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Abstract

Let V be a vertex operator subalgebra of U . Assume that U , V , and its com-
mutant V c in U are CFT-type, self-dual, and regular VOAs. Assume also that the
double commutant V cc equals V . We prove that any intertwining operator of V is
a compression of intertwining operators of U .

0 Introduction

In [KM15], Krauel-Miyamoto showed that if V is a vertex operator subalgebra of
U , if U , V , and the commutant V c are CFT-type, self-dual, and regular VOAs, and
if V cc � V , then any irreducible V -module appears in some irreducible U -module.
For example, by [Ara15a, Ara15b, ACL19], these assumptions are satisfied when we
take V � U to be Lk�1pgq � Lkpgq b L1pgq, where k is a positive integer, g is a finite
dimensional complex simple Lie algebra of type ADE, and Lkpgq is the corresponding
(unitary) affine VOA. In this case, V c is a discrete series principle W -algebra Wlpgq.

The above results have important applications to the unitarity problems in VOAs:
For example, we can conclude that any irreducible Wlpgq-module is unitarizable since
this is true for any unitary affine VOA. Moreover, using these results (together with the
techniques developed in [Ten17, Ten19a, Ten19b]), Tener showed in [Ten19c] that the
modular tensor categories associated to all unitary affine VOAs and type AE discrete
series W -algebras are unitary, and solved a longstanding problem in subfactor the-
ory and algebraic quantum field theory: that the conformal nets associated to unitary
affine VOAs and type ADE discrete series W -algebras are completely rational.

In this paper, we generalize the result of [KM15] to intertwining operators: We
show that any intertwining operator of V is a compression of intertwining opera-
tors of U (theorem 4.4). To be more precise, let WI ,WJ ,WK be (ordinary) U -modules,
which can also be regarded as weak V -modules. Suppose that YU is a type

�
WK

WIWJ

�
intertwining operator of U , and Wi,Wj,Wk are graded irreducible V -submodules of
WI ,WJ ,WK respectively, then one can find λ P Q such that zλ times the restriction of
YU to Wi,Wj,Wk is an intertwining operator Y of V . (Note that without the factor zλ,
the restriction itself may not satisfy the L�1-derivative property.) We then say that Y
is a compression of YU . (See definition 3.4 for more details.) Our main result of this
article is that any intertwining operator of V can be written as a (finite) sum of those
that are compressions of intertwining operators of U .
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Our result can be applied to prove many important functional analytic properties
for intertwining operators. One such property is the (polynomial) energy bounds con-
dition [CKLW18, Gui19a, Gui19b], which says roughly that the smeared intertwining
operators are bounded by Ln0 for some n ¥ 0. Proving energy bounds condition for
intertwining operators is a key step in relating the tensor structures of VOA modules
and the corresponding conformal net modules; see [Was98, TL04, Gui18, Gui20]. On
the other hand, one may deduce the energy bounds condition of the compressed in-
tertwining operator Y from that of YU . Since, by our main result, any intertwining
operator of Lkpgq or Wlpgq (when g is of type ADE) is a compression of tensor prod-
ucts of intertwining operators of L1pgq, and since the latter were proved in [TL04] to be
energy bounded, we can conclude that all intertwining operators of Lkpgq or Wlpgq are
energy bounded. This result will be used in [Gui20] to show that if V is Lkpgq or Wlpgq,
and if A is the corresponding conformal net, then the tensor and braid structures of
the representation categories of V and A are compatible.
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1 Intertwining operators and tensor categories

Let pV, Y,1, νq be a vertex operator algebra (VOA) where 1 is the vacuum vector
and ν is the conformal vector. For any v P V , write Y pv, zq �

°
nPZ Y pvqnz

�n�1 where
Y pvqn P EndpV q. Then Ln :� Y pνqn�1 satisfy the Virasoro relation

rLn, Lms � pn�mqLn�m � δn,�m
n3 � n

12
c,

where c is the central charge of V . We shall always assume that V is CFT-type, namely,
V has L0-grading V �

À
nPN V pnq and V p0q � C1. We also assume that V is self-dual

and regular (equivalently, self-dual, rational and C2-cofinite [ABD04]). Note that the
self-dual condition is equivalent to the existence of a non-degenerate invariant bilinear
form. As a consequence of CFT-type and being self-dual, V is simple. (See, for exam-
ple, [CKLW18] proposition 6.4-(iv).) Moreover, any (ordinary) V -module is semisim-
ple, and the category of V -modules is a rigid modular tensor category [Hua08].

We write V -modules as Wi,Wj,Wk, . . . whose vertex operators are denoted by
Yi, Yj, Yk, . . . respectively. V itself as a V -module (the vacuum module) will also be
written as W0. We write Yipv, zq �

°
nPZ Yipvqnz

�n�1 where each Yipvqn P EndpWiq.
Again, any V -module has L0-grading Wi �

À
nPCW pnq. Recall that a homogeneous

vector of Wi is, by definition, an eigenvector of L0. In the case that Wi is irreducible
(i.e. simple), we furthermore have Wi �

À
nPN�αW pnq for some α P C. (Indeed, α P Q

by [AM88, DLM00].) We let Pn denote the projection of Wi onto Wipnq. We also let

Wip¤ nq �
à

Repmq¤n

W pmq,
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and let P¤n be the projection of Wi onto Wip¤ nq.
Let Wi denote the contragredient module of Wi. Recall that as a vector space, Wi �À
nPCWipnq

�. (See [FHL93] for more details.) The evaluation between w1 P Wi and
w P Wi is written as xw,w1y or xw1, wy. (The same notation will be used if one of w,w1

is in the algebraic completion.) Since V is self-dual, we identify the vacuum module
V � W0 and its contragredient moduleW0. W

i
is identified withWi in an obvious way.

