Regular vertex operator subalgebras and
compressions of intertwining operators

BIN GUI

Abstract

Let V' be a vertex operator subalgebra of U. Assume that U, V, and its com-
mutant V¢ in U are CFT-type, self-dual, and regular VOAs. Assume also that the
double commutant V“ equals V. We prove that any intertwining operator of V' is
a compression of intertwining operators of U.

0 Introduction

In [KM15], Krauel-Miyamoto showed that if | is a vertex operator subalgebra of
U, it U, V, and the commutant V' are CFI-type, self-dual, and regular VOAs, and
if V' = V, then any irreducible VV-module appears in some irreducible U-module.
For example, by [Aral5a, Aral5b, ACL19], these assumptions are satistied when we
take V < U to be Li.1(g) = Li(g) ® L1(g), where k is a positive integer, g is a finite
dimensional complex simple Lie algebra of type ADE, and Lj(g) is the corresponding
(unitary) affine VOA. In this case, V¢ is a discrete series principle WW-algebra W,(g).

The above results have important applications to the unitarity problems in VOAs:
For example, we can conclude that any irreducible W, (g)-module is unitarizable since
this is true for any unitary affine VOA. Moreover, using these results (together with the
techniques developed in [Ten17, Ten19a, Ten19b]), Tener showed in [Ten19c] that the
modular tensor categories associated to all unitary affine VOAs and type AE discrete
series WW-algebras are unitary, and solved a longstanding problem in subfactor the-
ory and algebraic quantum field theory: that the conformal nets associated to unitary
affine VOAs and type ADE discrete series IV -algebras are completely rational.

In this paper, we generalize the result of [KM15] to intertwining operators: We
show that any intertwining operator of V' is a compression of intertwining opera-
tors of U (theorem 4.4). To be more precise, let W;, W;, Wi be (ordinary) U-modules,
which can also be regarded as weak V-modules. Suppose that YV is a type (WV;/I;(/J)
intertwining operator of U, and W;, W;, W}, are graded irreducible V'-submodules of
Wi, W, Wk respectively, then one can find A € Q such that 2* times the restriction of
YV to W;, W;, Wy, is an intertwining operator ) of V. (Note that without the factor 22,
the restriction itself may not satisfy the L_;-derivative property.) We then say that J
is a compression of VY. (See definition 3.4 for more details.) Our main result of this
article is that any intertwining operator of V' can be written as a (finite) sum of those
that are compressions of intertwining operators of U.
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Our result can be applied to prove many important functional analytic properties
for intertwining operators. One such property is the (polynomial) energy bounds con-
dition [CKLW18, Guil9a, Guil9b], which says roughly that the smeared intertwining
operators are bounded by Lj for some n > 0. Proving energy bounds condition for
intertwining operators is a key step in relating the tensor structures of VOA modules
and the corresponding conformal net modules; see [Was98, TL04, Guil8, Gui20]. On
the other hand, one may deduce the energy bounds condition of the compressed in-
tertwining operator ) from that of VY. Since, by our main result, any intertwining
operator of L;(g) or W,(g) (when g is of type ADFE) is a compression of tensor prod-
ucts of intertwining operators of L(g), and since the latter were proved in [TL04] to be
energy bounded, we can conclude that all intertwining operators of L;(g) or W(g) are
energy bounded. This result will be used in [Gui20] to show that if V' is L (g) or W,(g),
and if A is the corresponding conformal net, then the tensor and braid structures of
the representation categories of V' and A are compatible.
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1 Intertwining operators and tensor categories

Let (V,Y,1,v) be a vertex operator algebra (VOA) where 1 is the vacuum vector
and v is the conformal vector. For any v € V, write Y(v,2) = Y, _, Y (v),z " ! where
Y (v), € End(V). Then L,, := Y (v),1 satisfy the Virasoro relation

TL3—TL

[Ln7 Lm] = (n - m)Lner + 6n,7m 12

C?
where cis the central charge of V. We shall always assume that V' is CFT-type, namely,
V has Ly-grading V' = @), .y V' (n) and V' (0) = C1. We also assume that V' is self-dual
and regular (equivalently, self-dual, rational and Cs-cofinite [ABD04]). Note that the
self-dual condition is equivalent to the existence of a non-degenerate invariant bilinear
form. As a consequence of CFT-type and being self-dual, V' is simple. (See, for exam-
ple, [CKLW18] proposition 6.4-(iv).) Moreover, any (ordinary) V-module is semisim-
ple, and the category of VV-modules is a rigid modular tensor category [Hua08].

