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Introduction

Conformal blocks are central objects in 2-dimensional conformal field theory
(CFT). Mathematically rigorous definitions of conformal blocks were first intro-
duced for special examples (e.g. minimal models, Weiss-Zumino-Witten models,
see [BFM91, TUY89]), and were later given for general vertex operator algebras
(VOAS) (see [Zhu94, FB04]). Conformal blocks are the building blocks of corre-
lation functions of CFT. They are mainly discussed in the literature of algebraic
geometry, although they have important applications also to many other areas
related to CFT, such as low-dimensional topology, tensor categories, VOAs, von
Neumann algebras and subfactors, etc.. Thus, we believe it is worthwhile to intro-
duce the beautiful theory of conformal blocks to the people working in these areas
without assuming they have previous knowledge in algebraic geometry. This is a
main goal of the present monograph.

We shall give a comprehensive exploration of the theory of conformal blocks in
the framework of VOAs and complex analytic geometry. Unlike most approaches,
we work in the complex analytic setting rather than algebraic one, using the lan-
guage of complex manifolds and complex spaces' rather than schemes or stacks.
This is partly due to the author’s own taste, but also due to the following reason:
Despite that an analytic theory of conformal blocks is necessary for application
to many areas, some results of conformal blocks (e.g. proving that spaces of con-
formal blocks form a holomorphic vector bundle) cannot be directly translated
without suitable adaption from algebraic to analytic setting, and certain results
(e.g. convergence of sewing conformal blocks) can only be proved using analytic
methods. Let me explain this in more details.

Vector bundle structures

Given a (CFT-type) VOA V, an N-pointed compact Riemann surface X =
(C;xy,...,xy) (ie. C has N distinct marked points zy,...,zy) and V-modules
Wi, ..., Wy, a conformal block ¢ is a linear functional on W, := W, ® - - - @ Wy
invariant under the action of the sections of sheaf of VOAs 7 defined using

!Nodal curves and their open subsets are the only singular complex spaces (i.e. complex spaces
which are not complex manifolds) we will consider in this monograph.



V and C. The vector space of all conformal blocks associated to C' and these V-
modules is called the space of conformal blocks .7;* (W, ). Assume that V satisfies
Cy-cofinite property, a natural finiteness condition introduced by Zhu [Zhu96].
Then #%(W.,) is expected to be finite-dimensional. Moreover, one should expect
that its dimension is independent of the complex structure of C' and the positions
of marked points, and these vector spaces should form a holomorphic vector bun-
dle over the moduli space of N-pointed compact Riemann surfaces (with possibly
extra data). In other words, suppose we have a holomorphic family of N-pointed
compact Riemann surfaces X = (7 : C — B;q,...,sy) where C, B are complex
manifolds, ¢;,...,sy : B — C are sections (i.e. families of mark points). Let C, be
the fiber 7~1(b) for each b € B, which is a compact Riemann surface. Let X, be C,
with marked points ¢, (b), ...,y (b). Then b € B — dim 7y (W,) should be locally
constant, and the vector spaces 7% (W,) (for all b € B) should form a holomorphic
vector bundle over 5.

A usual way of constructing vector bundle structures for spaces of conformal
blocks is to first define sheaf of covacua 7% (W,). This is an &z-module (Where
U is the structure sheaf of B), which is locally a quotient of the sheaf #5(W,) of
W, = W; ® - - - ® Wy-valued holomorphic functions. Its dual module .7, (W,) is
called sheaf of conformal blocks. Using some basic results in complex analytic
or algebraic geometry, one can identify the fibers of 7x(W,) with the spaces of
covacua (the dual spaces of the spaces of conformal blocks) in a natural way (Thm.
3.2.1). Thus, once we have proved that .7;(W,) is locally free (of finite rank), i.e.,
Ix(W,) is a vector bundle, then .7*(W,) is also locally free, which is the vector
bundle structure we are looking for.

In the algebraic setting, one proves that 7%(W,) admits local connections
[FB04, DGT19a], and that Z%(W,) is coherent [DGT19b]. Then a standard ar-
gument shows that 7%(W,) is locally free. It is obvious that 7x(W,) is quasi-
coherent, i.e., is the cokernal of a morphism between two possibly infinite-rank
locally free sheaves. Thus, once we can show that .7%(W,) is a finite-type Op-
module, we can conclude that .7;(W,) is coherent, thanks to the fact that 05 is
Noetherian. In the analytic setting, €5 is not Noetherian, and .7x(W, ) is not quasi-
coherent (in the sense of [EP96]). Thus, although one can still define connections
and show that 7%(W,) is finite-type, one cannot conclude that .7; (W, ) is coherent
or locally free. In this monograph, we fix this issue by proving a stronger finite-
ness theorem for .7;(W,) (Thm. 3.7.3), and show that this result together with the
existence of connections imply the local freeness (Thm. 1.8.5).

Convergence of sewing

Suppose we have an (/N + 2)-pointed compact Riemann surface

X = (Ciay,...,an, 2, 2").



Then we can sew X along the pair of points 2/, 2" to obtain another Riemann
surface with possibly higher genus. More precisely, we choose ¢, @ to be local
coordinates of C' at 2/, 2”. Namely, they are univalent (i.e. holomorphic and in-
jective) functions defined respectively in neighborhoods U’ 5 «’, U" 5 2" satisfy-
ing £(2') = 0,w(2”) = 0. Foreachr > Owelet D, = {z € C : |z] < r} and
D) = D, —{0}. We choose r, p > 0 so that the neighborhoods U’, U” can be chosen
to satisfy that {(U’) = D, and w(U") = D,, that U’ n U"” = ¢, and that none of
Z1,...,xyisin U or U”. Then, for each g € Dy, we remove the closed subdiscs of
U',U" determined respectively by |¢| < L:‘ and |w| < ‘;i', and glue the remaining
part using the relation {w = ¢. Then we obtain an N-pointed compact Riemann
surface

X,=(Cpx1,...,2N)

which clearly depends on ¢ and w. By varying ¢, we obtain a family of N-pointed

compact Riemann surfaces X = (7 : C — D;;¢1,. .., Sn)-
Now, if we associate V-modules Wy, ... Wy, M, M’ (where M’ is the con-
tragredient (i.e. dual) module of M) to z1,...,zn,2",2", and choose a confor-

mal block 1 associated to X and these V-modules, then its sewing Sy is an
Wi = (W, ® --- Wy)*-valued formal series of ¢ defined by sending each w, =
w1®-~®wNeW.to

SP(w,) = P(w. @ ¢* »®<) € Clg}

where » ® « is the element of the “algebraic completion” of M ® M’ correspond-
ing to the identity element of End¢(M), and Ly is the zero mode of the Virasoro
operators {L,, : n € Z}. The sewing problem is about proving that S{(w,) con-
verges absolutely to a (possibly) multivalued function on D;,. Moreover, for each
q € Dy, SU(-, q) defines a conformal block associated to X, and Wy, ..., Wy. If we
sew C along n pairs of points, and if we let zy, ..., zy and C and 1 vary and be
parametrized holomorphically by variables 7, = (74, ..., 7,) (see Sec. 1.6 for de-
tails), then sewing conformal blocks is also absolutely convergent with respect to
¢, - - -, ¢n and (locally) uniform with respect to 7,. The sewing problem is analytic
by nature. It cannot be proved using purely algebro-geometric method since X is
not an algebraic family; in particular, D;, is not an algebraic variety or scheme,
and is not considered in algebraic geometry. In the monograph, we will give a
detailed proof of the sewing problem using analytic methods. See Section 4.3.

Factorization

In the above setting, the factorization property of conformal blocks says that
if V is Cs-cofinite and rational (which means that certain classes of generalized
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V-modules are completely reducible), then for any ¢ € D;,, any conformal block
associated to X, and Wy, ..., Wy is a sum of Si(q) where P € 72 (W, @ M@ M’)

(i.e. U is a conformal block associated to X and Wi, ..., Wy, M, M) and M is sim-

ple. One can phrase the factorization as a relation between the dimensions of

spaces of conformal blocks associated to X and to X, as follows. For each equiv-

alence class of simple V-module we choose a representative and let them form a

set £. Then for each g € D),

dim Z (W,) = ) dim ZF (W, @ M@ M).
Me&

Factorization in this form was proved in [TUY89] for WZW models and in
[DGT19b] for any Cs-cofinite rational VOA. Note that the left hand side is in-
dependent of ¢, and is a priori no less than the right hand side since the linear
map P — SP(q) is indeed injective (Thm. 4.4.1).

Let us call the right hand side of this equation to be D. So D < dim 3% (W.).
To prove the factorization, we add X, which is an N-pointed nodal curve, to the
family X. Then X is a family of N-pointed complex curves with base manifold
D,,. We can still define the sheaf of covacua .7:(W,) and show that it is finitely
generated (Thm. 3.7.3). Then by Nakayama’s lemma (Prop. 1.8.1), the dimen-
sion of fibers of 7% (W,) (which can be identified with spaces of conformal blocks
(Thm. 3.2.1)) is upper-semicontinuous with respect to ¢ € D,,. Thus, for each
q # 0, dim 7 (W,) < dim 755 (W, ). Therefore, it suffices to prove the nodal fac-
torization: that dim 7% (W,) < D.

To prove the nodal factorization, we should realize each ¢ € 73 (W,) as an
element of Dy T3 (W.@ME®M'). For that purpose, we consider ¥ as a Riemann
surface with input points z1, ..., zx and output points 2, 2”. Then we can define
the dual X-tensor product of Wy, ..., Wy (associated to z1, ...,z y respectively)
to be a vector space Nx(W,), which is the subspace of linear functional on W,
satisfying certain properties that ¢ satisfy. The difficulty of this approach is to
define an action of V x V on N3(W, ) which makes the latter a weak V x V-module.
Then using the C,-cofiniteness and rationality, it is not hard to show that N3z (W,)
(or a suitable V x V-submodule containing ¢) is a direct sum of irreducible V x V
modules which must be of the form M ® M’ for some M e £. Nodal factorization
follows.

[DGT19b] defines the weak V x V-module structure on N3z(W,) using Zhu's
algebras. Our approach does not use Zhu's algebra, but relies heavily on the
propagations of conformal blocks (Sec.3.4) and more generally, propagations
of dual tensor product elements (Sec. 4.6). Moreover, our proofs of propaga-
tions and some related properties are analyic and different from those in [FB04]
or [DGT19b]: we use the sewing of an N-pointed compact Riemann surface and a
3-pointed P!; the convergence of the corresponding sewing of conformal blocks is



due to the strong residue theorem for families of compact Riemann surfaces (Thm.
1.4.1).

Prerequisite and outline

We assume the readers know some basic properties of complex manifolds;
sheaves, sheaves of modules, and their morphisms; sheaf (Cech) cohomology.
See for instance [GH78, Sec. 0.2, 0.3], [Huy06, Chapter B], [GR84, Annex]. Some
familiarity with computations in VOA (cf. for instance [FHL93]) is helpful but not
necessary. No knowledge in algebraic geometry is required.

More advanced topics in complex geometry will be discussed in Chapter 1. In
particular, we review the basic properties of compact Riemann surfaces, which
will be generalized to nodal curves. Since we do not assume the readers have any
previous knowledge on complex spaces or nodal curves, we give complete and
self-contained account of these properties. We also introduce the necessary tools
for studying families of compact Riemann surfaces and, more generally, families
of complex curves. We give a detailed description of how to sew a family of com-
pact Riemann surfaces along several pairs of points to obtain a family of complex
curves. We prove strong residue theorem for families of compact Riemann sur-
faces, which is necessary for proving the propagations of conformal blocks. Basic
properties of holomorphic differential equations are recalled, which will be used
to prove the convergence of sewing conformal blocks. We also give criteria on
local freeness of sheaves.

In Chapter 2 we discuss sheaves of VOAs for families of complex curves in-
troduced in [FB04] (for smooth curves) and [DGT19a] (for nodal curves). These
sheaves are infinite rank holomorphic vector bundles whose transition functions
are discovered in [Hua97]. We also give a formula for Lie derivatives of sheaves
of VOAs, generalizing those of tangent fields and tensor fields. This formula is
due to the author, and is used in the next chapter to define connections on sheaves
of conformal blocks.

Following [FB04, DGT19a], we define in Chapter 3 sheaves of conformal
blocks for families of complex curves. We define the sewing of conformal blocks
which corresponds to the geometric construction of sewing families of compact
Riemann surfaces. We prove that the sewing of conformal blocks are also confor-
mal blocks in the formal sense, which is due to [DGT19b]. We then prove prop-
agation of conformal blocks. Single propagation is due to [FB04], and multiple
propagations are due to the author. Double propagations play an important role
of defining weak V x V-module structures on dual tensor products in Chapter 4.
As mentioned previously, our treatment of single propagation is new and relies on
sewing. We then prove that sheaves of conformal blocks support locally logarith-
mic connections. This result is due to [FB04] and [DGT19a] for smooth families
and general families respectively. Our treatment is different from theirs and uses



the result on Lie derivatives in Chapter 2. With the help of connections, we then
prove that for Cs-cofinite VOAs, the sheaves of conformal blocks are locally free.

The first three sections of Chapter 4 are devoted to the proof that sewing con-
formal blocks is convergent when V is Cs-cofinite. Our treatment of projective
structures is motivated by [FB04, Sec. 8.2]. We also prove that the sewing map is
injective. We then define the vector space of dual tensor products, and use (single
and double) propagations of dual tensor product elements to define weak V x V-
module structures. For an approach using Zhu's algebra, see [DGT19b]. We then
prove factorization for conformal blocks associated to Cs-cofinite rational VOAs,
which is originally due to [DGT19b].

The connections defined locally in Chapter 3 are in general not flat but only
projectively flat. In chapter 5, we explain how to slightly modify the definition
and obtain flat connections on sheaves of conformal blocks. Typically, the con-
struction of flat connections uses determinant line bundles. It turns out that tensor
products of these line bundles are equivalent to sheaves of conformal blocks as-
sociated to holomorphic VOAs. We use the latter sheaves instead of determinant
line bundles. This treatment is motivated by [AU07a, AU07b]. We also provide
in this chapter all the necessary results for constructing modular functors from
conformal blocks. In the last section, we explain how the famous and mysterious
factor ¢~31 appears in genus 1 CFT.

We remark that before [FB04, DGT19a, DGT19b], the definition of conformal
blocks, and the proof of propagation, local freeness, and factorization of confor-
mal blocks were given in [BEM91, TUY89] for minimal models and WZW-models
respectively, and in [NT05] for general VOAs (satisfying C>-cofiniteness, rational-
ity, and some other small conditions) but only genus 0 curves. Proofs of conver-
gence of sewing and factorization were also given in [Hua95, Hua98, Hua0O5a] for
general VOAs as above for genus 0 curves, and in [Zhu96, Hua05b] for genus 1
curves.



Chapter 1

Basics of complex geometry

1.1 Sheaves of modules

Let us fix some notations.

i=+/—1.
N=1{0,1,2...}, Z,={1,23,...}

Throughout this monograph, Ox of a given complex manifold X (or more gener-
ally, a complex space) always denotes the sheaf (of germs) of holomorphic func-
tions on X. Thus, Ox(X) is the space of holomorphic functions on X. We will
sometimes write O'x(X) as €/(X) for short. For any xz € X, Ox , denotes the stalk
of Ox at x, and m, denotes the ideal of all germs f € O, satisfying f(z) = 0.

In general, if & is a sheaf on X then &, denotes the stalk at z. If U is an open
set containing x, and if s € &(U), then s, € &, denotes the germ of s at z. If £ is a
(sheaf of) Ox-module, then &,/m,&, is a complex vector space, called the fiber of
& at . (Fibers can also be defined using pull backs of sheaves; see Section 1.3. It
will be denoted by &|x in the future.) It's dimension r, is called the rank of & at
z. The functionr : z € X — r, is called the rank function.

A homomorphism of Ox-modules & — .# is an isomorphism (i.e., the in-
duced homomorphism of &x (U)-modules .# (U) — .# (U) is an isomorphism for
any open subset U) if any only if the corresponding stalk map ., — ¥, is an
isomorphism for each = € X. & is called locally free if each z € X has a neigh-
borhood U such that &|y ~ O} for some natural number n. & is locally free if
and only if it is the sheaf of germs of a holomorphic (finite rank) vector bundle.
Thus, locally free sheaves and vector bundles are regarded as the same things. It
is clear that the rank function is locally constant for any locally free sheaf. Unless
otherwise sated, we assume that locally free sheaves have (locally) finite rank.

If U is an open subset of X, and sy, ...,s, € &£(U), we say that sy, ..., s, gener-
ate &y, if for each x € U, the stalk &, is generated by (the germs of) sy, ..., s,. This



is equivalent to saying that the &-module homomorphism &7, — & defined by

op(V) = éu(V),  (fiooo i fu) = fisi+ o+ fusn

(where V' is any open subset of U) is a surjective sheaf map. Also, it is equivalent
to that for any = € U, V < U a neighborhood of z, and s € &(V), there exists a
neighborhood W of z inside V such that s = fis1+ - -+ f,s, forsome fi,..., f, €
O(W). If the above homomorphism &}, — & is an isomorphism, then we say

that s,...,s, generate freely &. If sq,...,s, generate &, then they generate
freely &y if and only if for any open subset V < U and any fi,..., f, € O(V),
fisilv + -+ + fausnly = 0 implies f; = --- = f, = 0. We say that & is a finite-

type Ox-module if each x € X is contained in a neighborhood U such that & is
generated by finitely many elements of & (U).

The above notion of generating sections can be generalized to any subset E of
&(U), i.e., that (the elements of) E generate &} if for each z € U, the germs of the
elements of E at x generate the 0}, ,-module &,. This is not the same as saying that
E generates (the (U)-module) &(U), which means that each element of &(U) is
an 0'(U)-linear combination of elements of £.

Most sheaves we will encounter in this monograph are locally free. However,
sometimes we need to consider quotients of locally free sheaves, which are not
necessarily locally free. Here is the precise definition: An &x-module & is called a
coherent Ox-module (or coherent sheaf) if each z € X is contained in a neighbor-
hood U such that the restriction &7 is isomorphic to coker(y¢) where ¢ : O} — O}
is a homomorphism of &y-modules and m,n € N. A locally free &x-module is
clearly coherent.

Let & and .# be Ox-modules. For any open U in X, let &, and .%#; be re-
spectively the restrictions of & and .# to U. Let Homg, (&, #i/) be the set of
Oy-morphisms from & to .%#. So any element ¢ € Homg, (&, .%y) is described
as follows. For any open V' < U, we have an &(V)-module homomorphism
¢ = o¢v : EV) - F(V). ¢is compatible with the restriction of sections, i.e.,
for any open W < V < U and s € &(V'), we have

o(s)lw = d(slw).
For each z € V, ¢ induces homomorphisms of 0’y ,-modules and vector spaces
66— T b EmE — Fofm, T (1.L.1)
It is clear that
O(E)r = 0(&) (1.1.2)

where ¢(&) is the image sheaf. For each section s of & defined near z, if we let s,
and s(x) denote the values of s in &, and &,/m,&,, and adopt similar notations for
®(s), then

P(se) = 0(s)er  O(s(2)) = d(s)(2). (1.1.3)



Note that Homg, (&1, %) is clearly an &(U) module. Then we have the
so called sheaf of Ox-homomorphisms Hom, (&,.%), where for any open
U < X, Hom, (&,.7)(U) = Homg,(y,-Fy) whose sections are all those .
Hom, (&,.7)is obviously an &x-module. We call

&* :=Hom, (&, Ox)

the dual sheaf of &. Choose s € &(U) and t € &*(U), then t(s), as a section in
Ox(U), is also denoted by (s,t) or (t,s). Note that when & is locally free, then
&* is also locally free, and &* is dual to & as holomorphic vector bundles. In
particular, &** can be naturally identified with &

The collection {&'(U)®¢()-# (U)} over all open U < X forms a presheaf of 0'x-
modules. The restriction of sections of this presheaf is defined in an obvious way.
Its sheatfification & ®¢, % , which is clearly an &x-module, is called the tensor
product of & and .# over Ox. Unless otherwise stated, we will write & ®¢, # as
& ® . for short. If we consider the tensor product over C, we will write & ®¢ %
instead. Note that when the two &'x-modules are locally free, their tensor product
is nothing but the tensor product of holomorphic vector bundles. Another easy
fact is the isomorphms & ® Ox ~ & ~ Ox ® & in a natural way. We write o
as the n-th tensor power of & for any n € N. Note also that ¥ ® £* ~ Ox for a
(holomorphic) line bundle . (i.e., .Z is a rank 1 locally free &c-module). In this
case we write £~ = ¢*, and more generally, £®-" = (£*)®n,

A useful method of constructing sheaves is called gluing. Let (U,)aea be an
open cover of X. Suppose that for each o € 2(, we have an 0y, -module £, that for

~

any «, 3 € 2, we have an Oy, ~y,-module isomorphism ¢3,0 : &, np, — éfamUﬁ,
that ¢, = 1, and that ¢, , = ¢, 303, When restricted to U, n Ug n U,. Then we
can define a sheaf & on X as follows. For any open V' < X, &(V) is the set of all
(5a)aent € [ [eq €*(V nU,) (Where each component s, is in &“(V n U,,)) satisfying
that ss|v, ~v; = ¢s.a(Salv.nu,) for any a, 3 € 2. If W is an open subset of V, then
the restriction &(V) — & (W) is defined by that of &*(V n U,) — &*(W n U,).
The action of &(V') on &(V') is defined by the one of &(V n U,) on &(V n U,). It
is easy to see that & is a sheaf of &'x-modules. Moreover, for each 3 € 2, we have
a canonical isomorphism (trivialization) ¢g : &, — 555 defined by (S4)aca — $s-
It is clear that for each «, 8 € /A, we have ¢g = ¢3¢, When restricted to U, n Up.

For instance, any locally free sheaf is obtained by gluing a collection of free
sheaves associated to an open cover of X.

1.2 Compact Riemann surfaces

Serre duality

Let C' be a compact Riemann surface, and let & be a (sheaf of) locally free -
module. We list some basic facts about the cohomology groups of &. Choose
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q € N. The first important fact is that H%(C, &) is finite dimensional. Moreover,
dim HY(C, &) = 0 when ¢ is greater than 1, the complex dimension of C. These
facts can be proved by Hodge theory. Moreover, let we be the dualizing sheaf
(also called canonical line bundle) of C'. In other words, w¢ is the line bundle of
holomorphic 1-forms on C. So the sections of w¢ look locally like f(z)dz where f
is a holomorphic function. Then Serre duality (which can also follow from Hodge
theory) says that for any p € {0, 1} there is an isomorphism of vector spaces

HYC,&@uWP) ~ H(C,&* @ wh P, (1.2.1)

where w? = O¢ and w}, = we. (Cf. [Huy06] Proposition 4.1.16.) In other words,
there is a perfect pairing

(o HYC,EQwh) @ HY(C,6* @ws *) — C. (1.2.2)

We now describe such a pairing, called the residue pairing. This explicit descrip-
tion will be used in the proof of strong residue theorem.

Recall that the Cech cohomology group H'(C,& ® wb) is the direct limit of
H' (W EQuwh) = ZH U, & @ wh) /B (U, & @ wh,) over all open covers il of C. Now
choose any N € Z,. The data X = (C;x1,...,zy) is a called an N-pointed com-
pact Riemann surface, if 74, . . ., xy are distinct points on C. Choose mutually dis-
joint connected open subsets Uy, ...,Uy < C containing 1, ...,z y respectively,
and define Uy = C' — {z1,...,zn}. Then 4 = {Uy, Uy, ..., Uy} is an open cover of
C. We now construct some cocycles in Z' (4, & @ wk). For any 1 < n < N, choose

00 € (6 @WE)Un — {a}).

Note that U,,—{z,} = U,nUy. We now define Cech 1-cocycle s = (Spn)mmn=01,..N €
ZH U, & ® wh.) (where each s, ,, € (& ® wh) (U, N U,)) in the following way. Set
so0 = 0;if m,n > 0 then s, ,, is not defined since U,, nU,, = J; if n > O then s,y =
—S0.n = 0. Then s can also be regarded as an element in H'(C, & ® w?,). (Indeed,
any element in H*(C, & ® w!.) arises in such way. One way to see this is to note
that since each U; is Stein manifold, H?(U;, & ® wg.) = 0 when p > 0 by Cartan’s
Theorem B. (See Sec. 1.5.) So by Leray’s theorem, H'(C, £®@uw?.) = H' (4, E@uWE).)
Choose any ¢t € H(C, *®w ?), which is a global section of §*®w¢; * on C. Then
for any n, the evaluation (o, t) is an element of w¢(U,, — {x,}). So we have the
residue

Res,, (o, ) — % §<an, 0, (123)
’Y’n

where v, is an arbitrary loop around z,, whose orientation is anticlockwise in any
local coordinate at x,,. Now, the residue pairing of Serre duality (1.2.1) is described

by

N
(s,t) = Z Resy, {opn, ). (1.2.4)
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Let us explain, assuming the existence of an isomorphism (1.2.1), why an ex-
plicit isomorphism can be realized by the above pairing. It is an easy exercise that
{(s,ty = 0 when s is inside the coboundary B'(4l, & ® w’), hence when s is zero
when regarded as in H'(C,& ® wh.) = H'(U,& ® wl.). Use the residue pairing
to define a linear map from the left to the right hand side of (1.2.1). It suffices to
prove that this map is surjective. It is easy to see that this map is independent of
the sizes of Uy, ..., Uy. So we may assume the vector bundle & can be trivialized
on each Uy, ...,Uy. Now, for each linear functional H°(C, & *®1C_p ) — C, using
linear algebra, it is easy to realize it as the residue pairing with some element of
Z' (U, & @ wy,). This proves the surjectivity.

Vanishing theorems

When studying a family of vector bundles {&; : b € B} over a family of compact
Riemann surfaces {C, : b € B}, it is important to know if the collection { H%(C}, &) :
b € B} forms a vector bundle on B in a natural way. Clearly, a necessary condition
is that dim H%(C,, &) is locally independent of b. As we shall see, a theorem of
Grauert implies that this is also a sufficient condition.