Recall that if Wi,Wj,Wk are V -modules, an intertwining operator Y of type
�
Wk

WiWj

�
(or

�
k
i j

�
for short) is a linear map

Wi Ñ EndpWj,Wkqtzu

wi ÞÑ Ypwpiq, zq �
¸
nPC

Ypwpiqqnz
�n�1

where the sum above is the formal sum, each Ypwpiqqn is in EndpWj,Wkq, and the fol-
lowing conditions are satisfied:

(a) (Lower truncation) For anywpjq P Wj , Ypwpiqqnw
pjq � 0 when Repnq is sufficiently

large.
(b) (Jacobi identity) For any u P V,wpiq P Wi,m, n P Z, s P C, we have¸

lPN

�
m

l



Y
�
Yipuqn�lw

piq
�
m�s�l

�
¸
lPN

p�1ql
�
n

l



Ykpuqm�n�lYpwpiqqs�l �

¸
lPN

p�1ql�n
�
n

l



Ypwpiqqn�s�lYjpuqm�l. (1.1)

(c) (L�1-derivative) d
dz
Ypwpiq, zq � YpL�1w

piq, zq for any wpiq P Wi.
We say that Wi,Wj,Wk are respectively the charge space, the source space, and the
target space of Y . If Wi,Wj,Wk are all irreducible, we say that Y is an irreducible
intertwining operator.

Recall that given Y P V
�
k
i j

�
, one can define BY P V

�
k
j i

�
and AY P V

�
j

i k

�
, called

the (positively) braided intertwining operator and the contragredient intertwining
operator of Y , by choosing any wpiq P Wi, w

pjq P Wj, w
pkq P Wk and setting

BYpwpjq, zqwpiq � ezL�1Ypwpiq, eiπzqwpjq,

xAYpwpiq, zqwpkq, wpjqy � xwpkq,YpezL1peiπz�2qL0wpiq, z�1qwpjqy.

In particular, Yi P V
�
i

0 i

�
(the vertex operator for Wi) is contragredient to Yi. See

[FHL93] for details.
We refer the reader to [HL13] and the references therein for the definition and basic

properties of the tensor category ReppV q of V -modules. (See also [Gui19a] for a sketch
of the Huang-Lepowsky tensor product theory.) Roughly speaking, ReppV q is defined
such that the fusion rules are exactly the dimensions of the spaces of intertwining op-
erators, and the R- and F -matrices are described by the braid and the fusion relations
of intertwining operators.

To be more precise, the tensor functor (fusion product) b is defined in such a way
that there is a functorial isomorphism

HomV pWi bWj,Wkq
�
ÝÑ V

�
k

i j



, α ÞÑ Yα (1.2)
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for any V -modules Wi,Wj,Wk. By saying this map is functorial, we mean that if F P
HomV pWi1 ,Wiq, G P HomV pWj1 ,Wjq, and H P HomV pWk,Wk1q, then for any wpi1q P Wi1

and wpj1q P Wj1 ,

YHαpFbGqpwpi1q, zqwpj1q � HYαpFwpi1q, zqGwpj1q.

In particular, we denote by Li,j P V
�
ibj
i j

�
� V

�
WibWj

Wi Wj

�
the value of the identity element

1ibj P HomV pWi bWj,Wi bWjq under (1.2), i.e.,

Li,j � Y1ibj
.

Here we adopt the notation

Wibj � Wi bWj.

Then for any α P HomV pWi b Wj,Wkq, by the functoriality of (1.2) and that α � α �
1WibWj

, it is clear that

Yα � αLi,j.

(In the papers of Huang-Lepowsky, Li,jpwpiq, zqwpjq is written aswpiqbP pzqw
pjq, regarded

as a fusion product of the vectors wpiq, wpjq.)
Note that Yi P V

�
i

0 i

�
. The left unitor W0 bWi

�
ÝÑ Wi is defined such that it is sent

by (1.2) to the element Yi. The right unitor

κpiq : Wi bW0
�
ÝÑ Wi

is defined such that

Yκpiq � BYi.

We call Yκpiq P V
�
i
i 0

�
the creation operator of Wi.

The braid isomorphism B � Bi,j : Wi bWj
�
ÝÑ Wj bWi is defined such that

YBi,j
� BLi,j.

