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Introduction

Conformal blocks are central objects in 2-dimensional conformal field theory
(CFT). Mathematically rigorous definitions of conformal blocks were first intro-
duced for special examples (e.g. minimal models, Weiss-Zumino-Witten models,
see [BFM91, TUY89]), and were later given for general vertex operator algebras
(VOAs) (see [Zhu94, FB04]). Conformal blocks are the building blocks of corre-
lation functions of CFT. They are mainly discussed in the literature of algebraic
geometry, although they have important applications also to many other areas
related to CFT, such as low-dimensional topology, tensor categories, VOAs, von
Neumann algebras and subfactors, etc.. Thus, we believe it is worthwhile to intro-
duce the beautiful theory of conformal blocks to the people working in these areas
without assuming they have previous knowledge in algebraic geometry. This is a
main goal of the present monograph.

We shall give a comprehensive exploration of the theory of conformal blocks in
the framework of VOAs and complex analytic geometry. Unlike most approaches,
we work in the complex analytic setting rather than algebraic one, using the lan-
guage of complex manifolds and complex spaces1 rather than schemes or stacks.
This is partly due to the author’s own taste, but also due to the following reason:
Despite that an analytic theory of conformal blocks is necessary for application
to many areas, some results of conformal blocks (e.g. proving that spaces of con-
formal blocks form a holomorphic vector bundle) cannot be directly translated
without suitable adaption from algebraic to analytic setting, and certain results
(e.g. convergence of sewing conformal blocks) can only be proved using analytic
methods. Let me explain this in more details.

Vector bundle structures

Given a (CFT-type) VOA V, an N -pointed compact Riemann surface X “

pC;x1, . . . , xNq (i.e. C has N distinct marked points x1, . . . , xN ) and V-modules
W1, . . . ,WN , a conformal block ϕ is a linear functional on W‚ :“ W1 b ¨ ¨ ¨ b WN

invariant under the action of the sections of sheaf of VOAs VC defined using

1Nodal curves and their open subsets are the only singular complex spaces (i.e. complex spaces
which are not complex manifolds) we will consider in this monograph.
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V and C. The vector space of all conformal blocks associated to C and these V-
modules is called the space of conformal blocks T ˚

X pW‚q. Assume that V satisfies
C2-cofinite property, a natural finiteness condition introduced by Zhu [Zhu96].
Then WXpW‚q is expected to be finite-dimensional. Moreover, one should expect
that its dimension is independent of the complex structure of C and the positions
of marked points, and these vector spaces should form a holomorphic vector bun-
dle over the moduli space ofN -pointed compact Riemann surfaces (with possibly
extra data). In other words, suppose we have a holomorphic family of N -pointed
compact Riemann surfaces X “ pπ : C Ñ B; ς1, . . . , ςNq where C,B are complex
manifolds, ς1, . . . , ςN : B Ñ C are sections (i.e. families of mark points). Let Cb be
the fiber π´1pbq for each b P B, which is a compact Riemann surface. Let Xb be Cb
with marked points ς1pbq, . . . , ςNpbq. Then b P B ÞÑ dimT ˚

Xb
pW‚q should be locally

constant, and the vector spaces T ˚
Xb

pW‚q (for all b P B) should form a holomorphic
vector bundle over B.

A usual way of constructing vector bundle structures for spaces of conformal
blocks is to first define sheaf of covacua TXpW‚q. This is an OB-module (where
OB is the structure sheaf of B), which is locally a quotient of the sheaf WXpW‚q of
W‚ “ W1 b ¨ ¨ ¨ b WN -valued holomorphic functions. Its dual module T ˚

X pW‚q is
called sheaf of conformal blocks. Using some basic results in complex analytic
or algebraic geometry, one can identify the fibers of TXpW‚q with the spaces of
covacua (the dual spaces of the spaces of conformal blocks) in a natural way (Thm.
3.2.1). Thus, once we have proved that TXpW‚q is locally free (of finite rank), i.e.,
TXpW‚q is a vector bundle, then T ˚

X pW‚q is also locally free, which is the vector
bundle structure we are looking for.

In the algebraic setting, one proves that TXpW‚q admits local connections
[FB04, DGT19a], and that TXpW‚q is coherent [DGT19b]. Then a standard ar-
gument shows that TXpW‚q is locally free. It is obvious that TXpW‚q is quasi-
coherent, i.e., is the cokernal of a morphism between two possibly infinite-rank
locally free sheaves. Thus, once we can show that TXpW‚q is a finite-type OB-
module, we can conclude that TXpW‚q is coherent, thanks to the fact that OB is
Noetherian. In the analytic setting, OB is not Noetherian, and TXpW‚q is not quasi-
coherent (in the sense of [EP96]). Thus, although one can still define connections
and show that TXpW‚q is finite-type, one cannot conclude that TXpW‚q is coherent
or locally free. In this monograph, we fix this issue by proving a stronger finite-
ness theorem for TXpW‚q (Thm. 3.7.3), and show that this result together with the
existence of connections imply the local freeness (Thm. 1.8.5).

Convergence of sewing

Suppose we have an pN ` 2q-pointed compact Riemann surface

rX “ p rC;x1, . . . , xN , x
1, x2

q.
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Then we can sew rX along the pair of points x1, x2 to obtain another Riemann
surface with possibly higher genus. More precisely, we choose ξ,ϖ to be local
coordinates of rC at x1, x2. Namely, they are univalent (i.e. holomorphic and in-
jective) functions defined respectively in neighborhoods U 1 Q x1, U2 Q x2 satisfy-
ing ξpx1q “ 0, ϖpx2q “ 0. For each r ą 0 we let Dr “ tz P C : |z| ă ru and
Dˆ

r “ Dr ´ t0u. We choose r, ρ ą 0 so that the neighborhoods U 1, U2 can be chosen
to satisfy that ξpU 1q “ Dr and ϖpU2q “ Dρ, that U 1 X U2 “ H, and that none of
x1, . . . , xN is in U 1 or U2. Then, for each q P Dˆ

rρ, we remove the closed subdiscs of
U 1, U2 determined respectively by |ξ| ď

|q|

ρ
and |ϖ| ď

|q|

r
, and glue the remaining

part using the relation ξϖ “ q. Then we obtain an N -pointed compact Riemann
surface

Xq “ pCq;x1, . . . , xNq

which clearly depends on ξ and ϖ. By varying q, we obtain a family of N -pointed
compact Riemann surfaces X “ pπ : C Ñ Dˆ

rρ; ς1, . . . , ςNq.
Now, if we associate V-modules W1, . . . ,WN ,M,M1 (where M1 is the con-

tragredient (i.e. dual) module of M) to x1, . . . , xN , x
1, x2, and choose a confor-

mal block ψ associated to rX and these V-modules, then its sewing Sψ is an
W˚

‚ “ pW1 b ¨ ¨ ¨WNq˚-valued formal series of q defined by sending each w‚ “

w1 b ¨ ¨ ¨ b wN P W‚ to

Sψpw‚q “ ψpw‚ b qL0 § bđq P Ctqu

where § b đ is the element of the “algebraic completion” of M b M1 correspond-
ing to the identity element of EndCpMq, and L0 is the zero mode of the Virasoro
operators tLn : n P Zu. The sewing problem is about proving that Sψpw‚q con-
verges absolutely to a (possibly) multivalued function on Dˆ

rρ. Moreover, for each
q P Dˆ

rρ, Sψp¨, qq defines a conformal block associated to Xq and W1, . . . ,WN . If we
sew rC along n pairs of points, and if we let x1, . . . , xN and rC and ψ vary and be
parametrized holomorphically by variables τ‚ “ pτ1, . . . , τmq (see Sec. 1.6 for de-
tails), then sewing conformal blocks is also absolutely convergent with respect to
q1, . . . , qn and (locally) uniform with respect to τ‚. The sewing problem is analytic
by nature. It cannot be proved using purely algebro-geometric method since X is
not an algebraic family; in particular, Dˆ

rρ is not an algebraic variety or scheme,
and is not considered in algebraic geometry. In the monograph, we will give a
detailed proof of the sewing problem using analytic methods. See Section 4.3.

Factorization

In the above setting, the factorization property of conformal blocks says that
if V is C2-cofinite and rational (which means that certain classes of generalized
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V-modules are completely reducible), then for any q P Dˆ
rρ, any conformal block

associated to Xq and W1, . . . ,WN is a sum of Sψpqq where ψ P T ˚
rX

pW‚ b M b M1q

(i.e. ψ is a conformal block associated to rX and W1, . . . ,WN ,M,M1) and M is sim-
ple. One can phrase the factorization as a relation between the dimensions of
spaces of conformal blocks associated to rX and to Xq as follows. For each equiv-
alence class of simple V-module we choose a representative and let them form a
set E . Then for each q P Dˆ

rρ,

dimT ˚
Xq

pW‚q “
ÿ

MPE
dimT ˚

rX
pW‚ b M b M1

q.

Factorization in this form was proved in [TUY89] for WZW models and in
[DGT19b] for any C2-cofinite rational VOA. Note that the left hand side is in-
dependent of q, and is a priori no less than the right hand side since the linear
map ψ ÞÑ Sψpqq is indeed injective (Thm. 4.4.1).

Let us call the right hand side of this equation to be D. So D ď dimT ˚
Xq

pW‚q.
To prove the factorization, we add X0, which is an N -pointed nodal curve, to the
family X. Then X is a family of N -pointed complex curves with base manifold
Drρ. We can still define the sheaf of covacua TXpW‚q and show that it is finitely
generated (Thm. 3.7.3). Then by Nakayama’s lemma (Prop. 1.8.1), the dimen-
sion of fibers of TXpW‚q (which can be identified with spaces of conformal blocks
(Thm. 3.2.1)) is upper-semicontinuous with respect to q P Drρ. Thus, for each
q ‰ 0, dimT ˚

Xq
pW‚q ď dimT ˚

X0
pW‚q. Therefore, it suffices to prove the nodal fac-

torization: that dimT ˚
X0

pW‚q ď D.
To prove the nodal factorization, we should realize each ϕ P T ˚

X0
pW‚q as an

element of
À

MPE T ˚
rX

pW‚ bMbM1q. For that purpose, we consider rX as a Riemann
surface with input points x1, . . . , xN and output points x1, x2. Then we can define
the dual rX-tensor product of W1, . . . ,WN (associated to x1, . . . , xN respectively)
to be a vector space n

rXpW‚q, which is the subspace of linear functional on W‚

satisfying certain properties that ϕ satisfy. The difficulty of this approach is to
define an action of VˆV on n

rXpW‚q which makes the latter a weak VˆV-module.
Then using the C2-cofiniteness and rationality, it is not hard to show that n

rXpW‚q

(or a suitable VˆV-submodule containing ϕ) is a direct sum of irreducible VˆV
modules which must be of the form M b M1 for some M P E . Nodal factorization
follows.

[DGT19b] defines the weak V ˆ V-module structure on n
rXpW‚q using Zhu’s

algebras. Our approach does not use Zhu’s algebra, but relies heavily on the
propagations of conformal blocks (Sec.3.4) and more generally, propagations
of dual tensor product elements (Sec. 4.6). Moreover, our proofs of propaga-
tions and some related properties are analyic and different from those in [FB04]
or [DGT19b]: we use the sewing of an N -pointed compact Riemann surface and a
3-pointed P1; the convergence of the corresponding sewing of conformal blocks is
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due to the strong residue theorem for families of compact Riemann surfaces (Thm.
1.4.1).

Prerequisite and outline

We assume the readers know some basic properties of complex manifolds;
sheaves, sheaves of modules, and their morphisms; sheaf (Čech) cohomology.
See for instance [GH78, Sec. 0.2, 0.3], [Huy06, Chapter B], [GR84, Annex]. Some
familiarity with computations in VOA (cf. for instance [FHL93]) is helpful but not
necessary. No knowledge in algebraic geometry is required.

More advanced topics in complex geometry will be discussed in Chapter 1. In
particular, we review the basic properties of compact Riemann surfaces, which
will be generalized to nodal curves. Since we do not assume the readers have any
previous knowledge on complex spaces or nodal curves, we give complete and
self-contained account of these properties. We also introduce the necessary tools
for studying families of compact Riemann surfaces and, more generally, families
of complex curves. We give a detailed description of how to sew a family of com-
pact Riemann surfaces along several pairs of points to obtain a family of complex
curves. We prove strong residue theorem for families of compact Riemann sur-
faces, which is necessary for proving the propagations of conformal blocks. Basic
properties of holomorphic differential equations are recalled, which will be used
to prove the convergence of sewing conformal blocks. We also give criteria on
local freeness of sheaves.

In Chapter 2 we discuss sheaves of VOAs for families of complex curves in-
troduced in [FB04] (for smooth curves) and [DGT19a] (for nodal curves). These
sheaves are infinite rank holomorphic vector bundles whose transition functions
are discovered in [Hua97]. We also give a formula for Lie derivatives of sheaves
of VOAs, generalizing those of tangent fields and tensor fields. This formula is
due to the author, and is used in the next chapter to define connections on sheaves
of conformal blocks.

Following [FB04, DGT19a], we define in Chapter 3 sheaves of conformal
blocks for families of complex curves. We define the sewing of conformal blocks
which corresponds to the geometric construction of sewing families of compact
Riemann surfaces. We prove that the sewing of conformal blocks are also confor-
mal blocks in the formal sense, which is due to [DGT19b]. We then prove prop-
agation of conformal blocks. Single propagation is due to [FB04], and multiple
propagations are due to the author. Double propagations play an important role
of defining weak V ˆ V-module structures on dual tensor products in Chapter 4.
As mentioned previously, our treatment of single propagation is new and relies on
sewing. We then prove that sheaves of conformal blocks support locally logarith-
mic connections. This result is due to [FB04] and [DGT19a] for smooth families
and general families respectively. Our treatment is different from theirs and uses
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the result on Lie derivatives in Chapter 2. With the help of connections, we then
prove that for C2-cofinite VOAs, the sheaves of conformal blocks are locally free.

The first three sections of Chapter 4 are devoted to the proof that sewing con-
formal blocks is convergent when V is C2-cofinite. Our treatment of projective
structures is motivated by [FB04, Sec. 8.2]. We also prove that the sewing map is
injective. We then define the vector space of dual tensor products, and use (single
and double) propagations of dual tensor product elements to define weak V ˆ V-
module structures. For an approach using Zhu’s algebra, see [DGT19b]. We then
prove factorization for conformal blocks associated to C2-cofinite rational VOAs,
which is originally due to [DGT19b].

The connections defined locally in Chapter 3 are in general not flat but only
projectively flat. In chapter 5, we explain how to slightly modify the definition
and obtain flat connections on sheaves of conformal blocks. Typically, the con-
struction of flat connections uses determinant line bundles. It turns out that tensor
products of these line bundles are equivalent to sheaves of conformal blocks as-
sociated to holomorphic VOAs. We use the latter sheaves instead of determinant
line bundles. This treatment is motivated by [AU07a, AU07b]. We also provide
in this chapter all the necessary results for constructing modular functors from
conformal blocks. In the last section, we explain how the famous and mysterious
factor q´ c

24 appears in genus 1 CFT.
We remark that before [FB04, DGT19a, DGT19b], the definition of conformal

blocks, and the proof of propagation, local freeness, and factorization of confor-
mal blocks were given in [BFM91, TUY89] for minimal models and WZW-models
respectively, and in [NT05] for general VOAs (satisfying C2-cofiniteness, rational-
ity, and some other small conditions) but only genus 0 curves. Proofs of conver-
gence of sewing and factorization were also given in [Hua95, Hua98, Hua05a] for
general VOAs as above for genus 0 curves, and in [Zhu96, Hua05b] for genus 1
curves.
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Chapter 1

Basics of complex geometry

1.1 Sheaves of modules

Let us fix some notations.

i “
?

´1.

N “ t0, 1, 2, . . . u, Z` “ t1, 2, 3, . . . u.

Throughout this monograph, OX of a given complex manifold X (or more gener-
ally, a complex space) always denotes the sheaf (of germs) of holomorphic func-
tions on X . Thus, OXpXq is the space of holomorphic functions on X . We will
sometimes write OXpXq as OpXq for short. For any x P X , OX,x denotes the stalk
of OX at x, and mx denotes the ideal of all germs f P OX,x satisfying fpxq “ 0.

In general, if E is a sheaf on X then Ex denotes the stalk at x. If U is an open
set containing x, and if s P E pUq, then sx P Ex denotes the germ of s at x. If E is a
(sheaf of) OX-module, then Ex{mxEx is a complex vector space, called the fiber of
E at x. (Fibers can also be defined using pull backs of sheaves; see Section 1.3. It
will be denoted by E |x in the future.) It’s dimension rx is called the rank of E at
x. The function r : x P X ÞÑ rx is called the rank function.

A homomorphism of OX-modules E Ñ F is an isomorphism (i.e., the in-
duced homomorphism of OXpUq-modules F pUq Ñ F pUq is an isomorphism for
any open subset U ) if any only if the corresponding stalk map Fx Ñ Gx is an
isomorphism for each x P X . E is called locally free if each x P X has a neigh-
borhood U such that E |U » On

U for some natural number n. E is locally free if
and only if it is the sheaf of germs of a holomorphic (finite rank) vector bundle.
Thus, locally free sheaves and vector bundles are regarded as the same things. It
is clear that the rank function is locally constant for any locally free sheaf. Unless
otherwise sated, we assume that locally free sheaves have (locally) finite rank.

If U is an open subset of X , and s1, . . . , sn P E pUq, we say that s1, . . . , sn gener-
ate EU , if for each x P U , the stalk Ex is generated by (the germs of) s1, . . . , sn. This
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is equivalent to saying that the OU -module homomorphism On
U Ñ EU defined by

On
UpV q Ñ EUpV q, pf1, . . . , fnq ÞÑ f1s1 ` ¨ ¨ ¨ ` fnsn

(where V is any open subset of U ) is a surjective sheaf map. Also, it is equivalent
to that for any x P U , V Ă U a neighborhood of x, and s P E pV q, there exists a
neighborhood W of x inside V such that s “ f1s1 ` ¨ ¨ ¨ ` fnsn for some f1, . . . , fn P

OpW q. If the above homomorphism On
U Ñ EU is an isomorphism, then we say

that s1, . . . , sn generate freely EU . If s1, . . . , sn generate EU , then they generate
freely EU if and only if for any open subset V Ă U and any f1, . . . , fn P OpV q,
f1s1|V ` ¨ ¨ ¨ ` fnsn|V “ 0 implies f1 “ ¨ ¨ ¨ “ fn “ 0. We say that E is a finite-
type OX-module if each x P X is contained in a neighborhood U such that EU is
generated by finitely many elements of E pUq.

The above notion of generating sections can be generalized to any subset E of
E pUq, i.e., that (the elements of) E generate EU if for each x P U , the germs of the
elements ofE at x generate the OU,x-module Ex. This is not the same as saying that
E generates (the OpUq-module) E pUq, which means that each element of E pUq is
an OpUq-linear combination of elements of E.

Most sheaves we will encounter in this monograph are locally free. However,
sometimes we need to consider quotients of locally free sheaves, which are not
necessarily locally free. Here is the precise definition: An OX-module E is called a
coherent OX-module (or coherent sheaf) if each x P X is contained in a neighbor-
hood U such that the restriction EU is isomorphic to cokerpφq where φ : Om

U Ñ On
U

is a homomorphism of OU -modules and m,n P N. A locally free OX-module is
clearly coherent.

Let E and F be OX-modules. For any open U in X , let EU and FU be re-
spectively the restrictions of E and F to U . Let HomOU

pEU ,FUq be the set of
OU -morphisms from E to F . So any element ϕ P HomOU

pEU ,FUq is described
as follows. For any open V Ă U , we have an OpV q-module homomorphism
ϕ “ ϕV : E pV q Ñ F pV q. ϕ is compatible with the restriction of sections, i.e.,
for any open W Ă V Ă U and s P E pV q, we have

ϕpsq|W “ ϕps|W q.

For each x P V , ϕ induces homomorphisms of OX,x-modules and vector spaces

ϕ : Ex Ñ Fx, ϕ : Ex{mxEx Ñ Fx{mxFx. (1.1.1)

It is clear that

ϕpE qx “ ϕpExq (1.1.2)

where ϕpE q is the image sheaf. For each section s of E defined near x, if we let sx
and spxq denote the values of s in Ex and Ex{mxEx, and adopt similar notations for
ϕpsq, then

ϕpsxq “ ϕpsqx, ϕpspxqq “ ϕpsqpxq. (1.1.3)
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Note that HomOU
pEU ,FUq is clearly an OpUq module. Then we have the

so called sheaf of OX-homomorphisms HomOX
pE ,F q, where for any open

U Ă X , HomOX
pE ,F qpUq “ HomOU

pEU ,FUq whose sections are all those ϕU .
HomOX

pE ,F q is obviously an OX-module. We call

E ˚ :“ HomOX
pE ,OXq

the dual sheaf of E . Choose s P E pUq and t P E ˚pUq, then tpsq, as a section in
OXpUq, is also denoted by xs, ty or xt, sy. Note that when E is locally free, then
E ˚ is also locally free, and E ˚ is dual to E as holomorphic vector bundles. In
particular, E ˚˚ can be naturally identified with E .

The collection tE pUqbOpUqF pUqu over all open U Ă X forms a presheaf of OX-
modules. The restriction of sections of this presheaf is defined in an obvious way.
Its sheafification E bOX

F , which is clearly an OX-module, is called the tensor
product of E and F over OX . Unless otherwise stated, we will write E bOX

F as
E b F for short. If we consider the tensor product over C, we will write E bC F
instead. Note that when the two OX-modules are locally free, their tensor product
is nothing but the tensor product of holomorphic vector bundles. Another easy
fact is the isomorphms E b OX » E » OX b E in a natural way. We write E bn

as the n-th tensor power of E for any n P N. Note also that L b L ˚ » OX for a
(holomorphic) line bundle L (i.e., L is a rank 1 locally free OC-module). In this
case we write L ´1 “ L ˚, and more generally, L bp´nq “ pL ˚qbn.

A useful method of constructing sheaves is called gluing. Let pUαqαPA be an
open cover ofX . Suppose that for each α P A, we have an OUα-module E α, that for
any α, β P A, we have an OUαXUβ

-module isomorphism ϕβ,α : E α
UαXUβ

»
ÝÑ E β

UαXUβ
,

that ϕα,α “ 1, and that ϕγ,α “ ϕγ,βϕβ,α when restricted to Uα X Uβ X Uγ . Then we
can define a sheaf E on X as follows. For any open V Ă X , E pV q is the set of all
psαqαPA P

ś

αPA E αpV XUαq (where each component sα is in E αpV XUαq) satisfying
that sβ|UαXUβ

“ ϕβ,αpsα|UαXUβ
q for any α, β P A. If W is an open subset of V , then

the restriction E pV q Ñ E pW q is defined by that of E αpV X Uαq Ñ E αpW X Uαq.
The action of OpV q on E pV q is defined by the one of OpV X Uαq on E αpV X Uαq. It
is easy to see that E is a sheaf of OX-modules. Moreover, for each β P A, we have
a canonical isomorphism (trivialization) ϕβ : EUβ

»
ÝÑ E β

Uβ
defined by psαqαPA ÞÑ sβ .

It is clear that for each α, β P A, we have ϕβ “ ϕβ,αϕα when restricted to Uα X Uβ .
For instance, any locally free sheaf is obtained by gluing a collection of free

sheaves associated to an open cover of X .

1.2 Compact Riemann surfaces

Serre duality

Let C be a compact Riemann surface, and let E be a (sheaf of) locally free OC-
module. We list some basic facts about the cohomology groups of E . Choose
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q P N. The first important fact is that HqpC,E q is finite dimensional. Moreover,
dimHqpC,E q “ 0 when q is greater than 1, the complex dimension of C. These
facts can be proved by Hodge theory. Moreover, let ωC be the dualizing sheaf
(also called canonical line bundle) of C. In other words, ωC is the line bundle of
holomorphic 1-forms on C. So the sections of ωC look locally like fpzqdz where f
is a holomorphic function. Then Serre duality (which can also follow from Hodge
theory) says that for any p P t0, 1u there is an isomorphism of vector spaces

H1
pC,E b ωp

Cq » H0
pC,E ˚

b ω1´p
C q

˚, (1.2.1)

where ω0
C “ OC and ω1

C “ ωC . (Cf. [Huy06] Proposition 4.1.16.) In other words,
there is a perfect pairing

x¨, ¨y : H1
pC,E b ωp

Cq b H0
pC,E ˚

b ω1´p
C q Ñ C. (1.2.2)

We now describe such a pairing, called the residue pairing. This explicit descrip-
tion will be used in the proof of strong residue theorem.

Recall that the Čech cohomology group H1pC,E b ωp
Cq is the direct limit of

H1pU,E b ωp
Cq “ Z1pU,E b ωp

Cq{B1pU,E b ωp
Cq over all open covers U of C. Now

choose any N P Z`. The data X “ pC;x1, . . . , xNq is a called an N -pointed com-
pact Riemann surface, if x1, . . . , xN are distinct points onC. Choose mutually dis-
joint connected open subsets U1, . . . , UN Ă C containing x1, . . . , xN respectively,
and define U0 “ C ´ tx1, . . . , xNu. Then U “ tU0, U1, . . . , UNu is an open cover of
C. We now construct some cocycles in Z1pU,E b ωp

Cq. For any 1 ď n ď N , choose

σn P pE b ωp
CqpUn ´ txnuq.

Note thatUn´txnu “ UnXU0. We now define Čech 1-cocycle s “ psm,nqm,n“0,1,...,N P

Z1pU,E b ωp
Cq (where each sm,n P pE b ωp

CqpUm X Unq) in the following way. Set
s0,0 “ 0; if m,n ą 0 then sm,n is not defined since Um XUn “ H; if n ą 0 then sn,0 “

´s0,n “ σn. Then s can also be regarded as an element in H1pC,E b ωp
Cq. (Indeed,

any element in H1pC,E b ωp
Cq arises in such way. One way to see this is to note

that since each Uj is Stein manifold, HppUj,E b ωp
Cq “ 0 when p ą 0 by Cartan’s

Theorem B. (See Sec. 1.5.) So by Leray’s theorem, H1pC,E bωp
Cq “ H1pU,E bωp

Cq.)
Choose any t P H0pC,E ˚ bω1´p

C q, which is a global section of E ˚ bω1´p
C on C. Then

for any n, the evaluation xσn, ty is an element of ωCpUn ´ txnuq. So we have the
residue

Resxnxσn, ty “
1

2iπ

¿

γn

xσn, ty, (1.2.3)

where γn is an arbitrary loop around xn whose orientation is anticlockwise in any
local coordinate at xn. Now, the residue pairing of Serre duality (1.2.1) is described
by

xs, ty “

N
ÿ

n“1

Resxnxσn, ty. (1.2.4)

12



Let us explain, assuming the existence of an isomorphism (1.2.1), why an ex-
plicit isomorphism can be realized by the above pairing. It is an easy exercise that
xs, ty “ 0 when s is inside the coboundary B1pU,E b ωp

Cq, hence when s is zero
when regarded as in H1pC,E b ωp

Cq “ H1pU,E b ωp
Cq. Use the residue pairing

to define a linear map from the left to the right hand side of (1.2.1). It suffices to
prove that this map is surjective. It is easy to see that this map is independent of
the sizes of U1, . . . , UN . So we may assume the vector bundle E can be trivialized
on each U1, . . . , UN . Now, for each linear functional H0pC,E ˚b

1´p
C q Ñ C, using

linear algebra, it is easy to realize it as the residue pairing with some element of
Z1pU,E b ωp

Cq. This proves the surjectivity.

Vanishing theorems

When studying a family of vector bundles tEb : b P Bu over a family of compact
Riemann surfaces tCb : b P Bu, it is important to know if the collection tH0pCb,Ebq :
b P Bu forms a vector bundle on B in a natural way. Clearly, a necessary condition
is that dimH0pCb,Ebq is locally independent of b. As we shall see, a theorem of
Grauert implies that this is also a sufficient condition.

The constancy of dimH0pCb,Ebq is not always true in general. However, if we
define the character of E to be

χpC,E q “
ÿ

nPN

p´1q
n dimHn

pC,E q “ dimH0
pC,E q ´ dimH1

pC,E q, (1.2.5)

then χpCb,Ebq is indeed always constant over b. On the other hand, if one can use
vanishing theorems to show that dimH1pCb,Ebq “ 0 for all b, then the constancy
of dimH0 immediately follows from that of the characters. In the following, we
discuss several vanishing results which will be useful for the study of conformal
blocks.

Let D be a divisor of C. In other words, D is a finite formal sum D “
ř

i nixi,
where txiu are points of C, and each ni P Z. We say D is effective and write D ě 0
if any ni is non-negative. Recall that the degree degD of D “

ř

i nixi is
ř

i ni.
Regard E as a holomorphic vector bundle. For any open U Ă C, let E pDqpUq be
the set of all s P E pDqpU ´ txiuq satisfying that for any xi and any local coordinate
ηi near xi, ηni

i s has removable singularity at xi. Then the collection tE pDqpUqu

over all open U Ă C forms an OC-module E pDq.
Note that OCpDq is a line bundle, and it is well known that any line bundle

is isomorphic to some OCpDq. (A proof is sketched in Remark 1.5.6.) One has
a natural isomorphism of OC-modules E pDq » E b OCpDq. Therefore E pDq is
locally free. We understand E pDq as E b OCpDq even when E is not locally free.
One also has OCp´Dq » OCpDq˚, and OCpD1 ` D2q » OCpD1q b OCpD2q for two
divisors D1, D2.

13



Proposition 1.2.1. Assume that C is connected, E is a locally free OC-module, and D is
a non-zero effective divisor of C. Then there exits N P N such that H0pC,E p´nDqq “ 0
for any n ą N .

Proof. Consider E as a vector bundle. Write D “
ř

i xi. For any x “ xi,
H0pC,E p´Dqq is a subspace of H0pC,E p´xqq. Thus it suffices to prove that
H0pC,E p´nxqq “ 0 when n is large enough.

Since H0pC,E q is finite dimensional, there exist finitely many global sections
tsk : k “ 1, 2, . . . u of E spanning H0pC,E q. Regard a neighborhood U of x as an
open subset of C, and assume that x “ 0 P C. Assume also that EU has trivializa-
tion EU » E bC OU where E is a finite dimensional vector space. Then for any k,
sk has expansion skpzq “

ř8

j“0 vk,jz
j near z “ 0, where each vk,j P E.

For any n P N , let v⃗k|n be pvk,0, vk,1, . . . , vk,nq in E b Cn`1. Let Fn be the sub-
space of E b Cn`1 spanned by tv⃗k|n : k “ 1, 2, . . . u. Then dimFn is an increasing
function of n whose values are bounded from above. Choose N P N such that
dimFn is the constant K for all n ě N . Assume without loss of generality that
v⃗1|N , . . . , v⃗K |N are linearly independent. So for any n ě N , v⃗1|n, . . . , v⃗K |n are also
linearly independent, which therefore form a basis of Fn. Choose any k. Then
for any n ě N , v⃗k|n “ c1,nv⃗1|n ` ¨ ¨ ¨ ` cK,nv⃗K |n for some unique c1,n, . . . , cK,n P C.
By such uniqueness, we conclude that c1,n “ c1,N , . . . , cK,n “ cK,N for all n ě N .
Therefore sk “ c1,Ns1 ` ¨ ¨ ¨ ` cK,NsK near x. This equation holds globally since
C is connected. We thus conclude that s1, . . . , sK form a basis of H0pC,E q. In
particular, K “ dimH0pC,E q.

Now choose any n ą N and any σ P H0pC,E p´nxqq Ă H0pC,E q. Then there
exist c1, . . . , cK P C such that σ “ c1s1`¨ ¨ ¨`cKsK . Near x one has series expansion
σpzq “

ř8

j“0 νjz
j . Then pν0, ν1, . . . , νNq “ c1v⃗1|N ` ¨ ¨ ¨ ` cK v⃗K |N . Since n ą N and

z´nσpzq has removable singularity near 0, we have ν0 “ ¨ ¨ ¨ “ νN “ 0. Therefore
c1 “ ¨ ¨ ¨ “ cK “ 0 by the linear independence of v⃗1|N , . . . , v⃗K |N . This proves that
σ “ 0.

Let ΘC be the tangent sheaf ofC, i.e., the sheaf of holomorphic tangent vectors
on C. So ΘC » ω´1

C . Consequently, ΘC b ωC » OC .

Corollary 1.2.2. Assume that C is connected, E is a locally free OC-module, and D is a
non-zero effective divisor of C. Then there exits N P N such that H1pC,E pnDqq “ 0 for
any n ą N .

Proof. By the above proposition, H0pC,E ˚ b ωCp´nDqq “ 0 for any sufficiently
large n. Note that pE ˚ b ωCp´nDqq˚ b ωC » E b ΘC b OCpnDq b ωC » E pnDq.
Thus, by Serre duality, H1pC,E pnDqq “ 0 for any sufficiently large n.

The above corollary is also true whenD has positive degree. See [Huy06, Prop.
5.2.7]
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Remark 1.2.3. In Corollary 1.2.2, if we know that H1pC,E pNDqq “ 0, then
H1pC,E pnDqq “ 0 for any n ě N . Indeed, by Serre duality, we have H0pC,E ˚ b

ωCp´NDqq “ 0. Then H0pC,E ˚ b ωCp´nDqq, which is naturally a subspace of
H0pC,E ˚ b ωCp´NDqq, must also be trivial. By Serre duality again, we obtain
H1pC,E pnDqq “ 0.

It will be important to know what N precisely is in the above corollary. When
E is a line bundle, we can find suchN with the help of Kodaira vanishing theorem
and Riemann-Roch theorem. To begin with, recall:

Theorem 1.2.4. (Kodaira vanishing theorem) Assume that C is connected. Let D be a
divisor on C with degD ą 0. Then H0pC,OCp´Dqq “ 0 and H1pC, ωCpDqq “ 0.

Proof. Suppose H0pC,OCp´Dqq is nontrivial. Choose any non-zero f P

H0pC,OCp´Dqq. Then f is a global meromorphic function on C which is not
always zero on any open subset of C. Thus its degree deg f must be 0.1 But
deg f ´ degD must be non-negative by the definition of OCp´Dq, which contra-
dicts degD ą 0. So H0pC,OCp´Dqq “ 0. By Serre duality, H1pC, ωCpDqq “ 0.

For any line bundle L , we choose a divisor D such that L » OCpDq, and
define the degree degL of L to be degD. This is well defined and independent
of the choice of D. Now assume that C is connected. Then dimH0pC,OCq “ 1.
Since C admits a Kähler structure, we have the Hodge structure dimH1pC,Cq “

dimH1pC,OCq ` dimH0pC, ωCq ([Huy06] corollary 3.2.12), which together with
Serre duality implies dimH1pC,OCq “ 1

2
dimH1pC,Cq. Thus the genus g :“

dimH1pC,OCq of C depends only on the topological structure but not the com-
plex structure of C. (This fact also follows from the base change Theorem 1.3.1.)
Now, the Riemann-Roch theorem tells us that

χpC,L q “ 1 ´ g ` degL . (1.2.6)

(See also Remark 1.5.6.) Apply this formula to ωC and use Serre duality, we obtain

1 ´ g ` degωC “ χpC, ωCq “ dimH0
pC, ωCq ´ dimH1

pC, ωCq

“ dimH1
pC,OCq ´ dimH0

pC,OCq “ g ´ 1.

This shows that

degωC “ 2g ´ 2, degΘC “ 2 ´ 2g. (1.2.7)

Theorem 1.2.5. Let C be a compact connected Riemann surface with genus g, let D
be a divisor of C, and let L be a line bundle on C. Then H1pC,L pDqq “ 0 when
degD ą 2g ´ 2 ´ degL .

1For any x P C with an arbitrary local coordinate ηx (so ηxpxq “ 0), let nx be the smallest
integer such that f{ηnx

x has removable singularity at x. Then deg f is defined to be
ř

xPC nx.
Clearly nx “ Resxf

´1df . Thus we have deg f “ 0 by residue theorem.
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Proof. Choose divisors T, L such that ΘC » OCpT q,L » OCpLq. Then L pDq »

ωC b ΘC b L pDq » ωCpT ` L ` Dq. By (1.2.7), deg T “ 2 ´ 2g. Therefore, when
degD ą 2g´2´degL , we have degpT`L`Dq ą 0, which impliesH1pC,L pDqq “

0 by Kodaira vanishing theorem.

Corollary 1.2.6. Let C be a compact connected Riemann surface with genus g, let D be a
divisor ofC, and choose n P Z. ThenH1pC,Θbn

C pDqq “ 0 when degD ą pn`1qp2g´2q.

Proof. This follows immediately from the above theorem and (1.2.7).

This corollary will be the most useful vanishing result for our future study of
VOA bundles. The most remarkable point is that the threshold pn` 1qp2g ´ 2q for
H1 to vanish is independent of the complex structure of C.

1.3 Families of compact Riemann surfaces

Higher direct images

Let π : X Ñ Y be a holomorphic map of complex manifolds. Let E be an
OX-module. For any open U Ă Y , we let π˚pE qpUq “ E pπ´1pUqq. Then π˚pUq is
an OpUq-module: if s P E pπ´1pUqq and f P OpUq, then the product f ¨ s is defined
to be the section pf ˝ πqs. The collection tπ˚pE qpUqu over all open U Ă Y forms a
sheaf of OY -module π˚pE q, called the direct image of E (under π).

More generally, for any q P N, the collection tHqpπ´1pUq,E qu over all open
U Ă Y forms a presheaf of OY -module, whose sheafification Rqπ˚pE q is called the
q-th order higher direct image of E under π. Then R0π˚pE q is just π˚pE q. Note
that when Y is a single point and π is surjective, higher direct images are nothing
but the cohomology groups of E . Similar to cohomology groups, whenever there
is a short exact sequence of OX-modules 0 Ñ E Ñ F Ñ G Ñ 0, there is a long
exact sequence of OY -modules

0 Ñ π˚pE q Ñ π˚pF q Ñ π˚pG q
δ

ÝÑ R1π˚pE q Ñ R1π˚pF q Ñ R1π˚pG q
δ

ÝÑ R2π˚pE q Ñ ¨ ¨ ¨ .
(1.3.1)

All the maps in this exact sequence, except the connecting homomorphism δ,
are understood in an obvious way. We now describe the first δ, i.e. δ : π˚pG q Ñ

R1π˚pE q, which is sufficient for the purpose of this monograph. Choose any open
U Ă Y and any s P G pπ´1pUqq. Then by the surjectivity of the stalk map Fx Ñ Gx

for all x P X , π´1pUq has an open cover V “ pVαqα such that for each α there exists
σα P F pVαq whose image in G pVαq equals s|Vα . Define the 1-cochain ς “ pςα,βqα,β

such that for any Vα, Vβ in V, ςα,β “ σα|VαXVβ
´ σβ|VαXVβ

. Then ςα,β P E pVα X Vβq,
and hence ς P Z1pV,E q. So ς can be regarded as an element of H1pπ´1pUq,E q and
hence of R1π˚pE qpUq. Then δpsq is just this ς .
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Pulling back sheaves

We now assume that E is an OY -module. We define an OX-module π˚pE q,
called the pull back of E under π, as follows.

Let U be an open subset ofX . For any open subset V of Y satisfying πpUq Ă V ,
the ring OXpUq is an OY pV q-module: if f P OXpUq and g P OY pV q, then the action
of g on f is pg˝πq|U ¨f , noticing that g˝π P OXpπ´1pV qq and hence pg˝πq|U P OXpUq.
Then the tensor product OXpUq bOY pV q E pV q is an OXpUq-module. The collection
over all open U Ă X of the OXpUq-modules

lim
ÝÑ

V ĄπpUq

OXpUq bOY pV q E pV q

form a presheaf of OX-modules, whose sheafification is π˚pE q. We can thus define
for any open V Ă Y an OY pV q-module homomorphism

π˚ : E pV q Ñ π˚E pπ´1
pV qq, s ÞÑ π˚s, (1.3.2)

such that 1bs P OXpπ´1pV qqbOY pV q E pV q, regarded as an element of π˚E pπ´1pV qq,
is our π˚s. That π˚ is an OY pV q-module homomorphism means that for any g P

OY pV q,

π˚
pgsq “ pg ˝ πqπ˚s.

Then for any q P N we have a natural linear map

π˚ : Hq
pY,E q Ñ Hq

pX, π˚E q,

called the pull back of cohomology groups.
When E is locally free, for any x P X , choose a neighborhood W Ă Y of πpxq

such that EW » OW bC E, where E is a finite dimensional vector space. Then
for any open U Ă π´1pW q and V Ă W , the OXpUq-module OXpUq bOY pV q E pV q is
naturally isomorphic to OXpUq bC E. So π˚pE q is also locally free whose rank is
the same as that of E . Indeed, the pull back of locally free modules is just the pull
back of holomorphic vector bundles.

If ι : X Ñ Y is an embedding of complex manifolds, for any OY -module E ,
we call

E |X ” E |X :“ ι˚E

the restriction of E to X . For any open V Ă Y , we have the OY pV q-module
homomorphism

ι˚ : E pV q Ñ E |XpV X Xq, s ÞÑ ι˚s.

We write

s|X ” s|X :“ ι˚s

17



and call it the restriction of s to X . Similar notation will be used for restrictions
of elements in cohomology groups.

Note that E |V is just EV , the usual restriction of E to the open subset V . For
any y P Y , E |y is a vector space isomorphic to the fiber Ey{myEy. Indeed, notice
that

E |y “ lim
ÝÑ
V Qy

Cy bOY pV q E pV q.

Here Cy is the same as C as a vector space. But it is also an OY pV q-module, where
for any λ P Cy and any g P OY pV q, the action of g on λ is λgpyq. It is then not hard
to check that the linear map 1 b s P Cy bOY pV q E pV q ÞÑ s P Ey{myEy induces an
isomorphism

E |y
»
ÝÑ Ey{myEy.

We will not distinguish between E |y and Ey{myEy in the future. s|y, the restriction
of s to the 0-dimensional submanifold y, is precisely the value of s in Ey{myEy. We
also write

spyq :“ s|y,

which should not be confused with the germ sy in Ey.

A theorem of Grauert

Let C and B be complex manifolds, and π : C Ñ B be a surjective proper
holomorphic map. (The word “proper” means that the preimage of any compact
subset of B is compact.) Assume that π is a (holomorphic) submersion, which
means that the linear map dπ between tangent spaces is always surjective. We
say that π : C Ñ B is a (holomorphic) family of compact Riemann surfaces (or
a smooth family of complex curves), if for each b P B, the fiber Cb :“ π´1pbq is a
compact Riemann surface. As an obvious fact, the complex dimensions of C and
B differ by 1. To simplify discussions, we also assume that B has finitely many
connected components.

The following theorem of Grauert [Gra60] is extremely helpful in studying
families of compact Riemann surfaces.

Theorem 1.3.1. Let E be a locally free OC-module.
(a) The function

B Ñ Z, b ÞÑ χpCb,E |Cbq

is locally constant.
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(b) For any q P N, the function b ÞÑ dimHqpCb,E |Cbq is upper semi-continuous.
Moreover, if this function is locally constant, then Rqπ˚E is locally free of rank
dimHqpCb,E |Cbq, and for any b P B, the linear map pRqπ˚E qb Ñ HqpCb,E |Cbq defined
by restriction of sections s ÞÑ s|Cb induces an isomorphism of vector spaces

pRqπ˚E qb

mb ¨ pRqπ˚E qb
» Hq

pCb,E |Cbq. (1.3.3)

To be more precise, note that pRqπ˚E qb is the direct limit of Hqpπ´1pUq,E q over
all open U Q b. Then the pull back Hqpπ´1pUq,E q Ñ HqpCb,E |Cbq induced by the
inclusion Cb ãÑ π´1pUq provides the desired map pRqπ˚E qb Ñ HqpCb,E |Cbq.

The above theorem is indeed true for any proper submersion of complex man-
ifolds π : X Ñ Y , assuming that E is a coherent OX-module. Even more generally,
[Gra60] proves this theorem whenX and Y are complex spaces, Y is reduced, E is
coherent, and E is π-flat. The actual meanings of these three terms are not so im-
portant for understanding this monograph. Roughly speaking, complex spaces
are generalizations of complex manifolds which may have singularities. If Y (to-
gether with an associated structure sheaf OY ) is a complex space, then pY,OY q

looks locally like the solution space of finitely many holomorphic functions. (See
[GR84] chapter 1.) The only non-smooth complex spaces that we will encounter
in this monograph are nodal curves. Y is called reduced if any stalk Oy has no
non-zero nilpotent elements. That E is π-flat means that for any x P X , the nat-
ural action of OY,πpxq on Ex makes Ex a flat OY,πpxq-module. We refer the reader to
[GPR94] section III.4.2 and the reference therein for the general form of the theo-
rem and its proof. (See especially theorem 4.7 of that section.) A proof in English
can be found in [BS76, Thm. III.4.12] as well as [EP96, Thm. 9.4.8].

As an immediate consequence of Theorem 1.3.1, for a family π : C Ñ B and a
locally free OC-module E , we have Rqπ˚E “ 0 when q ą 1, since dimHqpCb,E |Cbq
is constantly 0.

Relative tangent sheaves

In the remaining part of this section, we apply Theorem 1.3.1 to the families
of tangent sheaves and their tensor products. Again, we fix a family of compact
Riemann surfaces π : C Ñ B.

The first obvious question is how the tangent bundles over all fibers can be
assembled into a vector bundle on C. Consider the tangent sheaves ΘC and ΘB
of C and B respectively. Then we have a natural OC-module homomorphism dπ :
ΘC Ñ π˚ΘB described as follows. Locally the map π looks like the projection
U ˆ V Ñ V where U is an open subset of C and V is an open subset of Cm. (So
m is the dimension of B.) Let z be the standard coordinate of U , and τ1, . . . , τm
be the standard coordinates of V . Then Bz, Bτ1 , . . . , Bτm are sections in ΘCpU ˆ V q,
and Bτ1 , . . . , Bτm can also be regarded as sections in ΘBpV q. We thus define the
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OCpU ˆ V q-module homomorphism dπ : ΘCpU ˆ V q Ñ π˚ΘBpU ˆ V q by sending
Bz, Bτ1 , . . . , Bτm to 0, π˚Bτ1 , . . . , π

˚Bτm respectively. We write each π˚Bτj simply as Bτj .
Then for any holomorphic functions f, g1, . . . , gn on U ˆ V , we have

dπpfBz ` g1Bτ1 ` ¨ ¨ ¨ ` gmBτmq “ g1Bτ1 ` ¨ ¨ ¨ ` gmBτm . (1.3.4)

So dπ is the projection onto “horizontal components”. The map dπ is independent
of local coordinates. Thus we have an exact sequence of OC-modules

0 Ñ ΘC{B Ñ ΘC
dπ
ÝÑ π˚ΘB Ñ 0, (1.3.5)

where ΘC{B is the kernel sheaf of dπ, called the relative tangent sheaf of the family
π : C Ñ B. One checks easily that if ζ, t1, . . . , tm are also local coordinates chosen
in a similar way, then the two sections Bz and Bζ of ΘC{B are related by Bz “

Bζ
Bz

Bζ .
From this one sees that the restriction ΘC{B|Cb of the relative tangent sheaf on each
fiber Cb is isomorphic to the OCb-module ΘCb . Therefore one can regard ΘC{B as the
sheaf of “vertical sections” of ΘC , or the sheaf of vectors that are tangent to the
fibers. Since ΘC{B is a line bundle, we call its dual sheaf ωC{B :“ Θ´1

C{B the relative
dualizing sheaf of the family π : C Ñ B. The restriction of ωC{B to each fiber Cb is
therefore ωCb .

We next discuss families of divisors. A family of points can be represented by
a section ς : B Ñ C, i.e., a holomorphic map such that π ˝ ς “ 1B. The image of ς is
a hypersurface of C. Let E be a locally free OC-module, let U be an open subset of
C, and choose s P E pU ´ ςpBqq. We say that s has removable singularity at ςpBq if
s can be extended to an element in E pUq.

A local coordinate η of the family π : C Ñ B at ς is a holomorphic function on
a neighborhood U of ςpBq such that for any b P B, ηpςpbqq “ 0, and η restricts to
a biholomorphic map from U X Cb to an open subset of C. (The second condition
is equivalent to saying that η|UXCb is injective, i.e. univalent.) Then pη, πq is a
biholomorphic map from U to an open subset of CˆB. It is obvious that any b P B
is contained in a neighborhood V Ă B such that the subfamily π : π´1pV q Ñ V
has a local coordinate at ς|V .

If π : C Ñ B is a family of compact Riemann surfaces, we say that pπ : C Ñ

B; ς1, . . . , ςNq is a family of N -pointed compact Riemann surfaces, if:

(a) ς1, . . . ςN : B Ñ C are sections.

(b) For any b P B and any 1 ď i ă j ď N , ςipbq ‰ ςjpbq.

(c) For any b P B, each connected component of Cb contains ςipbq for some 1 ď

i ď N .

(The third condition is not essential. It is introduced only to simply the statement
of vanishing theorems in the future.) If, moreover, η1, . . . , ηN are local coordinates
at ς1, . . . , ςN respectively, we say that

X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq
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is a family of N -pointed compact Riemann surfaces with local coordinates. (In
the case that B is a single point, X is called an N -pointed compact Riemann sur-
face with local coordinates, and is denoted by pC;x1, . . . , xN ; η1, . . . , ηNq, where
η1, . . . , ηN are respectively local coordinates at the distinct points x1, . . . , xN on a
compact Riemann surface C.)

Now, if we have pπ : C Ñ B; ς1, . . . , ςNq, each hypersurface ςipBq is also a divi-
sor of C. Set D “

řN
i“1 niςipBq where each n1, . . . , nN P Z. Let E be a locally free

OC-module. Then the OC-module E pDq can also be defined in a similar way as in
the case of Riemann surfaces: For each open U Ă C, E pDqpUq is the OCpUq-module
of all s P E pU ´

ŤN
i“1 ςipBqq such that for any 1 ď i ď N , any open subset V Ă U ,

and any (holomorphic) submersion η : V Ñ C vanishing at V X ςipBq, ηnis has
removable singularity at V X ςipBq. When there are local coordinates η1, . . . , ηN
at ς1, . . . , ςN respectively, this is equivalent to saying that ηni

i s has removable sin-
gularity at ςipBq for any i. In particular we have defined OCpDq. We then have
natural isomorphism E pDq » E b OCpDq. In the general case that E is not neces-
sarily locally free, we define E pDq simply to be E b OCpDq. Notice that for any
exact sequence of OC-modules 0 Ñ E Ñ F Ñ G Ñ 0, one also has exact se-
quence 0 Ñ E pDq Ñ F pDq Ñ G pDq Ñ 0. Indeed, the line bundle OCpDq is locally
equivalent to OC , thus tensoring by OCpDq preserves the exactness of OC-module
homomorphisms (i.e. OCpDq is a flat OC-module).

For a family X “ pπ : C Ñ B; ς1, . . . , ςNq of N -pointed compact Riemann sur-
faces, we always define divisors SX of C and SXpbq of Cb to be

SX “

N
ÿ

i“1

ςipBq, SXpbq “

N
ÿ

i“1

ςipbq.

Proposition 1.3.2. Let E be a locally free OC-module. Then for any precompact open
subset V Ă B, there exists k0 P N such that for any k ě k0 and b P V , we have
H1pCb,E pkSXq|Cbq “ 0.

Proof. We shall prove that each b P B is contained in a neighborhood Ub Ă B such
that one can find kb P N satisfying H1pC

rb,E pkbSXq|C
rbq “ 0 for any rb P Ub. Then

by Remark 1.2.3, the same is true when kb is replaced by any k ě kb. Therefore,
the claim of this proposition follows since we can cover V by finitely many such
neighborhoods.

Choose any b P B. Then, by Corollary 1.2.2, we can find kb P N such that
H1pCb,E pkbSXq|Cbq “ 0. By the upper semi-continuity Theorem 1.3.1-(b), we can
find a neighborhood Ub of b such that for each rb P Ub, H1pC

rb,E pkbSXq|C
rbq “ 0.

If B is connected, then by a result of Ehresmann, all fibers are diffeomorphic
(cf. [Huy06] proposition 6.2.2). We have the following:

Theorem 1.3.3. Suppose that B is connected, and g is the maximal genus of the connected
components of each fiber of π : C Ñ B. Then for any integers n ě ´1 and k ą pn `
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1qp2g ´ 2q, π˚Θ
bn
C{BpkSXq is a locally free OB-module, and for any b P B there is a natural

isomorphism of vector spaces

π˚Θ
bn
C{BpkSXqb

mb ¨ π˚Θ
bn
C{BpkSXqb

» H0
`

Cb,Θbn
Cb pkSXpbqq

˘

(1.3.6)

defined by restriction of sections. In particular, dimH0
`

Cb,Θbn
Cb pkSXpbqq

˘

is constant
over b.

When n ă ´1 and g is the minimal genus of the connected components of any fiber,
the same result holds.

Proof. Note that the restriction of ΘC{B to each fiber Cb is naturally equivalent
to ΘCb . Thus the restriction of Θbn

C{BpkSXq to Cb is Θbn
Cb pkSXpbqq. Therefore, by

Theorem 1.3.1-(a), χ
`

Cb,Θbn
Cb pkSXpbqq

˘

is constant over b. By corollary 1.2.6,
dimH1

`

Cb,Θbn
Cb pkSXpbqq

˘

is always 0. So dimH0
`

Cb,Θbn
Cb pkSXpbqq

˘

is constant over
b. The remaining part of the theorem follows from Theorem 1.3.1-(b).

An important consequence of the above theorem is that any global section of
Θbn

Cb pkSXpbqq on Cb can be extended to a holomorphic family of global sections over
a neighborhood of b P B. More precisely, for any s P H0

`

Cb,Θbn
Cb pkSXpbqq

˘

there
exists a neighborhood V of b and rs P H0

`

π´1pV q,Θbn
C{BpkSXq

˘

such that rs restricts
to s on Cb.

We will not use this theorem directly. However, Θbn
C{B is closely related to

sheaves of VOAs. (Cf. Proposition 2.5.4.) We will prove a similar theorem for
sheaves of VOAs in the next chapter; see Theorem 2.5.6.

1.4 Strong residue theorem

Suppose that X “ pC;x1, . . . , xN ; η1, . . . , ηNq is anN -pointed compact Riemann
surface, and E is a locally free OC-module. By our notation in the last section,
SX “ x1 ` ¨ ¨ ¨ ` xN . Set

E p‚SXq “ lim
ÝÑ
nPN

E pnSXq. (1.4.1)

Then E p‚SXq is the sheaf of meromorphic sections of E whose only possible poles
are x1, . . . , xN . Let Ei “ E |xi be the fiber of E at xi. In a neighborhood Ui of
xi, EUi

has a trivialization EUi
» OUi

bC Ei, and E ˚
Ui

has the corresponding dual
trivialization E ˚

Ui
» OUi

bC E
˚
i . Choose any s P H0pC,E p‚SXqq. Then at any xi the

section s has formal Laurent series expansion

si “
ÿ

n

ei,nη
n
i P Eippηiqq,
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where ei,n P E |xi equals 0 when n is sufficiently small. (Its meaning is obvious
when we regard E as a vector bundle.) Suppose now that σ P H0pC,E ˚bωCp‚SXqq.
Let

σi P E˚
i ppηiqqdηi

be similarly the formal Laurent series expansion of σ at xi (with respect to the
variable ηi). Then xs, σy P H0pC, ωCp‚SXqq and xsi, σiy P Cppηiqqdηi. Thus, by
residue theorem,

N
ÿ

i“1

Resηi“0xsi, σiy “

N
ÿ

i“1

¿

xi

xs, σy “ 0. (1.4.2)

The strong residue theorem ([FB04] section 9.2.9) says that if s1 P E1ppηiqq, . . . , sN P

ENppηiqq satisfy (1.4.2) for any σ P H0pC,E ˚ b ωCp‚SXqq, then s1, . . . , sN are series
expansions of an s P H0pC,E p‚SXqq at x1, . . . , xN respectively. In particular, each
si “

ř

n ei,nη
n
i converges absolutely when ηi P Ui. A proof of this theorem can

be found in [Ueno08] theorem 1.22. In the following, we prove a strong residue
theorem to families of compact Riemann surfaces.

Strong residue theorem for families of compact Riemann surfaces

Let X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq be a family of N -pointed compact
Riemann surfaces with local coordinates, and let E be a (holomorphic) vector bun-
dle on X. We assume that B is small enough such that for each i, ςipBq is contained
in a neighborhood Ui such that EUi

has trivialization EUi
» OUi

bC Ei, where Ei

is a finite dimensional complex vector space. The result for this subsection is lo-
cal with respect to B. So the reader can regard B as an open subset of Cm for
convenience.

