divisor of B, B =5 785 is an isomorphism of B-

modules. So is M ®g B 180T, M ®p 7B. The composition of this isomorphism
with M @5 7B — M @5 Bis M @3 B 275 M ®g B, which is equivalent to the
multiplication of 7 on M. We conclude

Tor¥ (M, B/7B) ~ Ker(M =5 M) (5.6.4)
The equivalence of (1) and (2) follows immediately. O

As another application of (5.6.2), we prove a variant of Thm. 5.5.1

Theorem 5.6.4. Let (B,n) — (A, m) be a morphism of Noetherian local rings. Let £ be
a finitely-generated A-module. The following are equivalent.

(1) & is B-flat.
(2) Tor®(&,B/n) = 0.
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Proof. Clearly (1) implies (2). Assume (2). To prove that £ is B-flat, by Thm. 5.5.1,
it suffices to prove that

Tor?™ (£ @ (B/n*),N') = 0

for any k € Z, and any (B/n*)-module N (equivalently, any B-module A such
that n* A" = 0). By (5.6.2) (applied to the case I = B/n*), it suffices to prove
Tor® (£, N') = 0 whenever n* A = 0 for some k > 0.

If nNV =0, then N = N/nN ~ N ®g (B/n) is a vector space over the field B/n.
Thus A is a direct sum of B/n. So clearly Tor? (£, V) = 0 by assumption (2) and
Prop. 5.3.9. The general case follows by induction on k and the exact sequence

Tor? (€, uN) — Tor?(E,N) — Tor® (£, N'/uN)
where the last term is 0 because A/n/\ is annihilated by n. O

Theorem 5.6.5 (Slicing criterion). Let (B,n) — (A, m) be a morphism of Noetherian
local rings. Let € be a finitely-generated A-module. Let T € n be a non zero-divisor of B.
The following are equivalent.

(1) & is B-flat.
(2) 7 is a non zero-divisor of £, and £ ®p (B/7B) is (B/7B)-flat.

Proof. Assume (1). Then Tor®(£,8/7B) = 0 implies that 7 is a non zero-divisor

of & (by Lemma 5.6.3). And Tor?™®(€ ®p (B/7B), —) is trivial by Prop. 5.6.2.
Conversely, assume (2). Then by Prop. 5.6.2,

Tor?(€, B/n) ~ Tor™ ™ (€ ®p (B/7B), B/n) = 0
So & is B-flat by Thm. 5.6.4. O

Let us phrase Thm. 5.6.5 in the language of complex geometry.

Theorem 5.6.6 (Slicing criterion). Let ¢ : X — Y be holomorphic and let & be a
finite-type Ox-module. Choose T € O(Y). Let T = Specan(Oy /70y ). Choose y € T
and x € ¢~ (T, and assume that T is a non zero-divisor of Oy.,. Then the following are
equivalent.

(1) & is flat over Y at x.
(2) T is a non zero-divisor of &,, and &|,-1(r) is flat over T at .

Corollary 5.6.7. Let f € 0(X) and x € X. Let & be a finite-type Ox-module. Let = be
the standard coordinate of C. Then the following are equivalent.

(1) &is f-flat at x.
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(2) f — f(z) is a non zero-divisor of &,.

Proof. In this case, T' = Specan(0c/z0¢) is a single reduced point. So &|;-1() is
clearly flat over T'. O

We now give a new

Proof of Prop. 3.7.2. 1t suffices to show that if f € 0(X) is a non zero-divisor
of Ox, then f ® 1 is a non zero-divisor of Ox .y ,x,. This is clearly true when
f(z) # 0. So let us assume f(z) = 0. By Cor. 5.6.7, f : X — C is flat at . Since
f®1: X xY — Cis the composition of the projection X xY — X (which is flat by
Exp.5.5.4)and f, f®1lisflatatx x 1. By Cor. 5.6.7, f ®1 is a non zero-divisor. [

Cor. 5.6.7 can be easily generalized to a criterion for the flatness of a holo-
morphic map from a complex space to a complex manifold (Cor. 5.6.9), as shown
below.

Definition 5.6.8. Let £ be an A-module. A finite sequence ay, ..., a, € Ais called
an £-regular sequence if the following are satisfied:

(1) Foreach 1 < < n, a; is a non zero-divisor of . In particular, a, is a

E
Zj<i a;€
non zero-divisor of £.

() X a€ #E.

We are mainly interested in the case that (A, m) is a Noetherian local ring and
ai,...,a, € m. In this case, if £ is a non-zero finitely-generated .A-module, then
m& # £ by Nakayama’s lemma 1.2.15. Then condition (2) is redundant.

Corollary 5.6.9. Let & be a finite-type Ox-module, and let f,...,f, € O(X). Let
reX.Set F=(f,...,fn): X = C" Then & is F-flat at x if and only if the germs at
xof fr — fi(x),..., fo— fo(x) form an &,-reqular sequence.

Proof. By induction on n. The case n = 0 is obvious. Assume case n — 1 holds
where n € Z,. Now consider case n. Assume for simplicity that fi(z) = --- =
fn(z) = 0. Let (z1,. .., z,) be the standard coordinates of C". Then C"~! ~ 0 x C"!
is Specan(Ocn/z0cn). Note that that z; is a non zero-divisor of &, is the same as
that f; is a non zero-divisor of &,. Thus, by Slicing criterion (5.6.6), & is F-flat at
x if and only if f; is a non zero-divisor of &, and &|p-1(cn-1) =~ &/, is flat over
C"~! at z. By induction, the second condition is equivalent to that fs, ..., f, isan
(&:/71&;)-regular sequence. O
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5.7 Flatness, openness, and dimensions of fibers I

In this section, X, Y denote complex spaces.

Theorem 5.7.1. Let p : X — Y be a holomorphic map, and let x € X. Suppose that p is
flat at x € X. Then the following Dimension Formula holds

dim, X = dim, X — dim,,) Y (5.7.1)
and  is open at x.

Recall that X, (where y € Y) means the inverse image ¢ *(y) of the reduced
point {y}.

Proof-Step 1. Let y = ¢(z). We prove (5.7.1) by induction on dim, Y. The case
dim, Y = 0 is obvious. Assume the theorem is proved when dimY, < n — 1,
where n € Z. Assume dim, Y = n. Note that if we let Y{ be the reduction red(Y’),
and let X, = ¢~ 1(Yp), then ¢ : Xy — Yj is flat at 2 by Thm. 5.5.3, and it suffices
to prove (5.7.1) where X, Y are replaced by X, ¥} (since dimensions are invariant
under reductions). Therefore, by replacing X, Y with X, Y;, we may well assume
that Y is reduced.

By Rem. 3.10.5, we may shrink Y to a neighborhood of y and shrink X to
¢ 1(Y) so that there exists 7 € 0y vanishing at y which is a non zero-divisor of
Oy,. Let Y’ = Specan(0y /70y ) and X' = o' (Y') = Specan(0x /70 ). By Active
lemma,

dim, V' = dim, Y — 1.

Clearly X, = Xz//' By Thm. 5.5.3, the restriction ¢ : X’ — Y” is flat at =. Therefore,
by case n — 1,

dim, X, = dim, X' — dim, Y.

Since ¢ is flat at =, by Slicing criterion 5.6.6 (indeed, here we do not use the full
power of Slicing criterion), 7 is a non zero-divisor of O ,. So by Active lemma,

dim, X’ = dim, X — 1.
Dimension Formula (5.7.1) follows. O]

Proof-Step 2. We now prove that ¢ is open at 2. As in Step 1, we may well assume
that Y is reduced. If Y is locally irreducible, then the openness of ¢ at z follows
immediately from Dimension Formula (5.7.1) and Thm. 3.13.1. In the general
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case, we let v : Y — Y be the normalization of Y, and consider the Cartesian
square

X <7

eol lw

Y 4V
Choose any neighborhood U — X of x. The commutativity of the above diagram
implies

Y(aH(U) cv i o p(r H(U))) = v (por(n'(U)) < v (¢(U))

But note that as a set, Z is {(x,7) € X x Y o(z) = v(y)}. From this observation,
we see

Y(aH(U)) = v (V). (5.7.2)

Note that 7 is finite (Prop. 2.4.11). By Thm. 5.5.3, ¢ is flat at any point of
the finite set 7—'(z). So 1 is open at any point of 7'(z) because Y is locally
irreducible (Prop. 4.9.1). Note that (77 '(z)) = v*(y). So ¥(7~*(U)) contains
a neighborhood of v!(y), which (due to Prop. 2.4.1) can be of the form v~ (V)
where V' < Y is a neighborhood of y. By (5.7.2), v™(V) < v~'(¢(U)). Hence
V < ¢(U) because v is surjective. So ¢(U) contains a neighborhood of y. O

We shall give a converse of Thm. 5.7.1. We first need a preparatory result on
reducedness.

Proposition 5.7.2. Choose f € 0(X) and x € X such that f(x) = 0. Assume that f
is active at x, and that Specan(Oy /fOx) is reduced at x. Then X is reduced at x, and
hence f is a non zero-divisor of Ox .

Proof. By Prop. 3.4.1, we may shrink X to a neighborhood of = so that N(f) is

nowhere dense in X. We claim that /0x, < fz1/0xz. Then /0x,; = mx ;4/0x

and hence /0y, = 0 by Nakayama’s lemma 1.2.15. Hence X is reduced at x.

To prove the claim, choose any g € 4/0x .. By shrinking X further, we have
g € 0(X) and g takes value 0 at any point of X. In particular, g vanishes on N(f).
So g, € f,0x, because Ox ./ f,Ox , is reduced by assumption. Shrink X so that
g = fh where h € 0(X). Since N(f) is nowhere dense in X and ¢ vanishes at
every point, h also vanishes at every point. Thus h, € 1/0x ;. O

Theorem 5.7.3. Let ¢ : X — Y be a holomorphic map where Y is a complex manifold.
Assume that one of the following equivalent conditions holds:

(1) Dimension Formula (5.7.1) holds for all z € X.

(2) ¢ is open.
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Choose x € X, let y = p(x), and assume that X, = ¢~ '(y) is reduced at x. Then X is
reduced at x, and ¢ is flat at x.

Recall that the equivalence of (1) and (2) is due to Cor. 3.12.3.

Proof. By shrinking Y to a neighborhood of y and shrinking X to ¢ '(X), we
assume that Y is an open subset of C". We prove the theorem by induction
on n. The case n = 0 is obvious. Assume case n — 1 is proved. Assume for
simplicity that y = 0. Let (z1,...,2,) be the standard coordinates of C". Let
Y’ = Specan(0y/z Oy), namely, Y’ is the intersection of Y and C"~! ~ 0 x C" 1.
Let X' = ¢~ }(Y”) = Specan(Ox /21 0x). Then by case n — 1, X' is reduced at =, and
Ox1 4 is Oy o-flat. If we can show that z; is active in Ox ,, then by Prop. 5.7.2, X
is reduced at x, and hence z; is a non zero-divisor of O ,. Therefore ¢ is flat at
due to Slicing criterion 5.6.6.

Let us show that 2 is active in O ,. In other words, we need to show that
21 o p is active at z. But this follows immediately from Prop. 3.13.5 and the fact
that z; o ¢ : X — Cis open. O

The assumption on the reducedness of fibers is sometimes too strong for ap-
plications. For instance, all Weierstrass maps are flat, but their fibers are not nec-
essarily reduced even when the base spaces are smooth. We will give a different
criterion for flatness later (cf. Thm. 5.10.7), in which the reducedness condition in
Thm. 5.7.3 is replaced by assuming that 0 , is Cohen-Macaulay. Indeed, the rest
of this chapter is devoted to proving and understanding Thm. 5.10.7.

5.8 Associated primes

We fix a Noetherian ring A.

5.8.1 General facts

Definition 5.8.1. Let £ € Mod(.A). An associated prime of € is a prime ideal p of
the form Ann 4(£) where ¢ € £. The set of associated primes is denoted by Ass 4(&)
or simply Ass(€) (if no confusion arises).

For instance, if X is a complex space and & is a coherent &'x-module, then by
Def. 2.3.3, for each 0 € & we have Supp(Oxo) = Specan(Ox/ s ¢, (0)). So the
complex subspace Supp(&xo) is irreducible at x iff Anng, , (0.) is prime.

Example 5.8.2. Note that the nilradical 1/0 of A is inside every prime of A. By
Prop. 3.1.7, we know that if V0 = py - N py is the prime decomposition of
v/0 c A, then

Ass 4(A/N0) = Ass 4, 5(A/V0) = {p1, ..., pn} (5.8.1)
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Recall that prime ideals are assumed to be not A. And Ann4(&) = Aiff £ = 0.
There is a simple criterion for whether the ideal Ann 4(¢) is prime.

Lemma 5.8.3. Let £ € Mod(.A) and assume that { € £ is non-zero. Then the following
are equivalent.

(1) Anny(§) is prime.
(2) Foreacha e A, if a§ # 0 then Ann4(af) = Ann4(&).

Proof. In general, an ideal Z < A is prime iff each a € A not inside Z is a non
zero-divisor of A/Z. In the case that Z = Anny(€), a is a zero-divisor of A/Z iff
Anna(a€) 2 Anna(é). =

Proposition 5.8.4. Let £ € Mod(A). Then for any non-zero £ € &, there exists a € A
such that (a& # 0 and) Ann 4(a€) is prime. In particular, if £ is non-zero then Ass(E) is
non-empty.

Note that for every £ # 0, the set of prime Ann 4(a&) equals the set of associated
primes of A - £. So the word “in particular” above is actually “equivalently”.

Proof. The Noether property of A implies that any chain inside the partially or-
dered set {Anny(af) : a € A, a # 0} must be stationary, and hence has an up-
per bound. By Zorn’s lemma, this set contains a maximal element, which we
denote by Anng(a&). If b € A and ab # 0, then the maximality shows that

Ann 4(ab€) = Anny(§). Therefore Ann 4(af) is prime by Lemma 5.8.3. O
Note that set of non zero-divisors of £ is
Nzd4(€) = A\ L) Amna©) (5.8.2)
ge€\{0}

We now have a better description of Nzd 4(€) which also generalizes Cor. 3.1.6:

Corollary 5.8.5. Let £ € Mod(A). Then

deA(S):A\ U » (5.8.3)
peAss 4 (E)

Proof. “c” is obvious. If x € A is a zero-divisor of £, then z{ = 0 for some non-
zero ¢ € £. By Prop. 5.8.4, we may find a € A so that Ass4(af) is prime, which
clearly contains z. This proves “>”. O

An advantage of (5.8.3) is that Ass(&) has finitely many associated primes if £
is finitely-generated, as we now show.

Proposition 5.8.6. Let 0 — &' — £ — £” — 0 be an exact sequence in Mod(.A). Then
Ass(E') < Ass(€) < Ass(E') U Ass(E")
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Proof. Clearly Ass(E’) < Ass(€). Let us prove the second inclusion.

Choose ¢ € € such that Ann 4(§) is an associated prime of £. We view £" as £/&’,
and let [¢] be the residue class of £ in £/E”. Then Anny([€]) = {a € A : a € £'}.
Clearly Ann4(¢) < Anny([£]). Assume that Anny(§) does not belong to Ass(E”).
Then Ann 4(§) # Anny([£]), otherwise Ann 4([£]) would be an associated prime of
&

Pick a € Abelonging to Ann 4([¢]) but not Ann 4(¢). So af is a non-zero element
of £. Since Ann4(§) is prime, by Lemma 5.8.3, Anny(§) equals Ann 4(a&), and
hence is an associated prime of £'. O

Theorem 5.8.7. Let £ be a finitely-generated A-module. Then £ has finitely many asso-
ciated primes.

Proof. If N is a submodule of £ and N # &, then by the fact that £/N has at least
one associated prime, we can find £ € E\N such that Ann4([¢]) is prime. Here
[£] denotes the residue class of £ in £/N. Let V] be generated by A/ and . Then
NN = A/Ann([€]).

The above discussion shows that we can find a chain of submodules 0 = &, &
& < & < -+ of Esuch that each &;/€;_; is equivalent to .A/p; for some prime ideal
p;. Since & is finitely-generated and A is Noetherian, this chain must have finite
length. Soitis of the form 0 =& < & S & < - < &, = €. By Exp. 5.8.2, p; is the
only associated prime of £;/&;_1 ~ A/p;. Thus, by Prop. 5.8.6 we have

Ass(E) < {p1, P2y, Pu} (5.8.4)

So & has finitely many associated primes. O

5.8.2 A characterization of Assy(A)
Remark 5.8.8. Let £ € Mod(.A). Then clearly

Assy(E) = U Ass 4 (AE)
geg\{0}

Thus, to determine Ass4(€), one should know first of all how to find Ass4(.A¢€)
where ¢ € £\{0}. Note that the .A-module .A¢ is isomorphic to A/I where I =
Ann 4(A¢). Thus, it suffices to determine

Assy(A/T) = Ass i (A/T)

for every ideal / & A. Replacing A/I by A, it suffices to know how to find
Ass 4(A). This is the goal of this subsection.

The following lemma is useful.
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Lemma 5.8.9. Let p be a prime ideal of A. Let £ € Mod(A) and & € £. Choose x € A\p.
Then Ann 4(§) < p if and only if Ann 4(x€) < p.

Proof. “<" is obvious since Ass({) < Ass(xz{). Assume that Ass({) < p. Choose
y € Ass(z€). Then zy§ = 0. So zy € Ass(§) < p. Since = ¢ p, we have y € p. This
proves “=". O]

Note that if £ € Mod(A) and ¢ € £\{0}, then we can find a prime p < A
containing Ann(¢): Take prime decomposition n/Ann(§) = p1 N -+ N py (cf. Thm.
3.1.3) and take p to be one of py,...,py. Thus, the following lemma generalizes
Lem. 5.8.3.

Lemma 5.8.10. Let £ € Mod(A), let £ € £\{0}, and choose a prime ideal p < A satisfy-
ing Ann 4(&) < p. Then the following are equivalent.

(1) Anny(§) is prime.
(2) Foreach a € A, if Ann4(a&) < p, then Ann 4(a&) = Anny(§).

Proof. Assume (1). If Ann(a&) < p and if b € Ann(a), then since ab belongs to the
prime ideal Ann(¢), and since a ¢ Ann({) (otherwise Ann(a&) = A ¢ p), we have
b e Ann(¢). This proves (2).

Assume (2). To prove that Ann(&) is prime, by Lem. 5.8.3, it suffices to prove
that every a € A\Ann(¢) satisfies that Ann(af) = Ann(¢), equivalently (by (2)),
that Ann(a&) < p.

Fix a ¢ Ann(¢). Let us prove Ann(a) < p. Choose any b € Ann(a). Then
a € Ann(b¢). But a ¢ Ann(§) (otherwise, Ann(af) = A is not in p). So Ann(§) #
Ann(b¢). Soby (2) we have Ann(b¢) ¢ p. Since Ann(§) < p, by Lem. 5.89,bep. O

Theorem 5.8.11. Let /0 = p; n - N py be the prime decomposition of the nilradical
V0 < A (cf. Thm. 3.1.3). Then

Assa(A) = Ass4(vVO) U {p1,....px} (5.8.5)

Proof. By Exp. 5.8.2, (5.8.5) is equivalent to
Ass4(A) = Ass4(vV0) U Ass4(A/VI) (5.8.6)

By Prop. 5.8.6, it suffices to prove that Ass(A/v/I) = Assy(A), namely, that
p; € Ass(A) for each 1 < ¢ < N. Clearly Anny(1) = {0} < p;. As in the proof of
Prop. 5.8.4, we can use Zorn’s lemma (thanks to the fact that .4 is Noetherian) to
find a maximal Ann4(f) inside p; where f € A. Then Ann4(f) is prime by Lem.
5.8.10. So Ann4(f) = p; by Prop. 3.1.9. N

We thus obtain a refinement of Prop. 5.8.4:
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Corollary 5.8.12. Let £ € Mod(A), let & € E\{0}, and let \/Ann(&) =p1 N --- N py be
the prime decomposition. Then py, . .., px are inside Ass 4(AE).

Proof. By Rem. 5.8.8, to determine Ann4(.A¢), it suffices to assume £ = A and
¢ = 1. Then Anny4(AE) = 0. The proof is thus completed by Thm. 5.8.11. O

Example 5.8.13. Let X be a complex space. Let & be a coherent &x-module, and
choose 0 € &(X). Let A be the reduction of Supp(Oxo) (cf. Def. 2.3.3), i.e.,, Ais
the analytic subset

A={pe X : 0, #0}

Choose z € A, and shrink X to a neighborhood of x so that we have local decom-
position A = A; U --- U Ay of A at z (cf. Thm. 3.3.3). Then by Cor. 5.8.12,

jAl,xa cee jAN,x € ASSﬁxw(ﬁxijI) (587)

5.9 Depth

In this section, we fix a Noetherian local ring .4 with maximal ideal m.

Definition 5.9.1. For any A-module &, the depth of £ , written as depth 4(&£) or
simply depth(&), is

depth(&) = sup{n : there exists an £-regular sequence a4, ..., a, € m}

In particular, £ has a non zero-divisor in m iff depth(&) > 0.