We will not use braiding in this article. To describe the associativity isomorphisms, we
first notice:

Proposition 1.1. Choose any z P C� � C� t0u. Then for any n P C,

Span
wpiqPWi,wpjqPWj

P¤n � Li,jpwpiq, zqwpjq � pWi bWjqp¤ nq. (1.3)

This proposition was proved in [Gui19a] section A.2.1 The main idea of the proof is
as follows. Set Wk � Wi bWj . Then it is equivalent to proving that for any wpkq P Wk,
if

xwpkq,Li,jpwpiq, zqwpjqy � 0

1Proposition 1.1 is similar to but slightly stronger than [Hua95] Lemma 14.9. That lemma says that
(1.3) holds with P¤s replaced by Ps and pWi bWjqp¤ sq by pWi bWjqpsq. Huang’s result is enough for
applications in our paper.
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for any wpiq P Wi and wpjq P Wj , then wpkq � 0. To see this, let W � Wk be the subspace
of all wpkq satisfying the above identity. Using the Jacobi identity for intertwining op-
erators, it is easy to see that W is V -invariant, i.e. it is a V -submodule of Wk. Assume
W is non-trivial. Choose an irreducible module Wl such that W has an irreducible
submodule isomorphic to Wl. Then there is a non-zero T P HomV pWk,Wlq whose
transpose T t P HomV pWl,Wkq maps Wl into W . Using the definition of W and the fact
that T twplq P W for each wplq P Wl, it is easy to see that TLi,j � 0. Recall Wk � WibWj .
So we can write TLi,j � YT . Therefore T � 0, which gives a contradiction.

Corollary 1.2. Let Wi,Wj,Ws be V -modules, and assume that Ws is isomorphic to an irre-
ducible submodule of Wi bWj . If Ξs

i,j is a basis of HomV pWi bWj,Wsq, α P Ξs
i,j , then there

exist homogeneous vectors wpiq
1 , . . . , w

piq
m P Wi, w

pjq
1 , . . . , w

pjq
m P Wj , wpsq P Ws, and constants

λ1, . . . , λm P Q, such that for any β P Ξs
i,j , the expression

m̧

l�1

zλlxYβpwpiq
l , zqw

pjq
l , wpsqy (1.4)

is a constant (where z is a complex variable), and it is non-zero if and only if β � α.

Proof. Choose n P C such that Wspnq is non-trivial. Choose for each α P Ξs
i,j a mor-

phism qα P HomV pWs,Wi bWjq such that αqβ � δα,β1s for any α,β P Ξs
i,j . Now we fix

α P Ξs
i,j , and choose a non-zero vector wpsq P Wspnq. By proposition 1.1, there exist

homogeneous vectors wpiq
1 , . . . , w

piq
m P Wi and w

pjq
1 , . . . , w

pjq
m P Wj such that

m̧

l�1

PnLi,jpwpiq
l , 1qw

pjq
l � qαwpsq.

Choose wpsq P Wspnq such that xwpsq, wpsqy � 0. (Recall that Wspnq is the dual vector
space of Wspnq.) Then it is easy to check that the constant

m̧

l�1

xYβpwpiq
l , 1qw

pjq
l , wpsqy (1.5)

is non-zero (in which case equals xwpsq, wpsqy) if and only if β � α. Now let

λl � wtpw
psq
l q � wtpw

piq
l q � wtpw

pjq
l q,

where the three terms on the right hand side are the weights (i.e. the L0-eigenvalues)
of the corresponding homogeneous vectors. Then (1.5) equals (1.4). This proves the
claim of this corollary.

For any irreducible equivalence class of V -modules we choose a representing el-
ement and let them form a (finite) set E . We assume W0 P E . Choose V -modules
Wi,Wj,Wk,Wl. If Ws P E , we write s P E for short. For each r P E , we choose bases
Ξr
j,k of HomV pWj b Wk,Wrq and Ξl

i,r of HomV pWi b Wr,Wlq. Choose z, ζ P C� with
0   |ζ|   |z|. Then for any wpiq P Wi, w

pjq P Wj , and any α P Ξl
i,r,β P Ξr

j,k the product

Yαpwpiq, zqYβpwpjq, ζq (1.6)
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converges absolutely [Hua05], in the sense that for any wpkq P Wk, w
plq P Wl,¸

nPC

��xYαpwpiq, zqPnYβpwpjq, ζqwpkq, wplqy
��   �8.

Moreover, consider the expression

xYαpwpiq, zqYβpwpjq, ζqwpkq, wplqy (1.7)

as an element of pWi bWj bWk bWlq
�. (Note that this element depends also on the

arguments arg z and arg ζ .) By linearity, we have a linear map

Ψz,ζ :
à
rPE

HomV pWi bWr,Wlq b HomV pWj bWk,Wrq Ñ pWi bWj bWk bWlq
� (1.8)

sending α b β to the linear functional defined by (1.7). This map is well-known to be
injective. Indeed, choose any X in the domain of Ψz,ζ . If Ψz,ζpXq equals 0 for one pair
pz, ζq, then, by the existence of differential equations as in [Hua05], Ψz,ζpXq equals 0
for all z, ζ satisfying 0   |ζ|   |z|. (See [Gui19a] the paragraphs after theorem 2.4 for a
detailed explanation.) Then, using proposition 1.1, it is not hard to show X � 0. (See
for instance [Gui19a] proposition 2.3 whose proof is in section A.2.)