We write V-modules as W;, W;, Wj, ... whose vertex operators are denoted by
Y:, Y}, Yy, ... respectively. V itself as a V-module (the vacuum module) will also be
written as Wy. We write Yi(v,z) = >, ,Yi(v),z7""" where each Y;(v), € End(W;).
Again, any V-module has Ly-grading W; = @, .- W(n). Recall that a homogeneous
vector of W is, by definition, an eigenvector of Ly. In the case that W, is irreducible
(i.e. simple), we furthermore have W; = @, .\, W(n) for some a € C. (Indeed, a € Q
by [AMS88, DLMO00].) We let P, denote the projection of W; onto W;(n). We also let

Wisn)= @ W(m),

Re(m)<n



and let P, be the projection of W; onto W;(< n).

Let IW; denote the contragredient module of ;. Recall that as a vector space, W; =
@D, .cc Wi(n)*. (See [FHLI3] for more details.) The evaluation between w' € W; and
w € W; is written as (w, w’) or (w', w). (The same notation will be used if one of w, w’
is in the algebraic completion.) Since V' is self-dual, we identify the vacuum module
V' = W, and its contragredient module W5. W= is identified with W; in an obvious way.

Recall that if W;, W;, W}, are V-modules, an intertwining operator ) of type (W W, )
(or (zkj) for short) is a linear map

Wz‘ i EHd(Wj, Wk){z}
w; — Y(w Z Y(w

neC
where the sum above is the formal sum, each Y (w(®), is in End(W;, W},), and the fol-
lowing conditions are satisfied:
(a) (Lower truncation) For any w”) € W;, Y(w®),w") = 0 when Re(n) is sufficiently
large.
(b) (Jacobi identity) For any u € V, w® e Wi,m,n e Z,s e C,we have

S (...

leN
=> (-1 < > (W mana V(WD) = Y (1) (7) VD) pyentYy(@)mer.  (1.1)
leN leN

(c) (L_;-derivative) LY (w®, 2) = Y(L_1w®, ) for any v € W;.
We say that W;, W, W), are respectively the charge space, the source space, and the
target space of V. If W;, W;, W, are all irreducible, we say that ) is an irreducible
intertwining operator.

Recall that given ) € V(ikj), one can define BY € V(jki) and CY € V(ijg), called
the (positively) braided intertwining operator and the contragredient intertwining
operator of ), by choosing any w® € W;, w") € W;, w® e W; and setting

By(w(j),z)w@ — e* L1y (w @) eim 2)w @),
EYwD, 2)w® why = w® e (¢! er—2)Low() 2w,

In particular, ¥; € V() (the vertex operator for W) is contragredient to ;. See
[FHL93] for detalils.

We refer the reader to [HL13] and the references therein for the definition and basic
properties of the tensor category Rep(V') of V-modules. (See also [Guil9a] for a sketch
of the Huang-Lepowsky tensor product theory.) Roughly speaking, Rep(V) is defined
such that the fusion rules are exactly the dimensions of the spaces of intertwining op-
erators, and the R- and F-matrices are described by the braid and the fusion relations
of intertwining operators.

To be more precise, the tensor functor (fusion product) x] is defined in such a way

that there is a functorial isomorphism

~ k
HomV(VViVVj,Wk) HV(Z])’ &= Vy (12)
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for any V-modules W;, W;, W;,.. By saying this map is functorial, we mean that if F' €
Homy (W, W;), G € Homy (W, W;), and H € Homy (Wj, Wy), then for any w® e Wy
and w') e W,

Vo) (W), 2)w) = HYy(Fu™, 2)Gw").

In particular, we denote by £; ; € V() = V({7 the value of the identity element

J

1;5; € Homy (W, I W;, W; X1 W;) under (1.2), i.e.,
Lij=Vig;
Here we adopt the notation
Wigj = Wi I W;.

Then for any o« € Homy (W; X] W;, W), by the functoriality of (1.2) and that o« = o -
1w,zw,, it is clear that

y(x = OCEZ"]'.

(In the papers of Huang-Lepowsky, £; ;(w®, 2)w is written as wVKlp,, w7, regarded
as a fusion product of the vectors w®, w().)

Note that ¥; € V(,’.). The left unitor W, X] W; = W is defined such that it is sent
by (1.2) to the element Y;. The right unitor

is defined such that
Yy = BY;.

We call V() € V( io) the creation operator of W.

%

The braid isomorphism B = B, ; : W; X W; = W; X W, is defined such that
Ve,; = BL; ;.