The constancy of dim H%(C,, &) is not always true in general. However, if we
define the character of & to be

X(C.&) = Y (~1)"dim H"(C, &) = dim H(C, &) — dim H'(C, &), (1.2.5)

neN

then x(Cp, &;) is indeed always constant over b. On the other hand, if one can use
vanishing theorems to show that dim H'(Cy, &,) = 0 for all b, then the constancy
of dim H® immediately follows from that of the characters. In the following, we
discuss several vanishing results which will be useful for the study of conformal
blocks.

Let D be a divisor of C. In other words, D is a finite formal sum D = ) n;z;,
where {z,} are points of C, and each n; € Z. We say D is effective and write D > 0
if any n, is non-negative. Recall that the degree deg D of D = . n;z; is Y n,.
Regard & as a holomorphic vector bundle. For any open U c C, let &(D)(U) be
the setof all s € &(D)(U — {x;}) satisfying that for any z; and any local coordinate
n; near xz;, ;"s has removable singularity at x;. Then the collection {&(D)(U)}
over all open U < C forms an O-module &(D).

Note that 0 (D) is a line bundle, and it is well known that any line bundle
is isomorphic to some O¢(D). (A proof is sketched in Remark 1.5.6.) One has
a natural isomorphism of Oc-modules &(D) ~ & ® Oc(D). Therefore & (D) is
locally free. We understand &'(D) as & ® O¢(D) even when & is not locally free.
One also has 0¢(—D) ~ O¢(D)*, and O¢ (D1 + D) ~ Oc(D) ® Oc(Dy) for two
divisors Dy, D,.
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Proposition 1.2.1. Assume that C' is connected, & is a locally free Oc-module, and D is
a non-zero effective divisor of C. Then there exits N € N such that H°(C, &(—nD)) =0
foranyn > N.

Proof. Consider & as a vector bundle. Write D = } z;. For any z = uz;,
H°(C,&(-D)) is a subspace of H*(C,&(—x)). Thus it suffices to prove that
H°(C,&(—nz)) = 0 when n is large enough.

Since H°(C, &) is finite dimensional, there exist finitely many global sections
{sr: k=1,2,...} of & spanning H°(C, &). Regard a neighborhood U of z as an
open subset of C, and assume that x = 0 € C. Assume also that & has trivializa-
tion &y ~ E ®c Oy where E is a finite dimensional vector space. Then for any £,
s has expansion s, (z) = 3.2 vy, ;2/ near z = 0, where each v ; € E.

For any n € N, let 0|, be (v, Vk1,--.,Vk,) In E® C**L Let F, be the sub-
space of E ® C"! spanned by {vy|, : k = 1,2,...}. Then dim F, is an increasing
function of n whose values are bounded from above. Choose N € N such that
dim F,, is the constant K for all n > N. Assume without loss of generality that
U1|n, ..., Uk|n are linearly independent. So for any n > N, ti},, ..., Uk|, are also
linearly independent, which therefore form a basis of F;,. Choose any k. Then
forany n = N, ti|, = c1,U1|n + - - + CknUk|, for some unique ¢y, ..., cxn € C.
By such uniqueness, we conclude that ¢y, = ¢ n,...,cxkn = cxn foralln > N.
Therefore s, = ¢ n51 + -+ + cxnsk near x. This equation holds globally since
C is connected. We thus conclude that s, ..., sy form a basis of H°(C,&). In
particular, K = dim H°(C, &).

Now choose any n > N and any o € H°(C,&(—nx)) < H°(C,&). Then there
existcy,...,cx € Csuchthato = ¢151+- - -+ckSk. Near z one has series expansion
o(z) = Z;O:O v;z3. Then (vo, v, ..., un) = c1¥h|n + -+ + cxUk|n. Since n > N and
27 "0(z) has removable singularity near 0, we have 1y = --- = vy = 0. Therefore
c1 = -+ = cx = 0 by the linear independence of @i, ..., Ux|y. This proves that
o=0. OJ

Let ©¢ be the tangent sheaf of C, i.e., the sheaf of holomorphic tangent vectors
onC. S0 O¢ ~ wal. Consequently, O¢ @ we ~ O¢.

Corollary 1.2.2. Assume that C'is connected, & is a locally free Oc-module, and D is a
non-zero effective divisor of C. Then there exits N € N such that H'(C,&(nD)) = 0 for
anyn > N.

Proof. By the above proposition, H(C, &* ® wc(—nD)) = 0 for any sufficiently
large n. Note that (6* ® we(—nD))* Qwe ~ & ® Oc ® Oc(nD) @ we ~ &(nD).
Thus, by Serre duality, H'(C, &(nD)) = 0 for any sufficiently large n. O

The above corollary is also true when D has positive degree. See [Huy06, Prop.
5.2.7]
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Remark 1.2.3. In Corollary 1.2.2, if we know that H'(C,&(ND)) = 0, then
HY(C,&(nD)) = 0 for any n > N. Indeed, by Serre duality, we have H°(C, &* ®
we(—ND)) = 0. Then H°(C, &* ® we(—nD)), which is naturally a subspace of
HY(C,&* @ we(—ND)), must also be trivial. By Serre duality again, we obtain
HY(C,&(nD)) = 0.

It will be important to know what NNV precisely is in the above corollary. When
& is a line bundle, we can find such N with the help of Kodaira vanishing theorem
and Riemann-Roch theorem. To begin with, recall:

Theorem 1.2.4. (Kodaira vanishing theorem) Assume that C' is connected. Let D be a
divisor on C with deg D > 0. Then H°(C, Oc(—D)) = 0 and H*(C,wc (D)) = 0.

Proof. Suppose HY(C,O0c(—D)) is nontrivial. Choose any non-zero f €
H°(C,0c(—D)). Then f is a global meromorphic function on C' which is not
always zero on any open subset of C. Thus its degree deg f must be 0.! But
deg f — deg D must be non-negative by the definition of &-(—D), which contra-
dicts deg D > 0. So H°(C, Oc(—D)) = 0. By Serre duality, H'(C,wc(D)) = 0. O

For any line bundle ., we choose a divisor D such that . ~ 0x(D), and
define the degree deg.Z of .Z to be deg D. This is well defined and independent
of the choice of D. Now assume that C' is connected. Then dim H°(C, 0¢) = 1.
Since C' admits a Kihler structure, we have the Hodge structure dim H*(C,C) =
dim H'(C, 0¢) + dim H°(C,w¢) ([Huy06] corollary 3.2.12), which together with
Serre duality implies dim H'(C, 0¢) = 3dim H'(C,C). Thus the genus g :=
dim H'(C, 0¢) of C depends only on the topological structure but not the com-
plex structure of C. (This fact also follows from the base change Theorem 1.3.1.)
Now, the Riemann-Roch theorem tells us that

X(C,Z)=1—-g+deg Z. (1.2.6)
(See also Remark 1.5.6.) Apply this formula to we and use Serre duality, we obtain
1 — g +degwe = x(C,we) = dim H(C,we) — dim H (C, we)
=dim H'(C, O¢) — dim H°(C, O¢) = g — 1.
This shows that
degwe = 29 — 2, deg©c = 2 — 2g. (1.2.7)

Theorem 1.2.5. Let C' be a compact connected Riemann surface with genus g, let D
be a divisor of C, and let £ be a line bundle on C. Then H'(C,Z (D)) = 0 when
deg D > 2g — 2 — deg .Z.

'For any z € C with an arbitrary local coordinate 7, (so 7,(z) = 0), let n, be the smallest

integer such that f/n7* has removable singularity at x. Then deg f is defined to be }] _. n,.
Clearly n, = Res, f~'df. Thus we have deg f = 0 by residue theorem.
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Proof. Choose divisors T, L such that ©¢ ~ 0¢(T),Z ~ Oc(L). Then Z(D) ~
we ®Oc ® Z(D) ~ we(T + L+ D). By (1.2.7), degT = 2 — 2g. Therefore, when
deg D > 2g—2—deg.#¢, we have deg(T+ L+ D) > 0, which implies H'(C, £ (D)) =
0 by Kodaira vanishing theorem. O

Corollary 1.2.6. Let C' be a compact connected Riemann surface with genus g, let D be a
divisor of C, and choose n € Z. Then H*(C,0%" (D)) = 0 when deg D > (n+1)(2g—2).

Proof. This follows immediately from the above theorem and (1.2.7). O

This corollary will be the most useful vanishing result for our future study of
VOA bundles. The most remarkable point is that the threshold (n + 1)(2g — 2) for
H' to vanish is independent of the complex structure of C.

1.3 Families of compact Riemann surfaces

Higher direct images

Let 7 : X — Y be a holomorphic map of complex manifolds. Let & be an
Ox-module. For any open U < Y, we let (&) (U) = &(71(U)). Then 7. (U) is
an 0(U)-module: if s € &(7~*(U)) and f € O(U), then the product f - s is defined
to be the section (f o m)s. The collection {r.(&)(U)} over all open U < Y forms a
sheaf of Oy-module 7, (&), called the direct image of & (under 7).

More generally, for any ¢ € N, the collection {H%(7~*(U), &)} over all open
U c Y forms a presheaf of &y-module, whose sheafification R?r, (&) is called the
¢-th order higher direct image of & under 7. Then R7,.(&) is just m.(&). Note
that when Y is a single point and r is surjective, higher direct images are nothing
but the cohomology groups of &. Similar to cohomology groups, whenever there
is a short exact sequence of Ox-modules 0 — & — % — ¢4 — 0, there is a long
exact sequence of Jy-modules

0 > (&) = mu(F) = 1(9) S R'1u(E) > R (F) > R'mo(9) D R (6) — - -
(1.3.1)

All the maps in this exact sequence, except the connecting homomorphism 6,
are understood in an obvious way. We now describe the first §, i.e. 0 : 7.(¥) —
R'7,(&), which is sufficient for the purpose of this monograph. Choose any open
U c Y and any s € 4 (7~ }(U)). Then by the surjectivity of the stalk map .7, — ¥,
forall z € X, 7= (U) has an open cover U = (V,,), such that for each « there exists
o, € Z(V,) whose image in ¢4(V,,) equals s|y,. Define the 1-cochain ¢ = (¢, )a,3
such that for any V,,, Vs in U, o5 = 0alv.avs — 0lva~vs. Then g, g € &V, n Vp),
and hence ¢ € Z'(0, &). So ¢ can be regarded as an element of H'(7'(U), &) and
hence of R'm.(&)(U). Then §(s) is just this .
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Pulling back sheaves

We now assume that & is an 0y-module. We define an &x-module 7*(&),
called the pull back of & under 7, as follows.

Let U be an open subset of X. For any open subset V' of Y satisfying 7(U) c V,
the ring Ox (U) is an Oy (V)-module: if f € Ox(U) and g € Oy (V), then the action
of gon fis (gom)|y- f, noticing that gor € Ox (7~ !(V')) and hence (gor)|y € Ox(U).
Then the tensor product Ox (U) Q¢, (vy &(V) is an Ox(U)-module. The collection
over all open U < X of the Ox(U)-modules

lim  Ox(U) Qayv) E(V)
Vor(U)

form a presheaf of 0'x-modules, whose sheafification is 7*(&’). We can thus define
for any open V' < Y an 0y (V')-module homomorphism

™ EWV) - 7t E(n V), s — s, (1.3.2)
such that 1®s € Ox(77'(V))®g, (v)&(V), regarded as an element of 7*& (7~ (V)),

is our 7*s. That 7* is an 0y (V' )-module homomorphism means that for any g €
oy (V),
7™ (gs) = (gom)m*s.
Then for any g € N we have a natural linear map
™ H(Y, &) - HI(X,1*&),

called the pull back of cohomology groups.

When & is locally free, for any = € X, choose a neighborhood W < Y of 7 (z)
such that &y ~ Oy ®c E, where FE is a finite dimensional vector space. Then
for any open U < n=}(W) and V < W, the Ox(U)-module Ox (U) Qg (v) &(V) is
naturally isomorphic to Ox(U) ®c E. So 7*(&) is also locally free whose rank is
the same as that of &. Indeed, the pull back of locally free modules is just the pull
back of holomorphic vector bundles.

If : : X — Y is an embedding of complex manifolds, for any &y-module &,
we call

EX =8E|x =18

the restriction of & to X. For any open V < Y, we have the 0y (V)-module
homomorphism

i EV) - Elx(Vn X), s —*s.
We write

s|X = s|x :=1s
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and call it the restriction of s to X. Similar notation will be used for restrictions
of elements in cohomology groups.

Note that &V is just &y, the usual restriction of & to the open subset V. For
any y € Y, &y is a vector space isomorphic to the fiber &,/m,&,. Indeed, notice
that

&ly = lim Cy Rgy (v) E(V).

Vay

Here C,, is the same as C as a vector space. But it is also an &y (V')-module, where
for any A € C, and any ¢ € Oy (V), the action of g on A is A\g(y). It is then not hard
to check that the linear map 1 ® s € C, ®¢, vy £(V) — s € &,/m,&, induces an
isomorphism

Ely = &y/my, &,

We will not distinguish between &'|y and &,/m, &, in the future. s|y, the restriction
of s to the 0-dimensional submanifold y, is precisely the value of s in &,/m,&;,. We
also write

s(y) == sly,

which should not be confused with the germ s, in &,.

A theorem of Grauert

Let C and B be complex manifolds, and 7 : C — B be a surjective proper
holomorphic map. (The word “proper” means that the preimage of any compact
subset of B is compact.) Assume that 7 is a (holomorphic) submersion, which
means that the linear map dr between tangent spaces is always surjective. We
say that 7 : C — B is a (holomorphic) family of compact Riemann surfaces (or
a smooth family of complex curves), if for each b € B, the fiber C, := 7~ () is a
compact Riemann surface. As an obvious fact, the complex dimensions of C and
B differ by 1. To simplify discussions, we also assume that B has finitely many
connected components.

The following theorem of Grauert [Gra60] is extremely helpful in studying
families of compact Riemann surfaces.

Theorem 1.3.1. Let & be a locally free Oc-module.
(a) The function

B —> Z, b— X(Cb, £|Cb)

is locally constant.
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(b) For any q € N, the function b — dim H9(Cy, &|Cy) is upper semi-continuous.
Moreover, if this function is locally constant, then Rirm.& is locally free of rank
dim H(Cy, &|Cy), and for any b € B, the linear map (Rim, &), — HI(Cy, &|Cy) defined
by restriction of sections s — s|Cy, induces an isomorphism of vector spaces

(Rqﬂ'*éa)b

LN & . 1.3.
my - (RIT,E), (o, €1Cs) (13.3)

To be more precise, note that (R, &), is the direct limit of H4(7~*(U), &) over
all open U 3 b. Then the pull back H4(7~(U), &) — H(Cy, &|Cy) induced by the
inclusion C, — 7' (U) provides the desired map (Rm.&), — H(Cy, &|Cp).

The above theorem is indeed true for any proper submersion of complex man-
ifolds 7 : X — Y, assuming that & is a coherent &'x-module. Even more generally,
[Gra60] proves this theorem when X and Y are complex spaces, Y is reduced, & is
coherent, and & is 7-flat. The actual meanings of these three terms are not so im-
portant for understanding this monograph. Roughly speaking, complex spaces
are generalizations of complex manifolds which may have singularities. If Y (to-
gether with an associated structure sheaf 0y) is a complex space, then (Y, Oy)
looks locally like the solution space of finitely many holomorphic functions. (See
[GR84] chapter 1.) The only non-smooth complex spaces that we will encounter
in this monograph are nodal curves. Y is called reduced if any stalk &, has no
non-zero nilpotent elements. That & is 7-flat means that for any « € X, the nat-
ural action of Oy ;) on &, makes &, a flat Oy ;(,)-module. We refer the reader to
[GPR94] section II1.4.2 and the reference therein for the general form of the theo-
rem and its proof. (See especially theorem 4.7 of that section.) A proof in English
can be found in [BS76, Thm. 111.4.12] as well as [EP96, Thm. 9.4.8].

As an immediate consequence of Theorem 1.3.1, for a family 7 : C — Band a
locally free Oc-module &, we have Rim,.& = 0 when ¢ > 1, since dim H(Cy, &|Cp)
is constantly 0.

Relative tangent sheaves

In the remaining part of this section, we apply Theorem 1.3.1 to the families
of tangent sheaves and their tensor products. Again, we fix a family of compact
Riemann surfaces 7 : C — B.

The first obvious question is how the tangent bundles over all fibers can be
assembled into a vector bundle on C. Consider the tangent sheaves ©; and O
of C and B respectively. Then we have a natural c-module homomorphism dr :
©¢ — 7m*Op described as follows. Locally the map 7 looks like the projection
U x V. — V where U is an open subset of C and V is an open subset of C™. (So
m is the dimension of B.) Let z be the standard coordinate of U, and 7,..., 7,
be the standard coordinates of V. Then 0., 0,,, ..., 0., are sections in O¢(U x V),
and 0,,,...,0,, can also be regarded as sections in O5(V'). We thus define the
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Oc(U x V)-module homomorphism dr : O¢(U x V) — 1*05(U x V') by sending

OzyOryy ooy Ory, 100, %0, , ..., 70y, Tespectively. We write each 7%0,, simply as d;,.
Then for any holomorphic functions f, g1,..., 9, on U x V, we have
dr(fo, + 10y + -+ + Gm0r,,) = G107, + -+ + GO, (1.3.4)

So dr is the projection onto “horizontal components”. The map dr is independent
of local coordinates. Thus we have an exact sequence of &-modules

0 — O¢s — O I 70z — 0, (1.3.5)

where O¢ ;5 is the kernel sheaf of dr, called the relative tangent sheaf of the family
7 : C — B. One checks easily that if ¢, i, ..., are also local coordinates chosen
in a similar way, then the two sections 0, and 0, of O¢/s are related by 0, = 2.
From this one sees that the restriction ©¢/5|C;, of the relative tangent sheaf on each
fiber Cy is isomorphic to the &¢,-module Oc,. Therefore one can regard O/ as the
sheaf of “vertical sections” of O¢, or the sheaf of vectors that are tangent to the
fibers. Since ©¢ /5 is a line bundle, we call its dual sheaf w¢ 3 := @g/lg the relative
dualizing sheaf of the family 7 : C — B. The restriction of w5 to each fiber C; is
therefore we, .

We next discuss families of divisors. A family of points can be represented by
a section ¢ : B — C, i.e., a holomorphic map such that 7 o¢ = 15. The image of ¢ is
a hypersurface of C. Let & be a locally free &c-module, let U be an open subset of
C, and choose s € &(U — ¢(B)). We say that s has removable singularity at ¢(B) if
s can be extended to an element in &(U).

A local coordinate 7 of the family 7 : C — B at ¢ is a holomorphic function on
a neighborhood U of ¢(B) such that for any b € B, n(s(b)) = 0, and 7 restricts to
a biholomorphic map from U n C, to an open subset of C. (The second condition
is equivalent to saying that 7|y ~c, is injective, i.e. univalent.) Then (n,7) is a
biholomorphic map from U to an open subset of C x B. It is obvious thatany b € B
is contained in a neighborhood V' = B such that the subfamily 7 : 7=%(V) —» V
has a local coordinate at |y .

If 7 : C — Bis a family of compact Riemann surfaces, we say that (7 : C —
B;<1,...,qn) is a family of N-pointed compact Riemann surfaces, if:

(@) <1,...<y : B — C are sections.
(b) Foranybe Bandany 1 <i < j < N, g;(b) # g;(b).

(c) For any b € B, each connected component of C, contains ;(b) for some 1 <

1 < N.
(The third condition is not essential. It is introduced only to simply the statement
of vanishing theorems in the future.) If, moreover, 7y, . . ., ny are local coordinates
at ¢, ...,y respectively, we say that

%z(ﬂ'C—>B,§1,»§N;771a777N)
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is a family of N-pointed compact Riemann surfaces with local coordinates. (In
the case that B is a single point, X is called an N-pointed compact Riemann sur-
face with local coordinates, and is denoted by (C;x1,...,zn;m1,...,ny), Where
m,-..,nn are respectively local coordinates at the distinct points z1,...,zxy on a
compact Riemann surface C'.)

Now, if we have (7 : C — B;<i,...,<n), each hypersurface ¢;(B) is also a divi-
sor of C. Set D = Zf\il n;s;(B) where each ny,...,ny € Z. Let & be a locally free
Oc-module. Then the O¢c-module & (D) can also be defined in a similar way as in
the case of Riemann surfaces: For each open U < C, &(D)(U) is the 0¢(U)-module
ofall s € &(U — |JY , <i(B)) such that for any 1 < i < N, any open subset V < U,
and any (holomorphic) submersion n : V' — C vanishing at V' n ¢;(B), n"s has
removable singularity at V' n ¢;(B8). When there are local coordinates 7, ..., 7y
at ¢, ..., sy respectively, this is equivalent to saying that 1;" s has removable sin-
gularity at ¢;(B) for any 7. In particular we have defined 0¢(D). We then have
natural isomorphism &(D) ~ & ® O¢(D). In the general case that & is not neces-
sarily locally free, we define & (D) simply to be & ® 0¢(D). Notice that for any
exact sequence of Jg,-modules 0 — & — % — ¢ — 0, one also has exact se-
quence 0 — &(D) — F(D) — 4 (D) — 0. Indeed, the line bundle & (D) is locally
equivalent to J¢, thus tensoring by ¢ (D) preserves the exactness of Jc-module
homomorphisms (i.e. J¢(D) is a flat Oc-module).

For a family X = (7 : C — B;«i,...,sn) of N-pointed compact Riemann sur-
faces, we always define divisors Sx of C and Sx(b) of C, to be

N

Sx = ZQ‘(B)a Sx(b) = ZCi(b)-

i=1 i=1

Proposition 1.3.2. Let & be a locally free Oc-module. Then for any precompact open
subset V' — B, there exists kg € N such that for any k > ky and b € V, we have
H*(Cy, £(kS)|Cp) = 0.

Proof. We shall prove that each b € B is contained in a neighborhood U, — B such
that one can find &, € N satisfying H'(C;, &(kySx)|C;) = 0 for any b € U,. Then
by Remark 1.2.3, the same is true when £k is replaced by any k > k,. Therefore,
the claim of this proposition follows since we can cover V by finitely many such
neighborhoods.

Choose any b € B. Then, by Corollary 1.2.2, we can find £, € N such that
H*(Cy, & (kySx)|Cy) = 0. By the upper semi-continuity Theorem 1.3.1-(b), we can
find a neighborhood U, of b such that for each beU, H YC;, &(kyS%)IC;) = 0. O

If B is connected, then by a result of Ehresmann, all fibers are diffeomorphic
(cf. [HuyO6] proposition 6.2.2). We have the following:

Theorem 1.3.3. Suppose that 3 is connected, and g is the maximal genus of the connected
components of each fiber of m : C — B. Then for any integers n > —1 and k > (n +
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1)(29 —2), s 98’%(1{:833) is a locally free Og-module, and for any b € B there is a natural
isomorphism of vector spaces
Ta @é@/’g(ka)
my - W*@C/B(/{Sx)

HO(Cy, ©F" (kSx(b))) (1.3.6)

defined by restriction of sections. In particular, dim H°(Cy, ©F" (kSx(b))) is constant
over b.

When n < —1 and g is the minimal genus of the connected components of any fiber,
the same result holds.

Proof. Note that the restriction of ©¢/s to each fiber C, is naturally equivalent
to Oc,. Thus the restriction of ©F,;(kSx) to Cy is OF" (kSx(b)). Therefore, by
Theorem 1.3.1-(a), x(Cp, ©F"(kSx(b))) is constant over b. By corollary 1.2.6,
dim H' (Cy, ©F" (kSx(b))) is always 0. So dim H°(C,, ©F" (kSx(b))) is constant over
b. The remaining part of the theorem follows from Theorem 1.3.1-(b). ]

An important consequence of the above theorem is that any global section of
O&" (kSx(b)) on C, can be extended to a holomorphic family of global sections over
a neighborhood of b € B. More precisely, for any s € H°(C,, 08" (kSx(b))) there
exists a neighborhood V of band 5 € H(x~'(V), @?/%(k:Sx)) such that s restricts
to s on Cp.

We will not use this theorem directly. However, @?/% is closely related to
sheaves of VOAs. (Cf. Proposition 2.5.4.) We will prove a similar theorem for
sheaves of VOAs in the next chapter; see Theorem 2.5.6.

1.4 Strong residue theorem

Suppose that X = (C;x1,...,2n;m1,...,ny) is an N-pointed compact Riemann
surface, and & is a locally free O--module. By our notation in the last section,
Sy =x1+ -+ xy. Set

&(eSy) = lim &(nSx). (1.4.1)

neN

Then &(eSk) is the sheaf of meromorphic sections of & whose only possible poles
are ry,...,ry. Let E; = &|z; be the fiber of & at z;. In a neighborhood U; of
z;, 6y, has a trivialization &y, ~ Oy, ®c E;, and & has the corresponding dual
trivialization & ~ Oy, ®c E;f. Choose any s € H O(C’ &(eS%)). Then at any z; the
section s has formal Laurent series expansion

= > et € Ei((n:),
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where ¢, ,, € &|x; equals 0 when n is sufficiently small. (Its meaning is obvious
when we regard & as a vector bundle.) Suppose now that o € H%(C, &*®uwc(eS%)).
Let

o € EF ((n:))dn;

be similarly the formal Laurent series expansion of o at z; (with respect to the
variable ;). Then (s,0) € H°(C,wc(eSx)) and {s;,0;,) € C((n;))dn;. Thus, by
residue theorem,

Z Res,,—o(s;,0;) = Z §<3, oy =0. (1.4.2)

The strong residue theorem ([FB04] section 9.2.9) says thatif s, € E1((1;)),...,sn €
Ex((n;)) satisfy (1.4.2) for any o € H°(C, &* ® wc(eSx)), then sy, ..., sy are series
expansions of an s € H°(C, &(eSy)) at 21, ...,z respectively. In particular, each
s; = >, €inny converges absolutely when 7; € U;. A proof of this theorem can
be found in [Ueno08] theorem 1.22. In the following, we prove a strong residue
theorem to families of compact Riemann surfaces.