Similarly, when 0   |z � ζ|   |ζ|, one can define an injective linear map

Φz,ζ :
à
sPE

HomV pWs bWk,Wlq b HomV pWi bWj,Wsq Ñ pWi bWj bWk bWlq
� (1.9)

sending each γ b δ to the linear functional determined by the following iterate of in-
tertwining operators:

xYγpYδpwpiq, z � ζqwpjq, ζqwpkq, wplqy. (1.10)

Again, this map depends on the choice of arguments: argpz � ζq and argpζq, and the
above expression converges absolutely in an appropriate sense. By a deep result of
[Hua95, Hua05], Φz,ζ and Ψz,ζ have the same image.

We now assume

0   |z � ζ|   |ζ|   |z|, argpz � ζq � arg ζ � arg z. (1.11)

In particular, ζ, z are on the same ray starting from the origin. If we also choose bases
Ξl
s,k and Ξs

i,j of HomV pWsbWk,Wlq and HomV pWibWj,Wsq respectively, then we have
a matrix tF αβγδ u (the fusion matrix) representing the invertible map Ψz,ζΦ

�1
z,ζ . Equiva-

lently, we have a unique number F αβγδ for each α,β,γ, δ such that for each s P E and
each γ P Ξl

s,k, δ P Ξs
i,j , the fusion relation

YγpYδpwpiq, z � ζqwpjq, ζq �
¸
rPE

¸
αPΞl

i,r,βPΞr
j,k

F αβγδ � Yαpw
piq, zqYβpwpjq, ζq (1.12)

holds for each wpiq P Wi, w
pjq P Wj . This fusion matrix is independent of the particular

choice of z, ζ satisfying the above mentioned conditions. The associativity isomor-
phisms of ReppV q are defined in such a way that after making ReppV q strict, we have

γpδb 1kq �
¸
rPE

¸
αPΞl

i,r,βPΞr
j,k

F αβγδ � αp1i b βq, (1.13)

namely, F is also an F -matrix of ReppV q.
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2 Fusion of annihiliation and vertex operators

Let Wi,Wj be V -modules. For each Ws P E , there is a non-degenerate bilinear form
x�, �y on HomV pWibWj,WsqbHomV pWs,WibWjq such that if α P HomV pWibWj,Wsq
and T P HomV pWs,Wi bWjq, then

αT � xα, T y1s. (2.1)

This bilinear form gives an isomorphism

HomV pWs,Wi bWjq
�
ÝÑ HomV pWi bWj,Wsq

�. (2.2)

We shall always identify HomV pWs,WibWjq and HomV pWibWj,Wsq
� using the above

isomorphism.
Recall from the last section that Ξs

i,j is a basis of HomV pWi b Wj,Wsq. Then
we can choose a dual basis tqα : α P Ξs

i,ju. Namely, for each α P Ξs
i,j , we haveqα P HomV pWs,Wi bWjq, and if β P Ξs

i,j , then xα, qβy � δα,β. So we also have

αqβ � δα,β1s. (2.3)

This implies that

1ibj �
¸
sPE

¸
αPΞs

i,j

qαα, (2.4)

since, by (2.3), the left multiplications of both sides of (2.4) by any β P Ξs
i,j equal β.

In [HK07], Huang-Kong used the rigidity of ReppV q to define a natural isomor-
phism HomV pWi b Wj,Wsq

�
ÝÑ HomV pWi b Wj,Wsq

�. Since V
�
s
i j

�
is isomorphic to

V
�
j

i s

�
by sending Y to AY , we also have an isomorphism

4 : HomV pWi bWj,Wsq
� �
ÝÑ HomV pWi bWs,Wjq. (2.5)

In the following, we review the construction of this isomorphism.
In [Hua08], Huang showed that ReppV q is rigid, and the (categorical) dual object

of any V -module Wi could be chosen to be the contragredient module Wi. Moreover,
if we define

evi,i P HomV pWi bWi, V q

such that

Yevi,i
� AYκpiq,

(Recall that Yκpiq is the creation operator of Wi, which is of type
�
i
i 0

�
. Yevi,i

, which is of
type

�
0
i i

�
, is called the annihilation operator ofWi.) then there is a (unique) morphism

coevi,i P HomV pV,Wi bWiq
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satisfying the conjugate equations

p1i b evi,iqpcoevi,i b 1iq � 1i,

pevi,i b 1iqp1i b coevi,iq � 1i.

This is also true for Wi. Thus we have evi,i and coevi,i defined by evi,i � ev
i,i

and
coevi,i � coev

i,i
.

Recall the identification (2.2). We define

4 : HomV pWs,Wi bWjq
�
ÝÑ HomV pWi bWs,Wjq,

T ÞÑ 4pT q � pevi,i b 1jqp1i b T q. (2.6)

That 4 is an isomorphism follows from the conjugate equations. Using the definition
of 4 and equation (2.4), it is easy to see

evi,i b 1j �
¸
sPE

¸
αPΞs

i,j

4pqαqp1i b αq. (2.7)

Thus, by (1.12) and (1.13), we have the following fusion relation which will play an
important role in later sections: Let z, ζ P C satisfy (1.11). Then for any wpiq P Wi, w

piq P
Wi,

YjpYevi,i
pwpiq, z � ζqwpiq, ζq �

¸
sPE

¸
αPΞs

i,j

Y4pqαqpw
piq, zqYαpwpiq, ζq. (2.8)

Note that for each s P E , t4pqαq : α P Ξs
i,ju is a basis of HomV pWi bWs,Wjq. Roughly

speaking, this fusion relation says that any intertwining operator arises from fusing
the annihilation operators and the vertex operators. This is parallel to the fact that
any V -module character occurs in the sum resulting from the modular transformation
τ ÞÑ �1{τ of the vacuum module character.