We will not use braiding in this article. To describe the associativity isomorphisms, we
tirst notice:

Proposition 1.1. Choose any z € C* = C — {0}. Then for any n € C,
Span P, - Li;j(w, 2)w = (W; R W,)(< n). (1.3)

w(i)GWi,w(j)EWj
This proposition was proved in [Guil9a] section A.2.! The main idea of the proof is
as follows. Set W}, = W; X W;. Then it is equivalent to proving that for any w®) e W,
if

<w(k)7 Li,j(w(i), Z)w(j)> -0

'Proposition 1.1 is similar to but slightly stronger than [Hua95] Lemma 14.9. That lemma says that
(1.3) holds with P¢, replaced by P; and (W; X1 W;)(< s) by (W; X W;)(s). Huang's result is enough for
applications in our paper.



for any w® e W; and w'?) e W;, then w*) = 0. To see this, let W < Wy, be the subspace
of all w® satisfying the above identity. Usmg the Jacobi identity for intertwining op-
erators, it is easy to see that )V is V-invariant, i.e. it is a V-submodule of 7. Assume
W is non-trivial. Choose an irreducible module W, such that VW has an irreducible
submodule isomorphic to ;. Then there is a non-zero 7' € Homy (W}, W;) whose
transpose T* € Homy (W7, W5) maps W} into W. Using the definition of VW and the fact
that T*w® e W for each w) € W, it is easy to see that T'L; ; = 0. Recall W), = W; [x] W;.
So we can write T'L; ; = Yp. Therefore T = 0, which gives a contradiction.

Corollary 1.2. Let W;, W;, W be V-modules, and assume that W is isomorphic to an irre-
ducible submodule of W; <) Wj. If =; ; is a basis of Homv(m W;, W), « € Z5 ., then there

exist homogeneous vectors wgl), .. (l e Wi, wy ), .. ) e W, w® e W, and constants

M, .oy Am € Q, such that for any [5 e =¢, the expresszon

z 37
3 A, 2w, w®) (14)
=1

is a constant (where z is a complex variable), and it is non-zero if and only if B = «.

Proof. Choose n € C such that W,(n) is non-trivial. Choose for each « € =}, a mor-
phism & € Homy (W, W; X Wj) such that afy = d,p1, for any «, € = ;. Now we fix
« € Z};, and choose a non-zero vector w®) € W,(n). By proposition 1.1, there exist
homogeneous vectors w”, ... wi) € W;and w!”, ... w$ € W, such that

Z n 1, wl y (]):&w(s)

Choose w'® € Wg(n) such that (w®, w®) # 0. (Recall that Wy(n) is the dual vector
space of W(n).) Then it is easy to check that the constant

Z% w, D, w®) (1.5)

is non-zero (in which case equals (w®), w®}) if and only if B = . Now let
A = w(w] (s )) wh(w] (i )) wh(w (J))7

where the three terms on the right hand side are the weights (i.e. the Ly-eigenvalues)
of the corresponding homogeneous vectors. Then (1.5) equals (1.4). This proves the
claim of this corollary. O

For any irreducible equivalence class of V/-modules we choose a representing el-
ement and let them form a (finite) set £&. We assume W, € £. Choose V-modules
WZ, W;, Wi, Wi. f Wy € €, we write s € & for short. For each r € £, we choose bases

S of Homy (W, X Wy, W,) and =;, of Homy (W; X W,,Wl) Choose z,( € C* with

0 < [¢] < |2|- Then for any w® e VV“ W) ¢ W;,and any « € 2}, p € =}, the product
Vo, 2)Vs (w?, () (1.6)
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converges absolutely [Hua05] in the sense that for any w® € W, w® € W3,

3 [ Dalw®, 2) P Y (w?, Qu®, w®)| < +oo.

neC

Moreover, consider the expression

Vel w?, 2)Pp(w?, ), w®) (1.7)
as an element of (W, ® W; ® W, ® W;)*. (Note that this element depends also on the
arguments arg z and arg ¢.) By linearity, we have a linear map

U, ¢ : @ Homy (W; ®W,, W) ® Homy (W; I Wy, W) = (W; @ W; @ W, @ Wy)* (1.8)

re€
sending « @ {3 to the linear functional defined by (1.7). This map is well-known to be
injective. Indeed, choose any X in the domain of W, .. If ¥, (X) equals 0 for one pair
(2,(), then, by the existence of differential equations as in [Hua05], ¥, .(X) equals 0
for all z, ¢ satisfying 0 < |(| < |z|. (See [Guil9a] the paragraphs after theorem 2.4 for a
detailed explanation.) Then, using proposition 1.1, it is not hard to show X = 0. (See
for instance [Guil9a] proposition 2.3 whose proof is in section A.2.)
Similarly, when 0 < |z — (| < |(|, one can define an injective linear map
@..¢ - (D Homy (W, 5 Wi, Wi) © Homy (W, I W;, W) — (W, @ W; @ W, @ 117)* (19)

se&

sending each vy ® 6 to the linear functional determined by the following iterate of in-
tertwining operators:

Dy V5w, 2 = Ow?, O™, w®. (1.10)

Again, this map depends on the choice of arguments: arg(z — () and arg(¢), and the
above expression converges absolutely in an appropriate sense. By a deep result of
[Hua95, Hua05], .  and V., . have the same image.