By shrinking Ui, we assume that ηi is defined on Ui, and Ui XUj “ H when i ‰

j. Fix trivialization E ˚
Ui

» OUi
bCE

˚
i to be dual to EUi

» OUi
bCEi. Identify Ui with

an open subset of CˆB (containing 0ˆB) via the embedding pηi, πq : Ui Ñ CˆB,
and identify EUi

and E ˚
Ui

with their respective trivializations. Then ηi is identified
with the standard coordinate z of C.

For each i we choose

si “
ÿ

n

ei,n ¨ zn P
`

OpBq bC Ei

˘

ppzqq. (1.4.3)

So ei,n “ 0 when n is sufficiently small, and each ei,n P OpBq bC Ei can be viewed
as an Ei-valued holomorphic function on B. For each b P B, set

sipbq “
ÿ

n

ei,npbqzn P Eippzqq. (1.4.4)
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Define E p‚SXq again using (1.4.1). Now suppose that s is a section of E p‚SXq

defined on an open set containing Ui. Then s|Ui
“ s|Ui

pz, bq is an Ei-valued mero-
momorphic function on Ui with poles at z “ 0. We say that s has series expansion
si near ςipBq if for each b P B, the meromorphic function s|Ui

pz, bq of z has series
expansion (1.4.4) near z “ 0.

For any given b P B, choose σb P H0pCb,E ˚|Cb b ωCbp‚SXpbqqq. Then in Ui,b :“
Ui X π´1pbq, σb can be regarded as an E˚

i b dz-valued meromorphic function with
pole at z “ 0. So it has series expansion at z “ 0:

σb|Ui,bpzq “
ÿ

n

ϕi,nz
ndz P E˚

i ppzqqdz (1.4.5)

where ϕi,n P E˚
i . We define the residue pairing Resixsi, σby P C to be

Resixsi, σby “Resz“0xsipbq, σb|Ui,bpzqy

“Resz“0

ˆ

A

ÿ

n

ei,npbqzn,
ÿ

n

ϕi,nz
n
E

dz

˙

. (1.4.6)

Theorem 1.4.1. For each 1 ď i ď N , choose si as in (1.4.3). Then the following state-
ments are equivalent.

(a) There exists s P H0pC,E p‚SXqq whose series expansion near ςipBq (for each 1 ď

i ď N ) is si.
(b) For any b P B and any σb P H0

`

Cb,E ˚|Cb b ωCbp‚SXpbqq
˘

,

N
ÿ

i“1

Resixsi, σby “ 0. (1.4.7)

Moreover, when these statements hold, there is only one s P H0pC,E p‚SXqq satisfying
(a).

Proof. That (a) implies (b) follows from Residue theorem. If s satisfies (a),
then for each b P B, s|Cb is uniquely determined by its series expansions near
ς1pbq, . . . , ςNpbq (since each component of Cb contains some ςipbq by the definition
of families of N -pointed compact Riemann surfaces). Therefore the sections satis-
fying (a) is unique.

Now assume (b) is true. Suppose we can prove that any b P B is contained in
a neighborhood V such that there exists a unique section s of E p‚SXq on π´1pV q

whose series expansion near each ςipV q is the restriction of si to V . Then (a) clearly
follows. Thus, by replacing B with an arbitrary precompact open subset and ap-
plying Proposition 1.3.2, we can assume that there exists k0 P N such that for any
b P B and any k ě k0,

H1
`

Cb,E ˚
|Cb b ωCbpkSXpbqq

˘

“ 0.
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Choose p P N such that for each 1 ď i ď N , the ei,n in (1.4.3) equals 0 when
n ă ´p. For any k ě k0, the exact sequence

0 Ñ E p´kSXq Ñ E ppSXq Ñ E ppSXq{E p´kSXq Ñ 0

induces a long exact sequence

0 Ñ π˚E p´kSXq Ñ π˚E ppSXq Ñ π˚

`

E ppSXq{E p´kSXq
˘ δ

ÝÑ R1π˚E p´kSXq. (1.4.8)

By Serre duality, dimH0
`

Cb, pE |Cbqp´kSXpbqq
˘

“ dimH1
`

Cb,E ˚|Cb bωCbpkSXpbqq
˘

“

0 for any b. Note also that pE |Cbqp´kSXpbqq is the restriction of E p´kSXq to Cb.
Therefore π˚E p´kSXq “ 0 by Theorem 1.3.1-(b).

For each 1 ď i ď N , set si|k “
ř

năk ei,n ¨ zn, which can be regarded as a section
in E ppSXqpUiq via the identification ηi “ z. Let U0 “ C ´ ς1pBq Y ¨ ¨ ¨ Y ςNpBq. Then
U “ tU0, U1, . . . , UNu is an open cover of C. Define Čech 0-cocycle ψ “ pψiq0ďiďN P

Z0pU,E ppSXq{E p´kSXqq by setting ψ0 “ 0 and ψi “ si|k (1 ď i ď N ). Then δψ “
`

pδψqi,j
˘

0ďi,jďN
P Z1pU,E p´kSXqq is described as follows: pδψq0,0 “ 0; if i, j ą 0

then pδψqi,j is not defined since Ui X Uj “ H; if 1 ď i ď N then pδψqi,0 “ ´pδψq0,i

equals si|k (considered as a section in E p´kSXqpUi X U0q » E pUi ´ ςipBqq).
Consider δψ as an element in R1π˚E p´kSXq whose restriction to Cb is denoted

by δψ|Cb P H1pCb,E |Cbp´kSXpbqq. Then the residue pairing for the Serre duality

H1
pCb,E |Cbp´kSXpbqqq » H0

`

Cb,E ˚
|Cb b ωCbpkSXpbqq

˘˚

(see Section 1.2), applied to δψ|Cb and any σb P H0
`

Cb,E ˚|CbbωCbpkSXpbqq
˘

, is given
by

xδψ|Cb, σby “

N
ÿ

i“1

Resixsi|k, σby.

Since for each 1 ď i ď N , xsi ´ si|k, σby has removable singularity at z “ 0, we
have Resixsi ´ si|k, σby “ 0. Therefore,

xδψ|Cb, σby “

N
ÿ

i“1

Resixsi, σby “ 0.

Thus δψ|Cb “ 0 for any b. By Theorem 1.3.1-(a), dimH1
`

Cb, pE |Cbqp´kSXpbqq
˘

is
locally constant over b P B. So by Theorem 1.3.1-(b), δψ is constantly 0 in each
fiber of the locally free OB-module R1π˚E p´kSXq. This proves that δψ “ 0.

By (1.4.8) and that π˚E p´kSXq “ 0, for any b P B there exist an open Vb Ă B
containing b and a unique s|k P

`

π˚E ppSXq
˘

pVbq “ H0pπ´1pVbq,E ppSXqq which is
sent to ψ P π˚

`

E ppSXq{E p´kSXq
˘

pVbq. So near ςipVbq, s|k has series expansion

s|k “ si|k ` ‚zk ` ‚zk`1
` ¨ ¨ ¨ . (1.4.9)
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By such uniqueness, these locally chosen s|k (over all Vp) are compatible with
each other, which produce a global s|k P H0pπ´1pBq,E ppSXqq which has series
expansion (1.4.9) near ςipBq. Note that this result holds for any k ě k0. So we have
s|k0 “ s|k0`1 “ s|k0`2 “ ¨ ¨ ¨ , again by the uniqueness. Let s “ s|k0 . Then s has
series expansion si near ςipBq for each i.

1.5 Nodal curves

The structure sheaf OC , and the invertible sheaves ΘC and ωC

Choose M P N, and let rX “ p rC; y1
1, . . . , y

1
M ; y2

1, . . . , y
2
Mq be a 2M -pointed com-

pact Riemann surface. (Here we do not require that each component of rC contains
a point. In particular,M could be 0.) One can define a (possibly singular) complex
curve C in the following way. As a topological space, C is the quotient space of rC
defined by the identification y1

1 “ y2
1, . . . , y

1
M “ y2

M . The quotient map is denoted
by ν : rC Ñ C. The points x1

1 “ νpy1
1q, . . . , x

1
M “ νpy1

Mq in rC are called nodes, and rX

(or just rC) is called the normalization of C. To define the structure sheaf OC , we
choose any open U Ă C. Then OpUq ” OCpUq is the set of all f P O

rCpν´1pUqq such
that fpy1

jq “ fpy2
j q whenever x1

j P U . When M “ 0, C is just a compact Riemann
surface. If M ą 0, we say that C is a nodal curve.

We now describe locally free OC-modules in terms of vector bundles. Suppose
that rE is a (holomorphic) vector bundle on rC. For any j “ 1, . . . ,M , we fix an
identification of fibers rE |y1

j » rE |y2
j . Then the sheaf E is defined such that for any

open U Ă C, E pUq is the set of all s P rE pν´1pUqq satisfying spy1
jq “ spy2

j q. Then E

is obviously an OC-module, which is easily seen to be locally free. ( rE is indeed
equivalent to the pull back of E .) Conversely, it is not hard to show that any
locally free OC-module E arises in such a way.

Next we define an invertible OC-module ΘC (i.e., a locally free OC-module
with rank 1). Its dual sheaf ωC :“ Θ´1

C will be called the dualizing sheaf of C. For
any 1 ď j ď M we choose local coordinates ξj, ϖj of y1

j, y
2
j respectively. If an open

subset U Ă C contains no x1
1, . . . , x

1
M , then ΘCpUq is defined to be Θ

rCpν´1pUqq. If U
is neighborhood of some x1

j such that ν´1pUq is a disjoint union of neighborhoods
V 1
j Q y1

j and V 2
j Q y2

j , and that ξj and ϖj are defined on V 1
j , V

2
j respectively, then

ΘCpUq is the OCpUq-submodule of Θ
rCpV 1

j Y V 2
j q generated by

ξjBξj ´ ϖjBϖj
. (1.5.1)

To be more precise, ξjBξj ´ϖjBϖj
is the section in Θ

rCpV 1
j YV 2

j q whose restrictions to
V 1
j and V 2

j are ξjBξj and ´ϖjBϖj
respectively. One checks easily that ΘCpUq is a free

OCpUq-module. Such definition is independent of the choice of local coordinates.
For a general U , ΘCpUq is defined by gluing as described in Section 1.2.
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Alternatively, consider the line bundle on rC defined by

ĂΘC “ Θ
rC

`

´

M
ÿ

j“1

py1
j ` y2

j q
˘

, (1.5.2)

which will be the pull back of ΘC . For any 1 ď j ď M , we need to choose identi-
fication of the lines (one dimensional fibers) ĂΘC |y1

j » ĂΘC |y2
j . For this purpose we

choose a local coordinate ξj of y1
j . Note that the restriction ξjBξj |y

1
j of ξjBξj to y1

j ,
which is an element of the fiber ĂΘC |y1

j » Θ
rCp´y1

jq|y1
j , is independent of the choice

of the local coordinate. Choose similarly a local coordinate ϖj of y2
j . Then the

identification ĂΘC |y1
j » ĂΘC |y2

j is defined by

ξjBξj |y
1
j “ ´ϖjBϖj

|y2
j . (1.5.3)

One can then define ΘC using ĂΘC and the chosen identification. For the dualizing
sheaf ωC , its pull back ĂωC is

ĂωC “ ω
rC

`

M
ÿ

j“1

py1
j ` y2

j q
˘

, (1.5.4)

and the identification ĂωC |y1
j » ĂωC |y2

j is given by

dξj
ξj

ˇ

ˇ

ˇ
y1
j “ ´

dϖj

ϖj

ˇ

ˇ

ˇ
y2
j . (1.5.5)

Vanishing of higher order cohomology groups

We shall generalize some results for compact Riemann surfaces to the nodal
curve C. Our first result is that HqpC,E q “ 0 for any q ą 1 and any locally free
E . Again, we let rX “ p rC; y1

1, . . . , y
1
M ; y2

1, . . . , y
2
Mq be the normalization of C. So

x1
1 “ νpy1

1q, . . . , x1
M “ νpy1

Mq are the nodes. For each 1 ď j ď M , we choose a
neighborhood Uj Ă C of x1

j such that ν´1pUjq is the disjoint union of neighbor-
hoods V 1

j Q y1
j and V 2

j Q y2
j , and that the complex manifolds with marked points

pV 1
j , y

1
jq and pV 2

j , y
2
j q are biholomorphic to the open unit disc D1 “ tz P C : |z| ă 1u

with marked point 0. Then Uj (as a complex space) is biholomorphic to the com-
plex subspace of D1 ˆ D1 defined by tpz, wq P D1 ˆ D1 : zw “ 0u.

The complex manifold D1 ˆ D1 belongs to a very important class of complex
spaces, called Stein spaces, which satisfy Cartan’s theorems A and (equivalently)
B. If X is a Stein space and F is a coherent OX-module (in particular, if F is
locally free), then Theorem B says that HqpX,F q “ 0 when q ą 0, and Theorem
A says that the global sections of F generate every stalk Fx as an OX,x-module.
All non-compact connected Riemann surfaces are Stein spaces. A product of two
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Stein spaces is a Stein space. Closed complex subspaces of Stein spaces are Stein
spaces. A finite intersection of Stein open subsets is Stein. References of these
results can be found in [GR84] section 1.4 or [GPR94] section III.3.

As Uj (1 ď j ď M ) is biholomorphic to a (singular) hypersurface of D1 ˆ D1,
Uj is a Stein space. Set U0 “ C ´ tx1

1, . . . , x
1
Mu. Then U “ tUj : 0 ď j ď Mu is an

open cover of C.

Theorem 1.5.1. Let E be locally free. Then HqpC,E q “ 0 for any q ą 1.

Proof. Assume without loss of generality that C is connected. We know
HqpC,E q “ 0 when C is smooth (i.e., a compact Riemann surface). Thus it suffices
to assume that C contains at least one node. Then each connected component of
U0 is not compact. The same is true for U0 X Uj for any 1 ď j ď M . We assume
that U1, . . . , UM are small enough so that they are mutually disjoint. Then for any
0 ď i, j ď M , Uj and Ui X Uj are Stein spaces, thus HppUiq “ HppUi X Ujq “ 0 for
any p ą 0. Notice that the intersection of any three distinct open sets in U is 0.
Thus HppUi1 X ¨ ¨ ¨ XUin ,E q “ 0 for any 1 ď i1, . . . , in ď M and p ą 0. Therefore, by
Leray’s theorem, HqpC,E q “ HqpU,E q. When q ě 2, Ui1 XUi2 X ¨ ¨ ¨ XUiq`1 “ H for
any 0 ď i1 ă i2 ă ¨ ¨ ¨ ă iq`1 ď M . Thus any Čech q-cocycle is zero, which shows
ZqpU,E q “ 0 and hence HqpU,E q “ 0.

Serre duality

Serre duality holds for the nodal curve C; see [ACG11] section 10.2. In the fol-
lowing, we present a proof using the Serre duality for compact Riemann surfaces.
The pairing for duality is also constructed in the proof. Let us first introduce the
following notation. Let rX “ p rC; y1, . . . , yN ; y

1
1, . . . , y

1
M ; y2

1, . . . , y
2
Mq be pN ` 2Mq-

pointed. We assume each component of rC contains yi for some 1 ď i ď N .
Then the quotient map ν : rC Ñ C identifying y1

1, . . . , y
1
M with y2

1, . . . , y
2
M re-

spectively defines an N -pointed complex curve X “ pC;x1, . . . , xNq, where x1 “

νpy1q, . . . , xN “ νpyNq are the marked points of C, and x1
1 “ νpy1

1q, . . . , x
1
M “ νpy1

Mq

are the nodes. Again, we call rX the normalization of X. Set SX “ x1 `x2 ` ¨ ¨ ¨ `xN
to be a divisor either of C or of rC.

Theorem 1.5.2 (Serre duality). For the nodal curve C and a locally free OC-module E ,
the relation (1.2.1) holds.

Proof. Assume without loss of generality that C is connected. We shall prove
(1.2.1) for p “ 1, i.e.,

H1
pC,E b ωCq » H0

pC,E ˚
q

˚.

Then, by replacing E with E bΘC , we obtain the relation for p “ 0. For simplicity,
we assumeM “ 1 and write y1

1 “ y´1, y
2
1 “ y´2, x

1
1 “ x´1. Thus X “ pC;x1, . . . , xNq
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is a nodal curve with node x´1, and it is obtained from the smooth curve rX “

p rC; y1, . . . , yN ; y´1; y´2q by gluing y´1 and y´2. We identify C ´ tx´1u with rC ´

ty´1, y´2u in a natural way. So x1 “ y1, . . . , xN “ yN . Choose mutually disjoint
Stein neighborhoods U1, . . . , UN of x1, . . . , xN respectively disjoint from x´1 (and
hence from y´1, y´2). Choose open discs V´1 Q y´1, V´2 Q y´2 in rC and disjoint
from U1, . . . , UN . Then U´1 :“ νpV´1 Y V´2q is obtained from V´1 and V´2 by
gluing y´1, y´2. U´1 is also a Stein space. Set U0 “ C ´ tx1, . . . , xN , x´1u, which
has no compact connected component and is hence a Stein space. It follows that
U :“ tU´1, U0, U1, . . . , UNu is a Stein cover of C. Hence, by Leray’s theorem, we
have H1pC,E b ωCq » H1pU,E b ωCq. Set V0 “ U0, V1 “ U1, . . . , VN “ UN . Then
V :“ tV´1, V´2, V0, V1, . . . , VNu is a Stein cover of rC.

Define a linear map

Ψ : Z1
pU,E b ωCq Ñ H0

pC,E ˚
q

˚ (1.5.6)

as follows. Choose any Čech 1-cochain s “ psm,nqm,n“´1,0,1,...N P Z1pU,E b ωCq.
Then all the components of s, except possibly sn,0 and s0,n (where ´1 ď n ď N ),
are zero. We set σn “ sn,0 “ ´s0,n for ´1 ď n ď N (in particular, σ0 “ 0), and let
σ´2 “ σ´1. For each ´2 ď n ď N , we choose an anticlockwise circle γn in Vn ´ tynu

surrounding yn. The anticlockwiseness is understood under local coordinates of
rC at yn. Then Ψpsq is defined such that for any t P H0pC,E ˚q, the evaluation of
Ψpsq with t is

xs, ty “

N
ÿ

n“´2

¿

γn

xσn, ty. (1.5.7)

The proof will be completed if we can show that Ψ is surjective with kernel
B1pU,E b ωCq. We divide the proof into several steps.

Step 1. We first show that Ψ is surjective. Let SX “ x1 ` ¨ ¨ ¨ xN . Then for
sufficiently large k, we have H0pC,E ˚p´kSXqq “ 0. (See the proof of Proposition
1.5.4.) Therefore, from the exact sequence

0 Ñ H0
pC,E ˚

p´kSXqq Ñ H0
pC,E ˚

q Ñ H0
pC,G q

where G “ E ˚{E ˚p´kSXq, we see that H0pC,E ˚q is naturally a subspace of
H0pC,G q. For each 1 ď n ď N , choose a trivilization EUn » En bC OUn which
yields the dual trivilization E ˚

Un
» E˚

n bC OUn . Let ηn be a coordinate of Un satisfy-
ing ηnpxnq “ 0. Then we have a natural equivalence H0pC,G q »

À

nE
˚
n b Ck

such that each pv0n, . . . , v
k´1
n q1ďnďN P

À

nE
˚
n b Ck corresponds to the section

of G whose restriction to each Un is
ř

0ďlďk´1 v
l
nη

l
n, and whose restriction to

C ´ tx1, . . . , xNu is 0. Choose any ψ P H0pC,E ˚q˚ and extend it to a linear func-
tional on H0pC,G q. Then, for each n, one can choose α0

n, . . . , α
k´1
n P En such

that the evaluation of ψ with any pv0n, . . . , v
k´1
n q1ďnďN is

ř

1ďnďN

ř

0ďlďk´1 α
l
npvlnq.
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Choose s “ psm,nqm,n“´1,0,1,...N P Z1pU,E b ωCq whose only possibly non-zero
components are sn,0 “ ´s0,n “

ř

0ďlďk´1 α
l
nη

´l´1
i dηi (where 1 ď n ď N ). One

checks easily that Ψpsq “ ψ.
Step 2. To finish the proof, we need to show that KerpΨq “ B1pU,E bωCq. Note

that E can be obtained from a vector bundle rE onC by identifying the fibers rE |y´1

and rE |y´2 via an isomorphism. Under this viewpoint, H0pC,E ˚q is naturally a
subspace of H0p rC, rE ˚q consisting of global sections whose values at y´1 and at
y´2 agree. In particular, this is true when the two values are 0. We thus have

H0
p rC, rE ˚

p´y´1 ´ y´2qq Ă H0
pC,E ˚

q Ă H0
p rC, rE ˚

q.

Therefore, KerpΨq vanishes when evaluating on H0p rC, rE ˚p´y´1 ´ y´2qq. Also,
since Um X Un does not contain the node x´1 whenever m ‰ n, we have natural
identifications

Z1
pV, rE b ω

rCpy´1 ` y´2qq “ Z1
pU,E b ωCq “ Z1

pV, rE b ω
rCq.

It is easy to see that the pairing of the smooth Serre duality

H1
p rC, rE b ω

rCpy´1 ` y´2qq » H0
p rC, rE ˚

p´y´1 ´ y´2qq
˚ (1.5.8)

is compatible with the one of (1.5.6) defined by (1.5.7). Thus, if we regard any
s P KerpΨq as an element of Z1pV, rE b ω

rCpy´1 ` y´2qq, then it becomes zero in
H1pV, rE b ω

rCpy´1 ` y´2qq. Therefore,

KerpΨq Ă B1
pV, rE b ω

rCpy´1 ` y´2qq.

Choose any

ς P B1
pV, rE b ω

rCpy´1 ` y´2qq.

We shall show that ς P B1pU,E b ωCq if and only if ς P KerpΨq. This will finish the
proof.

Step 2-(a). Choose

σ P C0
pV, rE b ω

rCpy´1 ` y´2qq

(i.e., σ “ pσnq´2ďnďN is a 0-cochain of rE b ω
rCpy´1 ` y´2q over the cover V) such

that

ς “ δpσq.

Since ς can be regarded as an element ofZ1pU,E bωCq, we can calculate the pairing
xς, ty defined by (1.5.7) for any

t P H0
pC,E ˚

q.
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Write ς “ pςm,nq´2ďm,nďN . The only possibly non-zero components of ς are ςn,0 “

´ς0,n where ´2 ď n ď N and n ‰ 0. It is clear that ςn,0 “ pσn ´ σ0q|UnXU0 for any
such n. Then

xς, ty “

N
ÿ

n“´2

¿

γn

xσn ´ σ0, ty.

By residue theorem (or Stokes theorem), we have
řN

n“´2

ű

γn
xσ0, ty “ 0. Moreover,

when n ě 1, since σn can be defined as a section of E on Un, xσn, ty is a holomor-
phic function on Un. So xσn, ty “ 0. We thus have

xς, ty “

¿

γ´1

xσ´1, ty `

¿

γ´2

xσ´2, ty.

We set E “ rE |y´1 “ rE |y´2. Then its dual space is E˚ “ rE ˚|y´1 “ rE ˚|y´2. We
choose trivialization EVn » E bC OVn which yields the dual one E ˚

Vn
» E˚ bC OVn

for n “ ´1,´2. Let ξ (resp. ϖ) be a coordinate of V´1 (resp. V´2) satisfying
ξpy´1q “ 0 (resp. ϖpy´2q “ 0). Since t P H0pC,E ˚q, t can be viewed as an element
of H0p rC, rE ˚q such that tpy´1q “ tpy´2q (which are elements of E˚). Set

e1 “

¿

γ´1

σ´1, e2 “ ´

¿

γ´2

σ´2

(which are vectors in E), i.e.

σ´1 “ e1dξ{ξ `
ÿ

lě0

‚ξldξ, σ´2 “ ´e2dϖ{ϖ `
ÿ

lě0

‚ϖldϖ (1.5.9)

We thus have

xς, ty “ xe1 ´ e2, tpy´2qy. (1.5.10)

By (1.5.5), we have σ P C0pU,E bωCq (i.e., σ is a 0-cochain of E bωC) if and only if
e1 ´ e2 “ 0. If ς P B1pU,E b ωCq, then one can choose σ (which satisfies ς “ δpσq)
to be an element of C0pU,E b ωCq, which implies e1 ´ e2 “ 0 and hence xs, ty “ 0
for any t P H0pC,E ˚q. So ς P KerpΨq.

Step 2-(b). We now prove the other direction. Assume ς P KerpΨq. We shall
show that ς P B1pU,E b ωCq. Note that (1.5.10) is zero for each t P H0pC,E ˚q.
Consider the short exact sequence of O

rC-modules

0 Ñ rE b ω
rC Ñ rE b ω

rCpy´1 ` y´2q Ñ F Ñ 0

where F “ rE b ω
rCpy´1 ` y´2q{ rE b ω

rC . Then we have an exact sequence

H0
p rC, rE b ω

rCpy´1 ` y´2qq Ñ H0
p rC,F q

δ
ÝÑ H1

p rC, rE b ω
rCq.
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For any e0 P E, we choose ε P H0p rC,F q (which clearly depends on e0) such that

ε|V´1 “ e0dξ{ξ, ε|V´2 “ p´e0 ` e2 ´ e1qdϖ{ϖ, ε|
rC´ty´1,y´2u

“ 0.

We claim that there exists e0 such that δpεq “ 0. Suppose this has been proved.
Then there exists λ P H0p rC, rE b ω

rCpy´1 ` y´2qq which is sent to ε. We treat λ “

pλnq´2ďnďN as an element of Z0pV, rE b ω
rCpy´1 ` y´2qq. Then

λ´1 “ e0dξ{ξ `
ÿ

lě0

‚ξldξ, λ´2 “ p´e0 ` e2 ´ e1qdϖ{ϖ `
ÿ

lě0

‚ϖldϖ.

If we compare this relation with (1.5.9), we see that pσ`λq´1 “ pe1 ` e0qdξ{ξ` ¨ ¨ ¨

and pσ ` λq´2 “ ´pe1 ` e0qdϖ{ϖ ` ¨ ¨ ¨ . Thus σ ` λ can be viewed as an element
of C0pU,E b ωCq. Since δpλq “ 0, we have δpσ ` λq “ δpσq “ ς , which finishes the
proof.

Let us prove the existence of e0 such that δpεq “ 0. Notice thatH1p rC, rE bω
rCq “

H1pV, rE b ω
rCq, and δpεq can be represented by an element pδpεqm,nq´2ďm,nďN in

Z1pV, rE bω
rCq whose only non-zero components are δpεq´1,0 “ ´δpεq0,´1 “ e0dξ{ξ

and δpεq´2,0 “ ´δpεq0,´2 “ p´e0 ` e2 ´ e1qdϖ{ϖ. Notice the smooth Serre duality

H1
p rC, rE b ω

rCq » H0
p rC, rE ˚

q
˚

defined by residue pairing. If we regard δpεq as a linear functional on H0p rC, rE ˚q,
then its evaluation with any τ P H0p rC, rE ˚q is

xδpεq, τy “xe0, τpy´1qy ` x´e0 ` e2 ´ e1, τpy´2qy

“xe0, τpy´1q ´ τpy´2qy ´ xe1 ´ e2, τpy´2qy.

Then δpεq “ 0 will follow if we can find e0 P E satisfying

xe0, τpy´1q ´ τpy´2qy “ xe1 ´ e2, τpy´2qy

for any τ P H0p rC, rE ˚q. Indeed, one first defines e0 as a linear functional on T :“

tτpy´1q´τpy´2q : τ P H0p rC, rE ˚qu using the above relation. Then e0 is well defined:
if τpy´1q ´ τpy´2q “ 0, then τ P H0pC,E ˚q; since we assume ς P KerpΨq, according
to (1.5.10), we have xe2 ´ e1, τpy´2qy “ 0. Now, as T is a subspace of E˚, we can
extend e0 to a linear functional on E˚. Then e0 is in E and satisfies the desired
relation.

Corollary 1.5.3. If E is a locally free OC-module, then dimHqpC,E q ă `8 for any
q P N.

Thus one can define the character χpC,E q using (1.2.5).

Proof. We have proved thatHqpC,E q “ 0 when q ą 1. Let rE “ ν˚E where ν : rC Ñ

C is the normalization. Since H0pC,E q is naturally a subspace of H0p rC, rE q where
the latter is finite dimensional, so is H0pC,E q. Similarly, H0pC,E ˚ b ωCq is finite
dimensional. So is H1pC,E q by Serre duality.
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Vanishing theorems

Proposition 1.5.4. Assume that each connected component of rC (equivalently, each ir-
reducible component of C) contains one of x1, . . . , xN , and set D “ x1 ` ¨ ¨ ¨ ` xN . Then
Proposition 1.2.1 and Corollary 1.2.2 hold verbatim.

Proof. The pull back of E along the normalization ν : rC Ñ C is denoted by rE . We
know that E can be obtained by gluing the fibers of rE at the double points. So
H0pC,E p´nDqq is naturally a subspace of H0p rC, rE p´nDqq (consisting of sections
whose values at y1

j and at y2
j agree), which vanishes when n is sufficiently large.

This proves Proposition 1.2.1. Corollary 1.2.2 follows as in the smooth case by
Serre duality.

As an application of Prop. 1.5.4, we now give a better description of the pair-
ing in Serre duality. Let x1, . . . , xN be distinct smooth points onC as in the proof of
Serre duality Thm. 1.5.2. (Namely, each connected component of the normaliza-
tion rC ofC contains at least one element of the preimage of x1, . . . , xN .) We choose
U`
0 “ C ´ tx1, . . . , xNu and U1, . . . , UN mutually disjoint disks around x1, . . . , xN

that do not intersect the nodes. Choose an anticlockwise circle γi Ă Ui around xi.

Theorem 1.5.5. Let U` “ tU`
0 , U1, . . . , UNu. Then H1pC,E bωCq “ H1pU`,E bωCq.

Moreover, Serre duality

H1
pC,E b ωCq » H0

pC,E ˚
q

˚ (1.5.11)

holds, and the isomorphism is realized by

Φ : Z1
pU`,E b ωCq Ñ H0

pC,E ˚
q

˚ (1.5.12)

such that for each s “ psm,nqm,n“0,1,...,N P Z1pU`,E bωCq and t P H0pC,E ˚q, by setting
σn “ sn,0 “ ´s0,n, we have

xs, ty “

N
ÿ

n“1

¿

γn

xσn, ty. (1.5.13)

Proof. This theorem follows directly from the fact that U`
0 is indeed Stein, and

hence that U` is a Stein cover. (A quick argument is to embed C as a closed
complex subspace of Pn for some n and show that U`

0 is the intersection of C and
the complement of a hyperplane in Pn.) But here we give a different argument
which avoids showing that U`

0 is Stein.
Assume for simplicity that C has only one node x´1; the general case fol-

lows from a similar argument. Following the notations in the proof of Thm.
1.5.2, we let U “ tU´1, U0, U1, ¨ ¨ ¨ , UNu where U´1 is a small Stein neighborhood
of the node x´1, and U0 “ C ´ tx1, . . . , xN , x´1u. (So U`

0 “ U0 Y U´1.) Then
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Z1pU`,E b ωCq is naturally a subspace of Z1pU,E b ωCq consisting of 1-cocycles
s “ psm,nqm,n“´1,0,1,...,N vanishing on U0 X U´1, i.e. s´1,0 “ s0,´1 “ 0. Moreover, an
element in Z1pU`,E bωCq is a coboundary with respect to U` if and only if it is so
with respect to U. Therefore, the theorem follows from Thm. 1.5.2 and the pairing
(1.5.6) (1.5.7) if we can show that every element of H1pC,E bωCq “ H1pU,E bωCq

is represented by an element of Z1pU`,E b ωCq, i.e., represented by an element
s P Z1pU,E b ωCq such that s´1,0 “ ´s0,´1 “ 0.

Let D “ x1 ` ¨ ¨ ¨ ` xN . By Prop. 1.5.4, there is k P N such that H1pC,E b

ωCpkDqq “ 0. The short exact sequence

0 Ñ E b ωC Ñ E b ωCpkDq Ñ G Ñ 0

(where G is the quotient of the previous two sheaves) gives a long one

H0
pC,G q

δ
ÝÑ H1

pU,E b ωCq Ñ H1
pC,E b ωCpkDqq “ 0.

So δ is surjective. Since G has support in x1, . . . , xN , by the explicit description of δ,
it is clear that any element in the image of δ is represented by a cocycle satisfying
s´1,0 “ ´s0,´1 “ 0.

Remark 1.5.6. If C is connected, the number g “ dimH1pC,OCq is called the
(arithmetic) genus of C. Thus χpC,OCq “ 1 ´ g. Again, any line bundle L is
equivalent to OCpDq for some divisor D “ k1x1 ` ¨ ¨ ¨ ` kNxN . (For the nodal
curve, we assume none of x1, . . . , xN is a node.) The argument is the same as
for smooth curves: By Proposition 1.5.4, one may find a divisor D0 such that
H1pC,L p´D0 ´ xqq “ 0, where x is any smooth point of C. Thus, the short exact
sequence 0 Ñ L p´D0´xq Ñ L p´D0q Ñ kx Ñ 0 (where kx » L p´D0q{L p´D0´

xq is the skyscraper sheaf) yields a surjective H0pC,L p´D0qq Ñ H0pC, kxq. So
H0pC,L p´D0qq is nonzero. Thus we may find a non-zero global meromorphic
section s of L . Let D “ ´

ř

nx ¨ x where the sum is over all smooth points of
C, and nx is the unique integer such that (by choosing any local coordinate zx at
x) znx

x s can be extended to a section of L on a neighborhood of x whose value
at the fiber L |x is non-zero. Then D is a finite divisor, and f ÞÑ fs defines an
isomorphism OCpDq Ñ L .

Define degpL q “ degpDq. Then the Riemann-Roch theorem (1.2.6) holds for
C and can be proved in exactly the same way: Identify L with OCpDq. Notice
χpC, kxq “ dimH0pC, kxq “ 1. Then the we have a short exact sequence 0 Ñ

OCpDq Ñ OCpD ` xq Ñ kx Ñ 0 and hence a long one

0 Ñ H0
pC,OCpDqq Ñ H0

pC,OCpD ` xqq Ñ H0
pC, kxq

Ñ H1
pC,OCpDqq Ñ H1

pC,OCpD ` xqq Ñ H1
pC, kxq “ 0,

which gives χpC,OCpDqq ´ χpC,OCpD ` xqq “ ´χpC, kxq “ ´1. Thus, (1.2.6)
follows from induction and the base case χpC,OCq “ 1 ´ g. Therefore, (1.2.7) also
holds in the nodal case.

As a consequence, we obtain again degωC “ ´ degΘC “ 2g ´ 2.
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As usual, a divisor D of C is called effective if D “
řk

i“1 nixi where each xi is
a smooth point and each ni P Z is non-negative.

Theorem 1.5.7. Let C be a complex curve with M nodes and normalization rC. Let
x1, . . . , xN be smooth points of C, and assume that any connected component of rC con-
tains one of these points. Set D “ x1 ` ¨ ¨ ¨ ` xN . Let n P Z, let D1 be an effective divisor
of C, and let rg be the maximal (resp. minimal) genus of the connected components of rC
if n ě ´1 (resp. n ă ´1). Then for any k ą pn ` 1qp2rg ´ 2q ` 2M ` degD1, we have
H1pC,Θbn

C pkD ´ D1qq “ 0.

Proof. Choose any such k. By Serre duality, it suffices to prove
H0pC, ω

bpn`1q

C p´kD ` D1qq “ 0. Let x1
1, . . . , x

1
M be the nodes of C. For

each j, let y1
j, y

2
j be the double points of rC mapped to x1

j by ν. Let
D0 “ D1 `

řM
j“1py

1
j ` y2

j q. Then, by (1.5.4), H0pC, ω
bpn`1q

C p´kD ` D1qq is
naturally a subspace of H0p rC, ω

bpn`1q

rC
p´kD ` D0qq. Thus, it suffices to prove

that for each connected component rC0 of rC, H0p rC0, ω
bpn`1q

rC0
p´kD ` D0qq

is trivial. This follows from Theorem 1.2.4 and the computation
degpω

bpn`1q

rC0
p´kD ` D0qq ď pn ` 1qp2rg ´ 2q ´ k ` 2M ` degD1 ă 0.

1.6 Families of complex curves

Smoothing the nodes

For any r ą 0, let Dr “ tz P C : |z| ă ru and Dˆ
r “ Dr ´ t0u. If r, ρ ą 0, we

define

πr,ρ : Dr ˆ Dρ Ñ Drρ, pξ,ϖq ÞÑ ξϖ. (1.6.1)

dπr,ρ is surjective at pξ,ϖq whenever ξ ‰ 0 or ϖ ‰ 0. So if q P Drρ is not 0, the fiber
π´1pqq is smooth. But π´1

r,ρ p0q is singular, which is just a neighborhood of a node
of a nodal curve. Denote also by ξ and ϖ the standard coordinates of Dr and Dρ,
and set q “ πr,ρ, i.e.,

q : Dr ˆ Dρ Ñ C, q “ ξϖ.

Then pξ,ϖq, pξ, qq, pϖ, qq are coordinates of Dr ˆDρ,Dˆ
r ˆDρ,Dr ˆDˆ

ρ respectively.
The standard tangent vectors of the coordinates pξ,ϖq, pξ, qq are related by

"

Bξ “ Bξ ´ ξ´1ϖ ¨ Bϖ

Bq “ ξ´1Bϖ

"

Bξ “ Bξ ` ξ´1q ¨ Bq

Bϖ “ ξBq
(1.6.2)

The formulae between pξ,ϖq, pϖ, qq are similar.
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It is easy to see that pξ, qqpDˆ
r ˆ Dρq (resp. pϖ, qqpDr ˆ Dˆ

ρ q) is precisely the
subset of all pξ0, q0q P Dr ˆ Drρ (resp. pϖ0, q0q P Dρ ˆ Drρ) satisfying

|q0|

ρ
ă |ξ0| ă r resp.

|q0|

r
ă |ϖ0| ă ρ. (1.6.3)

We choose closed subsets E 1
r,ρ Ă Dr ˆ Drρ and E2

r,ρ Ă Dρ ˆ Drρ such that

pξ, qq : Dˆ
r ˆ Dρ

»
ÝÑ Dr ˆ Drρ ´ E 1

r,ρ,

pϖ, qq : Dr ˆ Dˆ
ρ

»
ÝÑ Dρ ˆ Drρ ´ E2

r,ρ. (1.6.4)

Sewing families of compact Riemann surfaces

Choose M P N. Consider a family of 2M -pointed compact Riemann surfaces
with local coordinates

rX “ prπ : rC Ñ rB; ς 1
1, . . . , ς

1
M ; ς2

1 , . . . , ς
2
M ; ξ1, . . . , ξM ;ϖ1, . . . , ϖMq. (1.6.5)

We do not assume that every component of any fiber contains a marked point.
For each 1 ď j ď M we choose rj, ρj ą 0 and a neighborhood U 1

j (resp. U2
j ) of

ς 1
jp

rBq (resp. ς2
j p rBq) such that

pξj, rπq : U 1
j

»
ÝÑ Drj ˆ rB resp. pϖj, rπq : U2

j
»
ÝÑ Dρj ˆ rB (1.6.6)

is a biholomorphic map. We also assume that these ri and ρj are small enough so
that the neighborhoods U 1

1, . . . , U
1
M , U

2
1 , . . . , U

2
M are mutually disjoint. Identify

U 1
j “ Drj ˆ rB resp. U2

j “ Dρj ˆ rB

via the above maps. Then ξj, ϖj (when restricted to the first components) become
the standard coordinates of Drj ,Dρj respectively, and rπ is the projection onto the
rB-component. Set qj “ ξjϖj : Drj ˆ Dρj Ñ Drjρj as previously.

We now construct a family of complex curves X “ pπ : C Ñ Bq as follows. Let

Dr‚ρ‚
“ Dr1ρ1 ˆ ¨ ¨ ¨ ˆ DrMρM , B “ Dr‚ρ‚

ˆ rB. (1.6.7)

We shall freely switch the order of Cartesian product. For each 1 ď j ď M , we
also define Dr‚ρ‚zj to be the product of all Dr1ρ1 , . . . ,DrMρM except Drjρj . So

Dr‚ρ‚
“ Drjρj ˆ Dr‚ρ‚zj.

Recall that by (1.6.4), E 1
rj ,ρj

Ă Drj ˆ Drjρj and E2
rj ,ρj

Ă Dρj ˆ Drjρj . So

F 1
j :“ E 1

rj ,ρj
ˆ Dr‚ρ‚zj ˆ rB Ă Drj ˆ Dr‚ρ‚

ˆ rB p“ U 1
j ˆ Dr‚ρ‚

q,
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F 2
j :“ E2

rj ,ρj
ˆ Dr‚ρ‚zj ˆ rB Ă Dρj ˆ Dr‚ρ‚

ˆ rB p“ U2
j ˆ Dr‚ρ‚

q

are subsets of rC ˆ Dr‚ρ‚
. They are the subsets we should discard in the sewing

process. Set

Wj :“ Drj ˆ Dρj ˆ Dr‚ρ‚zj ˆ rB. (1.6.8)

We glue rC ˆ Dr‚ρ‚
(with F 1

j , F
2
j all removed) with all Wj and obtain a complex

manifold C.
To be more precise, we define

C “

ˆ M
ž

j“1

Wj

˙

ž

ˆ

rC ˆ Dr‚ρ‚
´

M
ď

j“1

F 1
j ´

M
ď

j“1

F 2
j

˙N

„ (1.6.9)

where the equivalence „ is described as follows. Consider the following subsets
of Wj :

W 1
j “ Dˆ

rj
ˆ Dρj ˆ Dr‚ρ‚zj ˆ rB, (1.6.10)

W 2
j “ Drj ˆ Dˆ

ρj
ˆ Dr‚ρ‚zj ˆ rB. (1.6.11)

Then the relation „ identifies W 1
j and W 2

j respectively via pξj, qj,1q and pϖj, qj,1q

(where 1 is the identity map of Dr‚ρ‚zj ˆ rB) to

Drj ˆ Dr‚ρ‚
ˆ rB ´ F 1

j pĂ U 1
j ˆ Dr‚ρ‚

q, (1.6.12)

Dρj ˆ Dr‚ρ‚
ˆ rB ´ F 2

j pĂ U2
j ˆ Dr‚ρ‚

q (1.6.13)

(recall (1.6.4)), which are subsets of rC ˆ Dr‚ρ‚
´

Ť

j F
1
j ´

Ť

j F
2
j . (In particular,

certain open subsets of (1.6.12) and (1.6.13) are glued together and identified with
W 1

j X W 2
j .)

It is easy to see that the projection

rπ ˆ 1 : rC ˆ Dr‚ρ‚
Ñ rB ˆ Dr‚ρ‚

“ B, (1.6.14)

agrees with

πrj ,ρj ˆ 1 : Wj “ Drj ˆ Dρj ˆ Dr‚ρ‚zj ˆ rB Ñ Drjρj ˆ Dr‚ρ‚zj ˆ rB “ B (1.6.15)

for each j when restricted to W 1
j ,W

2
j . (Indeed, recalling (1.6.12) and (1.6.13), they

are the standard projections pξj, q‚,rbq ÞÑ pq‚,rbq and pϖj, q‚,rbq ÞÑ pq‚,rbq.) Thus, we
have a well-defined surjective holomorphic map

π : C Ñ B

whose restrictions to rCˆDr‚ρ‚
´

Ť

j F
1
j´

Ť

j F
2
j and to eachWj are rπb1 and πrj ,ρj b1

respectively. We say that X “ pπ : C Ñ Bq is obtained from rX via sewing.
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The discriminant locus ∆ and the critical locus Σ

For each j we set

∆j “ t0u ˆ Dr‚ρ‚zj ˆ rB
pĂ Drjρj ˆ Dr‚ρ‚zj ˆ rB “ Bq.

Then

∆ “

M
ď

j“1

∆j (1.6.16)

is the set of all points b P B such that the fiber Cb is singular, called the dis-
criminant locus. Roughly speaking, if b is (for example) in ∆1, . . . ,∆j but not
in ∆j`1, . . . ,∆M , then Cb is obtained by attaching ς 1

1, . . . , ς
1
M with ς2

1 , . . . , ς
2
M respec-

tively and smoothing the lastM´j nodes. Therefore Cb has j nodes. If b is outside
∆ then Cb is smooth (i.e. a compact Riemann surface). Set also

Σj “ t0u ˆ t0u ˆ Dr‚ρ‚zj ˆ rB
pĂ Drj ˆ Dρj ˆ Dr‚ρ‚zj ˆ rB “ Wj Ă Cq.

Then

Σ “

M
ď

j“1

Σj

is the set of nodes, called the critical locus. The linear map dπ is not surjective
precisely at Σ. Clearly we have πpΣq “ ∆.

Sewing families of N -pointed compact Riemann surfaces

Remark 1.6.1. Suppose, moreover, that we are sewing a family ofN -pointed com-
pact Riemann surfaces with local coordinates

rX “ prπ : rC Ñ rB; ς1, . . . , ςN ; ς 1
1, . . . , ς

1
M ; ς2

1 , . . . , ς
2
M ; η1, . . . , ηN ; ξ1, . . . , ξM ;ϖ1, . . . , ϖMq.

Then, we assume that each connected component of each fiber rC
rb of rC contains

one of ς1prbq, . . . , ςNprbq, and ς1p rBq, . . . , ςNp rBq are disjoint from the neighborhoods
U 1
1, . . . , U

1
M , U

2
1 , . . . , U

2
M . One thus have a family of N -pointed complex curves

with local coordinates

X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq,
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where each section ςi is defined on B “ rBˆDr‚ρ‚
, takes values in rCˆDr‚ρ‚

´
Ť

j U
1
j´

Ť

j U
2
j , is constant over Dr‚ρ‚

, and equals the original one over rB. Similarly, the
local coordinate ηi of rX at ςip rBq is extended constantly to one of X at ςipBq. We say
that the N -points ς1, . . . , ςN and the local coordinates η1, . . . , ηN of X are constant
with respect to sewing.

In the case that the local coordinates η1, . . . , ηN are not assigned to rX, then
X “ pπ : C Ñ B; ς1, . . . , ςNq is a family of N -pointed complex curves.

Families of complex curves

We now give a general definition of families of complex curves. Suppose that
X “ pπ : C Ñ Bq is a surjective holomorphic map of complex manifolds, where B
has finitely many connected components. We say that X is a family of complex
curves if X is either smooth or obtained via sewing. We let Σ be the set nodes, i.e.,
the set of all x P C such that Cπpxq is nodal and x is a node of the nodal curve Cπpxq.
Equivalently, Σ is the set of all x P C such that dπ is not surjective at x. We define

∆ “ πpΣq, C∆ “ π´1
p∆q.

Then C∆ is the union of all singular fibers. ∆ and C∆ will be considered later as
(normal crossing) divisors.

Theorem 1.6.2. Grauert’s Theorem 1.3.1 holds verbatim for a family of complex curves
π : C Ñ B.

As mentioned in the paragraphs after Theorem 1.3.1, Grauert’s theorem holds
in general when C and B are complex spaces, E is a coherent OC-module, π is
proper, and E is π-flat. To apply that theorem to the family of complex curves
π : C Ñ B and a locally free OC-module E , we need to check that π is proper
and E is π-flat. One can check the properness of π by checking, for example, the
sequential compactness of the preimages of compact subsets. Also, one checks
easily that π is an open map. Thus OC is π-flat by [Fis76, Sec. 3.20] (see also
[GPR94, Thm. II.2.13] and [BS76, Thm. V.2.13]). (One simply says that π is flat.)
Since E is locally free, E is π-flat.

Remark 1.6.3. Apply Grauert’s theorem to OC , we see that b ÞÑ χpCb,OCbq is con-
stant on each connected component of B. If we assume that all the fibers of C
are connected, then the genus of the fiber gpCbq “ 1 ´ χpC,OCbq is locally con-
stant over b. We conclude that the genus of a complex curve is unchanged under
deformation. Consequently, the genus of a nodal curve equals the genus of its
“smoothing”.

Consider a family π : C Ñ B of complex curves. Let ς1, . . . , ςN : B Ñ C be (holo-
morphic) sections whose images are mutually disjoint and are also disjoint from
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Σ. For each b P B, we assume that pCb; ς1pbq, . . . , ςNpbqq is an N -pointed complex
curve. Thus every connected component of rCb (the normalization of Cb) contains
one of ς1pbq, . . . , ςNpbq. Equivalently, every irreducible component of Cb contains
one of ς1pbq, . . . , ςNpbq. Notice that ς1pbq, . . . , ςNpbq are not nodes since they are not
in Σ. Then we say that pπ : C Ñ B; ς1, . . . , ςNq is a family of N -pointed complex
curves. Assume moreover that for each 1 ď j ď N , the family π : C Ñ B has a lo-
cal coordinate ηj at ςj . This means that ςjpBq is contained in an open set Uj Ă C´Σ
such that ηj : Uj Ñ C is holomorphic and equals 0 on ηjpBq, and that ηj|UjXCb is a
univalent function for each b P B. So pηj, πq is a biholomorphic map from Uj to an
open subset of C ˆ B containing t0u ˆ B. Then we say that

X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq

is a family of N -pointed complex curves with local coordinates. As usual, we
define a divisor

SX “

N
ÿ

j“1

ςjpBq.

Note that even if π : C Ñ B is obtained by sewing a smooth family rπ : rC Ñ rB, the
N -points and their local coordinates are not assumed to be constant with respect
to sewing.

Proposition 1.6.4. Proposition 1.3.2 holds verbatim if X is a family of N -pointed com-
plex curves.

Proof. The proof is the same as in Proposition 1.3.2.

The invertible sheaves ΘC{B and ωC{B

Given a family of complex curves π : C Ñ B, we can define a homomorphism
of OC-modules dπ : ΘC Ñ π˚ΘB in a similar way as for families of compact Rie-
mann surfaces. However, this map is no necessarily a surjective sheaf map, which
means that we do not have a long exact sequence from this map. To remedy this
issue we consider dπ : ΘCp´ log C∆q Ñ π˚

`

ΘBp´ log∆q
˘

defined as follows. (We
shall write π˚

`

ΘBp´ log∆q
˘

as π˚ΘBp´ log∆q for short.)
Let us first describe ΘBp´ log∆q. Choose any b P B. Then one can always find

a neighborhood V of b such that

V » Dr‚ρ‚
ˆ rB “ Dr1ρ1 ˆ ¨ ¨ ¨ ˆ DrMρM ˆ rB

where rB is an open subset of Cn, and

∆ X V “ tq‚,0 P Dr‚ρ‚
: q1,0 ¨ ¨ ¨ qM,0 “ 0u ˆ rB.
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Let q1, . . . , qM be the standard coordinates of Dr1ρ1 , . . . ,DrMρM . Let also τ‚ “

pτ1, ¨ ¨ ¨ , τnq be the standard coordinate of rB inside Cn. Then ΘBp´ log∆qV is de-
fined to be the OV -submodule of ΘV “ ΘB|V generated (freely) by

q1Bq1 , . . . , qMBqM , Bτ1 , . . . Bτn . (1.6.17)

By gluing, we obtain a locally free OB-module ΘBp´ log∆q.
Next, we describe ΘCp´ log C∆q and the map dπ : ΘCp´ log C∆q Ñ

π˚ΘBp´ log∆q. Choose any x P C.
Case I. x R Σ. Then one can find a neighborhood U of x disjoint from Σ, and a

neighborhood V of b “ πpxq described as above, such that

U » Dr0 ˆ V “ Dr0 ˆ Dr‚ρ‚
ˆ rB,

and that π : Dr0 ˆ V Ñ V is the projection on to the V -component. Let z be the
standard coordinates of Dr0 . Notice that

C∆ X U “ Dr0 ˆ tq‚,0 P Dr‚ρ‚
: q1,0 ¨ ¨ ¨ qM,0 “ 0u ˆ rB,

which suggests that we define ΘCp´ log C∆qU to be the OU -submodule of ΘU “

ΘC|U generated (freely) by

Bz, q1Bq1 , . . . , qMBqM , Bτ1 , . . . , Bτn . (1.6.18)

The homomorphism

dπ : ΘCp´ log C∆qU Ñ
`

π˚ΘBp´ log∆q
˘

U
(1.6.19)

is defined by sending Bz to 0 and keeping all the other elements in (1.6.18). (Here
we do not differentiate between Bq‚

, Bτ‚
and their pull backs.) It is clear that dπ

is surjective. We leave it to the reader to check that the above definitions are
independent of the choice of local coordinates.

Case II. x P Σ. Then one can find neighborhoods U of x and V of b “ πpxq

described as above, such that

U » Dr1 ˆ Dρ1 ˆ Dr‚ρ‚z1 ˆ rB,
π “ πr1,ρ1 b 1 b 1 : Dr1 ˆ Dρ1 ˆ Dr‚ρ‚z1 ˆ rB Ñ Dr‚ρ‚

ˆ rB “ V.

From this we deduce that

C∆ X U

“tpξ1,0, ϖ1,0, q2,0, . . . , qM,0q P Dr1 ˆ Dρ1 ˆ Dr‚ρ‚z1 : ξ1,0 ¨ ϖ1,0 ¨ q2,0 ¨ ¨ ¨ qM,0 “ 0u ˆ rB.

Let ξ1, ϖ1 be respectively the standard coordinates of Dr1 ,Dρ1 . Again q‚ and τ‚

are respectively the standard coordinates of Dr‚ρ‚
and rB. Note also the relation
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q1 “ ξ1ϖ1. The description of C∆ X U suggests that we define ΘCp´ log C∆qU to be
the OU -submodule of ΘU “ ΘC|U generated (freely) by

ξ1Bξ1 , ϖ1Bϖ1 , q2Bq2 , . . . , qMBqM , Bτ1 , . . . , Bτn . (1.6.20)

The homomorphism dπ of (1.6.19) is defined by setting

dπpξ1Bξ1q “ dπpϖ1Bϖ1q “ q1Bq1 (1.6.21)

and keeping all the other elements in (1.6.20). Again dπ is surjective and indepen-
dent of the choice of local coordinates. Also, using (1.6.2), it is easy to see that the
dπ constructed in case I and II are compatible.

We may now glue the two cases together and obtain the locally free OC-module
ΘCp´ log C∆q and a surjective homomorphism of OC-modules dπ : ΘCp´ log C∆q Ñ

π˚ΘBp´ log∆q, whose kernel is denoted by ΘC{B. Thus, there is a short exact se-
quence

0 Ñ ΘC{B Ñ ΘCp´ log C∆q
dπ
ÝÑ π˚ΘBp´ log∆q Ñ 0 (1.6.22)

Choose any x P C and a small neighborhood U of ΘC{B. Then in case I resp. in case
II ΘC{B|U is generated freely by

Bz resp. ξ1Bξ1 ´ ϖ1Bϖ1 . (1.6.23)

Therefore, ΘC{B is an invertible OC-module, whose dual sheaf is denoted by ωC{B.
We leave it to the reader to check that there are natural equivalences

ΘC{B|Cb » ΘCb , ωC{B|Cb » ωCb

for any b P B. One may use the following fact: in case II, by (1.6.2), in the
pξ1, q‚, τ‚q- resp. pϖ1, q‚, τ‚q-coordinate, the section ξ1Bξ1 ´ ϖ1Bϖ1 equals

ξ1Bξ1 resp. ´ ϖ1Bϖ1 . (1.6.24)

We close this section with the following generalization of Theorem 1.3.3.

Theorem 1.6.5. Let X “ pπ : C Ñ B; ς1, . . . , ςNq be a family of N -pointed complex
curves. Let n P N. Then there exists k0 P N such that for any k ě k0, the OB-module
π˚Θ

bn
C{BpkSXq is locally free, and for any b P B there is a natural isomorphism of vector

spaces

π˚Θ
bn
C{BpkSXqb

mb ¨ π˚Θ
bn
C{BpkSXqb

» H0
`

Cb,Θbn
Cb pkSXpbqq

˘

(1.6.25)

defined by restriction of sections. In particular, dimH0
`

Cb,Θbn
Cb pkSXpbqq

˘

is locally con-
stant over b.

Proof. This follows easily from theorems 1.5.1 and 1.5.7, and Grauert’s Theorem
1.6.2.
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1.7 Linear differential equations with simple poles

We first introduce the following notations. If W is a vector space and z is a
(formal) variable, we define

W rrzss “

"

ÿ

nPN

wnz
n : each wn P W

*

,

W rrz˘1
ss “

"

ÿ

nPZ

wnz
n : each wn P W

*

,

W ppzqq “

!

fpzq : zkfpzq P W rrzss for some k P Z
)

,

W tzu “

!