Strong residue theorem for families of compact Riemann surfaces

LetX = (7 : C — B;s1,...,58;M,.-.,nn) be a family of N-pointed compact
Riemann surfaces with local coordinates, and let & be a (holomorphic) vector bun-
dle on X. We assume that B is small enough such that for each 3, ¢;(B) is contained
in a neighborhood U; such that &7, has trivialization &y, ~ Oy, ®c E;, where E;
is a finite dimensional complex vector space. The result for this subsection is lo-
cal with respect to B. So the reader can regard B as an open subset of C™ for
convenience.

By shrinking U;, we assume that 7, is defined on U;, and U; nU; = & when i #
J. Fix trivialization &}, ~ Oy, ®c E; to be dual to &, ~ Oy, ®c E;. Identify U; with
an open subset of C x B (containing 0 x ) via the embedding (n;, 7) : U; — C x B,
and identify &y, and &7 with their respective trivializations. Then 7); is identified
with the standard coordinate z of C.

For each i we choose

s; = Z ein- 2" € (ﬁ’(B) Rc EZ)((Z)) (1.4.3)

So e;, = 0 when n is sufficiently small, and each e;,, € 0(B) ®c¢ E; can be viewed
as an [;-valued holomorphic function on B. For each b € B3, set

si(b) = Y ein(b)2" € Ei((2)). (1.4.4)
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Define &'(eS%) again using (1.4.1). Now suppose that s is a section of &(eSx)
defined on an open set containing U;. Then s|y, = s|y,(z, b) is an E;-valued mero-
momorphic function on U; with poles at z = 0. We say that s has series expansion
s; near g;(B) if for each b € B, the meromorphic function s|y,(z,b) of z has series
expansion (1.4.4) near z = 0.

For any given b € B, choose o, € H°(Cp, £*|Cp ® we, (Sx(b))). Then in U;, :=
U; n 7w 1(b), o, can be regarded as an E} ® dz-valued meromorphic function with
pole at z = 0. So it has series expansion at z = 0:

olv,b(2) = Y Ginz"dz € Ef((2))dz (1.4.5)

where ¢, , € EF. We define the residue pairing Res;(s;, 0,) € C to be
Res;(s;, 0p) =Res,—o(si(b), op|v, 5(2))

=Res,_g << Z ein(b)2", Z gbmz”>dz) ) (1.4.6)

Theorem 1.4.1. For each 1 < i < N, choose s; as in (1.4.3). Then the following state-
ments are equivalent.

(a) There exists s € H°(C, & (eSx)) whose series expansion near s;(B) (for each 1 <
7 < N) iS S;.

(b) For any b € B and any o, € H°(Cy, &*|Cy @ we, (5%(D))),

N
Z Res;{s;, 0y = 0. (1.4.7)
i=1

Moreover, when these statements hold, there is only one s € H°(C, & (eSx)) satisfying
(a).

Proof. That (a) implies (b) follows from Residue theorem. If s satisfies (a),
then for each b € B, s|C, is uniquely determined by its series expansions near
61(b),...,sn(b) (since each component of C, contains some ¢;(b) by the definition
of families of N-pointed compact Riemann surfaces). Therefore the sections satis-
tying (a) is unique.

Now assume (b) is true. Suppose we can prove that any b € B is contained in
a neighborhood V' such that there exists a unique section s of &(eSx) on 7~ (V)
whose series expansion near each ¢;(V') is the restriction of s; to V. Then (a) clearly
follows. Thus, by replacing B with an arbitrary precompact open subset and ap-
plying Proposition 1.3.2, we can assume that there exists k, € N such that for any
be Band any k > k,

Hl (Cb, éa*]Cb ® wa(k’Sx(b))) = 0.
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Choose p € N such that for each 1 < i < N, the ¢;, in (1.4.3) equals 0 when
n < —p. For any k£ > ko, the exact sequence

induces a long exact sequence
0 — 18 (—kSx) — & (pSx) — Ty (cg’(pr)/éa(—ka)) LR R'1,.&(—kSx). (1.4.8)

By Serre duality, dim HO (Cb, <<§|Cb)(—k5x<b))) = dim Hl (Cb, E* |Cb®wa (]fo(b))) =
0 for any b. Note also that (&|Cy)(—kSx(b)) is the restriction of &(—kSx) to Cp.
Therefore 7.8 (—kSx) = 0 by Theorem 1.3.1-(b).

Foreach1 <i < N, set s;|, = >, _; €in - 2", which can be regarded as a section
in &(pSx)(U;) via the identification 7; = z. Let Uy = C — ¢1(B) U - - - U ¢n(B). Then
U= {Uo,U,...,Un}is an open cover of C. Define Cech 0-cocycle ¢ = (1;)o<i<n €
ZO(U, & (pSx)/E(—kSx)) by setting 1)y = 0 and ¢; = 5| (1 < ¢ < N). Then 6¢) =
((cw)i,j)ogijsN e Z'(U, &(—kSx)) is described as follows: (d¢)go = 0; if 4,5 > 0
then (51/1)@]'7 is not defined since U; n U; = J;if 1 < i < N then (6¢);0 = —(0¢)o4
equals s;|; (considered as a section in & (—kSx)(U; n Up) ~ &(U; — ;(B))).

Consider 09 as an element in R'w,.&(—kSx) whose restriction to C, is denoted
by 6¢|Cy, € H(Cp, &|Cy(—kSx(D)). Then the residue pairing for the Serre duality

H'(Cy, &|Co(—kSx(b))) ~ H°(Cp, £*|Cy @ we, (kSx(b)))”
(see Section 1.2), applied to §¢|C, and any o, € H°(Cy, £*|CoQ@ue, (kSx(b))), is given
by
N
(50[Ch, 1) = > Resi(silk, o).
i=1

Since for each 1 < i < N, (s; — 8|, 0p) has removable singularity at = = 0, we
have Res;{s; — s;|x, 0p) = 0. Therefore,

N
(0Y|Cy, o) = 2 Res;(s;, o) = 0.
i—1

Thus 6¢|C, = 0 for any b. By Theorem 1.3.1-(a), dim H*(Cy, (&|Cs)(—kSx(b))) is
locally constant over b € B. So by Theorem 1.3.1-(b), d7 is constantly 0 in each
fiber of the locally free 0z-module R'm.&(—kSx). This proves that §¢) = 0.

By (1.4.8) and that 7,.&(—kSx) = 0, for any b € B there exist an open V}, < B
containing b and a unique s, € (m.&(pSx))(V;) = H(7~(V},), &(pSx)) which is
sent to ¢ € 1, (& (pSx) /& (—kSx)) (Vs). So near ¢;(V3), s|x has series expansion

S‘k‘ _ Si|1€ + .Zk + .Zk+1 4+, (]_49)
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By such uniqueness, these locally chosen s|; (over all V,) are compatible with
each other, which produce a global s|, € H°(w'(B), & (pSx)) which has series
expansion (1.4.9) near ¢;(B). Note that this result holds for any k& > ky. So we have
Slke = Slko4+1 = S|kg+2 = ---, again by the uniqueness. Let s = s|i,. Then s has
series expansion s; near ;(B) for each i. N

1.5 Nodal curves

The structure sheaf 0, and the invertible sheaves ©. and w

Choose M € N, and let X = (Ciy}..... v %!,. ...yl be a 2M-pointed com-
pact Riemann surface. (Here we do not require that each component of C contains
a point. In particular, M could be 0.) One can define a (possibly singular) complex
curve C' in the following way. As a topological space, C' is the quotient space of C
defined by the identification y; = vY,..., v}y, = v1,;. The quotient map is denoted
by v : C' — C. The points =} = v(v}), ..., 2%, = v(yy,) in C are called nodes, and X
(or just 5) is called the normalization of C. To define the structure sheaf 0., we
choose any open U < C. Then 6(U) = 0 (U) is the setof all f € Ox(v~'(U)) such
that f(y;) = f(y]) whenever 2, € U. When M = 0, C is just a compact Riemann
surface. If M > 0, we say that C is a nodal curve.

We now describe locally free &--modules in terms of vector bundles. Suppose

that & is a (holomorphic) vector bundle on C. For any j = 1,..., M, we fix an
identification of fibers &|y; ~ &|yj. Then the sheaf & is defined such that for any
openU < C, &(U) is the setof all s € EwHU)) satisfying s(y;) = s(yj). Then &

is obviously an 0c-module, which is easily seen to be locally free. (& is indeed
equivalent to the pull back of &.) Conversely, it is not hard to show that any
locally free Oc-module & arises in such a way.

Next we define an invertible J--module O¢ (i.e., a locally free &--module
with rank 1). Its dual sheaf we := O will be called the dualizing sheaf of C. For
any 1 < j < M we choose local coordinates §;, @; of y}, yj respectively. If an open
subset U < C containsno z/, ..., 2, then ©¢(U) is defined tobe O (v (U)). f U
is neighborhood of some 2, such that »~'(U) is a disjoint union of neighborhoods
Vi sy;and V] 5 7, and that {; and cw; are defined on V;, V" respectively, then
O¢/(U) is the Oc(U)-submodule of ©x(V] U V]") generated by

@-55]. - wj(?wj. (151)
To be more precise, §;0, — ;0 is the section in © (VU V}") whose restrictions to
V/and V}" are ;0¢; and —w; 0, respectively. One checks easily that ©¢(U) is a free

Oc(U)-module. Such definition is independent of the choice of local coordinates.
For a general U, ©¢(U) is defined by gluing as described in Section 1.2.
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Alternatively, consider the line bundle on C defined by

M
Oc = Z i +yl)) (1.5.2)

which will be the pull back of ©¢. For any 1 < j < M, we need to choose identi-

fication of the lines (one dimensional fibers) (:)\;;|y; ~ @N(;\y;’ . For this purpose we
choose a local coordinate §; of 3. Note that the restriction §;0, |y} of §;0¢, to y;,

which is an element of the fiber év(;]y; ~ O4(—y))|y;, is independent of the choice
of the local coordinate. Choose similarly a local coordinate w; of yj. Then the

identification ®C|y ~ @C| is defined by
éjagj |y3 = —w;j aw]- |y;, (153)

One can then define O« using @é and the chosen identification. For the dualizing
sheaf wc, its pull back we is

M
Z v+ ) (1.5.4)

and the identification Wely; ~ Wely] is given by

dgj
&I’

dw;

(1.5.5)

— Ly
wj

Vanishing of higher order cohomology groups

We shall generalize some results for compact Riemann surfaces to the nodal
curve C. Our first result is that H¢(C, &) = 0 for any ¢ > 1 and any locally free
&. Again, we let X = (Civ,.... Y,y ...yl be the normalization of C. So
¥y = v(y)),..., 2y = v(y),) are the nodes. For each 1 < j < M, we choose a
neighborhood U; < C of o such that v~(Uj;) is the disjoint union of neighbor-
hoods V} 5 y: and V" 5 g}, and that the complex manifolds with marked points
Vi, v5) and (V” ,yj) are biholomorphic to the open unit disc D; = {z € C: |2 < 1}
w1th marked point 0. Then U; (as a complex space) is biholomorphic to the com-
plex subspace of D; x D; defined by {(z,w) € Dy x Dy : zw = 0}.

The complex manifold D; x D; belongs to a very important class of complex
spaces, called Stein spaces, which satisfy Cartan’s theorems A and (equivalently)
B. If X is a Stein space and .# is a coherent &y-module (in particular, if .# is
locally free), then Theorem B says that H%(X,.#) = 0 when ¢ > 0, and Theorem
A says that the global sections of .# generate every stalk ., as an Ox ,-module.
All non-compact connected Riemann surfaces are Stein spaces. A product of two
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Stein spaces is a Stein space. Closed complex subspaces of Stein spaces are Stein
spaces. A finite intersection of Stein open subsets is Stein. References of these
results can be found in [GR84] section 1.4 or [GPR94] section II1.3.

AsU; (1 <j< M)is b1holomorph1c to a (singular) hypersurface of Dy x Dy,
Ujisa Stem space SetUy = C —{z,...,2}. Thend = {U; : 0 < j < M}isan
open cover of C.

Theorem 1.5.1. Let & be locally free. Then HY(C, &) = 0 for any g > 1.

Proof. Assume without loss of generality that C' is connected. @We know
H(C, &) = 0 when C'is smooth (i.e., a compact Riemann surface). Thus it suffices
to assume that C' contains at least one node. Then each connected component of
Up is not compact. The same is true for Uy n U; for any 1 < 7 < M. We assume
that Uy, ..., Uy are small enough so that they are mutually disjoint. Then for any
0<1,j< M, U; and U; n U; are Stein spaces, thus H?(U;) = H?(U; n U;) = 0 for
any p > 0. Notice that the intersection of any three distinct open sets in 4l is 0.
Thus H*(U;, n---nU;,,&) = 0forany 1 <y, ..., 0, < Mandp > 0. Therefore, by
Leray’s theorem, H(C, &) = H1(U4,&). Whenq > 2, U;, nUs, n---nU; ., = I for
any 0 < i3 < iy < --- < ig41 < M. Thus any Cech g-cocycle is zero, which shows
Z1(4, &) = 0 and hence HY(4, &) = 0. O

Serre duality

Serre duality holds for the nodal curve C; see [ACG11] section 10.2. In the fol-
lowing, we present a proof using the Serre duality for compact Riemann surfaces.
The pairing for duality is also constructed in the proof. Let us first introduce the
following notation. Let X = (Coyn, oyl yl) be (N + 2M)-
pointed. We assume each component of C' contains y; for some 1 < i < N.
Then the quotient map v : C - C identifying v1,..., vy, with y{,..., y}, re-
spectively defines an N-pointed complex curve X = (C;xy,...,zy), where z; =
v(y1),...,xn = v(yn) are the marked points of C, and 2} = v(v}), ..., 2}, = v(¥},)
are the nodes. Again, we call X the normalization of X. Set Sy =21 +x9+ - +2aN
to be a divisor either of C or of C.

Theorem 1.5.2 (Serre duality). For the nodal curve C and a locally free Oc-module &,
the relation (1.2.1) holds.

Proof. Assume without loss of generality that C' is connected. We shall prove
(1.2.1) forp=1,ie.,

HY(C,6 @uwe) ~ H(C, &)*,

Then, by replacing & with & ® ©, we obtain the relation for p = 0. For simplicity,
weassume M = land writey] = y_1,y] = y_2,2] = x_1. Thus X = (C;x1,...,2n)
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is a nodal curve with node x_;, and it is obtained from the smooth curve 56; =
(Ciy1, .-, yn; Y—1;y—2) by gluing y_; and y_,. We identify C' — {z_;} with C —
{y_1,y_2} in a natural way. So z; = yi,...,2y = yny. Choose mutually disjoint
Stein neighborhoods Uy, ..., Uy of x4, ..., zy respectively disjoint from z_; (and
hence from y_,y_3). Choose open discs V_; 3 y_1,V_3 3 y_» in C and disjoint
from Uy,...,Un. Then U_; := v(V_; u V_,) is obtained from V_; and V_, by
gluing y_1,y_o. U_; is also a Stein space. Set Uy = C' — {z1,...,xy,2_1}, which
has no compact connected component and is hence a Stein space. It follows that
= {U_1,Uy, Uy, ..., Uy} is a Stein cover of C. Hence, by Leray’s theorem, we
have H(C,& @ we) ~ HY (U, & @ we). Set Vg = Uy, Vi = Uy, ...,V = Uy. Then
Y = {V_1,V_o, Wy, Vi,..., Vy} is a Stein cover of C.
Define a linear map

U 2N U, & Que) — HY(C, &%) (1.5.6)

as follows. Choose any Cech 1-cochain s = (Smn)mm=—101..N8 € Z' (U, & ® we).
Then all the components of s, except possibly s, o and s, (Where =1 < n < N),
are zero. We set 0,, = 5,0 = —sp, for —1 < n < N (in particular, oy = 0), and let
0_9 = 0_1. For each —2 < n < N, we choose an anticlockwise circle v, in V,, — {y,,}
surrounding y,. The anticlockwiseness is understood under local coordinates of
C' at y,. Then U(s) is defined such that for any t € H°(C,&*), the evaluation of
U(s) with ¢ is

=Y fﬁ“n’ 5. (15.7)

n=-—2
Tn

The proof will be completed if we can show that W is surjective with kernel
B4, & ® we). We divide the proof into several steps.

Step 1. We first show that VU is surjective. Let Sy = x; + ---zn. Then for
sufficiently large k, we have H°(C, &*(—kSx)) = 0. (See the proof of Proposition
1.5.4.) Therefore, from the exact sequence

0 — H°(C,&*(—kSx)) — H(C, &%) — HY(C,9)

where 4 = &*/&*(—kSx), we see that H°(C,&*) is naturally a subspace of
H°(C,¥9). Foreach 1 < n < N, choose a trivilization &, ~ E, ®c Oy, which
yields the dual trivilization &7 ~ E} ®c Oy, . Let n, be a coordinate of U, satisfy-
ing 1,(x,) = 0. Then we have a natural equivalence H’(C,¥) ~ @, E* @ CF
such that each (v2,...,v" )<y € @D, EF ® CF corresponds to the section
of 4 whose restriction to each U, is Y, .. ; vhnh, and whose restriction to
C —{x1,...,xn} is 0. Choose any ¢ € H’(C, &*)* and extend it to a linear func-

tional on H°(C,¥). Then, for each n, one can choose a?,...,a*"! € E, such

rn
that the evaluation of ¥ with any (v), ..., 05 ) 1<pen 18 D cpnen Docicnt Vo (Vh)-
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Choose s = (Smn)mn=—101..N € Z' (& ® we) whose only possibly non-zero
components are s,p = —Son = X0<i<h1 alndn; (where 1 < n < N). One
checks easily that U(s) = .

Step 2. To finish the proof, we need to show that Ker(¥) = B!(i, £®wc). Note
that & can be obtained from a vector bundle & on C' by identifying the fibers Ely_
and &|y_, via an isomorphism. Under this viewpoint, H(C,&*) is naturally a

subspace of H°(C), &%) consisting of global sections whose values at y_; and at
y_o agree. In particular, this is true when the two values are 0. We thus have

HY(C, 6 (—y1 —y-»)) < H(C, &%) < H(C, &™).

Therefore, Ker(V) vanishes when evaluating on H 0(C,E(—y_y — y_s)). Also,
since U,,, n U,, does not contain the node x_; whenever m # n, we have natural
identifications

ZMD,E @waly1 +y-2)) = 2, E Que) = 24V, E @ wg).
It is easy to see that the pairing of the smooth Serre duality
HY(C, & @wa(y-1 + y-2)) = H(C,E* (—y_1 — y-2))" (1.5.8)

is compatible with the one of (1.5.6) defined by (1.5.7). Thus, if we regard any
s € Ker(¥) as an element of Z'(,& @ ws(y—1 + y—2)), then it becomes zero in
HY(,8 @we(y—1 + y—2)). Therefore,

Ker(¥) ¢ BYD, & ® wa(y—1 +y-2)).
Choose any
e Bl(‘B, §®w5(y_1 +y_2)).

We shall show that ¢ € B (i, & Qwc) if and only if ¢ € Ker(¥). This will finish the
proof.
Step 2-(a). Choose

o e C, g@éd@(y—l +y-2))

(i.e., 0 = (0n)—2<n<n is a 0-cochain of E® we(y—1 + y—2) over the cover V) such
that

¢ =94(o).

Since ¢ can be regarded as an element of Z* (i, £®w( ), we can calculate the pairing
(s, t) defined by (1.5.7) for any

te HY(C,&%).

30



Write ¢ = (Gn,n)—2<m.n<n. The only possibly non-zero components of ¢ are ¢, o =
—Gon» Where —2 < n < N and n # 0. Itis clear that ¢, = (0, — 00)|v, ~v, for any
such n. Then

N

<§7t> = Z §<O—n - 007t>'
n=—2 o

By residue theorem (or Stokes theorem), we have 3V | § (00,t) = 0. Moreover,

when n > 1, since o,, can be defined as a section of & on U, {7,,t) is a holomor-

phic function on U,,. So {¢,,,t) = 0. We thus have

(5,8 = 3€<gl, P+ 3€<02, 5

Y-1 V-2

We set E = &|y_, = &|y_s. Then its dual space is E* = &*|y_; = &*|y_,. We
choose trivialization &y, ~ E ®c Oy, which yields the dual one &7 ~ E* ®c Oy,
for n = —1,-2. Let £ (resp. w) be a coordinate of V_; (resp. V_,) satisfying
£(y—1) = 0 (resp. w(y—_2) = 0). Since t € H(C, &*), t can be viewed as an element

of HO(C, &*) such that t(y_;) = t(y_») (which are elements of E*). Set

€1=§01, 622—3€U2

71 Y-2
(which are vectors in F), i.e.
o_1 = endl/E+ Y o8ldE, 0y = —eydwm/m + ) ewldw (1.5.9)
1>0 1>0
We thus have
(s, ty ={ey — e9,t(y_2)). (1.5.10)

By (1.5.5), we have o € C°(U, & ®w¢) (i-e., o is a 0-cochain of & ® w() if and only if
e;1 —ey = 0. If ¢ € BY(U, & ® we), then one can choose o (which satisfies ¢ = §(0))
to be an element of C°(i, & ® wc), which implies e; — e; = 0 and hence (s,t) = 0
forany t € H°(C,&*). So s € Ker(¥).

Step 2-(b). We now prove the other direction. Assume ¢ € Ker(¥). We shall
show that ¢ € B'(i, & ® we). Note that (1.5.10) is zero for each t € H°(C,&*).
Consider the short exact sequence of &x-modules

O—>c§®w5—><§®w5(y,1+y,2) — .7 -0
where .7 = £ ® we(y—1 + y—2)/ E® we. Then we have an exact sequence
HYC,E @waly1 +y_2) — HY(C,.Z) > H'(C,E @uwp).
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For any ¢, € E, we choose ¢ € H°(C,.%) (which clearly depends on ¢;) such that
ey, = epd§/¢, ely, = (—eg+ ex —e1)dw/w, €ley 1 may =0
We claim that there exists ¢y such that d(¢) = 0. Suppose this has been proved.
Then there exists A € H(C', & ® we(y—1 + y—2)) which is sent to e. We treat A =
(An)—2<n<n as an element of Z°(V, & @ wz(y—1 + y—2)). Then
A_q = eod€/E + Z ocldg, Ao = (—ey+ ey —ey)dw/w + Z ow'dw.
120 10

If we compare this relation with (1.5.9), we see that (0 + \)_1 = (e1 +eg)d/E+ - - -
and (0 + A\)_o = —(e1 + ¢g)dw/w + - --. Thus o + A can be viewed as an element
of C°(U, & @ we). Since §(\) = 0, we have §(c + \) = §(0) = 5, which finishes the
proof.

Let us prove the existence of ¢; such that §(¢) = 0. Notice that H YC,E® Wer) =
HYD,E ® we), and d(e) can be represented by an element (6(£)m,n)—2<mn<n in
Z'(5, g@wé) whose only non-zero components are §(g)_1,9 = —6(€)o,—1 = €od{/E
and 0(g)_20 = —6(¢)o,—2 = (—ep + €2 — e1)dw/w. Notice the smooth Serre duality

HY(C,6 @ug) ~ H(C, &)

defined by residue pairing. If we regard 6(¢) as a linear functional on H 0T, &),
then its evaluation with any 7 € H°(C, &*) is

b(e), ) =Ceo, T(y-1)) + {—€o + €2 — e1,7(y—2))
=Ce0, T(y-1) = 7(y-2)) — (&1 — €2, 7(y-2))-
Then §(¢) = 0 will follow if we can find e, € E satisfying

(eo, T(y-1) — T(y—2)) = {e1 — €2, 7(y-2))

forany 7 € H o(C, & *). Indeed, one first defines ¢, as a linear functional on 7" :=
(T(y_1) —7(y_s) : T € H(C, &)} using the above relation. Then e is well defined:
if 7(y_1) — 7(y—2) = 0, then 7 € H°(C, &*); since we assume ¢ € Ker(¥), according
to (1.5.10), we have {(e; — e1,7(y_2)) = 0. Now, as T is a subspace of E*, we can
extend ¢, to a linear functional on E*. Then ¢, is in F and satisfies the desired
relation. ]

Corollary 1.5.3. If & is a locally free Oc-module, then dim H(C, &) < +oo for any
g€ N.

Thus one can define the character x(C, &) using (1.2.5).

Proof. We have proved that H4(C, &) = 0 when g > 1. Let & = v*& wherev: C —

C' is the normalization. Since H°(C, &) is naturally a subspace of H 0(C', &) where
the latter is finite dimensional, so is H°(C,&). Similarly, H%(C, &* ® wc) is finite
dimensional. So is H'(C, &) by Serre duality. O
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Vanishing theorems

Proposition 1.5.4. Assume that each connected component of C' (equivalently, each ir-
reducible component of C) contains one of x1,...,xy, and set D = x1 + --- + xn. Then
Proposition 1.2.1 and Corollary 1.2.2 hold verbatim.

Proof. The pull back of & along the normalization v : C — C'is denoted by &. We
know that & can be obtained by gluing the fibers of & at the double points. So
H°(C,&(—nD)) is naturally a subspace of H °(C,&(—nD)) (consisting of sections
whose values at ¢ and at yj agree), which vanishes when n is sufficiently large.
This proves Proposition 1.2.1. Corollary 1.2.2 follows as in the smooth case by
Serre duality. O

As an application of Prop. 1.5.4, we now give a better description of the pair-
ing in Serre duality. Let 21, . .., zy be distinct smooth points on C' as in the proof of
Serre duality Thm. 1.5.2. (Namely, each connected component of the normaliza-
tion C of C contains at least one element of the preimage of zy, . . . , z.) We choose
Uf =C —{x1,...,zx} and Uy, ..., Uy mutually disjoint disks around z1, ..., zy
that do not intersect the nodes. Choose an anticlockwise circle ~; < U; around z;.