3 Compressions of intertwining operators

Assume that V is a vertex operator subalgebra (sub-VOA for short) of another CFT-
type VOA U with vertex operator Y U and conformal vector ω. This means that V is
a subspace of U , V and U share the same vacuum vector 1, and that Y Upv1, zqv2 �
Y pv1, zqv2 when v1, v2 P V . Let LUn � Y Upωqn�1. We shall always assume the additional
condition that

LU0 ν � 2ν, LU1 ν � 0. (3.1)

Then by [FZ92] or [LL12] theorem 3.11.12, pV c, Y 1,1, ν 1q is a sub-VOA of U , where V c

is the set of all u P U such that Y pvqnu � 0 for all v P V and n P N, Y 1 is the restriction
of Y U to V c, and ν 1 � ω � ν. We set L1n � Y 1pν 1qn�1.

Assume that V c is self-dual, CFT-type, and regular. Then V b V c is also CFT-type
and self-dual (and also regular). Thus it is simple. Therefore, the homomorphism of
V b V c-modules

V b V c Ñ U, v b v1 ÞÑ Y pvq�1Y pv
1q�11 (3.2)
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(cf. [LL12] proposition 3.12.7) must be injective. Thus, we can regard V b V c as a
conformal sub-VOA of U sharing the same conformal vector ω � ν� ν 1 � νb1�1b ν 1.
Note that by the identification v b v1 � Y pvq�1Y pv

1q�11, we have 1 � 1 b 1, v �
v b 1, v1 � 1b v1.

Recall that by [FHL93] chapter 4, any irreducible V bV c-module is the tensor prod-
uct of a V -module and a V c-module. Moreover, by [ADL05] theorem 2.10, any irre-
ducible intertwining operator of V b V c can be written as a sum of tensor products of
irreducible intertwining operators of V and of V c. Therefore, any U -module, consid-
ered as a V b V c-module, is a direct sum of those of the form Wi bWi1 , where Wi is an
irreducible V -module and Wi1 is an irreducible V c-module. Theorem 2.10 also implies
that any intertwining operator of U can be decomposed as a sum of Yα b Yα1 , where
Yα and Yα1 are irreducible intertwining operators of V and V c respectively.

In the following, WI ,WJ ,WK , . . . will denote U -modules, and Wi1 ,Wj1 ,Wk1 , . . . will
denote V c-modules. VU

�
K
I J

�
and V 1

�
k1

i1 j1

�
will denote the corresponding vector spaces

of intertwining operators of U and V c respectively. Note that WI can not be regarded
as a V -module (unless when ω � ν) but only as a weak V -module (see [DLM97] for
the definition.)

Definition 3.1. Let Wi be an irreducible V -module and WI be a U -module. Let
ϕ : Wi Ñ WI and ψ : WI Ñ Wi be homomorphisms of weak V -modules, i.e., they
intertwine the actions of V . We say that ϕ is grading-preserving if ϕ maps each L0-
eigenspace of Wi into an LU0 -eigenspace of WI . We say that ψ is grading-preserving if
the preimage under ψ of any LU0 -eigenspace of WI is contained in an L0-eigenspace of
Wi.

Remark 3.2. We have seen that there is an identification of V b V c-modules:

WI �
à
sPE

Ws bWσpsq (3.3)

where for each s P E , Wσpsq is a (non-necessarily irreducible) V c-module. We can also
regard (3.3) as a decomposition of WI into irreducible weak V -modules, where for
each s P E , Wσpsq is the multiplicity space of Ws. (Note that different elements in E give
rise to non-equivalent irreducible modules.) Choose any s P E . Choose ϕ : Ws Ñ WI

and ψ : WI Ñ Ws to be homomorphisms of weak V -modules. Then it is not hard to
see that we can find wpσpsqq P Wσpsq and $ P W �

σpsq (note that W �
σpsq is the dual vector

space of Wσpsq) such that

ϕ � 1s b wpσpsqq, ψ � 1s b$, (3.4)

wherewpσpsqq is considered as the linear map C Ñ Wσpsq sending 1 towpσpsqq.2 Moreover,
outside Ws bWσpsq, 1s b$ is defined to be the zero functional. Thus, it is clear that ϕ
(resp. ψ) is grading-preserving if any only if wpσpsqq (resp. $) equals an (L10-) homogeneous
vector of Wσpsq (resp. Wσpsq).

2To see that ϕ can be written in this way, choose any t P E andω PW�
σptq, and consider the homomor-

phism of irreducible V -modules Tω : Ws Ñ Wt defined by Tω � p1t bωq � ϕ. Then Tω � 0 whenever
s � t (since Ws � Wt). So the image of ϕ is in Ws bWσpsq. Now assume t � s. Then Tω is a scalar.
Choose a basis te1, e2, . . . u of Ws, and write ϕpe1q �

°
n en b wn where each wn is in Wσpsq. Then, for

each ω, Tωpe1q �
°
nωpwnqen is a scalar multiple of e1, which shows that wn � 0 when n ¡ 1. Thus

ϕ � 1s b w1. That ψ has the desired form can be proved similarly.
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Definition 3.3. LetWi be an irreducible V -module andWI be a U -module. We say that
Wi is a compression of WI if WI (considered as a weak V -module) has an irreducible
weak V -submodule isomorphic toWi. Equivalently, the V bV c-moduleWI has a (non-
trivial) irreducible submodule isomorphic to WibWi1 for some irreducible V c-module
Wi1 .