Our starting point of analysis is the following application of associated primes.
Interestingly, the statement of this lemma does not involve associated primes, but
the proof actually does.

Lemma 5.9.2. Let £ € Mod(.A) be finitely generated. Then the following are equivalent.
(1) depth(€) > 0, i.e., € has a non zero-divisor in m.
(2) Hom4(A/m,&) = 0.

Proof. We first observe that Hom 4(.A/m, £) is equivalent to Ker(Homy(A, &) —
Hom4(m, &)). In particular, if we identify Hom 4 (A, £) naturally with &, then

Hom4(A/m, &) ~ {£ € & :m& = 0}

It follows that (2) is equivalent to m ¢ Ass(E).

By Cor. 5.8.5, (1) holds iff m\ {J,cxe) P # 0, iff m\p # 0 for each p € Ass(E)
(due to Lem. 3.4.6). Since for each prime p < A we have p < m, (1) is equivalent
to that m # p for all p € Ass(€), i.e. m ¢ Ass(E). O

204



Starting from Lemma 5.9.2, we can establish a cohomological characterization
of depth. This is achieved with the help of the following fact:

Proposition 5.9.3. Let £ € Mod(.A), and let a € m be a non zero-divisor of E. Then for
eachn € Z,

Ext’ (A/m, £/a€) ~ Ext’y(A/m, E) ® Ext’{ ! (A/m, ) (5.9.1)

Tor (A/m, E/a€) ~ Tor’(A/m, E) @ Tor* | (A/m, E) (5.9.2)
Proof. We first observe that by Rem. 5.2.7, the Ext functor preserves multiplica-
tions on both components since Hom clearly does. Therefore, for each = € m and
each ¢ € Z, the endomorphisms Ext?,(xz, £) and Ext% (A/m, xz) on the .A-module
Ext%(A/m, £) are both equal to the multiplication of = on this module. Thus, as
xx is zero on A/m, it is zero on Ext? (A/m, &). So Ext%(A/m, £) is a module over

A/m, i.e. a vector space over the field .A/m. The same is true if Ext is replaced by
Tor or £ is replaced by any .A-module.

The short exact sequence 0 — & =% & — £/a€ — 0 yields a long exact se-
quence

Ext’ (A/m, &) — Ext’y(A/m, &) — Ext’y(A/m, E/a€) — Ext’}(A/m, E)
— Ext™ (A/m, €)

The first paragraph implies that the first and the last morphisms above are zero.
Thus we have an exact sequence

0 — Ext’y(A/m, &) — Ext’y(A/m, E/a€) — Ext’(A/m, E) — 0

which splits because the objects are vectors spaces over A/m. This proves (5.9.1).
A similar argument proves (5.9.2). O

Now we can generalize Lemma 5.9.2 as follows.

Lemma 5.9.4. Let £ € Mod(.A) be finitely generated. Let k € N, and let a4, ... ,a; € m
be an E-regular sequence. Then the following are equivalent.

(1) ay,...,ay can be extended to an E-reqular sequence ay, . . ., ay, Gx41 € M.
(2) Ext$F(A/m, €)= 0.

Proof. By Prop. 5.9.3, Hom4(A/m,E/(a:€ + - - - + ax€)) (which, by Lemma 5.9.2, is
zero iff (1) holds) is a direct sum (with multiplicities > 1) of Ext?(.A/m, £) where
q goes through O, .. ., k. O

Theorem 5.9.5. Let £ € Mod(.A) be finitely generated. Then depth(E) is the smallest
n € N such that Ext®(A/m, &) = 0 forall k < n.
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Proof. Apply Lemma 5.9.4 to any longest £-regular sequence in m. O

Corollary 5.9.6. Let £ € Mod(.A) be finitely generated, and let a,,...,a; € m be an
E-reqular sequence. Then

depth(€) = depth(£/(a1€ + -+ + ax€)) + k
Namely, a1, . . ., ay, can be extended to an E-reqular sequence in m of length depth(&).
Proof. Immediate from Lemma 5.9.4 and Thm. 5.9.5. O

Theorem 5.9.7. Let X be a complex space and let x € X. Let &, # be coherent O'x-
modules. Assume that

depth,, (&) =n, dim, Supp(#Z) = m.
Then we have
Ext'gxyx(,//{x, &) =0 Vk <n—m. (5.9.3)

This theorem (as well as the subsequent corollary) also holds for any finitely-
generated modules of Noetherian local rings. And the proof for the general case
is similar to the one below. (See [Vakl17, Sec. 26.1].) Since we have established
dimension theory only for analytic local C-algebras, we shall focus on this special
case, which is clearly sufficient for our applications.

Proof. First note that if we have an exact sequence of morphisms of coherent 'x-
modules 0 - #" — # — #" — 0, then we clearly have

Supp(.#) = Supp(.#") U Supp(.#")

as analytic subsets of X. (Namely, for each p € X, ., = 0ift .4, = /] = 0.)
Therefore, by Prop. 3.10.8, we have

dim, Supp(.#) = max { dim, Supp(.#"), dim, Supp(.#")} (5.9.4)

Recall that the germs of coherent &x-modules at x are equivalent to finitely-
generated O ,-modules (Thm. 2.2.2). We now prove the theorem by induction
on dim, Supp(.#). (5.9.3) clearly holds whenever dim, Supp(.#) = —o0o, i.e. when
M, = 0. It also holds when .#, = C = Ox,/mx, due to Thm. 5.9.5. Thus, if
dim, Supp(.#) = 0, then x is a single point of Supp(.#). Hence ml ,.#, = 0 for
some [ € Z, by Nullstellensatz (Rem. 2.10.4-3). Then an induction on [ and the
exact sequence

Extl}fX@ (mx My, &) — Extgx (M, E) — Extkﬁx (M R0y, C,E;)

,T , T

proves (5.9.3) whenever dim, Supp(.#) = 0.
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Now suppose that the theorem holds whenever dim, Supp(.#) < m. Assume
dim, Supp(.#) = m. As in the proof of Prop. 5.8.7, we may shrink X to a neigh-
borhood of x and find a chain of coherent &x-modules 0 = . #, < . #, < 4> C

- M = M such that for each 1 < i < [, #;/#;_, is equivalent to Ox/Z;
where Z; is a coherent ideal of 'y such that &7, , is prime. Therefore, by (5.9.4),

dim, Supp(.#) = sup dim, N(%).

(2

So dim, N(Z;) < m for all i. Since we have an exact sequence

EXt]fﬁXJ ('%i—l,acv gx) - EXtZ’X ('%i,acy éaa:) - EXt]fﬁX (ﬁX,a:/@i,xa (gax)

»T s T

if we can show that Ext’;x (Ox /P, &) = 0 for all i, then by induction on i, we

y

obtain Ext}, (.#,,&,) = 0.

Therefore, it suffices to prove (5.9.3) in the special case that .# = 0x /% where
Z is a coherent ideal of Oy, &, is prime, and dim, N(£?) = m > 1. Shrink
X further so that we can choose a € 0(X) with a(z) = 0 such that the germ
a; € my, is notin &,. So a, is a non zero-divisor of .#,. Thus we have a short

exact sequence
0 — My =% My — My)ay My — 0
which gives rise to a long one
Exty, (Mo, &) — BExty, (My, &) — Bxty!! (Mofay My, &)

The support of .#,/a,.#, has dimension m — 1 at x by Active lemma 3.10.3. As-
sume k < n —m. Then by case m — 1, E:><t’g;z (My)az M, &) is zero. So the en-

domorphism Ext’;;x@ (xag, &) on Extl, (M, &,) is surjective. By Rem. 5.2.7, this

,T

endomorphism is the multiplication of a, on the O ,-module Ext’fﬁx (M, ).

, T

Since Ext? . (M, 8;) is finitely generated (because we can choose a finite-rank

free resolution of #,), and since a, € my,, Ext’gxyx (A, &) must be zero by
Nakayama’s lemma 1.2.15. O]

We shall only use the following very special case of Thm. 5.9.7:

Corollary 5.9.8. Let X be a complex space and x € X. Let & be a coherent Ox-module.
Then

depth(&,) < inf {dim Ox . /p : p € Ass(&;)}

In particular, depth(&,) < dim, X.
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Proof. Choose any associated prime p of &,. Let m = dimOx,/p and n =
depth(&;). If n > m, then Homg,  (Ox ./p, &) = 0 by Thm. 5.9.7. But

Homg,  (Ox./p, &) ~ Ker(HomﬁXﬂ(ﬁX,m, &) — Homg, _ (p, &))
:{ge(ggx:pé’:O}

and the set {¢ € &, : p€ = 0} is non-zero by the very definition of associate primes.
This is impossible. So n < m. O

5.10 Flatness, openness, and dimensions of fibers II:
Cohen-Macaulay

In this section, X is a complex space. Note that if x € X, then depth(0x ;) <
dim, X by Cor. 5.9.8.

Definition 5.10.1. Let v € X. We say that X is Cohen-Macaulay at = or that O,
is a Cohen-Macaulay ring, if

depth(Ox ) = dim, X.

If X is Cohen-Macaulay at every z € X, we say that X is a Cohen-Macaulay
complex space.

Example 5.10.2. If X is smooth of dimension n at z, then there clearly exists an
O ,-regular sequence in my , of length n. (Take the coordinate functions.) There-
fore, complex manifolds are Cohen-Macaulay.

Example 5.10.3. If dim, X = 0 then X is clearly Cohen-Macaulay at x.

Proposition 5.10.4. Choose f1,..., f, € O(X) vanishing at =, and assume that their
germs fi ., ..., fuu forman Ox ,-reqular sequence. Then the following are equivalent.

(1) X is Cohen-Macaulay at x.
(2) Y = Specan(Ox/(f10x + --- + f,0x)) is Cohen-Macaulay at .

Proof. By Active lemma 3.10.3, dim, X = dim, Y + n. Then the equivalence of the
two statements follows immediately from Cor. 5.9.6. O

Proposition 5.10.5. Suppose that X is Cohen-Macaulay at x. For each associated prime
p of Ox ,,, we have dim Ox ,,/p = dim, X.

Proof. Clearly, in general we have dim 0x ,/p = dim, N(p) < dim, X. That we
have “ > ” when O , is Cohen-Macaulay is due to Cor. 5.9.8. ]

The miracle of Cohen-Macaulayness lies in the following fact:
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Theorem 5.10.6. Let f € (X)) vanish at x. Let Z = Specan(Ox/fOx). Suppose that
X is Cohen-Macaulay at x. Then the following are equivalent.

(1) f is a non zero-divisor of Ox .
(2) dim, X = dim, Z + 1.
If one of them holds, then Z is Cohen-Macaulay at x.

Proof. (1)=(2): By Active lemma 3.10.3. Then by Prop. 5.10.4, Z is Cohen-
Macaulay at z.

Not (1) = Not (2): Assume that the germ f, is a zero-divisor of Ox ,. Then
by Cor. 5.8.5, f, belongs to some associated prime p of Ox ,. We shrink X to a
neighborhood of z so that p = &, for a coherent ideal & of Oy, and that f €
Z(X). Let n = dim, X. Then by Prop. 5.10.5, dim, N(&) = n. Hence

dim, Z = dim, N(f) = dim, N(Z) = n.
So (2) does not hold. o

We are now able to prove the following remarkable result which is parallel to
Thm. 5.7.3.

Theorem 5.10.7 (Miracle flatness theorem). Let ¢ : X — Y be a holomorphic map
where Y is a complex manifold. Assume that X is Cohen-Macaulay at x € X. Then the
following are equivalent.

(1) The following Dimension Formula holds
dimm X(p(x) = dimm X — dim@(z) Y (5101)
(2) isflatat x.

Moreover, if any of them holds, then X, ) = ¢~ (¢(z)) is Cohen-Macaulay at x.

Proof. That (2)=(1) is due to Thm. 5.7.1. To prove (1)=(2), we may assume that Y’
is an open subset of C”, and that ¢(z) = 0. Then ¢ is represented by (f1,..., f,) €
O(X)". Foreach1 <k <n,let

7% = Specan(Ox /(fLOx + - -+ + frOx)).

Set Z° = X. Then Z* = Specan(Oyx-1/f,Oz-1). So by the definition of dimen-
sions (Def. 3.9.1),

dim, Z* + 1 > dim, Z* "
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Thus we have (noting that Z" = ¢=1(0) = X))
dim, Z" + n > dim, Z°  equivalently dim, Xy +n > dim, X

and “=" becomes “=" whenever

dim, Z* + 1 = dim, Z*! V1l<k

N

n (5.10.2)

Since we assume (1) is true, we have (5.10.2). By assumption, Z° is Cohen-
Macaulay at z. Suppose we have proved that Z*~! is Cohen-Macaulay at = where
1 < k < n, then by (5.10.2) and Thm. 5.10.6, f;, is a non zero-divisor of 0.1,
and Z* is Cohen-Macaulay at x. Therefore, by induction, we see that the germs
fiz>- -, fne form an Ox ,-regular sequence, and Z" = X, is Cohen-Macaulay
at z. Hence ¢ is flat at = by Cor. 5.6.9. [

Corollary 5.10.8. Assume that X is a Cohen-Macaulay complex space (e.g. a complex
manifold) and Y is a complex manifold. Let ¢ : X — Y be a holomorphic map. Then the
following are equivalent:

(1) Dimension Formula (5.10.1) holds for all z € X.
(2) ¢ is open.
(3) @ is flat.
Proof. By Cor. 3.12.3 and Thm. 5.10.7. O
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Chapter 6

Cohomology and base change

6.1 Sheaf cohomology and higher direct images

Let X be a ringed space with structure sheaf &y. Let Mod(0x) and Coh(O)
(or simply Mod(X) and Coh(X)) be respectively the category of &'x-modules
and the category of coherent x-modules. Note that if Oy equals Z, the sheaf of
locally constant Z-valued functions, then Mod(€x) is the category of sheaves (of
abelian groups) on the topological space X.

6.1.1 Mod(Ox) has enough injectives

Our aim of this section is to construct various derived functors from Mod ().
The first step is to show that Mod(€x) has enough injectives. (In general,
Mod(€x) need not have enough projectives.) We first note the following elemen-
tary fact:

Remark 6.1.1. If (&, ), is a family of &x-modules, we can define the direct product
[ [, é» in a natural way, i.e. whose space of sections on each open subset U < X is
[ 1, éx(U). (tis in general not true that the stalk of the direct product equals the
direct product of stalks.)

If # € Mod(Ox), then a morphism ¢ : .# — [ ], &, is equivalently a collection
of morphism .% — &, for all . Namely, we have a natural equivalence

Homg, (Z,] [ &) = | [Home, (Z, &) (6.1.1)

From (6.1.1), it is clear that if each &, is injective, then | [ , &, is injective. ]

Definition 6.1.2. Let & € Mod(O0x). We view each stalk &, as an Ox-module: if
Uc Xisopenand f € Ox(U),and if s € &,, then fs = 0if v # U and fs = f,sif
z € U. Then the 0'x-module

Gode(&) = [ [ & (6.1.2)

reX
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is called the Godement sheaf of &. More explicitly, if U < X is open, then

Gode(&)(U) = | [ & (6.1.3)

zelU

namely, a section s € Gode(&')(U) is equivalently a function on U whose value at
each z € X is an element of &

We have an obvious monomorphism & < Gode(&’) sending each s € &(U) to
the function on U whose value at each z € U is the stalk s,. O

Proposition 6.1.3. Mod(0x) has enough injectives, namely, for each Ox-module &,
there is an injective object £° € Mod(Ox ) and a monomorphism & — &°.

Proof. For each z € X, we choose a monomorphism &, — ., of Ox,-modules
such that .7, is injective, which exists due to Prop. 5.3.3. Set

:fo

zeX

and define the monomorphism & < &° to be the composition

ggngxgﬂfw.

reX reX

To show that &° is injective, by Rem. 6.1.1, it suffices to show that each .7, is
an injective 0'x-module. But this is clear because .#, is injective in Mod(Ox ), and

Homg, (¥, .7,) ~ Homg, (o, I2)

for each . € Mod(0x). O

6.1.2 HYX,&)and Rip.(&)
Thanks to Prop. 6.1.3, we can make the following definition:

Definition 6.1.4. Let H*(X, —) be the right derived functor (cf. Thm. 5.2.2) of
the functor H°(X, —) from Mod(ﬁx) to Mod(0 (X)), sending & to HY(X,&) =
&(X). For each ¢ € N, HY(X, &) is called the ¢-th cohomology group of X with
coefficients in &. As usual, we set H4(X, &) = 0if g < 0.

Note that if Ox is a sheaf of F-algebras where F is a field, then H¢(X, &) is a
vector space over F. O

Remark 6.1.5. If U — X is open and V' < U is open, then as H*(U, —) is a univer-
sal d-functor, the natural morphism H°(U, —) — H°(V, —) defined by restriction
extends uniquely to a morphism of §-functors H*(U, —) — H*(V,—). (See Def.
5.1.5.)
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Namely (Def. 5.1.4), we have a unique collection of morphisms H(U, &) —
HiY(V,&) for all ¢ € N and & € Mod(Ox) satisfying the following: If & — .# is a
morphism in Mod(0x), the following diagram commutes

HU(U,&) — HY(U, F)
! 1 (6.1.4)
HUV,&) — HU(V, F)

If0 - & — % — ¢ — 0is a short exact sequence in Mod(O), the following
diagram commutes

HY(U, %) % HI (U, &)
1 1 (6.1.5)
HI(V,4) - HTY(V, &)

]

Definition 6.1.6. Let ¢ : X — Y be a morphism of ringed spaces. Note that the
direct image functor ¢, : Mod(0x) — Mod(0y) sending & to ¢, & is left exact.
Note that for each open V' < Y, we have

P8 (V) = (97 (V) = H(¢7H(V), )

by our notations. For each ¢ € N, the sheafification of the presheaf of Jy-modules
associating to each open set V' < Y the 0y (V')-module

(Ripu(8)) (V) = H'(p™(V), 6)

is denoted by RYp, (&) and called the ¢-th higher direct image of ¢.
Clearly R%.(&) = p.&, and the stalk of R, (&) ateach y € Y is

Rip. (&), = h_I,an(SO_l(V)a &) (6.1.6)
Vay
where the direct limit is over all neighborhoods of y. O

Since H*(¢'(V),—) is a d-functor, for each short exact sequence 0 — & —
F — 94 — 01in Mod(Ox) we have a long exact sequence

0 — H(p V), &) — H(p V), F) - H(p"1(V),9)
S HY (H(V), &) - HY (9 (V),.F) - H ("1 (V),9)
L H (o V), E) > - (6.1.7)

By Rem. 6.1.5, if W < V is open, we have a morphism of exact sequences from
(6.1.7) to a similar one about ¢~ (). Therefore, since direct limit preserves ex-
actness, we obtain an exact sequence in Mod(0y )

0 = P& — 0. F — 0. G LR R'¢,& — R\, F — R'©.9 LR R*p,& — --- (6.1.8)
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since its stalk at each y € Y is the direct limit of (6.1.7) over all neighborhoods V'
of y.

Proposition 6.1.7. (R*y,, ) is the universal o-functor (cf. Def. 5.1.5) from Mod(Ox)
to Mod(0y ) extending .. Therefore, it is the right derived functor of ..

Proof. Since H*(p~'(V'), —) is a d-functor, a morphism of short exact squences in
MOd(ﬁX)
0 & — % —>9 —0
l 1 1 (6.1.9)
0 —&8 — F — 9 —0

gives rise to a commutative diagram

Hi(p ™ (V),94) - H™ (o (V), &)
4 4
Hi(g™ (V),9") < H* (o7 H(V), &)

for each ¢ € Nand open V < Y. By passing to direct limits, we obtain a commu-
tative diagram

R, (g) i> RqH‘P* (5’)

{ {
Rip,(9') < Rqﬂ@*(g/)

This verifies that (R*y., d) is a -functor.

To show that it is universal, by Thm. 5.1.6 and that Mod(&'x ) has enough injec-
tives, it suffices to show that R%¢,(.#) is zero whenever ¢ > 0 and .# is an injective
object in Mod(Ox). But this is obvious since H~° vanishes on injective objects (as
right derived functors do, cf. Thm. 5.2.2), which shows that H=°(¢*(V),.#) = 0
for every open V c Y. O

6.2 Cech cohomology

Fix a ringed topological space (X, @y ). In this section, we introduce Cech co-
homology as an easier way to compute sheaf cohomology. We follow mainly the
approach of [Dem]. Cech cohomology is equivalent to sheaf cohomology in most
cases. Cech cohomology is easier to compute, while sheaf cohomology is more
functorial and can easily explain why other cohomology theories (e.g. de Rham
cohomology, Dolbeault cohomology) agree with Cech cohomolgy in explicit situ-
ations.