Theorem 1.5.5. Let Ut = {U;, Uy, ..., Un}. Then H(C, & Q@we) = H (UF, & Quwe).
Moreover, Serre duality

HY(C,& @uwe) ~ H(C, &*)* (1.5.11)
holds, and the isomorphism is realized by
O ZHUT, E @uwe) — HY(C,&%)* (1.5.12)

such that for each s = (Spm.n)mn=01..n € Z'(UT,EQue) and t € H°(C, &*), by setting
On = Spno = —S0,,, We have

N
(s,ty =) 3€<an,t>. (1.5.13)

Proof. This theorem follows directly from the fact that U; is indeed Stein, and
hence that 4" is a Stein cover. (A quick argument is to embed C as a closed
complex subspace of P" for some n and show that U is the intersection of C' and
the complement of a hyperplane in P".) But here we give a different argument
which avoids showing that U is Stein.

Assume for simplicity that C' has only one node z_;; the general case fol-
lows from a similar argument. Following the notations in the proof of Thm.
1.5.2, we let 4 = {U_1,Up,Uy,--- ,Un} where U_; is a small Stein neighborhood
of the node z_;, and Uy = C — {zy,...,zn,2_1}. (So U = Uy u U_;.) Then
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Z'(U*, & ® we) is naturally a subspace of Z'(U, & ® wc) consisting of 1-cocycles
$ = (Smm)mmn=—1,01,. n vanishing on Uy n U_4, i.e. s_1 9 = so,_1 = 0. Moreover, an
element in Z' (U, & ®wc) is a coboundary with respect to 4" if and only if it is so
with respect to l. Therefore, the theorem follows from Thm. 1.5.2 and the pairing
(1.5.6) (1.5.7) if we can show that every element of H'(C, & ®Qwc) = H' (U, & Quwc)
is represented by an element of Z'(U*, & ® we), i.e., represented by an element
se Z'(U,& ®we) such that s_; g = —so 1 = 0.

Let D = 1 + --- + zn. By Prop. 1.5.4, there is k € N such that H'(C,& ®
we (kD)) = 0. The short exact sequence

0—>£®WC—>(§®Q}CU€D)—>%—>O

(where ¢ is the quotient of the previous two sheaves) gives a long one

H(C,9) % H' (4, & Quwe) — H'Y(C, & @ we (kD)) = 0.

So 4 is surjective. Since ¢ has supportin zy, . .., xy, by the explicit description of 6,
it is clear that any element in the image of ¢ is represented by a cocycle satisfying
S—1,0 = —S0,—-1 = 0. O

Remark 1.5.6. If C is connected, the number g = dim H!(C, 0¢) is called the
(arithmetic) genus of C. Thus x(C, 0¢) = 1 — g. Again, any line bundle .Z is
equivalent to 0 (D) for some divisor D = kyzy + -+ + kyzy. (For the nodal
curve, we assume none of z;,...,zy is a node.) The argument is the same as
for smooth curves: By Proposition 1.5.4, one may find a divisor D, such that
HY(C,%(—Dy — z)) = 0, where x is any smooth point of C. Thus, the short exact
sequence 0 — £ (—Dy—z) - £ (—Dy) — k, — 0 (where k, ~ £ (—Dy)/L(—Dy—
z) is the skyscraper sheaf) yields a surjective H°(C, %4 (—Dy)) — H°(C,k,). So
HY(C, £(—Dy)) is nonzero. Thus we may find a non-zero global meromorphic
section s of .Z. Let D = — > n, - x where the sum is over all smooth points of
C, and n, is the unique integer such that (by choosing any local coordinate z, at
x) 27*s can be extended to a section of . on a neighborhood of = whose value
at the fiber .Z|z is non-zero. Then D is a finite divisor, and f — fs defines an
isomorphism 0¢(D) — Z.

Define deg(.Z) = deg(D). Then the Riemann-Roch theorem (1.2.6) holds for
C' and can be proved in exactly the same way: Identify . with 0 (D). Notice
x(C,k,) = dim H°(C,k,) = 1. Then the we have a short exact sequence 0 —
Oc(D) — Oc(D + x) — k, — 0 and hence a long one

0 — H°(C,0q(D)) — H°(C, Oc(D + x)) — H°(C, k)

— H'(C,0c(D)) - H'(C,0c(D + x)) » H'(C, k,) =0,
which gives x(C, 0¢(D)) — x(C, Oc(D + z)) = —x(C,k;) = —1. Thus, (1.2.6)
follows from induction and the base case x(C, 0¢) = 1 — g. Therefore, (1.2.7) also

holds in the nodal case.
As a consequence, we obtain again degwe = —deg ©¢ = 2g — 2.
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As usual, a divisor D of C is called effective if D = Zle n;x; where each x; is
a smooth point and each n; € Z is non-negative.

Theorem 1.5.7. Let C' be a complex curve with M nodes and normalization C. Let

11, ...,z be smooth points of C, and assume that any connected component of C' con-
tains one of these points. Set D = x1 + - -- + xn. Let n € Z, let D' be an effective divisor

of C, and let § be the maximal (resp. minimal) genus of the connected components of C
ifn > —1 (resp. n < —1). Then for any k > (n + 1)(29 — 2) + 2M + deg D', we have
HY(C,08"(kD — D')) = 0.

Proof. Choose any such k. By Serre duality, it suffices to prove
HO(C,wg(”H)(—kD + D)) = 0. Let a,...,2) be the nodes of C. For
each j, let yj,yj be the double points of C' mapped to z’ by v. Let
Dy = D'+ M (4 + y)). Then, by (1.54), HYC,wE" ™ (~kD + D)) is
naturally a subspace of H O(CN*,w?("H)(—kD + Dy)). Thus, it suffices to prove

that for each connected component Co of C, H O(CN‘O,W%”H)(—I{:D + Dy))
is trivial. This follows from Theorem 1.24 and the computation
deg(w§§"+l)(—kD + Do) <(n+1)(2—2) —k+2M +deg D’ <0. O

1.6 Families of complex curves

Smoothing the nodes

Foranyr > 0,1et D, = {z € C: |z| <r}and D) = D, — {0}. If r,p > 0, we
define

Typ: Dr X D, — Dy, (&, @) — Ew. (1.6.1)

dn,, is surjective at (£, w) whenever £ # 0 or w # 0. So if g € D,, is not 0, the fiber
7~ '(¢) is smooth. But m,(0) is singular, which is just a neighborhood of a node
of a nodal curve. Denote also by { and @ the standard coordinates of D, and D,,
and set g = m,,, i.e.,

q:D, xD,—C, q=~¢w.

Then (¢, @), (&, q), (=, q) are coordinates of D, x D, D) x D,,, D, x D) respectively.
The standard tangent vectors of the coordinates (£, w), (&, ¢) are related by

65=85—§*1w-8w 8§=§§+§*1q-@q
{ o AN (1.6.2)

The formulae between (¢, w), (w, ¢) are similar.
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It is easy to see that (£,q)(D) x D,) (resp. (w,q)(D, x D)) is precisely the
subset of all (£, q0) € D, x D,, (resp. (wo, qo) € D, x D,,) satisfying

% <|&| <r resp. |qTO < |wo| < p. (1.6.3)

We choose closed subsets E] , = D, x D,, and E;, < D, x D,, such that
(&,9): D} xD, > D, xD,, — E, ,

(w,q) : D, x D = D, x D,, — E. (1.6.4)

r7p :

Sewing families of compact Riemann surfaces

Choose M € N. Consider a family of 2M/-pointed compact Riemann surfaces
with local coordinates

~

X=(T:C—B;sl, . suisty sty @, .o @) (1.6.5)

We do not assume that every component of any fiber contains a marked point.
For each 1 < j < M we choose 75, p; > 0 and a neighborhood U; (resp. U) of

Cj'(g) (resp. gj’-’(g)) such that
(&,7) : U; = D,, x B resp. (w;, %) : U] = Dy, x B (1.6.6)

is a biholomorphic map. We also assume that these r; and p; are small enough so
that the neighborhoods U7, ..., U;,, Uy, ..., U}, are mutually disjoint. Identify

U =D, xB resp. U/ =D, xB

J

via the above maps. Then ¢, ; (when restricted to the first components) become
the standard coordinates of D,,, D, respectively, and 7 is the projection onto the

B-component. Set ¢; = £;w; : D,, x D,, — D,,,, as previously.
We now construct a family of complex curves X = (7 : C — B) as follows. Let

D?".p. = DT1P1 X X DT’]\{P}VI? B = Drnp. x g (167)

We shall freely switch the order of Cartesian product. For each 1 < j < M, we
also define D, ,,\; to be the product of all D, ,,, ..., D except D,..,.. So

) T TMPM TjPj

D,.,. =D, , xD

T;ipj Tepe\j*

Recall thatby (1.64), £} , = D,; x D, and £} , =D, x D, .. So

ipj

F = Eq’qj’pj X Dy paj X B c Dy, X Dy, p, X B (= Uj x Dr.p.),
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Fl = E , %X Dy X B c D,, x Dy,p, ¥ B (= U % Dr.p.)

are subsets of C x D,,,.. They are the subsets we should discard in the sewing
process. Set

W :=D,; x D, x Dy,p,\j X B. (1.6.8)

We glue C x D,,,. (with F}, F} all removed) with all W; and obtain a complex
manifold C.
To be more precise, we define

C= (ﬁwj) 11 (5x Dyopo — 6@ - 61«3)/ ~ (1.6.9)

=1 =1

where the equivalence ~ is described as follows. Consider the following subsets
of W]

W/ =D} x D, x Dy,pj % B, (1.6.10)
V[/;{/ _ Drj X D;] X Dr.p.\j X g (1611)

Then the relation ~ identifies W} and W respectively via (§;, ¢;, 1) and (w;, ¢;, 1)
(where 1 is the identity map of D, ,,\; x g) to

D,, X Dy,,, X B - F (€ Uj x Dy.p.), (1.6.12)
D,, x D,,,, X B— F (c Ui x Dy.p.) (1.6.13)

(recall (1.6.4)), which are subsets of C x D,. pe —U; F} — U, Ff. (In particular,
certain open subsets of (1.6.12) and (1.6.13) are glued together and identified with
Win W)

It is easy to see that the projection

Fx1:Cx Dyope — B x D,.,. = B, (1.6.14)
agrees with
Tripy X L1 W; =D, x D, x Dyopj x B—D,p x Dypoy x B=B (1.6.15)

for each j when restricted to W}, W/. (Indeed, recalling (1.6.12) and (1.6.13), they

are the standard projections (¢}, q.,z) — (q.,g) and (w;, q.,z) — (q.,z).) Thus, we
have a well-defined surjective holomorphic map

7m:C—> B

whose restrictions to € x D, ., —|J ; Fi—, Fj and toeach W; are 7®1 and 7, ,, ®1
respectively. We say that X = (r : C — B) is obtained from X via sewing.
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The discriminant locus A and the critical locus

For each j we set

Aj = {0} x Dy, .\ % B

(S Drjp; X Dropaj X B = B).
Then
M
A=|]a, (1.6.16)
j=1
is the set of all points b € B such that the fiber C, is singular, called the dis-
criminant locus. Roughly speaking, if b is (for example) in Ay,...,A; but not
inAjq,..., Ay, then G, is obtained by attaching <1, . . ., ¢, with ¢/, ... ¢}, respec-

tively and smoothing the last M — j nodes. Therefore C, has j nodes. If b is outside
A then C, is smooth (i.e. a compact Riemann surface). Set also

% = {0} x {0} x D,.,; x B
(€ Dy, x Dy, X Drypaj X B = W; < C).

Then

M
=%
j=1

is the set of nodes, called the critical locus. The linear map dr is not surjective
precisely at X. Clearly we have 7(X) = A.

Sewing families of N-pointed compact Riemann surfaces

Remark 1.6.1. Suppose, moreover, that we are sewing a family of N-pointed com-
pact Riemann surfaces with local coordinates

~

X=(F:C—> B, SN STy oy SU STy s SU T -+ INGELy ey EM Ty - ML)

Then, we assume that each connected component of each fiber 55 of C contains
one of a®),....n(b), and «(B),... v (B) are disjoint from the neighborhoods
Ui,.... Uy, U{,...,Us;. One thus have a family of N-pointed complex curves

with local coordinates

X=(m:C— B, ..,niM, -, IN),
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where each section ; is defined on B = B x D,.,., takes values in C x D,.,.—U U =
U, Uj, is constant over D,,,,, and equals the original one over B. Similarly, the

local coordinate 7; of X at ¢;(B) is extended constantly to one of X at ¢;(53). We say
that the N-points ¢;,..., sy and the local coordinates 7y, ...,y of X are constant
with respect to sewing.

In the case that the local coordinates 7, ...,ny are not assigned to %, then
X =(n:C— Bjsi,...,sn) is a family of N-pointed complex curves.

Families of complex curves

We now give a general definition of families of complex curves. Suppose that
X = (7 : C — B) is a surjective holomorphic map of complex manifolds, where B
has finitely many connected components. We say that X is a family of complex
curves if X is either smooth or obtained via sewing. We let X be the set nodes, i.e.,
the set of all z € C such that C,() is nodal and z is a node of the nodal curve C, ().
Equivalently, X is the set of all z € C such that dr is not surjective at . We define

A =m(X), Ca =7 1HA).

Then Cx is the union of all singular fibers. A and Cx will be considered later as
(normal crossing) divisors.

Theorem 1.6.2. Grauert’s Theorem 1.3.1 holds verbatim for a family of complex curves
m:C— B

As mentioned in the paragraphs after Theorem 1.3.1, Grauert’s theorem holds
in general when C and B are complex spaces, & is a coherent Jc-module, 7 is
proper, and & is n-flat. To apply that theorem to the family of complex curves
m : C — B and a locally free Jc-module &, we need to check that 7 is proper
and & is m-flat. One can check the properness of m by checking, for example, the
sequential compactness of the preimages of compact subsets. Also, one checks
easily that 7 is an open map. Thus &; is w-flat by [Fis76, Sec. 3.20] (see also
[GPR94, Thm. 11.2.13] and [BS76, Thm. V.2.13]). (One simply says that 7 is flat.)
Since & is locally free, & is m-flat.

Remark 1.6.3. Apply Grauert’s theorem to 0, we see that b — x(Cy, O¢,) is con-
stant on each connected component of B. If we assume that all the fibers of C
are connected, then the genus of the fiber ¢(C,) = 1 — x(C, O,) is locally con-
stant over b. We conclude that the genus of a complex curve is unchanged under
deformation. Consequently, the genus of a nodal curve equals the genus of its
“smoothing”.

Consider a family 7 : C — B of complex curves. Letg;,...,sy : B — C be (holo-
morphic) sections whose images are mutually disjoint and are also disjoint from
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Y. For each b € B, we assume that (Cy; <1 (), ...,<sn(b)) is an N-pointed complex
curve. Thus every connected component of Cy (the normalization of ;) contains
one of ¢;(b),...,sn(b). Equivalently, every irreducible component of C, contains
one of ¢;(b),...,sn(b). Notice that ¢, (b), ..., sy (b) are not nodes since they are not
in ¥. Then we say that (7 : C — B;<i,...,<y) is a family of N-pointed complex
curves. Assume moreover that for each 1 < j < N, the family 7 : C — B has a lo-
cal coordinate 7, at ;. This means that ¢;(B) is contained in an openset U; — C—X
such that n; : U; — C is holomorphic and equals 0 on 7;(B), and that ;| ~c, is a
univalent function for each b € B. So (n;, 7) is a biholomorphic map from U, to an
open subset of C x B containing {0} x B. Then we say that

%:(WC—)B,§1;7§N77717777N)

is a family of N-pointed complex curves with local coordinates. As usual, we
define a divisor

Sx = Z Cj(B).

Note that even if 7 : C — B is obtained by sewing a smooth family 7 : C — B, the
N-points and their local coordinates are not assumed to be constant with respect
to sewing.

Proposition 1.6.4. Proposition 1.3.2 holds verbatim if X is a family of N-pointed com-
plex curves.

Proof. The proof is the same as in Proposition 1.3.2. O

The invertible sheaves O3 and w3

Given a family of complex curves 7 : C — B, we can define a homomorphism
of Oc-modules dr : ©¢ — 7O in a similar way as for families of compact Rie-
mann surfaces. However, this map is no necessarily a surjective sheaf map, which
means that we do not have a long exact sequence from this map. To remedy this
issue we consider dr : O¢(—logCa) — m*(05(—log A)) defined as follows. (We
shall write 7*(©p(—log A)) as m*©p(— log A) for short.)

Let us first describe ©3(—1log A). Choose any b € B. Then one can always find
a neighborhood V' of b such that

~

V:Dr_p.xg:Dmplx---xD x B

TMPM
where B is an open subset of C", and
ANV ={q0€Drp.: Q10 quo = 0} x B.

40



Let ¢1,...,qu be the standard coordinates of D, ,,,...,D Let also 7, =

? TMPM*

(71, -+ ,7) be the standard coordinate of B inside C". Then Oz(—log A)y is de-
fined to be the 0y -submodule of ©y = O|y, generated (freely) by

qlaqu s 7q1V[0qM? a‘ru s aTn' (1617)

By gluing, we obtain a locally free &z-module O3(—log A).

Next, we describe O¢(—logCa) and the map dr : ©O¢(—logCa) —
7*0p(—log A). Choose any = € C.

Case I. # ¢ X. Then one can find a neighborhood U of z disjoint from ¥, and a
neighborhood V' of b = 7(z) described as above, such that

U=~D,, xV =D,y x Dy, xB,

and that 7 : D,, x V' — V is the projection on to the V-component. Let z be the
standard coordinates of D,,,. Notice that

CA NU = Dro X {q.,O € Dr.p. ‘10 4qmo = 0} X g?

which suggests that we define O¢(—1logCa )y to be the O -submodule of Oy =
Oc|u generated (freely) by

02y q10qy, - - s q0iOgpy» Ory s - -+ 5 Ory. (1.6.18)
The homomorphism
dr : O¢(—logCa)y — (7*Op(— log A))U (1.6.19)

is defined by sending ¢, to 0 and keeping all the other elements in (1.6.18). (Here
we do not differentiate between J,,, 0;, and their pull backs.) It is clear that dr
is surjective. We leave it to the reader to check that the above definitions are
independent of the choice of local coordinates.

Case II. z € ¥. Then one can find neighborhoods U of x and V of b = w(z)
described as above, such that

U=~D, xD, XD, % g,
T :7TT17/~71®1®1 :DTl x DPl x D’r.p.\l X g_)DT‘p' x g: V

From this we deduce that

CA NnU
Z{(fl,mwl,m 42,0, - - - 7QM,0> €D, XDy X Drpoi €10 @10 Q20 qMmo = 0} x B.

Let &, be respectively the standard coordinates of D,,,D,,. Again ¢, and T,
are respectively the standard coordinates of D,,,, and B. Note also the relation
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¢1 = & . The description of Ca n U suggests that we define ©¢(—log Ca)y to be
the Oy-submodule of Oy = O¢|y generated (freely) by

51851,w1(9wl y q28q2, Ce ,qMﬁqM, 87—1, <oy (3Tn. (1620)
The homomorphism dr of (1.6.19) is defined by setting
dn(£10¢,) = dm(w10wm,) = 104 (1.6.21)

and keeping all the other elements in (1.6.20). Again dr is surjective and indepen-
dent of the choice of local coordinates. Also, using (1.6.2), it is easy to see that the
dm constructed in case I and II are compatible.

We may now glue the two cases together and obtain the locally free &-module
O¢(—logCa) and a surjective homomorphism of &z-modules dr : O¢(—1logCa) —
1*Og(—log A), whose kernel is denoted by ©O¢/z. Thus, there is a short exact se-
quence

0 — B¢/ — O¢(—1ogCa) a, Og(—logA) - 0 (1.6.22)

Choose any z € C and a small neighborhood U of ©¢/5. Then in case I resp. in case
Il ©¢/5|v is generated freely by

0, resp. §10¢, — W10, - (1.6.23)

Therefore, O¢/5 is an invertible Jc-module, whose dual sheaf is denoted by we¢/z.
We leave it to the reader to check that there are natural equivalences

Oc/8|Ch ~ Oc,, weyB|Cy >~ we,

for any b € B. One may use the following fact: in case II, by (1.6.2), in the
(&1, ¢e, To)- TESP. (W01, Gu, To)-coordinate, the section &, 0¢, — w10, equals

§10¢, resp. — W10, - (1.6.24)
We close this section with the following generalization of Theorem 1.3.3.

Theorem 1.6.5. Let X = (7 : C — B;si,...,sn) be a family of N-pointed complex
curves. Let n € N. Then there exists ko € N such that for any k > ko, the Og-module
w*@?/%(ka) is locally free, and for any b € B there is a natural isomorphism of vector
spaces

~ H°(Cy, ©F" (kSx(b))) (1.6.25)
b

defined by restriction of sections. In particular, dim H°(C,, @?l)”(k;sx(b))) is locally con-
stant over b.

Proof. This follows easily from theorems 1.5.1 and 1.5.7, and Grauert’s Theorem
1.6.2. O

42



1.7 Linear differential equations with simple poles

We first introduce the following notations. If W is a vector space and z is a
(formal) variable, we define

W([z]] = { > w,2" : each w, € W},

neN

W[[=*]] = { > w,z" : eachw, € W},

neZ

W((2)) = {£(2) : *F(2) € W[[2]] for some k < Z},
Wiz} = { Z w,z" : each w, € W}

neC

In this section, we fix m, N € N,r > 0, and let V' be an open subset of C". Let
q be the standard coordinate of D, c C, and let 7, = (74, ..., 7,) be the standard
coordinates of V. A is an End(C")-valued holomorphic function on D, x V, i.e.

AeEnd(CY)®c O(D, x V).
First, recall the following well-known fact.

Theorem 1.7.1. For any p € CY ®c O(V), there exists a unique 1) € CN ®@c O(D, x V)
satisfying the differential equation 0,1(q, 7.) = A(q, 7)Y (q, 7o) and the initial condition

$(0,7) = (7).

Proof. This is an easy consequence of Picard iteration. We provide the details for
the readers” convenience. It suffices to prove the existence and the uniqueness of
such ¢ on any precompact open subset of D, x V. Thus, we may well assume that
|A(g, 7)|| (Where ||| is the operator norm) is uniformly bounded by a positive
(finite) number C, and ||¢(7.)|| is also uniformly bounded. Fix any § € (0,1).
We claim that for any ¢y € D,, if we let Ds,(qo) be the open disc with center g
and radius §/C and set W (qy) = Ds/c(q0) N D,, then for any uniformly bounded
v € CN®cO(V), there exists a unique 1 € CN®c 0(W (qo) x V) satisfying 0,4 = Ay
and ¥ (qo, 7.) = ¢©(7.). Then the theorem is proved by covering D, by finitely many
open discs with radius §/C.

Fix ¢y € D, and a uniformly bounded ¢ € CN ®¢ &(V). Let § be the Banach
space of uniformly bounded elements of CY ®¢ (W (g) x V), whose norm is
given by ||-||oc. Define amap 7" : § — § such that for any ¢ € ),

TY(q,7.) = o(7s) + f Az, 1)Y(2, T )dz.

q

where v, is any path in W(gy) from ¢y to ¢. Then ¢ is a solution satisfying
¥(qo,7e) = (1) if and only if T = . It is easy to see that ||T(¢1 — 1)<
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d]j1p1 — 12||. So T is a contraction, which proves the existence and the uniqueness
of the fixed point of 7. O

The above theorem clearly holds also when D, is replaced by a simply con-
nected domain.
Consider the following differential equation with simple pole

QoY = Ay (1.7.1)

where 1) € CY ®c 0(V)((q)) is a formal solution of this equation. By our assump-
tion on v, we can write

Y(g.m) =D dalra)g (1.7.2)

neZ
where @n e CN®c O(V), and @n = 0 when n smaller than some negative integer.

Theorem 1.7.2. Suppose that the formal series 1 is a formal solution of (1.7.1). Then
is an element of CN @ O(D) x V).

Proof. Suppose the mode b is zerowhenn < —K. Then ¢ := ¢ ¢ has no negative
modes and satisfies a similar differential equation ¢0,¢ = (K + A)¢. Thus, we may

well assume that ¢, = 0 when n < 0. Consider the series expansion of A:

Alg,Ts) ZA Te)q

neN

where each A, is in End(CY) @ @(V). Then for each n € N,

= Z A\n—j{b\j-
§=0

Choose any open subset U of V' with compact closure, and choose M € N such
that || A(7.)||< M whenever 7, € U. (Here |-|| is the operator norm.) Then for

any n > M, nl — Ao(,) is invertible (with inverse n= 3.7 p O(AO(T.) /n)?). Thus,
whenever n > M,

n—1
"Lpn = (Tl — Ao)il Anfjwj- (173)
=0
Choose any r; < r and set
o= s A7) (1.7.4)

(¢,7¢)€Dry xU
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Using the fact that A, (7,) A(q,7)g " 4L, we have

- §0DT1
1A, (7)< ary™ (1.7.5)

for all nand all 7, in U. R

Choose 3 > 0 such that |[(n — Ay(7.)) 7 '||< fn ! forany n > M and 7, € U.
(Such 3 can be found using the explicit formula of inverse matrix given above.)
Set v = max{1, af}. Then, from (1.7.3) and (1.7.5), we see that for any n > M and
Te € U,

n—1

e a(ra)ll< ™ D Al (r)l. (1.7.6)

7=0

By induction, one can show that there exists ¢ > 0 such that

(7)< ey

forany n € Nand 7, € U. Indeed, if this is true for 0,1,2,...,n — 1 wheren > N,
then by (1.7.6),

Pl dn(r) ! Z ¢y <n” Z ey

Thus ||1Zn(r.)||< cy'r;" for all n and 7, € U. Therefore, if we choose any r, €
(0,77'ry), then the series an‘{ﬁ\n(T,) ||I-|¢|" is uniformly bounded by some positive
number for all |¢| < 7o and 7, € U. Since each Qz}\n(T.) is holomorphic over 7,, the
series (1.7.2) must converge uniformly to a holomorphic function on D,, x U.