ÿ

nPC

wnz
n : each wn P W

)

.

In this section, we fix m,N P N, r ą 0, and let V be an open subset of Cm. Let
q be the standard coordinate of Dr Ă C, and let τ‚ “ pτ1, . . . , τmq be the standard
coordinates of V . A is an EndpCNq-valued holomorphic function on Dr ˆ V , i.e.

A P EndpCN
q bC OpDr ˆ V q.

First, recall the following well-known fact.

Theorem 1.7.1. For any φ P CN bC OpV q, there exists a unique ψ P CN bC OpDr ˆV q

satisfying the differential equation Bqψpq, τ‚q “ Apq, τ‚qψpq, τ‚q and the initial condition
ψp0, τ‚q “ φpτ‚q.

Proof. This is an easy consequence of Picard iteration. We provide the details for
the readers’ convenience. It suffices to prove the existence and the uniqueness of
such ψ on any precompact open subset of Dr ˆV . Thus, we may well assume that
∥Apq, τ‚q∥ (where ∥¨∥ is the operator norm) is uniformly bounded by a positive
(finite) number C, and ∥φpτ‚q∥ is also uniformly bounded. Fix any δ P p0, 1q.
We claim that for any q0 P Dr, if we let Dδ{Cpq0q be the open disc with center q0
and radius δ{C and set W pq0q “ Dδ{Cpq0q X Dr, then for any uniformly bounded
φ P CN bCOpV q, there exists a unique ψ P CN bCOpW pq0qˆV q satisfying Bqψ “ Aψ
and ψpq0, τ‚q “ φpτ‚q. Then the theorem is proved by covering Dr by finitely many
open discs with radius δ{C.

Fix q0 P Dr and a uniformly bounded φ P CN bC OpV q. Let H be the Banach
space of uniformly bounded elements of CN bC OpW pq0q ˆ V q, whose norm is
given by ∥¨∥8. Define a map T : H Ñ H such that for any ψ P H,

Tψpq, τ‚q “ φpτ‚q `

ż

γq

Apz, τ‚qψpz, τ‚qdz.

where γq is any path in W pq0q from q0 to q. Then ψ is a solution satisfying
ψpq0, τ‚q “ φpτ‚q if and only if Tψ “ ψ. It is easy to see that ∥T pψ1 ´ ψ2q∥ď
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δ∥ψ1 ´ ψ2∥. So T is a contraction, which proves the existence and the uniqueness
of the fixed point of T .

The above theorem clearly holds also when Dr is replaced by a simply con-
nected domain.

Consider the following differential equation with simple pole

qBqψ “ Aψ (1.7.1)

where ψ P CN bC OpV qppqqq is a formal solution of this equation. By our assump-
tion on ψ, we can write

ψpq, τ‚q “
ÿ

nPZ

pψnpτ‚qqn, (1.7.2)

where pψn P CN bC OpV q, and pψn “ 0 when n smaller than some negative integer.

Theorem 1.7.2. Suppose that the formal series ψ is a formal solution of (1.7.1). Then ψ
is an element of CN bC OpDˆ

r ˆ V q.

Proof. Suppose the mode pψn is zero when n ă ´K. Then ϕ :“ qKψ has no negative
modes and satisfies a similar differential equation qBqϕ “ pK`Aqϕ. Thus, we may
well assume that pψn “ 0 when n ă 0. Consider the series expansion of A:

Apq, τ‚q “
ÿ

nPN

pAnpτ‚qqn,

where each pAn is in EndpCNq bC OpV q. Then for each n P N,

n pψn “

n
ÿ

j“0

pAn´j
pψj.

Choose any open subset U of V with compact closure, and choose M P N such
that ∥ pA0pτ‚q∥ď M whenever τ‚ P U . (Here ∥¨∥ is the operator norm.) Then for
any n ą M , n1 ´ pA0pτ‚q is invertible (with inverse n´1

ř8

j“0p
pA0pτ‚q{nqj). Thus,

whenever n ą M ,

pψn “ pn ´ pA0q
´1

n´1
ÿ

j“0

pAn´j
pψj. (1.7.3)

Choose any r1 ă r and set

α “ sup
pq,τ‚qPDr1ˆU

∥Apq, τ‚q∥. (1.7.4)
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Using the fact that pAnpτ‚q “
ű

BDr1
Apq, τ‚qq´n´1 dq

2iπ
, we have

∥ pAnpτ‚q∥ď αr´n
1 (1.7.5)

for all n and all τ‚ in U .
Choose β ą 0 such that ∥pn ´ pA0pτ‚qq´1∥ď βn´1 for any n ą M and τ‚ P U .

(Such β can be found using the explicit formula of inverse matrix given above.)
Set γ ě maxt1, αβu. Then, from (1.7.3) and (1.7.5), we see that for any n ą M and
τ‚ P U ,

rn1∥ pψnpτ‚q∥ď γn´1
n´1
ÿ

j“0

rj1∥ pψjpτ‚q∥. (1.7.6)

By induction, one can show that there exists c ą 0 such that

rn1∥ pψnpτ‚q∥ď cγn

for any n P N and τ‚ P U . Indeed, if this is true for 0, 1, 2, . . . , n ´ 1 where n ą N ,
then by (1.7.6),

rn1∥ pψnpτ‚q∥ď γn´1
n´1
ÿ

j“0

cγj ď γn´1
n´1
ÿ

j“0

cγn´1
“ cγn.

Thus ∥ pψnpτ‚q∥ď cγnr´n
1 for all n and τ‚ P U . Therefore, if we choose any r0 P

p0, γ´1r1q, then the series
ř

n∥ pψnpτ‚q∥¨|q|n is uniformly bounded by some positive
number for all |q| ď r0 and τ‚ P U . Since each pψnpτ‚q is holomorphic over τ‚, the
series (1.7.2) must converge uniformly to a holomorphic function on Dr0 ˆ U .

By Theorem 1.7.1, for any simply connected open subset W Ă Dˆ
r which over-

laps with Dr0 , there exists a unique holomorphic solution of (1.7.1) on W ˆ U
which agrees with ψ on pW XDr0q ˆU . Thus, ψ can be extended to a holomorphic
CN -valued function on Dr ˆU . Since U is an arbitrary precompact open subset of
V , ψ is holomorphic on Dr ˆ V .

Remark 1.7.3. The proof of the above proposition shows that if M P N and
∥ pA0pτ‚q∥ď M whenever τ‚ P V , then ψ is holomorphic on Dˆ

r ˆ V provided that
the first pM ` 1q non-zero modes of ψ are holomorphic on τ‚ P V .

1.8 Criteria on local freeness

Let X be a complex manifold and E be an OX-module. We say that E is a
finite-type OX-module if any x P X is contained in an open subset U such that
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EU is generated by some s1, . . . , sn P E pUq. Note that this does not mean that the
OpUq-module E pUq is generated by s1, . . . , sn.

Recall that for each open subset U of X , and for each x P U and s P E pUq,
spxq denotes the value of s in E |x » Ex{mxEx. It is clear that if s1, . . . , sn P E pUq

generate EU , then s1pxq, . . . , snpxq span the vector space E |x. Conversely, we have:

Proposition 1.8.1 (Nakayama’s lemma). Suppose that E is a finite-type OX-module,
x P X , U is an open set containing x, s1, . . . , sn P E pUq, and s1pxq, . . . , snpxq span
the vector space E |x. Then there exists an open subset V of U containing x such that
s1|V , . . . , sn|V generate EV .

Consequently, the rank function of a finite-type OX-module is upper semi-
continuous.

Proof. Since E is finite-type, we may assume that U is small enough such that
EU is generated by σ1, . . . , σm P E pUq. Thus the germs σ1,x, . . . , σm,x generate the
OX,x-module Ex. In particular, σ1,x, σ2,x . . . , σm,x, s1,x, . . . , sn,x generate Ex. We now
show that σ2,x, σ3,x . . . , σm,x, s1,x, . . . , sn,x generate Ex. Since s1pxq, . . . , snpxq span
Ex{mxEx, there exist complex numbers c1, . . . , cn such that σ1,x P

řn
k“1 cksk,x`mxEx.

Therefore, there exists f1, . . . , fm, g1, . . . , gn P mx such that

σ1,x “

n
ÿ

k“1

cksk,x `

m
ÿ

i“1

fiσi,x `

n
ÿ

j“1

gjsj,x.

Since f1pxq “ 0, the element 1 ´ f1 has inverse in OX,x. For each j “ 1, . . . , n, set
rgj “ cj ` gj which is an element in OX,x. Then we clearly have

σ1,x “ p1 ´ f1q
´1

ˆ m
ÿ

i“2

fiσi,x `

n
ÿ

j“1

rgjsj,x

˙

.

This shows that σ2,x, σ3,x . . . , σm,x, s1,x, . . . , sn,x generate Ex. A similar argument
shows that σ3,x, σ4,x . . . , σm,x, s1,x, . . . , sn,x generate Ex. If we repeat this argument
several times, we arrive at the conclusion that s1,x, . . . , sn,x generate Ex. Thus,
there exists an open subset V of U containing x such that for each i “ 1, . . .m,
there exist hi,1, . . . , hi,n P OpV q satisfying σi|V “

řn
j“1 hi,jsj|V . Therefore, as

σ1|V , . . . , σm|V generate EV , so do s1|V , . . . , sn|V .

Theorem 1.8.2. Suppose that E is finite-type. Then E is locally free if and only if the
rank function x P X ÞÑ rx “ dimCpE |xq is locally constant.

Proof. The only if part is obvious. Let us prove the if part. Suppose that the rank
function is locally constant. Choose any x P X and let r “ rx. There exists a
neighborhood U of x and s1, . . . , sn P E pUq generating EU . We may also assume
that U is small enough such that for any y P U , ry “ r. Since s1pxq, . . . , snpxq
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span E |x, we must have n ě r. By rearranging s1, . . . , sn, we may assume that
s1pxq, . . . , srpxq form a basis of the vector space Ex. Thus, by Nakayama’s lemma,
there exists a neighborhood V of x contained in U such that s1|V , . . . , sr|V generate
E |V . We prove that E |V is a free OV -module with basis s1|V , . . . , sr|V . Choose
any open subset W Ă V . We need to show that s1|W , . . . , sr|W are OpW q-linear
independent. Suppose that f1, . . . , fr P OpW q and f1s1|W ` ¨ ¨ ¨ ` frsr|W “ 0.
Then for any y P W , f1pyqs1pyq ` ¨ ¨ ¨ ` frpyqsrpyq “ 0. Clearly s1pyq, . . . , srpyq

span E |y. Since E |y has dimension r, s1pyq, . . . , srpyq are linearly independent.
So f1pyq “ ¨ ¨ ¨ “ frpyq “ 0. Since this is true for any y P W , we conclude that
f1 “ ¨ ¨ ¨ “ fr “ 0.

Definition 1.8.3. A connection ∇ on E associates to each open subset U Ă X a
bilinear map

∇ : ΘXpUq ˆ E pUq Ñ E pUq, px, sq ÞÑ ∇xs

satisfying the following conditions.

(a) If V is an open subset of U , then ∇x|V s|V “ p∇xsq|V .

(b) If f P OpUq, then

∇fxs “ f∇xs,

∇xpfsq “ xpfqs ` f∇xs.

Lemma 1.8.4. Let E be a finite-type OX-module equipped with a connection ∇. Let
x P X and U Ă X a connected neighborhood of x. Choose s1, . . . , sn P E pUq and
assume that s1pxq, . . . , snpxq form a basis of the fiber E |x. Then s1, . . . , sn are OpUq-
linear independent elements of E pUq, i.e., if f1, . . . , fn P OpUq satisfy f1s1`¨ ¨ ¨`fnsn “

0, then f1 “ ¨ ¨ ¨ “ fn “ 0.

Proof. AssumeU is open in Cm and x “ 0 P Cm. Since f1p0qs1p0q`¨ ¨ ¨`fnp0qsnp0q “

0 and s1p0q, . . . , snp0q form a basis of E |0, we obtain f1p0q “ ¨ ¨ ¨ “ fnp0q “ 0.
Apply ∇B1 to

ř

j fjsj “ 0 and take value at 0, we get
ř

j B1fjp0qsjp0q `
ř

j fjp0qp∇B1sjqp0q “ 0, which shows B1fjp0q “ 0 for all j. Similarly, apply
∇B1 , . . . ,∇Bm successively to

ř

j fjsj “ 0 and take values at 0. Then an induc-
tion on |k‚| “ k1 ¨ ¨ ¨ ` km shows that B

k1
1 ¨ ¨ ¨ Bkm

m fjp0q “ 0 for all 1 ď j ď n and
k1, . . . , kn P N. This proves f1 “ ¨ ¨ ¨ “ fn “ 0 on U because U is connected.

Theorem 1.8.5. Let E be an OX-module equipped with a connection ∇. Assume that
each x P X is contained in a neighborhood U such that the following conditions hold.
Then E is locally free.

(a) E |U is equivalent to the cokernel of a homomorphism of (possibly infinite rank) free
OU -modules, i.e., there exist cardinalities I, J and a homomorphism of OU -modules
φ : OI

U Ñ OJ
U such that E |U » cokerpφq.
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(b) Write F “ OI
U and G “ OJ

U . Then G pUq{φpF qpUq is a finitely generated OpUq-
module.

Note that φpF q is the image sheaf of φ, which is defined by sheafifying the
collection tφpF pV qqu over all open subsets V Ă U . (So φpF pV qq is only a subset
of φpF qpV q.) G pUq{φpF qpUq is naturally an OpUq-submodule of cokerpφqpUq.

Also, if s1, . . . sn are generating elements of G pUq{φpF qpUq, then for any open
subset V Ă U , s1|V , . . . , sn|V generate G pV q{φpF qpV q. This is due to the obvious
fact that sections of G pUq, when restricted to V , generate the OpV q-module G pV q.
We will use this property in the following proof.

Proof. Since (the stalks of) cokerpφq are generated by elements of G pUq, it is clear
that E is finite-type. Choose any x P X . We shall show that the rank function
y P X ÞÑ ry “ dimpE |yq is constant in a neighborhood U of x. Then E |U is locally
free by Theorem 1.8.2, which will finish the proof.

Choose a connected U as in the assumption of this theorem, and identify
E |U with the cokernel of φ. We may assume that U is small enough such that
there exist σ1, . . . , σr P E pUq such that σ1pxq, . . . , σrpxq form a basis of the fiber
E |x. We may shrink U such that one can find pσ1, . . . , pσr P G pUq whose corre-
sponding equivalence classes in G pUq{φpF qpUq (and hence in E pUq) are σ1, . . . , σr.
Thus σ1, . . . , σn are in G pUq{φpF qpUq. Suppose that s1, . . . , sn are generating el-
ements of G pUq{φpF qpUq. By Proposition 1.8.1 (Nakayama’s lemma), we may
shrink U so that s1, . . . , sn are OpUq-linear combinations of σ1, . . . , σr. Therefore,
the OpUq-module G pUq{φpF qpUq is generated by σ1, . . . , σr, i.e., each element of
G pUq{φpF qpUq is an OpUq-linear combination of σ1, . . . , σr.

Since σ1, . . . , σr generate E |U , for each y P U , we know that σ1pyq, . . . , σrpyq

span E |y. If we can show that σ1pyq, . . . , σrpyq are linearly independent, then they
form a basis of E |y, which implies that ry “ r “ rx. This will finish the proof.
Choose any c1, . . . , cr P C satisfying c1σ1pyq ` ¨ ¨ ¨ ` crσrpyq “ 0. Then the germ
of c1σ1 ` ¨ ¨ ¨ ` crσr at y belongs to myEy. Thus, the germ of c1pσ1 ` ¨ ¨ ¨ ` crpσr at
y belongs to myGy ` φpF qy. (Note that φ : F Ñ G descends to Fy Ñ Gy and
furthermore to F |y Ñ G |y; see (1.1.1) and (1.1.3).) This means precisely that
c1pσ1pyq ` ¨ ¨ ¨ ` crpσrpyq P φpFyq{myGy “ φpF |yq.

It is clear that each fiber of F “ OI
U is spanned by the values of all global

sections. Thus, we can choose pt P F pUq satisfying c1pσ1pyq`¨ ¨ ¨`crpσrpyq “ φpptpyqq.
Set pu “ c1pσ1`¨ ¨ ¨`crpσr´φpptq. Then pupyq “ 0. Regard pu as a CJ -valued holomorphic
function, and notice that its value at y is 0. If we let tpeju|jPJ be the standard
basis of CJ , regarded as constant sections of OJ

UpUq, then there exist a finite subset
tpej1 , . . . , pejmu of tpeju|jPJ and f1, . . . , fm P OpUq satisfying pu “ f1pej1 ` ¨ ¨ ¨ ` fmpejm ,
and that f1pyq “ ¨ ¨ ¨ “ fmpyq “ 0. Let ej1 , ¨ ¨ ¨ , ejm P E pUq be the corresponding
equivalence classes, which are clearly in G pUq{φpF qpUq. Then c1σ1 ` ¨ ¨ ¨ ` crσr “

f1ej1 `¨ ¨ ¨`fmejm . Since ej1 , . . . , ejm are OpUq-linear combinations of σ1, . . . , σr, one
can find g1, . . . , gr P OpUq whose values at y are all 0, such that c1σ1 ` ¨ ¨ ¨ ` crσr “
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g1σ1 ` ¨ ¨ ¨ ` grσr. Let h1 “ c1 ´ g1, . . . , hr “ cr ´ gr. Then h1pyq “ c1, . . . , hrpyq “ cr,
and h1σ1 ` ¨ ¨ ¨ ` hrσr “ 0. By Lemma 1.8.4, we have h1 “ ¨ ¨ ¨ “ hr “ 0. Thus
c1 “ ¨ ¨ ¨ “ cr “ 0.

Corollary 1.8.6. If E is a coherent OX-module equipped with a connection ∇, then E is
locally free.
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Chapter 2

Sheaves of VOAs

2.1 Vertex operator algebras

Let V be a complex vector space with grading V “
À

nPNVpnq satisfying
dimVpnq ă 8 for each n and dimVp0q “ 1 (the CFT type condition)1. We as-
sume that there is a linear map

V Ñ pEnd pVqqrrz˘1
ss

u ÞÑ Y pu, zq “
ÿ

nPZ

Y puqnz
´n´1 (2.1.1)

where each Y puqn P EndpVq is called a mode of the operator Y pu, zq. Note that we
have for any u P V, n P Z that

Resz“0Y pu, zq ¨ zndz “ Y puqn. (2.1.2)

Definition 2.1.1. We say that pV, Y q (or V for short) is a (positive energy) vertex
operator algebra (VOA), if for any u P V the following conditions are satisfied.

(a) (Lower truncation) For any v P V,

Y pu, zqv P Vppzqq.

(b) (Jacobi identity) For any u, v P V and m,n, h P Z, we have

ÿ

lPN

ˆ

m

l

˙

Y pY puqn`l ¨ vqm`h´l

“
ÿ

lPN

p´1q
l

ˆ

n

l

˙

Y puqm`n´lY pvqh`l ´
ÿ

lPN

p´1q
l`n

ˆ

n

l

˙

Y pvqn`h´lY puqm`l. (2.1.3)

1The only reason we assume dimVp0q “ 1 is to apply Buhl’s result in [Buhl02]; see Theorem
3.7.1.
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(c) There exists a vector 1 P Vp0q (the vacuum vector) such that Y p1, zq “ 1V.
(d) (Creation property) For any v P V, we have

Y pv, zq1 ´ v P zVrrzss.

This is equivalent to that Y pvq´11 “ v and Y pvqn1 “ 0 for any n P N.
(e) There exists a vector c P V (the conformal vector) such that the operators

Ln :“ Y pcqn`1 (n P Z) satisfy the Virasoro relation:

rLm, Lns “ pm ´ nqLm`n `
1

12
pm3

´ mqδm,´nc. (2.1.4)

Here the number c P C is called the central charge of V .
(f) If v P Vpnq then L0v “ nv. n is called the conformal weight (or the energy)

of v and will be denoted by wtpvq. L0 is called the energy operator. We say that a
vector v P V is homogeneous if v P Vpnq for some n P Z.

(g) (L´1-derivative) d
dz
Y pv, zq “ Y pL´1v, zq for any v P V.

Note that from the creation property, we have c “ Y pcq´11 “ L´21. Since
L01 “ 0, by the Virasoro relation, we have L0c “ L0L´21 “ L´2L01` 2L´21 “ 2c.
We conclude

c P Vp2q.

We explain the meaning of Jacobi identity. Let V1 “
À

nPZVpnq˚ where each
Vpnq˚ is the dual vector space of Vpnq. Then V1 is a subspace of the dual space
V˚ of V. A vector w1 P V˚ is inside V1 if and only if there exits N P N such that
xu,w1y “ 0 whenever u P Vpnq and n ą N . For each v P V and n P Z, the transpose
Y pvqtn of Y pvqn is a linear map on V˚. We then define

Y pv, zq
t

“
ÿ

nPZ

Y pvq
t
nz

´n´1 EndpV˚
qrrzss

to be the transpose of Y pv, zq. Then Y pv, zqtdz “ ´
ř

mPZ Y pvqtmpz´1qm´1dpz´1q,
which shows that for each n P Z,

Resz´1“0Y pv, zq
t

¨ zndz “ ´Y pvq
t
n. (2.1.5)

We assume that the lower truncation property is satisfied, and that for any v, w P

V, w1 P V1,

Y pv, zq
tw1

P V1
ppz´1

qq. (2.1.6)

Then we have

xY pv, zqw,w1
y P Crz, z´1

s,
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namely, z ÞÑ xY pv, zqw,w1y is a meromorphic function on P1 with poles possibly
at 0,8, namely, it is an element of H0pP1,OP1p‚p0 ` 8qqq. We will see that if V is a
VOA then these conditions hold automatically. Let Cˆ “ C´t0u. For each z P Cˆ,
xY pv, zqw,w1y is a complex number. Choose any u P V, and let ζ be also a standard
coordinate of C. Then ζ ´ z (where z is a fixed complex number) is the standard
coordinate of a neighborhood of z. By lower truncation property and condition
(2.1.6), we have

xY pv, zqY pu, ζqw,w1
y P Cppζqq, (2.1.7)

xY pY pu, ζ ´ zqv, zqw,w1
y P Cppζ ´ zqq, (2.1.8)

xY pu, ζqY pv, zqw,w1
y P Cppζ´1

qq. (2.1.9)

Theorem 2.1.2. Let pV, Y q satisfy the lower truncation property, and assume that for any
v, w P V, w1 P V1, condition (2.1.6) holds. Then the Jacobi identity is equivalent to the
requirement that for any u, v, w P V, w1 P V1, z P Cˆ, there exists f P H0pP1,OP1p‚p0 `

z ` 8qqq whose Laurent series expansions near 0, z,8 are (2.1.7), (2.1.8), and (2.1.9)
respectively.

Proof. We apply the strong residue Theorem 1.4.1 to the single 3-pointed Riemann
sphere pP1; 0, z,8q and the sheaf OP1 . Then such f exists if and only if for any
λ P H0pP1, ωP1p‚p0 ` z ` 8qqq,

Resζ´z“0fzλ “ ´Resζ´1“0f8λ ´ Resζ“0f0λ, (2.1.10)

where f0, fz, f8 are defined by (2.1.7), (2.1.8), and (2.1.9) respectively. It is easy to
see that H0pP1, ωP1p‚p0 ` z ` 8qqq is spanned by ζmpζ ´ zqndζ (where m,n P Z).
Thus, f exists if and only if (2.1.10) holds whenever λ “ ζmpζ ´ zqndζ . Assuming
λ is defined like this. Then, using (2.1.2), we compute

Resζ´z“0fzλ “ Resζ´z“0xY pY pu, ζ ´ zqv, zqw,w1
yζmpζ ´ zq

ndpζ ´ zq

“
ÿ

lPN

ˆ

m

l

˙

Resζ´z“0xY pY pu, ζ ´ zqv, zqw,w1
ypζ ´ zq

n`lzm´ldpζ ´ zq

“
ÿ

lPN

ˆ

m

l

˙

xY pY puqn`lv, zqw,w1
yzm´l.

Similar computations using (2.1.2) and (2.1.5) give the explicit expression of the
two terms on the right hand side of (2.1.10), which show that (2.1.10) is equivalent
to

ÿ

lPN

ˆ

m

l

˙

xY pY puqn`lv, zqw,w1
yzm´l

“
ÿ

lPN

ˆ

n

l

˙

p´1q
l
xY puqm`n´lY pv, zqw,w1

yzl
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´
ÿ

lPN

ˆ

n

l

˙

p´1q
n´l

xY pv, zqY puqm`lw,w
1
yzn´l. (2.1.11)

Note that by lower truncation property and condition (2.1.6), the three terms in
the above equation are all finite sums. We conclude that the requirement in this
theorem holds if and only if for any u, v, w P V and m,n P Z, (2.1.11) holds where
z is considered as a variable. This means that we are now considering (2.1.11) as
an equation of elements in Crrz˘1ss. For each h P Z, apply Resz“0p¨qzhdz to both
sides of (2.1.11), we get precisely (2.1.3) evaluated between w and w1. Since w,w1

are arbitrary, we see that our requirement is equivalent to the Jacobi identity.

From now on, we shall always assume that V is a VOA (of CFT type). From
the Jacobi identity and the L´1-derivative, one has for each n that

rL0, Y pvqns “ Y pL0vqn ´ pn ` 1qY pvqn,

This shows that if v, w P V are homogeneous, then Y pvqnw is also homogeneous
with conformal weight wtpvq ` wtpwq ´ pn ` 1q. Thus condition (2.1.6) follows
easily. Note also that rL0, Lns “ ´nLn implies for any n P Z, s P C that

LnVpsq “ Vps ´ nq. (2.1.12)

In particular, when n P Z`, we have Ln1 “ 0 since it is inside the trivial subspace
Vp´nq.

Remark 2.1.3. When n ą 2, we have Lnc “ 0 since Vp2 ´ nq is trivial. Using the
fact that c “ L´21, that Ln1 “ 0 when n ě 0, and the Virasoro relation (2.1.4), we
compute L1c “ L1L´21 “ rL1, L´2s1 “ 3L´11 “ 0 since Y pL´11, zq “ BzY p1, zq “

Bz1 “ 0. Also, L2c “ L2L´21 “ rL2, L´2s1 “ 4L01` c
2
1 “ c

2
1 where c is the central

charge. We conclude

L0c “ 2c L1c “ 0, L2c “
c

2
1.

2.2 VOA modules

Let W be a vector space equipped with a linear map

V Ñ pEnd Wqrrz˘1
ss

u ÞÑ YWpu, zq “
ÿ

nPZ

YWpuqnz
´n´1. (2.2.1)

Definition 2.2.1. We say that pW, YWq (or W for short) is a weak V-module if the
lower truncation property holds, i.e., for any u P V, w P W, YWpu, zqw P Wppzqq,
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if YWp1, zq “ 1W, and if for any m,n, h P Z and u, v P V, the Jacobi identity (2.1.3)
holds with Y replaced by YW, i.e.,

ÿ

lPN

ˆ

m

l

˙

YWpY puqn`l ¨ vqm`h´l

“
ÿ

lPN

p´1q
l

ˆ

n

l

˙

YWpuqm`n´lYWpvqh`l ´
ÿ

lPN

p´1q
l`n

ˆ

n

l

˙

YWpvqn`h´lYWpuqm`l. (2.2.2)

Homomorphism and endomorphisms of weak V-modules are the linear maps
commuting with the actions of vertex operators.

Set n “ 0 in (2.2.2), we obtain the commutator formula

rYWpuqm, YWpvqhs “
ÿ

lPN

ˆ

m

l

˙

YWpY puql ¨ vqm`h´l. (2.2.3)

If W1,W2 are weak V-modules, we set HomVpW1,W2q to be the space of homo-
morphisms from W1 to W2. We set EndVpWq “ HomVpW,Wq.

For a weak V-module W, we set Ln “ YWpcqn`1. Then the Virasoro relation
(2.1.4) holds for the same central charge c. Moreover, the L´1-derivative property
holds:

d

dz
YWpv, zq “ YWpL´1v, zq (2.2.4)

for any v P V. We refer the reader to [DLM97] for the proof. The L´1-derivative
property and the Jacobi identity implies

rL0, YWpvqns “ YWpL0vqn ´ pn ` 1qYWpvqn, (2.2.5)

for any v P V and n P Z.

Definition 2.2.2. A weak V-module W is called an admissible V-module if there
exists A P EndVpWq such that rL0 :“ L0 ` A is diagonal (on W), and that the
eigenvalues of rL0 are natural numbers. If, moreover, each eigenspace of rL0 is
finite-dimensional, we say that W is a finitely admissible V-module.

Remark 2.2.3. According to (2.2.5), that W is admissible is equivalent to that there
is a diagonalizable rL0 P EndpWq with spectrum in N satisfying rrL0, YWpvqns “

YWprL0vqn ´ pn`1qYWpvqn. Equivalently, W has grading W “
À

nPN Wpnq such that

YWpvqmWpnq Ă Wpn ` wtpvq ´ m ´ 1q (2.2.6)

for any m,n P N and homogeneous v P V. Indeed, Wpnq is the n-eigenspace of rL0.
Moreover, W is finitely admissible if and only if each Wpnq is finite dimensional.
We write Ăwtpwq “ n if w P Wpnq, equivalently, rL0w “ Ăwtpwqw. We say that w is
rL0-homogeneous (with weight n) if w is an eigenvector of rL0 (with eigenvalue n).
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Definition 2.2.4. We say that W is a (grading-restricted ordinary) V-module, if
W is a weak V-module, if there exists a finite subset E Ă C such that W has
grading W “

À

sPE`NWpsq, and if for each s P C we have dimWpsq ă `8 and
L0|Wpsq

“ s1Wpsq
. A vector w P W is called homogeneous if w P W psq for some

s P C. In this case, we write wtpwq “ s and call it the (conformal) weight of w.

Note that when v is homogeneous, (2.2.5) is equivalent to

YWpvqmWpsq Ă Wps`wtpvq´m´1q. (2.2.7)

Remark 2.2.5. If W is a V-module, then W is finitely admissible. Indeed, one suf-
fices to assume that any two elements in E do not differ by an integer. By (2.2.7),
for each α P E, Wα`N :“

À

sPα`N Wpsq is a weak V-submodule of W. Moreover,
W is the direct sum of all such Wα`N. One then defines rL0 whose action on each
Wα`N is L0 ´ α. This makes W finitely admissible.

Note that V itself is a V-module, called the vacuum V-module. For a V-module
W, we can give a similar interpretation of Jacobi identity as in Theorem 2.1.2. We
leave the details to the reader.

For a V-module W, consider the dual vector space W˚ and the graded dual
W1 :“

À

sPC W˚
psq

where each W˚
psq

is the dual vector space of Wpsq. Then W1 is
equipped with a natural V-module structure: the vertex operator YW1 is defined
such that for any v P V, w P W, w1 P W1,

xYW1pv, zqw1, wy “ xw1, YWpezL1p´z´2
q
L0v, z´1

qwy. (2.2.8)

Here, if v is homogeneous, then p´z´2qL0v is understood as p´z´2qwtpvqv. In gen-
eral, p´z´2qL0v is defined by linearity. We briefly write

YW1pv, zq “ YWpezL1p´z´2
q
L0v, z´1

q
t. (2.2.9)

The meaning of ezL1p´z´2qL0 will be explained in example 2.3.2. We call W1 the
contragredient module of W. We have W2 “ W. See [FHL93] chapter 5 for more
details. When v is homogeneous, it is easy to check that for any n P Z,

YW1pvqn “
ÿ

mPN

p´1qwtpvq

m!
YWpLm

1 vq
t
´n´m´2`2wtpvq. (2.2.10)

As a consequence, we have

Lt
n “ L´n. (2.2.11)

Let rL0 act on W1 as the transpose of rL0 ñ W, i.e., set for any w P W, w1 P W1 that

xrL0w,w
1
y “ xw, rL0w

1
y. (2.2.12)

Then rL0 makes W1 admissible. rL0 yields the grading W1 “
À

nPN Wpnq˚. Thus W1

is also finitely admissible under rL0.
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Convention 2.2.6. For a V-module W, we always assume rL0 is chosen such that
W is finitely admissible (see Remark 2.2.5). For its contragredient module W1,
we always assume that the actions of rL0 on W and on W1 satisfy (2.2.12). If W
is semi-simple, i.e., a finite direct some of irreducible V-modules, except when
W “ V, we assume each irreducible submodule M of W is rL0-invariant, and the
lowest eigenvalue of rL0|M (with non-trivial eigenspace) is 0. These assumptions
are compatible. For the vacuum module V, we set rL0 “ L0. Thus Vpnq “ Vpnq.

The following fact will be used later without explicit mentioning.

Proposition 2.2.7. Let W be an irreducible V-module, and let T be an endomorphism of
W. Then T is a scalar multiplication.

In particular, if rL0 makes W admissible, then rL0 ´L0 is a scalar multiplication.

Proof. Choose any s P C so that the L0-weight space Wpsq is nontrivial. Note
that Wpsq is also finite-dimensional by the definition of ordinary modules. Since
T commutes with L0, T preserves the eigenvalues of the eigenvectors of L0. So
TWpsq Ă Wpsq. Thus, we can find an eigenvalue λ of T |Wpsq. It follows that the
kernel of T ´λ1W is a nontrivial V-invariant subspace of W, which must be W. So
T “ λ1W.

Definition 2.2.8. Let V1,V2 be VOAs. If W is a vector space which is both a weak
V1-module pW, Y`q and a weak V2-module pW, Y´q. We say that pW, Y`, Y´q is a
weak V1 ˆ V2-module if rY`puqm, Y´pvqns “ 0 for any u P V1, v P V2,m, n P Z.

2.3 Change of coordinates

We define a group pG, ˝q as follows. As a set G consists of all ρ P OC,0 such that
ρp0q “ 0 and ρ1p0q ‰ 0. If ρ1, ρ2 P G, then their multiplication is just the compo-
sition ρ1 ˝ ρ2. We should understand elements in G as maps but not functions. G
acts on OC,0 as ρ ‹ f “ f ˝ ρ´1 if ρ P G, f P OC,0. The Lie algebra LiepGq of G is
spanned by L0, L1, L2, . . . , where for each n P N,

Ln “ zn`1
Bz, (2.3.1)

whose action on each f P OC,0, denoted by Ln ‹ f , is defined by

Ln ‹ f :“ ´Lnf “ ´zn`1
Bzf. (2.3.2)

The Lie bracket relation is defined using above relation, i.e., satisfying rLm, Lns ‹

f “ Lm ‹ Ln ‹ f ´ Ln ‹ Lm ‹ f . It is the negative of the usual Lie bracket for vector
fields. One easily checks that r¨, ¨s is compatible with the Virasoro relation (2.1.4).
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Let W be a V-module. Given any ρ P G, one can define Upρq P EndpVq as
follows. Choose c0, c1, c2, ¨ ¨ ¨ P C such that c0 ‰ 0, and

ρ “ cL0
0 ˝ exp

´

ÿ

ną0

cnLn

¯

(2.3.3)

when acting on any f P OC,0 by ‹. Then

Upρq “ c
rL0
0 ¨ exp

´

ÿ

ną0

cnLn

¯

, (2.3.4)

where the Virasoro operators rL0, Ln are acting on W. (The reason we use rL0 but
not L0 is that cL0

0 might not be single-valued on W.)
Let z be the standard coordinate of C, regarded as an element in OC,0. It is the

identity element of G. Then, for any f P OC,0, we have ρ‹f “ f ˝ρ´1 “ fpρ´1pzqq “

fpρ ‹ zq. We conclude

ρ ‹ f “ fpρ ‹ zq, (2.3.5)

which shows that the action of G on OC,0 is determined by its action on z. For
example, since zBzz “ z and hence pzBzqnz “ z for each n, we have

c´L0
0 ‹ z “ czBz

0 z “ expplog c0 ¨ zBzqz “
ÿ

nPN

1

n!
plog c0q

n
pzBzq

nz “ c0z.

Therefore, we conclude that

c´L0
0 ‹ f “ fpc0zq. (2.3.6)

We now give a more direct relation between ρ and the coefficients c0, c1, c2, . . .
in (2.3.3). It is clear that ρpzq, as an element in OC,0, equals

ρpzq “ z ˝ ρ “ ρ´1
‹ z “ exp

´

´
ÿ

ną0

cnLn

¯

‹ c´L0
0 ‹ z

“ exp
´

´
ÿ

ną0

cnLn

¯

‹ pc0zq
(2.3.5)

ùùùùù c0 ¨ exp
´

´
ÿ

ną0

cnLn

¯

‹ z,

which, together with (2.3.2), shows that

ρpzq “ c0 ¨ exp
´

ÿ

ną0

cnz
n`1

Bz

¯

z (2.3.7)

One can use the above equation to completely determine the coefficients c0, c1, . . . .
For instance, if we write

ρpzq “ a1z ` a2z
2

` a3z
3

` ¨ ¨ ¨ , (2.3.8)
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then one has

c0 “ a1,

c1c0 “ a2,

c2c0 ` c21c0 “ a3.

In particular, one has c0 “ ρ1p0q. Thus (2.3.4) could be rewritten as

Upρq “ ρ1
p0q

rL0 ¨ exp
´

ÿ

ną0

cnLn

¯

(2.3.9)

Notice an “ ρpnqp0q{n!, we have

c0 “ ρ1
p0q,

c1 “
1

2

ρ2p0q

ρ1p0q
,

c2 “
1

6

ρ3p0q

ρ1p0q
´

1

4

´ρ2p0q

ρ1p0q

¯2

. (2.3.10)

The following is (essentially) proved in [Hua97] section 4.2:

Theorem 2.3.1. For each V-module W, U is a representation of G on W. Namely, we
have Upρ1 ˝ ρ2q “ Upρ1qUpρ2q for each ρ1, ρ2 P G.

Example 2.3.2. We have seen that

czBz
0 z “ c0z. (2.3.11)

We now calculate exppc1z
2Bzqz. It is easy to see that pc1z

2Bzqnz “ n!cn1z
n`1. Thus

exppc1z
2Bzqz “

ř8

n“0 c
n
1z

n`1 “ z{p1 ´ c1zq. We conclude

exppc1z
2
Bzqz “

z

1 ´ c1z
. (2.3.12)

Then it is easy to see that exppc1z
2BzqczBz

0 z “ c0z{p1 ´ c0c1zq “ czBz
0 exppc0c1z

2Bzqz.
We conclude

ec1L1c
rL0
0 “ c

rL0
0 e

c0c1L1 . (2.3.13)

Set

γξpzq “
1

ξ ` z
´

1

ξ
. (2.3.14)
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Then the inverse of γξ is γξ´1 . By (2.3.11) and (2.3.12), it is easy to see that the
following identity holds when acting on any W:

Upγξq “ eξL1p´ξ´2
q

rL0 . (2.3.15)

Thus (2.2.9) could be rewritten as

YW1pv, zq “ YWpUpγzqv, z´1
q
t. (2.3.16)

It is easy to see that γξpξzq “ ξ´1γ1pzq. Therefore,

Upγξqξ
rL0 “ ξ´rL0Upγ1q. (2.3.17)

Let n P Z. Then Upρq does not preserve the vector space Wpnq (the n-
eigenspace of rL0). However, W has filtration H “ Wď´1 Ă Wď0 Ă Wď1 Ă Wď2 Ă

¨ ¨ ¨ , where

Wďn
“

à

kďn

Wpkq. (2.3.18)

Then, by (2.2.6), LmWďn Ă Wďn´m for any m P Z. Thus, by (2.3.9), we con-
clude that U restricts to a representation of G on Wďn. Moreover, if w P W is
rL0-homogeneous, then

Upρqw “ ρ1
p0q

Ăwtpwqw mod WďĂwtpwq´1. (2.3.19)

In other words, the action of Upρq on Wďn{Wďn´1 is ρ1p0qn1.
Finally, we discuss holomorphic families of transformations. Let X be a com-

plex manifold and ρ : X Ñ G, x ÞÑ ρx a function. We say that ρ is a holomorphic
family of transformations if for any x P X , there exists an open subset V Ă X
containing x and an open U Ă C containing 0 such that pz, yq P U ˆ V ÞÑ ρypzq is
a holomorphic function on U ˆ V . Then it is clear that the coefficients a1, a2, . . .
in (2.3.8) depend holomorphically on the parameter x P X . Hence the same true
for c0, c1, c2, . . . . Thus, by the formula (2.3.9), for any w P Wďn, x P X ÞÑ Upρxqw
is a Wďn-valued holomorphic function on X . Thus Upρq can be regarded as an
isomorphism of OX-modules

Upρq : Wďn
bC OX

»
ÝÑ Wďn

bC OX (2.3.20)

sending each constant function w to the section x ÞÑ Upρxqw. Its inverse is Upρ´1q.

Convention 2.3.3. For any open subset V Ă X , any v P Vďn (resp. w P Wďn) is
also understood as the constant section vb1 (resp. wb1) in pVďnbCOXqpV q (resp.
pWďn bC OXqpV q).
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The following lemma will be used in Section 2.6. We let rLn be Ln if n ‰ 0.

Lemma 2.3.4. Let T be an open subset of C containing 0. Let ρ : T Ñ G, ζ ÞÑ ρζ be a
holomorphic family of transformations satisfying ρ0pzq “ z. Then, for any w P W,

BζUpρζqw
ˇ

ˇ

ˇ

ζ“0
“

ÿ

ně1

1

n!

´

Bζρ
pnq

ζ p0q

ˇ

ˇ

ˇ

ζ“0

¯

rLn´1 ¨ w (2.3.21)

where Bζρ
pnq

ζ pzq “ Bn
z Bζρζpzq “ BζBn

z ρζpzq.

Note that whenw is a (non-necessarily constant) section of WbCOT , one needs
to take Bζw into account when calculating the left hand side of (2.3.21). Also, as
the derivative of w “ UpρζqUpρζq´1w is 0, we obtain

Bζ
`

Upρζq
´1

˘

w
ˇ

ˇ

ˇ

ζ“0
“ ´

ÿ

ně1

1

n!

´

Bζρ
pnq

ζ p0q

ˇ

ˇ

ˇ

ζ“0

¯

rLn´1 ¨ w. (2.3.22)

Proof. Let c1, c2, ¨ ¨ ¨ P OCpT q such that

ρζpzq “ ρ1
ζp0q exp

´

ÿ

ně1

cnpζqzn`1
Bz

¯

pzq.

Then ρζpzq equals

ρ1
ζp0q

´

z `
ÿ

ně1

cnpζqzn`1
¯

plus some polynomials of z multiplied by at least two terms among
c1pζq, c2pζq, . . . . Since ρ0pzq “ z, we have ρ1

0p0q “ 1 and c1p0q “ c2p0q “ ¨ ¨ ¨ “ 0.
Therefore,

Bζρζpzq

ˇ

ˇ

ˇ

ζ“0
“ Bζρ

1
ζp0qz

ˇ

ˇ

ˇ

ζ“0
`

´

ÿ

ně1

Bζcnp0qzn`1
¯

,

which implies that when n ě 2,
1

n!
Bζρ

pnq

ζ p0q

ˇ

ˇ

ˇ

ζ“0
“ Bζcn´1p0q.

Thus, using (2.3.9) and again ρ1
0p0q “ 1, c1p0q “ c2p0q “ ¨ ¨ ¨ “ 0, we compute

BζUpρζqw
ˇ

ˇ

ˇ

ζ“0
“Bζ

´

ρ1
ζp0q

rL0 ¨ exp
´

ÿ

ně1

cnpζqrLn

¯¯

w
ˇ

ˇ

ˇ

ζ“0

“Bζρ
1
ζp0qrL0w

ˇ

ˇ

ˇ

ζ“0
`

´

ÿ

ně1

Bζcnp0qrLnw
¯

.

Now equation (2.3.21) follows from the last two equations.

Remark 2.3.5. Let A “ L0 ´ rL0. Then using the fact that Resz“0z
nYWpc, zq “

YWpcqn “ Ln´1, we can write (2.3.21) and (2.3.22) in the following form:

BζUpρζqw
ˇ

ˇ

ζ“0
“ ´BζUpρ´1

ζ qw
ˇ

ˇ

ζ“0

“Resz“0 BζρζpzqYWpc, zqwdz
ˇ

ˇ

ζ“0
´ Bζρ

1
ζp0qAw

ˇ

ˇ

ζ“0
. (2.3.23)
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2.4 Sheaves of VOAs on complex curves

Let C be a (non-necessarily compact) Riemann surface. Let U, V be open sub-
sets of C, and η : U Ñ C, µ : V Ñ C univalent maps. Define a holomorphic family
ϱpη|µq : U X V Ñ G as follows. For any p P U X V , η ´ ηppq and µ ´ µppq are local
coordinates at p. We set ϱpη|µqp P G satisfying

η ´ ηppq “ ϱpη|µqppµ ´ µppqq. (2.4.1)

Let z P OC,0 be the standard coordinate. Then, by composing both sides of (2.4.1)
with µ´1pz ` µppqq, we find the equivalent formula

ϱpη|µqppzq “ η ˝ µ´1
pz ` µppqq ´ ηppq, (2.4.2)

which justifies that ϱpη|µq is analytic. It is also clear that if η1, η2, η3 are three local
coordinates, then on their common domain the following cocycle condition holds:

ϱpη3|η1q “ ϱpη3|η2qϱpη2|η1q. (2.4.3)

Note that the linear map (2.2.1) can be extended to a homomorphism of Cppzqq-
modules

Vppzqq Ñ pEnd Wqrrz˘1
ss

u b f P V bC Cppzqq ÞÑ YWpu b f, zq “ fpzqY pu, zq. (2.4.4)

Moreover, for any w P W and v P Vppzqq, it is clear that Y pv, zqw P Wppzqq. The
following theorem is one of the main results of [Hua97].

Theorem 2.4.1. Let W be a V-module. Let U Ă C be a neighborhood of 0. Let α P OpUq

be a local coordinate at 0, let 1C P G be the standard coordinate of C (i.e. the identity
element of G), and let z be the standard complex variable of C (different from 1C). Then
for any v P V and w P W, we have the following equation of elements in Wppzqq:

UpαqYWpv, zqUpαq
´1

¨ w “ YW
`

Upϱpα|1Cqqv, αpzq
˘

¨ w. (2.4.5)

Note that Upϱpα|1Cqqv is in V bC OpUq and hence can be regarded as an element of
Vppzqq. Of course, (2.4.5) also holds in an obvious way for any v P Vppzqq.

For instance, take αpzq “ λz where λ P Cˆ. Then ϱpα|1Cq is constantly λ. It
follows that

λ
rL0YWpv, zqλ´rL0 “ YWpλL0v, λzq. (2.4.6)

The sheaf of VOA associated to V is an OC-module VC defined by

VC “ lim
ÝÑ
nPN

V ďn
C , (2.4.7)
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where for each n P N, V ďn
C is a locally free sheaf of rank dimVďn described as

follows. For any open subset U Ă C and a univalent η : U Ñ C, we have an
isomorphism of OU -modules

Uϱpηq : V ďn
C |U

»
ÝÑ Vďn

bC OU . (2.4.8)

These isomorphisms are defined in such a way that if µ : V Ñ C is also univalent,
then on U X V we have

UϱpηqUϱpµq
´1

“ Upϱpη|µqq P EndOUXV
pVďn

bC OUXV q. (2.4.9)

From (2.3.19), we can compute that for any section v of Vďn bC OUXV ,

UϱpηqUϱpµq
´1

¨ v “ pBµηq
n

¨ v mod Vďn´1
bC OUXV . (2.4.10)

Now assume that C is a (compact and possibly nodal) complex curve. We
define for each n P N a locally free sheaf V ďn

C as follows. (VC is defined again
using (2.4.7).) Let Σ “ tx1

1, x
1
2, . . . , x

1
Mu be the set of nodes, and let C0 “ C ´ Σ.

Then V ďn
C0

is defined as above. Let U be an open subset of C containing only
one of Σ, say x1

j . Let ν : rC Ñ C be the normalization of C as in Section 1.5,
and let ty1

j, y
2
j u “ ν´1px1

jq. Then ν´1pUq is a disjoint union of two open subsets
V 1 Q y1

j, V
2 Q y2

j of rC. We assume that U is small enough such that there exit local
coordinates ξj : V 1 Ñ C and ϖj : V 2 Ñ C at y1

j and y2
j respectively. This means

that ξj, ϖj are univalent, and ξjpy
1q “ ϖjpy

2q “ 0. We also identify

U ´ tx1
ju » pV 1

´ ty1
juq \ pV 2

´ ty2
j uq (2.4.11)

via ν. Now, let V ďn
C pUq be the OCpUq-submodule of V ďn

C0
pU ´ tx1

juq generated by

Uϱpξjq
´1

`

ξL0
j v

˘

` Uϱpϖjq
´1

`

ϖL0
j Upγ1qv

˘

p@v P Vďn
q, (2.4.12)

where we recall from example 2.3.2 that Upγ1q “ eL1p´1qL0 . To be more precise,
(2.4.7) is a section on pV 1 ´ ty1

juq \ pV 2 ´ ty2
j uq which equals Uϱpξjq

´1
`

ξL0
j v

˘

on
pV 1 ´ ty1

juq and Uϱpϖjq
´1

`

ϖL0
j Upγ1qv

˘

on V 2. Also, ξL0
j is an element of OC0pV 1 ´

ty1
juq acting on the constant section v P Vďn bC OC0pV 1 ´ ty1

juq, and ϖL0
j Upγ1qv is

understood in a similar way. It is easy to see that V ďn
C pUq is generated freely by

Uϱpξjq
´1

`

ξ
wtpvq

j v
˘

` Uϱpϖjq
´1

`

p´ϖjq
wtpvqUpγ1qv

˘

(2.4.13)

for all v P E where E is any basis of Vďn whose elements are homogenous. Since
γ1 “ γ´1

1 , V ďn
C pUq is also generated freely by

Uϱpξjq
´1

`

ξL0
j Upγ1qv

˘

` Uϱpϖjq
´1

`

ϖL0
j v

˘

for all v P E. By the gluing construction, we obtain the locally free OC-module
V ďn
C .
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Proposition 2.4.2. Let C be a complex curve and n P N. Then we have the following
isomorphism of OC-modules:

V ďn
C {V ďn´1

C » Vpnq bC Θbn
C . (2.4.14)

Under this isomorphism, if U Ă C is open and smooth, and η P OpUq is univalent, then
for any v P Vpnq, v b Bn

η is identified with the equivalence class of Uϱpηq´1v.

Proof. Recall that Σ is the set of nodes. By the transition function(2.4.10), we ob-
tain a surjective OC´Σ-module morphism Ψ : V ďn

C´Σ Ñ Vpnq b Θbn
Cztxu

sending
Uϱpηq´1v to v b Bn

η if v P Vpnq, and to 0 if v P Vďn´1. Ψ has kernel V ďn´1
C´Σ . Now

let U be a neighborhood of x1
j as in the setting of (2.4.12). Then Ψ sends (2.4.12)

to v b ξnj Bn
ξj

|V 1´ty1u ` v b p´ϖjq
nBn

ϖj
|V 2´ty2u whenever v P Vpnq X E. (Recall that

E is a homogeneous basis of Vďn.) From this and (1.5.1) we see that Ψ restricts
to a surjective OC-module morphism Ψ : V ďn

C Ñ Vpnq b Θbn
C and that KerΨpUq

is OCpUq-generated by (2.4.12) for all v P Vďn´1 X E. Thus Ψ descends to an
isomorphism (2.4.14).

As a consequence, we now prove a vanishing theorem for the sheaf of VOA.

Theorem 2.4.3. Let X “ pC;x1, . . . , xNq be an N -pointed complex curve with M nodes.
Let rC be the normalization ofC, and let rg be the largest genus of the connected components
of rC. Then for any n P N, there exists k0 P Z depending only on n, rg,M such that

H1
`

C,V ďn
C b ωCpkSXq

˘

“ 0 (2.4.15)

for any k ą k0.

Recall that the divisor SX is defined by x1 ` ¨ ¨ ¨ `xN . Also, by our definition of
pointed complex curves, each connected component of rC contains at least one of
(the pre-image of) x1, . . . , xN . Recall also that the dualizing sheaf ωC is the inverse
of ΘC .

We will see from the proof that k0 can be chosen to be n|2rg ´ 2| ` 2M . Note
that by Proposition 1.5.4, one can always find k0 P N such that (2.4.15) holds for
any k ą k0. The importance of the present theorem is, however, that we may find
k0 which is independent of the complex structure of C.

Proof. V ď´1 is trivial since Vď´1 is so. Since the vacuum vector 1 is killed by
L0, L1, L2, . . . , it is fixed by the action of G. From this and the fact that Vp0q is
spanned by 1, it is clear that

V ď0
C {V ď´1

C » V ď0
C » OC . (2.4.16)

Thus, by Theorem 1.5.7, the vanishing property (2.4.15) holds for any k ą 2M .
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We now prove the theorem by induction. By Proposition 2.4.2, there is a short
exact sequence

0 Ñ V ďn´1
C b ωCpkSXq Ñ V ďn

C b ωCpkSXq Ñ Vpnq bC Θ
bpn´1q

C pkSXq Ñ 0,

which induces a long exact sequence

H1
pC,V ďn´1

C b ωCpkSXqq Ñ H1
pC,V ďn

C b ωCpkSXqq

Ñ H1
`

C,Vpnq bC Θ
bpn´1q

C pkSXq
˘

. (2.4.17)

Suppose the statement in our theorem is true for n´1 and any k ą pn´1q|2rg´2|`

2M . Then, by induction and Theorem 1.5.7, the first and the last terms of (2.4.17)
equal 0 for any k ą n|2rg ´ 2| ` 2M . So the same is true for the middle term.

Remark 2.4.4. Let D be an effective divisor on C. Using the same argument,
one can show that Theorem 2.4.3 holds verbatim if V ďn

C is replaced by V ďn
C p´Dq,

except that k0 should now also depend on degD.

2.5 Sheaves of VOAs on families of complex curves

Let X “ pπ : C Ñ Bq be a family of complex curves. Recall that Σ is the critical
locus. Let U, V be open subsets of C ´ Σ, and let η : U Ñ C, µ : V Ñ C be
holomorphic functions such that pη, πq and pµ, πq are biholomorphic maps from U
resp. V to open subsets of C ˆ B. This requirement is equivalent to that η and µ
are univalent on each fiber of U and V respectively. For each p P U XV , we define
ϱpη|µqp P OC,0 by

ϱpη|µqppzq “ η ˝ pµ, πq
´1

`

z ` µppq, πppq
˘

´ ηppq. (2.5.1)

Then ϱpη|µqp is a holomorphic function of z on µ
`

pU X V qπppq

˘

where pU X V qπppq

is the fiber U X V X π´1pπppqq. It is easy to check that for each n P N,

B
n
z ϱpη|µqpp0q “ B

n
µηppq, (2.5.2)

where the partial derivative Bµ is defined to be vertical to dπ. From this, we see
that ϱpη|µqpp0q “ 0 and Bzϱpη|µqpp0q ‰ 0. So ϱpη|µqp is an element of G. We thus
obtain a family of transformations ϱpη|µq : U X V Ñ G, p ÞÑ ϱpη|µqp, which is
clearly holomorphic.

As in Section 2.4, ϱpη|µq is also described by

η ´ ηppq
ˇ

ˇ

pUXV qπppq
“ ϱpη|µqp

`

µ ´ µppq
ˇ

ˇ

pUXV qπppq

˘

. (2.5.3)

To see this, one composes both sides of (2.5.3) with pµ, πq´1
`

z ` µppq, πppq
˘

. This
relation shows that, if for j “ 1, 2, 3 we have ηj P OpUjq which is univalent on
each fiber of Uj , then on U1 X U2 X U3 we have

ϱpη3|η1q “ ϱpη3|η2qϱpη2|η1q. (2.5.4)
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Definition of VX

We set

VX “ lim
ÝÑ
nPN

V ďn
X , (2.5.5)

where for each n P N, V ďn
X is a locally free OC-module defined as follows. Suppose

that U is an open subset of C ´ Σ and η P OpUq is univalent on each fiber of U .
Then we have an isomorphism of OU -modules

Uϱpηq : V ďn
X |U

»
ÝÑ Vďn

bC OU . (2.5.6)

These isomorphisms are defined in such a way that if V is another open subset of
C ´ Σ and µ P OCpV q is also univalent on each fiber, then on U X V we have

UϱpηqUϱpµq
´1

“ Upϱpη|µqq P EndOUXV
pVďn

bC OUXV q. (2.5.7)

Recall that ϱpµ|ηq is a family of transformations on UXV , and Upϱpµ|ηqq is defined
as by (2.3.20). Thus, we can defined V ďn

X |C´Σ by gluing. Note that by (2.3.19) and
(2.5.2), we can compute that for any section v of Vďn bC OUXV ,

UϱpηqUϱpµq
´1

¨ v “ pBµηq
n

¨ v mod Vďn´1
bC OUXV . (2.5.8)

To define V ďn
X near Σ, let x1 P Σ, and assume that near the fiber Cπpx1q, the family

X is obtained via sewing a family rX of Riemann surfaces with local coordinates as
in Section 1.6. Then, by (1.6.8) and (1.6.15), one can identify a neighborhood Wj

of x1 as Drj ˆDρj ˆDr‚ρ‚zj ˆ rB such that, by setting rBj “ Dr‚ρ‚zj ˆ rB, the projection
π|Wj

equals

π : Wj “ Drj ˆ Dρj ˆ rBj

πrj ,ρj ˆ1
ÝÝÝÝÝÝÑ Drjρj ˆ rBj. (2.5.9)

We thus have

Wj “ Drj ˆ Dρj ˆ rBj, (2.5.10)

Wj X Σ “ p0, 0q ˆ rBj.