We now assume

0<l|z—=C(|<|[C] <]z, arg(z — () = arg( = arg z. (1.11)
In particular, ¢, z are on the same ray starting from the origin. If we also choose bases
Els , and =3 of Homy (W XW,, W;) and Homy (W;XIW;, W) respectively, then we have
a matrix {F%B} (the fusion matrix) representing the invertible map \I/Z,CCI{;%. Equiva-

lently, we have a unique number F%ﬁ for each «, 3,7, 6 such that for each s € £ and

eachy € Z.;, 6 € Ef , the fusion relation

Wsw? 2= Qu () =3 Y B Valw )V (w?, Q) (1.12)

re€ OCE‘*Z_ ,BEE" ik

holds for each w” € W;, w"” € W;. This fusion matrix is independent of the particular
choice of z, ( satisfying the above mentioned conditions. The associativity isomor-
phisms of Rep(V) are defined in such a way that after making Rep(V/) strict, we have

YORL) =), > Ff«1liep), (1.13)

r€€ ae=l BEET |

namely, F'is also an F-matrix of Rep(V).



2 Fusion of annihiliation and vertex operators
Let W;, W; be V-modules. For each W € £, there is a non-degenerate bilinear form
(-, -y on Homy (W; I W;, W) @ Homy (W, W; X W;) such that if « € Homy (W; I W;, W)
and T € Homy (W, W, X1 W;), then
oT = (o, TH1s. (2.1)
This bilinear form gives an isomorphism

Homy (W, W; & W;) = Homy (W; [ W;, W,)*. (2.2)

We shall always identify Homy (W, W;XIW;) and Homy (W;XIW;, W;)* using the above
isomorphism.
Recall from the last section that =f; is a basis of Homy (W; X W;, W,). Then

I

we can choose a dual basis {& : « € Z7,;}. Namely, for each a € =7, we have
& € Homy (W, W; KIW;), and if B € E:;, then {a, B> = Jq,p. SO we also have
P = 6o pls. (2.3)

This implies that

s
se& x€E7

since, by (2.3), the left multiplications of both sides of (2.4) by any f € =7 ; equal f3.

In [HKO07], Huang-Kong used the rigidity of Rep(V') to define a natural isomor-
phism Homy (W; & W5, Ws) = Homy (W; & W;, W,)*. Since V(;%) is isomorphic to
V(gjs) by sending ) to (), we also have an isomorphism

1 : Homy (W; @ W;, W)* = Homy (Ws X Wy, Wj). (2.5)

In the following, we review the construction of this isomorphism.

In [Hua08], Huang showed that Rep(V) is rigid, and the (categorical) dual object
of any V-module W; could be chosen to be the contragredient module ;. Moreover,
if we define

evm € HOHlv(W{ VVZ’? V)
such that

yev;yi = Cy.<({)7

(Recall that Y, is the creation operator of W;, which is of type ( io). Vev. ,» which is of

i

type (;’,), is called the annihilation operator of I¥;.) then there is a (unique) morphism

coev, ; € Homy (V, W; <] W5)



satisfying the conjugate equations

(1, ® ev;i)(coevi’g ®1;) =1,
(evi; ® 15)(1; ® coev, ;) = 1;.
This is also true for W;. Thus we have ev,; and coev;; defined by ev,; = ev-- and

coev;; = coev:=.
Recall the 1dent1f1cat10n (2.2). We define

q: HomV(Ws, VVZ W]) = Homv(Wg WS, Wj),
Toy(T) = (evi; ®1,)(1;@T). (2.6)

That y is an isomorphism follows from the conjugate equations. Using the definition
of y and equation (2.4), it is easy to see

evi, ®1; = > > (&) (L@ w). 2.7)

=S
se& xeE;

Thus, by (1.12) and (1.13), we have the following fusion relation which will play an

important role in later sections: Let z, ¢ € C satisfy (1.11). Then for any w® e W;, w® €
W,

Y (Vew, (0@, 2 = Qu®,¢) = ] Z V) (W', 2) Vo (w, Q). (2.8)

se€ oceu .