By Theorem 1.7.1, for any simply connected open subset W < D, which over-
laps with D, , there exists a unique holomorphic solution of (1.7.1) on W x U
which agrees with ¢ on (W nD,,) x U. Thus, ¢ can be extended to a holomorphic
CN-valued function on D, x U. Since U is an arbitrary precompact open subset of
V, 1 is holomorphic on D, x V. O

Remark 1.7.3. The proof of the above proposition shows that if A/ € N and

HA\O(T.) |< M whenever 7, € V, then v is holomorphic on D) x V provided that
the first (M + 1) non-zero modes of ¢ are holomorphicon 7, € V.

1.8 Criteria on local freeness

Let X be a complex manifold and & be an 0x-module. We say that & is a
finite-type Ox-module if any x € X is contained in an open subset U such that
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&y is generated by some s,...,s, € &(U). Note that this does not mean that the
O(U)-module & (U) is generated by s1, ..., s,.

Recall that for each open subset U of X, and for each x € U and s € &(U),
s(x) denotes the value of s in &|x ~ &,/m,&,. Itis clear that if sq,...,s, € &U)
generate &y, then s1 (), . .., s,(z) span the vector space &|z. Conversely, we have:

Proposition 1.8.1 (Nakayama’s lemma). Suppose that & is a finite-type Ox-module,
x € X, U is an open set containing x, s1,...,5, € &(U), and s1(x), ..., s,(z) span
the vector space &|x. Then there exists an open subset V of U containing x such that
s1lv, ..., sn|v generate &y .

Consequently, the rank function of a finite-type &x-module is upper semi-
continuous.

Proof. Since & is finite-type, we may assume that U is small enough such that

&y is generated by oy, ..., 0, € &(U). Thus the germs o1 4, ..., 0., , generate the
Ox ,-module &,. In particular, 0y ;, 02, ..., 0z, S14, - - -, Snx generate &,. We now
show that 024,03, ...,0m4, S1.4, .- -, Sna generate &,. Since s1(x),...,s,(r) span
&,/m,&,, there exist complex numbers ¢y, . . ., ¢, such that oy, € D) cxSp + M6,
Therefore, there exists fi,..., fm, 91,..., g, € m; such that
Ol = Z CiSk,x +Zf10-zar + Zgjs]x
k=1 j=1
Since fi(x) = 0, the element 1 — f; has inverse in O ,. Foreach j = 1,...,n, set

g; = ¢; + g; which is an element in O ,. Then we clearly have

1_fl (Zfzazx+zgjij)

This shows that 05,,03,...,0m4, S1.2, ..., 5., generate &,. A similar argument
shows that 03 ,,044...,0ma, S14,- - -, Sna generate &,. If we repeat this argument
several times, we arrive at the conclusion that sy ,,...,s,. generate &,. Thus,
there exists an open subset V' of U containing z such that for each i = 1,...m,
there exist h;1,...,h;, € O(V) satistying o;|y = Z?Zl hijsilv. Therefore, as
ailv,...,om|v generate &, so do si|v, ..., sy|v. O

Theorem 1.8.2. Suppose that & is finite-type. Then & is locally free if and only if the
rank function x € X — r, = dim¢(&|z) is locally constant.

Proof. The only if part is obvious. Let us prove the if part. Suppose that the rank
function is locally constant. Choose any z € X and let r = r,. There exists a
neighborhood U of z and s, ..., s, € &(U) generating ;. We may also assume
that U is small enough such that for any y € U, r, = r. Since s;(x),...,s,(x)
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span &|z, we must have n > r. By rearranging si,...,s,, we may assume that
s1(x),...,s.(x) form a basis of the vector space &,. Thus, by Nakayama’s lemma,
there exists a neighborhood V of x contained in U such that s,|v, . .., s,| generate
&|y. We prove that &|y is a free 0y-module with basis s|y,..., s, |v. Choose
any open subset W < V. We need to show that si|w, ..., s.|w are O(WW)-linear
independent. Suppose that fi,...,f, € (W) and fisi|lw + - + frs;lw = 0.
Then for any y € W, fi(y)si(y) + --- + fr(y)s.(y) = 0. Clearly s1(y),...,s.(v)

span &|y. Since &y has dimension r, s1(y), ..., s,(y) are linearly independent.
So fi(y) = --- = f.(y) = 0. Since this is true for any y € W, we conclude that
R -

Definition 1.8.3. A connection V on & associates to each open subset U < X a
bilinear map

V:0x(U)x&U)— &WU), (r,s) — V;s
satisfying the following conditions.
(a) If V is an open subset of U, then V|, s|y = (V;s)|v.
(b) If f € O(U), then

fos = fV;S,
Vi(fs) =t(f)s+ fV,s.

Lemma 1.8.4. Let & be a finite-type Ox-module equipped with a connection V. Let
x € Xand U < X a connected neighborhood of x. Choose si,...,s, € &U) and
assume that s,(x), ..., s,(x) form a basis of the fiber &|x. Then sy,...,s, are O(U)-
linear independent elements of & (U), i.e., if f1,..., fn € O(U) satisfy fis1+- -+ fusn =
0, then f =--- = f, = 0.

Proof. Assume U isopenin C™and x = 0 € C™. Since f1(0)s1(0)+- - -+ f,,(0)s,(0) =

0 and s1(0), ..., s,(0) form a basis of &|0, we obtain f,(0) = --- = f,,(0) = 0.
Apply Vo, to X fjs; = 0 and take value at 0, we get > 1 f;(0)s;(0) +

2. fi(0)(Va,8;)(0) = 0, which shows 0,f;(0) = 0 for all j. Similarly, apply

Va,, ..., Vs, successively to > . fjs; = 0 and take values at 0. Then an induc-
tion on |k,| = ky--- + k,, shows that &}*--- %= ;(0) = 0 forall 1 < j < n and
ki,...,k, € N. This proves f; = --- = f, = 0 on U because U is connected. O

Theorem 1.8.5. Let & be an Ox-module equipped with a connection V. Assume that
each v € X is contained in a neighborhood U such that the following conditions hold.
Then & is locally free.

(a) &|y is equivalent to the cokernel of a homomorphism of (possibly infinite rank) free
Oy-modules, i.e., there exist cardinalities I, J and a homomorphism of Oy-modules
@ : OF — O such that &y ~ coker(¢p).
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(b) Write F = O, and 4 = 0. Then 4(U)/o(F)(U) is a finitely generated O'(U)-
module.

Note that ¢(.#) is the image sheaf of ¢, which is defined by sheafifying the
collection {p(.#(V))} over all open subsets V' < U. (So ¢(#(V)) is only a subset
of p(F)(V).) 9(U)/p(F)(U) is naturally an &'(U)-submodule of coker(y)(U).

Also, if sy, ... s, are generating elements of 4 (U)/p(.%)(U), then for any open
subset V- < U, s1ly, ..., s,|v generate 4 (V)/p(.%)(V). This is due to the obvious
fact that sections of ¢ (U), when restricted to V, generate the (V')-module ¢ (V).
We will use this property in the following proof.

Proof. Since (the stalks of) coker(y) are generated by elements of ¢ (U), it is clear
that & is finite-type. Choose any x € X. We shall show that the rank function
y € X — r, = dim(&y) is constant in a neighborhood U of z. Then &y is locally
free by Theorem 1.8.2, which will finish the proof.

Choose a connected U as in the assumption of this theorem, and identify
&|y with the cokernel of ¢. We may assume that U is small enough such that
there exist oy,...,0, € &(U) such that oy(z),...,0.(z) form a basis of the fiber
&|r. We may shrink U such that one can find 74,...,5, € 4(U) whose corre-
sponding equivalence classes in 4 (U)/¢(#)(U) (and hencein &(U)) are o4, . . ., 0;.
Thus oy,...,0, are in 9(U)/p(%#)(U). Suppose that s4,..., s, are generating el-
ements of 4(U)/p(#)(U). By Proposition 1.8.1 (Nakayama’s lemma), we may
shrink U so that sy,..., s, are &(U)-linear combinations of o1,...,0,. Therefore,
the 0(U)-module 4 (U)/o(.F)(U) is generated by o1,...,0,, i.e., each element of
G(U)/p(F)(U)is an 0 (U)-linear combination of oy, ..., o,.

Since o1, ...,0, generate &|y, for each y € U, we know that o1(y),...,0,(y)
span &|y. If we can show that o4 (y), ..., 0,(y) are linearly independent, then they
form a basis of &|y, which implies that r, = r = r,. This will finish the proof.
Choose any ¢y, ..., ¢, € C satisfying ¢101(y) + -+ + ¢,0.(y) = 0. Then the germ
of cyo1 + - -+ + ¢,0, at y belongs to m,&),. Thus, the germ of ¢;01 + --- + ¢,0, at
y belongs to m,¥, + ¢(.%#),. (Note that ¢ : . ¥ — ¢ descends to %, — ¥, and
furthermore to .|y — ¥|y; see (1.1.1) and (1.1.3).) This means precisely that
c101(y) + -+ ¢0.:(y) € o(Fy)/myG, = o(Fy).

It is clear that each fiber of . = &} is spanned by the values of all global
sections. Thus, we can choose t € .Z (U) satisfying ;51 (y) + - - -+ ¢,0.(y) = o(t(y)).
Set @ = ¢,61+ - -+¢,0,—¢(t). Then(y) = 0. Regard 7 as a C’-valued holomorphic
function, and notice that its value at y is 0. If we let {¢;}|,c; be the standard
basis of C’, regarded as constant sections of 7, (U), then there exist a finite subset
{€j,...,€;.} of {&;}|;es and f1,..., fn € O(U) satisfying u = fie;, + -+ + fin€j,.,

and that fi(y) = --- = fu(y) = 0. Lete;,,--- ,¢j, € &U) be the corresponding
equivalence classes, which are clearly in 4 (U)/p(.%#)(U). Then ¢y01 + - - - + ¢,0, =
fiej,+- -+ fme;j,,. Sincee;,, ..., e; are O(U)-linear combinations of oy, . .., 0., one
can find ¢y, ..., g, € O(U) whose values at y are all 0, such that ¢;01 + - - - + ¢,0, =
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g101+ -+ gro.. Lethy =c; —g1,...,h. = ¢, — g.. Then hy(y) = ¢1,...,h.(y) = ¢,
and hyoy + --- + hy0, = 0. By Lemma 1.8.4, we have hy = --- = h, = 0. Thus
cp=--=¢ =0. [

Corollary 1.8.6. If & is a coherent O'x-module equipped with a connection V, then & is
locally free.
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Chapter 2
Sheaves of VOAs

2.1 Vertex operator algebras

Let V be a complex vector space with grading V = @, _V(n) satisfying
dimV(n) < o for each n and dimV(0) = 1 (the CFT type condition)!. We as-
sume that there is a linear map

V — (End (V))[[=*']]
u—Y(u,z) = Z Y (u),z "t (2.1.1)

nezZ

where each Y (u),, € End(V) is called a mode of the operator Y (u, z). Note that we
have for any v € V,n € Z that

Res,—oY (u, z) - 2"dz = Y (u),. (2.1.2)

Definition 2.1.1. We say that (V,Y") (or V for short) is a (positive energy) vertex
operator algebra (VOA), if for any u € V the following conditions are satisfied.
(a) (Lower truncation) For any v e V,

Y (u, z)v e V((2)).

(b) (Jacobi identity) For any u,v € Vand m,n, h € Z, we have

5 (YO @

= _llnyunﬂ-n—yv +l — _1l+nnyvn+_yum+. (213)
S ()Y 0 s = 30 (7)Y Wi G

'The only reason we assume dim V(0) = 1 is to apply Buhl’s result in [Buhl02]; see Theorem
3.7.1.
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(c) There exists a vector 1 € V(0) (the vacuum vector) such that Y (1, z) = 1y.
(d) (Creation property) For any v € V, we have

Y(v,2)1 —v e zV[[z]].

This is equivalent to that Y (v)_;1 = v and Y (v),,1 = 0 for any n € N.

(e) There exists a vector ¢ € V (the conformal vector) such that the operators
L, :=Y(c)n+1 (n € Z) satisfy the Virasoro relation:

1
[Lin, L] = (m —n) Ly + E(mg’ — M)y, —nC. (2.1.4)

Here the number c € C is called the central charge of V.

(f) If v € V(n) then Lyv = nv. n is called the conformal weight (or the energy)
of v and will be denoted by wt(v). Ly is called the energy operator. We say that a
vector v € V is homogeneous if v € V(n) for some n € Z.

() (L_i-derivative) LY (v,z) = Y(L_yv,z) forany v € V.

Note that from the creation property, we have ¢ = Y(c)_;1 = L_,1. Since
Ly1 = 0, by the Virasoro relation, we have Loc = LyL_31 = L_5Ly1 +2L_51 = 2c.
We conclude

ceV(2).

We explain the meaning of Jacobi identity. Let V' = @, _, V(n)* where each
V(n)* is the dual vector space of V(n). Then V' is a subspace of the dual space
V* of V. A vector v’ € V* is inside V' if and only if there exits N € N such that
(u,w")y = 0 whenever u € V(n) and n > N. For each v € V and n € Z, the transpose
Y (v)t of Y(v), is a linear map on V*. We then define

Y(v,2)" = Z Y(v)tz7"t End(V*)[[2]]

nez

to be the transpose of Y (v,z). Then Y (v,z2)'dz = =%, _, Y(v)t (271" td(z71),
which shows that for each n € Z,
Res,-1_0Y (v, 2)" - 2"dz = =Y (v)". (2.1.5)

n

We assume that the lower truncation property is satisfied, and that for any v, w e
V,w' eV,

Y(v,2)'w e V((z™)). (2.1.6)
Then we have

Y (v, 2)w,w'y € Clz, 271,
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namely, z — (Y (v, z)w,w’) is a meromorphic function on P' with poles possibly
at 0,00, namely, it is an element of H°(P*, Op:(e(0 + 00))). We will see that if Vis a
VOA then these conditions hold automatically. Let C* = C—{0}. For each z € C*,
Y (v, 2)w,w') is a complex number. Choose any u € V, and let { be also a standard
coordinate of C. Then ¢ — z (where z is a fixed complex number) is the standard
coordinate of a neighborhood of z. By lower truncation property and condition
(2.1.6), we have

Y (v, 2)Y (u, Qw,w"y € C((C)), (2.1.7)
Y (Y (u, ¢ — 2)v, 2)w,w'y e C((¢ — 2)), (2.1.8)
Y (u, Q)Y (v, 2)w,w’y e C((¢H)). (2.1.9)

Theorem 2.1.2. Let (V,Y') satisfy the lower truncation property, and assume that for any
v,w e V,w' eV, condition (2.1.6) holds. Then the Jacobi identity is equivalent to the
requirement that for any u,v,w € V, w' € V', z € C*, there exists f € H°(P', Op1(o(0 +
z + ))) whose Laurent series expansions near 0, z, 0 are (2.1.7), (2.1.8), and (2.1.9)
respectively.

Proof. We apply the strong residue Theorem 1.4.1 to the single 3-pointed Riemann
sphere (P';0, z,00) and the sheaf 0p1. Then such f exists if and only if for any
Ae HO(PL, wpi(o(0 + 2z + 0))),

Res¢_.—of:A = —Res¢-1-¢fuA — Rese—o fo, (2.1.10)

where fo, f., [ are defined by (2.1.7), (2.1.8), and (2.1.9) respectively. It is easy to
see that H°(P!, wpi(e(0 + z + o0))) is spanned by (™ (¢ — 2)"d( (where m,n € Z).
Thus, f exists if and only if (2.1.10) holds whenever A = (" (¢ — 2)"d¢. Assuming
A is defined like this. Then, using (2.1.2), we compute

Res¢_.—0f:A = Res¢c_.—oY (Y (u, ¢ — 2)v, z)w, w )" (¢ — 2)"d(¢ — z)

— Z (T) Res¢_.—oY (Y (u, ¢ — 2z)v, z)w, w' )(¢ — 2)"H =l (¢ = 2)

leN

= (”;) Y (Y (W), 2)w, w'dzm

leN

Similar computations using (2.1.2) and (2.1.5) give the explicit expression of the
two terms on the right hand side of (2.1.10), which show that (2.1.10) is equivalent
to

5 (1) W, 2wtz

leN

=y (7) ()Y (W)msntY (v, 2)w, w')2!

leN
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—Z< ) )" Y (v, 2)Y (), w')z" (2.1.11)

leN

Note that by lower truncation property and condition (2.1.6), the three terms in
the above equation are all finite sums. We conclude that the requirement in this
theorem holds if and only if for any u, v, w € V and m,n € Z, (2.1.11) holds where
z is considered as a variable. This means that we are now considering (2.1.11) as
an equation of elements in C[[z*!]]. For each h € Z, apply Res,—o(+)z"dz to both
sides of (2.1.11), we get precisely (2.1.3) evaluated between w and w’. Since w, v’
are arbitrary, we see that our requirement is equivalent to the Jacobi identity. [

From now on, we shall always assume that V is a VOA (of CFT type). From
the Jacobi identity and the L_;-derivative, one has for each n that

[Lo, Y (v)n] = Y(Lov)p — (n + 1)Y (v),,

This shows that if v, w € V are homogeneous, then Y (v),w is also homogeneous
with conformal weight wt(v) + wt(w) — (n + 1). Thus condition (2.1.6) follows
easily. Note also that [L, L,,| = —nL,, implies for any n € Z, s € C that

L,V(s) =V(s—n). (2.1.12)

In particular, when n € Z,, we have L, 1 = 0 since it is inside the trivial subspace
V(—n).

Remark 2.1.3. When n > 2, we have L,c = 0 since V(2 — n) is trivial. Using the
fact thatc = L_»1, that L,,1 = 0 when n > 0, and the Virasoro relation (2.1.4), we
compute Lyc = L1 L_»1 = [Ly,L_5]1 =3L_11 =0since Y(L_11,z) = 0,Y(1,2) =
0:1 = 0. Also, Lyc = LyL_51 = [Ly, L_5]1 = 4L¢1 + 51 = 51 where c is the central
charge. We conclude

Loc = 2c Lic=0, Loc = gl.

2.2 VOA modules

Let W be a vector space equipped with a linear map

V — (End W)[[2 il]]
u— Yig(u, 2) = Y Yig(u . (2.2.1)

nez

Definition 2.2.1. We say that (W, Yiy) (or W for short) is a weak V-module if the
lower truncation property holds, i.e., for any v € V,w € W, Yy (u, z)w € W((2)),
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if Y (1, 2) = 1w, and if for any m,n,h € Z and u, v € V, the Jacobi identity (2.1.3)
holds with Y replaced by Y, i.e.,

Z (T) Y (Y (W) ntt - 0)metn—i

leN

=> (-1 ( > (Wt Yo (0) st — Y (1) (7) Yoy (0)n st Yw (W) myr- (2.2.2)

leN leN

Homomorphism and endomorphisms of weak V-modules are the linear maps
commuting with the actions of vertex operators.

Setn = 0in (2.2.2), we obtain the commutator formula

Yon(uh Yool = 35 (7} ) Yo - e 223)

leN

If W, W, are weak V-modules, we set Homy (W, W5) to be the space of homo-
morphisms from W; to W,. We set Endy(W) = Homy (W, W).
For a weak V-module W, we set L,, = Yi(c),+1. Then the Virasoro relation

(2.1.4) holds for the same central charge c. Moreover, the L_;-derivative property
holds:

diYW(v, z) = Yw(L_1v,2) (2.2.4)
z
for any v € V. We refer the reader to [DLM97] for the proof. The L_;-derivative
property and the Jacobi identity implies

[Lo, Yw(v)n] = Yw(Lov)n — (n + 1)Yiy(v)n, (2.2.5)
forany v € Vand n € Z.

Definition 2.2.2. A weak V-module W is called an admissible V-module if there
exists A € EndV(W) such that L, := Ly + A is diagonal (on W), and that the

eigenvalues of Ly are natural numbers. If, moreover, each eigenspace of Ly is
tinite-dimensional, we say that W is a finitely admissible V-module.

Remark 2.2.3. According to (2.2.5), that W is admissible is equivalent to that there
is a diagonalizable L, € End(W) with spectrum in N satisfying [Lo, Yiw(v),]| =
Yiu(Lov) — (n+1) Yy (0),. Equivalently, W has grading W = @, _,, W(n) such that

Yw () W(n) ¢ W(n + wt(v) —m — 1) (2.2.6)

neN

for any m,n € N and homogeneous v € V. Indeed, W(n) is the n-eigenspace of Lj.
Moreover, W is finitely admissible if and only if each W(n) is finite dimensional.

We write wt(w) = n if w € W(n), equivalently, Low = vf%( Jw. We say that w is
Lg-homogeneous (with weight n) if w is an eigenvector of Lo (with eigenvalue n).
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Definition 2.2.4. We say that W is a (grading-restricted ordinary) V-module, if
W is a weak V-module, if there exists a finite subset £ — C such that W has
grading W = @ W), and if for each s € C we have dim W, < +o0 and
Lolw,, = slw,,. A vector w € W is called homogeneous if w € W (s) for some
s € C. In this case, we write wt(w) = s and call it the (conformal) weight of w.

Note that when v is homogeneous, (2.2.5) is equivalent to
YW(U>mW(s) = W(s+wt(v)—m—1)- (227)

Remark 2.2.5. If W is a V-module, then W is finitely admissible. Indeed, one suf-
fices to assume that any two elements in £ do not differ by an integer. By (2.2.7),
foreacha € E, Wy n = P, +n W, is a weak V-submodule of W. Moreover,
W is the direct sum of all such W, . One then defines ZO whose action on each
Wosn is Ly — a. This makes W finitely admissible.

Note that V itself is a V-module, called the vacuum V-module. For a V-module
W, we can give a similar interpretation of Jacobi identity as in Theorem 2.1.2. We
leave the details to the reader.

For a V-module W, consider the dual vector space W* and the graded dual
W= @ ec W,y where each W) is the dual vector space of W(,). Then W' is
equipped with a natural V-module structure: the vertex operator Yy is defined
such that forany v e V,w e W,w' e W',

Yo (v, 2)w', w) = (W', Yag (e (—272)ow, 27 Hw). (2.2.8)

Here, if v is homogeneous, then (—272)%y is understood as (—z~2)"'")y. In gen-
eral, (—z~?)% v is defined by linearity. We briefly write

Y (v, 2) = Yag(e*lr (—z72) Loy, 271", (2.2.9)

The meaning of e*"'(—z7%)% will be explained in example 2.3.2. We call W’ the
contragredient module of W. We have W” = W. See [FHL93] chapter 5 for more
details. When v is homogeneous, it is easy to check that for any n € Z,

(_ 1)wt(v)
m!

YW/ (U)n = Z

meN

YW<LTU>t—n—m—2+2wt(v)' (2210)

As a consequence, we have
L' =L_,. (2.2.11)
Let ZO act on W’ as the transpose of fo —~ W, ie., setfor any w e W, w' € W’ that
(Low, w"y = (w, Lyw'>. (2.2.12)

Then L, makes W’ admissible. L, yields the grading W' = @, _, W(n)*. Thus W’
is also finitely admissible under L.
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Convention 2.2.6. For a V-module W, we always assume Ly is chosen such that
W is finitely admissible (see Remark 2.2.5). For its contragredient module W’,

we always assume that the actions of Lo on W and on W' satisfy (2.2.12). If W
is semi-simple, i.e., a finite direct some of irreducible V-modules, except when

W =V, we assume eqvch irreducible submodule M of W is zo-invariant, and the
lowest eigenvalue of Ly|y (with non-trivial eigenspace) is 0. These assumptions

are compatible. For the vacuum module V, we set EO = Lo. Thus V(n) = V().
The following fact will be used later without explicit mentioning.

Proposition 2.2.7. Let W be an irreducible V-module, and let T' be an endomorphism of
W. Then T is a scalar multiplication.

In particular, if Zo makes W admissible, then EU — Ly is a scalar multiplication.

Proof. Choose any s € C so that the Lo-weight space W, is nontrivial. Note
that W, is also finite-dimensional by the definition of ordinary modules. Since
T commutes with L,, T" preserves the eigenvalues of the eigenvectors of Ly. So
TW) < W,). Thus, we can find an eigenvalue A of T'|W . It follows that the
kernel of T'— A1y is a nontrivial V-invariant subspace of W, which must be W. So
T = M. O

Definition 2.2.8. Let V;, V, be VOAs. If W is a vector space which is both a weak
Vi-module (W, Y, ) and a weak Vy-module (W, Y_). We say that (W,Y,,Y_)isa
weak V; x Vy-module if [V, (4)y,, Y_(v),] = 0 for any u € Vy,v € Vo, m,n € Z.

2.3 Change of coordinates

We define a group (G, o) as follows. As a set G consists of all p € O¢ o such that
p(0) = 0 and p'(0) # 0. If p1, p2 € G, then their multiplication is just the compo-
sition p; o po. We should understand elements in G as maps but not functions. G
actson Ocgasp* f = foplif pe G, f € Ocp. The Lie algebra Lie(G) of G is
spanned by Ly, Ly, Lo, . .., where for each n € N,

L, =2""0,, (2.3.1)
whose action on each f € ¢, denoted by L,, x f, is defined by
Ly, fi:=—L,f =—2""0.,f. (2.3.2)

The Lie bracket relation is defined using above relation, i.e., satisfying [ L., L] *
f=1Lyx*xLy,xf—L,*L,* f.Itis the negative of the usual Lie bracket for vector
fields. One easily checks that [-, -] is compatible with the Virasoro relation (2.1.4).
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Let W be a V-module. Given any p € G, one can define U(p) € End(V) as
follows. Choose cq, ¢1, ¢, - - - € C such that ¢y # 0, and

p=ckooexp ( Z ann) (2.3.3)

n>0

when acting on any f € O¢ by ». Then

U(p) = cgo - exXp (Z ann>, (2.3.4)

n>0

where the Virasoro operators EO, L,, are acting on W. (The reason we use INLO but
not Ly is that ¢} might not be single-valued on W.)