As in (1.6.10) and (1.6.11), we have open subsets of Wj :

W 1
j “ Dˆ

rj
ˆ Dρj ˆ rBj, W 2

j “ Drj ˆ Dˆ
ρj

ˆ rBj.

Then it is clear that

Wj ´ Σ “ W 1
j Y W 2

j .
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Let ξj, ϖj be the standard coordinates of Drj ,Dρj , and extend them constantly to
Wj Ñ Drj ,Wj Ñ Dρj respectively. Then pξj, πq and pϖj, πq are holomorphic open
embeddings of Wj1 ,Wj2 respectively; equivalently, ξj, ϖj are univalent on each
fiber of W 1

j and W 2
j respectively.

We shall define V ďn
X |Wj

to be an OWj
-submodule of V ďn

X |Wj´Σ generated
(freely) by some sections on Wj whose restrictions to W 1

j and W 2
j are described

under the trivilizations Uϱpξjq and Uϱpϖjq respectively. For that purpose, we need
to first calculate the transition function

UϱpϖjqUϱpξjq
´1

“ Upϱpϖj|ξjqq : Vďn
bC OW 1

jXW 2
j

»
ÝÑ Vďn

bC OW 1
jXW 2

j
.

Set qj “ πrj ,ρj “ ξjϖj .

Lemma 2.5.1. Choose any p P W 1
j X W 2

j . Then we have

ϱpϖj|ξjqppzq “ qjppqγξjppqpzq

and hence

Upϱpϖj|ξjqpq “ qjppq
L0Upγξjppqq.

Proof. Choose any x P pW 1
j X W 2

j qπppq. Then πpxq “ πppq and hence qjpxq “ qjppq.
Since ϖj “ ξ´1

j qj , we have

ϖjpxq ´ ϖjppq “ qjppqpξjpxq
´1

´ ξjppq
´1

q.

By (2.5.3), we have

ϖjpxq ´ ϖjppq “ ϱpϖj|ξjqppξjpxq ´ ξjppqq.

If we compare these two equations and set z “ ξjpxq ´ ξjppq, we obtain

ϱpϖj|ξjqppzq “ ϱpϖj|ξjqppξjpxq ´ ξjppqq “ qjppqpξjpxq
´1

´ ξjppq
´1

q

“qjppq
`

pξjppq ` zq
´1

´ ξjppq
´1

˘

“ qjppqγξjppqpzq.

We define V ďn
X |Wj

to be the OWj
-submodule of V ďn

X´Σ|Wj´Σ generated by any
section on Wj ´ Σ whose restrictions to W 1

j and W 2
j are

Uϱpξjq
´1

`

ξL0
j v

˘

resp. Uϱpϖjq
´1

`

ϖL0
j Upγ1qv

˘

(2.5.11)

where v P Vďn. Since γ1 “ γ´1
1 and hence Upγ1q “ Upγ1q´1, this definition is

symmetric with respect to ξj and ϖj . To check that (2.5.11) is well-defined, we
need:
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Lemma 2.5.2. The two sections defined in (2.5.11) agree on W 1
j X W 2

j .

Proof. Using (2.3.17) and Lemma 2.5.1, we check that

UϱpϖjqUϱpξjq
´1ξL0

j v “ Upϱpϖj|ξjqqξL0
j v “ qL0

j Upγξjqξ
L0
j v

“qL0
j ξ´L0

j Upγ1qv “ ϖL0
j Upγ1qv.

It is easy to see that, if we take v P E where E is a basis of Vďn consisting
of homogeneous vectors, then V ďn

X |Wj
is generated freely by sections defined by

(2.5.11) for all v P E. Thus, by the gluing construction, we obtain a locally free
OC-module V ďn

X .

Remark 2.5.3. Since the vacuum vector 1 is annihilated by Ln (n ě 0), we see
that 1 is fixed by any transition function Upϱpη|µqq. Thus, we can define unam-
biguously an element 1 P VXpC ´ Σq (the vacuum section) such that for any open
U Ă C ´ Σ and any η P OpUq univalent on each fiber, Uϱpηq1 is the vaccum vector
1 (considered as a constant function). Also, by (2.5.11), it is clear that

1 P VXpCq.

Restriction to fibers

As in Section 2.4, we may use (2.5.8), (2.5.11), and (1.6.24) to show:

Proposition 2.5.4. For any n P N, we have the following isomorphism of OC-modules:

V ďn
X {V ďn´1

X » Vpnq bC Θbn
C{B. (2.5.12)

Under this isomorphism, if U Ă C ´ Σ is open and smooth, and η P OpUq is univalent
on each fiber of U , then for any v P Vpnq, vb Bn

η is identified with the equivalence class of
Uϱpηq´1v.

By comparing the transition functions and looking at the generating sections
near the nodes, it is easy to see:

Proposition 2.5.5. For any n P N and b P B, we have a natural isomorphism

V ďn
X |Cb » V ďn

Cb . (2.5.13)

The following theorem is a generalization of Theorem 1.6.5.
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Theorem 2.5.6. Let X “ pπ : C Ñ B; ς1, . . . , ςNq be a family of N -pointed complex
curves. Let n P N. Then there exists k0 P N such that for any k ě k0, the OB-module
π˚

`

V ďn
X b ωC{BpkSXq

˘

is locally free, and for any b P B there is a natural isomorphism of
vector spaces

π˚

`

V ďn
X b ωC{BpkSXq

˘

b

mb ¨ π˚

`

V ďn
X b ωC{BpkSXq

˘

b

» H0
`

Cb,V ďn
Cb b ωCbpkSXpbqq

˘

(2.5.14)

defined by restriction of sections. In particular, dimH0
`

Cb,V ďn
Cb bωCbpkSXpbqq

˘

is locally
constant over b.

Proof. Recall that by Ehresmann’s result, if X is smooth, then by our assumption
in Section 1.3, B has finitely many connected components, and all the fibers over
a connected component are diffeomorphic. Thus, by theorems 1.5.1 and 2.4.3 and
Remark 1.6.3, for sufficiently large k, Hr

`

Cb,V ďn
Cb b ωCbpkSXpbqq

˘

vanishes for any
b P B and r ě 1. Since the restriction of ωC{B to Cb is ωCb , by Proposition 2.5.5, the
restriction of V ďn

X b ωC{BpkSXq to Cb is equivalent to V ďn
Cb b ωCbpkSXpbqq. Thus, our

theorem follows easily from Grauert’s Theorem 1.6.2.

Corollary 2.5.7. Let X “ pπ : C Ñ B; ς1, . . . , ςNq be a family of N -pointed complex
curves, and let n P N. Then for any Stein open subset V of B, there is k0 P N such
that for any integer k ě k0 and any b P V , the elements of π˚

`

V ďn
X b ωC{BpkSXq

˘

pV q

(more precisely, their germs at b) generate the stalk π˚

`

V ďn
X b ωC{BpkSXq

˘

b
, and their

restrictions to Cb form the vector space H0
`

Cb,V ďn
Cb b ωCbpkSXpbqq

˘

.

Proof. Apply Theorem 2.5.6 and Cartan’s theorem A (see Section 1.5).

As a variant (and easy consequence) of the above corollary, we have:

Corollary 2.5.8. Let X “ pπ : C Ñ B; ς1, . . . , ςNq be a family of N -pointed com-
plex curves. Then for any Stein open subset V of B and any b P V , the ele-
ments of π˚

`

V ďn
X b ωC{Bp‚SXq

˘

pV q (more precisely, their germs at b) generate the stalk
π˚

`

V ďn
X b ωC{Bp‚SXq

˘

b
, and their restrictions to Cb form the vector space H0

`

Cb,V ďn
Cb b

ωCbp‚SXpbqq
˘

.

The subsheaf Vir c
We now define an important OC-submodule Vir c of V ď2

X related to the confor-
mal vector c P Vp2q. If U is an open subset of C ´ Σ equipped with a holomorphic
η : U Ñ C univalent on each fiber, then Vir c|U is the OU -submodule of VX|U gen-
erated (freely) by Uϱpηq´1c and the vacuum section 1, which is locally free of rank
2. This definition is independent of the choice of η. Indeed, if µ : U Ñ C is also
univalent on each fiber, then UϱpµqUϱpηq´1c “ Upϱpµ|ηqqc, which can be calculated
using the actions of Ln (n ě 0) on c, is an OU -linear combination of c and 1 by
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Remark 2.1.3. Thus, by gluing all such U , we get Vir c|C´Σ. Now assume that U is
a small neighborhood of a point of Σ. We let Vir c|U be the submodule generated
by the sections described in (2.5.11), in which we set v to be c and 1. This com-
pletes the definition of the OC-submodule Vir c. Note that the action of Upϱpµ|ηqq

and Upγ1q on c and 1 depends only on the central charge c since this is true for Ln

(n ě 0) by Remark 2.1.3. Thus, the OC-module Vir c depends only on the number
c but not on V or VX.

By Proposition 2.5.4, we have a short exact sequence

0 Ñ V ď1
X Ñ V ď2

X
λ
ÝÑ Vp2q bC Θb2

C{B Ñ 0

where λ is described locally (outside Σ) by sending U´1
ϱ pηqv (where v P Vp2q) to

v ¨ B2
η and sending the submodule V ď1

X to 0. Using this description of λ, it is easy to
see that the restriction of λ to the subsheaf Vir c has image c bC Θb2

C{B » Θb2
C{B, and

that its kernel is V ď0
X “ 1 bC OC » OC . Thus, we obtain an exact sequence

0 Ñ OC Ñ Vir c
λ
ÝÑ Θb2

C{B Ñ 0. (2.5.15)

If we choose U Ă C ´ Σ and η P OpUq holomorphic on each fiber, then

λ : Uϱpηq
´1c ÞÑ B

2
η, 1 ÞÑ 0.

By tensoring with ωC{B, we get an exact sequence

0 Ñ ωC{B Ñ Vir c b ωC{B
λ
ÝÑ ΘC{B Ñ 0 (2.5.16)

whose local expression outside Σ is

λ : Uϱpηq
´1c dη ÞÑ Bη, 1 dη ÞÑ 0. (2.5.17)

2.6 Lie derivatives

Fix a family of compact Riemann surfaces X “ pπ : C Ñ Bq. From Proposition
2.5.4, we see that the sheaf of VOA VX can be viewed as a twisted version of
a direct sum of Θbn

C{B. It is well known that Lie derivatives can be defined for
sections of Θbn

C{B (whose restriction to ΘC{B is given by the usual Lie bracket of
vector fields). In this section, we define Lie derivatives for sections of VX. The
results of this section can be generalized easily to sections of VX|C´Σ when X is a
family of complex curves.

Let φ : U Ñ V be a biholomorphic map where U, V are open subsets of C and
φpUq “ V . We assume that φ preserves fibers, i.e. φpUπppqq “ Vπ˝φppq for each p P U .
Then we have an equivalence

φ˚ : OU Ñ OV , f ÞÑ f ˝ φ´1,
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which makes each OV -module also an OU -module. φ˚ can be extended to

φ˚ : Vďn
bC OU

»
ÝÑ Vďn

bC OV , v ÞÑ v ˝ φ´1.

Choose any η P OpV q univalent on each fiber. Then we have a similar equiva-
lence pη, πq˚ : OV

»
ÝÑ Opη,πqpV q. Recall Uϱpηq : V ďn

X |V
»
ÝÑ Vďn bC OV . Define an

isomorphism

Vϱpφq : V ďn
X |U

»
ÝÑ V ďn

X |V ,

UϱpηqVϱpφq “ φ˚ ¨ Uϱpη ˝ φq, (2.6.1)

noting that Uϱpη ˝ φq : V ďn
X |U Ñ Vďn bC OU .

The definition of Vϱpφq is independent of the choice of η. Indeed, if µ P OpV q

is also univalent on each fiber, then, using (2.5.3), it is not hard to show

Upϱpη ˝ φ|µ ˝ φqq “ φ´1
˚ ¨ Upϱpη|µqq ¨ φ˚,

and hence equivalently that

Uϱpη ˝ φqUϱpµ ˝ φq
´1

“ φ´1
˚ ¨ UϱpηqUϱpµq

´1
¨ φ˚, (2.6.2)

The independence follows easily from the above relation and (2.6.1). Moreover,
using the definition (2.6.1), it is also not hard to show

Vϱpψ ˝ φq “ VϱpψqVϱpφq (2.6.3)

where ψ : V Ñ W is another such fiber-preserving biholomorphic map. In partic-
ular, we have Vϱpφ´1q “ Vϱpφq´1.

Let now W be an open subset of C, and let V be a precompact open subset of
W whose closure is also in W . Note that since π is (clearly) an open map, πpW q is
open. Recall the short exact sequence (1.3.5):

0 Ñ ΘC{B Ñ ΘC
dπ
ÝÑ π˚ΘB Ñ 0.

Let x P ΘCpW q such that dπpxq equals π˚pyq for some y P ΘBpπpW qq. In other
words, x is a vector field on W whose projection to B depends only on the points
of B. Suppose that W is small enough so that we can choose η P OpW q univalent
on fibers, and choose coordinates τ‚ “ pτ1, . . . , τmq of πpW q. Denote τ‚ ˝ π also by
τ‚ for simplicity. Then pη, τ‚q : V Ñ C ˆ Cm is a coordinate of V , and x takes the
form

x “ hpη, τ‚qBη `

m
ÿ

j“1

gjpτ‚qBτj (2.6.4)
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for some holomorphic functions h on pη, τ‚qpW q and g1, . . . , gm on τ‚pW q. Choose
φx P OTˆV pT ˆ V q, pζ, pq ÞÑ φx

ζppq, where T is an open subset of C containing 0,
and the following conditions are satisfied for any p P V :

φx
0ppq “ p. (2.6.5)

Bζφ
x
ζppq

ˇ

ˇ

ζ“0
“ xppq. (2.6.6)

The second condition is equivalent to that for any (local) section f of OV ,

Bζpf ˝ φx
ζq

ˇ

ˇ

ˇ

ζ“0
“ xf. (2.6.7)

The first conditions implies that Vϱpφx
0q is the identity map on V ďn

X |V .

Definition 2.6.1. For any v P V ďn
X pW q and x as above, we define Lxv P V ďn

X pW q as
follows. Choose any V Ă W whose closure is compact and contained in W , and
choose φx as above. Then

Lxv
ˇ

ˇ

V
“ lim

ζÑ0

Vϱpφx
ζq´1

`

v
ˇ

ˇ

φx
ζpV q

˘

´ v
ˇ

ˇ

V

ζ
. (2.6.8)

We now give an explicit formula of Lxv, which shows in particular that the
above definition is independent of the choice of φx satisfying (2.6.5) and (2.6.6).
If u is a section of Vďn bC OW , we say that a section of V ďn

X |W equals u in the
η-coordinate if this section is Uϱpηq´1u.

Theorem 2.6.2. Suppose that η P OpW q is univalent on each fiber of W , x takes the form
(2.6.4), and v P V ďn

X pW q equals u P Vďn bC OpW q in the η-coordinate. Then in the
η-coordinate, Lxv equals

hpη, τ‚qBηu `

m
ÿ

j“1

gjpτ‚qBτju ´
ÿ

kě1

1

k!
B
k
ηhpη, τ‚qLk´1u. (2.6.9)

Proof. Choose V, φx as above. We have v “ Uϱpηq´1u. Then, in the η-coordinate,
Vϱpφx

ζq´1
`

v
ˇ

ˇ

φx
ζpV q

˘

equals

UϱpηqVϱpφx
ζq

´1
`

v
ˇ

ˇ

φx
ζpV q

˘

“ UϱpηqVϱpφx
ζq

´1Uϱpηq
´1

`

u
ˇ

ˇ

φx
ζpV q

˘

,

which by (2.6.1) equals

UϱpηqUϱpη ˝ φx
ζq

´1
pφx

ζq
´1
˚

`

u
ˇ

ˇ

φx
ζpV q

˘

“Upϱpη|η ˝ φx
ζqq

`

u ˝ φx
ζ

˘ˇ

ˇ

V

It is easy to see that the derivative over ζ of the above expression at ζ “ 0 equals
(2.6.9). Indeed, the first two terms of (2.6.9) come from the derivative of u ˝ φx

ζ .
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The last term comes from the derivative of Upϱpη ˝ φx
ζ |ηq´1q. Identify V with

pη, τ‚qpV q Ă C ˆ Cm via pη, τ‚q. Then by (2.5.1),

ϱpη|η ˝ φx
ζqppzq “ η ˝ φx

´ζpz ` η ˝ φx
ζppq, τ‚ppqq ´ ηppq.

So, as φx
0 “ 1, using (2.6.7), we get

Bζϱpη|η ˝ φx
ζqppzq

ˇ

ˇ

ζ“0
“ Bζ η ˝ φx

´ζpz ` ηppq, τ‚ppqq
ˇ

ˇ

ζ“0
` Bζ pz ` η ˝ φx

ζppqq
ˇ

ˇ

ζ“0

“ ´ hpz ` ηppq, τ‚ppqq ` hppq,

noting that p “ pηppq, τ‚ppqq. So

Bζϱpη|η ˝ φx
ζq

pkq
p p0q

ˇ

ˇ

ζ“0
“ ´B

k
ηhppq.

Thus, by Lemma 2.3.4, we have

BζUpϱpη ˝ φx
ζ |ηq

´1
q
ˇ

ˇ

ζ“0
“ ´

ÿ

kě1

1

k!
B
k
ηhpη, τ‚qLk´1.

Remark 2.6.3. Note that if φ : U Ñ V is biholomorphic and fiber-preserving, then
φ maps any (complex and holomorphic) path in each Ub to one in Vφpbq. Thus
φ˚ ” dφ maps tangent vectors of Ub to those of Vφpbq. Thus one can define an
isomorphism dφ : ΘC{B|U

»
ÝÑ ΘC{B|V , and hence

φ˚ ” dφ : Θbn
C{B|U

»
ÝÑ Θbn

C{B|V

for each n P Z. One can thus use (2.6.8) (with Vϱpφx
ζq replaced by dφx

ζ) to define the
Lie derivatives on Θbn

C{B. When n P N, it is easy to see that the Lie derivatives on
V ďn
X {V ďn´1

X is the same as those on Vpnq bC Θbn
C{B. One can also define Lie deriva-

tives on V ďn
X b ωC{B (recall that ωC{B “ Θ´1

C{B), and the formula of Lie derivatives
is exactly the same as (2.6.9), except that L0 should be replaced by L0 ´ 1. (In
other words, there is an extra term Bηhpη, τ‚qu contributed by the Lie derivatives
on ωC{B.) In the next chapter, we will use the Lie derivatives on V ďn

X b ωC{B to
define connections on sheaves of conformal blocks.
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Chapter 3

Sheaves of conformal blocks

3.1 Spaces of conformal blocks

Let V be always a (CFT-type) VOA. Let X “ pC;x1, . . . , xN ; η1, . . . , ηNq be anN -
pointed complex curve with local coordinates. Recall that if W is a V-module, the
vertex operator YW can be regarded as a Cppzqq-module homomorphism VppzqqbC
W Ñ Wppzqq sending each vbw to YWpv, zqw. (See (2.4.4); here v P V is considered
as the constant section in Vppzqq.) Let W1,W2, . . . ,WN be V-modules. Set W‚ “

W1 b W2 b ¨ ¨ ¨ b WN .

Convention 3.1.1. By w P W‚, we mean a vector of W1 b ¨ ¨ ¨ b WN . By w‚ P W‚,
we mean a vector of the form w1 b w2 b ¨ ¨ ¨ b wN , where w1 P W1, . . . , wN P WN .

Recall that SX is the divisor x1 `x2 ` ¨ ¨ ¨ `xN . For each 1 ď i ď N , we choose a
neighborhood Ui of xi on which ηi is defined. Then, by tensoring with the identity
map of ωUi

, the map (2.4.8) induces naturally an OUi
-module isomorphism

Uϱpηiq : VC |Ui
b ωUi

p‚SXq
»
ÝÑ V bC ωUi

p‚SXq.

Let pηiq˚ : ωUi

»
ÝÑ ωηipUiq be the pushforward of differentials, i.e. pηiq˚ “ pη´1

i q˚. It
can be extended by linearity to pηiq˚ : V bC ωUi

p‚SXq
»
ÝÑ V bC ωηipUiqp‚0q. Let

Vϱpηiq : VC |Ui
b ωUi

p‚SXq
»
ÝÑ V bC ωηipUiqp‚0q

Vϱpηiq “ pηiq˚Uϱpηiq. (3.1.1)

In the case that Ui and ηipUiq are identified by ηi, we have Uϱpηiq “ Vϱpηiq. Let z be
the standard coordinate of C. If v is a section of VC |Ui

b ωUi
p‚SXq defined near xi,

we define a linear action of v on Wi such that if wi P Wi, then

v ¨ wi “ Resz“0YWi
pVϱpηiqv, zqwi (3.1.2)
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Define a linear action of H0pC,VC b ωCp‚SXqq on W‚ as follows. If v P

H0pC,VC b ωCp‚SXqq, the action of v on any w‚ is

v ¨ w‚ “

N
ÿ

i“1

w1 b w2 b ¨ ¨ ¨ b pv|Ui
q ¨ wi b ¨ ¨ ¨ b wN . (3.1.3)

We now define a space of covacua

TXpW‚q “
W‚

H0pC,VC b ωCp‚SXqq ¨ W‚

(3.1.4)

whose dual vector space is denoted by T ˚
X pW‚q and called a space of conformal

blocks or space of vacua.
A conformal block ϕ P T ˚

X pW‚q is understood as a chiral correlation func-
tion in physics. According to the above definition, ϕ as a linear functional on W‚

should vanish on the subspace H0pC,VC b ωCp‚SXqq ¨ W‚. Such condition is sim-
ilar to the Jacobi identity for VOAs. We now interpret this condition in a similar
fashion as Theorem 2.1.2.

For each ϕ P W˚
‚ and xi, if w‚ P W‚, we define

≀ϕxi
pw‚q P V˚

rrz˘1
ss

whose evaluation on each v P V, written as ≀ϕxi
pv, w‚q, equals

≀ϕxi
pv, w‚q “ ϕpw1 b w2 b ¨ ¨ ¨ b YWi

pv, zqwi b ¨ ¨ ¨ b wNq. (3.1.5)

By the lower truncation property, the above expression is an element of Cppzqq.
Also, the above expression makes sense when v is a section of VbC OηipUiq defined
near z “ 0. By linearity, we can define ≀ϕxi

pv, wq for any w P W‚. The following
theorem is also true when C is nodal; however, we will only be interested in the
smooth case. We understand

C ´ SX “ C ´ tx1, . . . , xNu.

Theorem 3.1.2. Assume that C is smooth. Let ϕ P W˚
‚ . Then the following are equiva-

lent.

(a) ϕ is an element of T ˚
X pW‚q.

(b) For each w P W‚, there exists a (necessarily unique) element

≀ϕpwq P H0
pC ´ SX,V

˚
C q (3.1.6)

such that for each 1 ď i ď N , if we identify Ui » ηipUiq via ηi and identify
VC |Ui

» V bC OUi
via Uϱpηiq, then the evaluation of ≀ϕpwq with any v P VCpUiq

(restricted to Ui ´ xi), written as ≀ϕpv, wq, is

≀ϕpv, wq “ ≀ϕxi
pv, wq. (3.1.7)
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Proof. Choose any v P H0pC,VC b ωCp‚SXqq. Assume w “ w‚ “ w1 b ¨ ¨ ¨ b wN .
Then

N
ÿ

i“1

Resz“0 ≀ϕxi

`

v, w‚

˘

“ ϕpv ¨ w‚q. (3.1.8)

Suppose that (b) is true. Then ≀ϕpv, w‚q is an element of H0pC, ωCp‚SXqq, and
the left hand side of the above expression equals

řN
i“1Resxi

≀ ϕpv, w‚q, which, by
residue theorem, equals 0. Thus ϕ vanishes on v ¨ w‚. This proves (a).

We now assume (a). Choose any n P N, and restrict ≀ϕxi
pw‚q to Vďn (or Vďn bC

OUi
when considering non-constant sections), which gives

≀ϕďn
xi

pw‚q P pVďn
q

˚
ppzqq.

Then for any w‚ P W‚ and v P H0pC,V ďn
C b ωCp‚SXqq, since ϕ vanishes on

H0pC,V ďn
C b ωCp‚SXqq ¨ W‚, we have

řN
i“1Resz“0 ≀ ϕxi

pv, w‚q equals 0 by (3.1.8).
Thus, by strong residue theorem, there exists

≀ϕďn
pw‚q P H0

pC, pV ďn
C q

˚
b ωCp‚SXqq

whose series expansion near each xi is ≀ϕďn
xi

. Equivalently, (3.1.7) holds for any i
and any v P V ďn

C pUiq. It is clear that ≀ϕďn1

pw‚q restricts to ≀ϕďnpw‚q when n1 ě n.
One can thus define ≀ϕpw‚q to be the projective limit of ≀ϕďnpw‚q over n.

Our next goal is to give a coordinate-free definition of conformal blocks. Let
X “ pC;x1, . . . , xNq be an N -pointed complex curve, and let W1, . . . ,WN be V-
modules. Define a vector space WXpW‚q isomorphic to W‚ as follows. WXpW‚q

is a (infinite rank) vector bundle on the 0-dimensional manifold tCu (consider as
the base manifold of the family C Ñ tCu). For any choice of local coordinates
η‚ “ pη1, . . . , ηNq of x1, . . . , xN respectively, we have a trivialization

Upη‚q : WXpW‚q
»
ÝÑ W‚ (3.1.9)

such that if µ‚ is another set of local coordinates, then

Upη‚qUpµ‚q
´1

“Upη‚ ˝ µ´1
‚ q

:“Upη1 ˝ µ´1
1 q b Upη2 ˝ µ´1

2 q b ¨ ¨ ¨ b UpηN ˝ µ´1
N q. (3.1.10)

If v P H0pC,VC b ωCp‚SXqq and w P WXpW‚q, we set

v ¨ w “ Upη‚q
´1

¨ v ¨ Upη‚q ¨ w, (3.1.11)

where the action of v on Upη‚qw (which depends on η‚) is defined by (3.1.2) and
(3.1.3).
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Lemma 3.1.3. The definition of v ¨ w in (3.1.11) is independent of the choice of η‚.

Proof. We prove this lemma for the caseN “ 1. The general cases can be proved in
a similar way. Choose local coordinates η, µ at x “ x1 defined on a neighborhood
U . We identify U with µpUq via µ. So µ is identified with the standard coordinate
1C of C, and η P G. (We will denote by z the standard complex variable of C.) Also,
identify WXpWq (where W “ W1 “ W‚) with W via Upµq. So Upµq “ Up1Cq “ 1.
Choose any w P W , and assume that v is of the form

Vϱpµqv “ Uϱpµqv “ upzqdz

where u “ upzq P V bC OCp‚0qpUq. Then, by (2.4.9), we have

Uϱpηqv “ Upϱpη|1Cqqupzqdz “ Upϱpη|1Cqzqupzqdz.

By (3.1.1), we have

Vϱpηqv “ η˚

`

Upϱpη|1Cqzqupzqdz
˘

“ Upϱpη|1Cqη´1pzqq ¨ upη´1
pzqq ¨ dpη´1

pzqq.

We calculate that

Upηq
´1

¨ v ¨ Upηq ¨ w “ Resz“0 Upηq
´1YW

`

Vϱpηqv, z
˘

Upηqw

“Resz“0 Upηq
´1YW

`

Upϱpη|1Cqη´1pzqq ¨ upη´1
pzqq, z

˘

Upηqw ¨ dpη´1
pzqq,

which by Theorem 2.4.1 equals

Resz“0 YW
`

upη´1
pzqq, η´1

pzq
˘

w ¨ dpη´1
pzqq

“Resz“0 YW
`

upzq, z
˘

w ¨ dz “ Upµq
´1

¨ v ¨ Upµq ¨ w.

The proof is complete.

Thus, we have a coordinate-independent linear action of H0pC,VC b ωCp‚SXqq

on WXpW‚q. Then the space of conformal blocks T ˚
X pW‚q is the dual space of the

space of covacua

TXpW‚q “
WXpW‚q

H0pC,VC b ωCp‚SXqq ¨ WXpW‚q
. (3.1.12)

Remark 3.1.4. We remark that Theorem 3.1.2 still holds in this general setting.
Indeed, by Theorem 2.4.1, for each w P WXpW‚q one can define ≀ϕxi

pwq whose ex-
pression is covariant under the change of local coordinates. Thenϕ is a conformal
block if and only if for each w, all these ≀ϕxi

pwq can be extended to a (necessarily
unique) ≀ϕpwq which is independent of the choice of local coordinates.
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Example 3.1.5. Let C “ P1. Let ζ be the standard coordinate of C “ P1 ´ t8u, and
let ϖ “ ζ´1 be a coordinate of 8 defined on P1 ´ t0u. Let X “ pP1; 0,8; ζ,ϖq. So
the divisor SX is 0 ` 8, and hence P1 ´ SX “ C ´ t0u “ Cˆ. Choose V -modules
W1,W2 associated to 0,8 respectively. Let W‚ “ W1 b W2. We shall show that
there is an isomorphism HomV pW1,W1

2q » T ˚
X pW‚q.

Define a linear map HomV pW1,W1
2q Ñ T ˚

X pW‚q as follows. If T P

HomV pW1,W1
2q, then the corresponding conformal blockϕT , as a linear functional

on W‚, is defined by

ϕT pw‚q “ xTw1, w2y (3.1.13)

for each w‚ :“ w1 b w2 P W1 b W2. We now verify that ϕT is a conformal block
by verifying (b) of Theorem 3.1.2. VP1 |Cˆ is generated by all Uϱpζq´1v where v P V.
Moreover, it is easy to define ≀ϕT pw‚q P H0pCˆ,V ˚

P1q such that for any v,

≀ϕT

`

Uϱpζq
´1v, w‚

˘

“ xTYW1pv, ζqw1, w2y,

considering Uϱpζq´1v as a section on Cˆ. The series expansion of ≀ϕT pw‚q near 0 is
clearly ≀ϕT,0pw‚q. Near 8, we have

≀ ϕT,8

`

Uϱpζq
´1v, w‚

˘

“ ϕT,8

`

w1 b YW2pUϱpϖqUϱpζq
´1v,ϖqw2

˘

“xTw1, YW2pUϱpϖqUϱpζq
´1v,ϖqw2y “ xTw1, YW2pUpϱpϖ|ζqqv, ζ´1

qw2y.

According to (the proof of) Lemma 2.5.1 (note that we have ξ “ ζ and q “ ξϖ “ 1),
we have

Upϱpϖ|ζqq “ Upγζq,

where we recall by (2.3.15) that Upγζq “ eζL1p´ζ´2qL0 when acting on V . Thus, by
(2.3.16) and the above calculation, we have

≀ ϕT,8

`

Uϱpζq
´1v, w‚

˘

“ xTw1, YW2pUpγζqv, ζ´1
qw2y

“xTw1, YW2pv, ζq
tw2y “ xYW2pv, ζqTw1, w2y “ xTYW1pv, ζqw1, w2y.

Thus, the series expansion of ≀ϕT pw‚q near 8 is ≀ϕT,8pw‚q. So ϕT is a conformal
block.

It is obvious that the map T ÞÑ ϕT is injective. To show the surjectivity, we
choose any conformal block ϕ. Define a linear map T : W1 Ñ W ˚

2 satisfying
ϕpw‚q “ xTw1, w2y for anyw1, w2. Then for any v P V, by the above calculation, we
see that xTYW1pv, ζqw1, w2y and xTw1, YW2pv, ζqtw2y (which are elements of Cppζqq

and Cppζ´1qq respectively) are expansions near ζ “ 0 and ζ´1 “ 0 of the same
function in H0pP1,OP1p‚0 ` ‚8qq. Thus, they are equal to a polynomial of ζ . Take
v to be the conformal vector c. Then one sees that T intertwines the actions of L0.
This shows that T has image in W1

2, since, in particular, T maps L0-homogeneous
vectors of W1 to those of W1

2 with the same weights. It is now obvious that T
intertwines the actions of V, and that ϕ “ ϕT .
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Example 3.1.6. Choose any z P Cˆ. Let again ζ be the standard coordinate
of C. Then ζ, ζ ´ z, ζ´1 are local coordinates of 0, z,8 respectively. Set X “

pP1; 0, z,8; ζ, ζ ´ z, ζ´1q. Choose any V-module W, and set W‚ “ W b V b W1.
Then the vertex operator YW can be viewd as an element ϕ of T ˚XpW‚q by send-
ing each w‚ “ w b v b w1 P W b V b W1 to the scalar

ϕpw‚q “ xYWpv, zqw,w1
y.

One can define ≀ϕpw‚q P H0pC ´ tzu,V ˚
P1q such that for any u P V, the section

Uρpζq´1u on C´tzu is sent to the function f in Theorem 2.1.2. Using the argument
in the previous example, it is not hard to check that ≀ϕ0pw‚q, ≀ϕzpw‚q, ≀ϕ8pw‚q are
the series expansions of ≀ϕpw‚q near 0, z,8 respectively. This proves that ϕ is a
conformal block.

3.2 Sheaves of conformal blocks

Let X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq be a family of N -pointed complex
curves with local coordinates. Let z be the standard coordinate of C. Let OBppzqq

be the OB-module associating to each open V Ă B the algebra OpV qppzqq. If W is
a V-module, we have a homomorphism of OBppzqq-modules

YW :
`

V bC OBppzqq
˘

bOB pW bC OBq Ñ W bC OBppzqq,

v b w ÞÑ YWpv, zqw (3.2.1)

where v “ v b 1, w “ w b 1 are constant sections. Note a section of V bC OCˆB on
a neighborhood of t0u ˆV (where V is an open subset of B) can be regarded as an
element of V bC OBpV qppzqq by taking series expansion.

If W1, . . . ,WN are V-modules, we set W‚ “ W1 b ¨ ¨ ¨ bWN as usual, and define

WXpW‚q “ W‚ bC OB. (3.2.2)

Choose mutually disjoint neighborhoods U1, . . . , UN of ς1pBq, . . . , ςNpBq on which
η1, . . . , ηN are defined respectively. For each i we have

Uϱpηiq : VX b ωC{Bp‚SXq
ˇ

ˇ

Ui

»
ÝÑ V bC ωC{Bp‚SXq

ˇ

ˇ

Ui
,

and the pushforward

pηi, πq˚ : ωC{B
ˇ

ˇ

Ui

»
ÝÑ ωpηi,πqpUiq{B

equaling ppηi, πq´1q˚, which, by tensoring with 1V, gives rise to (identifying B with
t0u ˆ B)

pηi, πq˚ : V bC ωC{Bp‚SXq
ˇ

ˇ

Ui

»
ÝÑ V bC ωpηi,πqpUiq{Bp‚Bq.
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Define

Vϱpηiq : VX b ωC{Bp‚SXq
ˇ

ˇ

Ui

»
ÝÑ V bC ωpηi,πqpUiq{Bp‚Bq,

Vϱpηiq “ pηi, πq˚ ¨ Uϱpηiq. (3.2.3)

If V is an open subset of B, and v is a section of VX b ωC{Bp‚SXq
ˇ

ˇ

Ui
defined near

ςipV q, then Vϱpηiqv, which is a section defined near t0u ˆ V , can be viewed (by
taking series expansion) as an element of VbC OBpV qppzqqdz. If wi P Wi bC OBpV q,
we set

v ¨ wi “ Resz“0YWi
pVϱpηiqv, zqwi. (3.2.4)

One can now define an OB-linear action of π˚

`

VX b ωC{Bp‚SXq
˘

on WXpW‚q

as follows. If V Ă B is open, for any v in π˚

`

VX b ωC{Bp‚SXq
˘

pV q “
`

VX b

ωC{Bp‚SXq
˘

pπ´1pV qq and any w P WXpW‚qpV q, we set

v ¨ w‚ “

N
ÿ

i“1

w1 b w2 b ¨ ¨ ¨ b pv|UiXπ´1pV qq ¨ wi b ¨ ¨ ¨ b wN . (3.2.5)

Then for each b P V , the value pv ¨ w‚qpbq (which is a vector inside the fiber
WXpW‚q|b » W‚) equals

pv ¨ w‚qpbq “ pv|Cbq ¨ w‚pbq (3.2.6)

where w‚pbq “ w1pbq bw2pbq b ¨ ¨ ¨ bwNpbq, and v|Cb, the restriction of v to the fiber
Cb, is in VCb bωCbp‚SXpbqq. The action on the right hand side of (3.2.6) is defined by
(3.1.2) and (3.1.3).

Define a sheaf of covacua

TXpW‚q “
WXpW‚q

π˚

`

VX b ωC{Bp‚SXq
˘

¨ WXpW‚q
(3.2.7)

whose dual sheaf is denoted by T ˚
X pW‚q and called a sheaf of conformal blocks

or sheaf of vacua. π˚

`

VX bωC{Bp‚SXq
˘

¨ WXpW‚q is the sheaf of OB-modules associ-
ated to the presheaf whose sections on any open V Ă B are (linear combinations
of) those in π˚

`

VX b ωC{Bp‚SXq
˘

pV q ¨ WXpW‚qpV q.
For each b P B, we let Xb be the restriction of X to Cb “ π´1pbq, i.e.

Xb “ pCb; ς1pbq, . . . , ςNpbq; η1|U1XCb , . . . , ηN |UNXCbq.

We show that each fiber of the sheaf TXpW‚q is isomorphic to the space of covacua
TXb

pW‚q. Note the obvious OB,b-module isomorphism of stalks

TXpW‚qb »
WXpW‚qb

π˚

`

VX b ωC{Bp‚SXq
˘

b
¨ WXpW‚qb

. (3.2.8)

Recall that mb is the maximal ideal of OB,b.
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Theorem 3.2.1. For any b P B, the evaluation map at b:

WXpW‚qb “ W‚ bC OB,b Ñ W‚, w ÞÑ wpbq (3.2.9)

descends to an isomorphism

TXpW‚q|b “
TXpW‚qb

mb ¨ TXpW‚qb

»
ÝÝÑ TXb

pW‚q. (3.2.10)

Proof. By (3.2.8), the fiber TXpW‚q|b equals WXpW‚qb modulo the subspace
spanned by mb ¨ WXpW‚qb and π˚

`

VX b ωC{Bp‚SXq
˘

b
¨ WXpW‚qb. The first one is

sent by the map (3.2.9) to 0, and the second one into H0
`

Cb,VCb b ωCbp‚SXpbqq
˘

W‚

according to the relation (3.2.6). Thus the linear map (3.2.10) is well-defined. It
is clearly surjective. To show that (3.2.10) is injective, it suffices to show that the
map (3.2.9) sends π˚

`

VX bωC{Bp‚SXq
˘

b
¨WXpW‚qb onto H0

`

Cb,VCb bωCbp‚SXpbqq
˘

W‚.
This follows from Corollary 2.5.8.

Remark 3.2.2. For any open subset V Ă B, an element ϕ P T ˚
X pW‚qpV q is an ho-

momorphism WXpW‚q|V Ñ OV vanishing on π˚

`

VX bωC{Bp‚SXq
˘

pW q ¨WXpW‚qpW q

for any open subset W Ă V . By (3.2.6), it is clear that this vanishing requirement
ð for any b P V , the fiber

ϕpbq : WXpW‚q|b » WXb
pW‚q Ñ OB|b » C

vanishes on H0pC,VCb b ωCbp‚SXb
qq ¨ W‚. By Corollary 2.5.8, we also have ñ. This

proves:

Proposition 3.2.3. Let V Ă B be open, and let ϕ : WXpW‚q|V Ñ OV be a homomor-
phism of OV -modules. Then ϕ is a conformal block if and only if its restriction to each
fiber is a conformal block. More precisely,ϕ P T ˚

X pW‚qpV q if and only ifϕpbq P T ˚
Xb

pW‚q

for any b P V .

We now define the sheaves of covacua and conformal blocks for any family
X “ pπ : C Ñ B; ς1, . . . , ςNq of N -pointed complex curves whose local coordinates
are not specified. If V Ă B is open, then XV denotes the subfamily

XV “ pπ : CV “ π´1
pV q Ñ V ; ς1|V , . . . , ςN |V q. (3.2.11)

Define WXpW‚q to be an infinite rank locally free sheaf on B as follows. For any
connected open subset V Ă B together with local coordinates η1, . . . , ηN of the
family π : CV Ñ V defined near ς1pV q, . . . , ςNpV q respectively, we have a trivial-
ization

Upη‚q ” Upη1q b ¨ ¨ ¨ b UpηNq : WXpW‚q|V
»
ÝÑ W‚ bC OV (3.2.12)
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such that if µ‚ is another set of local coordinates, then

Upη‚qUpµ‚q
´1 : W‚ bC OV

»
ÝÑ W‚ bC OV

is defined such that for any constant section w‚ “ w1 b ¨ ¨ ¨ b wN P W‚,
Upη‚qUpµ‚q´1w‚, as a W‚-valued holomorphic function, satisfies

´

U
`

η‚

˘

U
`

µ‚

˘´1
w‚

¯

pbq ”

´

U
`

η‚

ˇ

ˇµ‚

˘

w‚

¯

pbq

“U
`

pη1|µ1qb
˘

w1 b U
`

pη2|µ2qb
˘

w2 b ¨ ¨ ¨ b U
`

pηN |µNqb
˘

wN (3.2.13)

for any b P V . Here, for each 1 ď i ď N , pηi|µiqb is the element in G satisfying

pηi|µiqbpzq “ ηi ˝ pµi, πq
´1

pz, bq. (3.2.14)

If we compare the transition functions (3.1.10) and (3.2.13), we see that there is a
natural and coordinate-independent isomorphism of vector spaces

WXpW‚q|b » WXb
pW‚q

where WXb
pW‚q is defined near (3.1.9). We shall identify these two spaces in the

following.
The action of π˚

`

VXbωC{Bp‚SXq
˘

on WXpW‚q is defined fiberwisely by the action
of π˚

`

VX b ωC{Bp‚SXq
˘

pbq “ H0
`

Cb,VCb b ωCbp‚SXpbqq
˘

(recall again Corollary 2.5.8)
on WXb

pW‚q. By (3.2.6), it is clear that if we choose a set of local coordinates η‚ near
ς1pV q, . . . , ςNpV q as above, and if we identify WXpW‚q|V » W‚bCOV via Upη‚q, then
this action is described by (3.2.4) and (3.2.5).

The sheaf of covacua TXpW‚q is defined still by (3.2.7), and the sheaf of con-
formal blocks T ˚

X pW‚q is its dual sheaf.

Proposition 3.2.4. Assume that B is connected, and let ϕ : WXpW‚q Ñ OB be a homo-
morphism of OB-modules. Suppose that V is a non-empty open subset of B, and the re-
striction ϕ|V : WXpW‚q|V Ñ OV is an element in T ˚

X pW‚qpV q. Then ϕ P T ˚
X pW‚qpBq.

Proof. We first assume that B is small enough such that X can be equipped
with N local coordinates, and that the connect manifold B is biholomorphic to
a polydisc which in particular is Stein. Then for each b P B, the restriction of
π˚

`

VXbωC{Bp‚SXq
˘

pBq¨WXpW‚qpBq to the fiber Cb isH0pCb,VXb
bωCbp‚SXqq¨WXb

pW‚q

by Corollary 2.5.8. Thus, ϕ is a conformal block if and only if its evaluation with
any element of π˚

`

VX b ωC{Bp‚SXq
˘

pBq ¨ WXpW‚qpBq (which is a holomorphic func-
tion on B) is zero. By our assumption, such holomorphic function vanishes on V .
Thus it is zero on B.

In general, we let A be the set of all b P B such that b has a neighborhood
W such that the restriction ϕ|W is a conformal block. Then A is open and (by
assumption) non-empty. For any b P B´A, let W be a connected neighborhood of
b small enough as in the first paragraph. Then ϕ|W is a conformal block if W has
a non-zero open subset V such that ϕ|V is a conformal block. Therefore W must
be disjoint from A. This shows that B ´ A is open. Thus B “ A.
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Next, we generalize Theorem 3.1.2 to sheaves of conformal blocks. Assume
that X has local coordinates η1, . . . , ηN . Let ϕ : WXpW‚q Ñ OB be a homomor-
phism of OB-modules. Then for each 1 ď i ď N , we have an OBppzqq-module
homomorphism

≀ϕςipBq :
`

V bC OBppzqq
˘

bOB pW‚ bC OBq Ñ OBppzqq

such that for each v P V, w‚ P W‚, considered as constant sections on B of V bC
OBppzqq and W‚ bC OB respectively, v b w‚ is sent to

≀ϕςipBqpv b w‚q ” ≀ϕςipBqpv, w‚q “ ϕpw1 b w2 b ¨ ¨ ¨ b YWi
pv, zqwi b ¨ ¨ ¨ b wNq.

(3.2.15)

For any b P B, for the fiber map ϕpbq : WXb
pW‚q Ñ C we can define ≀ϕpbqςipbq as in

Section 3.1. Then it is clear that the following elements in Cppzqq are equal:

≀ϕpbqςipbqpv, w‚q “
`

≀ ϕςipBqpv, w‚q
˘

pbq. (3.2.16)

Shortly speaking, the restriction of ≀ϕςipBq to each fiber Cb equals ≀ϕpbqςipbq.
For any (non-necessarily open) subset E Ă C, we set

E ´ SX “ E ´

N
ď

i“1

ςipBq. (3.2.17)

Choose mutually disjoint neighborhoods U1, . . . , UN of ς1pBq, . . . , ςNpBq on which
η1, . . . , ηN are defined respectively. Note that VX and VX|C´SX

are OB modules real-
ized by pulling back OB to C. The following theorem is clearly true if B is replaced
by an open subset V and X by the the subfamily XV .

Theorem 3.2.5. Assume that X is a smooth family. Let ϕ : WXpW‚q Ñ OB be a homo-
morphism of OB-modules. Then the following are equivalent.

(a) ϕ is an element of T ˚
X pW‚qpBq.

(b) For each open V Ă B and w P WXpW‚qpV q » W‚ bCOBpV q, there is a (necessarily
unique) element

≀ϕpwq P H0
pCV ´ SX,V

˚
X q

satisfying that for each 1 ď i ď N , if we identify Ui » pηi, πqpUiq via pηi, πq

and identify VX|Ui
» V bC OUi

via Uϱpηiq, then the evaluation of ≀ϕpwq with any
v P VXpUi X CV q (restricted to Ui X CV ´ SX) is

≀ϕpv, wq “ ≀ϕςipBqpv, wq. (3.2.18)

Note that v P VXpUi X CV q can be regarded as an element of V bC OBpV qppzqq.
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Proof. Suppose that (b) holds. Then by (3.2.16), for any b P B and any section w
of WXpW‚q defined near b, the restriction ≀ϕpwq|Cb´SX

“ ≀ϕpwq|Cb´SXb
, which is an

element in H0pCb ´ SXb
,V ˚

Xb
q, has series expansion ≀ϕpbqςipbq near each ςipbq. Thus,

by Theorem 3.1.2, ϕpbq is a conformal block on the fiber Cb. Since this is true for
each b P B, by Proposition 3.2.3, ϕ is a conformal block on the family X. This
proves (a).

Now assume (a). Choose open V Ă B and w P WXpW‚qpV q. For any n P N, the
restriction of ≀ϕςipBqpwq to Vďn bC OV gives a homomorphism of OV -modules

si :“ ≀ϕďn
ςipBq

pwq : Vďn
bC OV Ñ OV ppzqq.

which can also be considered as

si P
`

pVďn
q

˚
bC OpV q

˘

ppzqq.

Let E “ pV ďn
X q˚|CV . By the fact due to Proposition 3.2.3 that ϕpbq is a conformal

block on Cb for each b P V , it is easy to see that s1, . . . , sN satisfy (b) of Theorem
1.4.1. Thus they also satisfy (a) of that theorem, namely, that s1, . . . , sN can be
extended to an element

s :“ ≀ϕďn
pwq P H0

pCV ,V ˚
X p‚SXq|CV q,

which can also be regarded as in H0pCV ´ SX,V ˚
X |CV q. It is clear that ≀ϕďn1

pwq

restricts to ≀ϕďnpwq when n1 ě n. Thus ≀ϕpwq, the projective limit over n P N of
≀ϕďnpwq, satisfies (3.2.18). This proves (b).

Remark 3.2.6. In the case that local coordinates are not assigned to the smooth
family X, one can still define ≀ϕ for each ϕ P T ˚

X pW‚qpBq. Indeed, for each 1 ď

i ď N , the restriction of ≀ϕςipBq to each fiber Cb is independent of the choice of
local coordinates by (the proof of) Lemma 3.1.3. So is ≀ϕ. Thus, one can define ≀ϕ
locally, and glue them together to obtain the global section.

3.3 Sewing conformal blocks

Formal conformal blocks

Let X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq be a family of N -pointed complex
curves with local coordinates obtained via sewing the following smooth family

rX “ prπ : rC Ñ rB; ς1, . . . , ςN ; ς 1
1, . . . , ς

1
M ; ς2

1 , . . . , ς
2
M ; η1, . . . , ηN ; ξ1, . . . , ξM ;ϖ1, . . . , ϖMq.

(See Section 1.6.) As suggested by the notations, we require as in Remark 1.6.1
that the N -points ς1, . . . , ςN and the local coordinates η1, . . . , ηN of X are constant
with respect to sewing. In this section, we only assume that each connected component
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of each fiber rCb contains at least one of the N ` 2M marked points of rXb. This is slightly
weaker than the assumption in Rem. 1.6.1. Choose V-modules W1, . . . ,WN , and
M1, . . . ,MM whose contragredient modules are M1

1, . . . ,M1
M , which are associated

to ς1, . . . , ςN , ς 1
1, . . . , ς

1
M , ς2

1 , . . . , ς
2
M respectively.

To simplify discussions, we assume throughout this section that rB is Stein.
This assumption allows us to work with modules instead of sheaves of modules.
Recall that we have

Dr‚ρ‚
“ Dr1ρ1 ˆ ¨ ¨ ¨ ˆ DrMρM , B “ rB ˆ Dr‚ρ‚

.

Then B is also Stein. We have the identification WXpW‚q » W‚ bC OB realized by
Upη‚q. By taking series expansions, OpBq can be regarded as a subalgebra of

Op rBqrrq‚ss “ Op rBqrrq1, q2, . . . , qM ss,

whose elements are formal power series of q1, . . . , qM whose coefficients are in
Op rBq. In particular, Op rBqrrq‚ss is an OpBq-module. Choose a homomorphism of
OpBq-modules

ϕ : WXpW‚qpBq “ W‚ bC OpBq Ñ Op rBqrrq‚ss. (3.3.1)

We say thatϕ is a formal conformal block ifϕ vanishes on π˚

`

VXbωC{Bp‚SXq
˘

pBq¨

WXpW‚qpBq. We say that ϕ converges absolutely and locally uniformly (a.l.u.) if
the image of ϕ is in OpBq. This name is explained below.

Remark 3.3.1. Write

qn‚

‚ “ qn1
1 q

n2
2 ¨ ¨ ¨ qnM

M

for any n‚ “ pn1, n2, . . . , nMq P NM . For each w P WXpW‚qpBq, we have the series
expansion

ϕpwq “
ÿ

n‚PNM

ϕpwqn‚
¨ qn‚

‚

where each ϕpwqn‚
is a holomorphic function on rB. Then it is clear that ϕ con-

verges a.l.u. on B if and only if for any w (which is sufficient to be constant) and
any compact subsets K Ă rB and Q Ă Dr‚ρ‚

, there exists C ą 0 such that
ÿ

n‚PNM

ˇ

ˇϕpwqn‚
pbq

ˇ

ˇ ¨ |qn‚

‚ | ď C (3.3.2)

for any b P K and q‚ “ pq1, . . . , qMq in Q.
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If ϕ converges a.l.u. on B, one can regard ϕ as a homomorphism of OB-
modules

ϕ : WXpW‚q “ W‚ bC OB Ñ OB

whose values at the global sections of WXpW‚q are given by (3.3.1).

Proposition 3.3.2. Let ϕ in (3.3.1) be a formal conformal block, and assume that ϕ
converges a.l.u..

1. If for every b P rB, each connected component of rCb contains at least one
ς1pbq, . . . , ςNpbq (cf. Rem. 1.6.1), then ϕ is a conformal block, i.e. ϕ P T ˚

X pW‚qpBq.

2. If for every b P B ´ ∆ “ rB ˆ Dˆ
r‚ρ‚

, each connected component of Cb contains at
least one of ς1pbq, . . . , ςNpbq, then ϕ is a conformal block on B ´ ∆.

Proof. Case 1 follows easily from Corollary 2.5.8, Proposition 3.2.3, and our as-
sumption that rB (and hence B) is Stein.

In case 2, note that Proposition 3.2.3 and Theorem 2.5.6 apply to the restriction
XB´∆. So it suffices to prove for all n P N that for sufficiently large k P N, the
elements of π˚

`

VX b ωC{BpkSXq
˘

pBq generate the stalk π˚

`

V ďn
X b ωC{BpkSXq

˘

b
. This

follows from Cartan’s theorem A and that π˚

`

VX b ωC{BpkSXq
˘

is coherent (by
Grauert’s direct image theorem).

Sewing conformal blocks

Let W‚ b M‚ b M1
‚ be

W1 b ¨ ¨ ¨ b WN b M1 b M1
1 b ¨ ¨ ¨ b MM b M1

M . (3.3.3)

We have switched the orders and put each Mj and its contragredient module M1
j

together, which are associated to ς 1
jpBq and ς2

j pBq respectively. Our goal is to define
a formal conformal block from each element of T ˚

rX
pW‚ b M‚ b M1

‚q. Notice that
for each j “ 1, . . . ,M , pM1

j b Mjq
˚ can be regarded as the algebraic completion of

Mj b M1
j . Define

§ bj đ P pM1
j b Mjq

˚

such that for any m1 P M1
j,m P Mj ,

x§ bj đ,m1
b my “ xm1,my.

Let A P EndpMjq whose transpose At P EndpM1
jq exists, i.e.,

xAm,m1
y “ xm,Atm1

y (3.3.4)
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for any m1 P M1
j,m P Mj . Then we have an element

A § bjđ ” § bj A
tđ P pM1

j b Mjq
˚ (3.3.5)

whose value at each m1 b m is (3.3.4).
More explicitly, for each n P N we choose a basis tmpn, aqua of the finite dimen-

sional vector space Mjpnq (which we recall is the n-eigenspace of rL0; recall also
Convention 2.2.6). Its dual basis t qmpn, aqua is a basis of M1

jpnq “ Mjpnq˚ satisfying
xmpn, aq, qmpn, bqy “ δa,b. Then we have

§ bj đ “
ÿ

nPN

ÿ

a

mpn, aq b qmpn, aq,

and

A § bjđ “
ÿ

nPN

ÿ

a

A ¨ mpn, aq b qmpn, aq

“ § bjA
tđ “

ÿ

nPN

ÿ

a

mpn, aq b At
¨ qmpn, aq.

Let P pnq be the projection of Mj onto Mjpnq. Its transpose, which is the projec-
tion of M1

j onto W1
jpnq, is also denoted by P pnq. Then we clearly have

P pnq § bjđ “ § bj P pnqđ “
ÿ

a

mpn, aq b qmpn, aq P Mj b M1
j.