Note that for each s € &, {y(&) : « € =} is a basis of Homy (W; x1 W, Wj). Roughly
speaking, this fusion relation says that any intertwining operator arises from fusing
the annihilation operators and the vertex operators. This is parallel to the fact that
any V-module character occurs in the sum resulting from the modular transformation
7 — —1/7 of the vacuum module character.

3 Compressions of intertwining operators

Assume that V' is a vertex operator subalgebra (sub-VOA for short) of another CFT-
type VOA U with vertex operator YV and conformal vector w. This means that V' is
a subspace of U, V and U share the same vacuum vector 1, and that YV (v, 2)v, =
Y (v1, 2)vg when vy, vy € V. Let LU = YV (w),, 1. We shall always assume the additional
condition that

LYv = 2v, LYy =0. (3.1)

Then by [FZ92] or [LL12] theorem 3.11.12, (V¢,Y’,1,7/) is a sub-VOA of U, where V¢
is the set of all u € U such that Y (v),u = 0 for allv € V and n € N, Y” is the restriction
of YVto V¢ and v/ = w —v. Weset L, = Y' (V') 11

Assume that V¢ is self-dual, CFT-type, and regular. Then V ® V* is also CFT-type
and self-dual (and also regular). Thus it is simple. Therefore, the homomorphism of
V ® Ve-modules

VRVe-T, vV = Y(v) 1 Y(v) 41 (3.2)
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(cf. [LL12] proposition 3.12.7) must be injective. Thus, we can regard V ® V¢ as a
conformal sub-VOA of U sharing the same conformal vectorw = v+ = r®1+1Qv'.
Note that by the identification v ® v = Y(v)_;Y(v')_11, we have 1 = 1 ® 1,v =
11,0 =1Q7.

Recall that by [FHL93] chapter 4, any irreducible V ® V' “-module is the tensor prod-
uct of a V-module and a V°-module. Moreover, by [ADL05] theorem 2.10, any irre-
ducible intertwining operator of V' ® V¢ can be written as a sum of tensor products of
irreducible intertwining operators of V' and of V¢. Therefore, any U-module, consid-
ered as a V ® Ve-module, is a direct sum of those of the form W, ® W,,, where W is an
irreducible V-module and W; is an irreducible VV*-module. Theorem 2.10 also implies
that any intertwining operator of U can be decomposed as a sum of V, ® )., where
Y« and Y are irreducible intertwining operators of V and V' respectively.

In the following, Wi, W;, Wk, ... will denote U-modules, and W;, W, Wy, ... will
denote V°-modules. VY (/%)) and V' (i,k;.,) will denote the corresponding vector spaces
of intertwining operators of U and V° respectively. Note that I¥; can not be regarded
as a V-module (unless when w = v) but only as a weak VV-module (see [DLM97] for
the definition.)

Definition 3.1. Let WW; be an irreducible V-module and W; be a U-module. Let
v W; - Wrand ¢ : Wi — W, be homomorphisms of weak V-modules, i.e., they
intertwine the actions of V. We say that ¢ is grading-preserving if ¢ maps each L,-
eigenspace of W; into an LY -eigenspace of W;. We say that v is grading-preserving if
the preimage under ¢ of any LY -eigenspace of W; is contained in an Ly-eigenspace of
Wi-

Remark 3.2. We have seen that there is an identification of V ® V¢-modules:

W~ @ W, ® W, (3.3)
se&

where for each s € £, W,y is a (non-necessarily irreducible) V*-module. We can also
regard (3.3) as a decomposition of WW; into irreducible weak V-modules, where for
each s € £, W, ,) is the multiplicity space of WW;. (Note that different elements in £ give
rise to non-equivalent irreducible modules.) Choose any s € £. Choose ¢ : W, — W;
and ¢ : W; — W, to be homomorphisms of weak V-modules. Then it is not hard to
see that we can find w("*) e W, and w € W7, (note that W, is the dual vector
space of W) such that

0 =1, W), V=1, w, (3.4)

where w(®®) is considered as the linear map C — W, ;) sending 1 to w((*).2 Moreover,
outside W, ® W,(,), 1, ® w is defined to be the zero functional. Thus, it is clear that ¢
(resp. 1) is grading-preserving if any only if w*(*) (resp. @) equals an (L)-) homogeneous
vector of Wo(s) (resp. W),