Let z be the standard coordinate of C, regarded as an element in O . It is the
identity element of G. Then, forany f € Oc, wehave pxf = fop™' = f(p~!(2)) =
f(p* z). We conclude

pf=flpx2), (233.5)

which shows that the action of G on 0 is determined by its action on z. For
example, since 20,z = z and hence (20,)"z = z for each n, we have

1
gt %z = %2 = exp(logcy - 20,)z = Z g(log c0)"(20,)"z = ¢pz.
neN '
Therefore, we conclude that
cgt0x f = fleoz). (2.3.6)

We now give a more direct relation between p and the coefficients ¢y, ¢, co, . . .
in (2.3.3). It is clear that p(z), as an element in J¢ , equals

p(Z)=20p=p’1*2=exp(—2ann)*CEL"*Z

n>0
= exp ( — Z ann> * (€o2) 239 Co - €Xp ( — Z ann> * 2,
n>0 n>0
which, together with (2.3.2), shows that
p(z) = ¢y - exp ( 2 cnz”H&Z)z (2.3.7)
n>0

One can use the above equation to completely determine the coefficients ¢y, ¢4, . . ..
For instance, if we write

p(2) = a1z + ap2® +az2® + -, (2.3.8)
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then one has

Co = aq,
C1Cp = a2,

CoCo + C%CO = as.

In particular, one has ¢y = p'(0). Thus (2.3.4) could be rewritten as

U(p) = p'(O)E0 - exp ( Z ann> (2.3.9)

n>0

Notice a,, = p'™(0)/n!, we have

Co = :0/<0)7
_10'0)
2 p/(0)°
_1p"0)  1/p"(0)y2
=50 Z(p, (0)) . (2.3.10)

The following is (essentially) proved in [Hua97] section 4.2:

C1

Theorem 2.3.1. For each V-module W, U is a representation of G on W. Namely, we
have U(py o p2) = U(p1)U(p2) for each py, ps € G.

Example 2.3.2. We have seen that
%2 = cyz. (2.3.11)

We now calculate exp(c;220,)z. It is easy to see that (¢;220,)"z = nlcfz"*!. Thus
exp(c1220,)z = >0 2" = 2/(1 — ¢12). We conclude

n=0

z

exp(c12%0,)z = (2.3.12)

1—c2

Then it is easy to see that exp(c12%0,)ci% 2 = coz/(1 — coe12) = &7 exp(coe1220,)z.
We conclude

eclLlch = cgoecoqh. (2.3.13)
Set
1 1
Ye(z) = 12 ¢ (2.3.14)
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Then the inverse of y¢ is y¢-1. By (2.3.11) and (2.3.12), it is easy to see that the
following identity holds when acting on any W:

Ulye) = B (—¢ ), (2.3.15)

Thus (2.2.9) could be rewritten as
Y (v, 2) = Yin(U(y2)o, 7). (2.3.16)

It is easy to see that y¢(£2) = £ 'y1(z). Therefore,

Ulye)er = 71U (yy). (2.3.17)

Let n € Z. Then U(p) does not preserve the vector space W(n) (the n-
eigenspace of Ly). However, W has filtration ¢f = Ws=! ¢ Ws0 ¢ Ws! ¢ Ws2 ¢
-+, where

Ws" = @ W(k). (2.3.18)

k<n

Then, by (2.2.6), L,,Ws" < W= for any m € Z. Thus, by (2.3.9), we con-
clude that U/ restricts to a representation of G on W<". Moreover, if w € W is
Lo-homogeneous, then

Up)w = P (0)" @y mod WSWH)-1, (2.3.19)

In other words, the action of U (p) on W<"/W<s""1is p/(0)"1.

Finally, we discuss holomorphic families of transformations. Let X be a com-
plex manifold and p : X — G,z — p, a function. We say that p is a holomorphic
family of transformations if for any =z € X, there exists an open subset V' < X
containing x and an open U < C containing 0 such that (z,y) € U x V — p,(2) is
a holomorphic function on U x V. Then it is clear that the coefficients a;, as, . ..
in (2.3.8) depend holomorphically on the parameter x € X. Hence the same true
for ¢y, 1, ¢a, . ... Thus, by the formula (2.3.9), for any w € Ws", z € X — U(p,)w
is a Ws"-valued holomorphic function on X. Thus U(p) can be regarded as an
isomorphism of &'x-modules

U(p) : Wén ®(C ﬁX = Wén ®(C ﬁX (2320)
sending each constant function w to the section = — U(p, )w. Its inverse is U (p™*).

Convention 2.3.3. For any open subset V' < X, any v € V<" (resp. w € Ws") is
also understood as the constant section v®1 (resp. w®1) in (VS"®c Ox)(V) (resp.
(W="®c Ox)(V)).
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The following lemma will be used in Section 2.6. We let En be L, if n # 0.

Lemma 2.3.4. Let T' be an open subset of C containing 0. Let p : T' — G,( — p¢ be a
holomorphic family of transformations satisfying po(z) = z. Then, for any w € W,

1 ~
_ - (n) )
agu(pg)w‘czo - 7; = (a< " (0) LIO) Lot w (2.3.21)
where (?Cpé") (2) = 0%0cpc(2) = 002 pe(2).

Note that when w is a (non-necessarily constant) section of W®¢ &7, one needs

to take J.w into account when calculating the left hand side of (2.3.21). Also, as
the derivative of w = U(p)U(p:) " w is 0, we obtain

. . _ Ny 1 o Foo
0cWUp) )| = ;n!( o)) Euer - (23.22)
Proof. Let ¢y, ca,- -+ € Oc(T) such that
pel2) = p(0) exp (3] ealQ)"410.) ().
n=1

Then p¢(z) equals

A0 (2 + Y eal©)=)
nz=1
plus some polynomials of z multiplied by at least two terms among
c1(C), ca(C), . ... Since py(z) = z, we have p((0) = 1 and ¢;(0) = c(0) = --- = 0.
Therefore,
anC(Z)’ = (3<pc ’ ( Z aCCn n+1>7
n=1

which implies that when n > 2,
1 n
— 0t >(o)‘ — Ocens(0).
¢=0
Thus, using (2.3.9) and again p;(0) = 1,¢1(0) = ¢2(0) = --- = 0, we compute
_ / zo . T
oU(peyw|_ =2c(ptO)" - exp (X en(OL) Ju|

n=1
:acpg(())zow\co (X dceal0) L)
N n>=1

Now equation (2.3.21) follows from the last two equations. [

Remark 2.3.5. Let A = Ly — Eo. Then using the fact that Res,_02"Yw(c, z) =
Yw(c), = L,,—1, we can write (2.3.21) and (2.3.22) in the following form:

5CU(PC)U"¢=O = —8<L{(pc_1)w|<:0
=Res,—o Ocpe(z)Yw(c, z)wdz\gzo - 8<p’C(O)Aw‘C=O. (2.3.23)
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2.4 Sheaves of VOAs on complex curves

Let C' be a (non-necessarily compact) Riemann surface. Let U, V' be open sub-
setsof C,andn: U — C, . : V — C univalent maps. Define a holomorphic family
o(nlp) : UV — G as follows. Forany pe U n'V, n —n(p) and p — p(p) are local
coordinates at p. We set o(7n|u), € G satisfying

n—n(p) = olu)p(n — p(p)). (2.4.1)

Let z € O¢ be the standard coordinate. Then, by composing both sides of (2.4.1)
with u~*(z + u(p)), we find the equivalent formula

o(nl)p(z) = nop ' (z + u(p)) — n(p), (24.2)

which justifies that o(n|u) is analytic. It is also clear that if 7;, 72, 73 are three local
coordinates, then on their common domain the following cocycle condition holds:

o(n3lm) = o(nz|nz)e(nzlm)- (2.4.3)

Note that the linear map (2.2.1) can be extended to a homomorphism of C((z))-
modules

V((2)) — (End W)[[z*]]
U feVRC((2) » Yw(u® f,2) = f(2)Y(u, 2). (2.4.4)

Moreover, for any w € W and v € V((z)), it is clear that Y (v, z)w € W((2)). The
following theorem is one of the main results of [Hua97].

Theorem 2.4.1. Let W be a V-module. Let U < C be a neighborhood of 0. Let « € O'(U)
be a local coordinate at 0, let 1c € G be the standard coordinate of C (i.e. the identity
element of G), and let = be the standard complex variable of C (different from 1¢). Then
forany v e Vand w € W, we have the following equation of elements in W((z)):

U(e) Y (v, 2)U ()" - w = Yy (U(o(a]1c))v, a(2)) - w. (2.4.5)

Note that U(p(a|1c))v is in V ®¢ O(U) and hence can be regarded as an element of
V((z)). Of course, (2.4.5) also holds in an obvious way for any v € V((z)).

For instance, take a(z) = Az where A € C*. Then p(a|lc¢) is constantly . It
follows that

ALY (v, 2)A D0 = Yoy (AFow, A2). (2.4.6)
The sheaf of VOA associated to V is an &c-module 7 defined by

Yo = lim V5", (247)

neN
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where for each n € N, #5" is a locally free sheaf of rank dim V<" described as
follows. For any open subset U — C and a univalentn : U — C, we have an
isomorphism of &;-modules

Uy(n) : V& w = V" Q¢ O (2.4.8)

These isomorphisms are defined in such a way that if ;s : V' — C is also univalent,
thenon U n V we have

Uy (mUy(1) ™" =U(o(nlp)) | € Endgy,, (V=" ®c Oyny). (24.9)

From (2.3.19), we can compute that for any section v of V<" ®¢ Oy v,
U,MU, (1) -0 =(0,m)" v mod V"¢ Opy. (2.4.10)

Now assume that C' is a (compact and possibly nodal) complex curve. We
define for each n € N a locally free sheaf 75" as follows. (¥¢ is defined again
using (2.4.7).) Let ¥ = {},x),...,2,} be the set of nodes, and let Cy = C' — .
Then 7" is defined as above. Let U be an open subset of C' containing only
one of E say v Letw : C — C be the normalization of C' as in Section 1.5,
and let {y},y/} = v~'(2}). Then v~'(U) is a disjoint union of two open subsets
Visy, V"> yg’ of C. We assume that U is small enough such that there exit local
coordinates {; : V! — C and w; : V" — C at y; and yj respectively. This means
that ¢;, ww; are univalent, and ¢;(y’) = w;(y") = 0. We also identify

U— {2} = (V' = {yi}) u (V" = {yj}) (2.4.11)
via v. Now, let 75" (U) be the 0 (U)-submodule of 7" (U — {;}) generated by

\ Uy (&)1 (&70) + Up(my)~H (@ Uy1)v) \ (Vo e V<), (2.4.12)

where we recall from example 2.3.2 that U(y;) = e**(—1)*. To be more precise,
(24.7) is a section on (V' — {y;}) u (V" — {y]}) which equals Uy(&)7(67°v) on
(V' = {y;}) and U, ()~ (wl°U(y1)v) on V". Also, £I° is an element of ﬁCO(V’
{y;}) acting on the constant section v € V<" ®c O¢, (V' — {y;}), and ijOL{ (yi)vi
understood in a similar way. It is easy to see that 75" (U) is generated freely by

Up(&5) () + Uy(wy) T ((—) ™ DU (1)) (2.4.13)

for all v € E where E is any basis of V<" whose elements are homogenous. Since
Y1 =7v:", ¥5"(U) is also generated freely by

Uy(&) (& UM )Y) + Uy(y) ™ (=] 0)

for all v € E. By the gluing construction, we obtain the locally free &--module
Y.
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Proposition 2.4.2. Let C be a complex curve and n € N. Then we have the following
isomorphism of Oc-modules:

/y/in/ai/cén—l ~ V(n) ®(C @%n (2414)

Under this isomorphism, if U < C'is open and smooth, and n € €(U) is univalent, then
forany v e V(n), v ® 0y is identified with the equivalence class of Uy(n) " v.

Proof. Recall that ¥ is the set of nodes. By the transition function(2.4.10), we ob-
tain a surjective 0¢c_g-module morphism ¥ : 5% — V(n) ® @%{‘{x} sending
Uy(n) v to v ® d) if v € V(n), and to 0 if v € VS"~1. ¥ has kernel 75", Now
let U be a neighborhood of z’; as in the setting of (2.4.12). Then ¥ sends (2.4.12)
to v @ ' O¢ vy + v ® (—w;)" 0 [vr—(yy whenever v € V(n) n E. (Recall that
E is a homogeneous basis of V<".) From this and (1.5.1) we see that ¥ restricts
to a surjective Oc-module morphism ¥ : 75" — V(n) ® ©F" and that Ker¥(U)
is O0c(U)-generated by (2.4.12) for all v € V<"~ n E. Thus ¥ descends to an
isomorphism (2.4.14). O

As a consequence, we now prove a vanishing theorem for the sheaf of VOA.

Theorem 2.4.3. Let X = (C; 21, ..., xn) be an N-pointed complex curve with M nodes.
Let C be the normalization of C, and let g be the largest genus of the connected components
of C. Then for any n € N, there exists ko € Z depending only on n, g, M such that

HY (C, 75" Q@ we(kSx)) =0 (2.4.15)
for any k > k.

Recall that the divisor S is defined by z; + - - - + z . Also, by our definition of
pointed complex curves, each connected component of C contains at least one of
(the pre-image of) x4, ..., zn. Recall also that the dualizing sheaf w¢ is the inverse
of @C.

We will see from the proof that ky can be chosen to be n|2g — 2| + 2M. Note
that by Proposition 1.5.4, one can always find k, € N such that (2.4.15) holds for
any k > ko. The importance of the present theorem is, however, that we may find
ko which is independent of the complex structure of C.

Proof. ¥'<~! is trivial since V<! is so. Since the vacuum vector 1 is killed by
Lo, Ly, Lo, ..., it is fixed by the action of G. From this and the fact that V(0) is
spanned by 1, it is clear that

VS0V 150 ~ O, (2.4.16)

Thus, by Theorem 1.5.7, the vanishing property (2.4.15) holds for any k > 2M.
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We now prove the theorem by induction. By Proposition 2.4.2, there is a short
exact sequence

0— 75" 1 Que(kSy) — Y& @ue(kSy) — V(n) @c 02"V (kSy) — 0,
which induces a long exact sequence
HYC, 75" ' Quwe(kSx)) — HYC, 75" @ we(kSy))
— H'(C,V(n) ®@c 02"V (kSy)). (2.4.17)

Suppose the statement in our theorem is true for n—1 and any k£ > (n—1)[29—2|+
2M. Then, by induction and Theorem 1.5.7, the first and the last terms of (2.4.17)
equal 0 for any k > n|2g — 2| + 2M. So the same is true for the middle term. [

Remark 2.4.4. Let D be an effective divisor on C. Using the same argument,
one can show that Theorem 2.4.3 holds verbatim if ¥5" is replaced by 75" (—D),
except that £y should now also depend on deg D.

2.5 Sheaves of VOAs on families of complex curves

Let X = (7 : C — B) be a family of complex curves. Recall that ¥ is the critical
locus. Let U,V be open subsets of C — %, and letn : U — C,pn : V — C be
holomorphic functions such that (n, 7) and (u, 7) are biholomorphic maps from U
resp. V to open subsets of C x B. This requirement is equivalent to that » and p
are univalent on each fiber of U and V respectively. For eachp € U n V, we define

o(nlu)p € Oco by
o(nlw)p(z) = no (u,m) " (z + u(p), 7(p)) — n(p). (2.5.1)

Then o(n|p), is a holomorphic function of z on p((U N V) ) where (U N V),
is the fiber U n V n 7w~ (w(p)). It is easy to check that for each n € N,

a2 o(n|p)p(0) = dyn(p), (2.5.2)

where the partial derivative ¢, is defined to be vertical to dr. From this, we see
that o(n|n),(0) = 0 and 0.0(n|x),(0) # 0. So o(n|un), is an element of G. We thus
obtain a family of transformations o(n|p) : U n'V — G,p — o(n|p),, which is
clearly holomorphic.

As in Section 2.4, o(n|p) is also described by

1 =10 vy, = Ol (1= 1P vy ) (2.5.3)

(

To see this, one composes both sides of (2.5.3) with (y, 7)™ (2 + p(p), 7(p)). This
relation shows that, if for j = 1,2,3 we have n; € €(U;) which is univalent on
each fiber of U;, then on U; n U, n U3 we have

o(n3|ni) = o(n3n2)e(nz]m). (2.5.4)
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Definition of 75
We set

Yy = lim 7=, (2.5.5)

neN

where for each n € N, ¥,=" is a locally free 0c-module defined as follows. Suppose
that U is an open subset of C — ¥ and 1 € &(U) is univalent on each fiber of U.
Then we have an isomorphism of &;-modules

Uy(n) : V=" [y = V=" ®c Oy (2.5.6)

These isomorphisms are defined in such a way that if V' is another open subset of
C — XY and p € O¢(V) is also univalent on each fiber, then on U n V' we have

U,(MU,() ™ =U(o(n|w)) | € Endg, ., (V" ®c Opny). (2.5.7)

Recall that o(y|n) is a family of transformations on U n'V, and U (o(1:|n)) is defined
as by (2.3.20). Thus, we can defined 7;~"|¢_x, by gluing. Note that by (2.3.19) and
(2.5.2), we can compute that for any section v of V<" ®¢ Oy v,

U,MU, (1) -0 = (0,m)" v mod V"'®Q¢ Opy. (2.5.8)

To define #,=" near %, let 2/ € ¥, and assume that near the fiber Cr (), the family
X is obtained via sewing a family % of Riemann surfaces with local coordinates as
in Section 1.6. Then, by (1.6. 8) and (1.6.15), one can 1dent1fy a ne1ghborhood W;
of 2" as D,, x D, x Dy, \; X B such that, by setting B; = D, . \j X B, the projection
T|w, equals

~ T ps X1 ~
v W] = Drj X Dt)j X BJ 72 Drjpj X B] (259)
We thus have
W, = D,, x D,, x B;, (2.5.10)
W; A% = (0, ) x B;.

Asin (1.6.10) and (1.6.11), we have open subsets of W;:
WJ' = DTXj x D, x gj, WJ{’ =D, x D:j X gj.
Then it is clear that

W, —S =W oW,
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Let {;, w; be the standard coordinates of D,,, D, , and extend them constantly to
W; — D,,,W; — D, respectively. Then (;,7) and (=, 7) are holomorphic open
embeddings of W, W, respectively; equivalently, ¢;, @, are univalent on each
fiber of W} and W respectively.

We shall define #,~"|y, to be an Oy,-submodule of ¥~"|w, s generated
(freely) by some sections on WW; whose restrictions to W} and W}’ are described
under the trivilizations U, (¢;) and U,(w,) respectively. For that purpose, we need
to first calculate the transition function

Uy(w))Uy (&) = Ulo(wjl§;)) : V=" ®c Owrowy = V=" ®c Owiwy -
Set q; = 7, = &70j
Lemma 2.5.1. Choose any p € W n W Then we have
o(@;[&)p(2) = 4;(P) Ve, (2)
and hence
U(o(w1€5)p) = 4;(p) " U(Yes )

Proof. Choose any x € (W; n W}).(,. Then n(x) = 7(p) and hence ¢;(z) = ¢;(p).
Since w; = ¢; '¢;, we have

@;(x) — @;i(p) = ¢;(p)(&(2) " = &)™),
By (2.5.3), we have
wj(x) — w;(p) = o(@;l§;)n(&; () — &;(p))-
If we compare these two equations and set z = £;(x) — &;(p), we obtain
o(@l&)p(2) = o(w;1€;)p(& (@) — &) = 4;(P)(&(2) ™" = &(p) )
=q;(0)((&(p) +2)7" = &)™) = 4() Ve, (2)-
]

We define =" |w, to be the Oy, -submodule of ¥,=% |y, generated by any
section on W; — ¥ whose restrictions to W} and W}’ are

U(&) 7 (Ev)  resp. Uy(wy) (i U(yi)v) (2.5.11)

where v € V<", Since y; = y;' and hence U(y,) = U(y;)~?, this definition is
symmetric with respect to §; and w;. To check that (2.5.11) is well-defined, we
need:
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Lemma 2.5.2. The two sections defined in (2.5.11) agree on W; n W7.
Proof. Using (2.3.17) and Lemma 2.5.1, we check that
Uy () Uy (§) 7670 = Ulo(a1€5))65 v = 4 U(ye, )€ v
=¢;°¢; U1 = @ U)o,
O

It is easy to see that, if we take v € E where F is a basis of V<" consisting
of homogeneous vectors, then ¥,~"|yy, is generated freely by sections defined by
(2.5.11) for all v € E. Thus, by the gluing construction, we obtain a locally free
Oc-module ¥,=".

Remark 2.5.3. Since the vacuum vector 1 is annihilated by L, (n > 0), we see
that 1 is fixed by any transition function ¢ (o(n|x)). Thus, we can define unam-
biguously an element 1 € #%(C — X) (the vacuum section) such that for any open
U c C— ¥ and any n € ¢(U) univalent on each fiber, U/,(n)1 is the vaccum vector
1 (considered as a constant function). Also, by (2.5.11), it is clear that

1 e 7(C).

Restriction to fibers

As in Section 2.4, we may use (2.5.8), (2.5.11), and (1.6.24) to show:
Proposition 2.5.4. For any n € N, we have the following isomorphism of Oc-modules:
VEVET = V(n) ®c O (2.5.12)

Under this isomorphism, if U < C — X is open and smooth, and n € O(U) is univalent
on each fiber of U, then for any v € V(n), v ® 0 is identified with the equivalence class of

Ug(n)_lv-

By comparing the transition functions and looking at the generating sections
near the nodes, it is easy to see:

Proposition 2.5.5. For any n € N and b € B, we have a natural isomorphism
V" Cy ~ VT (2.5.13)

The following theorem is a generalization of Theorem 1.6.5.
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Theorem 2.5.6. Let X = (7 : C — B;si,...,sn) be a family of N-pointed complex
curves. Let n € N. Then there exists ko € N such that for any k > ko, the Og-module
T (V" @ weys(kSx)) is locally free, and for any b € B there is a natural isomorphism of
vector spaces

™ (nj/xén ® wc/B(ka))b
my - (V" @ wey(kSk)),

~ HO(Cy, V65" ® we, (kSx(D))) (2.5.14)

defined by restriction of sections. In particular, dim H® (Cy, V=" ®uwe, (kSx(b))) is locally
constant over b.

Proof. Recall that by Ehresmann’s result, if X is smooth, then by our assumption
in Section 1.3, B has finitely many connected components, and all the fibers over
a connected component are diffeomorphic. Thus, by theorems 1.5.1 and 2.4.3 and
Remark 1.6.3, for sufficiently large k, H" (Cy, 7= ® we, (kSx(b))) vanishes for any
be Band r > 1. Since the restriction of we/s to Cy is we,, by Proposition 2.5.5, the
restriction of =" ® we/s(kSzx) to Cy is equivalent to ¥;~" ® we, (kSx(b)). Thus, our
theorem follows easily from Grauert’s Theorem 1.6.2. O

Corollary 2.5.7. Let X = (7 : C — B;<1,...,sn) be a family of N-pointed complex
curves, and let n € N. Then for any Stein open subset V' of B, there is ky € N such
that for any integer k > ko and any b € V, the elements of m, (V=" ® we/s(kSx)) (V)
(more precisely, their germs at b) generate the stalk m, (V=" ® wes(kSx)),, and their
restrictions to Cy form the vector space H®(Cy, ¥=" @ we, (kSx(b))).

Proof. Apply Theorem 2.5.6 and Cartan’s theorem A (see Section 1.5). O
As a variant (and easy consequence) of the above corollary, we have:

Corollary 2.58. Let X = (7 : C — B;<1,...,sn) be a family of N-pointed com-
plex curves. Then for any Stein open subset V of B and any b € V, the ele-
ments of T, (V=" @ weyp(9Sx)) (V) (more precisely, their germs at b) generate the stalk
T (V" ® weys(Sx)),, and their restrictions to C, form the vector space H®(Cy, V=" ®

we, (05x(D))).

The subsheaf Vir,

We now define an important &¢-submodule Vir. of #;=7 related to the confor-
mal vector ¢ € V(2). If U is an open subset of C — ¥ equipped with a holomorphic
n : U — C univalent on each fiber, then Vir.|y is the Oy-submodule of #x|y gen-
erated (freely) by U,(n)'c and the vacuum section 1, which is locally free of rank
2. This definition is independent of the choice of 7. Indeed, if ;x : U — C is also
univalent on each fiber, then U, (u)U,(n)~'c = U(o(u|n))c, which can be calculated
using the actions of L,, (n > 0) on ¢, is an Oy-linear combination of ¢ and 1 by
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Remark 2.1.3. Thus, by gluing all such U, we get Vir.|c_s,. Now assume that U is
a small neighborhood of a point of 3. We let Vir.|y be the submodule generated
by the sections described in (2.5.11), in which we set v to be c and 1. This com-
pletes the definition of the J¢-submodule Vir.. Note that the action of U(o(u|n))
and U(v1) on c and 1 depends only on the central charge c since this is true for L,
(n = 0) by Remark 2.1.3. Thus, the &¢-module Vir, depends only on the number
cbutnot on V or 7%.
By Proposition 2.5.4, we have a short exact sequence

0— V& = 12 B V(2) @c 65, — 0

where A is described locally (outside ) by sending U, ' (n)v (where v € V(2)) to
v- 0% and sending the submodule %;=' to 0. Using this description of A, it is easy to
see that the restriction of A to the subsheaf Vir, has image ¢ ®c @?/QB ~ @?/28, and
that its kernel is ”//fo = 1®c O¢ ~ O¢. Thus, we obtain an exact sequence

0 — O¢ — Vir, > 0% — 0. (2.5.15)
If we choose U < C — X and 7 € 0(U) holomorphic on each fiber, then
A Uy(n) e 2, 1~0.

By tensoring with we¢/3, we get an exact sequence

0 — wess — Vire ® weys > Ocjp — 0 (2.5.16)
whose local expression outside ¥ is

A Uy(n) tedn— oy, 1dn— 0. (2.5.17)

2.6 Lie derivatives

Fix a family of compact Riemann surfaces X = (7 : C — B). From Proposition
2.5.4, we see that the sheaf of VOA ¥4 can be viewed as a twisted version of
a direct sum of @?/%. It is well known that Lie derivatives can be defined for

mn

sections of @?/B (whose restriction to ©¢/z is given by the usual Lie bracket of
vector fields). In this section, we define Lie derivatives for sections of #%. The
results of this section can be generalized easily to sections of #x|¢c_x when X is a
family of complex curves.