Definition 3.4. Let Y P V
�
k
i j

�
be an irreducible intertwining operator of V .

(a) Let YU P VU
�
K
I J

�
be an intertwining operator of U . We say that Y is a com-

pression of YU , if there exit λ P Q and grading-preserving homomorphisms of weak
V -modules ϕ : Wi Ñ WI , φ : Wj Ñ WJ , and ψ : WK Ñ Wk, such that for any wpiq P Wi

and z P C�

Ypwpiq, zq � zλ � ψYUpϕwpiq, zqφ.

(b) IfWI ,WJ areU -modules, we say that Y is a compression of type
�

I J

�
intertwin-

ing operators of U , if Y is a (finite) sum of compressions of intertwining operators of
U whose charge spaces are WI and source spaces are WJ .

(c) If Y is a (finite) sum of compressions of intertwining operators of U , we simply
say that Y is a compression of intertwining operators of U

Proposition 3.5. Let WI ,WJ ,WK be U -modules with V b V c-irreducible decompositions

WI �
à

Wi bWi1 , WJ �
à

Wj bWj1 , WK �
à

Wk bWk1 .

Then, according to these decompositions, any YU P VU
�
K
I J

�
can be written as a sum of elements

of the form Y b Y 1, where Y P V
�
k
i j

�
is the compression of a type

�
K
I J

�
intertwining operator

of U , and Y 1 is an irreducible intertwining operator of V c.

Proof. We fix irreducible V bV c-submodulesWibWi1 ,WjbWj1 ,WkbWk1 ofWI ,WJ ,Wk

respectively. Let Θk1

i1,j1 be a basis of HomV cpWi1 b Wj1 ,Wk1q. We have a (functorial)
isomorphism

HomV cpWi1 bWj1 ,Wk1q
�
ÝÑ V 1

�
k1

i1 j1



, α1 ÞÑ Y 1

α1 (3.5)

similar to (1.2). Consider YU as an intertwining operator of V b V c, and restrict it
to Wi b Wi1 ,Wj b Wj1 ,Wk b Wk1 . Then, by [ADL05] theorem 2.10, this restriction is
a sum of tensor products of V - and V c-intertwining operators. Assume without loss
of generality that this restriction is non-zero. Then Wk,Wk1 must be irreducible sub-
modules of Wi b Wj,Wi1 b Wj1 respectively. Now, for each α1 P Θk1

i1,j1 , we can find
α P HomV pWi bWj,Wkq (not necessarily in Ξk

i,j) such that the restriction of YU equals¸
α1PΘk1

i1,j1

Yα b Y 1
α1 .

We shall show that each Yα is a sum of compressions of type
�
K
I J

�
intertwining opera-

tors of U .
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Choose α1 P Θk1

i1,j1 and apply corollary 1.2 to V c. Then there exist homogeneous
vectors wpi1q

1 , . . . , w
pi1q
m P Wi1 , w

pj1q
1 , . . . , w

pj1q
m P Wj1 , wpk1q P Wk1 , and constants λ1, . . . , λm P

Q, such that for any β1 P Θk1

i1,j1 , the expression

m̧

l�1

zλlxY 1
β1pw

pi1q
l , zqw

pj1q
l , wpk1qy (3.6)

is a constant (over the complex variable z), and this constant is non-zero if and only if
β1 � α1. By scaling the vector wpk1q, we may assume that when β1 � α1, the above con-
stant is 1. Now, for each l � 1, 2, . . . ,m, define grading-preserving homomorphisms of
weak V -modules ϕl : Wi Ñ WI , φl : Wj Ñ WJ , ψ : WK Ñ Wk by

ϕl � 1i b w
pi1q
l , φl � 1j b w

pj1q
l , ψ � 1k b wpk1q.

Then we have

Yαpwpiq, zq �
m̧

l�1

zλl � ψYUpϕlw
piq, zqφl.

This finishes the proof.

4 Proof of the main result

In this section, we assume that V cc � V . Let WI ,WJ be V -modules, and we fix
irreducible decompositions of V b V c-modules:

U �
�
V b V c

�
`
�à

Wa bWa1

	
, (4.1)

WI �
�
V b V c

�
`
�à

Wi bWi1

	
, (4.2)

WJ �
�
V b V c

�
`
�à

Wj bWj1

	
. (4.3)

We first recall the following obvious fact.

Proposition 4.1. If WabWa1 is an irreducible V b V c-submodule of U a pV b V cq, then Wa

is not isomorphic to V and Wa1 is not isomorphic to V c.