2To see that ( can be written in this way, choose any ¢ € £ and w € W), and consider the homomor-
phism of irreducible V-modules T, : Wy — W, defined by T, = (1; ® w) o . Then T, = 0 whenever
s # t (since Wy % W;). So the image of ¢ is in W, ® W, (5). Now assume ¢ = s. Then T}, is a scalar.
Choose a basis {e1, ez, ... } of W, and write p(e1) = >, e, ® w, where each w, is in W, ). Then, for
each w, Tw(e1) = Y, w(wy,)ey, is a scalar multiple of e;, which shows that w,, = 0 when n > 1. Thus
¢ = 1, ® wy. That ¢ has the desired form can be proved similarly.
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Definition 3.3. Let W, be an irreducible V-module and W; be a U-module. We say that
W; is a compression of W if W (considered as a weak V-module) has an irreducible
weak V-submodule isomorphic to W;. Equivalently, the V ®V-module W; has a (non-
trivial) irreducible submodule isomorphic to W; ® Wy, for some irreducible V*-module
Wz”~

Definition 3.4. Let Y € V(/") be an irreducible intertwining operator of V.

(a) Let YV € VY( IKJ) be an intertwining operator of U. We say that ) is a com-
pression of VY, if there exit A € Q and grading-preserving homomorphisms of weak
V-modules ¢ : W; — Wy, ¢ : W; — W, and ¢ : Wx — W, such that for any w® e W,
and z € C*

V(D 2) = 2 - pYY (oD, 2)¢.

(b) If W;, W, are U-modules, we say that ) is a compression of type (,*,) intertwin-
ing operators of U, if ) is a (finite) sum of compressions of intertwining operators of
U whose charge spaces are W; and source spaces are W.

(c) If Y is a (finite) sum of compressions of intertwining operators of U, we simply
say that ) is a compression of intertwining operators of U

Proposition 3.5. Let W, W, Wy be U-modules with V & V “-irreducible decompositions

Wfl@Wi(@Wi', WJZ@WJ'@?VV]", WKZ@Wk(@Wk'-

Then, according to these decompositions, any YV € VY (*)) can be written as a sum of elements

of the form Y @ Y', where Y € V(ikj) is the compression of a type ( IKJ) intertwining operator
of U, and V' is an irreducible intertwining operator of V°.

Proof. We fix irreducible V@V “-submodules W;QW,;,, W, QW W, @W,, of Wi, W, W,
respectively. Let @f,: » be a basis of Homy<(Wy X Wy, Wyr). We have a (functorial)
isomorphism

N
Homy(Wy & Wy, Wi) = V' (Z j) o > Yl (3.5)

similar to (1.2). Consider YV as an intertwining operator of V ® V¢, and restrict it
to W; @ Wy, W; @ Wy, W, @ Wy. Then, by [ADLO5] theorem 2.10, this restriction is
a sum of tensor products of V- and V“intertwining operators. Assume without loss
of generality that this restriction is non-zero. Then W}, W, must be irreducible sub-
modules of W; ] W;, Wy ] W; respectively. Now, for each « € @f," 1, We can find
« € Homy (W; X W, W) (not necessarily in Zf ;) such that the restriction of YV equals

D Vu® Vi

ek’
[0t e@i,’j,

We shall show that each Y, is a sum of compressions of type (/%)) intertwining opera-
tors of U.
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Choose «’ € O}, and apply corollary 1.2 to V. Then there exist homogeneous

vectors wi'), ..., wS) e Wy, w¥), .. wl) e W, w*) e Wy, and constants A, ..., A, €

Q, such that for any B’ € ©F , the expression

757
2 z’\lQ/é, (wl(i’)7 z)wl(j,), w@)> (3.6)
=1

is a constant (over the complex variable z), and this constant is non-zero if and only if
B’ = o. By scaling the vector w(*), we may assume that when B’ = o, the above con-

stantis 1. Now, for each [ = 1,2, ..., m, define grading-preserving homomorphisms of
weak V-modules ¢; : W; = Wy, ¢y W; — Wy, : W — W, by

p=10uw",  s=L0uw’, Yv=1,0u®.
Then we have

Vaw®,2) = 3224 92 (pr®, 2)g1.
=1

This finishes the proof. O

4 Proof of the main result

In this section, we assume that V¢ = V. Let W;, W; be V-modules, and we fix
irreducible decompositions of V' @ V“-modules:

U=(Vev)e(@Ww.eW.), (4.1)
W= (Vev e (@wiew,). 4.2)
W= (Vev)e (@w,ew;). (4.3)

We first recall the following obvious fact.

Proposition 4.1. If W, ® W, is an irreducible V ® V *-submodule of U © (V ® V), then W,
is not isomorphic to V and W, is not isomorphic to V°.