Most part of this section is self-contained in the sense that it does not assume
the knowledge of sheaf cohomology or derived functors. Indeed, it is recom-
mended that the readers read this section before they read the more abstract ap-
proach of sheaf cohomology.
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6.2.1 Cech cohomology HY(4, &)

Fix an open cover i = (U, )qes of X. For each o, a1, ..., a4 € I, set
Uspar—aq = Uag N Uay 0 -+ N Uy,

Definition 6.2.1. For each ¢ € N, the (alternate) Cech ¢-cochain is the & (X)-
module

ClL, &) = {(Caom---aq) € H & (Uagpar-aq)

Cag-aq = SBN(T) * Cay g ay,, fOrall o € Aut{0,1,. .. ,q}}

where sgn(c) denotes the sign of the permutation o.! The ¢-th coboundary oper-
ator 0 = ¢ : C1(U, &) — CT1 (YU, &) is an O(X)-module morphism defined by

(67C)agmager = . (_1)10a0...@...aq+1\Uaomaq (6.2.1)

+1
0<j<g+1

Weset C1(, &) = 0if ¢ < 0.
It is not hard to check that d?*'d? = 0. So (C*(4, &), d) is a complex. Its coho-
mology

H*(U, &) == H*(C*(YU,&))
is called the Cech cohomology groups of il with coefficients in &. O

Remark 6.2.2. The boundary operators can be defined in a similar way as the
exterior derivative of differential forms. Choose any s € &(Uy...q,). We define

s - dopday - - day, € CU U, &)
to be

s-dog - - do‘q‘aom)'"ao(«z) = sgn(o) - s € E(Us(0) " Qo(g)) 6.2.2)
s-dag - - dag|gy..5, = 0 (Bo, - - -, By is not a permutation of ag, ..., ay)

It is helpful to view s - dagday - - - day as the multiplication of s € &(Uy...a,) and
dag - - -dag € CU U, Ox).
Clearly, for each permutation o € Aut{0,1,...,q},

s-dog - - dag = sgn(o)s - dog(g) - - - Ao (q).-

10One can also define Cech cohomology without assuming the alternate condition. The coho-
mology theory one gets is equivalent to the alternate one. See [Dem] Sec. IV.5.D.
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And 07 : C1(U, &) — C1 (4, &) can be defined to be the (X )-module morphism
determined by

0(s-dog- - dog) = > s dfdag -+ - day. (6.2.3)
Bel

It is well defined, namely, it is compatible with the expression of (s -
dag() - - - dag(e)) for any permutation o of {0,1,...,¢}. O

6.2.2 Partition of unity and vanishing of 7>(4(, &)

Fix an open cover { = (U,)acs of X. An important feature of Cech cohomol-
ogy is that H~°(4(, —) vanishes when one can construct partition of unity. More
precisely:

Definition 6.2.3. A partition of unity in Jx subordinated to &l is a collection
(o )aer Where each 1, € 0(X), satisfying the following conditions:

e Supp(¢,) < U, for each v € I.

* The family of subset (Supp(¢s))aer is locally finite, namely, each z € X is
contained in a neighborhood which intersects only finitely many members

Of (Supp(%))aez-
® > cra(z) =1foreachz e X.

Proposition 6.2.4. Suppose that & € Mod(Ox) is also an Zx-module where Zx is a
sheaf of rings on X (possibly different from O ). Suppose that there is a partition of unity

in & subordinate to 1. Then H>O(8, &) = 0.

Proof. Let (1a)aer be a partition in Zy subordinate to 4. For each ¢ € Z,, define
an #Zx (X )-module morphism

w!: CU U, &) — C17H YU, &)
q
wi(s-dag---day) = Z(—l)jwajs ~dag - - day - - - day (6.2.4)
=0
where each 1), a priori an element of & (Us,...q,), is extended by zero to an el-
ement of &(Uyg...q5.-0,)- (Also, (6.2.4) is well-defined, i.e. is invariant under a

permutation of {0,1,...,q}.)
For each ¢ > 0, it is a routine check that

09?4 ity = 1.

Therefore, the identity map on C9(4l, &) is homotopic to 0. Thus H(C*(, &))
vanishes when ¢ > 0. [l
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The analog of Prop. 6.2.4 for sheaf cohomology (namely, the degree> 0 sheaf
cohomology groups of fine sheaves are zero) is also true. See [Voi, Prop. 4.36].
Using a similar idea, we prove:

Lemma 6.2.5. For each x € X, choose an O’ ,-module F,, and view it as an Ox-module.
Let

Then H>O(\, ).
In particular, for each & € Mod(Ox), if we let &° € Mod(Ox) be the Godement sheaf
Gode(&), then H>(4, £°) = 0.

Proof. .7 is clearly an #x-module, where

Rx = Gode(Ox) = | | Ox.a

zeX

An easy application of Zorn’s lemma shows that we have a disjoint union X =
[I,c; Eo (over the same index set I as that of {{) such that £, < U, for each o € I.
For each «a € I, define ¢, € Zx(X) to be the characteristic function of U,, namely,
Yo = (Ya(T))zex Where Y, (z) = 1if x € U, and ¢, (x) = 0if x € X\U,. Though the
support of ¢, (which is U%) is not contained in U,,, we still have that for each open
V c X and s e &V nU,), as extends by zero to an element of V. Thus, for each
¢ > 0 we can define an Zx (X )-module morphism w? : C?(4, F) — CT (8, F)
by (6.2.4) and show again that 67 *w? + w7167 = 1. O

Definition 6.2.6. We say that & € Mod(Ox) is a fine sheaf if & is over a sheaf
Zx of rings on X, where Zx satisfies that for every open cover 4l of X there is a
partition of unity in Zx subordinate to {l.

For instance, if X is a smooth manifold and & is over the sheaf €¢ of real
valued smooth functions, then & is fine.
By Prop. 6.24, if & is a fine sheaf, then for every open cover il of X,

H>(4, &) = 0.

6.2.3 Long exact sequences for Cech cohomology

A short exact sequence 0 — & — F — ¢ — 0in Mod(0x) gives an exact
sequence of complexes

0—->C'(U&)—>C(U.ZF) - CHUY) -0
where

CLWU,¥) =Im(CUL, .F) > CI (U, 9)) (6.2.5)
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This gives a long exact sequence of their cohomologies

- HEY L, 9) S HYY, &) — HUW, F) — HL (U, 9) > I &) — -
(6.2.6)

where we set
AL (8L,9) = HI(CH(,9))

and recall that H9(4, —) = HI(C*(U, —)). Clearly, a morphism of short exact se-
quences (6.1.9) gives a morphism of long exact sequences from (6.2.6) to a similar
one for &', %', 9'.

Remark 6.2.7. According to the definition (6.2.5), an element of C% (4, %) is pre-
cisely an element g = (gqq...a,) of C?(4,¥) such that each gog...a, € 4 (Usg...a,) caN
be lifted to an element fy..., € #(Uqg..a,), and that the lifting can be chosen in
such a way that the skew-symmetry condition

Jagag = sgn(a)f%(o)...%(q) (6.2.7)
is satisfied for each (ay, ..., a,) € I9" and each permutation o of {0, 1,...,¢}.
The skew-symmetry condition is redundant. For if a lift f,,...q, is chosen for
each ordered tuple («y, ..., a,) € 17"}, then the alternating sum

~ 1
fa0~~-a = E SgIl(O')fa YeY
q | a(0)" %o (q)
(q T 1) oeAut{0 ’

is also a lift of gq...a,, and the skew-symmetry condition is satisfied: ﬁyo...aq =
sgn(a)f%(m...%(q). O

Remark 6.2.8. The connecting morphism § : }VI‘; (U, 9) — HT (4, &) is described
as follows.

1. Choose any element [g] of I?‘Z,; (U4,9), represented by some g = (gag-a,) €
C% (4, %) which is a cocycle, i.e. satisfies g = 0. (Here § is defined by
(6.2.3).) According to the definition (6.2.5) of C%(U,¥), we can lift g to an
element f = (foy..a,) Of CU(U, 7).

2. That 6g = 0 implies that 67f € C9T (4, .F) is sent to zero by C**! (4, . F) —
CT (U, 9). So ¢1f € CTT(4U,.F) belongs to the image of C7T(U, &) —
CrH(4U, F).

3. Choose an arbitrary e € C7"! (4, &) which is sent to f. Then j o §f = 0
implies de = 0. Then [e] € H1* (4, &) is d[g].
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O]

Unfortunately, H*(81,%) and PVI;; (U, <) are not equal in general. So (6.2.6) does
not give a d-functor. There are two ways to overcome this difficulty:

(a) Take direct limit of H (&, —) and H (4, —) over all open covers il. Then these
two spaces agree when X is paracompact.

(b) For many important examples of sheaves, one can choose a nice cover U
such that H(4,—) and Hz (8, —) are equal. Then there is a chance that
H (4, —) equals the sheaf cohomology.

We first explain approach (a) in the next section.

6.3 Cech cohomology on paracompact spaces

Let X be a ringed space.

6.3.1 Cech cohomology H?(X, &)

Suppose that U = (Vj3)se, is another open cover of X which is a refinement of
U = (Uq)acr- This means that there is a map p : J — I satisfying V3 < U, for all
§ € J. Then we obtain an ¢'(X )-module morphism

pl: CU U, &) — CUT, &)
(pqc)ﬁomﬁq = CP(ﬁo)---P(ﬁq)|Vﬁ0--ﬂq (6.3.1)
Proposition 6.3.1. Assume that p : J — I satisfies Vg < Uy for all € J. Then p*
and p* induce the same O (X )-module morphism (called restriction map)
HI(p*) = HUP") : HU(U, &) — HY(V, &). (6.3.2)

Proof. (6.3.2) is obvious when ¢ = 0. Let ¢ > 0. For each ¢ € CY(4, &), define
wice [ 5,10 € Vagp,_1) by

(wqc‘)ﬁo--ﬂqﬂ: > (=1 Cot80)--p(8:)5(8,)+7(By—1) Vg -5, 4
0<y<qg—1

Using the definition of § in (6.2.1), one checks that 67 'w? 4+ w?™1§? equals p? — p?
on CY(LL, &). (See [Kod] Sec. 3.3 Lemma 3.2 for the details of computation.)

Thus, if 6%c = 0, then p?c — pic equals 69 wic. Let b be the alternating sum of
wic, namely

1
bﬁomﬁq = Z sgn(a) : (qu)Ba(O)“ﬂa(q—D'

" oeAut{0,...,g—1}

Then b e C11(, &), and plc — plc = 69 'b. This finishes the proof. O
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Thanks to Prop. 6.3.1, we can make the following

Definition 6.3.2. For each & € Mod(0x) and ¢ € N,

H(X,&) = lim H(4U, &)

ilis an open cover of X
is called the ¢-th Cech cohomology group of X with coefficients in &. Clearly
H(X,&) = H(U, &) = &(X).

Any morphism of &'x-modules & — % gives a canonical morphism HI(X, &) —
HI(X, 7).

Let0 —» & — .% — ¢ — 0 be a short exact sequence in Mod(&x). The proof of
Prop. 6.3.1 (together with Rem. 6.2.7) implies that

HE(p") = H(7") - HS(3,9) — HE(D,9). (6.33)
Thus, we can also define

HY(X,9) = iy AL(4,9)

ilis an open cover of X

Then the direct limit of (6.2.6) over all {{ gives an exact sequence (note that direct
limit is an exact functor)

s HENX,9) S HY(X, 6) — HI(X,.F) > HL(X,9) > HIT(X, &) — - -
(6.3.4)

which is functorial in the sense that a morphism of short exact sequences (6.1.9)
gives a morphism of long exact sequences from (6.3.4) to a similar one for
&' F', 9.

The monomorphism of complexes C% (4, %) — C*(4,¥) gives a natural mor-
phism of their cohomology groups

AL (U, 9) — HI(U,9)

which is compatible with restricting to a finer open cover . Thus, passing to the
direct limit over all open cover 4, we obtain a natural morphism

HL(X,9) — H(X,9) (6.3.5)

Theorem 6.3.3. Assume that X is paracompact. Then (6.3.5) is an isomorphism. There-
fore, by (6.3.4), (H*(X,—),9) is a o-functor, which is indeed universal, and hence is
isomorphic to the sheaf cohomology (H*(X,—),0)
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Recall that a paracompact space is a Hausdorff space satisfying that any
open cover has a refinement which is locally finite. For instance, every second-
countable locally compact Hausdorff space is paracompact. Therefore, every
second-countable complex space is paracompact.

Proof. Step 1. Once we have proved that (6.3.5) is an isomorphism, then by Thm.
5.1.6, the 0-functor (H*(X, —), 0) is universal because that each & € Mod(€y) has a
monomorphism into its Godement sheaf £° = Gode(&), and that H>9(X, &) = 0
by Lemma 6.2.5.

To show that (6.3.5) is an isomorphism, it suffices to show that for each open
cover 4 of X and each ¢ = (cqg..a,) € CU(U,¥), there is a refinement U = (V3)ges
together with a map p : J — [ satisfying V3 < U,p) for all § € J, such that
plce C1(,9) (as defined in (6.3.1)) belongs to CL (Y, ¥). By Rem. 6.2.7, the last
sentence is equivalent to that p?c is liftable in .%, namely, for each 5y, ..., 3, € J,

(P7€) 6084 = Cp(B0)p(5a) Va4

lifts to an element of .7 (Vj...5,)-

Step 2. Since X is paracompact, by replacing 4l with a refinement, we may
assume that & = (U, )aer itself is locally finite. For each z € X, we choose a
neighborhood V, such that

(a) If z € X and « € [ is such that x € U,, then V,, c U,

(b) If x € Uyy.a,, (note that V, < Uy,...q,) then cq...q, |v, (Which belongs to ¢4(V))
lifts to an element of % (V).

Thus, if an open subset 2 < U,, ..., satisfies that Q2 = V,, for some x € U,,...o,, then
Cag--aq | 18 liftable in 7.

Let U = (V,).ex. For each z € X, choose p(z) € I such that V, c U,,). By the
end of Step 1, it suffices to show that for each o, ..., 24 € X, cywp)-p(ay) |Vzoumq lifts
to an element of .7 (V... ). It suffices to prove that

20 € Up(ag)p(zy) (Yo, ..., 24 € X such that V..., # &)

because it would then imply (by (a)) that V., = Up,wg)...p,), and (by (b)) that
Co(o)-p(zq) [V, lifts to an element of 7 (V). Therefore, it suffices to prove that
foreach z,y € X,

Ve Vy # - x € Up(y) (6.3.6)

To show (6.3.6), we need to shrink each V,, further. Since X is paracompact, we
may choose an open subcover 20 = (W,,)qer of 4 with the same index set I such
that Wc‘jl is a subset of U, for each a € I. Clearly 20 is also locally finite. Therefore,
we may shrink each V,, further so that
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(c) For each y € X there exists « € I such that V, ¢ W,. Then we let p(y) = a.

Therefore, since V,, = W,(,, it remains to prove that foreachz € X,a € I,
Ven Wy # I = rvelU, (6.3.7)

This is certainly true if for each = € X we shrink V, further: We first shrink V, so
that V,, intersects finitely many members of 4, say U,,,...,U,,. If 1 < j < kis
such that z # U,,, since Wg; < Uq,;, we may shrink V, so that V, n W,,, = &. Then
(6.3.7) is clearly fulfilled. ]

Definition 6.3.4. Let & € Mod(0x). A resolution 0 — & — &* is called a fine
resolution of & if each & is a fine sheaf.

Example 6.3.5. Let X be a paracompact (e.g. second countable) topological (resp.
smooth) manifold. For every open cover il of X there is a continuous (resp.
smooth) partition of unity of X subordinated to {. Therefore, every X-sheaf over
the sheaf of germs of continuous (resp. smooth) functions on X is a fine sheaf.

Corollary 6.3.6. Assume that X is paracompact. Let & € Mod(Ox), and let 0 —
& — &* be a fine resolution of &. Set &1 = 0if ¢ < 0. Then there are (X )-module
isomorphisms

HY(X,&) ~ H(X, &) ~ HI(E (X))

Proof. The first equivalence is due to Thm. 6.3.3. Since H>°(X, &%) =0 by Prop.
6.2.4, the second equivalence holds (cf. Subsec. 5.2.2 and especially (5.2.7)). O

Example 6.3.7. Let X be a paracompact smooth manifold. Let F be R or C. Then
we have a resolution of the constant sheaf F called de Rham resolution:

0 1 2
0-F5 A XS A XS A XS (6.3.8)

where Af X is the sheaf of germs of F-valued differential ¢-forms, and d is the
differential operator. Let AZX = 0if ¢ < 0. The exactness of (6.3.8) is due
to Poincaré’s lemma. Then by Exp. 6.3.5, A{ X is a fine sheaf since it is over the
sheaf of F-valued smooth functions ¢’yy. Define the de Rham cohomology group

HE (X, F) = (HO (XA X)). (6.3.9)

Then by Cor. 6.3.6, we have isomorphisms of F-vector spaces

~

H9(X,F) ~ HY(X,F) ~ H®, (X, F).

222



Example 6.3.8. Let X be a paracompact complex manifold. Let € be the sheaf
of germs of complex smooth functions on X. Let A”? X be the sheaf of germs
of complex differential forms on X of degree (p,q). Locally, by choosing a set

of coordinates (z1,...,z,) of X, a section of Q%? is a sum of those of the form
Jdziy Ao ANdzi, AdZy A - A dZy, where f € € . Then we have a resolution
, =0 , =1 72 =2
0% - A"x S A xS A xS (6.3.10)

called the Dolbeault resolution of %, where Q% is the sheaf of germs of holo-
morphic p-forms (which are locally a sum of those of the form fdz;, A --- A dz;,
where f € Ox), and ¢ is a C-linear sheaf map determined by

O(fdziy A+ Adzyy A dZj Ao A dE)

—Z(/de—k/\dzll/\"'/\dZip/\del/\“‘/\deq

The exactness of (6.3.10) is due to Dolbeault lemma.

In (6.3.10), set p = 0. Then Q% = Ox. Choose any locally free &x-module (i.e.
holomorphic vector bundle) & and tensor it with (6.3.10). Since & is Ox-flat, we
obtain an exact sequence

0> &> & Qoy %0y 189, & o, 0’1X1_®5)g®ﬁx 02 ¢ 189, .
(6.3.11)

called the Dolbeault resolution of &. This is a fine resolution since each & ®g,
A" X is over ¢xc (cf. Exp. 6.3.5). Define the Dolbeault cohomology group

0,0
HY(X, &) = H (H° (X, 6 ®0, /\ X))
Then by Cor. 6.3.6, we have isomorphisms of C-vector spaces

HY(X,&8) ~ HI(X,&) ~ HY(X, &) (6.3.12)

6.4 Leray’s theorem; Stein spaces

In this section, we explain approach (b) at the end of Subsec. 6.2.3. Again, we
assume X is a ringed space. Let 4l = (U, )qer be an open cover of X.

6.4.1 Leray’s theorem

Theorem 6.4.1 (Leray’s theorem). Assume that X is paracompact. Let & € Mod(Ox)
and assume that

H(Upyar,, &) =0 (6.4.1)
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forall n € Nand o, ...,0,, € 1. Then for each q € N, the natural 0(X)-module
morphism

HYWU, &) — HY(X, &) (6.4.2)
(defined by passing to direct limit over all open covers) is an isomorphism.

Proof. (6.4.2) is clearly an isomorphism when ¢ = 0, since they are both identified
with &(X). We now prove Leray’s theorem by induction on ¢q. We know it holds
when ¢ = 0. Assume it holds for case ¢ where ¢ € N. Let us prove it for case ¢ + 1.
Let .7 = Gode(&) so that we have a monomorphism & — .# where .7 is killed
by H>°(44,—) and by H>°(X,-) (cf. Lemma 6.2.5). Let ¥ = .Z/&. Then we have
a short exact sequence 0 - & - % — ¥4 — 0.

Since H' (Uag--ans &) = 0, we have an exact sequence

0— g(UQO"'O‘n) - ﬁ(UaO...a") - g(Uaowan) —0

showing C%(,%) = C*(4,%) (Rem. 6.2.7) and hence H% (U, ¥) = H*(4,9).
Therefore, by (6.3.4) and its functoriality, we have a morphism of exact sequences

HiY, F) —— HIWG) —— HH (U, E) — 0

*l l l (6.4.3)

HY(X,Z) — HI(X,9) — H"Y(X, &) — 0

The first vertical arrow is an isomorphism: It is clearly so if ¢ = 0, and it is so
when ¢ > 0 because the domain and the codomain are both 0. Clearly, for each
p € N, we have an exact sequence

H(Upy.r,, F) = H (Unyarr, G) = H W Uny.oar,, &)

where the third term is zero by assumption (6.4.1) and the first term is zero when
p > 0 by Lemma 6.2.5. Therefore H>(U,,..q,,%) = 0. So by case ¢ of Leray’s
theorem (applied to ¢), the middle vertical arrow of (6.4.3) is an isomorphism. So
the third vertical arrow is also an isomorphism due to Five lemma. This proves
case ¢ + 1 for &. H

Without assuming that X is paracompact, Thm. 6.4.1 still holds if we replace
H>(Ungooay» &) With H>O(Upg...ar,, &), replace HI(X, &) with H1(X, &), and de-
fine the map (6.4.2) in an appropriate way. Indeed, this sheaf cohomology ver-
sion is the common one that people refer to when talking about Leray’s theorem.
This version is especially useful in algebraic geometry, since schemes are not even
Hausdorff. It also allows us to compute the sheaf cohomology of coherent sheaves
over a complex space X which is non-necessarily paracompact by computing the
Cech cohomology of a Stein open cover of X. We present this version in the fol-
lowing subsection.
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6.4.2 Sheaves of Cech cochains ¢¢($(, &) and Cech resolution

Let us consider the sheaf of Cech g-cochains ¢9(4(, &) , which is an &y-module
associating to each open W < X the Ox(WW)-module

CUU, E)W) = CUW n U, &) (6.4.4)
(where W n il = {W N Uy }aer)

Then (€9(4L, &), 0) is a cochain complex of &'x-modules.
Note that we have an obvious inclusion H°(W, &) — €°(4, &) (W), which gives
rise to a monomorphism & — €°(4, &). Moreover, we have:

Proposition 6.4.2. The following is an exact sequence

0> & - e Dl e) L e, e) & (6.4.5)

In other words, 0 — & — €24, &) is a right resolution of &.