Recall rLt
0 “ rL0. Define

q
rL0
j “

ÿ

kPN

P pnqqnj P EndpMjqrrqjss. (3.3.6)

Then we have

q
rL0
j § bjđ “ § bj q

rL0
j đ P pMj b M1

jqrrqjss. (3.3.7)

For any ψ P T ˚
rX

pW‚ b M‚ b M1
‚qp rBq, we define its (normalized) sewing rSψ

which is an OpBq-module homomorphism

rSψ : WXpW‚qpBq “ W‚ bC OpBq Ñ Op rBqrrq‚ss,

and the (standard) sewing

Sψ : WXpW‚qpBq “ W‚ bC OpBq Ñ Op rBqtq‚u,

as follows. Regardψ as an Op rBq-module homomorphism W‚bM‚bM1
‚bCOp rBq Ñ

Op rBq. rSψ is defined such that for any constant section w P W‚,

rSψpwq “ ψ
´

w b pq
rL0
1 § b1đq b ¨ ¨ ¨ b pq

rL0
M § bMđq

¯

. (3.3.8)
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Sψ is defined similarly, except that the normalized energy operator rL0 is replaced
by the standard one L0. When M1, . . . ,MM are irreducible, rSϕ differs from Sϕ by
a factor qλ1

1 ¨ ¨ ¨ qλM
M for some λ1, . . . , λM P C. Our goal is to show that rSψ is a formal

conformal block. In the case that M1, . . .MM are semisimple (which is sufficient
for our purpose), this will show that Sϕ is also a formal conformal block in a
suitable sense. We begin our proof with the following observation, in which we
have omitted the subscript j of ξ,ϖ, q for simplicity.

Lemma 3.3.3. Let R be any unital commutative C-algebra. (For instance, R “ OpXq

where X is a complex manifold.) For any u P V and f P Rrrξ,ϖss, the following two
elements in pMj b M1

j b Rqrrqss (where the tensor products are over C) are equal:

Resξ“0 YMj

`

ξL0u, ξ
˘

q
rL0 § bj đ ¨fpξ, q{ξq

dξ

ξ

“Resϖ“0 q
rL0 § bjYM1

j

`

ϖL0Upγ1qu,ϖ
˘

đ ¨fpq{ϖ,ϖq
dϖ

ϖ
. (3.3.9)

Remark 3.3.4. We explain the meaning of the left hand side; the other side can
be understood in a similar way. As q rL0 § bjđ is an element of pMj b M1

jqrrqss,
YMj

`

ξL0u, ξ
˘

q
rL0 § bjđ is an element of pMj b M1

jqppξqqrrqss, i.e. it is a formal power
series of q whose coefficients are in pMj b M1

jqppξqq. (Note that one cannot switch
the order of ppξqq and rrqss.) Identify pMj bM1

jqppξqqrrqss » pMj bM1
j b 1qppξqqrrqss,

which is a subspace of the Rppξqqrrqss-module pMj b M1
j b Rqppξqqrrqss. On the

other hand, write fpξ,ϖq “
ř

m,nPN fm,nξ
mϖn where each fm,n is in R. Then

fpξ, q{ξq “
ÿ

ně0

ÿ

kě´n

fn`k,nξ
kqn,

which shows fpξ, q{ξq P Rppξqqrrqss. Thus, the term in the residue on the left hand
side is an element in

pMj b M1
j b Rqppξqqrrqssdξ,

whose residue is in pMj b M1
j b Rqrrqss.

Proof of Lemma 3.3.3. Consider YMj

`

ξL0u, ξ
˘

q
rL0 as an element of EndpMjqrrξ˘1, qss.

Since rLt
0 “ rL0, we have the following relations of elements of EndpM1

jqrrξ˘1, q˘1ss:
`

YMj

`

ξL0u, ξ
˘

q
rL0

˘t
“ q

rL0
`

YMj

`

ξL0u, ξ
˘˘t (2.3.16)

ùùùùù q
rL0YM1

j

`

Upγξqξ
L0u, ξ´1

˘

(2.3.17)
ùùùùùq

rL0YM1
j

`

ξ´L0Upγ1qu, ξ
´1

˘ (2.4.6)
ùùùùù YM1

j

`

pq{ξq
L0Upγ1qu, q{ξ

˘

q
rL0 .

(Note that due to the appearance of q{ξ in the vertex operator, it was not known a
priori that the right hand side contains no negative powers of q.) Thus, by (3.3.5),
we have the following equations of elements in pM1

j b Mjq
˚rrξ˘1, q˘1ss:

YMj

`

ξL0u, ξ
˘

q
rL0 § bjđ “ § bj

`

YMj

`

ξL0u, ξ
˘

q
rL0

˘t
đ
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“ § bj YM1
j

`

pq{ξq
L0Upγ1qu, q{ξ

˘

q
rL0đ “ q

rL0 § bj YM1
j

`

pq{ξq
L0Upγ1qu, q{ξ

˘

đ .

(3.3.10)

Since for each n, P pnq § bjđ is in Mj b M1
j , (3.3.10) is actually an element in pMj b

M1
jqrrξ˘1, q˘1ss.

Let

Apξ, qq “ YMj

`

ξL0u, ξ
˘

q
rL0 § bjđ,

Bpϖ, qq “ q
rL0 § bj YM1

j

`

ϖL0Upγ1qu,ϖ
˘

đ,

considered as elements of pMj bM1
jqrrξ˘1, q˘1ss and pMj bM1

jqrrϖ˘1, q˘1ss respec-
tively. Then (3.3.10) says Apξ, qq “ Bpq{ξ, qq. Let Cpξ,ϖq P pMj b M1

jqrrξ˘1, ϖ˘1ss

beApξ, ξϖq, which also equalsBpϖ, ξϖq. SinceApξ, qq contains only non-negative
powers of q, so does Apξ, ξϖq for ϖ. Similarly, since Bpϖ, qq contains only
non-negative powers of q, so does Bpϖ, ξϖq for ξ. Therefore Cpξ,ϖq is an el-
ement in pMj b M1

jqrrξ,ϖss, where the latter can be identified with the sub-
space pMj b M1

j b 1qrrξ,ϖss of the Rrrξ,ϖss-module pMj b M1
j b Rqrrξ,ϖss. Thus

Dpξ,ϖq :“ fpξ,ϖqCpξ,ϖq is well-defined as an element in pMj b M1
j b Rqrrξ,ϖss.

It is easy to check that

Resξ“0

ˆ

Dpξ, q{ξq
dξ

ξ

˙

“ Resϖ“0

ˆ

Dpq{ϖ,ϖq
dϖ

ϖ

˙

.

(Indeed, they both equal
ř

nPNDn,nq
n if we write Dpξ,ϖq “

ř

m,nPNDm,nξ
mϖn.)

This proves (3.3.9).

Theorem 3.3.5. Let ψ P T ˚
rX

pW‚ bM‚ bM1
‚qp rBq. Then rSψ is a formal conformal block.

Proof. Step 1. Note that we have SX “
řN

i“1 ςipBq and S
rX “

řN
i“1 ςip

rBq `
řM

j“1pς
1
jp

rBq`ς2
j p rBqq. Choose any v in π˚

`

VXbωC{Bp‚SXq
˘

pBq “
`

VXbωC{Bp‚SXq
˘

pCq.
In this first step, we would like to construct a formal power series expansion

v “
ÿ

n‚PNM

vn‚
qn‚

‚ (3.3.11)

where each vn‚
is in

`

V
rX b ω

rC{ rBp‚S
rXq

˘

p rCq.
First, choose any precompact open subset rU of rC disjoint from the double

points ς 1
jp

rBq and ς2
j p rBq for all 1 ď j ď M . Then for each j one can find small

enough positive numbers ϵj ă rj, λj ă ρj such that rU ˆ Dϵ‚λ‚
is an open subset

of rC ˆ Dr‚ρ‚
´

Ť

j F
1
j ´

Ť

j F
2
j in (1.6.9), and hence an open subset of C. Moreover,

by (1.6.14), the projection π : C Ñ B equals rπ ˆ 1 : rC ˆ Dr‚ρ‚
Ñ rB ˆ Dr‚ρ‚

when
restricted to rUˆDϵ‚λ‚

. It follows that the section v|
rUˆDϵ‚λ‚

of VX bωC{Bp‚SXq can be
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regarded as a section of V
rXˆDr‚ρ‚

b ω
rCˆDr‚ρ‚ { rBˆDr‚ρ‚

p‚SXq, which, by taking power

series expansions at q‚ “ 0, is in turn an element of V
rX b ω

rC{ rBp‚S
rXqp rUqrrq‚ss. The

coefficient before qn‚
‚ defines vn‚

|
rU . This defines the section vn‚

of V
rX b ω

rC{ rBp‚S
rXq

on rC ´
ŤM

j“1pς
1
jp

rBq Y ς2
j p rBqq satisfying (3.3.11).

We now show that vn‚
has poles of orders at most nj `1 at ς 1

jp
rBq and ς2

j p rBq. This
will imply that vn‚

extends to a section of V
rXbω

rC{ rBp‚S
rXq on rC. Let rBj “ Dr‚ρ‚zj ˆ rB,

and choose open setsWj,W
1
j ,W

2
j as in the paragraph containing equation (2.5.10).

Define coordinates ξj, ϖi, qj as in the beginning of Section 1.6. Then, by (2.5.11)
and (1.6.24), v|Wj´Σ is a sum of those whose restrictions to W 1

j ,W
2
j under the triv-

ializations Uϱpξjq,Uϱpϖjq are

fpξj, qj{ξj, ¨qξ
L0
j u ¨

dξj
ξj

resp. ´ fpqj{ϖj, ϖ, ¨qϖ
L0
j Upγ1qu ¨

dϖj

ϖj

(3.3.12)

where u P V and f “ fpξj, ϖj, ¨q P OpWjq, and the coordinates of rBj are sup-
pressed as the dot. In the above two terms, if we take power series expansions of
q‚, then it is obvious that the coefficients before qn‚

‚ have poles of orders at most
nj ` 1 at ξj “ 0 and ϖj “ 0 respectively. This proves the claim.

Step 2. By (2.5.10), we can regard fpξj, ϖj, ¨q as an element of Op rBjqrrξj, ϖjss,
which in turn is an element of Op rBqrrq‚zj, ξj, ϖjss. Thus, by Lemma 3.3.3 (applied
to R “ Op rBqrrq‚zjss) and the fact that v|Wj´Σ is a (finite) sum of those of the form
(3.3.12), we have the following equation of elements in pMj b M1

j b Op rBqqrrq‚ss:
ÿ

n‚PNM

`

vn‚
¨ q

rL0
j § bj đ `q

rL0
j § bj vn‚

¨ đ
˘

qn‚

‚ “ 0 (3.3.13)

where the actions of vn‚
on Mj and M1

j are defined by (3.2.4) using the local coor-
dinates ξj, ϖj of rX. On the other hand, since ψ is conformal block, for each n‚, the
element An‚

P Op rBq defined by

An‚
:“ψ

´

vn‚
¨ w b pq

rL0
1 § b1đq b ¨ ¨ ¨ b pq

rL0
M § bMđq

¯

`

M
ÿ

j“1

ψ
´

w b pq
rL0
1 § b1đq b ¨ ¨ ¨ b vn‚

¨ q
rL0
j § bj đ b ¨ ¨ ¨ b pq

rL0
M § bMđq

¯

`

M
ÿ

j“1

ψ
´

w b pq
rL0
1 § b1đq b ¨ ¨ ¨ b q

rL0
j § bj vn‚

¨ đ b ¨ ¨ ¨ b pq
rL0
M § bMđq

¯

equals 0. Here, similarly, the action of vn‚
on w is defined by (3.2.4) and (3.2.5)

using the local coordinates η‚. By (3.3.13), we have

0 “
ÿ

n‚PNM

An‚
qn‚

‚ “
ÿ

n‚PNM

ψ
´

vn‚
¨ w b pq

rL0
1 § b1đq b ¨ ¨ ¨ b pq

rL0
M § bMđq

¯

qn‚

‚ ,

89



which is exactly rSψpv ¨ wq. This finishes the proof that rSψ is a formal conformal
block.

3.4 Propagation of conformal blocks

≀ϕ as a conformal block

Let X “ pC;x1, . . . , xNq be an N -pointed compact Riemann surface. Recall the
divisor SX “ x1 ` ¨ ¨ ¨ ` xN . As in previous sections, we write C ´ tx1, . . . , xNu as
C´SX for brevity. Then the projection onto the second component CˆpC´SXq Ñ

pC ´ SXq is the family over C ´ SX with constant fiber C. We understand each xi
as the constant section xi : C´SX Ñ Cˆ pC´SXq, i.e., its value at each y P C´SX

is pxi, yq. Let

ι : C ´ SX Ñ C ˆ pC ´ SXq

be the diagonal map, i.e., sending each y to py, yq. We thus have a family of pN`1q-
pointed curve

≀X “ pC ˆ pC ´ SXq Ñ pC ´ SXq; ι, x1, . . . , xNq. (3.4.1)

Let W1, . . . ,WN be V-modules associated to the N points of X. Choose ϕ P

T ˚
X pW‚q. Our first goal in this section is to show that the ≀ϕ in (3.1.6) can be

identified naturally with an element of T ˚
≀XpV b W‚qpC ´ SXq.

We make the identification of OC´SX
-modules

W≀XpV b W‚q » VC´SX
bC WXpW‚q (3.4.2)

as follows. Choose any open subset V Ă C ´ SX and a univalent map µ : V Ñ C,
and choose local coordinates η1, . . . , ηN of x1, . . . , xN respectively. Then we have a
local coordinate ϱpµq of ιpV q defined on V ˆ V to be

ϱpµqypxq ” ϱpµqpx, yq “ µpxq ´ µpyq (3.4.3)

for any x, y P V . One can also regard each ηi as the local coordinate of xipC ´ SXq

constant over the base C ´ SX. Write pϱpµq, η‚q “ pϱpµq, η1, . . . , ηNq. We then have
trivialization

Upϱpµq, η‚q : W≀XpV b W‚q|V
»
ÝÑ V bC W‚ bC OV

as in (3.2.12). On the other hand, we have Uϱpµq : VC |V
»
ÝÑ V bC OV and Upη‚q :

WXpW‚q
»
ÝÑ W‚ as in (2.4.8) and (3.1.9), which give

Uϱpµq b Upη‚q : VC |V bC WXpW‚q
»
ÝÑ V bC W‚ bC OV .
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Then the isomorphism (3.4.2) on V is given by

`

Uϱpµq b Upη‚q
˘´1Upϱpµq, η‚q : W≀XpV b W‚q|V

»
ÝÑ VC |V bC WXpW‚q. (3.4.4)

We identify the above two sheaves of modules via the above map, so that we also
have identification

Upϱpµq, η‚q “ Uϱpµq b Upη‚q. (3.4.5)

Using (2.4.9), (3.1.10), and (3.2.13), it is not hard to see that this isomorphism is
independent of the choice of µ and η‚. Thus (3.4.2) can be defined globally.

Recall from (3.1.6) and Remark 3.1.4 that for each w P WXpW‚q, ≀ϕpwq is an
element of H0pC ´ SX,V ˚

C q “ V ˚
C pC ´ SXq “ HomOC´SX

pVC´SX
,OC´SX

q whose
evaluation ≀ϕpv, w‚q with any v P VCpV q (where V Ă C ´ SX is open) is also
written as ≀ϕpv b w‚q. This notation suggests that we regard ≀ϕ as an element
of HomOC´SX

pVC´SX
bC WXpW‚q,OC´SX

q, which, through the isomorphism (3.4.2),
becomes a homomorphism of OC´SX

-modules

≀ϕ : W≀XpV b W‚q Ñ OC´SX
.

We would like to show that ≀ϕ is a conformal block.

Theorem 3.4.1 (Propagation of conformal blocks). For any ϕ P T ˚
X pW‚q, ≀ϕ is an

element of T ˚
≀XpV b W‚q.

Proof. Assume without loss of generality that C is connected. Then so is the base
manifold C ´ SX of the family ≀X. Choose any of x1, . . . , xN , say x1. Choose local
coordinates η‚ of x‚ such that η1 is defined on a neighborhood V Q x1. Assume
that under the coordinate η1, V is an open disc centered at x1 with radius r ą 0.
Identify WXpW‚q with W‚ via the triviliazation Upη‚q (which means we set Upη‚q “

1). By Proposition 3.2.4, it suffices to prove that the restriction of ≀ϕ to V ´ tx1u
is a conformal block. Identify V with an open subset of C via η1, which makes η1
equal to the standard coordinate z of C. We also have Uϱpη1q “ Vϱpη1q. Choose
any w‚ P W‚ and v P V. By the fact that ≀ϕ equals ≀ϕx1 (defined by (3.1.5)) near x1,
we have

≀ ϕ
`

Upϱpη1q, η‚q
´1

pv b w‚q
˘ (3.4.5)

ùùùùù ≀ϕ
`

Uϱpη1q
´1v, w‚

˘

“ ϕ
`

YW1pv, zqw1 b w2 b ¨ ¨ ¨ b wN

˘

(2.4.6)
ùùùùù ϕ

`

z
rL0YW1pz´L0v, 1qz´rL0w1 b w2 b ¨ ¨ ¨ b wN

˘

. (3.4.6)

Define

rY “ pP1
\ C; 0, 1, x2, . . . , xN ;8;x1; z, z ´ 1, η2, . . . , ηN ; z

´1; η1q.
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Its sewing (near 8 P P1, x1 P C controlled by |z´1| ă 1, |η1| ă r) gives a family
Y with base manifold the open disc Dr with radius r (which is equivalent to V ).
Associate W1,V,W2, . . . ,WN to 0, 1, x2, . . . , xN and W1

1,W1 to 8, x1 respectively.
Let ψ be a linear functional on W1 b V b W2 b ¨ ¨ ¨ b WN b W1

1 b W1, for which
we switch the order to W1 b W2 b ¨ ¨ ¨ b WN b W1 b V b W1

1 (where the order
of two W1 are also switched), is defined by ϕ P W˚

‚ (a linear functional on the
first N components) tensor the conformal block on pP; 0, 1,8q (which is a linear
functional on the last three components) defined as in example 3.1.6. Then the
sewing rSψ (which is a formal conformal block by Theorem 3.3.5), evaluated with
the constant section vbw‚ (under the local coordinates z, z´1, η2, . . . , ηN constant
with respect to sewing), is

ϕ
`

q
rL0YW1pv, 1qw1 b w2 b ¨ ¨ ¨ b wN

˘

pP Crrqssq.

This expression is an element of OpDˆ
r q (and hence of OpDrq) since (3.4.6) is an

element of OpDˆ
r q. If we scale the local coordinates of 0, 1 P P1 by q´1, then the

above expression becomes (3.4.6) (with z replaced by q), and the restriction YDˆ
r

of Y to the punctured disc Dˆ
r , including the sections and the local coordinates, is

exactly ≀X|V ´tx1u. This shows that, after scaling the coordinates, rSψ becomes ex-
actly ≀ϕ. So rSψ converges a.l.u.. By Proposition 3.3.2-2, rSψ is an actual conformal
block associated to the restricted family YDˆ

r
. So ≀ϕ|V ´tx1u is a conformal block

associated to ≀X|V ´tx1u. This finishes the proof.

Corollary 3.4.2. For each y P C ´ SX, if we set ≀Xy “ pC; y, x1, . . . , xNq, then the value
of ≀ϕ at y, written as ≀ϕ|y, is an element of T ˚

≀Xy
pV b W‚q.

Remark 3.4.3. We describe the explicit form of ≀ϕ|y as an element of T ˚
≀Xy

pV b

W‚q. Choose local coordinates η‚ at x‚. Choose a univalent map µ defined on a
neighborhood V of y. Then, ϱpµqy (defined in (3.4.3)) is a local coordinate at y.
Identify Upη‚q : WXpW‚q

»
ÝÑ W‚. Then for any v P V and w‚ P W‚,

≀ϕ
ˇ

ˇ

y

`

Upϱpµqyq
´1v b w‚

˘

“ ≀ϕ
`

Uϱpµq
´1v, w‚

˘
ˇ

ˇ

y
, (3.4.7)

where we recall that Uϱpµq´1v is in VCpV q.
Note that Theorem 3.4.1 is stronger than Corollary 3.4.2, in that it says also

that ≀ϕ|y varies holomorphically over y.

Double propagation

We now want to propagate the conformal block ≀ϕ. For any two sets A,B, we
set

ConfpA,Bq “ tpa, bq P A ˆ B : a ‰ bu, Conf2pAq “ ConfpA,Aq. (3.4.8)
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Fix trivialization WXpW‚q » W‚ via Upη‚q. Let V Ă C ´ SX be open. For each
v P VCpV q and w‚ P W‚, v b w‚ can be regarded as an element of W≀XpV b W‚qpV q

by (3.4.4). Therefore, by Theorem 3.2.5, we have ≀ ≀ϕpvbw‚q, written as ≀ ≀ϕpv, w‚q

in the following, sending each u P VCpUq (where U is an open subset of C ´ SX

disjoint from V ) to an element ≀ ≀ ϕpu, v, w‚q P OpU ˆ V q. (To apply Theorem
3.2.5, we extend u to an element of V≀XpU ˆ V q constantly over V .) This map is
compatible with the restrictions to subsets of U and of V . Using this compatibility,
for any (non-necessarily disjoint) open subsets U, V Ă C, ≀ ≀ϕpw‚q can be extended
to a homomorphism of OpUq-OpV q bimodules

≀ ≀ ϕpw‚q : VCpUq bC VCpV q Ñ OConf2pC´SXqpConfpU ´ SX, V ´ SXqq (3.4.9)

compatible with the restrictions to subsets of U and V , such that for any u P

VCpUq, v P VCpV q and open subsets U0 Ă U, V0 Ă V satisfying U0 X V0 “ H,
≀ ≀ ϕpu, v, w‚q|U0ˆV0 is the element ≀ ≀ ϕpu|U0´SX

, v|V0´SX
, w‚q describe above (which

is in OConf2pC´SXqppU0 ´ SXq ˆ pV0 ´ SXqq). For brevity, such compatibility is sum-
marized by saying that ≀ ≀ ϕpw‚q is a homomorphism of OC b OC-modules

≀ ≀ϕpw‚q : VC b VC Ñ OConf2pC´SXq (3.4.10)

Similar to this description, we can regard ≀ϕpw‚q as a homomorphism of OC-
modules

≀ ϕpw‚q : VC Ñ OC´SX
(3.4.11)

whose value at each v P OpV q is equal to the one at v|V ´SX
.

The next theorem is just the restatement of the description of ≀ϕ in Theorem
3.1.2. We assume that for each i “ 1, . . . , N , ηi is defined onWi, and thatWiXWj “

H if i ‰ j. Let z be the standard coordinate of C.

Theorem 3.4.4. Choose any w‚ P W‚. Choose V Ă Wi an open disc centered at xi
(under the coordinate ηi), identify V with a neighborhood of 0 P C via ηi, and identify
VV » V bC OV via the trivialization Uϱpηiq “ Vϱpηiq. Choose v P VCpV q, and choose
y P V ´ SX “ V ´ txiu. Then

≀ϕpv, w‚q
ˇ

ˇ

y
“ ϕ

`

w1 b ¨ ¨ ¨ b YWi
pv, zqwj b ¨ ¨ ¨ b wN

˘
ˇ

ˇ

z“ηipyq
. (3.4.12)

Moreover, we have

≀ϕp1, w‚q|y “ ϕpw‚q. (3.4.13)

In this theorem, 1 P VCpCq is the vacuum section defined in Remark 2.5.3.
Since YWi

p1, zq “ 1Wi
, (3.4.13) is clearly true when y is in a neighborhood of

x1, . . . , xN . Thus (3.4.13) is true for any y P C.
We now generalize this theorem to ≀ ≀ ϕ.
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Theorem 3.4.5. Choose any w‚ P W‚. Choose any U, V open subsets of C with η : U Ñ

C, µ : V Ñ C univalent maps, identify VU » VbCOU ,VV » VbCOV via trivializations
Uϱpηq “ Vϱpηq,Uϱpµq “ Vϱpµq respectively. Choose u, v in VCpUq,VCpV q respectively,
and choose x P U ´ SX, y P V ´ SX satisfying x ‰ y. Then the following are true.

(1) If U is an open disc in Wi centered at xi (under the coordinate ηi) and does not
contain y, and if η “ ηi. Then

≀ ≀ ϕpu, v, w‚q
ˇ

ˇ

x,y
“ ≀ϕ

`

v, w1 b ¨ ¨ ¨ b YWi
pu, zqwi b ¨ ¨ ¨ b wN

˘
ˇ

ˇ

y

ˇ

ˇ

z“ηipxq

(3.4.14)

where the series of z on the right hand side converges absolutely, and we regard
u P V b Crrzss by taking Taylor series expansion of the variable ηi at xi.

(2) If U “ V and do not contain x1, . . . , xN , if η “ µ, and if U contains the closed disc
with center y and radius |ηpxq ´ ηpyq| (under the coordinate η), then

≀ ≀ ϕpu, v, w‚q
ˇ

ˇ

x,y
“ ≀ϕ

`

Y pu, zqv, w1 b ¨ ¨ ¨ b wN

˘ˇ

ˇ

y

ˇ

ˇ

z“ηpxq´ηpyq
(3.4.15)

where the series of z on the right hand side converges absolutely, and we regard
u P V b Crrzss by taking Taylor series expansion of the variable η ´ ηpyq at y.

(3) We have

≀ ≀ ϕp1, v, w‚q “ ≀ϕpv, w‚q. (3.4.16)

(4) We have

≀ ≀ ϕpu, v, w‚q
ˇ

ˇ

x,y
“ ≀ ≀ ϕpv, u, w‚q

ˇ

ˇ

y,x
. (3.4.17)

Proof. It is easy to see that

≀ ≀ ϕx,y “ ≀p≀ϕ|yq|x. (3.4.18)

Thus (1) (2) (3) follow directly from Theorem 3.4.4 and relation (3.4.13) (with ϕ
replaced by ≀ϕ|y). We now prove (4). It suffices to assume that C is connected.

Assume first of all that N ą 1. Let U and V be open discs in W1,W2 centered
at x1, x2 and identified with open subsets of C via η1, η2 respectively. (Note that
under this identification, we have x1 “ 0 and x2 “ 0.) Let ζ be also the standard
coordinate of C. Then from (1) and Theorem 3.4.4, ≀ ≀ ϕpu, v, w‚q

ˇ

ˇ

x,y
equals the

evaluation of

gpz, ζq :“ ϕ
`

YW1pu, zqw1 b YW2pv, ζqw2 b w3 b ¨ ¨ ¨ b wN

˘

(3.4.19)

(which is an element of Cppz, ζqq) first at ζ “ η2pyq and then at z “ η1pxq. By
varying x and y, ≀≀ϕpu, v, w‚q is clearly a two-variable holomorphic function fpz, ζq
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on pU ´ t0uq ˆ pV ´ t0uq. Thus, we have for any z0 P U ´ t0u, ζ0 P V ´ t0u that
fpz, ζq|ζ“ζ0 |z“z0 “ gpz, ζq|ζ“ζ0 |z“z0 .

By taking Laurant series expansions, we may regard fpz, ζq as an element of
Crrz˘1, ζ˘1ss. By applying Resζ“0Resz“0p¨ ¨ ¨ qzmζndzdζ to f and g for any m,n P Z
(note the order of the two residues), we see that fpz, ζq and gpz, ζq can be regarded
as identical elements of Crrz˘1, ζ˘1ss. Since g is in Cppz, ζqq, so is f . Since the
double series fpz, ζq converges absolutely when z P U ´ t0u and ζ P V ´ t0u, so
does gpz, ζq. Therefore, the evaluations of (3.4.19) at ζ “ η2pyq and at z “ η1pxq

commute. This proves (4) for the above chosen U, V . By analytic continuation,
one may use the argument in the proof of Proposition 3.2.4 to show (4) when U
is as above and V is any open subset of C. Another application of this argument
proves (4) for any open U, V Ă C.

Finally, we assume that N “ 1. Then, by (3.4.13), ϕ is the restriction of a
conformal block ψ on C with two marked points. Since (4) is true for ψ, it holds
also for ϕ.

Multiple propagations

Although single and double propagations are sufficient for proving the main
results of this monograph, it would be interesting to generalize them to multiple
propagation.

Choose n P N and define

ConfpA1, . . . , Anq “ tpa1, . . . , anq P A1 ˆ ¨ ¨ ¨An : ai ‰ aj for any 1 ď i ă j ď nu,

ConfnpAq “ ConfpA,A, . . . , Aq.

One can apply the propagation n-times to obtain, for each w‚ P W‚, a homomor-
phism of Obn

C -modules

≀nϕpw‚q : V bn
C Ñ OConfnpC´SXq, (3.4.20)

which means that for any open subsets U1, . . . , Un ofC, we have an OpU1qbC ¨ ¨ ¨bC
pUnq-module homomorphism

≀nϕpw‚q : VCpU1q bC ¨ ¨ ¨ bC VCpUnq Ñ OConfnpC´SXqpConfpU1 ´ SX, . . . , Un ´ SXqq

compatible with respect to restrictions. We have the following generalization of
Theorem 3.4.5. Recall again that W1, . . . ,WN are mutually disjoint neighborhoods
of x1, . . . , xN on which η1, . . . , ηN are defined respectively.

Theorem 3.4.6. Choose anyw‚ P W‚. For each 1 ď k ď n, choose an open subsetUk ofC
equipped with a univalent map µk : Uk Ñ C, identify VUk

» V bC OUk
via trivialization

Uϱpµkq “ Vϱpµkq, choose vk P VCpUkq “ VbCOpUkq, and choose yk P Uk ´SX satisfying
yj ‰ yk for any 1 ď j ă k ď n. Then the following are true.
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(1) If U1 is an open disc of Wi centered at xi (under the coordinate ηi) and does not
contain y2, . . . , yn, and if µ1 “ ηi, then

≀n ϕpv1, v2, . . . , vn, w‚q
ˇ

ˇ

y1,y2,...,yn

“ ≀n´1 ϕ
`

v2, . . . , vn, w1 b ¨ ¨ ¨ b YWi
pv1, zqwi b ¨ ¨ ¨ b wN

˘
ˇ

ˇ

y2,...,yn

ˇ

ˇ

z“ηipy1q

(3.4.21)

where the series of z on the right hand side converges absolutely, and v1 is considered
as an element of V b Cppzqq by taking Taylor series expansion with respect to the
variable ηj at xj .

(2) If U1 “ U2 and do not contain x1, . . . , xN , y3, . . . , yn, if µ1 “ µ2, and if U2 contains
the closed disc with center y2 and radius |µ2py1q ´ µ2py2q| (under the coordinate
µ2), then

≀n ϕpv1, v2, v3, . . . , vn, w‚q
ˇ

ˇ

y1,y2,...,yn

“ ≀n´1 ϕ
`

Y pv1, zqv2, v3, . . . , vn, w1 b ¨ ¨ ¨ b wN

˘
ˇ

ˇ

y2,...,yn

ˇ

ˇ

z“µ2py1q´µ2py2q
(3.4.22)

where the series of z on the right hand side converges absolutely, and v1 is considered
as an element of V b Cppzqq by taking Taylor series expansion with respect to the
variable µ2 ´ µ2py2q at y2.

(3) We have

≀nϕp1, v2, v3, . . . , vn, w‚q “ ≀n´1ϕpv2, . . . , vn, w‚q. (3.4.23)

(4) For any permutation σ of the set t1, 2, . . . , nu, we have

≀nϕpvσp1q, . . . , vσpnq, w‚q
ˇ

ˇ

yσp1q,...,yσpnq
“ ≀nϕpv1, . . . , vn, w‚q

ˇ

ˇ

y1,...,yn
. (3.4.24)

Proof. (1) (2) (3) follow from

≀nϕ|y1,y2,...,yn “ ≀p≀n´1ϕ|y2,...,ynq|y1 . (3.4.25)

If σ fixes 3, . . . , n and exchanges 1, 2, then (4) follows from Theorem 3.4.5-(4). If 1 ď

k ă n and σ exchanges k, k` 1 and fixes the others, then the first two components
of ≀n´k`1ϕ are exchangeable. Thus, by propagating ≀n´k`1ϕ for k´ 1 times, we see
that the k-th and the pk ` 1q-th components of ≀nϕ are exchangeable. This proves
(4) in general.
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3.5 A commutator formula

The results of this section will be used in Section 3.6 to define a logarithmic
connection on sheaves of conformal blocks.

Let X “ pπ : C Ñ B; ς1, . . . , ςNq be a family of N -pointed compact Riemann
surfaces. We are going to define a sheaf action VX b ωC{Bp‚SXq ñ VXp‚SXq which
is OB-linear on VX bωC{Bp‚SXq and OC-linear on VXp‚SXq. In other words, we shall
define a homomorphism of OB-modules

L : VX b ωC{Bp‚SXq Ñ EndOC
pVXp‚SXqq.

Thus, for any open subset W Ă C, any element of VX b ωC{Bp‚SXqpW q gives an
element of EndOW

pVXp‚SXq|W q.
Choose open W Ă C together with η P OpW q univalent on each fiber. We

assume that W is small enough such that πpW q has coordinates τ‚ “ pτ1, τ2, . . . q.
Write also τ‚ ˝ π as τ‚ for simplicity. Identify W with an open subset of C ˆ B via
pη, τ‚q, and identify

VX|W » V bC OW , VX b ωC{B|W » V bC ωC{B|W

via the trivialization Uϱpηq “ Vϱpηq. Let z be the standard coordinates of C (which
is identified with η). Then for any udz “ upz, τ‚qdz in V bC ωC{Bp‚SXqpW q, open
subset U Ă W , and v “ vpz, τ‚q in V bC OW p‚SXqpUq, we define the action of udz
on v, written as Ludzv “ pLudzvqpz, τ‚q, to be

Ludz v “ Resζ´z“0 Y
`

upζ, τ‚q, ζ ´ z
˘

vpz, τ‚qdζ (3.5.1)

where ζ is another distinct standard complex variable of C. Note that u, v are V-
valued meromorphic functions on W with possible poles at ς1pBq, . . . , ςNpBq. That
Ludzv has finite poles at SX follows from the easy calculation

Ludz v “
ÿ

ně0

1

n!
Y

`

B
n
z upz, τ‚q

˘

n
vpz, τ‚q (3.5.2)

where the sum is finite by the lower truncation property.
Similar to (3.2.4), the definition of this action is independent of the choice of η

thanks to Theorem 2.4.1. Thus, it can be extended to VX b ωC{Bp‚SXq ñ VXp‚SXq.
(We will not this fact; in Section 3.6, we shall only use the local expression of L as
in (3.5.2).) By tensoring with the identity map of ωC{B, we get a homomorphism
of OB-modules

L : VX b ωC{Bp‚SXq Ñ EndOC
pVX b ωC{Bp‚SXqq

whose local expression under η is

Ludz vdz “

´

Resζ´z“0 Y
`

upζ, τ‚q, ζ ´ z
˘

vpz, τ‚qdζ
¯

dz
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“
ÿ

ně0

1

n!
Y

`

B
n
z upz, τ‚q

˘

n
vpz, τ‚qdz. (3.5.3)

Now, we assume that B is small enough such that we have a family of
N -pointed compact Riemann surfaces with local coordinates X “ pπ : C Ñ

B; ς1, . . . , ςN ; η1, . . . , ηNq. Let W1, . . . ,WN be V-modules associated to theN -points.
Let now W be a neighborhood of ςipBq on which ηi is defined, set η “ ηi,
and take the identifications mentioned above. Recall that by (3.2.4), for each
wi P Wi bC OpBq and vdz P V bC ωC{Bp‚SXqpW q,

vdz ¨ wi “ Resz“0YWi
pv, zqwidz.

The following is the main result of this section.

Proposition 3.5.1. For any udz, vdz P V bC ωC{Bp‚SXqpW q and wi P Wi bC OpBq,

udz ¨ vdz ¨ wi ´ vdz ¨ udz ¨ wi “ pLudzvdzq ¨ wi.

Note that the same identity holds when wi is replaced by any w P W‚ bC OpBq.

Proof. We write wi as w for simplicity. Since the actions of udz, vdz and the defini-
tion of L can be defined fiberwisely, it suffices to assume that B is a single point.
We thus suppress the symbol τ‚. Note that W is identified with ηpW q under η. We
assume that W “ ηpW q is an open disc. Choose any w1 P W1

i. Then there exists
a holomorphic function f “ fpz, ζq on Conf2pW ´ t0uq (recall (3.4.8)) such that
for each fixed z, the series expansion (with respect to the variable ζ) near 0, z are
respectively

αzpζq “ xw1, YWi
pv, zqYWi

pu, ζqwy P Cppζqq,

γzpζ ´ zq “ xw1, YWi
pY pu, ζ ´ zqv, zqwy P Cppζ ´ zqq,

and that for each fixed ζ , the series expansion with respect to z at 0 is

βζpzq “ xw1, YWi
pu, ζqYWi

pv, zqwy P Cppzqq.

Indeed, let ϕ be the conformal block on pP1; 0,8q defined in example 3.1.6. Then
f “ ≀ ≀ ϕpu, v, w b w1q. That its series expansions are described as above follows
from theorems 3.4.4 and 3.4.5.

Choose circles C1, C2, C3 Ă W centered at 0 with radii r1, r2, r3 respectively
satisfying r1 ă r2 ă r3. For each z P C2, choose a circle Cpzq centered at z whose
radius is less than r2 ´ r1 and r3 ´ r2. Then

xw1, vdz ¨ udz ¨ wy “ Resz“0pResζ“0αzpζqdζqdz “ Resz“0pResζ“0fpz, ζqdζqdz

“

¿

C2

˜

¿

C1

fpz, ζqdζ

¸

dz. (3.5.4)
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Similarly,

xw1, udz ¨ vdz ¨ wy “

¿

C3

˜

¿

C2

fpz, ζqdz

¸

dζ “

¿

C2

˜

¿

C3

fpz, ζqdζ

¸

dz. (3.5.5)

Note that in the last equation, the two contour integrals are interchangeable since
f is holomorphic and in particular continuous on Conf2pW ´ t0uq. Also,

xw1, pLudzvdzq ¨ wiy “ Resz“0pResζ´z“0γzpζ ´ zqdζqdz

“

¿

C2

˜

¿

Cpzq

fpz, ζqdζ

¸

dz,

which, by Cauchy integral theorem (applied to the function ζ ÞÑ fpz, ζq for each
fixed z), equals the difference of (3.5.5) and (3.5.4). This finishes the proof.

The following useful observation will be used in constructing connections on
sheaves of conformal blocks.

Lemma 3.5.2. For any vdz P V bC ωC{Bp‚SXqpW q and wi P Wi bC OpBq,
`

pBzvqdz
˘

¨ wi `
`

pL´1vqdz
˘

¨ wi “ 0.

Proof. Recall that when v is a constant section, we have the L´1-derivative prop-
erty (2.2.4). Since we do not assume here that v is constant, we have

BzYWi
pv, zq “ YWi

pBzv, zq ` YWi
pL´1v, zq.

Thus, the left hand side of the equation we want to prove equals

Resz“0 Bz
`

YWi
pv, zqwi

˘

dz.

This residue must be 0 since the series expansion of Bzp¨ ¨ ¨ q with respect to z does
not contain z´1.

3.6 The logarithmic connections

Let X “ pπ : C Ñ Bq be a family of complex curves. If E is an OB-module, then
a logarithmic connection ∇ on E associates to each open subset U Ă B a bilinear
map

∇ : ΘBp´ log∆qpUq ˆ E pUq Ñ E pUq, py, sq ÞÑ ∇ys

satisfying conditions (a) and (b) of Definition 1.8.3, namely,
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(a) If V is an open subset of U , then ∇y|V s|V “ p∇ysq|V .

(b) If f P OBpUq, then

∇fys “ f∇ys,

∇ypfsq “ ypfqs ` f∇ys.

Thus, ∇ is a connection if X is a family of compact Riemann surfaces (equivalently,
∆ “ H).

Given a logarithmic connection ∇ on E , one can define on the dual sheaf E ˚

the dual connection (also denoted by ∇) as follows. Choose any open U Ă B,
y P ΘBp´ log∆qpUq, and σ P E ˚pUq “ HomOU

pE |U ,OUq, then ∇yσ, which is an
element of HomOU

pE |U ,OUq, is defined such that for any open subset V Ă U and
s P E pUq,

x∇yσ, sy “ yxσ, sy ´ xσ,∇ysy. (3.6.1)

We now assume that X is a family of N -pointed complex curves X “ pπ : C Ñ

B; ς1, . . . , ςNq equipped with V-modules W1, . . . ,WN . Our goal of this section is to
define locally a logarithmic connection ∇ on T ˚

X pW‚q near each point of B. Since
our task is local, we assume that B is small enough such that the following hold.

(i) X is either smooth or is obtained by sewing a smooth family.

(ii) If X is smooth, then B is biholomorphic to a Stein open subset of a complex
coordinate space Cm (m P N); if X is obtained by sewing a smooth family rX,
then rB is biholomorphic to a Stein open subset of Cm.

(iii) We can equip ς1, . . . , ςN with local coordinates:

X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq.

Note that condition (ii) implies that B is Stein. (If X is obtained by sewing rX, then
B is a product of the Stein manifold B and some open discs, which is therefore
Stein.) Recall the description of ΘBp´ log∆q near (1.6.17), which shows that, due
to condition (ii), ΘBp´ log∆q is a free OB-module, i.e., it is generated freely by
finitely many global sections y1, y2, ¨ ¨ ¨ P ΘBp´ log∆qpBq.

We shall construct a (global) logarithmic connection ∇ over B whenever the
above three conditions are satisfied. For that purpose, we shall define, for each
y P ty1, y2, . . . u, a sheaf map (not a homomorphism of OB-modules !)

∇y : TXpW‚q Ñ TXpW‚q

satisfying that for any open U Ă B, w P TXpW‚qpUq, and f P OpUq,

∇ypfwq “ ypfqw ` f∇yw.

(Indeed, we will do this for any y P ΘBp´ log∆qpBq.) Then the differential oper-
ators ∇y1 ,∇y2 , . . . extend to a logarithmic connection ∇ on TXpW‚q, whose dual
connection is the one ∇ on T ˚

X pW‚q.
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Defining ∇ on WXpW‚q

We now fix y P ΘBp´ log∆qpBq. Recall that TXpW‚q is the quotient of WXpW‚q “

W‚ bCOB (identified via Upη‚q) by the OB-submodule π˚

`

VXbωC{Bp‚SXq
˘

¨WXpW‚q.
Our plan is to define the action of ∇y on WXpW‚q, and then to show that ∇y pre-
serves that submodule.

Choose any k P N. Then, due to (1.6.22), we have a short exact sequence of
OC-modules

0 Ñ ΘC{BpkSXq Ñ ΘCp´ log C∆ ` kSXq
dπ
ÝÑ

`

π˚ΘBp´ log∆q
˘

pkSXq Ñ 0.

where ΘCp´ log C∆ ` kSXq is short for ΘCp´ log C∆qpkSXq. By Theorem 1.5.7, there
exists k0 P N such that for any k ě k0 and b P B, we have H1pCb,ΘCbpkSXqq “ 0.
Thus, when k ě k0, we have R1π˚ΘC{BpkSXq “ 0 due to Grauert’s Theorem 1.6.2.
Therefore, if we apply (1.3.1) to the above short exact sequence, we get an exact
sequence of OB-modules

0 Ñ π˚ΘC{BpkSXq Ñ π˚ΘCp´ log C∆ ` kSXq
dπ
ÝÑ π˚

`

π˚ΘBp´ log∆q
˘

pkSXq Ñ 0.

Consider this as a short exact sequence of OB-modules. Since π˚ΘC{BpkSXq is
coherent by Grauert direct image theorem (indeed it is locally free by Theo-
rem 1.6.2), and since B is assumed to be Stein, we have H1pB, π˚ΘC{BpkSXqq “

0 by Cartan’s theorem B. Therefore, we have an exact sequence of vec-
tor spaces 0 Ñ H0

`

B, π˚ΘC{BpkSXq
˘

Ñ H0
`

B, π˚ΘCp´ log C∆ ` kSXq
˘ dπ

ÝÑ

H0
`

B, π˚

`

π˚ΘBp´ log∆q
˘

pkSXq
˘

Ñ 0. To simplify notations, we take the direct
limit over all k ě k0 to obtain an exact sequence

0 Ñ H0
`

B, π˚ΘC{Bp‚SXq
˘

Ñ H0
`

B, π˚ΘCp´ log C∆ ` ‚SXq
˘

dπ
ÝÑ H0

`

B, π˚

`

π˚ΘBp´ log∆q
˘

p‚SXq
˘

Ñ 0. (3.6.2)

Choose any y P ΘBp´ log∆qpBq. Then, its pull back π˚y is in π˚ΘBp´ log∆qpCq

(recall (1.3.2)), which can be viewed as an element of π˚

`

π˚ΘBp´ log∆q
˘

pBq and
hence of π˚

`

π˚ΘBp´ log∆q
˘

p‚SXqpBq. Since the dπ in the above exact sequence is
a surjective, there exists a lift ry of y, i.e., an element ry satisfying

ry P ΘCp´ log C∆ ` ‚SXqpCq,

dπpryq “ π˚y. (3.6.3)

(Recall that ΘCp´ log C∆ ` ‚SXqpCq equals π˚ΘC{Bp´ log C∆ ` ‚SXqpBq.)
We are going to use ry to define ∇y. Let τ‚ “ pτ1, τ2, . . . q be coordinates of πpBq.

For each 1 ď i ď N , choose a neighborhood Wi of ςipBq on which ηi is defined,
such that Wi X Wj “ H when i ‰ j. Write τ‚ ˝ π also as τ‚ for simplicity, so that
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pηi, τ‚q is a coordinate of Wi. Identify Wi with its image via pηi, τ‚q, so that ηi is
identified with the standard coordinate z of C. Write

y “
ÿ

j

gjpτ‚qBτj . (3.6.4)

Then by (1.6.18) and (3.6.3), when restricted to Wi, ry can be written as

ry|Wi
“ hipz, τ‚qBz `

ÿ

j

gjpτ‚qBτj (3.6.5)

where, due to the divisor ‚SX, zkhipz, τ‚q is a holomorphic function onWi for some
k P N. Recall that c is the conformal vector of V. We set

νpryq P VX b ωC{Bp‚SXqpW1 Y ¨ ¨ ¨ Y WNq

Uϱpηiqνpryq|Wi
“ hipz, τ‚qc dz. (3.6.6)

Now, for any open subset U Ă B and any wi P Wi bC OBpUq, we define

∇ywi “
ÿ

j

gjpτ‚qBτjwi ´ νpryq ¨ wi (3.6.7)

For any w‚ “ w1 b ¨ ¨ ¨ b wN P W‚ bC OBpUq, we set

∇yw‚ “

N
ÿ

i“1

w1 b w2 b ¨ ¨ ¨ b ∇ywi b ¨ ¨ ¨ b wN . (3.6.8)

This finishes the definition of ∇y.

Remark 3.6.1. It is easy to check that the definition of ∇y is independent of the
choice of the coordinate τ‚ of B. Thus, if we assume in (ii) just that B is a Stein
manifold, then one still has a well defined ∇y whose local expression is given by
(3.6.7) and (3.6.8) when choosing a coordinate τ‚ for a small enough open subset
of B. The requirement that B is also biholomorphic to an open subset of Cm is
used to define ∇, for which the freeness of ΘBp´ log∆q is needed.

Remark 3.6.2. As mentioned before, we define ∇ by first defining ∇y1 ,∇y2 , . . .
where y1, y2, . . . generate freely ΘBp´ log∆q, and then extending it OB-linearly to
a logarithmic connection over B. ∇y1 ,∇y2 , . . . are defined by formula (3.6.7) using
the lifts ry1,ry2, . . . . Then for any section y of ΘBp´ log∆q, the operator ∇y can also
be defined by (3.6.7) by choosing the lift ry in the following way: choose unique
sections f1, f2, . . . of OB such that y “ f1y1 ` f2y2 ` ¨ ¨ ¨ . Then ry “ pf1 ˝ πqry1 ` pf2 ˝

πqry2 ` ¨ ¨ ¨ .
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Remark 3.6.3. One can write down the explicit formula of νpryq ¨ wi. Write

hipz, τ‚q “
ÿ

kPZ

phipk, τ‚qzk, (3.6.9)

noting that phipk, τ‚q vanishes when k is sufficiently small. Then, using YWi
pcqk “

Lk´1, we compute

νpryq ¨ wi “Resz“0hipz, τ‚qYWi
pc, zqwidz “

ÿ

kPZ

phipk, τ‚qResz“0z
kYWi

pc, zqwidz

“
ÿ

kPZ

phipk, τ‚qYWi
pcqkwi “

ÿ

kPZ

phipk, τ‚qLk´1wi. (3.6.10)

We conclude:

∇ywi “
ÿ

j

gjpτ‚qBτjwi ´
ÿ

kPZ

phipk, τ‚qLk´1wi. (3.6.11)

Remark 3.6.4. We give a heuristic explanation of our definition of ∇y. Assume
that X is a smooth family. For brevity, we also assume N “ i “ 1, and write
Wi “ W, wi “ w, ςi “ ς, ηi “ η. Let ζ ÞÑ φy

ζ and ζ ÞÑ φ
ry
ζ be the (complex)

one-parameter flows (in C and in B) integrated from the vector fields y and ry
respectively. Fix b P B and set bpζq “ φy

ζpbq. Choose a closed disc Dpbq in the fiber
Cb centered at ςpbq. Then we have an equivalence of open Riemann surfaces

φ
ry
ζ : Cb ´ Dpbq

»
ÝÑ Cbpζq ´ Dpbpζqq

whereDpbpζqq is a closed disc inside Cb. Now, η gives local coordinates of Cb´Dpbq
and Cbpζq ´ Dpbpζqq near the circles BDpbq and BpDpbpζqqq respectively. Pull back
the coordinate η near BpDpbpζqqq to one near BDpbq through the bihomolorphic
map φ

ry
ζ , and call this new coordinate ηζ . Then, we have two local coordinates of

Cb ´ Dpbq: they are η, ηζ , both defined near BDpbq.
Now, we shall find the condition of w to be a parallel section in the direction

of y. Then wpbq in the η coordinate should be equal to wpbpζqq in the ηζ coordinate.
So one should expect the following identity of elements in WXpWq:

Upηq
´1wpbq “ Upηζq

´1wpbpζqq.

Here, Upηq and Upηζq are the trivilizations of the vector space WXpWq induced by
the local coordinates η, ηζ near the circles. (We have defined such trivializations
in the paragraphs near (3.1.9) when the local coordinates are defined near (neigh-
borhoods of) points. It is reasonable to expect that they can be generalized, at
least formally, to those defined near circles.) Thus, formally, we have

wpbpζqq “ Upηζ ˝ η´1
qwpbq.
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We now want to take the derivative of this equation. Set h “ hi,ph “ phi. Then
Bζpηζ ˝ η´1q|ζ“0, the derivative at ζ “ 0 of the transformation ηζ ˝ η´1, should equal
the vector field hpz, τ‚qBz at τ‚ “ b due to (3.6.5). Thus, the derivative of Upηζ ˝η´1q

at τ‚ “ b should equal the action of the vector field hpz, bqBz “
ř

kPZ
phpk, bqzkBz

on W, which, by the correspondence zkBz Ø Lk´1 (see (2.3.1))1, should be
ř

kPZ
phpk, bqLk´1. So

Bζwpbpζqq

ˇ

ˇ

ˇ

ζ“0
“

ÿ

kPZ

phpk, bqLk´1wpbq.

By (3.6.11), this is equivalent to ∇ywi “ 0 at b.

Defining ∇ on TXpW‚q

Assume as before that B satisfies conditions (i)-(iii).

Theorem 3.6.5. The logarithmic connection ∇ on WXpW‚q descends to one on TXpW‚q.

To prove this theorem, we need to show that ∇y descends to one on TXpW‚q.
This means that we need to check that ∇y preserves the OB-submodule π˚

`

VX b

ωC{Bp‚SXq
˘

¨ WXpW‚q.

Proof. Choose any open subset U Ă B. Choose any wi P Wi bC OBpUq for each
1 ď i ď N and set w‚ “ w1 b ¨ ¨ ¨ b wN which is in WXpW‚qpUq “ W‚ bC OBpUq.
Choose v P π˚

`

VX b ωC{Bp‚SXq
˘

pUq. So v P VX b ωC{Bp‚SXqpCUq. (Recall that by our
notation, CU “ π´1pUq.) We shall show that r∇y, vs “ L

ryv, i.e.,

∇ypv ¨ wiq “ v ¨ ∇ywi ` L
ryv ¨ wi. (3.6.12)

Then the same relation holds withwi replaced byw‚, which will finish the proof of
the theorem. (Note that L

ry is defined as in Section 2.6, and that L
ryv is also in VX b

ωC{Bp‚SXqpCUq.) Since both sides of (3.6.12) are Wi-valued holomorphic functions
on U , to prove this relation on U , it suffices to verify it on U ´ ∆. Therefore, we
assume in the following that ∆ “ H and B “ U . So X is a smooth family.

Recall that ηi is defined on Wi, and that we have identified Wi with pηi, τ‚qpWiq

and hence ηi with the standard coordinate z. Since, in (3.6.12), v is acting on Wi,
we use Uϱpηiq “ Vϱpηiq to identify VX|Wi

» V bC OWi
and hence VX b ωC{B|Wi

»

V bC OWi
dz. Then the section v|Wi

P VX b ωC{Bp‚SXqpWiq can be written as v “ udz
where u “ upz, τ‚q P V bC OWi

p‚SXqpWiq.
We now use (3.6.7) to calculate that

∇ypv ¨ wiq “ ∇ypudz ¨ wiq “
ÿ

j

gjpτ‚qBτjpudz ¨ wiq ´ νpryq ¨ udz ¨ wi,

1Here, unlike in Section 2.3, the action of zBz is L0 but not rL0.
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which, by Proposition 3.5.1, equals
ÿ

j

gjpτ‚qudz ¨ Bτjwi ´ udz ¨ νpryq ¨ wi `
ÿ

j

gjpτ‚qppBτjuqdz ¨ wiq ´ pLνpryqudzq ¨ wi

“v ¨ ∇ywi `
ÿ

j

gjpτ‚qppBτjuqdz ¨ wiq ´ pLνpryqudzq ¨ wi.

Thus, one can finish proving (3.6.12) by showing

L
ryudz ¨ wi “

ÿ

j

gjpτ‚qppBτjuqdz ¨ wiq ´ pLνpryqudzq ¨ wi.

By Lemma 3.5.2, the above equation follows if we can show

L
ryudz “

ÿ

j

gjpτ‚qpBτjuqdz ´ Lνpryqudz ` pBz ` L´1qp¨ ¨ ¨ qdz. (3.6.13)

By (3.6.6) and (3.5.3), we have

Lνpryqudz “
ÿ

kPN

1

k!
B
k
zhipz, τ‚qY pcqkupz, τ‚qdz

“
ÿ

kPN

1

k!
B
k
zhipz, τ‚qLk´1upz, τ‚q.

By Theorem 2.6.2 and also Remark 2.6.3 (which explains the appearance of
Bzhipz, τ‚qudz below), we have

L
ryudz “ hipz, τ‚qBzudz `

m
ÿ

j“1

gjpτ‚qBτjudz ´
ÿ

kě1

1

k!
B
k
zhipz, τ‚qLk´1udz ` Bzhipz, τ‚qudz

“Bzphipz, τ‚quqdz `

m
ÿ

j“1

gjpτ‚qBτjudz ´
ÿ

kě0

1

k!
B
k
zhipz, τ‚qLk´1udz ` hipz, τ‚qL´1udz

“

m
ÿ

j“1

gjpτ‚qBτjudz ´
ÿ

kě0

1

k!
B
k
zhipz, τ‚qLk´1udz ` pBz ` L´1qphipz, τ‚quqdz.

This proves (3.6.13).

Projective uniqueness of ∇
We shall show that the definition of ∇y on TXpW‚q is independent, up to OB-

scalar multiples, of the choice of the lift ry.
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Proposition 3.6.6. Suppose that y P ΘBp´ log∆qpBq has two lifts ry,ry1 P ΘCp´ log C∆`

‚SXqpCq which together with η‚ define ∇y,∇1
y respectively. Then there exists f P OpBq

such that

∇ys ´ ∇1
ys “ ´fs

for any section s of TXpW‚q. Consequently, for any section ϕ of T ˚
X pW‚q, we have

∇yϕ´ ∇1
yϕ “ fϕ. (3.6.14)

Remark 3.6.7. A different proof of this proposition will be given in Section 4.2,
and we will see that f “ #pry ´ ry1q which is calculated by (4.2.4).