Proof. If W, is isomorphic to V¢, then W, contains a non-zero homogeneous vector w,
equivalent to the vacuum vector of V. Choose any non-zero w;, € W,. Then for any
v e Veand n € N, Y'(v'),wy = 0. Therefore YV (v'),(w; @ wy) = w; ® Y'(v'),,wy = 0.
Thus w; @ wy € Ve =V =V ® 1, which is impossible since w; ® wy isnotin V ® V*.
So W, is not isomorphic to V. Since V°“ = V¢, for a similar reason, W, is also not
isomorphic to V. O

For each irreducible V*-module, we choose a representing element, and let them
form a finite set £. Assume Wy := V¢isin & If Wy, W, W), are V°-modules, we
choose a basis O} ; of Homy«(Wy & Wjs, Wy). The linear isomorphism

q: Homvc(I/Vi/ Wj/, Wk/)* i Homvc(W;, Wk/, Wj/) (4-4)

11



and the morphism
evy € Homy(Wy & Wy, V)

are defined as in section 2. Then )’

eV7

. is the annihilation operator of W;.

According to the decompos1t1on for Wi, Wt also has the corresponding decompo-
sition:

W= (Vov)e(@w:ews).
Let
eVi[ S HOHIU(WT W[, U)

which corresponds to the annihilation operator ygﬂ of the U-module W;. Suppose

that in the above decompositions, W;XIW;, is an irreducible submodule of We(Veve).

If we regard yg, as an intertwining operator of V' ® V¢, then it is easy to see that the
restriction of yg, to the charge subspace W; ] W5 source subspace W; [x] W, and the
target subspace V® Veis Vv, ®V

of W, and of W;.

the tensor product of the annihilation operators

V— o7
ri

Theorem 4.2. Let V' be a vertex operator subalgebra of U satisfying (3.1). Assume that U, V,
and V¢ are CFT type, self-dual, and reqular VOAs. Assume also that V< = V. Let W;, W,
be U-modules. Let W;, W; be irreducible V-modules that are compressions of W; and W
respectively. Then any irreducible intertwining operator of V with charge space W; and source
space W is a compression of type (,°,) intertwining operators of U.

Proof. Let W; @ Wy and W; ® W, be irreducible V @ V¢-submodules of W;, W respec-
tively. Assume that k € 8 and not all type ( ) intertwining operators of 1 are com-

pressions of type (,*) intertwining operators of U. Let #(/*,) be a subspace of V(/*)

with codimension 1 containing all elements of V(") that are compressions of type (,*,)
intertwining operators of U. Choose a nonzero element 2l € Homy (W; X W;, W},) such
that Yy ¢ ¥ (* ). We assume that the basis =; of Homy (W; 1 W;, Wy,) is chosen such

that 2 € Ef ;, and that Y, € “//( ) for any a € =7, not equal to 2.

Choose z,( € C satisfying (1 11). Recall that YV is the U-vertex operator of W
and yU . is the U-annihilation operator of W;. In the following, we shall calculate

the fusion relation for the iterate of V ® V*-intertwining operators Y} and Vi, (with

restricted charge, source, and target spaces) in two ways. These two methods will
give incompatible results, which therefore lead to a contradiction. Let 71z, be the
projection of the algebraic completion of IV onto the one of W; @ W

Step 1. Note that for each s € £, 5" € £, the set =5 ; x ©5 _, (more precisely, {Vu @V, :

- W5®W/
o« € ZF, Wi@W, W;QW;/

operators of V' ® Ve (See [ADLO5] theorem 2.10; it is also an easy consequence of
corollary 1.2.) Thus, for any s € £, € £ and «, 3 € Homy (W, I W;, W), &', B’ €
Homy.(Wy X W;, Wy ), there is a unigue constant Ay g o pr € C such that for any

o’ € O3 ,}) is a basis of the vector space of type ( ) intertwining

w1eWg,wgeWZ,,wgem,w4em/,w5er,w6erf, (45)
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the following fusion relation of V' ® V“-intertwining operators holds:

Mgy V) Ve, , (w1 @ w2, 2 = ¢) (w3 @ wa), ¢) (ws @ w)
= Z Z Ao B, B 'yq([g)(w17z)yoc(w37<)w5 ®ytll(g,)(’w2; 2) Ve (w4, C)ws. (4.6)