Moreover, if # € Mod(0x), then a morphism ¢ € Homg, (&, .F) gives rise to a
natural morphism of cochain complexes C* (L, &) — C* (U, .F). Therefore, €* (L, —) is
an (additive) functor from Mod(Ox) to the category of complexes of O'x-modules.

To summarize, we have a right resolution & — €=°(4(, &) for all & € Mod(Ox)
which is functorial. This is called the Cech resolution of & with respect to 4L

Proof. We only prove (6.4.5). The remaining part of the proposition is obvious.

Choose any z € X, and choose 3 € I such that x € Ug. Then for each neighborhood

W of x contained inside Ug, there is a partition of unity in Oy subordinate to

Wil = (W nUy)aer: since W nUg = W, one can take 13 = 1, and take ¢, = 0 if

a # f3. Therefore, by Prop. 6.2.4, H>°(W 4, &) is zero, namely, the sequence
CHW A, &) Z5 CW Ay, &) D CTH I A L, &)

is exact if ¢ > 0. By taking direct limit over all such I, we see that the stalk of
(6.4.5) at x is exact. O

Theorem 6.4.3 (Leray’s theorem). Let & € Mod(Ox) and assume that
H>(Upg, &) = 0 (6.4.6)

foralln e Nand o, ..., o, € 1. Then for each q € N, there is a natural 0 (X )-module
isomorphism

HY(Y, &) ~ HY(X, &) (6.4.7)
Proof. (6.4.6) implies that (6.4.5) is an acyclic resolution of &, namely,

H™(X,eP(U, &) =0 (6.4.8)
for all p > 0. Therefore, by (5.2.7), we have an isomorphism (6.4.7) which is
natural by Exe. 5.2.6. O

225



6.4.3 Stein spaces and Cartan’s theorems

In this subsection, we assume X is a complex space.

An important situation to which Leray’s theorem can be applied is when & is
O'x-coherent and each U, is a Stein space. The definition of Stein spaces is quite
technical and will not be used in our notes. Instead, we use the following im-
portant fact about Stein spaces. Indeed, every complex space satisfying Cartan’s
theorem B is a Stein space.

Theorem 6.4.4 (Cartan’s theorem B). Suppose that X is a Stein space. Then for each
& € Coh(Ox) we have H™°(X, &) = 0.

An immediate consequence of Thm. B is:

Theorem 6.4.5 (Cartan’s theorem A). Suppose that X is a Stein space. Then for each
& € Coh(Ox) and each x € X, the germs at x of the elements of &(X) generate the
Ox -module &,.

Proof. By Nakayama’s lemma, it suffices to show that &'(X) spans the fiber &'|z =
&,/mx 6. We view my , is the ideal sheaf of all sections of 'y vanishing at .
Then &|x as a coherent 0'x-module. We have a short exact sequence

0> mx.& — & — Elz—0

showing that mx ,& is coherent and hence H' (X, my &) = 0 by Cartan’s theorem
B. Therefore, H(X, &) — HY(X, &|z) is surjective. O

We refer the readers to [Tay, Chapter 10, 11] for a proof of Cartan’s theorem B.
See also [GR-a] for a comprehensive account of the theory of Stein spaces.

Corollary 6.4.6. Let X be a Stein complex space and & a coherent Ox-module. Then for
each precompact open subset U < X, the Oy-module & |y is generated by finitely many
elements of £(X).

Proof. By Cartan’s theorem A, & is Ox-generated by the elements of &(X). Thus,
we have an ascending chain of coherent submodules (&, ).e5 of &, where J is the
set of finite subsets of £(X), and &, is Ox-generated by the elements of a. By
Thm. 3.11.5, (&,,)aes is stationary on U, i.e., there is a € J such that &, = &} for all
p = a. Thus & |y is generated by the elements of a. O

Example 6.4.7. The following are some important examples of Stein spaces. We
let X, Y, S denote complex spaces. Cf. [GR-a, Sec. V.1].

(a) Every connected non-compact Riemann surface is Stein.

(b) If X,Y are Stein, then X x Y is Stein.
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(c) If Yis Stein and ¢ : X — Y is a finite holomorphic map (in particular, if X is
a closed complex subspace of Y), then X is Stein.

From (a) and (b) we see that every polydisc is Stein. Therefore, for every complex
space X, the set of Stein open subsets of X form a base of topology of X.
We also have:

(d) Ifp: X - Sand ¢ : Y — § are holomorphic maps, and if X,Y are Stein,
then X xg Y is Stein.

(e) It Uy, ..., U, are Stein open subsets of X, then U; n - -- n U, is Stein.

(f) If ¢ : X — Y is a holomorphic map, U < X and W < Y are open subsets
which are Stein, then U n ¢! (W) is Stein.

Indeed, (d) is due to that X x Y is Stein and that X xg Y is a closed subspace of
X x Y (by Prop. 1.13.10). (f) follows from (d) because U n ¢~ (W) is the fiber
productof po iy x : U — Y and vy : W — Y. To show (e), it suffices to assume
n = 2. Then (e) is a special case of (f). Furthermore, we have (cf. [GR-a, Sec.
V.4.3])

(g) X is Stein if and only if its reduction red(X) is Stein.
O

Definition 6.4.8. An open cover { = (U,)qer of a complex space X is called a
Stein cover if each U, is Stein.

If £ is a Stein cover, then by Exp. 6.4.7-(e), each intersection U, ..., is a Stein
open subset of X. Therefore, by Cartan’s theorem B and Leray’s Thm. 6.4.3, we
have:

Corollary 6.4.9. Suppose that X is a complex space and 3l is a Stein open cover of X.
Then there is a natural equivalence of (X )-modules for each & € Coh(Ox):

Hi(WU, &) ~ HY(X, &).

6.5 Higher direct images and formal completion

Beginning with this section, all complex spaces are assumed to be paracom-
pact. Thus, for complex spaces, we identify sheaf cohomology and Cech coho-
mology.

Let X and Y be complex spaces. Let ¢ : X — S be a holomorphic map. The
following deep result is due to Grauert. See [GR-b, Chapter 10], [BS, Sec. 3.2], or
[Dem, Sec. IX.5] for proofs. This theorem will be implicitly used in the remaining
part of our notes. Especially, all major results of this chapter rely in an essential
way on this theorem.
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Theorem 6.5.1 (Grauert direct image theorem). Let ¢ : X — S be a proper holomor-
phic map. For every & € Coh(Ox) and every q € Z, R, (&) is a coherent O's-module.

In the special case that S is a reduced point, the direct image theorem says:
Corollary 6.5.2 (Cartan-Serre theorem). Suppose that X is compact and & €
COh(ﬁx), then dlIIl(c Hq(g) < 400.

6.5.1 Higher direct images and tensor product

Let & € Coh(0x) and .# € Coh(0s). Then there is a natural morphism of
O's-modules

R, (&) ®og M — Rlpu(E Qo5 M) (6.5.1)

defined as follows. If V is an open subset of S and U < ¢~!(V) is open, we have
a natural 0(V)-module morphism

E(U) @osvy A (V) = (& Qo5 M) (U).

Thus, if & = (U,)aesr is an open cover of ¢~ !(V'), we have a canonical (V)-
module morphism

Cq(u7 Cg)) ®ﬁs(v) %(V) - C«q(u’ & ®ﬁs %>
which gives canonical morphisms

HIUCH Y, &) @ogvy A (V) = HI(C* (U, &) Qo (v) A (V)
—HI(C* (U, E Qpy A )).

Passing to the direct limit over all open covers i, we get a canonical Og(V)-
module morphism

Hi(¢™(V), &) ®asvy A (V) = H (9™ (V), & @y M)

Sheafifying this map gives (6.5.1).

A fundamental question about higher direct images is when the map (6.5.1) is
an isomorphism. It is a main goal of this chapter to give a satisfying answer to
this question. This question has important geometric implications. Choose t € S
and take .# = Og/mg, where, as usual, mg; is understood as the Os-ideal of all
sections vanishing at ¢. Then (6.5.1) reads

Rlp. (&) — HI(X:,8|x,) (6.5.2)
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where we set
Xt = (pfl(t)

as usual. That (6.5.2) is surjective means, in the case ¢ = 0, that any global sections
of &|x, on X; can be extended holomorphically to sections on the nearby fibers of
X

In the next section, we will prove a deep result saying that if & is p-flat and
(6.5.2) is surjective, then (6.5.2) must be an isomorphism, and more generally, the
stalk map of (6.5.1) at t is an isomorphism for every .# € Coh(0s). To prove this
fact, we need to show that a formal version of (6.5.1) is an isomorphism. This is
the task of this section.

6.5.2 Higher direct images and formal completion

Fix t € S and write mg; as m; for simplicity. Let the .# in (6.5.1) be Os,/m} and
Os./m} where [ > k. Then we have a commutative diagram

Rip, (éa)t/mquSO* (&) — Rip, (éa/miéa)t

l |

Rip, (@@)t/mquSO* (&) —— Rip, (g/mfg)t

where the horizontal maps are defined by (6.5.1). In other words, we get a mor-
phism of inverse systems R, (&);/m; Rip, (&) — Rip.(&/m;&),. Passing to the
inverse limit gives an s;-module morphism

lim R, (&)/mf Rip.(&€), — lim Rip, (&/m{&), (6.5.3)
keN keN

It is a deep result that this morphism is indeed an isomorphism. To show this fact,
we need to show:

Lemma 6.5.3. Assume that ¢ : X — S is a proper holomorphic map and & € Coh(O).
Then for each k € N there exists | € N such that

Ker (R, (&) — Rip.(E/mi&)) = mf - Rip, (&), (6.5.4)

Note that if (6.5.4) holds, then it holds if I is replaced by any [ > [. This is
because m! = m! and hence we have a commutative diagram

R, (8)y ——— Rip.(&/myé),

AN

R, (&/ml&),
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Theorem 6.5.4 (Grauert comparison theorem). Assume that o : X — S is a proper
holomorphic map and & € Coh(Ox ). Then (6.5.3) is an Os-module isomorphism.

Indeed, we will only use the injectivity of (6.5.3). (See Thm. 6.6.2 (e)=(d) and
(c)=(f).) So we postpone the proof of surjectivity to the end of this section.

Proof that (6.5.3) is injective. Choose (op)ren in lim _ Rip. (&), JmERIp, ().
Namely, each o}, belongs to R, (&);/mF Rip.(&):, and oy is sent to oy, if | > k.

Suppose that (o)en is sent to 0 by the map (6.5.3). Fix any k£ € N, and let [
be as in Lemma 6.5.3. Since we can safely make [ larger, we assume [ > k. Then
0, (which is in R, (&) /mRip,(&£);) is sent to 0 in Ry, (&/ml&);. Lift oy to an
element ; € R%,(&):. Then ¢ is sent to 0 by the map

Rlp, (&) — RqSO*(éo/mig)t

By Lemma 6.5.3, ¢; belongs to m¥ R, (&),. But g is clearly sent to o4 by the map
Rip, (&) — Rip(&),/my ngp*(éa) So o), = 0. O

6.5.3 Proof of Lemma 6.5.3

To prove Lemma 6.5.3 we first need a lemma.

Lemma 6.5.5. Let X be a complex space and & € Coh(Ox). Let f € O(X). Then for
each precompact open subset U — X there exists d € Z.. such that the multiplication of f
is injective on f4& |y, namely, the map

fdéa|U X_f) fd+1éa|U
is injective.

Proof. %, = Ker(& SN ) is an ascending chain of coherent ¢'x-submodules
of & (as n increases). Therefore, by the Noether property of coherent sheaves
(Thm. 3.11.5), this chain is stationary at some n = d when restricted to U. So
Falv = Fanily. lf s € &y and flsissuch that f x fis = 0, then s € Zy,1|y = Zalv,
and hence f¢s = 0. So x f is injective on f4&y. O

Proof of Lemma 6.5.3. Step 1. Shrink S to a neighborhood of ¢t € S and choose
g1,---,9n € O(S) generating the ideal m,.

Claim: It suffices to show that for each k£ € N there exists \{,..., A\, € N such
that

Ker(wa*(@@)t — Rip, (éa/ig;\o@)t> c angf - R?
i=1

=1
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Suppose the claim is proved. For each k € N, choose the corresponding Ay, ..., A,
andlet! = \; +---+ \,. Then

&Y ghs

i=1

and hence we have a commutative diagram

Rip () ———— Ripi(8/ X0, ")

N T

Rip, (& /mié&);
Thus (6.5.4) follows from the claim.

Step 2. Fix k e N. For v = 1, ..., n, we construct inductively )\, such that
Ker( Rip, (&) — Rip, (& Mg K. Rip, (& 6.5.5
er (R1p,(£) = Rl /i;g@ ), < ;gz (&) (6.5.5)

In this step, we do this for v = 1. Namely, after shrinking S to a precompact
neighborhood of ¢ (and shrinking X correspondingly to »~'(S5)), we find A\; € N
such that

Ker(Rip.(8) = R, (£/g)'6)) < gf - Riga() (6.5.6)

By Lemma 6.5.5, we can shrink S and find 6, € N so that x g, is injective on
g &. So x g¥ is also injective on ¢%' &. Therefore, we have a short exact sequence

x gk
0—g& 2 & &/ e -0 (6.5.7)
and hence an exact sequence
q by Rl (xg) g g by+k
R QO*(,% é") R 90*(@@) - R (p*(é"/gl éa)

Set \; = b;+k. Then the LHS of (6.5.6) equals the image of R%p,(¢}' &) — Rip.(&),
and hence is a subsheaf of g¥ - R%p, (&) since the following diagram commutes

9oy (X gk
Rip.(9'6) Moelr) » Rip, (&)
qu /g’f
Rip, (&)
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where ¢ : ¢"'& — & is the inclusion.

Step 3. Let v € {2,...,n}, and assume that Ay, ..., \,_; are chosen such that

Ker(ngo*(éa) Rio, 5/{4) 2 g5 Rip.(& (6.5.8)

where we write

v—1
G = 9"
i=1

(Namely, we assume (6.5.5) holds for v — 1 instead of v.) By Lemma 6.5.5, after
shrinking S, there is b, such that x g, is injective on g% - (&/%). Similar to (6.5.7),
for each d, € N (to be determined later) we have a short exact sequence

0= g (/%) 2 819 — 8/(F + gl E) — 0

Since we also have short exact sequences 0 - ¥ — & — &/4 — 0, we obtain a
diagram where the row and the column are exact:

R, (é@)

R, (g5 (€/9)) —— Ripu(E/9) —— Rip(E/(F + ghrt &)
|
RqH%O*(g)

Set A\, = b, + d, + k. Then Ker(p o 7), is the LHS of (6.5.5). We want to show
that it is a subset of the RHS of (6.5.5). Choose any

¢ e Ker(pom),
Then 7(s) € R, (/% ), belongs to Ker(p);. Thus, as argued in Step 2, we have
w(s) € gy R, (/4

Choose 0 € Rip,(&/9); such that

Then g% ** . §(0) = §(g% o) = o m(s) = 0.



By Lemma 6.5.5, we can find d, such that xg, is injective on g% R, (9).
(Note that the coherence of R7™ (%) is due to Grauert direct image Thm. 6.5.1.)
Therefore, from g% ** . §(o) = 0 we conclude

gy o) = gy - 6(0) = 0.

Thus, there exists ¢’ € Rip,(&); such that 7(¢') = g% o, and hence

w(ghs') = gitro = m(<)
So ¢ — g¥¢’ € Ker(m);. Thus, by (6.5.8),

v—1

¢ € Ker(m), + gic’ = ) gF - RUpu (&) + gbs' = Zgz - Ry

i=1

This proves (6.5.5). [

6.5.4 Inverse limit and exactness

In general, the inverse limit functor is only left exact. It preserves exactness
when certain “Mittag-Leffler condition” is satisfied. We do not need this general
version of exactness result. We are satisfied with the following version which will
be used, together with Grauert comparison theorem, to prove the base change
theorem in the next section.

Proposition 6.5.6. Let A be a ring and let
0— (M )nEN - (Mn)nEN - (M;QneN -0

be an exact sequence of inverse systems of A-modules, indexed by N. Assume that each
M is Artinian. Then the following sequence is exact:

0 — lim M), — lim M,, — lim M} — 0

neN neN neN

We are mainly interested in the case that A = 0x, where dim, X = 0 (so that
dime Ox , < +0) and each M. is a finitely-generated Ox ,-module. Then M., is
Artinian because it is a finite-dimensional C-vector space.

Proof. The only non-trivial part is the surjectivity of lim M,, — lim M7. Since
each M,, is Artinian, there is £ > n such that for all [ > k the image of M; — M,
agrees with that of M; — M;. Thus, we may find a subsequence (M;, )ren of

T s / /
njne 9 7
(M)nen such that for each &k and each [,1 > k, the images of M; — M and
/\/l;lf — M, are equal. It suffices to show that lim M,, — lim M7 is surjective.
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Thus, by replacing the original sequence by the subsequence, we assume that for
each n € N and each m > n,

Im(M;, = M) = Im(M;,,, — M)

We assume for simplicity that M, is a submodule of M,, and M/ = M, /M.,.
If m e M/, we denote its residue class in M,,/ M/, by [m].

Choose (my)ren € lim M. It suffices to prove, by induction on n € N, that if
Mp41 € Myyq is chosen such that [m,,41] = m! ., and if m,, is the image of m,,;;
under M,,.; — M, then there exists m,,;» € M,, ;5 such that [m,2] = m!_,, and
that m,,,, is sent to m,, by the map M,,.» — M,,. We prove this for the case n = 0,
since the general case can be proved in the same way.

So we are given m, € lim, Mj and m; € M, such that [m,] = m{. And we let
mg be the image of m; under M; — M. Choose a; € M, such that [az] = m],
and let a; € M, be the image of o, under My — M. Then [oy] = m/. So
[m1 — aq] = 0, namely my; — oy € M.

Let ag be the image of ; under M; — M,. Since Im(M) — Mj) = Im(M} —
M), mo — o (which is the image of m; — «; under M/ — M) can be lifted to an
element 3, € M). Then my = as + (3, satisfies that [m.] = m/ and that its image
under My — M, is my. See the following diagrams.

Q9 > ma By
g my ” m/1/ my — o
o my —— my moy — Qg

[l
We are now ready to prove the second half of Grauert comparison theorem.
Proof that (6.5.3) is surjective. Let o, denote the map
g : R1pu(E)/my R1p,(8)r — Rlpu(&/mi&),
Then we have a short exact sequence of inverse systems of 0g;-modules
0 — Ker(a) — Rig,(&),/m} Rio,(&), — Im(a,) — 0

Since each R1p,(&);/mfRlp,. (&), is a coherent Og,/m{-module, by Cor. 2.7.4, it
is C-finite dimensional. So Ker(«y) is a finite-dimensional C-vector space, and
hence Artinian. Therefore, by Prop. 6.5.6, we obtain a short exact sequence

0 — lim Ker(ay) — Lir_ango*(é")t/mqugo*(é”)t — lim Im(ay) — 0
k k k
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Since each Im(ay) is a submodule of Rigp, (& /mi&),, lim Im(ay) is a submod-
ule of lim R, (& /mk&),. Therefore, to prove that (6.5.3) is surjective, it suffices
to prove that for each element

(o) keny € Im RIp, (& /my &),
k
we have o, € Im(«y) for all .
Choose any k. Note that Im(«y) equals the image of the map Rip.(&), —
Rip,(&/mi&),. So Im(ay) = Ker(d;) where dy, is the connecting map in the follow-
ing commutative diagram

Rip,(&)y ——— Ripu(&):

| |

Rq‘»p*(éa/mi(go)t B RqSO*(ég/mf‘gg)t

| .