Let ¢ : U — V be a biholomorphic map where U,V are open subsets of C and
©(U) = V. We assume that ¢ preserves fibers, i.e. ¢(Ux(p)) = Vrop(p) foreachp e U.
Then we have an equivalence

@*:ﬁU_)ﬁV7 fl—)fO(,D_I,
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which makes each &,,-module also an &-module. ¢, can be extended to
0y : V" Q¢ Oy = V" Q¢ Oy, v vop

Choose any 7 € (V) univalent on each fiber. Then we have a similar equiva-
lence (n,7)s : Oy = Oy ). Recall Uy(n) + 5"y = VS" Q¢ Oy. Define an
isomorphism

Vol) : V" = V" v,
Uy (mVo(p) = - Uy(n 0 ), (2.6.1)

noting that U,(n o ¢) : =" lv — V<" Q¢ Op.
The definition of V,(y) is independent of the choice of 7. Indeed, if 1 € O(V)
is also univalent on each fiber, then, using (2.5.3), it is not hard to show

Ulo(nopliop)) =, -Ulo(nlp)) - ¢,

and hence equivalently that

Uy(n o olUy(pio @)™t = ot Up(Uy(p) ™" - s, (2.6.2)

The independence follows easily from the above relation and (2.6.1). Moreover,
using the definition (2.6.1), it is also not hard to show

Vg(l/’ °p) = V@(¢)Vg(90) (2.6.3)

where ¢ : V' — W is another such fiber-preserving biholomorphic map. In partic-
ular, we have V,(¢™1) = V,(¢) "%

Let now W be an open subset of C, and let V' be a precompact open subset of
W whose closure is also in 1. Note that since 7 is (clearly) an open map, 7(W) is
open. Recall the short exact sequence (1.3.5):

0—>@c/3—>@cd—ﬂ>ﬂ'*@5—>0.

Let r € O¢(W) such that dn(r) equals 7*(y) for some y € Op(m(W)). In other
words, 1 is a vector field on W whose projection to B depends only on the points
of B. Suppose that IV is small enough so that we can choose n € (W) univalent
on fibers, and choose coordinates 7, = (71, ..., 7,) of 7(I¥). Denote 7, o 7 also by
7. for simplicity. Then (1, 7,) : V' — C x C™ is a coordinate of V, and r takes the
form

r=h(n,7)0, + ). g;(7.)0r, (2.6.4)

J=1
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for some holomorphic functions ~ on (1, 7.)(W) and ¢4, . . ., g,, on 7. (W). Choose
¢t € Orxy(T x V), (¢,p) = ¢(p), where T' is an open subset of C containing 0,
and the following conditions are satisfied for any p € V:

wo(p) = p. (2.6.5)
0o ()] = ¥(D)- (2.6.6)

The second condition is equivalent to that for any (local) section f of &y,

ot o)

—1f. (2.6.7)
0

The first conditions implies that V,(¢}) is the identity map on 7,="|y.

Definition 2.6.1. For any v € ¥;~"(W) and ¢ as above, we define L,v € ¥, (W) as
follows. Choose any V' < W whose closure is compact and contained in W, and
choose ¢* as above. Then

Vo(02) Hv| . —v
ﬁgv‘vzlim e\r¢ ( ’¢<(V)> \v‘

lim z (2.6.8)

We now give an explicit formula of £.v, which shows in particular that the
above definition is independent of the choice of ¢* satisfying (2.6.5) and (2.6.6).

If u is a section of V" ®c¢ Oy, we say that a section of ¥:~"|i equals u in the

n-coordinate if this section is U, (1) u.

Theorem 2.6.2. Suppose that n € O (W) is univalent on each fiber of W, ¢ takes the form
(2.6.4), and v € V=" (W) equals u € V<" @c O(W) in the n-coordinate. Then in the
n-coordinate, L.v equals

h(n, Te)Opu + Zg] T.)0 ;U Z 7 n h(n, Te) Lx_1u. (2.6.9)

J=1 k=1

Proof. Choose V, ¢* as above. We have v = U,(n) 'u. Then, in the n-coordinate,
Volpp) ™ (U’<p§(v>) equals

Z/{g(77)vg(9022)71 (U

which by (2.6.1) equals

W‘Z(V)) = Uy (mVo(07) ™ Up(n) ™ (u|¢ (V))’

<

Uy (MU (0 05) 7 (5): H (u
=U(o(nln o ¢t)) (uogh)l,

@‘Z(V))

It is easy to see that the derivative over ¢ of the above expression at ( = 0 equals
(2.6.9). Indeed, the first two terms of (2.6.9) come from the derivative of u o cpz.
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The last term comes from the derivative of U(o(n o ¢|n)~'). Identify V' with
(n,7)(V) < C x C™ via (n, 7). Then by (2.5.1),

o(nn o wp)p(2) =no ¢’ (z+mnow:(p), 7)) — n(p)-

So, as ¢f, = 1, using (2.6.7), we get

dco(nln o 9)p(2)| g = dcmo (2 +n(p), 7e(p))] o + O (2 +n09e(p))],_,
=—h(z+n(p), 7(p ))+h( ),

noting that p = (7(p), 7.(p)). So
dcolnln o wt)y (0] _y = —yh(p).

Thus, by Lemma 2.3.4, we have

aC“( (770<Pg|77 ’C 0 Z kf' T]aTo Lk 1-

k=1
O

Remark 2.6.3. Note that if ¢ : U — V is biholomorphic and fiber-preserving, then
¢ maps any (complex and holomorphic) path in each U, to one in V). Thus
¢« = dy maps tangent vectors of U, to those of V,;). Thus one can define an

isomorphism dy : O¢/5|u = O¢ /8|v, and hence
Py = d(p . 9?/%‘U i) @(?/%h/

for each n € Z. One can thus use (2.6.8) (with V,(¢;) replaced by dyy;) to define the
Lie derivatives on @?/%. When n € N, it is easy to see that the Lie derivatives on
V" /¥ is the same as those on V(n) ®c ©F/;. One can also define Lie deriva-
tives on 7.~ ® we /5 (recall that wep = O /13), and the formula of Lie derivatives
is exactly the same as (2.6.9), except that L, should be replaced by L, — 1. (In
other words, there is an extra term 0, h(n), 7,)u contributed by the Lie derivatives
on weyp.) In the next chapter, we will use the Lie derivatives on ”//f” ® weyp to
define connections on sheaves of conformal blocks.
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Chapter 3

Sheaves of conformal blocks

3.1 Spaces of conformal blocks

Let V be always a (CFT-type) VOA. Let X = (C;21,...,xn;m1,...,nn) bean N-
pointed complex curve with local coordinates. Recall that if W is a V-module, the
vertex operator Yy can be regarded as a C((z))-module homomorphism V((z)) ®c
W — W((2)) sending each v®@w to Yy (v, z)w. (See (2.4.4); here v € V is considered
as the constant section in V((z)).) Let W;, Wy, ..., Wy be V-modules. Set W, =
Wi @Wo® - @ Wy.

Convention 3.1.1. By w € W,, we mean a vector of W; ® - - - ® Wy. By w, € W,,
we mean a vector of the form w; @ wo ® - - - ® wy, where w; € Wy, ..., wy € Wy

Recall that Sy is the divisor z; + x5 + - - -+ zy. Foreach 1 < i < N, we choose a
neighborhood U; of z; on which 7; is defined. Then, by tensormg w1th the identity
map of wy,, the map (2.4.8) induces naturally an y,-module isomorphism

Uy (ni) = Velu, @ wu, (Sx) = V &c wy, (¢5%)-

Let (m:)s : wy, — wy,(v;) be the pushforward of differentials, i.e. (n;). = (n; ')*. It
can be extended by linearity to (1), : V ®c wy, (¢5x) = V ®c wy, () (0). Let

V(i) -

(95%) = V ®c wy, ;) (#0)
Vg(m) = (1)U (m:).- (3.1.1)

In the case that U; and 7;(U;) are identified by 7,, we have U,(n;) = V,(n;). Let z be
the standard coordinate of C. If v is a section of ¥¢|y, ® wy, (on) defined near z;,
we define a linear action of v on W; such that if w; € W;, then

v-w; = Res,—oYw, (V,(m:)v, 2)w; (3.1.2)
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Define a linear action of H°(C, 7z ® wc(eSx)) on W, as follows. If v €
H°(C, 7 ® we(eS%)), the action of v on any w, is

N
v~w.=Zw1®w2®--~®(v

i=1

U)W ® - @wy. (3.1.3)

We now define a space of covacua

W,
- HY(C,7c ®@uwe(eSx)) - W,

Tx(W,) (3.1.4)
whose dual vector space is denoted by .73*(W,) and called a space of conformal
blocks or space of vacua.

A conformal block ¢ € .7#(W,) is understood as a chiral correlation func-
tion in physics. According to the above definition, ¢ as a linear functional on W,
should vanish on the subspace H%(C, ¥c ® wc(#Sx)) - W,. Such condition is sim-
ilar to the Jacobi identity for VOAs. We now interpret this condition in a similar
tashion as Theorem 2.1.2.

For each ¢ € W# and z;, if w, € W,, we define

(o, (wa) € V¥[[2H]]

whose evaluation on each v € V, written as ($,, (v, w.), equals

WPz, (v,we) = G(w QW ® -+ ® Yiw, (v, 2)w; ® -+ - Q). (3.1.5)

By the lower truncation property, the above expression is an element of C((z)).
Also, the above expression makes sense when v is a section of V®c 0, 1,) defined
near z = 0. By linearity, we can define !$,, (v, w) for any w € W,. The following
theorem is also true when C' is nodal; however, we will only be interested in the
smooth case. We understand

C—Sy=C—{x1,...,zn}.

Theorem 3.1.2. Assume that C'is smooth. Let ¢ € W . Then the following are equiva-
lent.

(a) & is an element of TF(W,).
(b) For each w € W,, there exists a (necessarily unique) element
W (w) € HY(C' — Sx, V&) (3.1.6)

such that for each 1 < i < N, if we identify U; ~ n,(U;) via n; and identify
Yolu, =V ®c Oy, via Uy(n;), then the evaluation of 1 (w) with any v € Y¢(U;)
(restricted to U; — x;), written as 1 (v, w), is

(v, w) =1y, (v, w). (3.1.7)
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Proof. Choose any v € H(C, ¥c @ wc(eSx)). Assume w = w, = w1 ® -+ @ wy.
Then

N
Z Res.—o 1, (U, w.) = d(v - w.). (3.1.8)
i=1

Suppose that (b) is true. Then (b (v, w,) is an element of H°(C,wc(eS%)), and
the left hand side of the above expression equals 3 | Res,, ! (v, w,), which, by
residue theorem, equals 0. Thus ¢ vanishes on v - w,. This proves (a).

We now assume (a). Choose any n € N, and restrict (d,, (w,) to V<™ (or VS" ®¢
Oy, when considering non-constant sections), which gives

5" (wa) € (VE)*((2)).

Then for any w, € W, and v € H’(C,¥5" ® wc(eSx)), since ¢ vanishes on
HO(C, 75" @ we(eSx)) - W., we have 31V Res.— ! b, (v, w.) equals 0 by (3.1.8).
Thus, by strong residue theorem, there exists

=" (w.) € HY(C, (V5")* @we(eSk))

whose series expansion near each z; is (d5". Equivalently, (3.1.7) holds for any i
and any v € 75"(U;). Tt is clear that 1d="'(w,) restricts to :p="(w.) when n’ > n.
One can thus define ($(w.,) to be the projective limit of :»<"(w.) over n. O

Our next goal is to give a coordinate-free definition of conformal blocks. Let
X = (C;zq,...,zy) be an N-pointed complex curve, and let Wy,..., Wy be V-
modules. Define a vector space #5(W,) isomorphic to W, as follows. #%(W.,)
is a (infinite rank) vector bundle on the 0-dimensional manifold {C} (consider as
the base manifold of the family C' — {C}). For any choice of local coordinates
Ne = (M, ...,nn) of z1, ...,z N respectively, we have a trivialization

U : Wx(W,) = W, (3.1.9)
such that if i, is another set of local coordinates, then

U U ()™ =U(ne o p )
=Um o pr ) @UM2 oy ) ®@ -+ @U(nN © py'). (3.1.10)

Ifve H(C, Y @ wc(eSx)) and w € #+x(W,), we set
vow=Um) " v-UMn) - w, (3.1.11)

where the action of v on U(n.)w (which depends on 7,) is defined by (3.1.2) and
(3.1.3).
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Lemma 3.1.3. The definition of v - w in (3.1.11) is independent of the choice of ..

Proof. We prove this lemma for the case NV = 1. The general cases can be proved in
a similar way. Choose local coordinates 7, i at = 1 defined on a neighborhood
U. We identify U with p(U) via p. So p is identified with the standard coordinate
1c of C,and n € G. (We will denote by z the standard complex variable of C.) Also,
identify #5%(W) (where W = W; = W,) with W via U(u). SoU(p) = U(1c) = 1.
Choose any w € W, and assume that v is of the form

V(v = Uyl = u(=)dz
where u = u(z) € V®c¢ Oc(#0)(U). Then, by (2.4.9), we have

Up(n)v = Ule(n1c))u(z)dz = Ule(n[1c):)u(z)dz.

By (3.1.1), we have
Ve(mv = . (U(o(n|1e))u(2)dz) = Ulo(n|le)y-12) - u(n™(2)) - d(n~(2)).
We calculate that

Un)™ - v-Un) -w = Res,—o Un) " Yig(Vo(n)v, 2)U (n)w
=Res.—o Un) Yy (U(e(n|1c)y1(»)) - uln™(2)), 2)U(n)w - d(n~"(2)),

which by Theorem 2.4.1 equals

Res.—o Yiw (u(n™"(2)), 0" (2))w - d(n ™" (2))
=Res._o Y (u(z), 2)w - dz =U ()™ -v-U(p) - w.

The proof is complete. O

Thus, we have a coordinate-independent linear action of H°(C, Y- ® wc(eSx))
on #%(W,). Then the space of conformal blocks .7;*(W,) is the dual space of the
space of covacua

Wx(W.)

ZWe) = BO(C 7z @ wc(e50))  FalW.)

(3.1.12)

Remark 3.1.4. We remark that Theorem 3.1.2 still holds in this general setting.
Indeed, by Theorem 2.4.1, for each w € #%(W,) one can define !¢, (w) whose ex-
pression is covariant under the change of local coordinates. Then ¢ is a conformal
block if and only if for each w, all these !$,, (w) can be extended to a (necessarily
unique) !:p(w) which is independent of the choice of local coordinates.
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Example 3.1.5. Let C' = P'. Let ¢ be the standard coordinate of C = P! — {0}, and
let w = (™! be a coordinate of oo defined on P! — {0}. Let X = (P';0,0;¢, ™). So
the divisor Sy is 0 + o0, and hence P! — Sy = C — {0} = C*. Choose V-modules
Wy, W, associated to 0, oo respectively. Let W, = W; ® W,. We shall show that
there is an isomorphism Homy (W;, W,) ~ 7¥(W,).

Define a linear map Homy (W;,W,) — Z*(W,) as follows. If T e
Homy (W;, W), then the corresponding conformal block ¢, as a linear functional
on W,, is defined by

dr(w,) = (Twy, wy) (3.1.13)

for each w, := w; @ wy € W; ® Wy. We now verify that ¢ is a conformal block
by verifying (b) of Theorem 3.1.2. ¥p1|cx is generated by all ¢, (¢)'v where v € V.
Moreover, it is easy to define :pr(w.) € H(C*, ¥4%) such that for any v,

W7 (Z/{Q(C)ilvﬂ w') = <TYW1 (Uv C)wh w2>7

considering U, (¢)'v as a section on C*. The series expansion of (¢r(w,) near 0 is
clearly d70(w.). Near oo, we have

l d)T,oo (ug(g)ilvy wo) = d)T,oo (wl ® Yy, (ug(w)udg)ilvu w)wZ)
=(Twr, Yag, Uy (@) Uy () ™10, @)wa) = (Twr, Yag, U (0(w]C))v, (Hws).

According to (the proof of) Lemma 2.5.1 (note that we have {¢ = (and ¢ = {w = 1),
we have

U(o(w[C)) = U(vc),

where we recall by (2.3.15) that U (y,) = e (—(~%)" when acting on V. Thus, by
(2.3.16) and the above calculation, we have

l cI>T,oo (ug(g)_lv7 w-) = <Tw17 YW2 (uh/C)Uv C_l)w2>
=(Twy, Y, (v, Q) ws) = Yig, (v, () Twr, wa) = (T, (v, Q)wy, wy).

Thus, the series expansion of :pr(w,) near oo is 17 (w.). So d7 is a conformal
block.

It is obvious that the map 7' — ¢ is injective. To show the surjectivity, we
choose any conformal block ¢. Define a linear map 7" : W; — Wj satisfying
¢ (w.) = (T'wq, we) for any wy, wy. Then for any v € V, by the above calculation, we
see that ('Y, (v, {)wy, ws) and (Twy, Yy, (v, ¢)'ws) (which are elements of C((¢))
and C((¢')) respectively) are expansions near ( = 0 and ("' = 0 of the same
function in H(P!, Op:1(e0 + ec0)). Thus, they are equal to a polynomial of ¢. Take
v to be the conformal vector c. Then one sees that T intertwines the actions of L.
This shows that 7" has image in W, since, in particular, 7’ maps Lo-homogeneous
vectors of W; to those of Wi, with the same weights. It is now obvious that T’
intertwines the actions of V, and that ¢ = ¢.
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Example 3.1.6. Choose any z € C*. Let again ¢ be the standard coordinate
of C. Then (,( — z,( ! are local coordinates of 0, z, %0 respectively. Set X =
(P%0,2,00;(,{ — 2, ). Choose any V-module W, and set W, = W® V® W'
Then the vertex operator Yy can be viewd as an element ¢ of .7*X(W,) by send-
ingeachw, =w®@v@uw € WV QW to the scalar

d(w,) = Yw(v, 2)w, w).

One can define b (w.) € H°(C — {z}, #3) such that for any u € V, the section
U,(¢) " uon C—{z} is sent to the function f in Theorem 2.1.2. Using the argument
in the previous example, it is not hard to check that :pg(w.), 1. (w.), 1 (w.) are
the series expansions of !p(w,) near 0, z, 0 respectively. This proves that ¢ is a
conformal block.

3.2 Sheaves of conformal blocks

LetX = (7 : C — B;si,...,s8:m,...,nn) be a family of N-pointed complex
curves with local coordinates. Let z be the standard coordinate of C. Let 0((2))
be the 0-module associating to each open V' < B the algebra ¢'(V)((2)). If W is
a V-module, we have a homomorphism of &3((z))-modules

Y : (V®c O5((2))) Qo (WQc Os) — W ®c O5((2)),
v@w — Yw(v, z)w (3.2.1)

where v = v ® 1, w = w ® 1 are constant sections. Note a section of V ®c Oc.5 on
a neighborhood of {0} x V' (where V is an open subset of 13) can be regarded as an
element of V®c 05(V)((2)) by taking series expansion.

IfWy,..., Wy are V-modules, we set W, = W; ®- - -@ Wy as usual, and define

We(W,) = W, Q¢ 0. (3.2.2)

Choose mutually disjoint neighborhoods Uy, ..., Uy of ¢1(B),. .., sn(B) on which
M, ...,y are defined respectively. For each i we have

Up(mi) = V3 ® weys(95x)|y;, = V ®c weys(9Sx)]
and the pushforward
(16> ™) = ey, = Wonemy s

equaling ((n;, 7)~')*, which, by tensoring with 1y, gives rise to (identifying B with
{0} x B)

(m, W)* : V®c wcw(‘&e)‘w = V®c w(m,ﬂ)(Ui)/B('B)'
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Define

Vg(m) R WC/B(’SSE)‘UZ. = V& w(ﬁiﬂr)(Ui)/B(.B)7
Vo(ni) = (15, ) - Up (i) (3.2.3)

If V' is an open subset of B, and v is a section of 73 ® wC/B(on)}U defined near
6i(V), then V,(n;)v, which is a section defined near {0} x V, can be viewed (by
taking series expansion) as an element of V®¢ O3(V)((2))dz. If w; € W, ®c Op(V),
we set

v-w; = Res,—oYw, Vo(ni)v, 2)w;. (3.2.4)

One can now define an Og-linear action of 7, (¥x ® we/p(eSx)) on #x(W.)
as follows. If V. < B is open, for any v in m, (7/35 ® wc/B(OSx))(V) = (“//x ®
wep(0Sx)) (m71(V)) and any w € #x(W.)(V), we set

N
Ve = ) W @Wa® @ (Vg mr-i(v)) Wi @ @i (3.2.5)

=1

Then for each b € V, the value (v - w,)(b) (which is a vector inside the fiber
Wx(W,)|b ~ W,) equals

(v-wa)(b) = (v|Cp) - wa(b) (3.2.6)

where w,(b) = w1 (b) ®wz(b) ® - - - @ wy (), and v|C,, the restriction of v to the fiber
C, is in 7¢, @ we, (0Sx(b)). The action on the right hand side of (3.2.6) is defined by
(3.1.2) and (3.1.3).

Define a sheaf of covacua

_ Wx(W.)
To (V3 @wep(9S%)) - #Wx(W.)

whose dual sheaf is denoted by .7;*(W,) and called a sheaf of conformal blocks
or sheaf of vacua. 7, (7/35 R we /B(on)) - Wx(W,) is the sheaf of &z-modules associ-
ated to the presheaf whose sections on any open V' — B are (linear combinations
of) those in m, (s @ wes(95%)) (V) - #x(W.) (V).

For each b € B, we let X, be the restriction of X to C, = 7 1(b), i.e.

Te(W,) (3.2.7)

Xy = (Cb§§1(b)7 ce ,CN(b);Th|U1mcb, e aﬁN‘UNme)~

We show that each fiber of the sheaf .7;: (W, ) is isomorphic to the space of covacua
Tx,(W,). Note the obvious 05 ;,-module isomorphism of stalks

N We(Wa)s
- T (Y2 Queys(eSk)), - #x (W),

Recall that m; is the maximal ideal of 03,

Tx(Wa)p (3.2.8)
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Theorem 3.2.1. For any b € B, the evaluation map at b:
Wx(w.)b = W. ®(C ﬁl’)’,b — W., w — w(b) (329)
descends to an isomorphism

%(Wo)b N

Zx(Wo)lb = my, - T (W),

Tx, (W,). (3.2.10)
Proof. By (3.2.8), the fiber 7%(W.,)|b equals #%(W.,), modulo the subspace
spanned by m, - #%(W,), and m, (”I/x ® wc/B(on))b - Wx(W,)p. The first one is
sent by the map (3.2.9) to 0, and the second one into H°(Cy, ¥¢, ® we, (¢5x(b))) W,
according to the relation (3.2.6). Thus the linear map (3.2.10) is well-defined. It
is clearly surjective. To show that (3.2.10) is injective, it suffices to show that the
map (329) sends T (%@wc/lg(.s%))b : Wx(w.)b onto H° (Cb, %b ®wcb(053g(b)))w..
This follows from Corollary 2.5.8. O

Remark 3.2.2. For any open subset V' < B, an element ¢ € .7;*(W,)(V) is an ho-
momorphism #x(W.)|y — €y vanishing on . (%x @we/s(eSx) ) (W) - #x (W) (W)
for any open subset W < V. By (3.2.6), it is clear that this vanishing requirement
< for any b € V, the fiber

b(b) : Wx(We)|b =~ #x,(W.) — Oplb~C

vanishes on H°(C, ¥¢, ® we, (#S%,)) - W,. By Corollary 2.5.8, we also have =. This
proves:

Proposition 3.2.3. Let V' < B be open, and let ¢ : #+x(W,)|y — Oy be a homomor-
phism of Oy -modules. Then ¢ is a conformal block if and only if its restriction to each
fiber is a conformal block. More precisely, d € FF(W.)(V) ifand only if $(b) € T3& (W,)
foranybe V.

We now define the sheaves of covacua and conformal blocks for any family
X =(r:C— B;s,...,sn) of N-pointed complex curves whose local coordinates
are not specified. If V < B is open, then X, denotes the subfamily

Xy =(m:Cor=ma (V)= Viclv,...,snlv). (3.2.11)

Define #%(W.,) to be an infinite rank locally free sheaf on B as follows. For any
connected open subset V' < B together with local coordinates 7, ...,ny of the
family 7 : Cy — V defined near ¢;(V),...,sn (V) respectively, we have a trivial-
ization

Un) =Um) @ - QU(nN) = Wax(W.)|y = W, Q¢ Oy (3.2.12)
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such that if i, is another set of local coordinates, then

Z/{(T].)u(,u.)_l . Wo ®(C ﬁV i’ Wo ®(C ﬁV

is defined such that for any constant section we = w3 ® --- @ wy € W,,
Une)U (pe) tw,, as a W,-valued holomorphic function, satisfies
(Ut (1) ) (0) = (el ) (0)
=U ((m]p1)p) w1 @ U((m2]pt2)s) w2 & - @U (] o)) Wiy (3.2.13)
for any b € V. Here, for each 1 < i < N, (1|1:)p is the element in G satisfying
(mila)s(2) = 13 0 (psy )~ (2, 0). (3.2.14)

If we compare the transition functions (3.1.10) and (3.2.13), we see that there is a
natural and coordinate-independent isomorphism of vector spaces

We(W.)|b ~ W, (W,)

where #%,(W.,) is defined near (3.1.9). We shall identify these two spaces in the
following.