Proof. If Wa1 is isomorphic to V c, then Wa1 contains a non-zero homogeneous vector w2

equivalent to the vacuum vector of V c. Choose any non-zero w1 P Wa. Then for any
v1 P V c and n P N, Y 1pv1qnw2 � 0. Therefore Y Upv1qnpw1 b w2q � w1 b Y 1pv1qnw2 � 0.
Thus w1 b w2 P V

cc � V � V b 1, which is impossible since w1 b w2 is not in V b V c.
So Wa1 is not isomorphic to V c. Since V ccc � V c, for a similar reason, Wa is also not
isomorphic to V .

For each irreducible V c-module, we choose a representing element, and let them
form a finite set E 1. Assume W01 :� V c is in E 1. If Wi1 ,Wj1 ,Wk1 are V c-modules, we
choose a basis Θk

i,j of HomV cpWi1 bWj1 ,Wk1q. The linear isomorphism

4 : HomV cpWi1 bWj1 ,Wk1q
� �
ÝÑ HomV cpWi1 bWk1 ,Wj1q (4.4)
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and the morphism

evi1,i1 P HomV cpWi1 bWi1 , V
cq

are defined as in section 2. Then Y 1
ev

i1,i1
is the annihilation operator of Wi1 .

According to the decomposition for WI , WI also has the corresponding decompo-
sition:

WI �
�
V b V c

�
`
�à

Wi bWi1

	
.

Let

evI,I P HomUpWI bWI , Uq

which corresponds to the annihilation operator YU
evI,I

of the U -module WI . Suppose
that in the above decompositions,WibWi1 is an irreducible submodule ofWIapVbV

cq.
If we regard YU

evI,I
as an intertwining operator of V b V c, then it is easy to see that the

restriction of YU
evI,I

to the charge subspace Wi bWi1 source subspace Wi bWi1 and the
target subspace V bV c is Yevi,i

bY 1
ev

i1,i1
, the tensor product of the annihilation operators

of Wi and of Wi1 .

Theorem 4.2. Let V be a vertex operator subalgebra of U satisfying (3.1). Assume that U , V ,
and V c are CFT type, self-dual, and regular VOAs. Assume also that V cc � V . Let WI ,WJ

be U -modules. Let Wi,Wj be irreducible V -modules that are compressions of WI and WJ

respectively. Then any irreducible intertwining operator of V with charge space Wi and source
space Wj is a compression of type

�

I J

�
intertwining operators of U .

Proof. Let Wi bWi1 and Wj bWj1 be irreducible V b V c-submodules of WI ,WJ respec-
tively. Assume that k P E and not all type

�
k
i j

�
intertwining operators of V are com-

pressions of type
�

I J

�
intertwining operators of U . Let V

�
k
i j

�
be a subspace of V

�
k
i j

�
with codimension 1 containing all elements of V

�
k
i j

�
that are compressions of type

�

I J

�
intertwining operators of U . Choose a nonzero element A P HomV pWi bWj,Wkq such
that YA R V

�
k
i j

�
. We assume that the basis Ξk

i,j of HomV pWi bWj,Wkq is chosen such
that A P Ξk

i,j , and that Yα P V
�
k
i j

�
for any α P Ξk

i,j not equal to A.
Choose z, ζ P C satisfying (1.11). Recall that Y U

I is the U -vertex operator of WI

and YU
evI,I

is the U -annihilation operator of WI . In the following, we shall calculate
the fusion relation for the iterate of V b V c-intertwining operators Y U

J and YU
evI,I

(with
restricted charge, source, and target spaces) in two ways. These two methods will
give incompatible results, which therefore lead to a contradiction. Let πjbj1 be the
projection of the algebraic completion of WJ onto the one of Wj bWj1 .

Step 1. Note that for each s P E , s1 P E 1, the set Ξs
i,j�Θs1

i1,j1 (more precisely, tYαbY 1
α1 :

α P Ξs
i,j,α

1 P Θs1

i1,j1u) is a basis of the vector space of type
�

WsbWs1

WibWi1 WjbWj1

�
intertwining

operators of V b V c. (See [ADL05] theorem 2.10; it is also an easy consequence of
corollary 1.2.) Thus, for any s P E , s1 P E 1 and α,β P HomV pWi b Wj,Wsq,α

1,β1 P
HomV cpWi1 bWj1 ,Ws1q, there is a unique constant λα,β,α1,β1 P C such that for any

w1 P Wi, w2 P Wi1 , w3 P Wi, w4 P Wi1 , w5 P Wj, w6 P Wj1 , (4.5)
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the following fusion relation of V b V c-intertwining operators holds:

πjbj1 � Y
U
J

�
YU

evI,I
pw1 b w2, z � ζqpw3 b w4q, ζ

�
pw5 b w6q

�
¸
sPE
s1PE 1

¸
α,βPΞs

i,j

α1,β1PΘs1

i1,j1

λα,β,α1,β1 � Y4pqβqpw1, zqYαpw3, ζqw5 b Y 1
4p qβ1q

pw2, zqY 1
α1pw4, ζqw6. (4.6)

(Recall (1.2) and (3.5) for the notations Y ,Y 1.) On the other hand, by (2.8), the iter-
ate of the U -intertwining operators Y U

J and YU
evI,I

equals a sum of products of type�
J
I 

�
intertwining operators and type

�

I J

�
intertwining operators of U . Therefore, by

proposition 3.5 and the uniqueness of fusion coefficients, we have

λA,β,α1,β1 � 0 (4.7)

for any s1 P E 1, β P Ξk
i,j , and α1,β1 P Θs1

i1,j1 . In particular, the right hand side of (4.6) has
no terms containing Y4pqAqpw1, zqYApw3, ζqw5.