R lp,(mlé), —— R lp,(mi&), —— Rilp, (mi&/mlé),

where | > k. Apply Lemma 6.5.3 to the sheaf m/&. We see that for each r € N,
there exists [ > k such that Im(u) = Ker(n) is a subset of m} R?" !¢, (mF&);. For
the element o, chosen above, we have pd;(0;) = 0x(0x). So n0x(0x) = nuo,(o;) = 0.
Therefore 6;(0;) belongs to Ker(n), and hence belongs to m; R, (m;&),. Since
this is true for all » € N, by Krull’s intersection Thm. 1.4.4, we obtain d;(oy) = 0
and hence o}, € Ker(d;) = Im(oy,), finishing the proof. O

6.6 Base change theorems

Let X, S be complex spaces and ¢ : X — S be a holomorphic map. The main
reference of this section is [BS, Sec. II1.3].
Notice that if .# € Mod(0x ), we have a pullback map

©* T HYS, M) — HI(X, p* ) (6.6.1)

which is a natural &(S)-module morphism described as follows. If W < S is
open, then we have a pullback morphism (cf. Def. 1.10.2)

Pt = M(W) — (0" M) (¢~ (W)

Thus, if 20 = (W,)aer is an open cover of S, then *W = (o1 (W,,))aer is an open
cover of X, and the above map yields a morphism of complexes ¢*(20, .#) —
C* (p*2, p* A ). Taking cohomology and passing to the direct limit over all open
covers 2, we obtain (6.6.1).
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6.6.1 Base change maps

Recall that for each & € Coh(O0x) and .# € Coh(0s) we have an 0s-module
morphism

RIp4(8) gy M — Ripy(E Qpy M) (6.6.2)

defined in Subsec. 6.5.1. Let us call it the (algebraic) base change map. The goal
of this section and next one is to give useful criteria about whether this map is an
isomorphism.

There is a geometric version of base change map. Let ¢ : Y — S be a holomor-
phic map of complex spaces. Let Z = X x Y be the fiber product with Cartesian
square

Xz
lN (6.6.3)
P

©
S <+—Y

Then we have the (geometric) base change map

V¥ (R, &) — RIG.(*&) (6.6.4)

equivalently
Rlp.& Qpg Oy — RG4(E Qpy O)

which is a natural £y-module morphism defined as follows. Choose any open
W < S. Then by (6.6.1), we have pullback map

Ot HY(p™H (W), 8) — HUF™Y7H (W), € @py 07)
Sheafifying this map gives an &'s-module morphism
R, (&) = u(R'$:(E Qoy O7))
which is equivalent to (6.6.4) because ¢* is the left adjoint of .. (Prop. 1.10.3).

Remark 6.6.1. Suppose that the following two cells are Cartesian squares of com-
plex spaces

Xl g g
“Dl l lg (6.6.5)
S < v Yy « 1y’
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Again we choose & € Coh(O). Consider the base change maps
P YN (RIpu6) — RIGu(076)
VA (RIS (7€) — RiBu(a™y* &)

The second one is the base change map for *& and the second Cartesian square.
It is not hard to check that the pullback of ¢

VO (R &) — v RIG(0* &)

composed with ¥ gives the base change map for & and the largest Cartesian
square

U oy ® /" (R1p,8) — R1B.(a*)*E)

6.6.2 Base change theorem

The main result of this section is the following theorem. For any Noetherian
ring A, we let Mod'(.A) be the abelian category of finitely-generated .A-modules.
We write mg; as m,.

Theorem 6.6.2 (Base change theorem). Let ¢ : X — S be a proper holomorphic map.
Let & € Coh(Ox), and assume that & is p-flat. Let ¢ € Z. Choose t € S. Then the
following are equivalent.

(a) The functor M — Rip.(& ®ps M) on Mod'(Os,) is right exact.
(b) The functor M — R7*1p, (8 ®p, M) on Mod'(Os,) is left exact.
(c) For each M, the base change map
Rip.(6) @y M — Ripy(& ®os M) (6.6.6)
is an isomorphism.
(d) For each M, the base change map (6.6.6) is an epimorphism.
(e) The canonical map Rip, (&) — Rip. (& /m&), is surjective.

(f) For any holomorphic map of complex spaces 1) : Y — S, if we let (6.6.3) denote the
Cartesian square, then for each y € 1~(t), the base change map

U (RYp, &), — RIG()*E), (6.6.7)

is an isomorphism.
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The notations in (6.6.6) are understood as follows. Recall that finitely-
generated 0g,;-modules are equivalently germs at ¢ of coherent &s-modules (cf.
Thm. 2.2.2). After shrinking S to a neighborhood of ¢, there is .# € Coh(0) such
that .#;, = M, Then we set

Rq@*(éa> ®ﬁs M = (Rq(p* (@@) ®ﬁs %)t = Rq(p* (éa)t ®ﬁs,t M
Rip. (& Qo M) = Rip, (& Qo M)

Definition 6.6.3. If any of the equivalent statements in Thm. 6.6.2 holds, we say
that & satisfies base change property in order ¢ at .

Remark 6.6.4. Suppose that & € Coh(Oy) satisfies base change property in order
q at t. Notice that @Z*é” is 0'z-coherent, and that @Z*éa is p-flat by Thm. 5.5.3. Then
)* & satisfies base change property in order q at any y € ¢ (¢).

Indeed, consider (6.6.5) where the two cells are Cartesian squares. We use the
notations of Rem. 6.6.1. Then by the equivalence condition (f) of Thm. 6.6.2, ®
and ¥ o 7*® (both are base change maps) are isomorphisms. Therefore ¥ is an
isomorphism. O

6.6.3 Preliminary discussions

We recall the following basic fact which can be proved by diagram chasing:

Lemma 6.6.5 (Four lemma). Suppose we have a commutative diagram in an Abelian
category

A > B > C > D
e .
A > B’ > O > D’

Suppose that the rows are exact.
(1) If o,y are epimorphisms and § is a monomorphism, then [3 is an epimorphism.
(2) If B, 6 are monomorphisms and c is an epimorphism, then ~y is a monomorphism.

Assume the setting of Thm. 6.6.2. Since M e Mod'(0s,), we have a short exact
sequence in Mod' (&)

0->N—-045 —>M—0 (6.6.8)
Since & is p-flat, we have a short exact sequence

0 EQu N = &EQpy 02, — EQpg M — 0
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in Coh(¢ ™! (W)) for some neighborhood W < S of t. Thus we have a commutative
diagram in Coh(p=1(W)):

Rig, (g) ®es N —— ngp*(g Qo N)

| |

Rip. (&) Qe 03, —— R, (€ ®py ﬁg,t)
lr (6.6.9)

Rq@* (éa) ®ﬁs M L) chp* (@(o ®ﬁs M)

~

0

where the columns are exact.

Observation 6.6.6. By Four lemma (or by easy diagram chasing), ® is surjective if
and only if I is surjective.

6.6.4 Proof of Thm. 6.6.2

Proof of (a)=(b). Let 0 - M' - M — M" — 0 be a short exact sequence in
Mod(@s,). Then since & is p-flat, we have a short exact sequence 0 — £®g, M’ —
E Qpy M — & ®g; M” — 0 and hence an exact sequence

Rl (& ®og M) = R1pu(€ @0y M) — Ripu(€ @05 M)
6—q>Rq+190*(5> ®ﬁs M/) — Rq+1g0*<®@ ®ﬁ5 M) — Rq+1g0*<(§ ®ﬁs M”)

So the second map is surjective iff 67 is zero iff the fourth map is injective. This
proves that (a) and (b) are equivalent. ]

Proof of (a)=(d). Choose a short exact sequence (6.6.8). By (a), the map I' in
(6.6.9) is surjective. So @ is surjective. [

Proof of (d)=(c). Again, we choose a short exact sequence (6.6.8). By (d), we
know that in the diagram (6.6.9), the map & is surjective. Since, similarly, the
tirst row is also surjective, by Four lemma, ¢ is injective. This proves (c). O

Proof of (c)=(a). The functor M — Rip,.(&) ®s, M is right exact. O
We have finished proving the equivalence of (a,b,c,d).

Proof of (d)=(e). Set M = Os;/m;. Then (d) says that R%p.(&):/mR%p.(&): —
Rip, (& /m &), is surjective. This proves (e). O
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Proof of (e)=(d). Step 1. We first prove that the base change map (6.6.6) is sur-
jective when mf M = 0 for some k € Z,. We prove it by induction on k. First
consider the case £ = 1. Then my M = 0. So M as an 0s;-module is equivalently a
module over 0g,/m; = C, which is finite direct sum of &s;/m,. So we may assume
without loss of generality that M = 0s;/m;. Then (e) clearly implies that (6.6.6)
is surjective.

Assume that (6.6.6) is surjective whenever m{ M = 0. Now consider case k + 1,
namely, assume M is such that m{™' M = 0. Since & is ¢-flat, we have a short
exact sequence

0_>(ga®ﬁs mt/\/l —>éa®ﬁs./\/l—>(f§a®ﬁs (/\/l/mt/\/l) — 0

Therefore, similar to (6.6.9), we have a commutative diagram

Rip.(€) @y MM ——— Rip, (& ®o; mpM)

{ {
Rip, (&) ®sy M ————— R, (€ ®py M)
{ {
Rq@*(g) ®ﬁs (./\/l/mt./\/l) — Rq@*(g ®ﬁs (./\/l/mt./\/l))
1
0

where the columns are exact. By case k, the first and the third rows are surjective.
Therefore, by Four lemma, the second row is surjective.

Step 2. We consider the general case. By Step 1, for each k, the map
R0, () @ M@ Osy/my — Rlp, (£ @ M ® Oy /my)

is surjective. Since its kernel is a finitely-generated 0s,/m{-module and hence has
finite C-dimension (Cor. 2.7.4), by Prop. 6.5.6, the inverse limit over k € N of the
above map is still surjective. Therefore, we have a commutative diagram

lim R, (£) @ M ® Og,/mf ——— lim R%¢, (6 @ M) ® Os,/m}

keN keN

~

lim R, (6 @ M ® O, /m})
keN

where the lower left arrow is surjective. By Grauert comparison Thm. 6.5.4, the
lower right arrow is injective. Therefore the horizontal arrow is surjective. Thus,
the base change map R%.(&) @ M — Rip,(& ® M) is surjective by Lemma
6.6.7. u
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Lemma 6.6.7. Let (A, m) be a Noetherian local ring. Let ¢ : M — N be a morphism of
finitely-generated A-modules. If the induced map

@ : lim M/m*M — lim N /m* N

keN keN
is surjective, then  is surjective. If ¢ is injective, then  is injective.
Proof. Suppose that ¢ is surjective. Since we have a commutative diagram

lim M /m* M AN lim N /m* A\
keN keN

| |

M/moM —— N/mN

where the vertical arrows are surjective, M/mM — N /mN is surjective. So ¢ is
surjective by Nakayama'’s lemma.

Suppose that ¢ is injective. Choose £ € Ker(y). Then & corresponds to the zero
element of lim M/m* M. So § = 0 by Krull’s intersection Thm. 1.4.4. O

Proof of ()=(e). LetY = Specan(0s/m;) and let ¢ : Y — S be the inclusion map.
Let y = t. Then the geometric base change map (6.6.7) becomes

Rlp.& Qg Osi/my — Rlp (8 Qpy Osi/my)
whose surjectivity clearly implies (e). O

Proof of (c)=(f). Step 1. Consider the Cartesian square

X+ z

(pl l (6.6.10)
S« y

We consider the case that Y and S are (non-necessarily reduced) single points.

Then by Cor. 2.8.3, we have a natural equivalence of O'x-algebras

0¥ Oy ~ 1,0y (6.6.11)

We identify Y and S as topological spaces through the map 1. Then Z can be
identified with X as topological spaces through . Now there are two different
sheaves of local C-algebras on X = Z, namely 0x and 6. And we have a mor-
phism Ox — 07 so that 0, is an Ox-algebra. Similar things can be said about S
and Y.
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Now (6.6.11) reads ¢* 0y ~ 05 (as an equivalence of Ox-algebras). By replac-
ing 07 with ¢* 0y (namely, defining ¢* 0y to be the new structure sheaf of 7), we
may assume Oy = ¢*Oy.

Thus, for & € Coh(OY),

RIG,(0* &) = R1p.(E ®oy Oz) = Ripu(E ®py 9 Oy) = Rip.(E ®py Oy)

Thus the geometric base change map ¢*(Rip,&), — RIG,(1*&), is equal to the
algebraic one

Rip, (&) ®gs Oy — Rip,(& Qe Oy)

which is an isomorphism by (c). This proves (f) in this special case.

Step 2. We consider the case that Y is a single point but S is not necessarily
so. Write Y = {y}. Let T" = Supp(¢) (recall Def. 2.3.3). So T" equals {t} (where
t = 1(y)) as a set, and Or = Os/J where J = s o,(1Oy). So T is a closed
complex subspace of S, and ¢ : Y — S equals .o where a : Y — T'is the restriction
of ¢ (cf. Thm. 1.4.8) and ¢ : T' — S is the inclusion map.

Thus, we have commutative diagrams

X +—— o HT) +— Z

(O

St ST ¢+ 2 Y

where the two cells are Cartesian squares, and the largest rectangle is equal to
(6.6.10). The (geometric) base change map for & and the first cell is

RqQD* (g) ®ﬁs ﬁT - Rq(p* (ég ®(7’s ﬁT)

which, by (c), is an isomorphism if we shrink S to a neighborhood of ¢. We claim
that the base change map for &|,-1(r) = & ®¢; Or and the second cell is an iso-
morphism. Then the base change map for & and the largest rectangle (namely
(6.6.10)) is an isomorphism by Rem. 6.6.1, which finishes the proof of (f) in this
case.

To prove the claim, notice the commutative diagram

R, (6) ®os Or Qo Or/tip; ————— Rip.(& Ry Or) Qo Or/tip,
R, (& Qpy Or o, Or/myy)

where the horizontal and the lower left arrows are isomorphisms by (c) (after
shrinking S). Thus the lower right arrow is an isomorphism. Thus & ®g4, Or
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satisfies base change property-condition (e) in order g at t. Therefore, by Step 1, it
satisfies base change property-condition (f). This proves the claim.

Step 3. Choose any k € Z,, let Y’ = Specan(0y/m}.,), and lety : Y' — Y be
the inclusion map. We consider the Cartesian squares
X+t Z sy
wl l& lﬁ
Sl vy

and let ® and ¥ be as in Rem. 6.6.1. By Step 2, ¥ o 7*®, the base change map for
& and the largest Cartesian square, is an isomorphism. We have

Ve =2@1: " (Rp.&), ® ﬁxy/m])f/,y — R'Q, (J*g)y ® ﬁY,y/mI;/,y
U RIQ.(¢*&), ® ﬁY,y/mllc/,y — RIQ, (w*g/ml;,yw*g)y

Taking inverse limit over all k, we have a commutative diagram

lim ¢ (R0, &), ® ﬁY,y/mlicf,y — lim R'g, (J*g)y ® ﬁY,y/mggf,y

k k
lim RI3, (4" & /mf, 0* &),
k

where the lower left arrow is an isomorphism. By Grauert comparison Thm. 6.5.4,
the lower right arrow is injective. Therefore the horizontal arrow is an isomor-
phism. Therefore, by Lemma 6.6.7, the stalk map

D, : W(wa*éa)y - Rq@*@*@@)y

is an isomorphism. This finishes the proof of (f). O]

6.6.5 Applications

Let ¢ : X — S be a proper holomorphic map. Let & € Coh(€x), and assume
that & is p-flat. Letge Z and t € S.

Definition 6.6.8. We say that & is cohomologically flat in order g at ¢, if & satisfies
base change property in orders g and ¢ — 1 at ¢.

Proposition 6.6.9. The following are equivalent.
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(a) & is cohomologically flat in order q at t.
(b) The functor M — Rip, (& ®ps M) on Mod' (05s,,) is exact.

(c) & satisfies base change property in order q at t, and Rip, (&), is a (finite-rank) free
Os-module.

Proof. (a)<(b) is obvious.

(c)=(b): Since Rip, (&), is Us,-free, the functor M — Rip, (&), ® M is ex-
act. Since & satisfies base change property in order ¢, R/, (& ® M) is naturally
equivalent to Ri¢,(&); ® M, and hence is exact over M. This proves (b).

(a,b)=(c): Rip.(&):®M is naturally equivalent to Ry, (& ®.M), and the latter
is exact over M. So R, (&) ® — is exact on Mod'(&s,). By Exp. 5.3.11, we have
Tor?>" (R, (&), Os./I) = 0 for each ideal I < Ogs;. Therefore, by Prop. 5.4.1,
Rip, (&), is a flat Os;-module. So it is free by Thm. 5.4.2. O

Recall that X; = ¢ '(t) = Specan(Ox/mg;0x). We now give an extremely
useful criterion for cohomological flatness.

Theorem 6.6.10. Suppose that H(X;, &|x,) = 0. Then Rp,(&): = 0, and & is coho-
mologically flat in order q at t.

The semicontinuity theorem 6.7.4, to be proved in the next section, implies that
if H1(Xy, &|x,) = 0, then HY(X, &|x,) = 0 for each s in a neighborhood of ¢. Then
this theorem implies that & satisfies base change property in order ¢ — 1 on that
neighborhood.

Proof. The canonical map from R%,(&); to Rip.(&/mi&): = HI( Xy, &|x,) is sur-
jective since the latter is 0. So & satisties condition (e) of Base change Thm. 6.6.2.
Thus & satisfies base change property in order ¢ at t. By (c) of Thm. 6.6.2, the map

Rq@*(g)t ®ﬁs,t ﬁS,t/mt - Rq¢*(5 ®eog ﬁS/mt)t =0

is bijective. Hence Ri¢,(&);/mRip, (&) = 0. So Rip,.(&), = 0 by Nakayama’s
lemma. Therefore & is cohomologically flat in order ¢ at ¢t by Prop. 6.6.9-(c). [

Corollary 6.6.11. Assume that H*"' (X, &|;) = HI7Y(X;, &x,) = 0. Then Rip, (&)
is a finite-rank free Os ,-module, and the canonical map

ngp* (g) ’t - Hq(Xt> éa|Xt)
is an isomorphism of C-vector spaces.

Proof. By Thm. 6.6.10, & satisfies base change property in orders ¢ — 1,¢,¢ + 1 at
t. So it is cohomologically flat in order ¢ at . O
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6.7 Semicontinuity and base change theorem

In this section, we let ¢ : X — S be a proper holomorphic map of complex
spaces, and let & € Coh(0x) be p-flat.
The material of this section is adapted from [GR-b, Sec. 10.5].

Remark 6.7.1. Choose any precompact open subset W < S. Then there exists
¢ € N depending only on ¢ : X — S (but not on &) such that for every ¢ > qo,
Hi(p 1 (V),&) = 0and H(X;,&|x,) = 0 whenever V is a Stein open subset of W
and t € W. In particular, for each t € W, Rip, (&), = 0.

Proof. Since ¢ is proper, we can cover the compact set ¢~ (W) by finitely many
Stein open subsets of X, denoted by 4 = (U,)qes. Let go + 1 be the cardinality of
I. Then for each Stein open subset V. W, o 1 (V) nth = (o1 (V) N Uy )pes is a
Stein cover of ¢'(V). (Recall Exp. 6.4.7). Therefore, by Leray’s Thm. 6.4.1 and
Cartan’s Thm. B (Thm. 6.4.4), wehave H* (o 1 (V), &) = H*(p 1 (V)n4, &). By the
alternate condition of Cech cochains, if ¢ > ¢y then C%(¢~1(V) n 4, &) = 0. Hence
Hi(p™Y(V),&) = 0. Likewise, for ¢ > qo and t € W we have HY(X,;,&|x,) =0. [

Thanks to the above observation, for each t € S we can define the character of
the sheaf &'|x, to be

V(Xe, Elx) = D) (~1)7 dime HI(X,, & x,)

qeN
which is a finite sum on each precompact Stein open subset of S.

Theorem 6.7.2 (Invariance of characters). The character function
teS— x(X,&|x,)
is locally constant.

We will not use this theorem in this chapter, and we refer the readers to [BS,
Sec. II1.4] for the proof. In the next chapter, we will prove this result under the
assumption that ¢ is projective. (See Thm. 7.3.10.)

Definition 6.7.3. We say that & satisfies base change property (resp. is cohomo-
logically flat ) in order ¢, if it does so at every ¢ € S.

6.7.1 Semicontinuity theorem

Theorem 6.7.4 (Semicontinuity theorem). For each q € Z, the dimension function
d:te S — dimec HY(X;, &x,) (6.7.1)

is upper-semicontinuous.
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We divide the proof into several steps.

Proposition 6.7.5. Let p € Z, and assume that Ry, (&) is locally free for every q = p.
Then for every q = p, & is cohomologically flat in order q, and the dimension function
t e S — dim H1(X;, &|x,) is locally constant.

Proof. Shrink S to any precompact Stein open subset. Then by Rem. 6.7.1, this
lemma is clearly true for sufficiently large ¢. Now choose ¢ > p and assume that
& is cohomologically flat in order ¢ + 1. Then & satisfies base change property
in order ¢ and, as Ri¢. (&) is locally free, & is cohomologically flat in order ¢ by
Prop. 6.6.9.

Since R, (&) is locally free, its fibers have locally constant dimensions. By
base change property, H/(X;,&|x,) ~ Rip.(&)];. So H(X,, &|x,) is locally con-
stant with respect to t. O

Lemma 6.7.6. Suppose that 1) : Y — S is a surjective finite holomorphic map of (non-
necessarily reduced) complex spaces. Let

X
g
s

be the Cartesian square. Suppose that the semicontinuity theorem holds for s namely,

yeY — dimHY(Z,, V&) z,) 1s upper-semicontinuous. Then the semicontinuity theo-
rem holds for &.