565 oc,[SeEf].
s'e&! , s’,
o B 681;/ 3

(Recall (1.2) and (3.5) for the notations ), )’.) On the other hand, by (2.8), the iter-
ate of the U-intertwining operators Y and VY _ equals a sum of products of type

eV* 1,1

(TJ.) intertwining operators and type (,°,) intertwining operators of U. Therefore, by

proposition 3.5 and the uniqueness of fusion coefficients, we have
AQ[,B,O(,,B, - 0 (4.7)

forany s’ € &, p € ZF ,and o B e @f, ». In particular, the right hand side of (4.6) has
no terms containing y (wl, )ym(wg, C )w5

Step 2. We calculate the iterate of 7t Y and VY

eV* 1,1

using a different method,

and show that some terms containing J) @) (wl, 2) Va(ws, ¢ )w5 will appear. By the para-
graph before the theorem, we know that for any wy, ws, ..., we as in (4.5),

Jie(iﬂ(wl ® we, z — () (w3 ® wy)
:yevf .(w17 Z = C)’LU3 & yéV* (w27 Z = C)’LU4
+ Z Zyy wy, z — Qws @ Y (wa, 2 — C)wy (4.8)

Wa@W 1 v,y

where the first sum is over all irreducible V ® V¢-submodules of U © (V ® VC) as in the
decomposition (4.1), y € Homy (W;XIW;, W, ), and v’ € Homy.(W5X W, W,/ ). We shall
now calculate the iterate of 7,5, - YV with each term on the right hand side of (4.8).

The first term is in the algebraic completion of V' ® V¢. Moreover, the restriction of
YV (regarded as a V ® V -intertwining operator) to V@ V¢, W; @ Wy, W; ® W; equals
Y;®Y}, where Y}, Y}, are respectively the vertex operators of the V-module I; and the
V¢-module W;. Therefore, by (2.8),

ﬂj@j/ ’ Y (yevf (w17 z— C)wi’) & ye/:vf (w27 z - g)wéla C) (w5 X w6)
:Y; (yevm (wla z = C)'LU;}, C)wS X Y, (ye\;7 ,(w27 Z = C)’LU4, C)w(i
= Z Z Vo (w1, 2) Va(ws, Qws @ Y (yev?,’i, (wa, 2 — )wy, ¢) ws. (4.9)

—s
se€ x€E;

In the above expression, (the sum of) all the terms containing Y, ) (w1, 2)Ya(ws, Q)ws
is

V@ (w1, 2) Ya(ws, Qus @Y, (yev, (w2, 2 = Quy, Jws. (4.10)

On the other hand, suppose that when restricted to the charge subspace W, @ W,
(where W, ® Wy is an irreducible submodule of U © (V ® V'¢)) and source and target

13



subspace IW; ® Wj,, the V ® V“-intertwining operator Y’ could be written as Y ; ;, Vs ®
Vi, where each ) is of type (’.) and Y, has type (/). Then the iterate of m;g; - YV

with the second term of (4.8) is ’ !

Z Z ST YJU(yv(wla z — Qs ®yy’(w27 z — Q)wy, C) (ws ® we)

Wao@W 1 v,y

= > D V(w2 = Qws, Q)ws @ Vi (W (wa, 2 = Qwy, ¢ )w. (4.11)

Wa@Wer v,y
5,8

If we write each ) (yy(wl, z — Q)ws, ) ws as a sum of products of V-intertwining op-
erators under the bases =7 ; and {y(&) : « € Z¢;} (over all s € &) similar to part of (4.6),
then the sum of all the terms containing V, (w1, 2) Va(ws, (Jws should be

V) (w1, 2)Va(ws, Qws @ Z Z Kys - Vy (y«,yf (w2, 2 = QQwy, C)w6 (4.12)

Wo®@Wor v,y
5,8

where each k5 is a constant. By proposition 4.1, every W, (which is irreducible)
is not isomorphic to V¢. Therefore, as the linear map ®.. (see (1.9)) is injective,
the sum of (4.10) and (4.12) is not zero for some wy, ..., ws satisfying (4.5). This
shows that (4.6) (which is the sum of (4.9) and (4.11)) has non-zero terms containing
yq(ﬁ) (w1, 2) Ya(ws, ()ws. In other words, Ay o o g # 0 for some s’ € & and of, B’ € @f,/’j,.
This gives a contradiction. O

The following result was proved in [KM15]:

Theorem 4.3. Let V' be a vertex operator subalgebra of U satisfying (3.1). Assume that U,
V, and V¢ are CFT type, self-dual, and reqular VOAs. Assume also that V' = V. Then any
irreducible V-module is the compression of a U-module.

The above two theorems imply immediately the following;:

Theorem 4.4. Under the assumption of theorem 4.3, any irreducible intertwining operator of
V' is a compression of intertwining operators of U.
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