Step 2. We calculate the iterate of πjbj1 � Y U
J and YU

evI,I
using a different method,

and show that some terms containing Y4pqAqpw1, zqYApw3, ζqw5 will appear. By the para-
graph before the theorem, we know that for any w1, w2, . . . , w6 as in (4.5),

YU
evI,I

pw1 b w2, z � ζqpw3 b w4q

�Yevi,i
pw1, z � ζqw3 b Y 1

ev
i1,i1
pw2, z � ζqw4

�
¸

WabWa1

¸
γ,γ1

Yγpw1, z � ζqw3 b Y 1
γ1pw2, z � ζqw4 (4.8)

where the first sum is over all irreducible V bV c-submodules of U apV bV cq as in the
decomposition (4.1), γ P HomV pWibWi,Waq, and γ1 P HomV cpWi1bWi1 ,Wa1q. We shall
now calculate the iterate of πjbj1 � Y U

J with each term on the right hand side of (4.8).
The first term is in the algebraic completion of V b V c. Moreover, the restriction of

Y U
J (regarded as a V b V c-intertwining operator) to V b V c,Wj bWj1 ,Wj bWj1 equals
YjbY

1
j1 , where Yj, Y 1

j1 are respectively the vertex operators of the V -module Wj and the
V c-module Wj1 . Therefore, by (2.8),

πjbj1 � Y
U
J

�
Yevi,i

pw1, z � ζqw3 b Y 1
ev

i1,i1
pw2, z � ζqw4, ζ

�
pw5 b w6q

�Yj
�
Yevi,i

pw1, z � ζqw3, ζ
�
w5 b Y 1

j1

�
Y 1

ev
i1,i1
pw2, z � ζqw4, ζ

�
w6

�
¸
sPE

¸
αPΞs

i,j

Y4pqαqpw1, zqYαpw3, ζqw5 b Y 1
j1

�
Y 1

ev
i1,i1
pw2, z � ζqw4, ζ

�
w6. (4.9)

In the above expression, (the sum of) all the terms containing Y4pqAqpw1, zqYApw3, ζqw5

is

Y4pqAqpw1, zqYApw3, ζqw5 b Y 1
j1

�
Y 1

ev
i1,i1
pw2, z � ζqw4, ζ

�
w6. (4.10)

On the other hand, suppose that when restricted to the charge subspace Wa bWa1

(where Wa bWa1 is an irreducible submodule of U a pV b V cq) and source and target
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subspace Wj bWj1 , the V bV c-intertwining operator Y U
J could be written as

°
δ,δ1 Yδb

Y 1
δ1 , where each Yδ is of type

�
j
a j

�
and Y 1

δ1 has type
�
j1

a1 j1

�
. Then the iterate of πjbj1 � Y U

J

with the second term of (4.8) is¸
WabWa1

¸
γ,γ1

πjbj1 � Y
U
J

�
Yγpw1, z � ζqw3 b Yγ1pw2, z � ζqw4, ζ

�
pw5 b w6q

�
¸

WabWa1

¸
γ,γ1

δ,δ1

Yδ
�
Yγpw1, z � ζqw3, ζ

�
w5 b Y 1

δ1

�
Y 1
γ1pw2, z � ζqw4, ζ

�
w6. (4.11)

If we write each Yδ
�
Yγpw1, z � ζqw3, ζ

�
w5 as a sum of products of V -intertwining op-

erators under the bases Ξs
i,j and t4pqαq : α P Ξs

i,ju (over all s P E) similar to part of (4.6),
then the sum of all the terms containing Y4pqAqpw1, zqYApw3, ζqw5 should be

Y4pqAqpw1, zqYApw3, ζqw5 b
¸

WabWa1

¸
γ,γ1

δ,δ1

κγ,δ � Y 1
δ1

�
Y 1
γ1pw2, z � ζqw4, ζ

�
w6 (4.12)

where each κγ,δ is a constant. By proposition 4.1, every Wa1 (which is irreducible)
is not isomorphic to V c. Therefore, as the linear map Φz,ζ (see (1.9)) is injective,
the sum of (4.10) and (4.12) is not zero for some w1, . . . , w6 satisfying (4.5). This
shows that (4.6) (which is the sum of (4.9) and (4.11)) has non-zero terms containing
Y4pqAqpw1, zqYApw3, ζqw5. In other words, λA,A,α1,β1 � 0 for some s1 P E 1 and α1,β1 P Θs1

i1,j1 .
This gives a contradiction.

The following result was proved in [KM15]:

Theorem 4.3. Let V be a vertex operator subalgebra of U satisfying (3.1). Assume that U ,
V , and V c are CFT type, self-dual, and regular VOAs. Assume also that V cc � V . Then any
irreducible V -module is the compression of a U -module.

The above two theorems imply immediately the following:

Theorem 4.4. Under the assumption of theorem 4.3, any irreducible intertwining operator of
V is a compression of intertwining operators of U .
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