NN

—
¢
—

Proof. For each y € Y, since we have Cartesian squares
X 2

Z < > Ly
1]
S Y < >y

where the largest Cartesian square is also equivalent to

(]

)
S

X < Xw(y)

1

S ¥(y)
we have equivalences of vector spaces
HY(Zy,0*Ez,) ~ H( Xy, Elx,,) (67.2)
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Choose any t € S, and let r = dim H4(X,, &|x,). Then ¢~'(¢) is a non-empty
finite set. By (6.7.2), for each y € ¥~!(t), we have dim H%(Z,, J*g’\zy) = r. Since
)*& satisfies the semicontinuity theorem, there is a neighborhood V' < Y of ¢)~1(¢)
such that for each ¢’ € V we have dim H9(Z,,, J*ﬁ\zy/) < r. By Prop. 2.4.1, there is
a neighborhood W c S of t such that )~ (1) c V. Then by (6.7.2), for each t’ € W

we have dim HY(Xy, &|x,) < r. This proves that & satisfies the semicontinuity
theorem. u

The starting point of the proof of Semicontinuity theorem is the following spe-
cial case:

Lemma 6.7.7. The Semicontinuity Thm. 6.7.4 holds whenever S is a smooth 1-
dimensional complex manifold, i.e. a Riemann surface.

Proof. We may well assume that S is an open subset of C. Let z € ¢(C) be the
standard coordinate function of C. We note that for each ¢ € S, the map

Of : Ripu(&)], — HY(X,, &x,) (6.7.3)
is injective. Indeed, consider the short exact sequence
x (z—t)
0— ﬁs _— ﬁs — ﬁs/m&t — 0

as a special case of (6.6.8). Then (6.6.9) becomes the commutative diagram

Rip, (&) — » Rip, (&)
x (z—t) lx(z—t)
Rip, (&) = » Rlp, (&)
ng (6.7.4)

@
R, (&) ®ey Os/mgy —— R, (& ®py Os/mgy)

~

0

where the columns are exact. The map @7 in the above diagram is precisely the
map @ in (6.7.3). And ®{ is injective by Four Lemma 6.6.5.

By Rem. 6.7.1, for sufficiently large ¢ we have R, (&) = 0 and H9(X,, &|x,) =
0 for all ¢ € S. Thus, by Thm. 3.8.3, there is a nowhere dense analytic subset A
of S such that R, (&) is locally free outside A for all ¢. By Ritt’s Lemma 3.10.7,
dim A = 0. So A is an isolated Hausdorff space, and hence is a discrete subset of

S.
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By Prop. 6.7.5, the dimension function
d:teS—dimHY (X, Ex,)
is locally constant on S\ A. It is clear that the function
r:teSw— dim R, (&)

is upper-semicontinuous (cf. Cor. 1.2.19). For each ¢ € A, choose a neighborhood
W < S of t such that W n A = {t} and that r|y < r(¢). Since the map ®{ in (6.7.3)
is injective, we have r(¢) < d(¢). By Prop. 6.7.5, & satisfies base change property
in all orders outside S\A. So d = r outside A. Therefore d|; < d(¢). This proves
that d is upper-seminicontinuous at every point of A4, and hence everywhere on
S. O

Let us make some comments on the above proof, which will be helpful for the
following proof of base change theorem.

Remark 6.7.8. As noticed in Obs. 6.6.6, by Four Lemma, the map ®{ in (6.7.3)
is surjective iff the map I'{ in (6.7.4) is surjective. Since we have a long exact
sequence

Fg X (z—
RIp. () ~5 RIp, (6 ®py Os/mg )y — R0, (&) “E-% R (6),

induced by 0 — & ® O RlCRONC ®Os - & QR Og/mg; — 0, we see that I'} is
surjective iff (z—t) is a non zero-divisor of R7 !¢, (&),. And the latter is equivalent
to that R7™ (&), is Og,-flat (by Cor. 5.6.7 or by Slicing Criterion 5.6.6), and is
equivalent to that R, (&), is free of finite-rank (Thm. 5.4.2). We conclude that

®{ is surjective (and hence bijective) <= R, (&), is Os,-free  (6.7.5)

Remark 6.7.9. Suppose that the dimension functiond : ¢t € S — dim H(X,, &|x,)
is locally constant. Using the notations in the last paragraph of the proof of
Lemma 6.7.7, for each ¢t € A, the neighborhood W can be chosen such that d is
constant on W. So for each s € W\{t} we have d(t) = d(s) = r(s) < r(¢). Since
r < d, we conclude d(¢) = r(t). Sod = r on A, and hence on S. So 7 is bijective
forallt € S. It follows that & satisfies base change in order q. We conclude that

d is locally constant = & is bijective forallt € S (6.7.6)

Proof of Semicontinuity Thm. 6.7.4. It suffices to assume dim .S < +o. We prove
the theorem by induction on n = dim S. Since red(S) — S is finite and surjec-
tive, by Lemma 6.7.6, it suffices to assume that S is reduced. Similarly, since the
normalization S — S is finite and surjective, by Lemma 6.7.6 again, it suffices to
assume that S is (reduced and) normal. By Prop. 4.10.2, S is then a disjoint union
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of connected (equivalently, irreducible) normal open subspaces. So we may well
assume that S is normal and connected.

Assume dim S < 1. If we assume that S is normal and connected, then by
Thm. 4.9.4, S is either a single reduced point or a connected Riemann surface.
Then Thm. 6.7.4 follows from Lemma 6.7.7.

Choose n € Z, and assume that Thm. 6.7.4 holds whenever dim S < n. Now
assume that dimS = n + 1 and S is normal and connected. Note that by Prop.
4.9.1, S has pure dimension n+1. By Thm. 3.8.3 and Prop. 6.7.5, there is a nowhere
dense analytic subset A of S such that Ry, (&) is locally free outside A for all g.
By Prop. 6.7.5, the dimension function d in (6.7.1) is locally constant on S\A. By
Prop. 4.10.1, S\ A is connected. So

d is a constant on S\ A.

Choose any t € A. It remains to show that d|y < d(t) for some neighborhood
W of t. By Ritt’s Lemma 3.10.7, dim A < n. Thus, by induction on case n, we can
find a neighborhood W such that

dlw~a < d(t).

We claim that we can shrink W to a smaller neighborhood of ¢ such that there
exists f € Os(W) satisfying that the germ (N(f),t) is not inside the germ (A, ),
and that the germ f; is a non-zero element of 0. (Recall that N (f) is the zero set
of f.)

Suppose this claim is true. Then f; is a non zero-divisor of s, because O
is normal and hence an integral domain (Prop. 4.9.1). Then by Active Lemma
3.10.3, we have dim; N(f) = dim;S — 1 = n. By Cor. 3.9.4, we may shrink W
further so that dim N(f) = n. By assumption on case n, we may shrink W so that
d|wn~n(p) < d(t). Since W n N(f) ¢ A n N(f), there exists p € (W n N(f))\A.
Then since d|g 4 is constant, we have d|s\4 = d(p) < d(t). This, together with
d|wn~a < d(t), shows d|y < d(t). The proof is then finished.

Let us prove the claim. Suppose that dim; A > 0. Then by Rem. 3.10.5, 04, =
Usi/# 4 contains a non zero-divisor g. We lift it to an element f € Os;. So
N(g) = N(f)n A. By Active Lemma, we have dim; N(f)n A = dim; A—1<n—1.
So (N(f),t) is not inside (A, t), otherwise we have

dim; N(f) = dimy N(f) nA<n—1=dim; S —2

which is impossible since, according to the definition of dimensions (Def. 3.9.1),
we must have dim; N(f) > dim; S — 1.

Suppose dim; A = 0. We shrink W and choose f € 0s(W) such that f; # 0.
Then since dim; N(f) = n > 0 = dim; A, (N(f),t) cannot be inside (A, t). Thus, in
both cases we have proved the claim. O
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6.7.2 Base change theorem

Theorem 6.7.10 (Grauert base change theorem). Let ¢ € Z. Consider the following
statements:

(a) & is cohomologically flat in order q.
(b) The dimension function
d:teS—dimc H(Xy, &x,) (6.7.7)
is locally constant.
Then (a)=(b). If S is reduced, then (b)=(a).

Proof of (a)=(b). By Prop. 6.6.9, Rip,(&) is locally free, and its fiber at ¢ is iso-
morphic to H9(X;, &|x,) since & satisfies base change property in order ¢. So (b)
follows. O

We shall only prove (b)=(a) in the case that S is smooth. See [BS, Sec. II1.4] for
the proof of the general case.

Lemma 6.7.11. Assume that S is smooth and d is locally constant. Then Ry, (&) is
a torsion free Us-module.

Proof. Recall that the torsion sheaf of any coherent sheaf is coherent by Cor. 3.14.5.
Assume that the complex manifold S has pure dimension. We prove the lemma
by induction on dim S. If dim S = 0, then the lemma is trivial. If dim S = 1 then
R7 (&) is locally free by (6.7.5) and (6.7.6). So it is torsion free.

Now assume that the lemma holds whenever dimS < n (n € Z,). Assume
that dim S = n + 1. Let .7 be the torsion sheaf of .# := R?"'¢,(&). Suppose that
7 is non-zero. We assume for simplicity that S is an open subset of C"*! and
Ty # 0, and we shall find a contradiction.

Step 1. Since . is locally free outside a nowhere dense analytic subset of S
(Thm. 3.8.3), the support A = Supp(.7) must be a nowhere dense analytic subset
of S. By our assumption, 0 € A. By shrinking S, we assume that .S is an open ball
centered at 0. Then there must be a hyperplane H of S passing through 0 whose
intersection with A is nowhere dense in H: otherwise, by Prop. 4.11.2, for each H
wehave An H = H, and hence A = S (here we use the fact n+ 1 > 1), impossible.
By an invertible linear transform, we assume that H = N(z1) = {t € S : z(t) = 0}
where (z1, ..., 2,41) are the standard coordinates of C"*1.

So A n N(z) is a nowhere dense analytic subset of N(z;). Note that

Supp(T /21 ~ T) < Supp(T) N N(z1) = An N(z)
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We consider .7 /z.# n 7 as a coherent sheaf on H = N(z;). Then by Prop. 3.14.3,
T oM n T is the Oy-torsion sheaf of itself. In other words, every element of
T |z M ~ T is a torsion element of 0.

D) z1M0 N Ty, the stalk of T /214 ~ T at 0, is non-zero. Otherwise, we have
T < z1.My. Every s € ) can be written as 2,y for some v € .#, and since s kills
a non-zero element of 0, so does ~. This implies 7 < 2;.%, and hence .7, = 0
by Nakayama’s lemma, which is impossible.

Step 2. To summarize, we have shown that .7/ z.#, n 7, is a non-zero torsion
Ono-module. It is clearly a submodule of .#/z.#, the stalk at 0 of

M Rpy Os/2105 = R1 0 (8) Qpg Os/2105
We claim that the canonical map
©: R 0.(8) ®os Os/2105 — R 0. (8 ®ag O5/2105) = R 0.8 g-10m))

is a monomorphism. Then the stalk at 0 of R*"'y,(&|,-1(s)) has non-zero
Opo-torsion elements. So the Oy-module R, (&|,-1(m)) is not torsion free.
But the function t € H — dim H?(X}, &|x,) is locally constant. So by assumption
on case n, R, (&|,-1m)) is Oy-torsion free. This gives a contradiction.

Step 3. The argument that @ is injective is similar to that in the proof of Lemma
6.7.7: the short exact sequence

0— Os =25 Og — Og/2.05 — 0 (6.7.8)

gives, by (6.6.9), a commutative diagram where the columns are exact

RPp. (&) — » RPpu (&)
RPo, (&) = y RPp.(&)
lr (6.7.9)

RPp, (&) ®ps Os)2105 —2— RPo, (€ ®ps Os/2105)

v

0

and p = ¢ + 1. So by Four lemma, & is injective. O

Proof of Thm. 6.7.10 (b)=(a) when S is smooth. We assume without loss of gen-
erality that S is an open subset of C". Assume that (b) holds. The short exact
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sequence (6.7.8) gives a commutative diagram (6.7.9) with exact columns, where
we choose p = ¢q. We also have a long exact sequence

RYp, (&) 5 RPp.(E ®py Os/2105) — R, (&) 225 R1* o, (&)

where the endomorphism xz; on Ry, (&) is injective because Ry, (&) is tor-
sion free by Lemma 6.7.11. Therefore, I' is surjective. So by Five lemma, the map
® in (6.7.9) is an isomorphism. Thus, noting that N(z;) = 0 x C"!, we have a
canonical isomorphism

Rlp.(&)]oxen—1 =~ Rip, (5‘@_1(0><C"_1))

Thus, an easy induction on n shows that the canonical map Ri¢.(&)|y —
R, (&|x,) = HY(Xo,&|x,) is an isomorphism. The same argument shows that
for each t € S, the canonical map

Rlp (&) — HI( X}, &x,) (6.7.10)

is an isomorphism. This shows that & satisfies base change property in order ¢
and that, since d is locally constant, the function ¢ € S — dim RYp,(&)|; is locally
constant. Thus R, (&) is locally free by Prop. 1.3.15. Therefore, by Prop. 6.6.9,
& is cohomologically flat in order g. O

Thm. 6.7.10 is often used in the following form:

Corollary 6.7.12. Let ¢ € Z. Assume that S is smooth and the dimension function
d:teS— dimHYX, &x,) is locally constant. Then R, (&) is locally free, and the
canonical map (6.7.10) is an isomorphism of C-vector spaces for all t € S.

In other words, the conclusion of the above corollary is that all H¢(X;, &|x,)
(where t € S) form a holomorphic vector bundle over S, namely R%p.(&).
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Chapter 7

Projective morphisms

A holomorphic map ¢ : X — S can be viewed as a holomorphic family of
complex spaces: the family of the fibers X; = ¢~!(t) = Specan(0x/mg,0x) for all
t € S. In this chapter, we study projective families, i.e., a family whose fibers can
be embedded into a projective space PV in a coherent way.

We use the notation that Xy = ¢ (W) if W is an open or closed complex
subspace of S.

7.1 Definitions and basic properties

7.1.1 Definitions
Definition 7.1.1. The complex projective space PV is CN*1* / ~ where
CN*Lx .= cNI\ {0} (7.1.1)

~ is the equivalence relation on C¥** such that for any £ = (20, 21, ..., 2y) and
n = (wo,wq, ..., wy)

E~n — X e C* such that £ = \p

The equivalence class of & = (z,21,...,2n) In PV is written as [¢] =
[20,21,...,2n]- Foreach0 < i < N, let
Qi = {[20,21, R ,ZN] 12 F O} (712)

Then PV becomes a complex manifold defined by the biholormorphisms
wi; - Qz = CN
<0 Zi—1 i+l ZN (7.1.3)
(20,21, -y 2en] — | — -1 , ey —

)
Zi Zi Zi Zi

We thus have a surjective holomorphic map

m: CNTLX PN s [€] (7.1.4)
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Remark 7.1.2. Let L be a 1-dimensional complex vector space. Then for each ¢, 7 €
L,if n # 0, we let {/n denote the unique complex number whose multiplication
with n equals . Thus, if &, ..., {x € L, and if some of them (say ¢;) is nonzero, we
can define

ol = [ 58] P

Clearly, this definition is independent of the choice of nonzero ;.

Definition 7.1.3. More generally, let S be a complex space. Let

PY =P¥ xS
Then we have a proper map
pr=prg:PY - S (7.1.5)
projecting onto the S-component. We let
Cyh =CNV*b* x 8 (7.1.6)
and abbreviate 7 x 1g to 7, namely,
T=mx1lg: (CJSVH’X — Py (7.1.7)
Exte [E] xt
We let
Qig=Q; xS (7.1.8)
Note that
w x 1g: Qg —>CY x S (7.1.9)
Let (; be the standard coordinate
G:CsT = C (7.1.10)

(20, ...y 2N) X t— 2

Definition 7.1.4. Let X, S be complex spaces. A holomorphic map ¢ : X — S
is called a family of (closed complex) subspaces of P if there exists a closed
embedding u : X — P4 such that the following diagram commutes:

Xf—>IP’N

\ / (7.1.11)

Clearly ¢ is proper since pr and y are so. If S is the single reduced point, we say
that X is a projective complex space.
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7.1.2 Basic facts about morphisms of proper families

Consider a commutative diagram of holomorphic maps of complex spaces

X —r 5y

\ / (7.1.12)

Note that for each t € S, the restriction p|x, : X; — Y can be further restricted to
i x, : Xy — Y, by Thm. 1.4.8.

Lemma 7.1.5. Assume that ) is proper. Then  is proper iff 1 is proper.

Proof. Clearly ¢ is proper if 1 is so. Now assume that ¢ is proper. Let K < Y be
compact. Then p~*(K) is a closed subset of o (¢)(K)) where the latter is compact
because ¢ is proper. O

Lemma 7.1.6. In (7.1.12), for each t € S, the restriction u|x, : X; — Y; is canonically
equivalent to the pullback of i : X — Y along the inclusion Y, — Y.

Proof. Recall that Y; has structure sheaf 0y /mgtﬁy Thus, by Prop 1.12.1, the

pullback of 1 : X — Y along Y; — Y is ,u]X Xt — Y, where Xt is a complex
subspace of X defined by

)?t = Specan(Ox/mgOy - Ox) = Specan(Ox /mg,Ox) = X,
]

Theorem 7.1.7. In (7.1.12), assume that p and ) are proper. Let t € S. The following
are true.

1. Suppose that the restriction p|x, : X, — Y, is finite (resp. a closed embedding).
Then there is a neighborhood W ot t such that ji|x,, : Xw — Yw is finite (resp. a
closed embedding).

2. Suppose that ¢ is flat, and that the restriction p|x, : X; — Y, is a biholomorphism.
Then there is a neighborhood W ot t such that ji : Xy — Yw is a biholomorphism.

Proof. Part 1-(a). Suppose that |y, : X; — Y; is finite. Then for each y € Y}, we
have that ;= !(y) = ¢} (u(y)) = X;, and hence p~(y) = (u|x,) (y) is a finite set
since | x, is finite. Thus, by Thm. 2.7.2, there are neighborhoods V,, of y € ¥ and
U, of 1~ (y) in X such that p(U,) < V,, and that  restricts to a finite map U, — V.
Since p is proper (by Lem. 7.1.5) and hence closed (by Prop. 2.4.10), by Prop.
2.4.1, we may assume that U, = p~(V,). Since Y} is compact, it can be covered by
Uy,...,U,, such that 4 is finite when restricted to each p~*(U,,) — V,,. Since ¢ is
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proper and hence closed, by Prop. 2.4.1, there is a neighborhood W < S of ¢ such
that Yy = ¢ (W) is a subset of V,, U --- U V. Then, using Rem. 2.4.2, we see
that p restricts to a finite map Xy n p=1(V,,) — Y n V,, for every i, and hence
that u|x,, : Xw — Yy is finite.

Part 1-(b). By Part 1-(a), we can shrink S to a neighborhood of ¢ and replace
XY by ¢71(5),¢(S) respectively so that j is finite. Then by Thm. 2.7.1, 1. Ox
is a coherent 0y-module.

Now we assume that y|x, is a closed embedding. Then for each y € Y; we
have y~'(y) = {z} for some z € X;. We claim that g : X — Y is an immersion
at z. Indeed, since p|x, is an immersion at z, the 0y, ,-module morphism ut
Oy, — Ox,/mg;Ox, is surjective. By the commutativity of (7.1.12), we have
mg;Ox, © My,Ox,. So p# gives an epimorphism of Oy ,-module morphism
Oyy — Ox /My, Ox,. Since 1, Ox is Oy-coherent, Ox , is a finitely generated
Oy ,-module. Therefore, by Nakayama’s lemma, p# : Oy, — Ox, is surjective.
This proves the claim.

In other words, we have proved that the morphism of coherent &y-modules
u* . Oy — u.Ox is surjective at every point of Y;. Let J = Ker(u#) =
e, (11sOx), which is a coherent Oy-ideal. Then u# : Oy/J — u,Ox is an
isomorphism everywhere on Y;. Thus, by the properness of 1, we can shrink S to
a smaller neighborhood of ¢ so that u# : 0y /J — p.Ox is an isomorphism. Note
that this x# is induced by the morphism of finite holomorphic map indicated by
the commutative diagram

X —2— Specan(6y/T)

\ / (7.1.13)

Thus, by Thm. 293, p gives a biholomorphism of complex spaces
X — wp(X) = Specan(0y/J). This proves that u© : X — Y is a closed em-
bedding.

Part 2. By shrinking S, we assume that  : X — Y is a closed embedding.
Assume that ¢ is flat and p|y, : Xi — Y is a biholomorphism. We claim that for
each z € X;, the map ¥ : Oy, — Ox, is bijective. Then the same argument as in
the proof of Part 1-(b) proves that ;s : X — Y is a biholomorphism after shrinking
S.