Proof. Set r0 “ ry ´ ry1 and νpr0q “ νpryq ´ νpry1q. Then dπpr0q “ 0, i.e., r0 is a lift of the
zero tangent field of B. Hence, by the exact sequence (3.6.2), we have

r0 P π˚ΘC{Bp‚SXqpBq.

Let W “ W1 Y ¨ ¨ ¨ Y WN . Then νpr0q is an element of VX b ωC{Bp‚SXqpW q. We shall
show that the action of νpr0q on WXpW‚q “ W‚ bC OB (defined by acting on each
component as in (3.2.5)) descends to an OB-scalar multiplication on TXpW‚q.

On each Wi and under the previously mentioned trivializations, r0 and νpr0q

can be written as

r0|Wi
“ aipz, τ‚qBz, Uϱpηiqνpr0q|Wi

“ aipz, τ‚qc dz.

So

νpr0q P Vir c b ωC{Bp‚SXqpW q.

By Theorem 1.5.7, there exists k0 P N such that for each b P B and k ě k0, we
have H1pCb, ωCbpkSXqq “ 0. Thus, as argued for (3.6.2), by constructing long exact
sequences twice and using the fact that B is Stein, we see that the short exact
sequence (2.5.16) gives rise to an exact sequence of vector spaces

0 Ñ H0
`

B, π˚ωC{Bp‚SXq
˘

Ñ H0
`

B, π˚

`

Vir c b ωC{Bp‚SXq
˘˘ λ

ÝÑ H0
`

B, π˚ΘC{Bp‚SXq
˘

Ñ 0.
(3.6.15)

Since λ is surjective, there is an element u P π˚

`

Vir c b ωC{Bp‚SXq
˘

pBq “ Vir c b

ωC{Bp‚SXqpCq such that λpuq “ r0. By (2.5.17) (note the identification that η “ z), on
Wi we can express u by

Uϱpηiqu|Wi
“ aipz, τ‚qc dz ` bipz, τ‚q1 dz.

Hence

νpr0q|Wi
´ u|Wi

“ ´bipz, τ‚q1 dz.

Set fpτ‚q “ ´
ř

i Resz“0 bipz, τ‚qdz. Then νpr0q ´ u|W acts as f ¨ 1 on WXpW‚q and
hence on TXpW‚q. By the definition of TXpW‚q as a quotient of WXpW‚q, u acts
trivially on TXpW‚q. So νpr0q acts as f ¨ 1 on TXpW‚q.
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3.7 Local freeness

We say that the VOA V is C2-cofinite if the subspace of V spanned by C2pVq :“
tY puq´2v : u, v P Vu has finite codimension. The following important result is due
to Buhl.

Theorem 3.7.1 (Cf. [Buhl02] Thm. 1). Assume V isC2-cofinite. Then there existQ P N
and a finite set E of homogeneous vectors of V satisfying the following condition: For any
weak V-module W generated by a vector w0, there exists L P N such that W is spanned
by elements of the form

YWpvkq´nk
YWpvk´1q´nk´1

¨ ¨ ¨YWpv1q´n1w0 (3.7.1)

where nk ě nk´1 ě ¨ ¨ ¨ ě n1 ą ´L and v1, v2, . . . , vk P E. In addition, for any
1 ď j ď k, if nj ą 0 then nj ą nj´1; if nj ď 0 then nj “ ni for at most Q different i.

We will fix this E in this section.

Corollary 3.7.2. Assume that V is C2-cofinite. Let W be a finitely generated admissible
V-module. Then for any n P N, there exists νpnq P N such that any rL0-homogeneous
vector w P W whose weight Ăwtpwq ą νpnq is a sum of vectors in YWpvq´lWpĂwtpwq ´

wtpvq ´ l ` 1q where v P E and l ą n.

Proof. Assume without loss of generality that W is generated by a single rL0-
homogeneous vector w0. Let T be the set of all vectors of the form (3.7.1)
where nk ď n. Then, by the above theorem, T is a finite subset of W. Set
νpnq “ maxtĂwtpw1q : w1 P T u. If w P W is rL0-homogeneous with weight
Ăwtpwq ą νpnq, then we can also write w as a sum of rL0-homogeneous vectors of
the form (3.7.1), but now the nk must be greater than ν since such vector is not in
T . This proves that w is a sum of rL0-homogeneous vectors of the form YWpvq´lw2

where v P E, l ą n, and w2 P W is rL0-homogeneous. The same is true if W is as-
sumed finitely generated. By (2.2.6), we have Ăwtpw2q “ Ăwtpwq ´ wtpvq ´ l ` 1.

Recall the definition of sheaf of conformal blocks TXpW‚q “ WXpW‚q{N where
N “ π˚

`

VX b ωC{Bp‚SXq
˘

¨ WXpW‚q. For any section σ of WXpW‚q, its equivalence
class (considered as a section of TXpW‚q) is written as rσs.

Theorem 3.7.3. Let V be C2-cofinite, let W1, . . . ,WN be finitely generated V-modules,
and let X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq be a family of N -pointed complex curves
with local coordinates. Assume that B is a Stein manifold. Then there exist finitely
many elements s1, s2, . . . of WXpW‚qpBq such that for any element σ P WXpW‚qpBq, its
equivalence class rσs in TXpW‚qpBq is an OpBq-linear combination of rs1s, rs2s, . . . .
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Proof. Since local coordinates are chosen, we identify WXpW‚q with W‚ bC OB. Let
E “ maxtwtpvq : v P Eu. By our assumption on X and B, and by Theorem 2.4.3,
there exists k0 P N such that

H1
pCb,V ďE

Cb b ωCbpkSXqq “ 0 (3.7.2)

for any b P B and k ě k0. We fix an arbitrary k P N satisfying k ě E ` k0.
Introduce a weight Ăwt on W‚ such that Ăwtpw‚q “ Ăwtpw1q`Ăwtpw2q`¨ ¨ ¨`ĂwtpwNq

whenw1, . . . , wN are rL0-homogeneous. For each n P N, Wďn
‚ (resp. W‚pnq) denotes

the subspace spanned by all rL0-homogeneous homogeneous vectors w P W‚ sat-
isfying Ăwtpwq ď n (resp. Ăwtpwq “ n). Note that WďNνpkq

‚ is finite dimensional.
We shall prove the claim of our theorem by choosing s1, s2, . . . to be a basis of
WďNνpkq

‚ . By induction, it suffices to show that for any n ą Nνpkq, any vector of
W‚pnq (considered as constant sections of W‚bCOpBq) is a (finite) sum of elements
of Wďn´1

‚ bC OpBq mod N pBq.
Choose any w‚ “ w1 b ¨ ¨ ¨ b wN P W‚pnq such that w1, . . . , wN are rL0-

homogeneous. Then one of w1, . . . , wN must have rL0-weight greater than νpkq.
Assume, without loss of generality, that Ăwtpw1q ą νpkq. Then, by Corollary
3.7.2, w1 is a sum of non-zero rL0-homogeneous vectors of the form YW1puq´lw

˝
1

where u P E, l ą k, w˝
1 P W1, and Ăwtpw˝

1q “ Ăwtpw1q ´ wtpuq ´ l ` 1. Thus
Ăwtpw1q ´ Ăwtpw˝

1q ě l ´ 1 ě k ě E ` k0.
It suffices to show that each YW1puq´lw

˝
1 bw2 b ¨ ¨ ¨ bwN is a sum of elements of

Wďn´1
‚ bCOpBq mod N pBq. Thus, we assume for simplicity that w1 “ YW1puq´lw

˝
1.

Then

w‚ “ YW1puq´lw
˝
1 b w2 b ¨ ¨ ¨ b wN .

Set also

w˝
‚ “ w˝

1 b w2 b ¨ ¨ ¨ b wN .

Then n ´ Ăwtpw˝
‚q “ Ăwtpw‚q ´ Ăwtpw˝

‚q ě E ` k0. Thus

Ăwtpw˝
‚q ď n ´ E ´ k0. (3.7.3)

Consider the short exact sequence of OC-modules

0 Ñ V ďE
C b ωC{Bpk0SXq Ñ V ďE

C b ωC{BplSXq Ñ G Ñ 0

where G is the quotient of the previous two sheaves. By (3.7.2) and Grauert’s
Theorem 1.6.2, we see thatR1π˚pV ďE

C bωC{Bpk0SXqq “ 0, and π˚pV ďE
C bωC{Bpk0SXqq

is locally free. Thus, we may apply (1.3.1) to obtain an exact sequence of OB-
modules

0 Ñ π˚

`

V ďE
C b ωC{Bpk0SXq

˘

Ñ π˚

`

V ďE
C b ωC{BplSXq

˘

Ñ π˚G Ñ 0.
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Since B is assumed to be a Stein manifold, by Cartan’s theorem B, we know
H1pB, π˚pV ďE

C b ωC{Bpk0SXqqq “ 0. Thus, there is an exact sequence

0 Ñ H0
`

B, π˚

`

V ďE
C b ωC{Bpk0SXq

˘˘

Ñ H0
`

B, π˚

`

V ďE
C b ωC{BplSXq

˘˘

Ñ H0
`

B, π˚G
˘

Ñ 0. (3.7.4)

Note that H0
`

B, π˚G
˘

is exactly G pCq. Choose mutually disjoint neighbor-
hoods W1, . . . ,WN of ς1pBq, . . . , ςNpBq respectively. For each 1 ď i ď N , identify
V ďE
C b ωC{B|Wi

with VďE bC ωC{B|Wi
via Uϱpηiq, and identify ηi with the standard

coordinate z by identifying Wi with pηi, πqpWiq. Define an element υ P G pCq as
follows. υ|W1 is the equivalence class represented by uz´ldz, and υ|C´ς1pBq “ 0.
Since the second map in the above exact sequence is surjective, υ lifts to an ele-
ment pυ of H0

`

B, π˚

`

V ďE
C b ωC{BplSXq

˘˘

, i.e., of
`

V ďE
C b ωC{BplSXq

˘

pCq. Moreover,
by the definition of G as a quotient, for each 1 ď i ď N we have an element vi of
VďE bC OCpk0SXqpWiq (and hence of VďE bC OWi

pk0ςipBqqpWiq) such that

pυ|W1 “ uz´ldz ` v1dz,

pυ|Wi
“ vidz p2 ď i ď Nq.

Notice that Resz“0Y p¨, zqzndz “ Y p¨qn. It follows that the element pυ ¨ w˝
‚, which is

clearly in N pBq, equals w‚ ` w△ where

w△ “ pv1dzq ¨ w˝
1 b w2 b ¨ ¨ ¨ b wi b ¨ ¨ ¨ b wN `

N
ÿ

i“2

w˝
1 b w2 b ¨ ¨ ¨ b pvidzq ¨ wi b ¨ ¨ ¨ b wN .

Thus rw‚s “ ´rw△s. For each 1 ď i ď N , vi has pole at z “ 0 with order at
most k0. Thus, by (2.2.6), the action of vidz on Wi increases the rL0-weight by at
most E ` k0 ´ 1. It follows from (3.7.3) that w△ P Wďn´1

‚ bC OpBq. The proof is
complete.

Theorem 3.7.4. Let V be C2-cofinite, let W1, . . . ,WN be finitely generated V-modules,
and let X “ pπ : C Ñ B; ς1, . . . , ςNq be a family of N -pointed compact Riemann surfaces.
Then TXpW‚q and (hence) T ˚

X pW‚q are locally free.

Proof. We have seen that TXpW‚q admits a connection near any point of B. Thus,
to prove the local freeness, it suffices to verify that TXpW‚q satisfies the two con-
ditions of Theorem 1.8.5. Assume that B is a Stein manifold, and X is equipped
with local coordinates. Consider A “ π˚pVX b ωC{Bp‚SXqqpBq as a vector space.
Then WXpW‚q “ W‚ bC OB and F “ A bC W‚ bC OB are clearly locally free with
infinite rank. Define a homomorphism of OB-modules φ : F Ñ WXpW‚q such that
for each v P A, w P W‚, U Ă B being open, and f P OBpUq,

φ : pv, w, fq ÞÑ f ¨ pv ¨ wq|U .
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Then both φpF q and N are OB-submodules of WXpW‚q. It is clear that φpF pUqq Ă

N pUq and hence φpF qpUq Ă N pUq. By Corollary 2.5.8, we have φpF qb “ Nb

for each b P B. Thus φpF q “ N pUq. Thus TXpW‚q “ cokerpφq, which verifies
condition (a) of Theorem 1.8.5. By Theorem 3.7.3, TXpW‚q satisfies condition (b).

Corollary 3.7.5. In the setting of Theorem 3.7.4, the dimension function

b P B ÞÑ dimC TXb
pW‚q

is finite and constant on each connected component of B.

Proof. This follows from theorems 3.7.4 and 3.2.1.

Remark 3.7.6. For each g P N and N P Z`, one has a universal family X of N -
pointed connected compact Riemann surfaces with genus g, where B is the Te-
ichmüller space Tg,N of all such curves, and any such curve is biholomorphic to
one of the fibers of X. Since Tg,N is well known to be connected, it follows that
the dimensions of the spaces of conformal blocks are finite and depend only on
V,W‚, g, N but not on the complex structures of the Riemann surfaces.
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Chapter 4

Sewing and factorization

4.1 Projective structures

Schwarzian derivatives and projective structures

Let X “ pπ : C Ñ Bq be a family of compact Riemann surfaces. Let us calculate
the transition functions of Vir c (which is a subsheaf of VX). Choose an open subset
U Ă C and holomorphic functions η, µ : U Ñ C univalent on each fiber. If f P

OpUq and Bηf is nowhere zero, we define the Schwarzian derivative of f over η
to be

Sηf “
B3
ηf

Bηf
´

3

2

´B2
ηf

Bηf

¯2

(4.1.1)

where the partial derivative Bη is defined with respect to pη, πq, i.e., it is annihilated
by dπ and restricts to d{dη on each fiber. Similarly, one can define Sµf . The change
of variable formula is easy to calculate:

Sµf “ pBµηq
2Sηf ` Sµη. (4.1.2)

Take f “ µ and notice Sµµ “ 0, we have

Sµη “ ´pBµηq
2Sηµ. (4.1.3)

Assuming f is also univalent on each fiber, we obtain the cocycle relation.

Sµη ¨ dµ2
“ ´Sηµ ¨ dη2, Sµf ¨ dµ2

` Sfη ¨ df 2
` Sηµ ¨ dη2 “ 0. (4.1.4)

By (2.5.7), the transition function from µ to η is given by UϱpηqUϱpµq´1 “

Upϱpη|µqq. The vacuum vector 1 is clearly fixed by the transition function. So
we just need to calculate Upϱpη|µqqc. By Remark 2.1.3 and formula (2.3.9), if
ρ “ ρpzq P G, then Upρqc “ ρ1p0qL0ec2L2c “ ρ1p0qL0pc ` c

2
c21q “ ρ1p0q2c ` c

2
c21
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where c is the central charge, and c2, which is given by (2.3.10), is 1
6
Szρp0q. Re-

place ρ by ϱpη|µq : U Ñ G. Then ρpnqp0q should be replaced by Bn
µη. Thus the

transition function Upϱpη|µqq is described by

Upϱpη|µqq1 “ 1, Upϱpη|µqqc “ pBµηq
2c `

c

12
Sµη ¨ 1. (4.1.5)

We collect some useful properties of the Schwarzian derivatives.

Proposition 4.1.1. The following are true.

(1) If the restriction of η to each fiber Ub “ U X π´1pbq (where b P B) is a Möbius
transformation of µ, i.e., of the form aµ`b

cµ`d
where ad ´ bc ‰ 0, then Sµη “ 0.

(2) Let Q P OpUq. Then, for each x P U , one can find a neighborhood V Ă U of x and
a function f P OpV q univalent on each fiber Vb “ V X π´1pbq, such that Sηf “ Q.

(3) If f, g P OpUq are univalent on each fiber, then Sηf “ Sηg if and only if Sfg “ 0.

(4) If f,Q P OpUq, f is univalent on each fiber, and Sµf “ Q, then

Sηf “ pBµηq
´2

pQ ´ Sµηq. (4.1.6)

We remark that the converse of (1) is also true: If f is univalent on each fiber,
and if Sηf “ 0, then the restriction of f to each fiber is a Möbius transformation
of η.

Proof. (1) can be verified directly. To prove (2), we identify U with an open subset
of C ˆ B via pη, πq. So η is identified with the standard coordinate z. We choose a
neighborhood V Ă U of x of the form D ˆ W where W Ă B is open, and D is an
open disc centered at point p “ ηpxq P C. Consider the differential equation

B
2
zh ` Qh{2 “ 0

which can be transformed to an C2-valued 1-st order differential equation

Bz

ˆ

α
β

˙

“

ˆ

0 1
´Q{2 0

˙ ˆ

α
β

˙

where α, β and h are related by α “ h, β “ Bzh. By Theorem 1.7.1, there exist
solutions h1, h2 P OpV q satisfying the initial conditions h1p¨, pq “ 1, Bzh1p¨, pq “ 0
and h2p¨, pq “ 0, Bzh2p¨, pq “ 1. It is easy to check that f :“ h2{h1 satisfies Szf “ Q,
and is defined and satisfies Bzf ‰ 0 near tpu ˆ W .

(3) follows from (4.1.2), which says Sηg “ pBηfq2Sfg ` Sηf . (4) follows from
(4.1.2) and (4.1.3).
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Definition 4.1.2. An open cover pUα, ηαqαPA of C, where each open set Uα is
equipped with a function ηα P OpUαq holomorphic on each fiber, is called a (fam-
ily of) projective chart of X, if for any α, β P A, we have Sηβηα “ 0 on Uα X Uβ .
Two projective charts are called equivalent if their union is a projective chart. An
equivalence class of projective charts is called a projective structure. Equiva-
lently, a projective structure is a maximal projective chart.

Suppose that X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq is a family of N -pointed
compact Riemann surfaces with local coordinates. We say that the local coor-
dinates η1, . . . , ηN admit a projective structure if, by choosing mutually disjoint
neighborhoods W1, . . . ,WN of ς1pBq, . . . , ςNpBq on which η1, . . . , ηN are defined re-
spectively, there is a projective chart of X which contains pW1, η1q, . . . , pWN , ηNq.

Remark 4.1.3. Let P be a projective chart on X. Choose an open subset W Ă C
and a fiberwisely univalent η P OpW q. One can define an element

SηP P OpW q

as follows. Choose any pU, µq P P. Then SηP “ Sηµ on W XU . To check that SηP
is well defined, suppose there is another pV, ζq P P. Then Sµζ “ 0 on U X V . Thus
Sηµ “ Sηζ on U X V X W by Proposition 4.1.1.

Existence and classification of projective structures

In what follows we assume for simplicity that each fiber Cb of the family X is
connected. We also assume that c is a non-zero central charge. Recall the exact
sequence (2.5.15), and tensor it by the identity map of ωb2

C{B. We obtain a short
exact sequence

0 Ñ ωb2
C{B Ñ Vir c b ωb2

C{B
λ
ÝÑ OC Ñ 0, (4.1.7)

which induces a long one

0 Ñ π˚pωb2
C{Bq Ñ π˚pVir c b ωb2

C{Bq
λ
ÝÑ OB

δ
ÝÑ R1π˚pωb2

C{Bq. (4.1.8)

Here, we have used the obvious equivalence OB
»
ÝÑ π˚OC, f ÞÑ f ˝ π. We thus

obtain a linear map

λ : H0
`

B, π˚pVir c b ωb2
C{Bq

˘

Ñ H0
pB,OBq. (4.1.9)

Consider 1 P H0pB,OBq, i.e. the constant function on B with value 1.

Theorem 4.1.4. There is a one to one correspondence between the subset λ´1p1q of
H0

`

B, π˚pVir c b ωb2
C{Bq

˘

and the projective structures of X.

113



Proof. First of all, observe that by (2.5.17), for any open U Ă C and µ P OpUq

univalent on each fiber, we have

λ : Uϱpµq
´1c dµ2

ÞÑ 1, 1 dµ2
ÞÑ 0

where 1 is the vacuum section. If η P OpUq is also univalent on each fiber, then by
(4.1.5) and dµ “ pBµηq´1dη, we have

Uϱpµq
´1c dµ2

“ Uϱpηq
´1c dη2 `

c

12
pBµηq

´2Sµη ¨ 1 dη2. (4.1.10)

Choose any ν P λ´1p1q. The corresponding projective chart P is defined as
follows. For any x P C, we choose a neighborhood U of x and µ P OpUq univalent
on each fiber U X π´1pbq. Since ν is an element of Vir c b ωb2

C{BpCq sent by λ to 1, we
have

ν|U “ Uϱpµq
´1c dµ2

´
c

12
Q ¨ 1 dµ2 (4.1.11)

for some Q P OpUq. By Proposition 4.1.1, we may find an open subset Ux Ă U
containing x so that there exists fx P OpUq which is univalent on each fiber and
satisfies Sµfx “ Q. We claim that P :“ tpUx, fxquxPC is a projective chart. Let
y P C, and let pUy, fyq be obtained in the same way through a function η P OpUyq

univalent on each fiber. Let V “ Ux X Uy. Then, by (4.1.10), we have

ν|V “ Uϱpηq
´1c dη2 ´

c

12
pBµηq

´2
`

Q ´ Sµη
˘

¨ 1 dη2.

Thus, we have Sηfy|V “ pBµηq´2pQ ´ Sµηq. On the other hand, by (4.1.6), we also
have Sηfx|V “ pBµηq´2pQ´Sµηq. So Sηfx|V “ Sηfy|V . This implies, by Proposition
4.1.1, that Sfxfy “ 0 on V . Thus P is projective. By maximizing P, we obtain the
projective structure.

If ν 1 ‰ ν defines another projective chart P1 “ tU 1
x, f

1
xu, then for the corre-

sponding Q1 defined similarly by (4.1.11) on U 1
x, we have Sµf

1
x “ Q1. Since ν 1 ‰ ν,

we may find x such that Q ‰ Q1. Thus, on Ux X U 1
x we have Sµfx ‰ Sµf

1
x. Hence

Sfxf
1
x ‰ 0 by Proposition 4.1.1. So tU 1

x, f
1
xu is not equivalent to tUx, fxu. Thus, the

map ν ÞÑ P is injective.
Finally, we show that this map is also surjective. Choose projective structure

P. If pU, µq and pU, ηq belongs to this projective structure, then the transition func-
tion (4.1.10) becomes Uϱpµq´1c dµ2 “ Uϱpηq´1c dη2. By this formula, it is clear that
one can find ν such that λpνq “ 1, and that on each pU, µq belonging to the pro-
jective structure, we have ν|U “ Uϱpµq´1c dµ2. Namely, the Q for ν|U is zero. It is
obvious that the ν corresponds to P.

Proposition 4.1.5. The sheaf map δ : OB Ñ R1π˚pωb2
C{Bq in (4.1.8) is zero. Consequently,

we have a long exact sequence

0 Ñ H0
`

B, π˚pωb2
C{Bq

˘

Ñ H0
`

B, π˚pVir c b ωb2
C{Bq

˘ λ
ÝÑ H0

`

B,OB
˘

Ñ H1
`

B, π˚pωb2
C{Bq

˘

.

(4.1.12)
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As we will see in the proof, π˚pωb2
C{Bq is a locally free OB-module.

Proof. Recall that by Ehresmann’s theorem, the (assumed connected) fibers of X
are diffeomorphic. We let g be the genus. If g ą 1, then for each b P B, we have
H1pCb, ωb2

Cb q “ 0 by Corollary 1.2.6. Thus, by Grauert’s Theorem 1.3.1, π˚pωb2
C{Bq is

locally free, and R1π˚pωb2
C{Bq “ 0, which shows δ “ 0.

We now treat the case g “ 0, 1. Assume first of all that B is a single point. Then
X admits a projective structure. Indeed, when g “ 0, X is equivalent to P1, which
obviously admits a projective structure (e.g. tpP1 ´ t8u, zq, pP1 ´ t0u, 1{zqu). If
g “ 1, then it is well known that X is equivalent to C{Λ where Λ is a real rank
2 lattice in C generated by 1 and τ in the upper half plane. (See e.g. [Hain08].)
A projective structure on C preserved by Λ clearly exists, which descends to one
of X. Thus, by Theorem 4.1.4, λ´1p1q is nonempty. Therefore, by the exactness of
(4.1.8), OB » C is in the kernel of δ, which shows δ “ 0.

We now treat the general case where B a complex manifold. Since OB (as
an OB-module) is generated by the global section 1, it suffices to prove δp1q “

0. We first claim that R1π˚pωb2
C{Bq is locally free. Indeed, when g “ 1, we have

ΘCb » OCb by the lattice realization. Thus, by Serre duality, we have H1pCb, ωb2
Cb q »

H0pCb,ΘCbq » H0pCb,OCbq, which has constant (over b P B) dimension 1. Thus
R1π˚pωb2

C{Bq (and also π˚pωb2
C{Bq) is locally free (of rank 1) by Grauert’s Theorem

1.3.1. When g “ 0, the same is true since all fibers are equivalent to P1. Moreover,
Grauert’s theorem tells us that the fiber of R1π˚pωb2

C{Bq at b is naturally equivalent
to H1pCb, ωb2

Cb q. Thus, it suffices to show that for any b P B, the restriction of δp1q

to the fiber Cb is the zero element of H1pCb, ωb2
Cb q. This follows from the previous

paragraph.

Theorem 4.1.6. Let X “ pπ : C Ñ Bq be a family of compact Riemann surfaces. Suppose
that B is a Stein manifold. Then there is a projective chart on X.

Proof. Since B is Stein and π˚pωb2
C{Bq is locally free, we have H1pB, π˚pωb2

C{Bqq “ 0 by
Cartan’s theorem B. Therefore, the map λ in (4.1.12) is surjective. Thus, a projec-
tive structure exists by Theorem 4.1.4.

Corollary 4.1.7. Let X “ pπ : C Ñ B; ς1, . . . , ςNq be a family of N -pointed compact
Riemann surfaces. Then for any b P B, there is a neighborhood V Q b such that the
restricted family XV can be equipped with local coordinates η1, . . . , ηN which admit a
projective structure.

Proof. Assume without loss of generality that B is Stein. Thus we can choose a
projective chart tpUα, µαquαPA of X. Choose b P B. Then one may shrink B such
that b is still in B, and that for any 1 ď i ď N , we can find α P A such that Uα

contains ςipBq. Set ηi “ µα ´µα ˝ ςi ˝ π, defined near ςipBq. It is clear that η1, . . . , ηN
are compatible with the chosen projective chart.
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4.2 Actions of π˚ΘC{Bp‚SXq

In this section, we fix X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq to be a family
of N -pointed compact Riemann surfaces with local coordinates. We assume for
simplicity that B is a Stein manifold with coordinates τ‚ “ pτ1, . . . , τNq. Let V be
a VOA with central charge c, and let W1, . . . ,WN be V-modules. By definition,
π˚pVX b ωC{Bp‚SXqq and hence its subsheaf π˚pVir c b ωC{Bp‚SXqq act trivially on the
sheaf of covacua TXpW‚q.

Recall the exact sequence (3.6.15)

0 Ñ H0
`

B, π˚ωC{Bp‚SXq
˘

Ñ H0
`

B, π˚

`

Vir c b ωC{Bp‚SXq
˘˘ λ

ÝÑ H0
`

B, π˚ΘC{Bp‚SXq
˘

Ñ 0.

We shall define an action of H0
`

B, π˚ΘC{Bp‚SXq
˘

on TXpW‚q, which turns out to
be an OpBq-scalar multiplication. Such definition already appears in the proof of
Theorem 3.6.6, where the action of r0 P H0

`

B, π˚ΘC{Bp‚SXq
˘

is f . Our goal in this
section is to express f in terms of a projective structure P.

Choose mutually disjoint neighborhoods W1, . . . ,WN of ς1pBq, . . . , ςNpBq on
which η1, . . . , ηN are defined respectively. Write each τj ˝ π as τj for short, so
that pηi, τ‚q is a coordinate of Wi. Set W “ W1 Y ¨ ¨ ¨ Y WN . Choose any
θ P H0

`

B, π˚ΘC{Bp‚SXq
˘

, which, in each Wi, is expressed as

θ|Wi
“ aipηi, τ‚qBηi . (4.2.1)

As in (3.6.6), we define νpθq P Vir c b ωC{Bp‚SXqpW q such that

Uϱpηiqνpθq|Wi
“ aipηi, τ‚qc dηi. (4.2.2)

The action of θ on TXpW‚q is defined to be the action of νpθq, namely, is determined
by

νpθq ¨ w‚ “

N
ÿ

i“1

w1 b ¨ ¨ ¨ b νpθq ¨ wi b ¨ ¨ ¨ b wN (4.2.3)

for any w‚ “ w1 b ¨ ¨ ¨ b wN P W‚. (Recall (3.2.4).) Such definition depends on the
choice of local coordinates η1, . . . , ηN .

Lemma 4.2.1. Assume η1, . . . , ηN admit a projective structure. Then the action of θ on
TXpW‚q is zero.

Proof. Assume that pW1, η1q, . . . , pWN , ηNq belong to a projective structure P.
Then, by (4.1.5), the transition function for c b ωC{B between two projective coor-
dinates is the same as that for ΘC{B, namely, when Sµη “ 0, Bµ changes to Bµη ¨ Bη,
and cdµ changes to Bµη ¨ cdη, sharing the same transition function Bµη. Thus, as θ
is over C, νpθq can be extended to a section of Vir c b ωC{Bp‚SXq on C. In particular,
νpθq is in

`

VX b ωC{Bp‚SXq
˘

pCq “ π˚pVX b ωC{Bp‚SXqqpBq. Thus, νpθq acts trivially
on TXpW‚q.
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Corollary 4.2.2. In Proposition 3.6.6, if η1, . . . , ηN admit a projective structure outside
C∆ (the union of all the nodal fibers), then the definition of the logarithmic connection ∇
is independent of the lifts, i.e., we have ∇y “ ∇1

y.

Thus, the projectiveness of ∇ is controlled by the projective structures of X.

Proof. In the proof of Proposition 3.6.6, we need to show that f “ 0. It suffices to
prove this outside the discriminant locus ∆. Thus, we may assume ∆ “ H and
hence X is a smooth family. We know that the action of νpr0q on TXpW‚q is the
multiplication by f . By Lemma 4.2.1, the action is trivial. Thus f “ 0.

Proposition 4.2.3. Suppose that X has a projective structure P. Choose θ P

H0
`

B, π˚ΘC{Bp‚SXq
˘

whose local expression is given by (4.2.1). Then the action of νpθq

on TXpW‚q (defined by the local coordinates η‚) is the OpBq-scalar multiplication by

#pθq :“
c

12

N
ÿ

i“1

Resηi“0 SηiP ¨ aipηi, τ‚q dηi. (4.2.4)

Note that each SηiP (defined in Remark 4.1.3) is an element of OpWiq. Also,
the residue Resηi“0 is taken with respect to the coordinate pηi, τ‚q.

Proof. It suffices to prove that the claim is locally true. Thus, we may shrinking B
and W1, . . . ,WN such that for each 1 ď i ď N , there exists a coordinate µi P OpWiq

at ςipBq such that pWi, µiq P P. Then

θ|Wi
“ aipηi, τ‚q ¨ pBµi

ηiq
´1

Bµi
.

Our strategy is to compare the action of νpθq defined by the coordinates µ‚ (which
is trivial by Lemma 4.2.1) with rνpθq defined by η‚. Set rνpθq P Vir c b ωC{Bp‚SXqpW q

such that Uϱpµiqrνpθq|Wi
“ aipηi, τ‚q ¨ pBµi

ηiq
´1c dµi. Then

Uϱpµiqrνpθq|Wi
“ aipηi, τ‚q ¨ pBµi

ηiq
´2c dηi.

By Lemma 4.2.1, the action of rνpθq on TXpW‚q is zero. Notice that the action of
rνpθq is independent of the choice of local coordinates. (See Lemma 3.1.3 and the
paragraphs before Proposition 3.2.4.) By (4.1.5), we have

Uϱpηiqrνpθq|Wi
“ Upϱpηi|µiqqUϱpµiqrνpθq|Wi

“aipηi, τ‚qc dηi `
c

12
aipηi, τ‚q ¨ pBµi

ηiq
´2Sµi

ηi ¨ 1 dηi

By (4.2.2) and (4.1.3), we have

Uϱpηiqrνpθq|Wi
“Uϱpηiqνpθq|Wi

´
c

12
aipηi, τ‚q ¨ Sηiµi ¨ 1 dηi

“Uϱpηiqνpθq|Wi
´

c

12
aipηi, τ‚q ¨ SηiP ¨ 1 dηi.

Since the action of rνpθq is zero, the action of νpθq equals the sum over i of the
actions of c

12
aipηi, τ‚q ¨ SηiP ¨ 1 dηi, which is exactly the scalar multiplication by

(4.2.4).
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4.3 Convergence of sewing

In this section, we assume the setting of Section 3.3. In particular, X is a fam-
ily of N -pointed complex curves with local coordinates obtained by sewing the
smooth family

rX “ prπ : rC Ñ rB; ς1, . . . , ςN ; ς 1
1, . . . , ς

1
M ; ς2

1 , . . . , ς
2
M ; η1, . . . , ηN ; ξ1, . . . , ξM ;ϖ1, . . . , ϖMq,

to which the V-modules W1, . . . ,WN , M1, . . . ,M1
M , and their contragredient mod-

ules M1
1, . . . ,M1

M are associated. Also, we assume throughout this section that
V is C2-cofinite, W1, . . . ,WN are finitely generated V-modules, and M1, . . . ,MM (and
hence their contragredient modules) are semi-simple, i.e., they are finite direct sums of
irreducible modules.

For each n P C, let Pn be the projection of each V-module onto its L0-weight
n subspace. Recall the notation qn‚

‚ “ qn1
1 ¨ ¨ ¨ qnM

M . Given ψ P T ˚
rX

pW‚ b M‚ b

M1
‚qp rBq, we say that Sψ converges absolutely and locally uniformly (a.l.u.) if Sψ

converges in the sense of Remark 3.3.1, i.e., if for any w‚ P W‚ and any compact
subsets K Ă rB and Q Ă Dˆ

r‚ρ‚
, there exists C ą 0 such that

ÿ

n‚PCM

ˇ

ˇ

ˇ
ψ

´

w‚ b pPn1 § b1đq b ¨ ¨ ¨ b pPnM
§ bMđq

¯

pbq
ˇ

ˇ

ˇ
¨ |qn‚

‚ | ď C

for any b P K and q‚ “ pq1, . . . , qMq P Q. When M1, . . . ,MM are irreducible (i.e.
simple), since L0 and rL0 differ by a scalar multiplication, we have rSψ “ qλ‚

‚ Sψ
where λ1, . . . , λM are constants. Thus Sψ converges a.l.u. if and only if rSψ does.
The same is true when M1, . . . ,MM are semisimple. Recall also that Sψ is a formal
conformal block.

As in the proof of Theorem 3.7.3, for each k P N, Wďk
‚ (resp. W‚pkq) denotes

the (finite dimensional) subspace spanned by all rL0-homogeneous homogeneous
vectors w P W‚ satisfying Ăwtpwq ď k (resp. Ăwtpwq “ k). This gives a filtration
(resp. grading) of W‚. We define

Sψďk
P pWďk

‚ q
˚

bC Op rBqtq‚u

whose evaluation with each w P Wďk
‚ is Sψpwq. Clearly, the a.l.u. convergence of

Sψ holds if and only if Sψďk P pWďk
‚ q˚ bCOpB´∆q for any large enough k. Recall

B “ Dr‚ρ‚
ˆ rB.

Theorem 4.3.1. Assume that rB (and hence B) is a Stein manifold. Then there exists
k0 P Z` such that for any k ě k0, there exist

A1, . . . , AM P EndC
`

pWďk
‚ q

˚
˘

bC OpBq

not depending on M1, . . . ,MM , such that for any 1 ď j ď M ,

qjBqjpSψďk
q “ Aj ¨ Sψďk. (4.3.1)
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For simplicity, we shall prove this theorem for M “ 1. For general M the idea
of the proof is the same. We set q “ q1 “ q‚, M “ M1 “ M‚, etc.. In this case,
we have B “ Drρ ˆ rB and ∆ “ t0u ˆ rB. We assume that M and hence M1 are
irreducible, so that rL0 and L0 are equal up to a constant. Recall the assumptions
of U 1, U2 in Section 1.6: U 1 (resp. U2) is a neighborhood of ς 1p rBq (resp. ς2p rBq) such
that

pξ, rπq : U 1
Ñ Dr ˆ rB resp. pϖ, rπq : U2

Ñ Dρ ˆ rB

is a biholomorphic map. Recall SX “
ř

i ςipBq. We set S
rX “

řN
i“1 ςip

rBq ` ς 1p rBq `

ς2p rBq to be a divisor of rC. Let

Γ “ ς 1
p rBq Y ς2

p rBq.

Our first step is to show that ψ is a formal parallel section in the direction of
q. Define y P ΘBp´ log∆qpBq to be y “ qBq, regarded as constant over rB. Choose
ry P ΘCp´ log C∆ ` ‚SXqpCq satisfying dπpryq “ qBq as in (3.6.3). We shall take the
series expansion of the vertical part of ry.

For any open precompact subset rV Ă rC ´Γ and an η P OprV q univalent on each
fiber, choose an open subdisc D Ă Drρ centered at 0 with standard coordinate q,
and assume that D is small enough such that D ˆ rV » rV ˆ D can be regarded as
an open subset of rC ˆDrρ ´F 1

1 ´F 2
1 (recall (1.6.9)) and hence of C. Consider η also

as an element of OpD ˆ rV q which is constant over D. Thus Bqη “ 0. Then there
exists h P Op‚SXqpD ˆ rV q such that

ry|Dˆ rV “ hBη ` qBq. (4.3.2)

Write h “
ř

nPN hnq
n where hn P Op‚S

rXqprV q. For each n P N, set an element
ryK
n P Θ

rC{ rBp‚S
rXqprV q by

ryK
n |

rV “ hnBη. (4.3.3)

Lemma 4.3.2. The locally defined ryK
n is independent of the choice of η, and hence can be

extended to an element of Θ
rC{ rBp‚S

rXqp rC ´ Γq

Proof. Suppose we have another µ P OprV q univalent on each fiber, which is ex-
tended constantly to Dˆ rV . Then Bqµ “ 0 and hence ry|Dˆ rV “ h ¨Bηµ ¨Bµ `qBq.Note
that Bηµ is constant over q. Thus, if we define ryK

n |
rV using µ, then ryK

n |
rV “ hn ¨Bηµ ¨Bµ,

which agrees with (4.3.3).

We shall show that ryK
n has poles of finite orders at Γ. For that purpose, we need

to describe explicitly ry near the critical locus Σ. Let us first recall the geometry
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of X near Σ. By the paragraph containing (2.5.10), any x1 P Σ is contained in a
neighborhood W of the form

W “ Dr ˆ Dρ ˆ rB,
W X Σ » p0, 0q ˆ rB,

π : W “ Dr ˆ Dρ ˆ rB πr,ρˆ1
ÝÝÝÝÑ Drρ ˆ rB “ B,

where πr,ρ : Dr ˆ Dρ Ñ Drρ is the multiplication map. As usual, we let ξ,ϖ be
respectively the standard coordinates of Dr,Dρ. Then pξ,ϖq is a coordinate of
Dr ˆ Dρ. Set q “ πr,ρ “ ξϖ.

In the following, we let τ‚ be any biholomorphic map from rB to an open subset
of a complex manifold. If rB is small enough, then τ‚ can be a set of coordinates
of rB. The purpose of introducing τ‚ is only to indicate the dependence of certain
functions on the points of rB. Thus, pξ, q, τ‚q and pϖ, q, τ‚q are respectively biholo-
morphic maps of

W 1
“ Dˆ

r ˆ Dρ ˆ rB, W 2
“ Dr ˆ Dˆ

ρ ˆ rB

to complex manifolds. By (1.6.20), we can find a, b P Oppξ,ϖ, τ‚qpW qq such that

ry|W “ apξ,ϖ, τ‚qξBξ ` bpξ,ϖ, τ‚qϖBϖ.

Since dπpξBξq “ dπpϖBϖq “ qBq by (1.6.21), we must have

a ` b “ 1. (4.3.4)

This relation, together with (1.6.2), shows that under the coordinates pξ, q, τ‚q and
pϖ, q, τ‚q respectively,

ry|W 1 “ apξ, q{ξ, τ‚qξBξ ` qBq, ry|W 2 “ bpq{ϖ,ϖ, τ‚qϖBϖ ` qBq. (4.3.5)

Lemma 4.3.3. For each n P N, ryK
n has poles of orders at most n ´ 1 at ς 1p rBq and ς2p rBq.

Consequently, ryK
n is an element of Θ

rC{ rBp‚S
rXqp rCq.

Proof. Let us write

apξ,ϖ, τ‚q “
ÿ

m,nPN

am,npτ‚qξmϖn, bpξ,ϖ, τ‚q “
ÿ

m,nPN

bm,npτ‚qξmϖn

where am,n, bm,n P Opτ‚p rBqq. Then

apξ, q{ξ, τ‚q “
ÿ

ně0,lě´n

al`n,npτ‚qξlqn, bpq{ϖ,ϖ, τ‚q “
ÿ

mě0,lě´m

bm,l`mpτ‚qϖlqm.

(4.3.6)
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Combine these two relations with (4.3.3) and (4.3.5), and take the coefficients be-
fore qn. We obtain

ryK
n

ˇ

ˇ

ˇ

U 1´ς 1p rBq
“

ÿ

lě´n

al`n,npτ‚qξl`1
Bξ, ryK

n

ˇ

ˇ

ˇ

U2´ς2p rBq
“

ÿ

lě´n

bn,l`npτ‚qϖl`1
Bϖ, (4.3.7)

which finishes the proof.

One can then let νpryK
n q be a section of Vir c b ω

rC{ rBp‚S
rXq defined on U 1 Y U2

(near ς 1p rBq, ς2p rBq) and near ς1p rBq, . . . , ςNp rBq as in (4.2.2). Note that Vir c is defined
over rC. Also, νpryK

n q depends on the local coordinates η1, . . . , ηN , ξ,ϖ. Recall the
correspondence Bξ ÞÑ cdξ, Bϖ ÞÑ cdϖ. We calculate the actions of νpryK

n q on M and
on M1 to be respectively

Resξ“0

ÿ

lě´n

al`n,nYMpc, ξqξl`1dξ, Resϖ“0

ÿ

lě´n

bn,l`nYM1pc, ϖqϖl`1dϖ. (4.3.8)

In the following proofs, we will suppress the symbol τ‚ when necessary.

Lemma 4.3.4. The following equation of elements of pM b M1qrrqss is true.

L0q
rL0 § b đ “

ÿ

nPN

νpryK
n qqn`rL0 § b đ `

ÿ

nPN

qn`rL0 § b νpryK
n qđ (4.3.9)

Note that as M is assumed to be irreducible, the equation still holds if rL0 is
replaced by L0.

Proof. It is obvious that Upγ1qc “ c, ξL0c “ ξ2c, ϖL0c “ ϖ2c. Notice Remark 3.3.4.
We have

YMpξL0c, ξqq
rL0 § b đ ¨apξ, q{ξq

dξ

ξ

“
ÿ

ně0

ÿ

lě´n

YMpc, ξqqn`rL0 § b đ ¨al`n,nξ
l`1dξ

as elements of pM b M1 b Op rBqqppξqqrrqssdξ. Take Resξ“0 and notice (4.3.8). Then,
the above expression becomes the first summand on the right hand side of (4.3.9).
A similar thing could be said about the second summand. Thus, the right hand
side of (4.3.9) equals

Resξ“0YMpξL0c, ξqq
rL0 § b đ ¨apξ, q{ξq

dξ

ξ

`Resϖ“0q
rL0 § b YM1pϖL0Upγ1qc, ϖq đ ¨bpq{ϖ,ϖq

dϖ

ϖ
.

121



By Lemma 3.3.3 and that a ` b “ 1, it equals

Resξ“0YMpξL0c, ξqq
rL0 § b đ ¨

dξ

ξ
“ Resξ“0YMpc, ξqq

rL0 § b đ ¨ξdξ

“YMpcq1q
rL0 § b đ “ L0q

rL0 § b đ .

Lemma 4.3.5. For any w‚ P W‚, we have the following relation of elements of Op rBqtqu.

qBqSψpw‚q “
ÿ

nPN

ψpw‚ b νpryK
n qqn`L0 § b đq `

ÿ

nPN

ψpw‚ b qn`L0 § b νpryK
n qđq.

Proof. We have

qBqSψpw‚q “ qBqψpw‚ b qL0 § b đq “ ψpw‚ b L0q
L0 § b đq.

By the Lemma 4.3.4 (with rL0 replaced by L0), the desired equation is proved.

As usual, we let νpryK
n qw‚ denote

ř

iw1 b ¨ ¨ ¨ b νpryK
n qwi b ¨ ¨ ¨ b wN . Recall B “

Drρ ˆ rB. For any w‚ P W‚, one can define ∇qBqw‚ P W‚ bC OpDrρ ˆ rBq using (3.6.7)
and (3.6.8), which equals ∇qBqw‚ “ ´νpryqw‚. The action of νpryq clearly equals that
of

ř

nPN q
nνpryK

n q. Thus, we obtain

∇qBqw‚ “ ´
ÿ

nPN

qnνpryK
n qw‚. (4.3.10)

In particular, the series on the right hand side converges absolutely.
The following lemma claims that up to a formal projective term, Sψ is parallel

in the direction of qBq, where the connection is defined by the chosen lift ry. Recall
that rB is Stein. Thus, we can choose a projective structure P on rX, which exists
due to Theorem 4.1.6.

Proposition 4.3.6. There exists #pryK
n q P Op rBq for each n P N, such that for any w‚ P

W‚, we have the following equation of elements of Op rBqtqu:

qBqSψpw‚q “ Sψp∇qBqw‚q `
ÿ

nPN

#pryK
n qqn ¨ Sψpw‚q.

Proof. #pryK
n q is defined by Proposition 4.2.3. Moreover, by that proposition, we

have

w‚ b νpryK
n qqL0 § b đ `w‚ b qL0 § b νpryK

n q đ `νpryK
n qw‚ b qL0 § b đ

“#pryK
n q ¨ w‚ b qL0 § b đ .

By Lemma 4.3.5 and relation (4.3.10), it is easy to prove the desired equation.
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We still need one more result before we can prove Theorem 4.3.1: the projective
term

ř

nPN #pryK
n qqn converges absolutely.

Proposition 4.3.7.
ř

nPN #pryK
n qqn is an element of OpDrρ ˆ rBq “ OpBq.

Proof. Let rV1, . . . , rVN be mutually disjoint neighborhoods of ς1p rBq, . . . , ςNp rBq on
which η1, . . . , ηN are defined. Assume that they are disjoint from U 1, U2. Then
Drρ ˆ rV1, . . . ,Drρ ˆ rVN are neighborhoods of ς1pBq, . . . , ςNpBq. Write τ‚ ˝ π also as
τ‚ for simplicity. Recall (4.3.2). We may write

ry|Drρˆ rVi
“ hipq, ηi, τ‚qBηi ` qBq

where hipq, ηi, τ‚q P OCp‚SXqpDrρ ˆ rViq. Write hi “
ř

n hi,nq
n. Then by (4.3.3),

ryK
n |

rVi
“ hi,npηi, τ‚qBηi . (4.3.11)

Combine (4.3.7) and (4.3.11), and apply Proposition 4.2.3 to the family rX. We
obtain

#pryK
n q “

c

12

`

An ` Bn `

N
ÿ

i“1

Ci,n

˘

where

An “
ÿ

lě´n

Resξ“0 SξP ¨ al`n,npτ‚qξl`1dξ,

Bn “
ÿ

lě´n

Resϖ“0 SϖP ¨ bn,l`npτ‚qϖl`1dϖ,

Ci,n “ Resηi“0 SηiP ¨ hi,npηi, τ‚qdηi.

Notice that SηiP “ SηiPpηi, τ‚q, SϖP “ SϖPpϖ, τ‚q, SξP “ SξPpξ, τ‚q are holo-
morphic functions on rVi, U

1, U2 which are identified with their images under
pηi, τ‚q, pξ, τ‚q, pϖ, τ‚q respectively.

We have
ÿ

ně0

Anq
n

“
ÿ

ně0

ÿ

lě´n

Resξ“0 SξP ¨ al`n,npτ‚qξl`1qndξ. (4.3.12)

We claim that (4.3.12) is an element of OpDrρ ˆ rBq. Note that apξ, q{ξ, τ‚q is defined
when |q|{ρ ă |ξ| ă r. Choose any ϵ P p0, rρq. Choose a circle γ1 surrounding Dϵ{ρ

and inside Dr. Then, when ξ is on γ, apξ, q{ξ, τ‚q can be defined whenever |q| ă ϵ.
Thus,

A :“
1

2iπ

¿

γ1

SξPpξ, τ‚q ¨ apξ, q{ξ, τ‚qξdξ
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is a holomorphic function defined whenever |q| ă ϵ. Recall the first equation of
(4.3.6), and note that the series converges absolutely and uniformly when ξ P γ1

and |q| ď ϵ, by the double Laurent series expansion of apξ, q{ξ, τ‚q. Therefore, the
above contour integral equals

ÿ

ně0

ÿ

lě´n

¿

γ1

1

2iπ
SξPpξ, τ‚q ¨ al`n,npτ‚qξl`1qndξ,

which clearly equals (4.3.12) as an element of Op rBqrrqss. Thus (4.3.12) is an ele-
ment of OpDϵ ˆ rBq whenever ϵ ă rρ, and hence when ϵ “ rρ.

A similar argument shows
ř

Bnq
n converges a.l.u. to

B :“
1

2iπ

¿

γ2

SϖPpϖ, τ‚q ¨ bpq{ϖ,ϖ, τ‚qϖdϖ

where γ2 is any circle in Dρ surrounding 0. Finally, we compute

Ci :“
ÿ

ně0

Ci,nq
n

“
ÿ

ně0

Resηi“0 SηiPpηi, τ‚q ¨ hi,npηi, τ‚qqndηi

“Resηi“0 SηiPpηi, τ‚q ¨ hipq, ηi, τ‚qdηi

which is clearly inside OpDrρ ˆ rBq. The proof is now complete. We summarize
that the projective term equals

ÿ

nPN

#pryK
n qqn “

c

12

`

A ` B `

N
ÿ

i“1

Ci

˘

. (4.3.13)

Proof of Theorem 4.3.1. We choose k0 such that the s1, s2, . . . found in Theorem 3.7.3
are in Wďk0

‚ bC OpBq. We may assume s1, s2, . . . form a basis of Wďk0
‚ , regarded as

constant sections of Wďk0
‚ bC OpBq. Fix any k ě k0, and extend s1, s2, . . . to a basis

of Wďk
‚ .

By propositions 4.3.6 and 4.3.7, for each si of s1, s2, . . . , we have the following
equation of elements of Op rBqtqu:

qBqSψpsiq “ Sψp∇qBqsiq ` gSψpsiq

where g P OpDrρ ˆ rBq “ OpBq equals (4.3.13) and is hence independent of
s1, s2, . . . . By Theorem 3.7.3, we can find fi,j P OpBq such that ∇qBqsi equals
ř

j fi,jsj mod sections of π˚

`

VX b ωC{Bp‚SXq
˘

¨ WXpW‚q. (Indeed, the proof of
that theorem shows that the relation holds mod a sum of elements of the form
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pυ ¨ w˝
‚ P π˚

`

VX b ωC{Bp‚SXq
˘

pBq ¨ WXpW‚qpBq). Since, by Theorem 3.3.5, Sψ is a
formal conformal block, we must have

qBqSψpsiq “
ÿ

j

fi,jSψpsjq ` gSψpsiq.

The proof is completed by setting the matrix-valued function A1 “ A to be pfi,j `

gδi,jqi,j .

Theorem 4.3.8. Choose ψ P T ˚
rX

pW‚ bM‚ bM1
‚qp rBq. Then Sψ and rSψ converge a.l.u..

We are not assuming rB to be Stein.

Proof. Assume without loss of generality that M1, . . . ,MM are irreducible. Then
Sψ and rSψ differ by qλ‚

‚ for some λ1, . . . , λM P C.
When M “ 1, the a.l.u. convergence follows directly from theorems 4.3.1 and

1.7.2. The general case can be proved by induction. For simplicity, we assume
M “ 2 and explain the idea. According to the base case, for any w‚ P W‚, we
know that rSψpw‚qpq1, q2, τ‚q is an element of OpDr1ρ1 ˆ rBqrrq2ss. Also, by the base
case (applied to the smooth family over Dˆ

r1ρ1
ˆ rB), we know that rSψpw‚qpq1, q2, τ‚q

converges a.l.u. to an element of OpDˆ
r1ρ1

ˆDr2ρ2 ˆ rBq. This finishes the proof.

Recall that the logarithmic connection on T ˚
X pW‚q is dual to the one on

TXpW‚q. From propositions 4.3.6 and 4.3.7 and their proofs, we have:

Theorem 4.3.9. Assume rB is Stein. For each 1 ď k ď M , define ∇qkBqk
on TXpW‚q

and hence on T ˚
X pW‚q using η‚ and a lift ry of qkBqk as in Section 3.6. Then there exists a

projective term fk P OpBq such that

∇qkBqk
Sψ “ fk ¨ Sψ.

Recall B “ Dr‚ρ‚
ˆ rB. When M “ 1, the projective term f1 is (4.3.13). In the

following remark, we give the formula of fk for a general M .

Remark 4.3.10. Let ry P ΘCp´ log C∆ ` ‚SXqpCq be a lift of y “ qkBqk . Choose
neighborhoods U 1

1, . . . , U
1
M , U

2
1 , . . . , U

2
M of ς 1

1p
rBq, . . . , ς 1

Mp rBq, ς2
1 p rBq, . . . , ς2

Mp rBq as in
(1.6.6). Choose rV1, . . . , rVN to be neighborhoods of ς1p rBq, . . . , ςNp rBq as in the proof
of Proposition 4.3.7. Assume that they are disjoint from U 1

1, . . . , U
1
M , U

2
1 , . . . , U

2
M .

Then Dr‚ρ‚
ˆ rV1, . . . ,Dr‚ρ‚

ˆ rVN are neighborhoods of ς1pBq, . . . , ςNpBq in C. For
each 1 ď i ď N, 1 ď j ď M , write

ry|Dr‚ρ‚ ˆ rVi
“ hipq‚, ηi, τ‚qBηi ` qkBqk ,

ry|Drj ˆDρj ˆDr‚ρ‚zjˆ rB “ ajpξj, ϖj, q‚zj, τ‚qξjBξj ` bjpξj, ϖj, q‚zj, τ‚qϖjBϖj
` p1 ´ δj,kqqkBqk .
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where hi, aj, bj are holomorphic functions on suitable domains, and

aj ` bj “ δj,k.

Choose a projective structure P of X. Then SηiP “ SηiPpηi, τ‚q, SξjP “

SξjPpξj, τ‚q, Sϖj
P “ Sϖj

Ppϖj, τ‚q are holomorphic functions on rVi, U
1
j, U

2
j which

are identified with their images under pηi, τ‚q, pξj, τ‚q, pϖj, τ‚q respectively. Choose
circles γ1

j Ă Drj and γ2
j Ă Dρj surrounding 0. Then the projective term fk in Theo-

rem 4.3.9 equals

fk “
c

12
¨

ˆ

ÿ

1ďjďM

Aj `
ÿ

1ďjďM

Bj `
ÿ

1ďiďN

Ci

˙

,

where

Aj “

¿

γ1
j

SξjPpξj, τ‚q ¨ ajpξj, qj{ξj, q‚zj, τ‚q ¨ ξjdξj,

Bj “

¿

γ2
j

Sϖj
Ppϖj, τ‚q ¨ bjpqj{ϖj, ϖj, q‚zj, τ‚q ¨ ϖjdϖj,

Ci “ Resηi“0 SηiPpηi, τ‚q ¨ hipq‚, ηi, τ‚qdηi.

4.4 Linear independence of sewing

We continue the study of sewing, but assume that rX is a single compact Rie-
mann surface, and M “ 1, i.e.,

rX “ p rC;x1, . . . , xN ;x
1;x2; η1, . . . , ηN ; ξ;ϖq.

The main result of this section can be generalized, by induction, to any M P Z`.
As usual, we assume that each connected component of rC contains at least one of
x1, . . . , xN . Let E be a finite set of mutually inequivalent irreducible V-modules.
Choose open discs W 1 » Dr,W

2 » Dρ (with respect to the local coordinates
ξ,ϖ) around x1, x2 which do not contain x1, . . . , xN . Assume V is C2-cofinite and
W1, . . . ,WN are finitely-generated V-modules associated to x1, . . . , xN .