Let J = Ker(u#) as in Part 1-(b). Then we have an exact sequence of Oy,-
modules

0—>‘7y—>ﬁy7y—>ﬁ)(’x—>0

Tensoring this exact sequence with 0s;/mg, and using the flatness of ¢, we obtain
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an exact sequence of 0g;-modules
0 — Jy/msJy — Oy,y/mg Oy, — Ox /Mg, Ox , — 0

Since pi|x, : X; — Y; is a biholomorphism, the map Oy, /mg;:0y,, — Ox ,/ms:Ox
is bijective. So J,/mg.J, = 0. Similar to the proof of Part 1-(b), we have J, = 0
by Nakayama’s lemma, and hence J = 0 after shrinking S. O

Corollary 7.1.8. In (7.1.12), assume that ¢ and 1) are proper. Consider the following
statements:

(1) p: X — Y is finite (resp. a closed embedding).
(2) Foreacht e S, the restriction p|x, : X; — Y, is finite (resp. a closed embedding).
(a) p: X — Y isa biholomorphism.
(b) Foreacht € S, the restriction yu|x, : X — Y; is a biholomorphism.
Then (1)<(2) and (a)=(b). If v is flat, then (a)<(b).

Proof. (1)=(2) and (a)=(b) follow from Lem. 7.1.6 and the fact that base change
perserves finiteness (Prop. 2.4.11), closed embeddings (Prop. 1.12.1), and biholo-
morphisms. The other directions follow from Thm. 7.1.7. O

7.2 Very ample line bundles

Let X, S be complex spaces.

7.2.1 The line bundle O (n)

Definition 7.2.1. An 0x-module .Z is called invertible (also called a line bundle)
if Z is locally free of rank 1. In this case,

L= LY = S (L, Ox)

satisfies that there is a natural 0'x-module isomorphism . ¥®.Z" — Ox.lfne Z,,
then £" = £®" is understood in the obvious way, and

g@(—n) _ (g—l)@n
We understand .Z®° as 0.

Recall Def. 7.1.3 for the notations.
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Definition 7.2.2. For each n € Z, define Opy(n) to be an Opy-submodule of

Ty ﬁCngl,x such that foreach0 < i < N,

Opy (n) s is generated (freely) by ¢

One checks easily that Opy (n) is well-defined (i.e. &(n)o,«xs and &(n)|o,xs agree
on (£; N €2;) x S) and is invertible. Note that there is a natural isomorphism

Opy = Opy(0) [ for

We abbreviate Opy (n) to &(n) (and in particular Opy (0) to &) when no confusion
arises

Remark 7.2.3. For each m,n € Z, we have a canonical isomorphism of ﬁpg-
modules

O(m) g,y O(n) = O(m +n) (7.2.1a)
S
whose restriction to each §2; x S is given by

O(m) (s x §) ®oa,ns) O(n)( x S) = Glm +n)(Q x 5)

72.1b
@ (T (72.16)

In particular, we have canonical isomorphisms of py-modules

O(n)’ ~0(-n)  O(n)=0o(1)*"

7.2.2 Very ampleness

Remark 7.24. If . is a line bundle on X, and if {,n € Z(X) are such that 5
is nowhere zero on X. (Namely, for each x € X, the element 7(z) € £ /mx ,.Z is
nonzero.) By Nakayama’s lemma, 7 is the (free) generator of .Z. Then £/ denotes
the unique element of &(X) whose multiplication with 7 equals £. Clearly

§,.6_G+6 €
n n n n

n_s
A
if n, 1) are nowhere zero.

The following construction is a generalization of Rem. 7.1.2.

Definition 7.2.5. Let .Z be a line bundle on a complex space X. Let N € Z,.
Let &, &1, ...,&6n € Z(X). Assume that &, ..., ¢y have no common zeros on X.
Namely, for each x € S, there is 1 < i < N such that the element ¢;(z) € £ /mx ,.Z
is nonzero. (Hence, by Nakayama’s lemma, there is a neighborhood U of x such
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that 2|y is generated (freely) by ¢;.) Then there is a well-defined holomorphic
map

(6] = [€o,- -, En] : X > PV (7.2.2a)

such that if U is a nonempty open subset of X on which ¢; vanishes nowhere (and
hence is a free generator of .Z|;), we have that [&](U) < €, and (recall Thm.
1.4.1)

w; o [&]
equals <%, e &&1, %, L %) (7.2.2b)

Proposition 7.2.6. Assume the setting of Def. 7.2.5. Assume that ¢ : X — Sisa
holomorphic map. Define a holomorphic map

. N
,iU—C

p=[]ve: X P (7.2.3)

which clearly satisfies ¢ = prg o . Then there is a unique O x-module isomorphism

U pwropy(1) — & (7.2.4a)
determined by
Wi, ¢ M*(ﬁﬂ:gm 0us) T Ll (7.2.4b)
WG =&
forall 0 <i < N.
It is clear that
P Q) = [6]7H (%) = {r € X : &(x) £ 0} (7.2.5)

and that the diagram (7.1.11) commutes (i.e. ¢ = prg o ). Note also
1* Oy (1) = [€.]*Gen (1)
1w (Gey (g, ) = [&I* (Ger (1)) (7.2.6)
Proof. First, note that the section ¢;/¢; € H°(; n Q;, Opy) is pulled back by p# to

p(G/G) = [€17(G/G) = &/ € Ho(u™ (s 0 Qys), Ox) (7.2.7)
Thus, the 0,1 (q, ;,)-module morphism (7.2.4b), when restricted to Qs Qs),

3

sends i*¢; = p*((C;/G) - G) = (€/6) - 1°G to (§,/¢,) - & — €. Therefore, we have
a well-defined W. Since (; and ¢; are respectively the free generators of &/(1)]q, 4
and .Z|,1(q, ), from (7.2.4b) it is clear that ¥ is an isomorphism. O
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Theorem 7.2.7. Let ¢ : X — S be a proper holomorphic map. Let £ be a line bundle on
X. Let N € Z. The following are equivalent.

(1) There is a closed embedding 1 : X — PY such that the diagram (7.1.11) commutes
(i.e. ¢ = prg o ), and that we have an isomorphism of O'x-modules

L =y Oey (1)

(2) There exist &y, &1, ..., én € L(X) = H(S, p..L) satisfying the following condi-
tions:

(2a) &, ..., &N have no common zeros on X.

(2b) Foreacht € S, the holomorphic map

[§'|Xz] = [§O‘Xu s ’§N|Xt] c Xy — PN (728)
is a closed embedding.
Moreover, if (2) is true, then (7.2.3) is a closed embedding satisfying the properties in (1).

Proof. (1)=(2): We may assume that X is a closed complex subspace of P¥, that u
is the inclusion map, and that . = p*0 (1) = 0(1)|x. Let & = (| x for 0 <i < N.
Then (2) is clearly satisfied.

(2)=(1): Assume (2). Then (7.2.3) is a closed embedding by Cor. 7.1.8. (1)
follows immediately from Prop. 7.2.6. O

Definition 7.2.8. Let ¢ : X — S be a proper holomorphic map. A line bundle
Z on X is called p-very ample or very ample over S, if S has an open cover 20
such that for each W € 20, the restriction .Z|x,, and the map ¢ : Xy — W satisfy
condition (1) or (2) of Thm. 7.2.7 for some N € Z, . In the case that S is a reduced
single point, we simply say that .Z is a very ample line bundle on X.

Definition 7.2.9. A proper holomorphic map ¢ : X — S is called projective (or
called a projective morphism) if there exists a ¢-very ample line bundle .¥ €
Coh(X). In the case that S is a reduced single point, we simply say that X is
a projective complex space. This is equivalent to that X is biholomorphic to a
closed complex subspace of PV for some N.

Example 7.2.10. The holomorphic map

v i PN x PK — PN+

[Zo, e ZN] X [wo, e ,UJK] —> [ziwj]igN,ng

is a closed embedding of complex manifold, called Segre embedding. Thus, PV x
PX is a projective manifold.
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Proposition 7.2.11. Let ¢ : X — S be a proper holomorphic map. Let £, % be line
bundles on X. Assume that &, ...,y € L(X) both satisfy condition (2) of Thm. 7.2.7.
Assume that 1, ...,nx € H (X) have no common zeros on X. Then (§; ® 0j)i<n,j<k
satisfy condition (2) of Thm. 7.2.7. In particular, & & ¥  is p-very ample.

Proof. It is clear that (§; ® 1)< j<x has no common zeros. We want to prove

that the map X — I[ng]\””l)(KJrl)_1 they give is a closed embedding. By Cor. 7.1.8,
it suffices to check it fiberwise. Therefore, we assume that .S is a single reduced
point, and hence X is compact.

The map [&; ®n);]i<r j<k is clearly the composition of [£,] v [77.] : X - PV xPE
and the Segre (closed) embedding sy ;e : PV x PK — PWV+DE+D-1 Gince we have
a commutative diagram

#)PNX]}DK

N

where pr, is the projection onto the first component, the fact that [, ] is an injective
immersion implies that [£.] v [7.] is an injective immersion. So [£.] Vv [7.] is a closed
embedding because X is compact. O

7.2.3 Basic properties about very ampleness

Theorem 7.2.12. Let ¢ : X — S be a proper holomorphic map. Let £ be a p-very
ample line bundle on X. Assume that S is Stein. Then for every precompact open subset
W < S, the restriction £ |x,, and ¢ : Xyw — W satisfy condition (1) or (2) of Thm.
7.2.7 for some N € Z..

Proof. By Grauert direct image theorem, ¢,.# is Os-coherent. Thus, by Cor. 6.4.6,

there exist &, ...,{y € Z(X) = H(S, p..Z) generating the Oy,-module ¢,..Z | .

Let us prove that &, ..., {xy satisfy condition (2) of Thm. 7.2.7 for ¢ : Xy — W.
Choose any ¢ € . By assumption, there is a neighborhood V' = W and finitely

many 7o, 11, - - - € £ (Xy) with no common zeros on Xy (and in particular on X;)
such that [1.]y,] : X; — P” is a closed embedding. Note that
L Qoy Ox, = L Qoy (Ox Qog Os/mg,) = L Qg (Os/mgy) (7.2.9)

So each 7, x, is a section of
HY(Xe, Z|x,) = (L @0 (Os/msy))e (7.2.10)
Indeed, it is in the range of the base change map

Pl Qog (Os/msy) = 0L Qpy (Os/msy))s (7.2.11)
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This range is C-spanned by the images of &, ...,{y since ¢, ®g, (Os/msy)
is C-spanned by them. Therefore, each 7;|x, is a C-linear combination of
&olx,y - En|x,- SO &lx,s- -, En]x, have no common zeros on X;, and [&|x,] :
X; — P is a closed embedding. O

Theorem 7.2.13. Let ¢ : X — S be a proper flat holomorphic map. Let £ be a line
bundle on X. Let t € S. Assume that £ satisfies base change property in order 0 at t.
Assume also that £ |x, is an ample line bundle on X,. Then there is a neighborhood W of
t such that L | x,, is very ample with respect to ¢ : Xy — W.

For example, .Z satisfies base change property in order 0 at ¢ if H(X;, Z|x,) =
0 (by the base change Thm. 6.6.10).

Proof. Since .Z|x, is very ample, there exists finitely many elements of (7.2.10)
with no common zeros and give a closed embedding of X; into PV. Since the base
change map (7.2.11) is surjective (by the assumption on the base change property),
after shrinking S to a neighborhood of t, we can find &, ...,{y € Z(X) whose
restriction to X; have no common zeros and give a closed embedding [&.|x,] :
X; — PV,

We know that for each » € X;, some ¢ spans .Z/my,.Z, and hence (by
Nakayama’s lemma) is a (free) generator of .# on a neighborhood of z in X.
Therefore, by the properness of ¢, there is a neighborhood W of ¢ such that
o, - .., En generate the Ox,,,-module .Z|x,,, and hence have no common zeros on
Xy Shrink S to . Then we have a holomorphic map p = [&] v ¢ : X — PY such
that » = prg o i, and that it restricts to the closed embedding [&.|x,] : X; — PV.
By Thm. 7.1.7, we can shrink S further so that y is a closed embedding. Then
&o, - - ., En satisfy condition (2) of Thm. 7.2.7 (recall Cor. 7.1.8). O

Corollary 7.2.14. Let ¢ : X — S be a proper flat holomorphic map. Let £ be a line
bundle on X. Assume that for each t € S, we have that H'(X, % |x,) = 0, and that £ |x,
is a very ample line bundle on X,. Then £ is p-very ample.

Proof. Immediate from Thm. 7.2.13. O

7.3 Serre’s vanishing theorem

Let X, S be complex spaces.

Definition 7.3.1. Suppose that 7 is a coherent ideal of Ox satisfying that for
each x € N(Z), Z, is generated by a non zero-divisor of 0x ,. By Prop. 2.3.13,
this is equivalent to that the coherent sheaf 7 is a line bundle on X. Let D =
Specan(Ox /). Define the line bundle &'y (nD) (where n € Z) as follows: For each
n € N we define
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In particular, Ox (0D) = Ox. So have have an obvious isomorphism
ﬁx(mD) ®ﬁx ﬁx(nD) ~ ﬁx((m + TL)D)
Also, by checking stalkwise, we see that the multiplication gives an isomorphism

I~ =T-.T  (ifneN)
——

n

If & is an O'x-module, we define
E(nD) =& Ry Ox(nD) (7.3.2)

Example 7.3.2. Let H be a hyperplane of PV, namely, there exists (A, ..., \y) €
CN+1x such that

H= {[20,...,2]\[]I)\QZO+"'+)\NZN :O}
Then H is a closed submanifold of PN*! biholomorphic to PV. We let
HS =H xS

Recall that .7 is the ideal of holomorphic functions vanishing on Hg. Then we
have an 0py-module isomorphism

Opy(—1) — Opy(—Hs) = I
Co (n (7.3.3)

Ci_l'—>/\0'?+"'+)\]\7'? (onQLS)

Lemma 7.3.3. If ¢ = 1 and n > 0, then HY(PY, Opn (n)) = 0.

Lemma 7.3.4. Let p : X — S be a proper holomorphic map. Let £ be a line bundle on
X satisfying condition (1) or (2) of Thm. 7.2.7 for some N. The following are true.

(a) Foreachn > 0, the Ox-module £®" is generated by N + 1 elements of £*"(X).

(b) Let ng € Z such that the Ox-module & ® £L®™ is generated by finitely many global
sections. Then for every n = ng, the Ox-module & ® £ is generated by finitely
many global sections.

Proof. Let &,...,&n € Z(X) satisfy condition (2) of Thm. 7.2.7. If n > 0, then
L EQT generate £®". This proves (a). Part (b) follows from (a), since both
& ® ZL® and £®M"~m0) (where n > ng) are generated by finitely many global

sections. O]
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7.3.1 Serre’s vanishing theorem

Theorem 7.3.5 (Serre’s vanishing theorem). Let ¢ : X — S be a proper holomorphic
map. Let £ be a p-very ample line bundle on X. Let & be a coherent Ox-module. Let W
be any precompact open subset of S. Write

En) = E gy L& (7.3.4)
Then the following are true.

(A) If S is Stein, then there exists ny € N such that for every n = ny, the Ox,,,-module
&(n) x,, 18 generated by finitely many elements of H (X, &(n)).

(B) There exists ng € N such that for every n = no and every q > 1, we have
Rip, ()], =0

(C) If & is p-flat, then there exists ny € N such that for every n = ny, the sheaf & (n)
satisfies base change in all orders at every t € W, and

H(X,&M)x,) =0 (Yg=1, Vte W)

Remark 7.3.6. By Prop. 1.10.4, there is a canonical isomorphism

E()lx, ~ Elx,(n) == &|x, oy, (L]x,)" (7.3.5)

(cf. also Lem. 7.4.3.) If X = PY and ¢ = Prg, and if H is a hyperplane of PV, then
by Prop. 1.10.4, there is a canonical isomorphism

where the RHS is defined in view of the canonical equivalence of Hg — S and
Py~ — 5.

Proof of (A), (B) in Thm. 7.3.5. Step 1. We claim that (B") implies (B) and (A’) im-
plies (A) where

(A’) Foreacht e S and z € X;, and for any & € Coh(X), there exists n € N such
that the following restriction map is surjective:

px(E(n))e — E(n)] = E(n)a/mx 26 (n)a (7.3.7)

(B’) For eacht € S, and for any & € Coh(X), there exist no € N and a neighbor-
hood V' < S of ¢ such that for every n > ny and every ¢ > 1, we have

Rip. (&), =0
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Indeed, (B’) clearly implies (B). Suppose (A’) is true. Then by Nakayama’s lemma
and by the properness of ¢, for every ¢t € S and = € X, there exist ny € N and
neighborhoods V' < S of t and U < Xy of = such that &(ng)|y is Op-generated by
elements of H°(Xy, &(ng)). By Lem. 7.3.4-(a), we can shrink V and U so that for
each n > ny, the sheaf &(n)|y is Oy-generated by elements of H°(Xy, &(n)). Thus,
by the compactness of ¢~ }(W), we have:

(A”) There exists ny € N such that for eacht € W, z € X;, and n > ny, the map
(7.3.7) is surjective.

For each n € Z, by Grauert direct image theorem, the 0s-module ¢.(&(n))
is coherent. Therefore, since S is Stein, by Cor. 6.4.6, the sheaf ¢.(&(n))|w is
Ow-generated by a finite subset of H°(S, ¢.(&(n))) = &(n)(X). Let ng be as in
(A”). Then for each n > ny, a finite subset of &'(n)(X) spans & (n)|, for all z € Xy,
and hence O, -generates & (n)|x,, by Nakayama’s lemma.

Step 2. To prove (A’) and (B’), it suffices to assume that X is a closed sub-
space of PY, that ¢ is the restriction of prg : PY — S, and that ¥ = 0(1)|x. By
identifying & with its direct image under the inclusion X — P¥, we view & as
a coherent Opy-module. Therefore, by replacing X with PY, it suffices to assume
that X = PY and ¢ = prg.

We now prove (A’) and (B) for X = PY and ¢ = prg by induction on N. The
case N = ( is obvious. Suppose that case N — 1 has been proved. Let us prove
case N. We first prove (A’). Choose t € S and = € X;. For each n, tensoring any
& € Coh(X) with the exact sequence

0— Iy = Opy — Oy — 0
gives an exact sequence
0> —-&(-1) > & - E|luy —0 (7.3.8)

where ¢ = Ker(&(-1) — &).

We claim that Supp(.#") = Specan(Ox/ s (%)) is a (closed) complex sub-
space of Hg. This means that for each z € X = P¥, we need to show ., <
Anrngy,(H,). Indeed, since 7, = Torlﬁx’”” (&, O, ), and since the action of O,
on %, is given by that on 0y, , (because Tor preserves multiplications, cf. Rem.
5.2.7), J, is killed by elements of %y , since Oy, , is so. This proves the claim.

Tensoring (7.3.8) with Opy (n) gives an exact sequence

0— X (n)—>&EMnM—-1)— EMn) > &E|pgs(n) -0 (7.3.9)
which breaks into two exact sequences
0—%(n)—>8EMnNn—-1) - F, -0 (7.3.10a)
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0— %, —&Mn) > &uy(n) —0 (7.3.10b)
(7.3.10a) gives a long exact sequence of &s;-modules
Rlou(8(n— 1)) = Rlpu(Fn)e = Riou(H (n))s

Since % (n) has support in Hg ~ P§ !, by case N — 1 of (B’), for sufficiently large
n we have that R*¢, (% (n)); = 0, and hence that R'¢,(&(n—1)); — R'p.(F,): is
surjective. Similarly, (7.3.10b) gives an exact sequence

Rloi(Fn)e = Rlpu(E(n))e = R i &g (n))e (7.3.11)

where, for large enough n, R'.(&|n4(n)) is zero by case N — 1 of (B’).
Therefore, there exists ny € Z. such that we have epimorphisms of Og;-
modules

R'ou(E(mo))e = R'ou(Fngi1)e = Riou(E(no + 1)) > Ripu(Fugaz)e — -

Write M = R'¢.(&(ng)). Then the above sequence can be written as

where J, ¢ I} < I, < Jy < --- is a chain of submodules of M, which must
be stationary because M is a finitely-generated module (due to Grauert direct
image theorem) of the Noetherian ring 0s;. Thus, for sufficiently large n, the
map M/J, — M/I, is an isomorphism. This is just saying that the first map in
the exact sequence (7.3.11) is an isomorphism. Therefore, there is ny € N such
that for all n > n,, the long exact sequence induced by (7.3.10b) gives an exact
sequence

P (E(n))r = 0u(E|us(n))e — 0 (7.3.12)

Now, by case N —1 of (A’), we may enlarge n, such that for all n > n,, the map

Pu(Elas () = Elus(M)]e = (E()]ug)le ~ €(n)la

is surjective. Hence, the restriction ¢.(&'(n)); — &(n)|, is surjective. This proves
(A’) in case .

Step 3. It remains to prove (B’) in case N. Choose any ¢ € S. By Rem. 6.7.1, we
may shrink S to a precompact neighborhood of ¢ so that there exists ¢, (depending
only on prg : PY — S) such that R%,(—) = 0 on Coh(P}) for all ¢ > ¢o. To prove
(B), it suffices to prove:

(B”) For every 1 < ¢ < go and & € Coh(PY), there exist ny € N and a neighbor-
hood V of ¢ such that for every n > ny, we have Ry, (&(n))|y = 0.