Let

X “ pπ : C Ñ Drρ;x1, . . . , xN ; η1, . . . , ηNq

be the family of complex curves obtained by sewing rX, where
x1, . . . , xN , η1, . . . , ηN are extended from those of rC and are constant over
Drρ. For each q P Dˆ

rρ, we define a linear map

Sq :
à

MPE
T ˚

rX
pW‚ b M b M1

q Ñ T ˚
Xq

pW‚q, (4.4.1)
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à

M
ψM ÞÑ

ÿ

M

SψMpqq.

Similarly, one can define rSq by replacing S with rS. Notice that
ř

M
rSψMpqq “

ř

M q
λMSψMpqq for some constants λM depending only on M. Thus Sq is injective

if and only if rSq is.

Theorem 4.4.1. Choose any q P Dˆ
rρ. Then Sq and rSq are injective linear maps.

Proof. Let us fix q0 P Dˆ
rρ and let q denote a complex variable. Let us prove that

Sq0 is injective. Suppose that the finite sum
ř

M SψMpq0q equals 0. We shall prove
by contradiction that ψM “ 0 for any M P E .

Suppose this is not true. Let F be the (finite) subset of all M P E satisfying
ψM ‰ 0. Then F is not an empty set. We first show that ϕ :“

ř

M SψM (which is
a multivalued holomorphic function on Dˆ

rρ) satisfies ϕpqq “ 0 for each q P Dˆ
rρ.

Choose any large enough k P N. Then, by Theorem 4.3.1, ϕďk satisfies a linear
differential equation on Dˆ

rρ of the form Bqϕ
ďk “ q´1A ¨ ϕďk. Moreover, it satisfies

the initial condition ϕďkpq0q “ 0. Thus, by Theorem 1.7.1, ϕďk is constantly 0. So
is ϕ.

Consider the V ˆ V-module X :“
À

MPF M b M1. Define a linear map κ : X Ñ

W˚
‚ as follows. If m b m1 P M b M1, then the evaluation of κpm b m1q with any

w‚ P W‚ is

xκpm b m1
q, w‚y “ ψMpw‚ b m b m1

q.

We claim that Kerpκq is a non-zero subspace of X invariant under the action of
V ˆ V. If this can be proved, then, by Lemma 4.4.2, we have M b M1 Ă kerpκq for
some M P F . Therefore,ψMpw‚bmbm1q “ 0 for anyw‚ P W‚ andmbm1 P MbM1.
Namely, ψM “ 0. So M R F , which gives a contradiction.

For any n P C, let Pn be the projection of M onto its L0-weight n subspace.
Then

ϕpw‚qpqq “
ÿ

MPF

ÿ

nPC

ψMpw‚ b Pn § b đqqn.

Since this multivalued function is always 0, by Lemma 4.4.3, any coefficient before
qn is 0. Thus Pn § b đ (which is an element of Mpnq b M1

pnq
) is in kerpκq for any n.

Thus kerpκq must be non-empty.
Suppose now that

ř

j mj b m1
j P Kerpκq where each mj b m1

j belongs to some
MbM1. We set ψ

rMpw‚ bmj bm1
jq “ 0 if M, rM P F and M ‰ rM. Choose any n P N

and l P Z. We shall show that
ř

j Y puqlmj b m1
j P Kerpκq for any u P Vďn. (Here Y

denotes YM for a suitable M.) Thus Kerpκq is V ˆ 1-invariant. A similar argument
will show that Kerpκq is 1 ˆ V-invariant, and hence V ˆ V-invariant.

Set divisorsD1 “ x1`¨ ¨ ¨`xN andD2 “ x1`x2. Choose a natural number k2 ě l
such that Y puqkmj “ Y puqkm

1
j “ 0 for any j, any k ě k2, and any u P Vďn. This
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is possible by the lower truncation property. By Corollary 1.2.2, we can choose
k1 P N such thatH1p rC,V ďn

rC
bω

rCpk1D1´k2D2qq “ 0. Thus, the short exact sequence

0 Ñ V ďn
rC

b ω
rCpk1D1 ´ k2D2q Ñ V ďn

rC
b ω

rCpk1D1 ´ lD2q Ñ G Ñ 0

(where G is the quotient of the previous two sheaves) induces another one

0 Ñ H0
`

rC,V ďn
rC

b ω
rCpk1D1 ´ k2D2q

˘

Ñ H0
`

rC,V ďn
rC

b ω
rCpk1D1 ´ lD2q

˘

Ñ H0
p rC,G q Ñ 0.

Choose any u P Vďn. Choose v P H0p rC,G q to be Uϱpξq´1uξldξ in W 1 and 0 in
rC ´ tx1u. Then v has a lift ν in H0

`

rC,V ďn
rC

b ω
rCpk1D1 ´ lD2q

˘

, which must be of
the form

Uϱpξqν|W 1 “ uξldξ ` ξk2pelements of Vďn
bC OpW 1

qqdξ,

Uϱpϖqν|W 2 “ ϖk2pelements of Vďn
bC OpW 2

qqdϖ.

It is clear that ν ¨ mj “ Y puqlmj and ν ¨ m1
j “ 0. Thus, as each ψM vanishes on

ν ¨ pW‚ b M b M1q, we have
ÿ

MPF

ÿ

j

ψMpw‚ b Y puqlmj b m1
jq “ ´

ÿ

MPF

ÿ

j

ψMppν ¨ w‚q b mj b m1
jq

“ ´
ÿ

j

xκpmj b m1
jq, ν ¨ w‚y “ 0.

So
ř

j Y puqlmj b m1
j P Kerpκq.

Lemma 4.4.2. If Kerpκq is non-zero subspace of X invariant under the action of V ˆ V,
then it contains an irreducible summand M b M1.

Proof. Set A “ Kerpκq. By basic representation theory, A contains an irreducible
V ˆ V-submodule A0. (See for instance [Lang] section XVII.2.) Let ι : A0 Ñ X
be the inclusion, and let pM : X Ñ M b M1 be the standard projection. Then
pM ˝ ι : A0 Ñ M b M1 is non-zero for some M P F . Since M b M1 is an irreducible
V ˆ V-module (see Proposition 4.5.16 and Theorem 4.5.12), pM ˝ ι is surjective.
Since A0 is irreducible and pM ˝ ι is non-zero, the kernel of pM ˝ ι must be empty.
So pM ˝ ι is an isomorphism. Hence A0 is isomorphic to M b M1. If p

rM ˝ ι is non-
zero for another rM P F , then the same argument shows A0 » rM b rM1, which
is impossible since M b M1 is not isomorphic to rM b rM1. So A0 must be exactly
M b M1.

Lemma 4.4.3. Let E be a finite subset of C. Choose an element

fpzq “
ÿ

αPE`N

cαz
α
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of Ctzu. Let ϵ ą 0. Assume that fpzq converges absolutely to 0 on Dˆ
ϵ . Namely, for any

z P Dˆ
r , there is C ą 0 such that

ÿ

αPE`N

|cαz
α
| ď C, (4.4.2)

and the infinite sum
ř

αPE`N cαz
α converges to 0. Then cα “ 0 for each α.

Remark 4.4.4. Note that fpzq can be written as zα1f1pzq ` ¨ ¨ ¨ ` zαnfnpzq where
f1, . . . , fn P Crrzss, and any two of α1, . . . , αn do not differ by an integer. It is
easy to see that fpzq converges absolutely on Dˆ

ϵ if and only if f1, . . . , fn P OpDϵq.
Indeed, the if part is obvious; the only if part follows from the root test. Moreover,
it is clear that f1, . . . , fn P OpDϵq implies fpzq converges a.l.u. on Dˆ

ϵ , i.e., for
compact subset K Ă Dˆ

ϵ , there is C ą 0 such that (4.4.2) holds for any z P K.

Proof of Lemma 4.4.3. Assume that the coefficients of f are not all 0. We can let
r P R be the smallest number such that cα ‰ 0 for some α P E ` N satisfying
Repαq “ r. Let β1 “ r ` is1, . . . , βk “ r ` isk be all the elements of E ` N whose
real parts are r. (So s1, . . . , sk P R.) Notice si ‰ sj when i ‰ j. Then

z´rfpzq “ cβ1z
is1 ` ¨ ¨ ¨ ` cβk

zisk ` gpzq

where gpzq P Ctzu can be written as

gpzq “ zγ1h1pzq ` ¨ ¨ ¨ ` zγmhmpzq

for some h1, . . . , hm P Crrzss, the real parts of γ1, . . . , γm P C are all ą 0, and any
two of γ1, . . . , γm do not differ by an integer. Since z´rfpzq converges absolutely
on Dˆ

ϵ , we have h1, . . . , hm P OpDϵq by Remark 4.4.4. Let t be a real variable. Then
it is easy to see by induction that for any j P N,

lim
tÑ´8

B
j
t gpetq “ 0.

Since the j-th derivative of e´rtfpetq over t is constantly 0, we have

lim
tÑ´8

pcβ1s
j´1
1 eis1t ` ¨ ¨ ¨ ` cβk

sj´1
k eisktq “ 0.

Let A “ psj´1
i q1ďi,jďk P MkˆkpCq. Then

lim
tÑ´8

pcβ1e
is1t, . . . , cβk

eisktq ¨ A “ 0.

Since A is a Vandermonde matrix which is invertible, we conclude that
cβ1e

is1t, . . . , cβk
eiskt all converge to 0, which forces cβ1 , . . . , cβk

to be 0. This gives
a contradiction.
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Corollary 4.4.5. There are finitely many equivalence classes of irreducible V-modules.

Recall that V is assumed to be C2-cofinite.

Proof. We let rX “ pP1; 1; 0;8; z ´ 1; z; 1{zq. Set r “ ρ “ 1. Let X be obtained by
sewing rX. Then, for each q P Dˆ

1 , Cq is of genus 1. Choose E to be an arbitrary finite
set of mutually inequivalent irreducible V-modules. We claim that the cardinality
of E is bounded by dimension of T ˚

Xq
pVq which is finite by Theorem 3.7.3. Indeed,

consider the map Sq in (4.4.1), where we set W‚ to be V. For each M P E , the
vector space T ˚

rX
pV b M b M1q is nontrivial by the construction in example 3.1.6.

Thus, the dimension of the domain of Sq must be no less than the cardinality of
E , which is bounded by the dimension of T ˚

Xq
pVq since Sq is injective.

4.5 More on VOA modules

We fix a VOA V. In this section, we do not assume V is C2-cofinite.

A criterion on weak V-modules

Let W be a vector space. Let YW associates to each v P V and n P Z an oper-
ator YWpvqn P EndpWq, and assume that the map v P V ÞÑ YWpvqn is linear. Set
YWpv, zq “

ř

nPZ YWpvqnz
´n´1 P EndpWqrrz, z´1ss. We assume that for each v P V

and w P W, we have YWpvqnw “ 0 for any n small enough, i.e.,

YWpv, zqw P Wppzqq.

We say that pW, YWq (or simply W) is a (lower-truncated) linear representation of
V.

Let W˝ be a subspace of the dual space W˚ of W. We say that W˝ is dense, if
for any w P W, we have w “ 0 iff xw1, wy “ 0 for any w1 P W˝.

Proposition 4.5.1. Let W be a linear representation of V. Assume that YWp1, zq “ 1W.
Assume that W˚ has a dense subspace W˝ satisfying the following condition: For each
w1 P W˝, there exist ϵ ą 0 such that

(1) for each v P V, w P W, xYWpv, zqw,w1y P Cppzqq is the laurent series expansion of
an element of OpDˆ

ϵ q;

(2) for each u, v P V, w P W, there exists f “ fpζ, zq P OpConf2pDˆ
ϵ qq such that for

any n P Z and z P Dˆ
ϵ ,

xYWpv, zqYWpuqnw,w
1
y “ Resζ“0 fpζ, zqζndζ, (4.5.1)

xYWpY puqnv, zqw,w1
y “ Resζ´z“0 fpζ, zqpζ ´ zq

ndζ, (4.5.2)

and for any n P Z and ζ P Dˆ
ϵ ,

xYWpu, ζqYWpvqnw,w
1
y “ Resz“0 fpζ, zqzndz. (4.5.3)
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Then W is a weak V-module.

(2) says that for each z P Dˆ
ϵ , xw1, YWpv, zqYWpu, ζqwy P Cppζqq and

xw1, YWpY pu, ζ ´ zqv, zqwy P Cppζ ´ zqq are respectively the Laurent series expan-
sions of fpζ, zq at ζ “ 0 and ζ “ z; for each ζ P Dˆ

ϵ , xYWpu, ζqYWpv, zqw,w1y P

Cppzqq is the Laurent series expansion of fpζ, zq at z “ 0.
We remark that in practice, we can often choose ϵ independent of w1.

Proof. Choose circles C1, C2, C3 in Dˆ
ϵ surrounding 0 with radii r1 ă r2 ă r3. For

each z P C2, choose a circle Cpzq centered at z whose radius is less than r2 ´ r1 and
r3 ´ r2. Choose any m,n P Z. Then P pzq “ Qpzq ´ Rpzq where

P pzq “

¿

Cpzq

fpζ, zqζmpζ ´ zq
ndζ,

Qpzq “

¿

C3

fpζ, zqζmpζ ´ zq
ndζ,

Rpzq “

¿

C1

fpζ, zqζmpζ ´ zq
ndζ.

As in the proof of Theorem 2.1.2, we may use (4.5.1) and (4.5.2) to calculate that

P pzq “
ÿ

lPN

ˆ

m

l

˙

xYWpY puqn`lv, zqw,w1
yzm´l,

Rpzq “
ÿ

lPN

ˆ

n

l

˙

p´1q
n´l

xYWpv, zqYWpuqm`lw,w
1
yzn´l.

Thus, for any h P Z,
¿

C2

P pzqzhdz “
ÿ

lPN

ˆ

m

l

˙

xYWpY puqn`lvqm`h´lw,w
1
yzm´l,

¿

C2

Rpzqzhdz “
ÿ

lPN

ˆ

n

l

˙

p´1q
n´l

xYWpvqn`h´lYWpuqm`lw,w
1
yzn´l.

Also, by (4.5.3), it is not hard to see that
¿

C2

Qpzqzhdz “

¿

C2

¿

C3

fpζ, zqzhζmpζ ´ zq
ndζdz

“

¿

C3

¿

C2

fpζ, zqzhζmpζ ´ zq
ndzdζ
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“

¿

C3

ÿ

lPN

ˆ

n

l

˙

p´1q
l
xYWpu, ζqYWpvqh`lw,w

1
yζm`n´ldζ

“
ÿ

lPN

ˆ

n

l

˙

p´1q
l
xYWpuqm`n´lYWpvqh`lw,w

1
y.

This proves the Jacobi identity (2.2.2) since we have
ű

C2
P pzqzhdz “

ű

C2
Qpzqzhdz´

ű

C2
Rpzqzhdz.

Lowest weight weak V-modules

Most results in this section is well-known.
Let pW, YWq be a weak V-module. We define its lowest weight subspace to be

ΩpWq “ tw P W : YWpvqnw “ 0 for any homogeneous v P V, n ě wtpvqu.

Using (2.2.3), it is easy to see that Y pvqnΩpWq Ă ΩpWq when wtpvq “ n ` 1. If
W is admissible, then the lowest rL0-weight space of W is a subspace of ΩpWq.
In particular, ΩpWq is non-trivial if W is so. Also, if pWiqi is a collection of weak
V-modules, then

Ω
´

à

i

Wi

¯

“
à

i

ΩpWiq. (4.5.4)

Indeed, it is clear that a vector w in the direct sum is annihilated by any YWpvqn

(where n ě wtpvq) if and only if each component of w is so. We say that W is a
lowest weight weak V-module, if W is generated by the lowest weight vectors,
i.e., vectors in ΩpWq.

It will be interesting to know if a weak module has non-trivial lowest weight
subspace. The following lemma provides a criterion.

Lemma 4.5.2. Assume that W is admissible, and let M be a non-trivial weak V-
submodule of W. Then ΩpMq is non-trivial.

Note that in general, we always have the obvious relation ΩpMq “ ΩpWq X M.

Proof. Choose any w P M. For each k P N, let Wďk be the subspace spanned by
the rL0-homogeneous vectors with weights ď k. Since M “

Ť

kPNpM X Wďkq, we
can find the smallest k such that MXWďk is non-trivial. If v P V is homogeneous,
n P Z, and n ě wtpvq. Then Y pvqnWďk Ă Wďk´1 by (2.2.6). Thus Y pvqnpM X

Wďkq Ă M X Wďk´1 “ t0u. So M X Wďk is a non-trivial subspace of ΩpMq.

Let UpVq be the universal unital associative algebra generated freely by the el-
ements pv, nq where v P V is homogeneous and n P Z. Then, W is a representation
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of UpVq defined by pv, nq ¨w “ YWpvqnw. We say that pv, nq is raising (resp. lower-
ing, strictly raising, strictily lowering) if wtpvq ´n´ 1 is ě 0 (resp. ď 0, ą 0, ă 0).
Then ΩpWq is precisely the subspace of vectors annihilated by all strictly lowering
elements.

We let U0pVq be the subalgebra of UpVq of generated by 1 and pv1, n1q ¨ ¨ ¨ pvk, nkq

where k P Z` and
k

ÿ

i“1

pwtpviq ´ ni ´ 1q “ 0.

Then U0pVqΩpWq Ă ΩpWq. Thus, ΩpWq is a representation of U0pVq. Using the
commutator formula (2.2.3) to move all the strictly lowering elements to the right,
we see that the action of U0pVq on ΩpWq is determined by pv, nq where v is homo-
geneous and n “ wtpvq ´ 1.

Proposition 4.5.3. Assume that W is an irreducible admissible V-module. Then ΩpWq

equals the lowest nontrivial rL0-weight space, and is an irreducible U0pVq-module.

Proof. Assume without loss of generality that Wp0q is the lowest nontrivial rL0-
weight space. Clearly Wp0q Ă ΩpWq. If w P ΩpWq, we let wpkq be the (non-
zero) component of w in

À

nPN Wpnq with the largest weight k. We claim k “ 0,
which shows w P Wp0q, and hence ΩpWq Ă Wp0q. By the irreducibility of W,
there exists x P UpVq lowering the rL0-weights by k, such that xwpkq is a non-
zero vector of Wp0q. We must have xw “ xwpkq, which shows xw is non-zero.
Suppose k ą 0. Then x must contain strictly lowering components. By using the
commutator formula (2.2.3) to move all the strictly lowering components of x to
the right, we can find a strictly lowering element whose action on w is non-zero.
This contradicts w P ΩpWq.

Let U be any non-trivial U0pVq-invariant subspace of Wp0q. By (2.2.6), it is easy
to see that UpVqU X Wp0q Ă U0pVqU. So UpVqU X Wp0q Ă U. UpVqU is clearly
a non-trivial weak V-submodule of W. Thus, by the irreducibility of W, we have
UpVqU “ W. Hence Wp0q “ U.

Corollary 4.5.4. Let W be an irreducible (ordinary) V-module. Then ΩpWq equals
the lowest non-trivial eigenspace of L0. In particular, ΩpWq is non-trivial and finite-
dimensional.

Proof. Set rL0 “ L0 and apply Proposition 4.5.3.

Remark 4.5.5. Let W be an irreducible (ordinary) V-module. Choose rL0 whose
lowest weight is 0. We know that ΩpWq “ Wp0q and ΩpW1q “ W1p0q. Note that
W1p0q is the dual space of Wp0q. Moreover, if v P V is homogeneous, by (2.2.10),
we know that for any w P Wp0q, w1 P W1p0q “ Wp0q˚,

xYW1pvqwtpvq´1w
1, wy “

ÿ

lPN

p´1qwtpvq

l!
xw1, YWpLl

1vqwtpvq´l´1wy. (4.5.5)
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Thus, the action of U0pVq on W1p0q is completely determined by that of U0pVq on
Wp0q. We will see a stronger result in Section 4.6, that the irreducible V-module
W is completely determined by the U0pVq-module Wp0q.

Proposition 4.5.6. Assume that pW, YWq is a lowest weight weak V-module with finite
dimensional ΩpWq. Then W is an admissible V-module.

Proof. For any λ P C, we let Wrλs be the subspace of all w P W satisfying pL0 ´

λqNw “ 0 for some N P Z`. For any homogeneous v P V and m P Z, we have by
(2.2.5) that

YWpvqmpL0 ´ λq “ pL0 ´ pwtpvq ` λ ´ m ´ 1qqYWpvqm.

Thus

YWpvqmpL0 ´ λq
N

“ pL0 ´ pwtpvq ` λ ´ m ´ 1qq
NYWpvqm, (4.5.6)

which shows

YWpvqmWrλs Ă Wrλ`wtpvq´m´1s. (4.5.7)

That
Ž

λPCWrλs “
À

λPC Wrλs follows as in the finite dimensional case: Suppose
v1 ` ¨ ¨ ¨ ` vn “ 0 where pL0 ´λiq

Nvi “ 0 for each 1 ď i ď n and λi ‰ λj when i ‰ j.
Set polynomials ppxq “ px´λ1q

N , qpxq “ px´λ2q
N ¨ ¨ ¨ px´λnqN . Then ppL0qv1 “ 0

and qpL0qv1 “ qpL0qpv1`v2`¨ ¨ ¨`vNq “ 0. Since ppxq, qpxq have no common divisor
other than 1, there exist polynomials apxq, bpxq such that apxqppxq`bpxqqpxq “ 1. So
v1 “ apL0qppL0qv1 ` bpL0qqpL0qv1 “ 0. Similar argument shows v2 “ ¨ ¨ ¨ “ vn “ 0.

We say that a vector w P W is a generalized eigenvector of L0 if w P Wrλs for
some λ P C. Since L0ΩpWq Ă ΩpWq and ΩpWq is finite dimension, by the Jordan
canonical form for L0|ΩpWq, ΩpWq must be spanned by generalized eigenvectors
of L0. By (4.5.7), the same is true for W. We thus have grading W “

À

λPCWrλs.
Moreover, by (4.5.7) and that ΩpWq is finite-dimensional, we may find a finite
subset E Ă C such that W “

À

λPE`NWrλs, and that any two elements of E do
not differ by an integer. Set Wpnq to be Wrλs if λ ´ n P E for some λ P E ` N
(such λ must be unique); otherwise, set Wpnq “ 0. Then (2.2.6) is satisfied, and
W “

À

nPN Wpnq. Thus, W is admissible.

Theorem 4.5.7. Assume that pW, YWq is a lowest weight weak V-module with finite
dimensional ΩpWq.

(1) M is an irreducible weak V-submodule of W if and only if M is generated by ΩpMq,
and ΩpMq is an irreducible U0pVq-module. In that case, M is an admissible V-
module.

(2) There is a 1-1 correspondence between irreducible weak V-submodules M of W and
irreducible U0pVq-submodules U of ΩpWq. The relation is given by U “ ΩpMq and
M “ UpVqU.
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(3) W is completely reducible if and only if ΩpWq is so. In that case, there are finitely
many irreducible weak V-submodules M1, . . . ,Mn (which are admissible) such that

M “

n
à

i“1

Mi, ΩpMq “

n
à

i“1

ΩpMiq.

Proof. By Proposition 4.5.6, W is admissible.
(1): Let M be a weak V-submodule of W. Note that by Lemma 4.5.2, ΩpMq

is nontrivial. Assume first of all that M is an irreducible (non-trivial) weak V-
module. Then M is generated by any non-trivial subspace, and hence by ΩpMq.
Since ΩpMq Ă ΩpWq, ΩpMq is finite-dimensional. By Proposition 4.5.6, M is admis-
sible. Thus, by Proposition 4.5.3, ΩpMq is irreducible. Conversely, assume ΩpMq

is irreducible. Let M1 be a non-trivial weak V-submodule of M. By Lemma 4.5.2,
ΩpM1q is a non-trivial U0pVq-submodule of ΩpMq. Thus ΩpM1q “ ΩpMq. Suppose
M is generated by ΩpMq. Then M is generated by ΩpM1q. So M Ă M1. Hence M is
irreducible.

(2): Note that by part (1), UpVqU is irreducible. We shall show UpVqΩpMq “ M
and ΩpUpVqUq “ U. Since ΩpMq is a nontrivial subspace of M, we must have
UpVqΩpMq Ă M and hence, by the irreducibility of M, that UpVqΩpMq “ M. Since
UpVqU is clearly nontrivial, ΩpUpVqUq is a nontrivial U0pVq-submodule of U. So
ΩpUpVqUq “ U.

(3) If W is completely reducible, i.e., equivalent to
À

i Wi where each Wi is
an irreducible weak V-module, then by (4.5.4), ΩpWq is equivalent to

À

i ΩpWiq

where each ΩpWiq is irreducible. So ΩpWq is completely reducible.
Now, assume that ΩpWq is completely reducible. Since ΩpWq is finite dimen-

sional, it is semisimple, i.e., ΩpWq “
ÀN

i“1Ui where N P Z`, and each Ui is an
irreducible U0pVq-submodule of ΩpWq. Since W is generated by ΩpWq, it is clear
that W “

Žn
i“1 UpVqpUiq. Thus, W is a sum of irreducible modules. By basic

representation theory (see for instance [Lang] section XVII.2.), W is completely
reducible.

Definition 4.5.8. Let U be a finite dimensional representation of U0pVq. We say
that U is V-admissible if there exists a weak V-module such that the U0pVq-
module ΩpWq is equivalent to U. By restricting W to UpVqΩpWq, we may assume
that W is a lowest weight weak V-module.

By the previous results, we clearly have:

Proposition 4.5.9. The following are equivalent.

(a) Every lowest weight admissible V-module W with finite dimensional ΩpWq is com-
pletely reducible.

(b) Every lowest weight weak V-module W with finite dimensional ΩpWq is a finite
direct sum of irreducible admissible V-modules.
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(c) Every finite-dimensional V-admissible U0pVq-module is semi-simple.

Definition 4.5.10. If V satisfies one of the three conditions of Proposition 4.5.9, we
say that V is rational.

Note that by Corollary 4.5.13, if V is C2-cofinite and rational, each lowest
weight weak V-module W with finite dimensional ΩpWq is a finite direct sum
of irreducible (ordinary) V-modules.

Remark 4.5.11. Our definition of rationality is weaker than the usual one, which
says any admissible V-module is completely reducible. Assuming V isC2-cofinite,
then the two notations are equivalent. Indeed, our rationality is equivalent to the
semisimplicity of the Zhu’s algebraApVq of V. The latter is equivalent to the usual
rationality due to [McR21].

Suppose now that pW, Y`, Y´q is a weak V ˆ V-module. We let Ω`pMq (resp.
Ω´pMq) be the lowest weight subspace of pW, Y`q (resp. pW, Y´q). Set

Ω`´pWq “ Ω`pWq X Ω´pWq. (4.5.8)

Then, it is clear that Ω`´pWq is U0pVq ˆ U0pVq-invariant.

Some results for associative algebras

Let A be an associative algebra and U be a representation of A. It is clear that
if U1,U2 are inequivalent irreducible representations of A, then HomApU1,U2q “

0. Indeed, choose any T P HomApU1,U2q “ 0. If T ‰ 0, then KerpT q is a A-
submodule of U1 not equal to U1. So KerpT q “ 0. Also, since the range of T is a
non-trivial A-submodule of U2, T must be surjective. This is impossible.

We say that U is strongly irreducible, if U is irreducible, and EndApUq “ C1U.
We say that U is strongly and completely reducible if U »

À

i Ui where each Ui

is strongly irreducible. For instance, this is so if U is a direct sum of irreducible
finite dimensional representations.

We have seen in Proposition 2.2.7 that any irreducible (ordinary) V-module is
strongly irreducible. More generally, we have:

Theorem 4.5.12. Let W be an irreducible admissible V-module with finite-dimensional
ΩpWq. Then W is strongly irreducible (as an UpVq-module), and L0 differs rL0 by a
constant. Moreover, ΩpWq equals the lowest non-trivial eigenspaces of both L0 and rL0,
and is a (strongly) irreducible U0pVq-module.

Note that by Corollary 4.5.4, if W is an irreducible (ordinary) V-module, then
it automatically has finite-dimensional ΩpWq.
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Proof. Choose any T P EndVpWq. Since rT, YWpvqns “ 0 for any homogeneous
v P V and n ě wtpvq, we have TΩpWq Ă ΩpWq. Since ΩpWq is non-trivial (since it
contains the lowest rL0-weight space) and finite-dimensional, T |Wpsq has an eigen-
value λ P C. It follows that KerpT ´ λ1Wq is a non-trivial weak V-submodule of
W, which must be W. So T “ λ1W. In particular, rL0 ´ L0 is a constant. The rest of
the statements follows from Proposition 4.5.3.

Corollary 4.5.13. Assume that V is C2-cofinite. Let W be an irreducible admissible V-
module. Then W is an irreducible (ordinary) V-module.

Proof. By Theorem 3.7.1 and the description (3.7.1), it is clear that each rL0-
weight space is finite-dimensional. In particular, this is true for the lowest non-
trivial rL0-weight space, which by Proposition 4.5.3 is ΩpWq. So ΩpWq is finite-
dimensional. Thus, by Theorem 4.5.12, L0 is diagonalizable with finite dimen-
sional eigenspaces, and the eigenvalues are in λ ` N for some λ P C.

Proposition 4.5.14. Let U be a strongly irreducibleA-module. Let V,W be vector spaces.
Consider the A-modules U b V,U b W where the actions of A are on the U-component.
Define a linear map

Φ : HompV,W q Ñ HomApU b V,U b W q, T ÞÑ 1U b T

Then Φ is an isomorphism of vector spaces.

Proof. Φ is clearly injective. Let us prove that Φ is surjective. Choose any S P

HomApUbV,UbW q. We shall show that for each v P V , there exists a (necessarily
unique) w P W such that Spub vq “ ubw for each u P U . Then S “ 1U bT where
T sends each v to w. By the uniqueness of w with respect to v, the map T is linear.

Let us fix any v P V , and let 1 b v denote the homomorphism U Ñ U b V
sending each u0 P U to u0 b v. For each w1 P W ˚, let 1 b w1 denote the homomor-
phism from U b V to U sending each u0 b v0 to v1pv0q ¨ u0. Then p1 b w1qSp1 b vq

is an endomorphism of U, which is of the form λw11U for some λw1 P C.
Choose a basis teiu of Ui. Fix a basis element ei. Then we can find a set of

vectors twju in W such that Spei b vq “
ř

j ej b wj . Choose any w1 P W ˚. Then

λw1ei “ p1 b w1
qSp1 b vqei “ p1 b w1

qSpei b vq “
ÿ

j

w1
pwjq ¨ ej.

Thus, whenever j ‰ i, we have w1pwjq “ 0 for any w1, and hence wj “ 0. Therefore
Spei b vq “ ei b wi, and hence Spu b vq “ u b wi for each u P U.

Set V “ C. We obtain:
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Corollary 4.5.15. Let U be a strongly irreducible A-module. Let V be a vector space.
Consider the A-module U b W where the action of A is on the U-component. Define a
linear map

Φ : W Ñ HomApU,U b W q, w ÞÑ Φpwq

where Φpwqpuq “ u b w for each u P U. Then Φ is an isomorphism of vector spaces.

Suppose that A,B are associative algebras, and W is both an A-module and
a B-module. We say that W is an A ˆ B-module if the actions of A and B on W
commute.

Proposition 4.5.16. If U is a strongly irreducible A-module, and V is an irreducible B-
module, then UbV is an irreducibleAˆB-module. If V is moreover strongly irreducible,
then so is the A ˆ B-module U b V.

Proof. Choose any non-zero vector w P U b V. Since U b V is clearly completely
reducible as anA-module, by basic representation theory, the submodule pAb1qw
is also completely reducible,1 hence contains an irreducible submodule, which
must be equivalent to U. By Corollary 4.5.15, this submodule must be of the form
U b v for a non-zero vector v P V. Thus, as pA b BqpU b vq “ U b V, we have
pA b Bqw “ U b V, which proves that U b V is irreducible.

Choose any S P EndAˆBpU b Vq. Then S commutes with the actions of A.
Thus, by Proposition 4.5.14, S “ 1U b T where T P EndpVq. Since S commutes
with the actions of B, so does T . Thus T P EndBpVq, which must be a scalar
multiplication if V is strongly irreducible.

Proposition 4.5.17. Let W be a representation ofAˆB. Suppose that W is strongly and
completely reducible as an A-module, and (resp. strongly and) completely reducible as a
B-module. Then, there exist strongly irreducible A-modules tUiuiPI and (resp. strongly)
irreducible B-modules tViuiPI , such that

W »
à

iPI
Ui b Vi.

Proof. Since A ñ W is strongly and completely reducible, by Corollary 4.5.15,
we can find a collection of mutually inequivalent strongly irreducible A-modules
tUiui such that the equivalence

W »
à

i

Ui b HomApUi,Wq (4.5.9)

holds for A-modules. Here, A is acting on Ui b HomApUi,Wq by acting on the
Ui-component. Moreover, the natural embedding Ui b HomApUi,Wq ãÑ W is
given by u b T ÞÑ Tu if u P Ui, T P HomApUi,Wq.

1A submodule of a completely reducible module is completely reducible; see [Lang] section
XVII.2.
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Since the actions ofA andB commute, each b P B can be viewed as an element
of EndApWq. Thus, HomApUi,Wq is naturally a B-module where each b P B acts
on T P HomApUi,Wq as bT . It is easy to see that (4.5.9) is an equivalence of AˆB-
module.

By the irreducibility of Ui, for each nonzero u P Ui, the map HomApUi,Wq Ñ

W, T ÞÑ Tu is an injective homomorphism of B-modules. It follows that each
HomApUi,Wq is equivalent to a B-submodule of W. Thus, it is a direct sum of
irreducible B-modules. We can thus write HomApUi,Wq as a direct sum

À

j Vi,j

of irreducible B-modules. It follows that W »
À

i,j Ui b Vi,j . It is easy to see
that any irreducible submodule of a direct sum of strongly irreducible modules is
strongly irreducible (since it is isomorphic to one of the strongly irreducible sum-
mand). So Vi,j is strongly irreducible if W is strongly and completely reducible
as a B-module.

4.6 Dual tensor products

Let

X “ pC;x1, . . . , xN ;x
1;x2; η1, . . . , ηN ; ξ;ϖq (4.6.1)

be an pN `2q-pointed compact Riemann surface with local coordinates. Through-
out this section, we fix mutually disjoint neighborhoods W1, . . . ,WN ,W

1,W 2 of
x1, . . . , xN , x

1, x2 respectively, on which the local coordinates are defined. We as-
sume that each connected component of C contains at least one of x1, . . . , xN , and
call such X an N -pointed compact Riemann surface with local coordiates and 2
outputs. We let

SX “ x1 ` ¨ ¨ ¨ ` xN , DX “ x1
` x2.

For each a, b P N, define

V ďn
X,a,b ” V ďn

X p´pL0DX ` ax1
` bx2

qq p@n P Nq,

VX,a,b “ lim
ÝÑ
nPN

V ďn
X,a,b.

Here, V ďn
X,a,b is a locally free OC-submodule of V ďn

X described as follows: Outside
x1 and x2, V ďn

X,a,b equals V ďn
X ; V ďn

X,a,b|W 1 and V ďn
X,a,b|W 2 are generated by

Uϱpξq
´1ξa`L0v resp. Uϱpϖq

´1ϖb`L0v

where v is any homogeneous vector of Vďn. It is easy to check that this definition
is independent of the local coordinates ξ,ϖ.
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Let V be a VOA. We do not assume V to be C2-cofinite. Let W1, . . . ,WN be
V-modules associated to x1, . . . , xN . We define a truncated X-tensor product of
W1, . . .WN to be the vector space

TX,a,bpW‚q “
W‚

H0pC,VX,a,b b ωCp‚SXqq ¨ W‚

. (4.6.2)

Its dual space is denoted by T ˚
X,a,bpW‚q and called a truncated dual X-tensor prod-

uct. Note that when a1 ą a and b1 ą b, we have a natural injective linear map
T ˚

X,a,b ãÑ T ˚
X,a1,b1 . We can thus define

nXpW‚q “ lim
ÝÑ
a,bPN

T ˚
X,a,bpW‚q,

called the dual X-tensor product of W1, . . . ,WN .
In a similar way, one can define V ďn

X,a,b,VX,a,b, and (the sheaves of) (truncated)
(dual) X-tensor products when X is a family of N -pointed compact Riemann sur-
faces with local coordinates and M -outputs. In the case that M “ 0, we obtain
the spaces/sheaves of covacua and conformal blocks. All the results in chapters
2 and 3 can be generalized to these sheaves/vector spaces using almost the same
idea. For instance, notice that in the setting (4.6.1), we have

V ďn
X,a,b{V

ďn´1
X,a,b » Vpnq bC Θbn

C p´nDX ´ ax1
´ bx2

q. (4.6.3)

Thus, we have the vanishing Theorem 2.4.3 with V ďn
C replaced by V ďn

X,a,b. (Of
course, the integer k0 in that theorem should now also depend on a, b.) In the fol-
lowing, we will directly claim and use the generalizations of those results without
proving them again.

Example 4.6.1. Let M1,M2 be irreducible V-modules. By Convention 2.2.6, their
lowest rL0-weights (with non-trivial weight subspaces M1p0q,M2p0q) are both 0.
Choose any ϕ P T ˚

X pW‚ b M1 b M2q. Then there is a natural linear map

Ψϕ : Mďa
1 b Mďb

2 Ñ T ˚
X,a,bpW‚q

defined such that for any w‚ P W‚,m1 P Mďa
1 ,m2 P Mďb

2 ,

Ψϕpm1 b m2qpw‚q “ ϕpw‚ b m1 b m2q. (4.6.4)

Here, Mďa
1 is the subspace spanned by all rL0-homogeneous vectors with weight

ď a, and Mďb
2 is understood in a similar way. By taking the direct limit over pa, bq,

we obtain

Ψϕ : M1 b M2 Ñ nXpW‚q.

Our next goal is to define a weak V ˆ V-module structure on nXpW‚q such that
Ψϕ is a homomorphism. This will imply, by the irreducibility of M1,M2, that Ψϕ

is injective when ϕ ‰ 0.
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Actions of V
Similar to the treatment for conformal blocks, one can prove that the formal

sewing of a dual tensor product element is a formal dual tensor product element.
Moreover, if one is sewing X with pP1; 0, 1,8q (which has 0 outputs), the a.l.u.
of sewing can be proved with the help of the strong residue theorem. Thus, we
are able to prove the propagation of dual tensor product elements. For each
a, b, n P N,ϕ P T ˚

X,a,bpW‚q, w‚ P W‚, we have a homomorphism of Obn
C -modules

≀nϕpw‚q : V bn
X,a,b Ñ OConfnpC´SXq,

i.e., for each open subsets U1, . . . , Un Ă C, we have a homomorphism of OpU1q b

¨ ¨ ¨ b OpUnq-modules

≀nϕpw‚q : VX,a,bpU1q bC ¨ ¨ ¨ bC VX,a,bpUnq Ñ OConfnpC´SXqpU1 ˆ ¨ ¨ ¨ ˆ Unq,

(Recall that OConfnpC´SXqpU1ˆ¨ ¨ ¨ˆUnq “ OpConfpU1´SX, . . . , Un´SXqq.) and these
maps are compatible under restrictions to open subsets. We have ≀0ϕ “ ϕ. More-
over, for the η1, . . . , ηN , x1, . . . , xN chosen at the beginning of this section, Theorem
3.4.6 holds verbatim if we replace VC with VX,a,b. Since VC equals VX,a,b outside the
output points x1, x2, Theorem 3.4.6 also holds if (following the notations of that
theorem) for each 1 ď k ď n, we still choose vk P VkpUkq, but assume in addition
that x1, x2 R Uk. In particular, y1, . . . , yn cannot be x1, x2. We will use this theorem
only for n “ 1, 2.

Remark 4.6.2. Write C´tx1, x2u as C´DX for simplicity. Note that pVX,a,b|C´DX
qbn

equals V bn
C´DX

. The restricted homomorphism

≀nϕpw‚q : V bn
C´DX

Ñ OConfnpC´SX´DXq (4.6.5)

is independent of the numbers a, b making ϕ belonging to T ˚
X,a,bpW‚q. Indeed, the

case n “ 0 is obvious. Suppose the case for n ´ 1 is true. By Theorem 3.4.6-(1),
≀nϕpv1, . . . , vn, w‚q is independent of a, bwhen v1 is a section of VC´DX

defined near
x1, . . . , xN . Thus, by the argument in the proof of Proposition 3.2.4, the indepen-
dence of a, b is true for any v1. To summarize, we have a well defined ≀nϕ in (4.6.5)
for any ϕ P nXpW‚q.

We also regard

≀nϕpw‚q : V bn
C Ñ OConfnpC´SX´DXq

sending each v1 P VCpU1q, . . . , vn P VCpUnq to ≀nϕpv1|U1´DX
, . . . , vn|Un´DX

, w‚q. In
particular, for each homogeneous v P V, considered as a constant section of V bC
OpW 1q, we have ≀ϕpUϱpξq´1v, w‚q P OpW 1 ´ tx1uq. Moreover, choose a, b such that
ϕ P T ˚

X,a,bpW‚q. Then ξwtpvq`av is an element of VX,a,bpW
1q. So

≀ϕpUϱpξq
´1v, w‚q P OCppwtpvq ` aqx1

qpW 1
q. (4.6.6)
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Now, for each v P V, n P Z, we define

Y`pvqn : nXpW‚q Ñ W˚
‚

as follows. Identify W 1 with ξpW 1q via ξ. (So ξ is identified with the standard
coordinate z.) Identify VW 1 » V bC OW 1 via Uϱpξq. Then, for any ϕ P nXpW‚q, the
evaluation of Y`pvqnϕwith any w‚ P W‚ is

Y`pvqnϕpw‚q “ Resz“0 ≀ ϕpv, w‚qzndz (4.6.7)

Then, by (4.6.6), we have

Y`pvqnϕ “ 0 pif n ě wtpvq ` aq. (4.6.8)

Set Y`pv, zq “
ř

nPZ Y`pvqnz
´n´1. Then the lower truncation property is satisfied:

Y`pv, zqϕ P W˚
‚rrzss. Thus, pnXpW‚q, Y`q becomes a linear representation of V if

we can show that Y`pvqnϕ P nXpW‚q.

Lemma 4.6.3. For any homogeneous vector v P V, n P Z, and ϕ P T ˚
X,a,bpW‚q, we have

Y`pvqnϕ P T ˚
X,a1,bpW‚q where a1 “ a ` maxt0,wtpvq ´ n ´ 1u.

Proof. Let ζ be another standard coordinate of C. So both z and ζ are identified
with ξ as coordinates. (But they are independent as variables.) In the following,
for a two-variable holomorphic function, we will let ζ (resp. z) denote the first
(resp. second) complex variable.

Identify W 1 » ξpW 1q via ξ and VW 1 » V bC OW 1 via Uϱpξq as above. One can
define ψ P H0pC ´ SX ´ DX,V ˚

C q such that for any section u of VC defined in an
open subset W of C ´ SX ´ DX,

ψpuq “ Resz“0 ≀ ≀ϕpu, v, w‚qzndz,

or more precisely, if we also identify W with an open subset of C so that ζ is
a complex variable on W , then ψpuqpζq “ Resz“0 ≀ ≀ϕpu, v, w‚qpζ, zqzndz. If u is
defined near x2, then ≀ ≀ϕpξb`L0u,ϖa`L0v, w‚q is holomorphic (with no poles) near
ζ “ x2, z “ x1. Thus,ψpξb`L0uq has no pole at x2. Soψ P H0pC´SX´x1,V ˚

X,a1,bq. We
shall show ψ P H0pC´SX,V ˚

X,a1,bq. Suppose this can be proved. By Theorem 3.4.6-
(1), if we identify Wi » ηipWiq via ηi and identify VWi

» V bC OWi
via Uϱpηiq, then

for any section u of VX,a1,bpWiq “ VCpWiq (which restricts to a section on Wi ´ txiu),
we have

ψpuqpζq “ Resz“0 ≀ ϕpv, w1 b ¨ ¨ ¨ b YWi
pu, ζqwi b ¨ ¨ ¨ b wNqzndz

“Y`pvqnϕpw1 b ¨ ¨ ¨ b YWi
pu, ζqwi b ¨ ¨ ¨ b wNq.

So ψ restricts to pY`pvqnϕqxi
(defined similarly as in (3.1.5)) near each xi. Thus,

as in the proof of Theorem 3.1.2, the Residue theorem implies that Y`pvqnϕ P

T ˚
X,a1,bpW‚q.
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Choose any homogeneous vector u P V with weight wtpuq, considered as a
constant section of VCpW 1q. Consider ψpuq as a holomorphic function with vari-
able ζ . We shall show that ψpuq P OW 1ppwtpvq ` a1qx1qpW 1q. Set f “ fpζ, zq to
be

f “ ≀ ≀ ϕpu, v, w‚q P OpConf2pW
1
´ tx1

uqq.

Then, as ζa`wtpuqu, za`wtpbq P VX,a,bpW
1q, we have

ζa`wtpuqza`wtpvqfpζ, zq P OpConf2pW
1
qq.

Choose circles C1, C2, C3 in W 1 surrounding x1 with radii r1 ă r2 ă r3. For each
z P C2, choose a circle Cpzq with center z and radius less than r2 ´ r1 and r3 ´ r2.
Let m P Z. Then

Resζ“0 ζ
mψpuqdζ “

¿

C3

¿

C2

ζmznfdzdζ “

¿

C2

¿

C3

ζmznfdζdz

“

¿

C2

¿

C1

ζmznfdζdz `

¿

C2

¿

Cpzq

ζmznfdζdz.

When z P C2, since ζa`wtpuqf has no pole at ζ “ 0, we have
ű

C1
ζmznfdζ “ 0

whenever m ě a ` wtpuq.
Apply Theorem 3.4.6-(2) (by choosing U1 “ U2 to be W 1 ´ tx1u), we have

¿

C2

¿

Cpzq

ζmznfdζdz “

¿

C2

¿

Cpzq

ζmzn ≀ ≀ϕpu, v, w‚qdζdz

“

¿

C2

¿

Cpzq

ζmzn ≀ ϕpY pu, ζ ´ zqv, w‚qdζdz

“
ÿ

lPN

ˆ

m

l

˙
¿

C2

¿

Cpzq

pζ ´ zq
lzm`n´l ≀ ϕpY pu, ζ ´ zqv, w‚qdζdz

“
ÿ

lPN

ˆ

m

l

˙
¿

C2

zm`n´l ≀ ϕpY puqlv, w‚qdz

“
ÿ

lPN

ˆ

m

l

˙

Y`pY puqlvqm`n´lϕpw‚q,

where we have used (4.6.7) in the last step. By (4.6.8), the above expression equals
0 when

m ` n ´ l ě wtpY puqlvq ` a “ wtpuq ` wtpvq ´ l ´ 1 ` a,
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and hence when

m ě wtpuq ` wtpvq ` a ´ 1 ´ n.

Thus, we conclude that Resζ“0 ζmψpuqdζ equals 0 when m ě a ` wtpuq `

maxt0,wtpvq ´ n ´ 1u, i.e., when m ě wtpuq ` a1. This finishes the proof.

The weak V-module nXpW‚q

We now show that the linear representation pnXpW‚q, Y`q is indeed a weak
V-module.

Lemma 4.6.4. Choose any ϕ P nXpW‚q, m,n P Z. Identify W 1 » ξpW 1q via ξ. Choose
u, v P V, considered as constant sections of VCpW 1q defined by Uϱpξq. Then for any
w‚ P W‚,

Y`puqmY`pvqnϕpw‚q “ Resζ“0Resz“0 ≀ ≀ϕpu, v, w‚qζmzndzdζ. (4.6.9)

As previously, ≀ ≀ ϕpu, v, w‚q is short for ≀ ≀ ϕpu, v, w‚qpζ, zq where ζ, z are both
standard complex variables of C.

Proof. By (4.6.7), we have

Y`puqmY`pvqnϕpw‚q “ Resζ“0 ≀ pY`pvqnϕqpu,w‚qζmdζ.

Thus, (4.6.9) will follow if we can show

≀pY`pvqnϕqpu,w‚q “ Resz“0 ≀ ≀ϕpu, v, w‚qzndz (4.6.10)

for any section u of VC´SX
. If u is defined on an open subset of Wi, then, by

Theorem 3.4.6, under the identification VWi
» V bC OWi

defined by Uϱpηiq, we
have

≀ pY`pvqnϕqpu,w‚q “ pY`pvqnϕqpw1 b ¨ ¨ ¨ b Y pu, ηiqwi,b ¨ ¨ ¨ b wNq

“Resz“0 ≀ ϕpv, w1 b ¨ ¨ ¨ b Y pu, ηiqwi,b ¨ ¨ ¨ b wNqzndz

“Resz“0 ≀ ≀ϕpu, v, w‚qzndz.

Thus, (4.6.10) holds when u is near x1, . . . , xN . Using the argument in the proof
of Proposition 3.2.4 together with the fact that each connected component of C
contains at least one of x1, . . . , xN , it is easy to see that (4.6.10) holds for any u.

Proposition 4.6.5. pnXpW‚q, Y`q is a weak V-module.
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Proof. We shall show that pnXpW‚q, Y`q satisfies the criteria in Proposition 4.5.1. It
is clear that W‚ projects to a dense subspace of the dual space of nXpW‚q. Also, we
have Y`p1, zq “ 1nXpW‚q by Theorem 3.4.6-(3). Choose any u, v P V, ϕ P nXpW‚q,
w‚ P W‚. ϕ and w‚ play the role of w,w1 in Proposition 4.5.1. Identify W 1 with
ξpW 1q via ξ, and choose r ą 0 such that Dr Ă W 1. Identify VW 1 with V bC OW 1 via
Uϱpξq as usual. Set f “ fpζ, zq P OpConf2pDˆ

r qq to be

fpζ, zq “ ≀ ≀ ϕpu, v, w‚qpζ, zq.

By Lemma 4.6.4 and Theorem 3.4.6-(4), we clearly have

Y`pvqnY`puqmϕpw‚q “ Resz“0Resζ“0 fpζ, zqζmzndζdz,

Y`puqmY`pvqnϕpw‚q “ Resζ“0Resz“0 fpζ, zqζmzndzdζ,

which verify (4.5.1), (4.5.3). With the help of Theorem 3.4.6, we compute

Resz“0Resζ´z“0 fpζ, zqpζ ´ zq
mzndζdz

“Resz“0Resζ´z“0 ≀ ≀ϕpu, v, w‚qpζ, zq ¨ pζ ´ zq
mzndζdz

“Resz“0Resζ´z“0 ≀ ϕpY pu, ζ ´ zqv, w‚qpζ, zq ¨ pζ ´ zq
mzndζdz

“Resz“0 ≀ ϕpY puqmv, w‚qpzq ¨ zndz,

which, by (4.6.7), equals Y pY puqmvqnϕpw‚q. This verifies (4.5.2).

The weak V ˆ V-module nXpW‚q

One can define similarly a weak module structure Y´ on nXpW‚q by using the
sections near x2. To be more precise, for each v P V, n P Z, we define

Y´pvqn : nXpW‚q Ñ W˚
‚

as follows. Identify W 2 with ϖpW 2q via ϖ. (So ϖ is identified with the standard
coordinate z.) Identify VW 2 » VbC OW 2 via Uϱpϖq. Then, for any ϕ P nXpW‚q, the
evaluation of Y´pvqnϕwith any w‚ P W‚ is

Y´pvqnϕpw‚q “ Resz“0 ≀ ϕpv, w‚qzndz (4.6.11)

Then pnXpW‚q, Y´q is also a weak V-module.
Recall Definition 2.2.8.

Theorem 4.6.6. Y` and Y´ commute. So pnXpW‚q, Y`, Y´q is a weak V ˆ V-module.

Proof. Identify W 1 » ξpW 1q via ξ and W 2 » ϖpW 2q via ϖ. Let z, ζ be the standard
complex variables of W 1,W 2 respectively. Choose any v P V, considered as a
constant section of VCpW 1q defined by Uϱpξq. In the proof of Lemma 4.6.4, we
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have shown that (4.6.10) is true for any section u of VC´SX
. In particular, this is

true if we take u P V and consider it as a constant section of VCpW 2 ´tx2uq defined
by Uϱpϖq. Thus, we may apply Resζ“0p¨ ¨ ¨ qζmdζ to obtain

Y´puqmY`pvqnϕpw‚q “ Resζ“0Resz“0 ≀ ≀ϕpu, v, w‚qpζ, zq ¨ ζmzndzdζ.

A similar argument shows

Y`pvqnY´puqmϕpw‚q “ Resz“0Resζ“0 ≀ ≀ϕpv, u, w‚qpz, ζq ¨ ζmzndζdz.

By Theorem 3.4.6-(4), we have ≀ ≀ ϕpu, v, w‚qpζ, zq “ ≀ ≀ ϕpv, u, w‚qpz, ζq (when z P

W 1, ζ P W 2). The commutativity of Y´puqm and Y`pvqn follows.

To determine the lowest weight subspace of nXpW‚q, we first need a lemma.

Lemma 4.6.7. Choose any a, b P N and ϕ P nXpW‚q. Then ϕ P T ˚
X,a,bpW‚q if and

only if Y`pvqnϕ “ Y´puqmϕ “ 0 whenever u, v are homogeneous, n ě wtpvq ` a, and
m ě wtpuq ` b.

Proof. The “only if” part follows from (4.6.8) and a similar equation for Y´. We
now prove the “if” part. Suppose Y`pvqnϕ “ Y´puqmϕ “ 0 for the u, v,m, n de-
scribed above. Choose any w‚ P W‚. Consider ≀ϕpw‚q P H0pC ´ SX ´ DX,V ˚

X,a,bq,
whose expression near each xi is given by (3.1.5). If ν is a section of VX,a,b defined
near x1, then Uϱpξqν is an OW 1-linear sum of elements of the form vξndξ, where v is
homogeneous and n ě wtpvq ` a. By (4.6.7), Resξ“0 ≀ϕpv, w‚qξndξ “ 0. So ≀ϕpν, w‚q

has no pole near ξ “ 0. Thus ≀ϕpw‚q P H0pC ´ SX ´ tx2u,V ˚
X,a,bq. A similar argu-

ment shows ≀ϕpw‚q P H0pC ´ SX,V ˚
X,a,bq. Thus, as in the proof of Theorem 3.1.2,

we may use Residue theorem to deduce ϕ P T ˚
X,a,bpW‚q.

Corollary 4.6.8. We have

Ω`´

`

nX pW‚q
˘

“ T ˚
X,0,0pW‚q. (4.6.12)

Moreover, if V is C2-cofinite, then Ω`´

`

nX pW‚q
˘

is finite dimensional.

Proof. The equation follows directly from Lemma 4.6.7 and the definition of Ω`´

in (4.5.8). If V is C2-cofinite, we may show that TX,0,0pW‚q is finite dimensional
using the idea in the proof of Theorem 3.7.3. (In particular, the vanishing Theorem
2.4.3, in which V ďn

C is replaced by V ďn
X,0,0, is used.)

The following result is claimed in Remark 4.5.5. We are now ready to prove it.
Note that neither C2-cofiniteness nor rationality is assumed here.

Proposition 4.6.9. Let M, pM be irreducible (ordinary) V-modules. Suppose that the
U0pVq-modules ΩpMq,Ωp pMq are equivalent. Then M » pM.
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Proof. We set X “ pP1; 1; 0;8; z ´ 1; z; 1{zq. Namely, we choose C “ P1, N “

1, x1 “ 1, x1 “ 0, x2 “ 8, η1 “ z ´ 1, ξ “ z,ϖ “ 1{z. We set W‚ “ W1 “ V. Define
ϕ P pVbMbM1q˚ to beϕpvbmbm1q “ xYWpv, 1qm,m1y. Then, as shown in example
3.1.6, ϕ is a (non-zero) element of T ˚

X pV b M b M1q. Define Ψϕ : M b M1 Ñ nXpVq

as in example 4.6.1, i.e., by

Ψϕpm b m1
qpvq “ xYWpv, 1qm,m1

y “ xYWpvqwtpv´1qm,m
1
y.

Ψϕ is clearly a homomorphism of weak V ˆ V-modules. Since M and (hence) M1

are irreducible ordinary V-modules, by Proposition 4.5.16, MbM1 is an irreducible
weak V ˆ V-module. Thus Ψϕ must be injective. So M b M1 is isomorphic to an
irreducible weak V ˆ V-module K :“ ΨϕpM b M1q.