266



(Note that we have moved the phrase “for all 1 < ¢ < ¢¢” to the beginning, which
is legitimate because there are only finitely many such ¢.) Let us prove (B”) by
induction on ¢. The base case ¢ = ¢y is obvious. Suppose that case ¢ + 1 has been
proved (where 1 < ¢ < ¢o — 1). Now consider case q.

Note that (A) is true in case N by Step 1. Therefore, we can shrink S to a
neighborhood of ¢ and find ny € Z, such that each &(ng) is Os-generated by
m elements of H°(X, & (ng)) (where m € Z,). Thus, we have an epimorphism
ﬁ%m — &(ng), and hence an exact sequence of Opy-modules

0= — Opy(—19)®" = & -0 (7.3.13)

where ¢ is the kernel of the morphism to its right. Choose any n > ny. Then by
Lem. 7.3.3, we have H>'(PY, Opn(n — ng)®™) = 0. By Exp. 5.5.4, the morphism
prg : PY — S is flat. Thus, by the base change Thm. 6.6.10, we have

R u(Oey (n = m0)®) = 0
Therefore, the long exact sequence of “(7.3.13)®¢ (n)” gives an isomorphism
Rip.(&(n)) ~ R, (4 (n)) (7.3.14)

for all n > ny. By case ¢ + 1 of (B’), after shriking S further, we may enlarge n, so
that for all n > ngy, we have R p,(4(n)) = 0 and hence R%p,(&(n)) = 0. This
proves the case g of (B”). H

Proof of (C) in Thm. 7.3.5. Choose ng as in (B). Then for eacht € W and ¢ > 1 and
n = no, we have R, (& (n)), = 0. By Prop. 6.7.5, &(n) satisfies base change in all
orders at t. Thus, the map

Rip.(E(n))t Qos, (Osi/msy) = Blpa(&(n) @og (Os/msy))e ~ HI(X, £(n)]x,)
is bijective, proving that H4(X;, &(n)|x,) = 0. O

Corollary 7.3.7. Let ¢ : X — S be a proper holomorphic map. Let £ be a p-very ample
line bundle on X. Let & — % be an epimorphism of coherent O'x-modules. Then for
every precompact open subset W < S, there exists ny € N such that for all n = ny, the
following map is an epimorphism of Oy,-modules

pu(EM)]y, = e FZ (M),

Proof. Let J# be the kernel of & — .%. Then we have an exact sequence
px(E(n)) = 0u(F (n)) — Rlpu(H ()

By Thm. 7.3.5-(B), there is ng such that R' . (& (n))|w = 0 for all n = ny. O
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7.3.2 Hilbert polynomials
As a byproduct of the proof of Thm. 7.3.5 we are able to prove:

Theorem 7.3.8. Let X be a projective complex space. Let & € Coh(X). Then there is a
(necessarily unique) p € Q[n] such that

X(X, &(n)) = p(n) (7.3.15)
forall n € Z. pis called the Hilbert polynomial of &.

Proof. Since X can be embedded into PV, we assume for simplicity that X = PV.
We prove by induction on N that x(X, & (n)) is a polynomial of n of degree at
most N. Then case N = 0 is obvious: in this case p(n) = dim¢ &. Now assume
case N — 1 has been proved. Consider case N. Let H be any hyperplane in PV.
Then by the proof of Thm. 7.3.5 we have an exact sequence (7.3.9) where %" has
support in H. Thus, we have

X(H,%(H)) - X(Xvéa(n - 1)) + X(X7£(n)) - X(ch’ﬂH(n)) =0

where x(H, # (n)) and x(H, &|g(n)) are polynomials of n of degree < N — 1. The
proof is finished by the next lemma. O

Lemma 7.3.9. Let f : Z — Z be a function such that f(n) — f(n — 1) = q(n) for some
q € Q[n] of degree d = 0. Then f € Q[n] and f has degree d + 1.

Proof. Choose any k € Z. Then for any n > k we have f(n) = f(k) + >, ., q(0). It
follows that there is a polynomial pj, of degree d + 1 such that f(n) = px(n) for all
n > k. Since polynomials of degree d + 1 are determined by their values at d + 2
distinct points, and since pi(n) = pg+1(n) whenever n > k + 1, we see that py, is
independent of k. O

Theorem 7.3.10. Let ¢ : X — S be a proper holomorphic map. Let £ € Coh(X) be
p-very ample. Let & € Coh(X). Assume that & is @-flat. Then each t, € S is contained
in a neighborhood W < S such that for each n, the following function is constant:

W7  teo (X, &Ex(n)) (7.3.16)

Proof. Since & is ¢-flat, by Thm. 7.3.5-(C), we can shrink S to a neighborhood of
to and find ny € N such that for any n > n, &'(n) satisfies base change in all orders
on S, and H°(X;,&(n)|x,) = x(Xi, &|x,(n)) forall ¢ € S. By (a)=(b) of Thm. 6.7.10,
HY(X;,&(n)|x,) is locally constant with respect to ¢. Thus, for all n > ny, (7.3.16)
is locally constant.

Shrink S further so that X can be embedded into P} and . ~ Opy (1). Shrink
S further so that (7.3.16) is constant for n € E' = {ng,no + 1,...,n9 + N}. By Thm.
7.3.8, for each t € S there exists a polynomial p, of degree at most /N such that
pe(n) = x(Xi, &|x,(n)) forall n € Z,. Since t — p,(n) is constant for all n € E, all
the coefficients of p;(n) are constant with respect to ¢. O]

268



7.4 Base change theorems for projective morphisms

Projective morphisms are similar to finite holomorphic maps in many ways.
For example, coherent sheaves over finite holomorphic maps have trivial higher
order direct images. We know that the same is true for &(n) when & is over a
projective morphism and n is sufficiently large (Thm. 7.3.5). Similarly, finite holo-
morphic maps (whose flatness is not assumed) satisfies base change (cf. Prop.
2.4.7 and Thm. 2.8.2). In this section, we prove similar results for projective mor-
phisms, generalizing Thm. 7.3.5-(C).

We fix in this section a proper holomorphic map of complex spaces ¢ : X — S
together with a ¢-very ample line bundle .2 on X. Fix & € Coh(X). Recall £(n) =
E Rpy L.

Theorem 7.4.1. For every precompact open subset W < S and every .# € Coh(S),
there exists ny € N such that for every n > ny, the following base change morphism (of
O'g-modules)

@*(g(n)) ®ﬁs M —> @*(g(n) ®ﬁs ‘%) (741)
is an isomorphism on W.

Note that the number n, depends on .#. However, if & is (-flat, then ny can
be independent of .# due to Thm. 7.3.5-(C).

Proof. Since the theorem can be checked locally with respect to the base, it suffices
prove that each t € S is contained in a neighborhood W such that the statements
in Thm. 7.4.1 hold. Moreover, after shrinking S to a neighborhood of ¢, we can
identify X with a closed subset of PY and view & as a coherent sheaf on PY. Thus,
we assume X = PY and ¢ = prg.

Choose precompact Stein neighborhoods W, 2, I" < S of ¢ satisfying

WcecQecQceTl

By Thm. 7.3.5-(A), there is an epimorphism ﬁ)@gﬁl (n1) — &|r. Applying the same
argument to the kernel of this map gives an exact sequence of ’x,,-modules

0%2(ny) — 6% (1) — |xy — 0 (7.4.2)

on (), where kq, ks € Z, and ny,ns € Z.

Write .#, = 0" (n;) and %, = 0*(n,). Since pry is flat (cf. Exp. 5.5.4), by
Thm.7.3.5-(C), there is nj such that for all n > ny, the sheaves .#;(n), #,(n) satisfy
base change in all orders on . (In fact, in view of Lem. 7.3.3 and the base change
Thm. 6.6.10, it suffices to choose ng such that ng + n; = 0,ng + ny = 0.) Therefore,
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for each n = ng and .# € Coh(S), when restricted to W, we get a commutative
diagram

P(F2(n) @ M —— 0u(F1(n) @ M —— ¢:(E(n)) @ M —— 0
Pu(F2(n) @ M) —— 0u(F1(n) @ M) —— pu(E(N) QM) —— 0
where the first two vertical arrows are isomorphisms. By Cor. 7.3.7, we can en-
large ng to a number (depending on .#) such that for all n > n,, the two hori-

zontal sequences are exact. Thus, by Five lemma, the third vertical arrow is an
isomorphism. O

Remark 7.4.2. Let ¢ : Y — S be a holomorphic map. Consider the Cartesian
square

X &% X xgY

Spl lpry (7.4.3)

Sty

Using Thm. 7.2.7-(2) and the transitivity of pullbacks (Rem. 1.11.3), one sees
easily that pri,. is pry-very ample. More precisely, if &, ...,{y € Z(X) and ¢
satisfy condition (2) of Thm. 7.2.7, the same is true for pri¢&,...,pryéy and pry.
Thus:

* The pullback of a very ample bundle is very ample. The pullback of a pro-
jective morphism is projective.

Therefore, for each .# € Mod(Ox .y ), we can define
F(n) := F Qoy, .y (07%L)%" = F Qo L=" (7.4.4)
Lemma 7.4.3. There is a canonical isomorphism of Ox  ,y-modules
pri(E(n) = (prié)(n) (7.45)
Proof. Immediate from Prop. 1.10.4. O

Theorem 7.4.4. For every holomorphic map ¢ : Y — S (where Y is a complex space)
and every precompact open subset V. Y, there exists ng € N such that, in view of the
Cartesian square (7.4.3), the following base change morphism (of Oy-modules)

e (&(n)) — pry.pry(€(n)) (7.4.6)

is an isomorphism on =1 (V).
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Proof. It suffices to prove that every y € S is contained in a neighborhood V' such
that the statements in Thm. 7.4.4 are true. As in the proof of Thm. 7.4.1, we
assume that X = P¥, p = Prg; we can find precompact Stein neighborhoods W,
of t = ¥(y) such that W < , and that there is an exact sequence of &'x,,-modules
Fy — F1 — E|x, — 0 where .F,.%; are locally free; we can find ng such that
for all n > ny, the sheaves .#;(n),.%»(n) satisfy base change in all orders on .
Choose any precompact neighborhood V of y contained in ¢~ (7). Then for each
n >=mngand ¢ : Y — S, when restricted to V, we get a commutative diagram

P pu(Fa(n)) ——— P pu(Fi(n)) ——— P pu(E(n)) —— 0

! ! |

Pry Py (F2(n)) —— pry,pry(F1(n)) —— pry,pri(&(n)) —— 0

where the first two vertical arrows are isomorphisms (recall Thm. 6.6.2). By Cor.
7.3.7 and Lem. 7.4.3, we can enlarge n, to a number (depending on 1) such that
for all n > ny, the two horizontal sequences are exact. Thus, by Five lemma, the
third vertical arrow is an isomorphism. O

We give an interesting application of the base change theorem to flatness: the
following property is parallel to Exp. 5.4.5.

Proposition 7.4.5. The following are equivalent:
(1) & is p-flat.

(2) For each precompact open subset W < S there exists ny € N such that for every
n = ng, the Os-module ¢, (& (n)) is locally free on W.

Proof. Assume that & is p-flat. By Thm. 7.3.5-(C), for sufficiently large n, &(n)
satisfies base change in all orders on W, and hence is locally free by Prop. 6.6.9.
This proves (1)=(2).

Now assume (2). Choose any ¢t € S. To show that &, is flat over 0g;, for all
x € Xy, by Prop. 5.4.1 and (5.3.6), it suffices to prove that for each ideal J < Og,,
the kernel of the morphism &, ®g,, J — & Qg Os, is trivial. Thus, it suffices to
shrink S to an arbitrary neighborhood of ¢, choose a coherent ideal 7 of &5, and
show that %7 is trivial where %7 is defined by the exact sequence

0= X —ERos J — & Rog Os

For each n € Z, we have a commutative diagram

0 ——= (A (n)) —= u(E(n) Bos T) —— ¢(&(n) Qo5 O)

aT T’

Pu(E(n) ®py T —2— 0.(E(n)) Qo O
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where the first row is exact. After shrinking S to a precompact neighborhood
of ¢ we have the following: for sufficiently large n, the base change map « is
an isomorphism (by Thm. 7.4.1), and the map f is injective by assumption (2).
Therefore, for sufficiently large n, ¢.(# (n)) is trivial, and hence % (n) is trivial
due to Thm. 7.3.5-(A). So # = 0. [
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Index

Cech cochains, 215

Cech resolution, 225

Active elements, 112

Active lemma, 112

Acyclic resolution, 225

Adjoint functors, 36

Analytic local C-algebra Ox ,, 13

Analytic spectra Specan, 13, 14, 80

Analytic subsets(=reduced complex
subspaces), 55, 93

Analytically generating Oy ,, 29

Annihilator sheaf %727 4, (&), 55

Annihilators of modules Ann4 (M), 55

Antiequivalence of categories, 25

Artin-Rees lemma, 18

Associated primes, 90, 200

b-sheeted (branched) covering, 151

Base change maps, 236

Base change property, 238, 245

Base of neighborhoods of a subset, 58

Biholomorphism, 13

Branch loci, 144

Branched coverings, 144

Canonical equalizers, 31

Cartan’s theorems, 226

Cartan-Serre theorem, 228

Cartesian square, 38

Closed embeddings, 26

Closed maps, 57

Codimension, 130

Coequalizers, 86

Cohomological §-functors, 170

Cohomologically flat, 243, 245

Complex spaces, 13

Complex subspaces (open or closed), 14

Composition of morphisms of C-ringed
spaces, 8

Cotangent space m,/m? and tangent
space (m,/m2)*, 28

De Rham cohomology H{, (X, F), 222

De Rham resolution, 222

Depth, 204

Derived functors,
R°T,L,T, 176

Diagonal of X x X, 46

Dimension dim X (global dimension),
110

Dimension at a point dim, X =
dim Oy, 110

Direct image ¢.&’, 5

Direct product sheaf [ [, &,, 211

Discriminants D(f), 143

Dolbeault resolution, 223

Dolbeauly cohomology H3(X, &), 223

Dual sheaf &V, 35

left and right

Embedding dimension emb,X =
embOy ,, 103

Enough injectives/projectives, 176

Equalizers, 30

Equivalence of categories, 53
Essentially surjective, 53

Exact (contravariant) functors, 59
Families of (closed complex) subspaces,

254
Fiber &z = &,/mx.& = &, ®
(ﬁX,x/mX,x)/g
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Fiber X, = ¢ '(y), 118

Fiber products inside a fiber product,
40, 42

Fiber products inside direct products,
46

Fiber products/pullbacks/base

changes X xgY, 38

Fine resolutions, 222

Fine sheaves, 217

Finite (holomorphic) maps, 58

Flat holomorphic maps, 190

Flat modules, 189

Flat over Y, 190

Four lemma, 238

Fully faithful, 53

Fundamental theorem of Weierstrass
maps, 63

gcd=greatest common divisor, 143

Global decomposition of reduced com-
plex spaces, 164, 165

Godement sheaf Gode(&), 212

Graded modules, 18

Graphs of holomorphic maps, 44

Grauert comparison theorem, 230

Grauert direct image theorem, 228

Hilbert polynomial, 268

Holomorphic maps, 13

Homotopic complexes, 181

Homotopic morphisms of complexes,
181

Hyperplane of PV, 263

Ideal .#, associated to an analytic sub-
set, 92

Ideal sheaves, 12

Identitatssatz, 7

Image complex space ¢(X), 56

Immersions, 26

Injective objects/modules, 175

Integral elements over a ring, 75, 137

Intersection of closed subspaces, 42

Intersection sheaves, 50

Inverse image sheaf ¢~ (%), 6

Inverse images of closed subspaces
‘Pil (S 0)/ 41

Invertible &'x-modules, 257

Irreducible (reduced) complex spaces,
163, 164

Irreducible at a point, 94

Jacobi criterion, 104

Krull’s intersection theorem, 18

Left exact (contravarient) functor, 34

Leray’s theorem, 223, 225

Line bundles, 257

Local biholomorphisms, 144

Local/irreducible decomposition of X
at x, 96

Localization of modules, 126, 134

Locally bounded at a point, 135

Locally finite family of subsets, 216

Locally free at a point, 108

Locally irreducible, 94

Locally uniform convergence, 154

Miracle flatness theorem, 209

Model spaces, 13

Morphism of sheaves of local C-
algebras, 15

Morphisms of J-functors, 172

Morphisms of (analytic)
algebras, 14

Nakayama’s lemma, 11

Natural morphisms, 36

Nilradical 1/0x, 83

Noether property for coherent sheaves,
116

Non locally-free loci, 108

Normal (reduced) complex spaces, 156

Normal points of reduced complex
spaces, 156

Normal rings, 138

Normalization X of reduced complex
space X, 160

Nowhere dense subsets, 5

Nullstellensatz, 83

Oka’s coherence theorem, 69

local C-
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Open embeddings, 26

Open mapping theorem, 124, 167

Open maps, 117

Orders of elements of C{w,, z}, 21

Paracompact spaces, 221

Partition of unity in O’x subordinated to
i, 216

Polar set P(f), 158

Precompact subsets, 5

Preserves multiplications, 184

Prime decomposition, 89

Primitive elements, 151

Projective (morphism), 260

Projective objects/modules, 176

Proper maps, 60

Pullback sheaf ¢*.#, pullback of sec-
tions and morphisms, 35

Pure dimensional and locally pure di-
mensional complex spaces, 110

Pure dimensional at a point, 110

Radicals /T , VZ,83

Rank function, 12

Recular analytic local C-algebras 0¢n ,
25

Reduced complex spaces and reduced
points, 15

Reduced ring, 88

Reducible at a point, 94

Reduction red(X) of a complex space X,
93

Reduction map red : Ox — €x, 15

Refinements of open covers, 219

Regular sequences, 197

Resolutions, injective and projective,
176

Resolutions, left and right, 176

Restriction of sheaves of modules
EY = &ly, 37

Right exact, 32

Ritt’s lemma, 113

Semicontinuity theorem, 245

Serre’s vanishing theorem, 264

Set theoretic restriction & 1y, 6

Sheaf of Cech cochains €4(4, &), 225

Sheaves of relations Msl, ey 8n), 48

Singular locus Sg(X), 100

Slicing criterion, 196

Smooth at a point, 26

Smooth complex spaces=complex man-
ifolds, 26

Stein spaces, 226

Support of a sheaf, cf.
Supp(&), 6, 55

Tensor product § Qe A ~ ERpy 0 M,
35

Tensor product & ®g¢, #, 32

Thin subsets (of order k), 140

Torsion elements and torsion modules
Ta(M), 125

Torsion free, 125

Torsion sheaf 7, (&), 125

UFD: unique fractional domains, 138

Unbranched coverings, 144

Universal d-functors, 173

Universal denominators, 150

Very ample, 260

WDT: Weierstrass division theorem, 21

Weierstrass (branched) coverings, 147

Weierstrass convergence theorem, 155

Weierstrass polynomials, 66

WPT: Weierstrass preparation theorem,
66

Zero divisors and non zero-divisors, 57

Zero sets N(Z), 12

Zero sets N(f1,. ..

Conv. 2.3.6,

7fn)’ 13

Ass4(€) = Ass(€), the set of associated
primes, 200

Ci(U,9), 217

(CN+1,>< = (CN-H\{O}, 253

CyT" = (CN*1\{0}) x S, 254

codim, (Y, X), 130

Coh(0x) = Coh(X), the category of co-
herent &'x-modules, 211
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¢1(81, &), sheaf of Cech cochains, 225
©x, 15

C:c = ﬁX,x/mX,x/ 8

Clz1y---520), 5

C{z1,...,2n} == Ocnp, 5

depth 4(£) = depth(&), 204

&+ &, 11

&(nD), 263

&(x), 264

Endy (E) = Hom o (£,),55

f®ge Oxxy, 44
Gode(&): Godement sheaf, 212

H*(C*) and H.(C,), the cohomology
and the homology of com-
plexes, 179

Homﬁx (@ﬁ, 9), %max (éa, JOZ), 35

HY(X, &), sheaf cohomology, 212

Ho(s, &), HI(X, &), Cech cohomology,
215, 220

4,92

Mod(0x) = Mod(X), the category of
O'x-modules, 211

Mod'(A), the category of finitely-
generated .A-modules, 237

Mor(X,Y), 8

AMx, sheaf of meromorphic functions,
134

My, =My, 8

Nzd(A) = Nzd 4(.A), the set of non zero-
divisors of A, 134

Nzd4(€), the set of non zero-divisors of
£in A, 201

O(n) = Opy(n), 258

5;(, the sheaf of weakly holomorphic
functions, 135
O(X):=0x(X),8

PY, 254

red(f), the reduction of the polynomial
f,143

res(f, g): the resultant, 142

Rip, &, higher direct image, 213

sdopday - - - doy € CU(U, &), 215
Segre embedding, 260

Wy, sheaves of densely defined holo-
morphic functions, 133

0%°, presheaves of densely defined
holomorphic functions, 133

X; = ¢ (t), the fiber of p : X — S at
te S, 229

rxyeX xgY,46

axf: X' xgY' - X xgY,39

av 3,38

X(X,&) = Zq(—l)q dim¢ H1(X, &), 245
X x,, the characteristic function, 134
o Oy — 0,.0x,8

p~1(Z), 50
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