In a similar way, we can define pϕ,Ψ
pϕ using pM, and pM b pM1 is isomorphic to

pK :“ Ψ
pϕp pM b pM1q. Now, let T : ΩpMq Ñ Ωp pMq be an isomorphism of U0pVq-

module. Then, by Remark 4.5.5, its transpose T t : Ωp pM1q Ñ ΩpM1q is also an
isomorphism. Choose any m P M,m1 P M1. Then

Ψ
pϕpT´1m b T tm1

qpvq “ xY
pMpvqwtpvq´1T

´1m,T tm1
y

“xYMpvqwtpvq´1m,m
1
y “ Ψϕpm b m1

qpvq.

This shows that K and pK have at least one non-zero common element. So KX pK is
a non-trivial weak V ˆ V-submodule of K, which must be K by the irreducibility
of K. Thus K Ă pK and, similarly, K “ pK. Therefore, M b M1 and pM b pM1 are both
isomorphic to K “ pK as weak V ˆ V-modules. In particular, they are equivalent
as weak V ˆ 1-modules. So M » pM.

The following proposition can be thought of as a converse of example 4.6.1.

Proposition 4.6.10. Let M, pM be V-modules, and let Φ : M b pM Ñ nXpW‚q be a
homomorphism of weak V ˆ V-modules. Then there exists ψ P T ˚

X pW‚ b M b pMq such
that for any m P M, pm P pM, w‚ P W‚,

Φpm b pmqpw‚q “ ψpw‚ b m b pmq.

Thus, using the notation of example 4.6.1, we have Ψψ “ Φ.

Proof. Defineψ to be a linear functional on W‚ bMb pM whose value at w‚ bmb pm
is Φpm b pmqpw‚q. Consider ≀Φpm b pmqpw‚q, which is an element of H0pC ´ SX ´

DX,V ˚
C q. By Theorem 3.4.6, its series expansion near xi is of the form

Φpm b pmqpw1 b ¨ ¨ ¨ b YWi
pv, ηiqwi b ¨ ¨ ¨ b wNq

“ψpw1 b ¨ ¨ ¨ b YWi
pv, ηiqwi b ¨ ¨ ¨ b wN b m b pmq
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when evaluated with Uϱpηiq
´1v (v P V). When evaluated with Uϱpξq´1v (consid-

ered as a constant section of VCpW 1q), it becomes, by (4.6.7),

≀ Φpm b pmqpv, w‚q “ pY`pv, ξqΦpm b pmqqpw‚q “ ΦpYMpv, ξqm b pmqpw‚q

“ψpw‚ b YMpv, ξqm b pmq.

Similarly, its evaluation with Uϱpϖq´1v is ψpw‚ bmb Y
pMpv,ϖq pmq. Thus, by Theo-

rem 3.1.2, ψ is a conformal block.

The weak V ˆ V-module nlow
X pW‚q

In application, it would be more suitable to consider nlow
X pW‚q, the UpVqˆUpVq-

submodule of nXpW‚q generated by Ω`´

`

nX pW‚q
˘

. Recall in Definition 4.5.10 the
meaning of rationality.

Lemma 4.6.11. Assume that V is C2-cofinite and rational. Then we have the following
equivalence of weak V ˆ V-modules

nlow
X pW‚q »

à

i

Mi b pMi (4.6.13)

where each Mi and pMi are irreducible (ordinary) V-modules.

Proof. By proposition 4.5.17 and Theorem 4.5.12, it suffices to check that nlow
X pW‚q

is a direct sum of irreducible admissible (and hence ordinary by Corollary 4.5.13)
V ˆ 1-modules and also a direct sum of irreducible admissible 1 ˆ V-modules.
Indeed, suppose this is true. Then we have (4.6.13) where each Mi and pMi are
irreducible weak V-modules. Mi must be isomorphic to an irreducible weak Vˆ1-
submodule of nlow

X pW‚q, which is therefore ordinary. Similary, pMi is ordinary.
For each m P Z, we let U´mpVq be the elements of UpVq raising the rL0-weights

bym. Namely, it is spanned by pv1, n1q ¨ ¨ ¨ pvk, nkq satisfying
řk

i“1pwtpviq´ni´1q “

m. For each b P N, we consider the V ˆ 1-module

Xb “ pUpVq ˆ U´bpVqqT ˚
X,0,0pW‚q

whose lowest weight subspace is denoted by Ω`pXbq. Using the commutator for-
mula (2.2.3), it is easy to see that Xb is annihilated by Y´puqm where v is homoge-
neous and wtpuq ´ m ´ 1 ` b ă 0 (i.e., pu,mq lowers the rL0-weight by more than
b). Thus, by Lemma 4.6.7, we obtain

p1 ˆ U´bpVqqT ˚
X,0,0pW‚q Ă Ω`pXbq Ă T ˚

X,0,bpW‚q.

The first inclusion shows that Ω`pXbq generates Xb. The second one shows that
Ω`pXbq is finite-dimensional since T ˚

X,0,bpW‚q is so by the proof of Theorem 3.7.3.
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Thus, by the rationality of V, Xb is a direct sum of irreducible admissible V ˆ 1-
modules. Since nlow

X pW‚q “
Ž

bPN Xb, we conclude that nlow
X pW‚q is a sum, and

hence a direct sum, of irreducible admissible V ˆ 1-modules. The claim for 1 ˆ V
is proved similarly.

Let E be a complete list of mutually inequivalent irreducible (ordinary) V-
modules, which is finite by Corollary 4.4.5. The word “complete” means that
any irreducible V-module is equivalent to one object in E . The following theorem
gives a complete characterization of nlow

X pW‚q when V is C2-cofinite and rational.

Theorem 4.6.12. Define a homomorphism of weak V ˆ V-modules

Ψ :
à

M, pMPE

M b pM b T ˚
X pW‚ b M b pMq Ñ nlow

X pW‚q, (4.6.14)

m b pm b ϕ ÞÑ Ψϕpm b pmq

where Ψϕ is defined in example 4.6.1. Then Ψ is injective. If V is C2-cofinite and rational,
then Ψ is an isomorphism.

Note that that the image of each Ψϕ is in nlow
X pW‚q follows from the obvious

fact that M b pM is generated by ΩpMq b Ωp pMq.

Proof. If KerpΨq is non-trivial, then it is a non-trivial UpVq ˆ UpVq-submodule of
the domain DpΨq of Ψ. Since DpΨq is clearly completely reducible, by basic repre-
sentation theory, so is KerpΨq. Thus, KerpΨq contains an irreducible UpVq ˆ UpVq-
submodule W. The projection of W onto one of the irreducible component of
DpΨq is non-trivial. Thus, W » M b pM for some M, pM P E . By Corollary 4.5.15,
there exists a nonzero ϕ P T ˚

X pW‚ b M b pMq such that W “ M b pM b ϕ. As
W Ă KerpΨq, we have Ψϕ “ 0. By (4.6.4), for any w‚ P W‚,m P M, pm P pM, we
have ϕpw‚ b m b pmq “ 0. So ϕ “ 0, which gives a contradiction.

When V is C2-cofinite and rational, the surjectivity of Ψ follows from Proposi-
tion 4.6.10 and Lemma 4.6.11.

4.7 Factorization

We assume the setting of Section 4.4. Thus, we recall that X is a fam-
ily over Drρ obtained by sewing an N -pointed compact Riemann surface rX “

p rC;x1, . . . , xN ;x
1;x2; η1, . . . , ηN ; ξ,ϖq. Recall SX “ x1 ` ¨ ¨ ¨ ` xN and DX “ x1 ` x2.

Note that for each q P Drρ, the fiber Cq is nodal (with one node) if and only if
q “ 0. Moreover, rC is the normalization of the nodal curve C :“ C0. In particular,
we have ν : rC Ñ C defined by gluing x1, x2. Also, X0 “ pC;x1, . . . , xN ; η1, . . . , ηNq.
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We assume that V is both C2-cofinite and rational. By Convention 2.2.6, for
each irreducible V-module M, its lowest rL0-weight (with nontrivial weight space)
is 0. Thus ΩpMq “ Mp0q.

Choose any ϕ P T ˚
X0

pW‚q. Then ϕ is a linear functional on W‚.

Lemma 4.7.1. ϕ is an element of T ˚
rX,0,0

pW‚q.

Proof. Recall that W 1,W 2 are open discs in rC centered at x1, x2 respectively and
disjoint from x1, . . . , xN . A section ν of V

rX,0,0 b ω
rC defined on W 1 Y W 2 is of the

form

Uϱpξqν|W 1 “ ξL0udξ, Uϱpϖqν|W 2 “ ϖL0vdϖ

where u P V bC OpW 1q, v P V bC OpW 2q. ν can be viewed as an element of
VC b ωCppW 1 ´ x1q Y pW 2 ´ x2qq. By the description of VC and ωC near the node
(see (2.4.13) and (1.5.5)), it is easy to see that ν belongs to VC b ωCpνpW 1 Y W 2qq.
(Indeed, one can check that the value of ν at the node y1 “ νpx1q “ νpx2q (as an
element of VC b ωC |y1) is 0.) So V

rX,0,0 b ω
rC is naturally a subsheaf of VC b ωC .

Thus, as ϕ vanishes on H0pC,VC b ωCp‚SXqq ¨ W‚, it vanishes on the subspace
H0p rC,V

rX,0,0 b ω
rCp‚SXqq ¨ W‚. This proves ϕ P T ˚

X,0,0pW‚q.

Lemma 4.7.2. For any homogeneous v P V,

Y`pvqwtpvq´1ϕ “
ÿ

lPN

p´1qwtpvq

l!
Y´pLl

1vqwtpvq´l´1ϕ. (4.7.1)

Proof. Consider ϕ as a conformal block on C. Choose any homogeneous v P Vďn.
As argued in the proof of Theorem 4.4.1, one can construct ν P H0p rC,V ďn

rC
b

ω
rCp‚SX ` DXqq such that

Uϱpξqν|W 1 “ ξL0´1vdξ ` ξnpelements of Vďn
bC OpW 1

qqdξ,

Uϱpϖqν|W 2 “ ´ϖL0´1Upγ1qvdϖ ` ϖn
pelements of Vďn

bC OpW 2
qqdϖ.

By (1.5.5) and (2.4.12), it is clear that ν can be viewed as an element of H0pC,VC b

ωCp‚SXqq. Thus ϕpν ¨ w‚q “ 0.
Consider ≀ϕpw‚q P H0p rC´SX ´DX,V rCq. Then ≀ϕpν, w‚q P H0p rC´SX ´DX, ω rCq.

By residue theorem, we have

Resx1 ≀ ϕpν, w‚q ` Resx2 ≀ ϕpν, w‚q “ ´

N
ÿ

i“1

Resxi
≀ ϕpν, w‚q,

which, by Theorem 3.4.6, equals ´ϕpν ¨w‚q and hence is zero. By (4.6.7), we have,
under the identification VW 1 » V bC OW 1 via Uϱpξq,

Resx1 ≀ ϕpν, w‚q “ Resξ“0 ≀ ϕpξwtpvq´1v ` ¨ ¨ ¨ , w‚qdξ “ Y`pvqwtpvq´1ϕpw‚q.

150



By (2.3.15),

ϖL0´1Upγ1qv “ ϖL0´1eL1p´1q
L0v “

ÿ

lPN

p´1qwtpvq

l!
Ll
1v ¨ ϖwtpvq´1´ldϖ.

Thus, by (4.6.11),

Resx2 ≀ ϕpν, w‚q “ ´
ÿ

lPN

p´1qwtpvq

l!
Y´pLl

1vqwtpvq´l´1ϕpw‚q.

This proves (4.7.1).

Let E be a complete list of mutually inequivalent irreducible V-modules. By
Corollary 4.4.5, E is a finite set. Recall the map

rSq :
à

MPE
T ˚

rX
pW‚ b M b M1

q Ñ T ˚
Xq

pW‚q,

à

MPE
ψM ÞÑ

ÿ

M

rSψMpqq

defined for any q P Dˆ
rρ in Section 4.4. When q “ 0, an element in the image of rSq

is a linear functional on W‚, which must be also in T ˚
X0

pW‚q by Proposition 3.2.4.
Recall our assumption on rL0, which implies that

rSψMpw‚qp0q “ ψMpw‚ b P p0q § bM đq.

Here, P pnq is the projection onto the rL0-weight n subspace, and hence P p0q is the
projection onto the lowest weight subspace.

Proposition 4.7.3 (Nodal factorization). rS0 is a surjective linear map.

Indeed, one can use the same method for Theorem 4.4.1 to prove that rS0 is
also injective.

Proof. Choose ϕ P T ˚
X0

pW‚q. By Corollary 4.6.8, ϕ is in the finite-dimensional
space Ω`´

`

n
rX pW‚q

˘

. By Theorem 4.6.11, we can find finitely many irreducible
V-modules M1, . . . ,Ml, pM1, . . . , pMl such that

À

1ďiďl Mi b pM1
i is a weak V ˆ V-

submodule of n
rXpW‚q, that ϕ P

À

1ďiďl Mip0q b pM1
ip0q, and that the projection

of ψ to each Mip0q b pM1
ip0q, which we denote by

ϕi P Mip0q b pM1
ip0q,

is non-zero. By Lemma 4.7.2 and equation (4.5.5), we have for each i that

pYMi
pvqwtpvq´1 b 1qϕi “ p1 b Y

pMi
pvq

t
wtpvq´1qϕi.
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Identify Mip0q b pM1
ip0q naturally with HomCpMip0q, pMip0qq. Then the above equa-

tion shows that ϕi P HomU0pVqpMip0q, pMip0qq. Since ϕi is assumed to be non-zero,
we have Mip0q » pMip0q. Thus, by Proposition 4.6.9, we have the equivalence of
V-modules Mi » pMi. We may thus assume that pMi “ Mi. Asϕi P EndU0pVqpMip0qq,
it is a scalar multiplication. We may thus find a (non-zero) λi P C such that
ϕi “ λiP p0q § biđ.

By Theorem 4.6.12 or Proposition 4.6.10, we can find for each i a non-zero
conformal block ψi P T ˚

rX
pW‚ b Mi b M1

iq such that

pmi b pm1
iqpw‚q “ ψipw‚ b mi b pm1

iq

for each w‚ P W‚,mi P Mi, pm1
i P pM1

i. In particular,

ϕipw‚q “ ψipw‚ b ϕiq “ λiϕipw‚ b P p0q § biđq “ λi rSψipw‚qp0q

Thus ϕ “
ř

i λi
rSψip0q. It is now clear that ϕ is in the image of rS0.

Theorem 4.7.4 (Factorization). Assume that V is C2-cofinite and rational. Then rSq is
an isomorphism for each q P Drρ, and Sq is an isomorphism for each q P Dˆ

rρ.

Proof. As explained before Theorem 4.4.1, it suffices to prove that rSq is an isomor-
phism for each q P Drρ. Let D P N be the dimension of the domain of rSq, which is
finite by Theorem 3.7.3 and Corollary 4.4.5. Let Kq be the dimension of the image
of rSq. By Corollary 3.7.5, if q ‰ 0 then Kq is independent of q. We fix q P Dˆ

rρ. By
Proposition 1.8.1 (Nakayama’s lemma), Kq ď K0. By Theorem 4.4.1, D ď Kq. By
Proposition 4.7.3, K0 ď D. Thus D “ Kq “ K0.

Remark 4.7.5. The above two theorems show that if a nodal curve C (with nor-
malization rC) has one node, then its dimensions of spaces of conformal blocks
can be calculated from those of rC. Note that the results in Section 4.6 can be
generalized to N -pointed compact Riemann surfaces with local coordinates and
arbitrary numbers of outputs. Accordingly, we may prove the nodal factoriza-
tion for an N -pointed nodal curve pC;x1, . . . , xNq with an arbitrary number M of
nodes in the same way: the dimension of the space of conformal blocks associated
to the modules W1, . . . ,WN is

ÿ

M1,...,MMPE
dimT ˚

rX
pW‚ b M‚ b M1

‚q (4.7.2)

where rX is the compact Riemann surface rC with N ` 2M marked points, and
W‚ “ W1 b ¨ ¨ ¨ b WN , M‚ “ M1 b ¨ ¨ ¨ b MM , M1

‚ “ M1
1 b ¨ ¨ ¨ b M1

M , as usual.

Theorem 4.7.6. Assume that V is C2-cofinite and rational. Let X “ pπ : C Ñ

B; ς1, . . . , ςNq be a family of N -pointed complex curves. Then TXpW‚q and (hence)
T ˚

X pW‚q are locally free. Consequently, the function b P B ÞÑ dimT ˚
Xb

pW‚q is locally
constant.
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Proof. Recall that by Theorem 3.2.1, the dimensions of the fibers of TXpW‚q are
given by the dimensions of the spaces of conformal blocks. Outside the discrim-
inant locus ∆, the dimensions equal (4.7.2) by applying Theorem 4.7.4 several
times. In ∆, the same is true by nodal factorization (Remark 4.7.5). Thus, the rank
function of TXpW‚q is locally constant. By Theorem 3.7.3, TXpW‚q is finite-type.
Thus, it is locally free by Theorem 1.8.2.
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Chapter 5

More on the connections

5.1 Connections and local coordinates

Consider a family of N -pointed compact Riemann surfaces X “ pπ : C Ñ

B; ς1, . . . , ςNq. Assume B is biholomorphic to a Stein open subset of Cm, and X ad-
mits a set of local coordinates η1, . . . , ηN . For each y P ΘBpBq, we have defined in
Section 3.6 a differential operator ∇y depending on η‚ and a lift ry P H0pC,ΘCp‚SXqq

(satisfying dπpryq “ π˚y). We have also seen that if η‚ is fixed, then ∇y is deter-
mined up to an OpBq-scalar addition by ry. In this section, we show the same is
true for the dependence of ∇y on η‚ if W1, . . . ,WN are simple V-modules.

Let τ‚ “ pτ1, . . . , τmq be coordinates of B, and write τ‚˝π also as τ‚ for simplicity.
Then we can write

y “
ÿ

j

gjpτ‚qBτj

for some g1, . . . , gm P Opτ‚pBqq. Choose mutually disjoint neighborhoods
W1, . . . ,WN of ς1pBq, . . . , ςNpBq on which η1, . . . , ηN are defined respectively. Then
pηi, τ‚q is a coordinate of Wi. So we can find hi P Oppηi, τ‚qpWiqq such that

ry|Wi
“ hipηi, τ‚qBηi `

ÿ

j

gjpτ‚qBτj{ηi , (5.1.1)

where Bτj{ηi means the partial derivative Bτj defined with respect to the coordinate
pηi, τ‚q.

Let ∇pη‚q
y denote the differential operator defined by η‚ and ry. Let µ‚ be another

set of local coordinates of X, and let ∇pµ‚q
y denote the differential operator defined

by µ‚ and ry. Let

αi “ pµi|ηiq : B Ñ G
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be a holomorphic family of transformations whose value at each b P B is defined
similar to (3.2.14), namely αi,bpzq “ µi ˝ pηi, πq´1pz, bq for each b P B. Equivalently,
consider αi as a holomorphic function defined near 0 ˆ B Ă C ˆ B,

αi ˝ pηi, πq “ pµi, πq. (5.1.2)

Let α1
ip0q P OpBq whose value at each b P B is Bzαi,bpzq|z“0. Assume V has central

charge c, and W1, . . . ,WN are simple V-modules. For each Wi, we let ∆Wi
P C be

the unique number such that Wi “
À

nPNpWiqp∆Wi
`nq and pWiqp∆Wi

q is non-trivial.
Thus, according to Convention 2.2.6, L0 ´ rL0 “ ∆Wi

1 on Wi. ∆Wi
is called the

conformal weight of Wi.

Theorem 5.1.1. Let f P OpBq be

f “

N
ÿ

i“1

´

Resηi“0
c

12
hipηi, τ‚qSηiµidηi ´ ∆Wi

m
ÿ

j“1

gjpτ‚qBτj logα
1
ip0q

¯

. (5.1.3)

Then for each section s of TXpW‚q,

∇pη‚q
y s ´ ∇pµ‚q

y s “ ´fs.

Consequently, for each section ϕ of T ˚
X pW‚q,

∇pη‚q
y ϕ´ ∇pµ‚q

y ϕ “ fϕ.

Note that the first part on the right hand side of (5.1.3) is similar to c
12
Ci where

Ci is defined in Remark 4.3.10. Also, the residue Resηi“0 is taken with respect to
the coordinate pηi, τ‚q.

Proof. Choose w1 P W1, . . . , wN P WN . Recall w‚ “ w1 b ¨ ¨ ¨ b wN . Let
s “ Upη‚q´1w‚ P WXpW‚qpBq. So

Upµ‚qs “ Upα1qw1 b ¨ ¨ ¨ b UpαNqwN . (5.1.4)

By (3.6.8) and (3.6.10),

Upη‚q∇pη‚q
y s “

ÿ

i

w1 b w2 b ¨ ¨ ¨ b rwi b ¨ ¨ ¨ b wN

where

rwi “ ´Resηi“0 hipηi, τ‚qYWi
pc, ηiqwidηi.

Thus

Upµ‚q∇pη‚q
y s “

ÿ

i

Upα1qw1 b ¨ ¨ ¨ b Upαiq rwi b ¨ ¨ ¨ b UpαNqwN . (5.1.5)
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By (4.1.5),

Upϱpαi|1Cqqc “ Upϱpµi|ηiqqc “ pBηiµiq
2c `

c

12
Sηiµi ¨ 1.

Using Theorem 2.4.1, we compute

Upαiq rwi “ ´Resηi“0 hi ¨ UpαiqYWi
pc, ηiqwidηi

“ ´ Resηi“0 hi ¨ YWi
pUpϱpαi|1Cqqc, µiqUpαiqwidηi

“ ´ Resµi“0 hiBηiµi ¨ YWi
pc, µiqUpαiqwidµi ´ Resηi“0

c

12
hiSηiµi ¨ Upαiqwidηi.

(5.1.6)

We write ry in the pµi, τ‚q-coordinate:

ry|Wi
“

´

hiBηiµi `
ÿ

j

gjBτj{ηiµi

¯

Bµi
`

ÿ

j

gjBτj{µj
.

Recall (5.1.4), apply (3.6.8) and (3.6.10) again, and use the above expression of ry
in the pµi, τ‚q-coordinate, we have

Upµ‚q∇pµ‚q
y s “

ÿ

i

Upα1qw1 b ¨ ¨ ¨ b υi b ¨ ¨ ¨ b UpαNqwN (5.1.7)

where (defining rν using µ‚)

υi “
ÿ

j

gjBτjUpαiqwi ´ rνpryqUpαiqwi.

“
ÿ

j

gjBτjUpαiqwi ´ Resµi“0

´

hiBηiµi `
ÿ

j

gjBτj{ηiµi

¯

YWi
pc, µiqUpαiqwidµi.

From (5.1.2), it is easy to see

Bτj{ηiµi “ pBτjαiqpηi, πq “ pBτjαiqpα´1
i pµi, πq, πq

where α´1
i is the fiberwise inverse of αi. Identify Wi with a neighborhood of 0ˆB

via pµi, πq so that pµi, πq is identified with pz,1Bq, and think of αi as a family of
transformation and write the parameter of B as the subscript of αi, we have

Bτj{ηiµipz, bq “ pBτjαiqpα´1
i pz, bq, bq “ pBτjαiqbpα

´1
i,b pzqq

or simply

Bτj{ηiµi “ pBτjαiq ˝ α´1
i .

Use this relation and apply Lemma 5.1.2 to the family αi, we have

BτjUpαiqwi “ Resz“0 pBτjαiqpα´1
i pzqqYWpc, zqUpαiqwidz ´ ∆Wi

Bτj logα
1
ip0qUpαiqwi
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“Resµi“0 Bτj{ηiµi ¨ YWpc, µiqUpαiqwidµi ´ ∆Wi
Bτj logα

1
ip0qUpαiqwi.

Thus

υi “ ´Resµi“0 hiBηiµiYWi
pc, µiqUpαiqwidµi ´ ∆Wi

ÿ

j

gjBτj logα
1
ip0qUpαiqwi. (5.1.8)

Combine (5.1.5), (5.1.6), (5.1.7), (5.1.8) together, and notice (5.1.4), we obtain
Upµ‚q∇pη‚q

y s ´ Upµ‚q∇pµ‚q
y s “ ´fUpµ‚qs.

Lemma 5.1.2. Let T be an open subset of C. Let ρ : T Ñ G, ζ ÞÑ ρζ be a holomorphic
family of transformations. Then for any V-module W, if we let A “ L0 ´ rL0, then

BζUpρζqw “ Resz“0 pBζρζqpρ´1
ζ pzqqYWpc, zqUpϱζqwdz ´ Bζ log ρ

1
ζp0qAUpρζqw. (5.1.9)

Proof. Choose any ζ0 P T and apply Lemma 2.3.4 and Remark 2.3.5 to the family
ζ ÞÑ ρζ ˝ ρ´1

ζ0
, we have

BζUpρζqw
ˇ

ˇ

ζ“ζ0
“ BζUpρζ ˝ ρ´1

ζ0
qUpρζ0qw

ˇ

ˇ

ζ“ζ0

“Resz“0 Bζpρζ ˝ ρ´1
ζ0

qpzqYWpc, zqUpρζ0qwdz
ˇ

ˇ

ζ“ζ0
´ Bζpρζ ˝ ρ´1

ζ0
q

1
p0qAUpρζ0qw

ˇ

ˇ

ζ“ζ0
.

Bζpρζ ˝ ρ´1
ζ0

qpzq is just pBζρζqpρ´1
ζ0

pzqq. Note that ρ´1
ζ0

is the inverse function of ρζ0 ,
whose derivative is 1{pρ1

ζ0
˝ ρ´1

ζ0
q. Thus

pρζ ˝ ρ´1
ζ0

q
1

“ pρ1
ζ ˝ ρ´1

ζ0
q ¨ pρ´1

ζ0
q

1
“

ρ1
ζ ˝ ρ´1

ζ0

ρ1
ζ0

˝ ρ´1
ζ0

whose value at z “ 0 (noticing ρ´1
ζ0

p0q “ 0) is ρ1
ζp0q{ρ1

ζ0
p0q. Therefore,

Bζpρζ ˝ ρ´1
ζ0

q
1
p0q

ˇ

ˇ

ζ“ζ0
“ Bζρ

1
ζp0q{ρ1

ζ0
p0q

ˇ

ˇ

ζ“ζ0
“ Bζ log ρ

1
ζp0q

ˇ

ˇ

ζ“ζ0
.

This proves the desired equation at ζ “ ζ0.

5.2 Projective flatness of connections

Our goal of this section is to calculate the curvature of the connection associ-
ated to a family of N -pointed compact Riemann surfaces with local coordinates
X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηNq. Choose sections y, z of ΘB defined on Stein
open subsets of B. Choose lifts ry,rz as in the previous section as in Section 5.1 or
3.6. We write their local expressions at Wi as

ry|Wi
“ hipηi, τ‚qBηi `

ÿ

j

gjpτ‚qBτj ,
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rz|Wi
“ kipηi, τ‚qBηi `

ÿ

j

ljpτ‚qBτj .

For brevity, in the above expressions, we set

Y “
ÿ

j

gjpτ‚qBτj , Z “
ÿ

j

ljpτ‚qBτj ,

which have the same expressions as y, z, although their meanings are slightly dif-
ferent. We let rry,rzs be the lift of ry, zs. Define ∇y,∇z,∇ry,zs using these lifts and the
local coordinates η‚. Let Rpy, zq “ ∇y∇z ´ ∇z∇y ´ ∇ry,zs. Choose V with central
charge c, and V-modules W1, . . . ,WN .

Theorem 5.2.1. Let f P OpBq be

f “ ´

N
ÿ

i“1

´

Resηi“0
c

12
B
3
ηi
hipηi, τ‚q ¨ kipηi, τ‚qdηi

¯

. (5.2.1)

Then for each section s of TXpW‚q,

Rpy, zqs “ ´fs.

Consequently, for each section ϕ of T ˚
X pW‚q,

Rpy, zqϕ “ fϕ.

Thus, the (local) connections defined by these differential operators are pro-
jectively flat, and the curvatures depend only on the central charge c of V, but not
on V or its modules.

Proof. We have

∇zs “ Zs ´
ÿ

i

pkicdηiq ¨ s

and hence

∇y∇zs “ Y Zs ´ Y
ÿ

i

pkicdηiq ¨ s ´
ÿ

i

phicdηiqZs `
ÿ

i,j

phicdηiqpkjcdηjqs.

Similarly,

∇z∇ys “ ZY s ´ Z
ÿ

i

phicdηiq ¨ s ´
ÿ

i

pkicdηiqY s `
ÿ

i,j

pkjcdηjqphicdηiqs.

Note that rY, kicdηis “ pY kiqcdηi and rZ, kicdηis “ pZkiqcdηi since Y, Z are
orthogonal to dηi. Also, if i ‰ j then hicdηi and kjcdηj are acting on different
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tensor-components of s. So they commute. Using Proposition 3.5.1, we see that in
the case that i “ j, the action of rhicdηi, kicdηis on TXpW‚q equals

rhicdηi, kicdηis “ Lhicdηikicdηi
(3.5.3)

ùùùùù
ÿ

ně0

1

n!
pB

n
ηi
hiqkiY pcqncdηi

“
ÿ

ně0

1

n!
pB

n
ηi
hiqkiLn´1cdηi

Rem. 2.1.3
ùùùùùùù hikiL´1cdηi ` 2pBηihiqkicdηi `

c

12
pB

3
ηi
hiqki1dηi

where the three summands in the last expression correspond respectively to n “

0, 1, 3, the only cases that Ln´1c ‰ 0. By Lemma 3.5.2,

rhicdηi, kicdηis “ ´Bηiphikiqcdηi ` 2pBηihiqkicdηi `
c

12
pB

3
ηi
hiqki1dηi

“pBηihiqkicdηi ´ hipBηikiqcdηi `
c

12
pB

3
ηi
hiqki1dηi

when acting on TXpW‚q. Thus,

r∇y,∇zss “rY, Zss ´
ÿ

i

pY kicdηiqs `
ÿ

i

pZhicdηiqs

` ppBηihiqkicdηiqs ´ phipBηikiqcdηiqs ´ fs. (5.2.2)

On the other hand,

rry,rzs|Wi
“ phiBηiki ´ kiBηihi ` Y ki ´ ZhiqBηi ` rY, Zs,

which shows ∇ry,zss equals the sum of all the terms on the right hand side of (5.2.2)
except ´fs. This proves the desired relation.

5.3 Constructing flat connections

The goal of this section is to define flat connections on sheaves of conformal
blocks depending on as few parameters as possible. We adopt the following no-
tation: If L is a line bundle on a complex manifold X , then for any sections s1, s2
of L on an open U Ă X , if s2 is nowhere zero, then s1

s2
is the unique element of

OpUq whose multiplication with s2 is s1.
Assume W1, . . . ,WN are simple V-modules. We explain how to obtain a flat

connection associated to sheaves of covacua and conformal blocks of V. Let

X “ pπ : C Ñ B; ς1, . . . , ςN ; ν1, . . . , νNq

be a family of N -pointed compact Riemann surfaces with jets. This means that
pπ : C Ñ B; ς1, . . . , ςNq is N -pointed, and the jet

νi P ς˚
i ωC{BpBq

is nowhere zero for each 1 ď i ď N . Thus, for each b P B, νipbq can be regarded as
a (holomorphic) cotangent vector of Cb at ςipbq.
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Example 5.3.1. If X is a family of N -pointed compact Riemann surfaces with local
coordinates η‚, then X has a natural choice of jets: let νi “ ς˚

i dηi.

Example 5.3.2. Assume X “ pπ : C Ñ B; ς‚q is N -pointed. For each i, we let Bi

be the open subset of non-zero vectors of the line bundle ς˚
i ωC{B. Let pi : Bi Ñ B

be the projection sending the vectors to their initial points. Using these projec-
tions, we define the relative product B△ “ B1 ˆB B2 ˆB ¨ ¨ ¨ ˆB BN , i.e., the closed
submanifold of all pγ1, . . . , γNq P B1 ˆ ¨ ¨ ¨ ˆ BN satisfying p1pγ1q “ ¨ ¨ ¨ “ pNpγNq.
Let p : B△ Ñ B be the natural projection defined by p1, . . . , pN . Then we may
pull back X along p : B△ Ñ B to obtain an N -pointed X△ “ pπ : C△ Ñ B△; ς△‚ q.
More precisely: we let C△ “ CˆBB△ which can be considered as a submanifold of
C ˆ B△. ς△i is determined by ς△i pb△q “ pςipppb△qq, b△q for every b△ P B△. Then X△

has natural jets ν‚ such that for each b△ P B△, if we consider b△ “ pγ1, . . . , γNq as
an element of B1 ˆ ¨ ¨ ¨ ˆ BN “ ς˚

1ωC{B ˆ ¨ ¨ ¨ ˆ ς˚
NωC{B and set b “ ppb△q, then νipb△q,

a cotangent vector of C△
b△

“ Cb ˆ b△ » Cb at ς△i pb△q “ pςipbq, b
△q » ςipbq, is γi.

Let X beN -pointed with jets ν‚ as above. Fix aC2-cofinite rational VOA U with
non-zero central charge cU. We assume that U is holomorphic, i.e., U has only one
simple module which is U itself. For instance, one can take U to be the VOA
associated to an even self-dual lattice, or the moonshine VOA. By factorization,
any space of conformal block associated to U and a pointed curve has dimension
one. Thus the sheaves of conformal blocks of U are line bundles. We fix the sheaf
of conformal blocks of U associated to X and the U-modules U, . . . ,U:

L U
X “ T ˚

X pU b ¨ ¨ ¨ b Uq

and consider it as a line bundle on B.

Flat connections depending on ν‚ and a nowhere zero θ P L U
X pBq

We assume that there is a nowhere zero section θ P L U
X pBq. Then we shall

define a flat connection ∇θ independent of local coordinates and lifts of tangent
vectors. It suffices to define such connection locally. So we assume temporarily
that B is Stein and small enough so that we can choose local coordinates η‚. For
each i, ς˚

i dηi P ς˚
i ωC{BpBq is nowhere zero. Thus ς˚

i dηi{νi P OpBq. If µ‚ is another
set of local coordinates, we define αi and hence α1

ip0q P OpBq as in (5.1.2). Then it
is easy to see

ς˚
i dµi “ α1

ip0q ¨ ς˚
i dηi. (5.3.1)

For each section y of ΘB, choose a lift ry. Define ∇pη‚q using η‚ and ry as in Section
3.6. For each section ϕ of T ˚

X pW‚q, let

∇θ
yϕ “ ∇pη‚q

y ϕ´
c

cU
¨
∇pη‚q

y θ

θ
¨ ϕ´

N
ÿ

i“1

∆Wi
¨ y

´

log
ς˚
i dηi
νi

¯

¨ ϕ. (5.3.2)
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Theorem 5.3.3. ∇θ is a flat connection of T ˚
X pW‚q. Moreover, ∇θ depends on the jets

ν‚ and the nowhere zero section θ P L U
X pBq but not on η‚ or the lift ry of y. Therefore, ∇θ

can be defined globally without assuming B is Stein or local coordinates exist.

Proof. By Proposition 3.6.6 and Remark 3.6.7, ∇θ
y is independent of ry. That ∇yϑ

is independent of the local coordinates η‚ follows from (5.3.1) and Theorem 5.1.1.
Note that if fθ “ ∇pµ‚q

z θ, then ∇pµ‚q
y ∇pµ‚q

z θ “ ∇pµ‚q
y pfθq “ ypfqθ ` f∇pµ‚q

y θ. From
this we see

y
´∇pµ‚q

z θ

θ

¯

“
∇pµ‚q

y ∇pµ‚q
z θ

θ
´

∇pµ‚q
y θ

θ
¨
∇pµ‚q

z θ

θ
.

With help of this relation and Theorem 5.2.1, it is straightforward to check that ∇
is has zero curvature.

Example 5.3.4. In the case that one cannot find a nowhere zero θ P L U
X pBq, one can

consider a “central extension” of X as follows. Regard B as a closed submanifold
of L U

X consisting of zero vectors. Note that we have a natural projection

p : L U
X Ñ B

sending each vector to its initial point. We can pull back X along p : L U
X ´ B Ñ B

and obtain a new family Y (with base manifold L U
X ´ B). One can also pullback

the jets of X. Then Y has a natural global nowhere section θ of L U
Y .

Connections depending on ν‚ and a projective structure P

Suppose X has a projective structure P and jets ν‚, one can define a connection
∇P as follows. Choose a lift ry of the tangent field y, and let hi be as in (5.1.1). Then

∇P
y ϕ “ ∇pη‚q

y ϕ´

N
ÿ

i“1

Resηi“0
c

12
hipηi, τ‚qSηiPdηi ´

N
ÿ

i“1

∆Wi
¨ y

´

log
ς˚
i dηi
νi

¯

¨ ϕ.

(5.3.3)

Theorem 5.3.5. ∇P is independent of the choice of η‚ and the lift ry of y.

Proof. To compare the definition of ∇ using two sets of local coordinates η‚ and
µ‚, it suffices to assume µ1, . . . , µN belong to P. Then the coincidence follows from
Theorem 5.1.1. When the local coordinates belong to P, ∇ is independent of the
choice of lift by Remark 3.6.7 and Lemma 4.2.1 (or equation (4.2.4)). Thus, for a
general η‚, the independence on ry is also true.

Note that unlike the previous connection, ∇P might not be flat.
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5.4 Functoriality

Assume for simplicity that V is C2-cofinite so that the sheaves of conformal
blocks are holomorphic vector bundles. If Fi : Wi Ñ Mi is a homomorphism of V-
modules for each 1 ď i ď N , then we clearly have an OB-module homomorphism
F ˚

‚ : T ˚
X pM‚q Ñ T ˚

X pW‚q defined by sending eachϕ toϕ˝pF1b¨ ¨ ¨bFnq. If we have
Gi : Mi Ñ Pi where each Pi is also an V-module, then by setting pGF qi “ GiFi, we
have pGF q˚

‚ “ F ˚
‚ G

˚
‚ . Moreover, if each Fi is identity, then so is F ˚

‚ . Thus, we have
a contravariant functor W‚ Ñ T ˚

X pW‚q.
We may also fix V-modules W1, . . . ,WN , and consider morphisms between

two families of compact Riemann surfaces. To be more precise, if Xj “ pπj : Cj Ñ

Bj; ςj1 , . . . , ς
j
Nq (j “ 1, 2) are families of N -pointed compact Riemann surfaces, then

a morphism F : X1 Ñ X2 is a pair F “ pFC, FBq where FC : C1 Ñ C2 and FB : B1 Ñ

B2 are holomorphic maps, π2 ˝ FC “ FB ˝ π1, FC ˝ ς1i “ ς2i for each 1 ď i ď N , and
FC restricts to an isomorphism of compact Riemann surfaces C1

b Ñ C2
FBpbq

for each
b P B1. We will write both FC and FB as F for short when no confusion arises.

We can pull back T ˚
X2pW‚q along FB to get an OB1-module F ˚T ˚

X2pW‚q ”

F ˚
BT ˚

X2pW‚q. Thus we have F ˚ : T ˚
X2pW‚qpV q Ñ F ˚T ˚

X2pW‚qpF´1pV qq for each
open V P B2. We can define a similar map

F ˛ : T ˚
X2pW‚qpV q Ñ T ˚

X1pW‚qpF´1
pV qq (5.4.1)

as follows. For each b P F´1pV q, FC restricts to an isomorphism of N -pointed
fibers C1

b Ñ C2
F pbq

. This gives a natural isomorphism

F ˛
b : T ˚

X2pW‚q|F pbq Ñ T ˚
X1pW‚q|b.

Then F ˛ is defined such that for each ϕ P T ˚
X2pW‚qpV q and b P F´1pV q, pF ˛ϕqpbq “

F ˛
b ϕpF pbqq. One can write down the explicit formula: Assume the restriction X2

V

admits local coordinates η2‚ . Then one can define local coordinates η1‚ of the re-
stricted family X1

F´1pV q
such that

η1i “ η2i ˝ FC (5.4.2)

for each 1 ď i ď N . Choose w P W‚. Then

pF ˛ϕqpUpη1‚q
´1wq “ ϕpUpη2‚q

´1wq. (5.4.3)

If G : X2 Ñ X3 is another morphism, we clearly have

pGF q
˛

“ F ˛G˛. (5.4.4)

Also, if F is the identity map, then F ˛ is clearly also the identity.
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F ˛ and F ˚ can be related in the following way. Define an OB1-module isomor-
phism

ΦF : F ˚T ˚
X2pW‚q

»
ÝÑ T ˚

X1pW‚q,

ΦFF
˚ϕ “ F ˛ϕ (5.4.5)

for each section ϕ of T ˚
X2pW‚q. Namely, it is defined by ΦF pf ¨ F ˚ϕq “ fF ˛ϕ for

any holomorphic function f of B1. To check that ΦF is well-defined and is an OB1-
isomorphism, note that for each b P B1 we define an isomorphism of vector spaces
F ˚
b ” pFBq˚

b : T ˚
X2pW‚q|F pbq Ñ F ˚T ˚

X2pW‚q|b by pullback. Then we can define an
isomorphism

ΦF,b : F
˚T ˚

X2pW‚q|b
»
ÝÑ T ˚

X1pW‚q|b,

ΦF,bF
˚
b “ F ˛

b .

Then it is clear that ΦF pf ¨F ˚ϕqpbq “ fpbq¨pF ˛ϕqpbq “ fpbq¨F ˛
b ¨ϕpbq “ fpbq¨ΦF,bF

˚
b ¨

ϕpbq which depends only on fpbqϕpbq. So ΦF is a well-defined isomorphism of
vector bundles whose restriction to each fiber over b is ΦF,b. To summarize, we
have

Theorem 5.4.1. For each morphism F : X1 Ñ X2 of families of N -pointed com-
pact Riemann surfaces, there is an isomorphism of (holomorphic) vector bundles ΦF :

F ˚T ˚
X2pW‚q

»
ÝÑ T ˚

X1pW‚q such that ΦFF
˚ϕ “ F ˛ϕ for each section ϕ of T ˚

X2pW‚q, and
F ˛ϕ is described by (5.4.3). If F is the identity morphism, then ΦF is the identity map.
If G : X2 Ñ X3 is also a morphism, then for each open W Ă B3, the following maps from
T ˚

X3pW‚qpW q Ñ T ˚
X1pW‚qpF´1G´1pW qq are equal.

ΦGF ¨ pGF q
˚

“ ΦF ¨ F ˚
¨ ΦG ¨ G˚.

The last equation is due to (5.4.4).
Recall that if ∇ is a connection on T ˚

X2pW‚q, then its pullback F ˚∇ “ F ˚
B∇

is a connection on F ˚T ˚
X2pW‚q defined by pF ˚∇qypF

˚ϕq “ F ˚p∇dF pyqϕq for each
section ϕ of T ˚

X2pW‚q and each tangent vector y of B1.
Suppose that X2 admits jets ν2‚ . Then one can define jets ν1‚ of X1 such that

for each b P B1, the cotangent vector ν1i pbq of C1
b at ς1i pbq is F ˚dν2i pbq. If X2 also

admits a projective structure P2, then one can define a projective chart (and hence
a projective structure) P1 consisting of all pF´1

C pUq, η ˝ FCq where pU, ηq belongs
to P1. (In particular, U is an open subset of C2 and η P OpUq is univalent on
each fiber.) Then for the connections defined by (5.3.3) (assume W1, . . . ,WN are
simple), it is not hard to check that for any tangent field y of B1,

∇P1

y “ ΦF ¨ pF ˚∇P2

qy ¨ Φ´1
F (5.4.6)

when acting on sections of T ˚
X1pW‚q.
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Alternatively, suppose that, instead of projective structures, we have a global
section θ2 of L U

X2 . We can define a global section of L U
X1 to be θ1 “ F ˛θ2 “ ΦFF

˚θ2.
Then for the flat connections defined by (5.3.2), we also have

∇θ1

y “ ΦF ¨ pF ˚∇θ2
qy ¨ Φ´1

F . (5.4.7)

Example 5.4.2. LetG be a group of automorphisms of X, i.e., we have a homomor-
phismG Ñ AutpXq. For each g P G, we have an action g˛ “ Φg ¨g˚ : T ˚

X pW‚qpV q Ñ

T ˚
X pW‚qpg´1V q for each open V Ă B, and we have pghq˛ “ h˛g˛ for each g, h P G.

Thus, we have a right action of G on T ˚
X pW‚qpBq.

Suppose that X admits jets ν‚ and a projective structure P, and both are invari-
ant under the action of G. Suppose also that B is simply-connected and ∇P is flat.
We can define the vector space CXpW‚q of all ϕ P T ˚

X pW‚qpBq which are parallel
under ∇P, i.e., annihilated by ∇P

y for each tangent field y of B. Then dimCXpW‚q

is equal to the rank of the vector bundle T ˚
X pW‚q. Moreover, g P G Ñ pg´1q˛ de-

fines a (left) action of G on the vector space CXpW‚q. This is also true when we not
assume the existence of a set of G-invariant jets, but assume W1, . . . ,WN are all V
so that ∆W1 “ ¨ ¨ ¨ “ ∆WN

“ 0.

5.5 Modular invariance

Let V be C2-cofinite and rational. Let rY “ pP1; 1, 0,8q. We associate local
coordinates z to 0 and z´1 to 8. Then we can sew rY along 0,8 to get a family Y “

pR Ñ Dˆ
1 ;σq of 1-pointed elliptic curves. Recall Dˆ

1 is the punctured unit open
disc. Associate to 1, 0,8 simple V-modules W,M,M1 where M1 is contragredient
to M. Then for each ψ P T ˚

rY
pW b M b M1q, we have the sewn conformal block

rSψ P T ˚
Y pWqpDˆ

1 q and Sψ “ q∆M rSψ. Let rQ be unique projective structure of
P1, i.e., the one containing pC, zq. This in turn gives a projective structure Q of Y.
More precisely: the local coordinate z´1 of P1 at 1 extends constantly (with respect
to sewing) to a local coordinate µ of Y. Q is the projective structure containing µ.

Let γ be a jet of Y whose value at each q P Dˆ
1 is the cotangent vector dµ. Then

the definition of the connection ∇pµq of T ˚
Y pWq using the local coordinate µ (as

in Section 3.6) is the same as the connection ∇Q,λ defined by Q and the jet γ (as
in (5.3.3)), and is independent of the choice of lifts. Since the local coordinates of
0,8 belong to Q, by Theorem 4.3.9 and Remark 4.3.10, Sψ is parallel under ∇Q,µ.

Let H be the (open) upper half plane of C. Define

B “ H ˆ Cˆ.

Define an action of Z2 on CˆB such that for each a, b P Z and pz, τ, ζq P CˆHˆCˆ,
pa, bqpz, τ, ζq “ pz ` a ` bτ, τ, ζq. Then we have a (universal) family of 1-pointed
elliptic curves

X “ pπ : C Ñ B; ςq
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where

C “ pC ˆ Bq{Z2,

the projection π is defined by the standard one C ˆ B Ñ B, and ς comes from the
section B Ñ C ˆ B, pτ, ζq ÞÑ p0, τ, ζq. Let Γ be the modular group, i.e.,

Γ “ SL2pZq “

" ˆ

a b
c d

˙

: a, b, c, d P Z, ad ´ bc “ 1

*

.

Then we have a group action of Γ on X such that for any g “

ˆ

a b
c d

˙

P Γ,

g : B Ñ B, gpτ, ζq “

´aτ ` b

cτ ` d
, pcτ ` dqζ

¯

,

and the action of g on C descends from the one on C ˆ B determined by

g : C ˆ B Ñ C ˆ B, gpz, τ, ζq “

´ z

cτ ` d
,
aτ ` b

cτ ` d
, pcτ ` dqζ

¯

.

Then we have X{Γ “ pC{Γ Ñ B{Γ; ςq where B{Γ is the (fine) moduli space of 1-
pointed elliptic curves with jet.1 The jet of X{Γ come from ν of X which will be
described later. By example 5.4.2, Γ acts on T ˚

X pWqpBq.
There are two natural choices of flat connections on T ˚

X pWq. We have a mor-
phism F : X Ñ Y described as follows. As a holomorphic map between base
manifolds, we have

F : B “ H ˆ Cˆ
Ñ Dˆ

1 , pτ, ζq ÞÑ expp2iπτq.

The map F : C Ñ R is defined such that for each pτ, ζq P B, the map

C Ñ P1, z ÞÑ expp2iπzq

descends to C Ñ Rexpp2iπτq, and furthermore descends to Cpτ,ζq
»
ÝÑ Rexpp2iπτq. Then

we can pullback the projective structure Q and the jet λ of Y to P1, ν 1 of X as
described above (5.4.6). Then by (5.4.6), ∇P1,ν1 is equivalent to F ˚∇Q,λ via ΦF :

F ˚T ˚
Y pWq

»
ÝÑ T ˚

X pWq, and is therefore flat since ∇Q,λ is acting on a 1-dimensional
complex manifold. So

F ˛Sψ “ ΦFF
˚Sψ “ e2iπτ∆M ¨ ΦFF

˚
rSψ

is a global section of T ˚
X pWq parallel under ∇P1,ν1 . (Recall that F ˛ is described

by (5.4.3).) By factorization, T ˚
X pWq is OB-generated by, and hence the vector

1One reason to work with B instead of H and to consider jets is that pointed elliptic curves with
jet have trivial automorphism groups. So we can have a fine moduli space.
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space of ∇P1,ν1-parallel sections in T ˚
X pWqpBq is spanned by all F ˛Sψ where ψ P

T ˚
rY

pW b M b M1q and M is a simple V-module.
Unfortunately, neither P1 nor ν 1 is modular invariant (i.e. Γ-invariant). As a

consequence, ∇P1,ν1 is not modular invariant. To get modular invariant ones, we
let P be the projective structure of X whose pull back to the family C ˆ B Ñ B
is the standard one, i.e., its restriction to each fiber C is the one containing pC, zq.
We let ν be the jet of X to be

ν “ ζ ¨ dz

i.e., for each pτ, ζq P B, νpτ, ζq is the cotangent vector ζdz of the fiber Cpτ,ζq at 0
(when lifted to C) where dz is defined by the standard coordinate z of C. Then
both P and ν are modular invariant. So is ∇P,ν .

Theorem 5.5.1. Let τ, ζ also denote the standard coordinates of H,Cˆ respectively. Then,
when acting on sections of T ˚

X pWq, we have

∇P,ν
Bτ

“ ∇P1,ν1

Bτ
`

icπ

12
1,

∇P,ν
Bζ

“ ∇P1,ν1

Bζ
`

∆W

ζ
1.

As an immediate consequence, ∇P,ν is also flat.

Proof. ν 1 is the differential of expp2iπzq at z “ 0. So ν 1 “ 2iπdz, and hence ν “
ζ
2iπ
ν 1. Hence Bζplogpν{ν 1qq “ ζ´1. This, together with (5.3.3), shows the second the

identity. Since Bτ plogpν{ν 1qq “ 0, we have ∇P1,ν
Bτ

“ ∇P1,ν1

Bτ
. Thus, it suffices to prove

∇P,ν
Bτ

“ ∇P1,ν
Bτ

` icπ
12
1. Let η be the local coordinate of X defined by the standard

coordinate dz of C. Let η1 be the pullback of µ along F , i.e., η1 “ expp2iπzq ´ 1.
Then η belongs to P and η1 belongs to P1. Let ry be a lift of Bτ , and assume its
expression near ςpBq is

hpη, τ, ζqBη ` Bτ

where the partial derivatives are defined by the coordinates pη, τ, ζq. Then by
Theorem 5.1.1 and relation (5.3.3), we have ∇P,ν

Bτ
´ ∇P1,ν

Bτ
“ f1 where

f “ Resη“0
c

12
hpη, τ, ζqSηη

1dη.

It is easy to calculate that Sηη
1 “ Szpexpp2iπzq ´ 1q “ p2iπq2 ´ 3

2
p2iπq2 “ 2π2.

We can pullback ry to a global meromorphic tangent field of CˆB whose poles are
in Z2 ¨ pt0u ˆ Bq. Denote this pullback also by ry, and notice η is just the standard
coordinate z of C, we have ry “ hpz, τ, ζqBz ` Bτ and h is a meromorphic function
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on C ˆ B with poles in Z2 ¨ pt0u ˆ Bq. Moreover, ry is invariant under the action of
Z2. From this it is easy to see that

hpz ` 1, τ, ζq “ hpz, τ, ζq, hpz ` τ, τ, ζq “ hpz, τ, ζq ` 1.

Let γτ be an anticlockwise parallelogram of C around 0 described by Aτ Ñ Bτ Ñ

Cτ Ñ Dτ Ñ Aτ , where Aτ “ ´0.5 ´ 0.5τ , Bτ “ 0.5 ´ 0.5τ , Cτ “ 0.5 ` 0.5τ ,
Dτ “ ´0.5 ` 0.5τ . Then by the above relation,

ż

AτBτ

hdz `

ż

CτDτ

hdz “

ż

AτBτ

hdz ´

ż

AτBτ

ph ` 1qdz “ ´

ż

AτBτ

dz “ ´1,

ż

BτCτ

hdz `

ż

DτAτ

hdz “

ż

AτDτ

hdz ´

ż

AτDτ

hdz “ 0.

So

Resz“0 hdz “
1

2iπ

¿

γτ

hdz “ ´
1

2iπ
.

Thus f “ Resz“0
c
12
h ¨ 2π2dz “ icπ

12
, which completes the proof.

Corollary 5.5.2. For any simple M and any ψ P T ˚
rY

pW b M b M1q,

ζ´∆W exp
´

´
icπ

12
τ

¯

F ˛Sψ (5.5.1)

is a multivalued (with respect to ζ) global section of T ˚
X pWq parallel under the modular

invariant flat connection ∇P,ν . Moreover, any such ∇P,ν-parallel section of T ˚
X pWq is a

C-linear combination of sections of this form.

If we let qτ “ F pτq “ expp2iπτq, then the projective factor expp´ icπ
12
τq becomes

the celebrated q
´ c

24
τ .

Corollary 5.5.3 (Modular invariance). For any ϕ in the form (5.5.1), and for any g P

Γ “ SL2pZq, g˛ϕ is also a C-linear combination of sections of the form (5.5.1).
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E ˚, 11
E pDq,OCpDq, 13, 21
E bOX

F “ E b F , 11
E bn, 11
π˚pE q, π˚s, 17
E p‚SXq, 22
E |X ” E |X ,E |x, 17
E |X,E |x, 9

s|X “ s|X , 18
s|x “ spxq, 18

Ex, 9
sx, 9

F ˛, 162

G,LiepGq, 56

HomOU
pEU ,FUq, 10

HomOX
pE ,F q, 11

L ´1, 11
rL0, rLn, 54, 60
L U

X , 160

N “ t0, 1, 2, . . . u, 9

Rqπ˚pE q, π˚pE q, 16

Sηf,SηP, 111, 113
rSψ,Sψ, 86
SX, SXpbq, 21, 139

E ´ SX, 82

TX,a,bpW‚q,T ˚
X,a,bpW‚q, 140

TXpW‚q,T ˚
X pW‚q, 74, 76, 79

Upρq,Upη‚q, 57, 59, 75, 80
UpVq,U0pVq, 132
Uϱpηq,Uϱpφq,Vϱpηq,Vϱpφq, 62, 65, 70, 79

V1,V˚, 51
VC ,V

ďn
C ,VX,V

ďn
X , 61, 65

Vir c, 68
Vďn,Wďn, 59
v ¨ wi, v ¨ w‚, 73, 79
V ďn
X,a,b,VX,a,b, 139

W1,W˚, 55
nXpW‚q,nlow

X pW‚q, 140, 148
w‚,W‚, 73
Wpnq,Wpnq, 54, 55
wtpvq,wtpwq,Ăwtpwq, 51, 54, 55
W‚, w‚, 73
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≀X, ≀ ≀ X, 90
rX and X, 21, 36

XV , CV “ π´1pV q, 80
Xb, 79

Y, YW, 53, 78

rrzss, rrz˘1ss, ppzqq, tzu, 43
Z` “ t1, 2, 3, . . . u, 9

∆j,∆ “
M
Ť

j“1

∆j , 38, 39

∆W, 155
ΩpWq,Ω`´pWq, 132, 136
ΦF , 163
Σj,Σ “

ŮM
j“1Σj , 38, 39

ΘC , 14, 26
ΘBp´ log∆q, 40
ΘC{B, 20, 42
ΘCp´ log C∆q, 42
χpC,E q, 13
ωC , 12, 26
ωC{B, 20, 42
πr,ρ : Dr ˆ Dρ Ñ Drρ, 35
γξ,γ1, 58
φ˚, pηiq˚, pηi, πq˚, 69, 73, 78
ϱpη|µq, 61, 64
≀ϕ, 74, 82, 91

≀ ≀ ϕ, ≀nϕ, 93, 95
§ bj đ, 85
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