The action of 7, (#3x®uwc/s(#Sx)) on #5x(W.) is defined fiberwisely by the action
of m, (V2 ®weyp(95x)) (b) = H(Cy, ¥¢, ® we, (95%(D))) (recall again Corollary 2.5.8)
on #%,(W,). By (3.2.6), it is clear that if we choose a set of local coordinates 7, near
c1(V),...,sn(V) as above, and if we identify #%x (W, )|y ~ W,®c Oy viald(n.), then
this action is described by (3.2.4) and (3.2.5).

The sheaf of covacua 73 (W,) is defined still by (3.2.7), and the sheaf of con-
formal blocks .7;*(W,) is its dual sheaf.

Proposition 3.2.4. Assume that B is connected, and let & : #x(W,) — Op be a homo-
morphism of Og-modules. Suppose that V is a non-empty open subset of B, and the re-
striction |y : #x(W.) |y — Oy is an element in 7:F(W,)(V'). Then ¢ € TF(W,)(B).

Proof. We first assume that B is small enough such that X can be equipped
with N local coordinates, and that the connect manifold B is biholomorphic to
a polydisc which in particular is Stein. Then for each b € B, the restriction of
T (V2 ®uwe (0 Sx)) (B)- #x(W.)(B) to the fiber C, is H(Cy, Y4, ®we, (85%)) - #x, (W.)
by Corollary 2.5.8. Thus, ¢ is a conformal block if and only if its evaluation with
any element of 7, (7x ® we/p(Sx)) (B) - #x(W.)(B) (which is a holomorphic func-
tion on B) is zero. By our assumption, such holomorphic function vanishes on V.
Thus it is zero on B.

In general, we let A be the set of all b € B such that b has a neighborhood
W such that the restriction ¢|y is a conformal block. Then A is open and (by
assumption) non-empty. For any b € B— A, let W be a connected neighborhood of
b small enough as in the first paragraph. Then ¢|y is a conformal block if 1V has
a non-zero open subset V such that ¢|y is a conformal block. Therefore W must
be disjoint from A. This shows that B — A is open. Thus B = A. [
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Next, we generalize Theorem 3.1.2 to sheaves of conformal blocks. Assume
that X has local coordinates 7y,...,ny. Let & : #x(W,) — O be a homomor-
phism of Oz-modules. Then for each 1 < i < N, we have an 03((z))-module
homomorphism

W) (V®c O8((2))) Qs (We ®c Op) — Op((2))

such that for each v € V,w, € W,, considered as constant sections on B of V ®c
05((z)) and W, ®c¢ Op respectively, v ® w, is sent to

Zd)%'(B) (U ® w‘) = z‘bq(B)(”a wa) = (b(wl QU ®- -+ & YWi (U, Z)wi ® & wN).
(3.2.15)

For any b € B, for the fiber map ¢(b) : #%,(W,) — C we can define :p (b)) as in
Section 3.1. Then it is clear that the following elements in C((z)) are equal:

zd)<b)§z(b) (U7 w') = ( ! d)gi(B) (U7 w')) (b> (3216)

Shortly speaking, the restriction of ¢, ) to each fiber C; equals :p(b), ).
For any (non-necessarily open) subset £ < C, we set

N
E—Sx=E—|]Ja(B). (3.2.17)

Choose mutually disjoint neighborhoods Uy, ..., Uy of ¢;(B),...,sn(B) on which
m,-..,nn are defined respectively. Note that 75 and 7%|c_s, are Oz modules real-
ized by pulling back &3 to C. The following theorem is clearly true if 5 is replaced
by an open subset I and X by the the subfamily Xy, .

Theorem 3.2.5. Assume that X is a smooth family. Let ¢ : #+(W,) — O be a homo-
morphism of Og-modules. Then the following are equivalent.

(a) & is an element of TF(W,)(B).

(b) ForeachopenV < Band w € #x(W,)(V) ~ W,®c Os(V), there is a (necessarily
unique) element

\b(w) € HY(Cy — Sy, 75)
satisfying that for each 1 < i < N, if we identify U; ~ (n;,w)(U;) via (n;, )
and identify Vx|, ~ V ®c Oy, via U,(n;), then the evaluation of 1 (w) with any
v € Yx(U; n Cy) (restricted to U; n Cy — Sx) is
W (v, w) = 1) (v, w). (3.2.18)
Note that v € #4(U; n Cv) can be regarded as an element of V ®¢ 05(V)((2)).
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Proof. Suppose that (b) holds. Then by (3.2.16), for any b € B and any section w
of #x(W.,) defined near b, the restriction :p(w)|c,—s, = 1¢(w)]c,—s,,, which is an
element in H%(C, — Sx,, 74 ), has series expansion 1 (b)) near each ;(b). Thus,
by Theorem 3.1.2, ¢(b) is a conformal block on the fiber C,. Since this is true for
each b € B, by Proposition 3.2.3, ¢ is a conformal block on the family X. This
proves (a).

Now assume (a). Choose open V' < B and w € #x(W,)(V). For any n € N, the
restriction of !d,(5)(w) to V<" @¢ Oy gives a homomorphism of €y -modules

S; = 2¢§?B)(UJ) . Vgn ®(C ﬁv — ﬁv((f/&’))
which can also be considered as
si€ (VS")*®c 0(V))((2)).

Let & = (¥:")*|c,. By the fact due to Proposition 3.2.3 that ¢(b) is a conformal
block on C, for each b € V, it is easy to see that sq,. .., sy satisfy (b) of Theorem
1.4.1. Thus they also satisfy (a) of that theorem, namely, that s;,...,sy can be
extended to an element

s 1= 1p~"(w) € H°(Cy, 7 (0Sx)ley ),

which can also be regarded as in H°(Cy — Sx, *lc,). It is clear that 1 ="' (w)
restricts t0 :p="(w) when n’ > n. Thus 1p(w), the projective limit over n € N of
\p="(w), satisfies (3.2.18). This proves (b). O

Remark 3.2.6. In the case that local coordinates are not assigned to the smooth
family X, one can still define !¢ for each ¢ € 7¥(W,)(B). Indeed, for each 1 <
i < N, the restriction of ¢, to each fiber C, is independent of the choice of
local coordinates by (the proof of) Lemma 3.1.3. So is (¢. Thus, one can define !
locally, and glue them together to obtain the global section.

3.3 Sewing conformal blocks

Formal conformal blocks

LetX = (7 : C — B;si,...,s8:m,...,nn) be a family of N-pointed complex
curves with local coordinates obtained via sewing the following smooth family

~

~ 5 0. L 1oL ", . .
X=(T:C— B, SN STy SUISTs o sSA T e o s INGELy o ooy €M TTLy -+ o, TOM )

(See Section 1.6.) As suggested by the notations, we require as in Remark 1.6.1
that the N-points ¢, ..., sy and the local coordinates 7, ...,ny of X are constant
with respect to sewing. In this section, we only assume that each connected component
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of each fiber Cy, contains at least one of the N + 2M marked points of X,. This is slightly

weaker than the assumption in Rem. 1.6.1. Choose V-modules W, ..., Wy, and
M, ..., My whose contragredient modules are M, . . . , M}, which are associated
toci, ..., SN, STy, Sy ST - - -5 Sy Tespectively.

To simplify discussions, we assume throughout this section that B is Stein.
This assumption allows us to work with modules instead of sheaves of modules.
Recall that we have

Dy,py = Dyypy X -+ x D B:gxpr.p.-

TMPM

Then B is also Stein. We have the identification #%(W,) ~ W, ®¢ O realized by
U(n.). By taking series expansions, € (B) can be regarded as a subalgebra of

~ ~

O(B)lg.]] = 0(B)llar, g2, - - - anall;

whose elements are formal power series of ¢i, ..., gy whose coefficients are in

~ ~

O(B). In particular, 0(B)[[¢.]] is an €(B)-module. Choose a homomorphism of
O (B)-modules

~.

¢ Wx(W.)(B) =W, ®c O(B) — 0(B)[[q.]]- (3.3.1)

We say that ¢ is a formal conformal block if ¢ vanishes on 7, (%e@wc /B(oS};)) (B)-
W5 (W, )(B). We say that ¢ converges absolutely and locally uniformly (a.l.u.) if
the image of ¢ is in &(B). This name is explained below.

Remark 3.3.1. Write

ni n2 M

4. =q1'q” gy

for any n, = (n1,na,...,ny) € N¥. For each w € #%(W,)(B), we have the series
expansion

dw) = > dw), -

neeNM

where each ¢(w),, is a holomorphic function on B. Then it is clear that ¢ con-
verges a.l.u. on B if and only if for any w (which is sufficient to be constant) and

any compact subsets K < Band @ < D,.,,, there exists C' > 0 such that

S |dw)a®)] e < € (332)

neeNM

forany b€ K and q. = (¢1, ..., qum) In Q.
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If ¢ converges a.lu. on B, one can regard ¢ as a homomorphism of 0-
modules

¢ : Wx(W.) = W, ®c O — Op
whose values at the global sections of #x(W,) are given by (3.3.1).

Proposition 3.3.2. Let ¢ in (3.3.1) be a formal conformal block, and assume that ¢
converges a.l.u..

1. If for every b € B, each connected component of C, contains at least one
Gi(b),...,sn(b) (cf. Rem. 1.6.1), then ¢ is a conformal block, i.e. ¢ € T (W,)(B).

2. If for everybe B— A = B x Dy ,., each connected component of C, contains at
least one of <1 (b), ..., <sn (D), then & is a conformal block on B — A.

Proof. Case 1 follows easily from Corollary 2.5.8, Proposition 3.2.3, and our as-
sumption that B (and hence B) is Stein.

In case 2, note that Proposition 3.2.3 and Theorem 2.5.6 apply to the restriction
Xp-a. So it suffices to prove for all n € N that for sufficiently large £ € N, the
elements of m, (¥ ® we/s(kSx)) (B) generate the stalk ., (¥:~" ® wes(kSk)),. This
follows from Cartan’s theorem A and that . (”f/x ® wc/g(ka)) is coherent (by
Grauert’s direct image theorem). O

Sewing conformal blocks
Let W, ® M, ® M, be
Wi ® - WyM;, @M ® - ® My, @ M), (3.3.3)

We have switched the orders and put each M; and its contragredient module M,
together, which are associated to ¢;(B) and ¢} (B) respectively. Our goal is to define
a formal conformal block from each element of .77 (W, @ M. ® M). Notice that

foreachj =1,..., M, (M) ® Mj;)* can be regarded as the algebraic completion of
M; ® M. Define

»®; <« € (M) ®M;)*

such that for any m’ € M}, m € M,

O 4,m @my ={m',m).
Let A € End(M;) whose transpose A" € End(M}) exists, i.e.,

(Am,m"y = {(m, A'm’) (3.34)
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for any m’ € M}, m € M. Then we have an element
ArQi«=r»Q®; Ale € (M; ®Mj>* (3.3.5)

whose value at each m’ ® m is (3.3.4).
More explicitly, for each n € N we choose a basis {m(n, a)}, of the finite dimen-

sional vector space M;(n) (which we recall is the n-eigenspace of Lo; recall also
Convention 2.2.6). Its dual basis {r(n, a)}, is a basis of M[j(n) = M;(n)* satisfying
{m(n,a), m(n,b)) = d,p. Then we have

> Q) « = Z Zm(n,a) ®m(n,a),
neN a
and

Ar®j« = ZZA-m(n,a)@ﬁa(n,a)

neN a

= > @A = 2 Em(n,a) ® A" m(n, a).

neN a
Let P(n) be the projection of M; onto M;(n). Its transpose, which is the projec-
tion of M; onto W';(n), is also denoted by P(n). Then we clearly have

P(n)»®;« =»®; P(n)« = Zm(n, a) ®m(n,a) e M; ® M.

a

Recall L) = Ly. Define

¢ = P(n)g; € End(M,)[[¢;]]. (3.3.6)
keN

Then we have

@@ =@ e (M; @M)[[g]]- (3.3.7)

For any ¢ € (W, ® M. ® M.,)(B), we define its (normalized) sewing S
which is an €'(B)-module homomorphism

SU : #e(W.)(B) = W, @c 6(B) — 0(B)[[¢.]],
and the (standard) sewing
Sb : #x(W.)(B) = W, ®c 0(B) — 0(B){q.},

as follows. Regard 1\ asan & (B)-module homomorphism W,QM,QM, @c & (B) —
O(B). S\ is defined such that for any constant section w € W,,

Sb(w) = (v (g » @)@+ @ (gf »@ure) ). (3.3.8)
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S\ is defined similarly, except that the normalized energy operator Lois replaced
by the standard one L,. When My, ..., M, are irreducible, S¢ differs from S¢ by

a factor qlAl . ’\M for some Ay, ..., Ay € C. Our goal is to show that §1|) is a formal
conformal block In the case that M, ... M), are semisimple (which is sufficient
for our purpose), this will show that S¢ is also a formal conformal block in a
suitable sense. We begin our proof with the following observation, in which we
have omitted the subscript j of &, w, ¢ for simplicity.

Lemma 3.3.3. Let R be any unital commutative C-algebra. (For instance, R = 0(X)
where X is a complex manifold.) For any v € V and f € R[[¢,w]], the following two
elements in (M; ® M} ® R)[[q]] (where the tensor products are over C) are equal:

i d
Res§:0 YMj (€L0u7 g)qLo > ®j b f(f? Q/g)?g
7 d
=Resen 07 » @ Yig, (@ U1 )u, @) < - (g/, ) (3:39)
Remark 3.3.4. We explain the meaning of the left hand side; the other side can
be understood in a similar way. As ¢"° » ®;« is an element of (M; ® M)[[¢]],

Vi, (£%0u, €) g% » ®;« is an element of (M; ® M) ((£))[[g]], i-e. itis a formal power
series of ¢ whose coefficients are in (M; ® M})((§ (( )). (Note that one cannot switch

the order of ((¢)) and [[¢]].) Identify (M; @ M)((£))[[q]] ~ (M; @M;@1)((£))[[a]],
which is a subspace of the R((£))[[¢]]-module (M; ® M; ® R)((£))[[q]]. On the
other hand, write f(§, @) = >, ey fmn€™@" where each f,, , is in R. Then

£Q/£ 2 2 fn+kn£Q7

n=0k>—n

which shows f(£,¢/¢) € R((£))[[¢q]]- Thus, the term in the residue on the left hand
side is an element in

(M; @ M ® R)((£))I[glldé,
whose residue is in (M; ® M; ® R)[[¢]]-

Proof of Lemma 3.3.3. Consider Yy, (¢%0u, €) g™ as an element of End(M,)[[¢*!, ¢]].
Since L!) = Ly, we have the following relations of elements of End(M)[[¢£, ¢*1]]:

t (2.3.16)

(Y, (650w, €)g™) " = gP° (Yag, (670w, €)) 0" Y (Ure)E 0 u,€7)
2D B0V (MU (v, €71) 2 Vg ((0/€)™U v 1), a/€) g

(Note that due to the appearance of ¢/ in the vertex operator, it was not known a
priori that the right hand side contains no negative powers of ¢.) Thus, by (3.3.5),
we have the following equations of elements in (M, ® M;)*[[+!, ¢*']]:

Vi, (€700, €)q™ » @4 = » & (Y, (60, €)g™)

87



= » ®; Yir, (/)" Uv1)u,0/€)q™« = 4" » ®; Yig, ((0/€) U (1), 4/€) +
(3.3.10)

Since for each n, P(n) » ®;« is in M; ® M, (3.3.10) is actually an element in (M; ®

M)[[EF, ¢
Let

A(S? Q) = YMj (fLOua 5) qio > ®j47
B(w,q) = ¢" » ®; Y (@ U(y1)u, @),

considered as elements of (M; ® M;)[[£+", ¢*']] and (M[; ® M})[[ew ™", ¢*']] respec-
tively. Then (3.3.10) says A(¢,q) = B(q/¢,q). Let C(&, @) € (M; @ M)[[¢*, w™']]
be A(¢, £w), which also equals B(w, {w). Since A(€, ¢) contains only non-negative
powers of g, so does A({,{w) for w. Similarly, since B(w,q) contains only
non-negative powers of ¢, so does B(w,{w) for £&. Therefore C'(¢,w) is an el-
ement in (M; ® M)[[{,w]], where the latter can be identified with the sub-
space (M; ® M; ® 1)[[§, =]] of the R[[¢, w]]-module (M; ® M) ® R)[[{, =]]. Thus
D(§, @) := f(§,w)C (&, w) is well-defined as an element in (M; ® M) ® R)[[¢, =]].
It is easy to check that

Resc-o (DI6.0/6)% ) = Resena (Dl ) 2 ).

(Indeed, they both equal }, . Dynq" if we write D(§, @) = >, . cny Dmnl"@".)
This proves (3.3.9). O

~

Theorem 3.3.5. Let € 7 (W, @ M. @ M,)(B). Then S\ is a formal conformal block.

~

Proof. Step 1. Note that we have Sy = YV (B) and Sy = SN G(B) +
S (s5(B) +¢!(B)). Choose any v in 7, (% ®we/s(#Sx)) (B) = (%@wc/l; (05%))(C).

7=1
In this flrst step, we would like to construct a formal power series expansion

D vngl (3.3.11)

neeNM

where each v,, is in (% ® wg/5(*S%)) ©).

First, choose any precompact open subset U of C disjoint from the double
points gj’(g) and ¢} (B) for all 1 < j < M. Then for each j one can find small
enough positive numbers ¢; < r;,\; < p,; such that U x D.,,, is an open subset
of C x D,.,. — U, Fj — U, F in (1.6.9), and hence an open subset of C. Moreover,
by (1.6.14), the projection 7 : C — Bequals 7 x 1 : C x Dy.p. — B x D,.,. when
restricted to U x D..».. It follows that the section /U|I7><D€,>\. of 7x ®uwc/p(®Sx) can be
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regarded as a section of Y3, , Q@ Weyp,  /fxp,.,, (#5x), which, by taking power

series expansions at g, = 0, is in turn an element of ¥; ® wg 5(¢5%)(U)[[g.]]. The
coefficient before ¢;* defines v, |;. This defines the section v,, of 7; ® wg/g(oSgg)

onC — Uj\il(gj’(g) v gj”(g)) satisfying (3.3.11).
We now show that v,,, has poles of orders at most n; +1 at ¢}(3) and < (B). This

~

will imply that v, extends to a section of 75 ®uw; z(53) on C.LetB; = D,.,.; x B,
and choose open sets W, W}, W as in the paragraph containing equation (2.5.10).
Define coordinates &, w;, g; as in the beginning of Section 1.6. Then, by (2.5.11)
and (1.6.24), v|w,_x is a sum of those whose restrictions to W}, W/ under the triv-
ializations U, (&;), U,(w;) are

flgg /)l E resp. — fla/mm)m U T (6312)

J J

where u € Vand f = f(§,w;,-) € O(WW;), and the coordinates of gj are sup-
pressed as the dot. In the above two terms, if we take power series expansions of
¢., then it is obvious that the coefficients before ¢, have poles of orders at most
n; +1at¢; = 0and w; = 0 respectively. This proves the claim.

Step 2. By (2.5.10), we can regard f(¢;, w;, ) as an element of &(B;)[[¢;, @;]],

~

which in turn is an element of &' (B)[[q.\;,¢;, w,]]. Thus, by Lemma 3.3.3 (applied

~

to R = 0(B)[[gs;]]) and the fact that v|y,_yx is a (finite) sum of those of the form

~

(3.3.12), we have the following equation of elements in (M; ® M} ® &(B))|[[g.]]:

N (vne 02 > ®; « 4+ @) v, <)l =0 (3.3.13)

neeNM
where the actions of v,, on M; and M are defined by (3.2.4) using the local coor-
dinates ¢;, @, of X. On the other hand, since 1 is conformal block, for each n,, the

~

element A,,, € 0(B) defined by

Ay = (v, 0@ (g1 > @14) @@ (gl » @)

M ~ ~
(0@ @)@ @, g > @ <@ ® (gff > @)
j=1

M N N N
R (O @ ® ©g @ v ® - ® (]} > @)
j=1

equals 0. Here, similarly, the action of v,, on w is defined by (3.2.4) and (3.2.5)
using the local coordinates 7,. By (3.3.13), we have

0= > Angr= > ll)(vn.'w®(q1L°>®1<)®-~®(q1ff>®M<)>qi"7

neeNM neeNM
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which is exactly S(v - w). This finishes the proof that S is a formal conformal
block. ]

3.4 Propagation of conformal blocks

)} as a conformal block

Let X = (C;xy,...,2x) be an N-pointed compact Riemann surface. Recall the
divisor Sy = z; + - - + . As in previous sections, we write C' — {z1,..., 2y} as
C — Sy for brevity. Then the projection onto the second component C' x (C'—Sx) —
(C' — S%) is the family over C' — Sx with constant fiber C. We understand each z;
as the constant section z; : C'— Sy — C x (C'— Sx), i.e., its value at each y € C' — Sx
is (z;,y). Let

LZC—Sx—>CX<C—Sx>

be the diagonal map, i.e., sending each y to (v, y). We thus have a family of (N +1)-
pointed curve

X =(Cx (C—5%)— (C—Sx);t,21,...,TN). (3.4.1)

Let Wy,..., Wy be V-modules associated to the N points of X. Choose ¢ €
T (W,). Our first goal in this section is to show that the (¢ in (3.1.6) can be
identified naturally with an element of 7 3(V®@ W,)(C — Sx).

We make the identification of 0¢_g,-modules

Wx(VOW,) ~ Yo g, ®c #x(W.,) (3.4.2)

as follows. Choose any open subset V' = C' — Sy and a univalent map p.: V' — C,
and choose local coordinates 7;, ...,y of 21, ...,z y respectively. Then we have a
local coordinate o(u) of ¢(V') defined on V' x V' to be

o(p)y(z) = o(p) (2, y) = p(x) — pu(y) (3.4.3)

for any z,y € V. One can also regard each 7; as the local coordinate of z;(C' — Sx)
constant over the base C' — Sx. Write (o(u),n.) = (o(1t), 1, - .., nn). We then have
trivialization

U(Q(M)a,rh) : %X(V®Wo>|v i) V@(C Wo ®(C ﬁV

as in (3.2.12). On the other hand, we have U,(u) : Yc|y = V ®&c Oy and U(n.) :
Wx(W,.) = W, as in (2.4.8) and (3.1.9), which give

U,() UG = Yelv @c #x(W,) = V@c W, Qc Oy .
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Then the isomorphism (3.4.2) on V' is given by

(Uy(1) @UM)) " Uo(p), 1) = #ix(VO W)y = Yol @c #a(W,).  (3.44)

We identify the above two sheaves of modules via the above map, so that we also
have identification

U(o(1);me) = Uy(p) @U(). (3.4.5)

Using (2.4.9), (3.1.10), and (3.2.13), it is not hard to see that this isomorphism is
independent of the choice of 1 and 7,. Thus (3.4.2) can be defined globally.

Recall from (3.1.6) and Remark 3.1.4 that for each w € #%(W.,), 1p(w) is an
element of H°(C' — Sx, V%) = ¥4(C — Sx) = Homg, ¢ (¥o-sy, Oc-s,) Whose
evaluation (v, w,) with any v € #-(V) (where V < C — Sy is open) is also
written as (d(v ® w,). This notation suggests that we regard !¢ as an element
of Homg,._ x (Vo—sy ®c #5x(W,), Oc_g, ), which, through the isomorphism (3.4.2),
becomes a homomorphism of 0¢_g,-modules

W} #x(VOW,) - Oc_g,.
We would like to show that (¢ is a conformal block.

Theorem 3.4.1 (Propagation of conformal blocks). For any ¢ € Z¥(W.,), 1 is an
element of 73(V®W,).

Proof. Assume without loss of generality that C' is connected. Then so is the base
manifold C' — Sk of the family (X. Choose any of =4, ..., zy, say z;. Choose local
coordinates 7, of z, such that 7, is defined on a neighborhood V' > z;. Assume
that under the coordinate 7;, V' is an open disc centered at x; with radius » > 0.
Identify #%(W,) with W, via the triviliazation ¢(7, ) (which means we set/(n.) =
1). By Proposition 3.2.4, it suffices to prove that the restriction of :p to V' — {z1}
is a conformal block. Identify V' with an open subset of C via 7);, which makes 7,
equal to the standard coordinate z of C. We also have U,(1n;) = V,(n:). Choose
any w, € W, and v € V. By the fact that ! equals (¢, (defined by (3.1.5)) near z,
we have

(3.4.5)

Lo (U(o(m),n) " (v ®@w.))
= ¢ (Y, (v, 2)w; ®ua @ -+ Quy)

(2.4.6) Cl) (ZEOYWI (ZiLO'U, 1)272]011)1 ® Wy ® e ® wN) . (34:6)

Zd)(ug(m)_lv,w.)

Define

Q'Nj = (PlI_IC;O,l,$27...,xN;OO;:L'1;Z7Z—177”]2,...77”]]\7;271;771).
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Its sewing (near co € P!, z; € C controlled by |z7!| < 1,|m| < r) gives a family
2) with base manifold the open disc D, with radius r (which is equivalent to V).
Associate W1, V., Wy, ... Wy to 0,1, 2,..., 2y and W}, W, to oo, z; respectively.
Let 1 be a linear functional on W; @ VR W, ® - - - @ Wy ® W) ® W, for which
we switch the order to W; @ Wy ® --- @ Wy @ Wy ® V® W) (where the order
of two W, are also switched), is defined by ¢ € W; (a linear functional on the
first N components) tensor the conformal block on (I;0, 1, c0) (which is a linear
functional on the last three components) defined as in example 3.1.6. Then the
sewing §1b (which is a formal conformal block by Theorem 3.3.5), evaluated with
the constant section v ® w, (under the local coordinates z, z — 1,75, ..., ny constant
with respect to sewing), is

b (¢" Yo, (v, )y @2 @ - @uwy) (€ C[[q]])-

This expression is an element of &(D)*) (and hence of &(D,)) since (3.4.6) is an
element of €(D)). If we scale the local coordinates of 0,1 € P! by ¢!, then the
above expression becomes (3.4.6) (with z replaced by ¢), and the restriction 2)x
of 9 to the punctured disc D), including the sections and the local coordinates, is
exactly Xy _ a1} This shows that, after scaling the coordinates, Sl]) becomes ex-
actly 1. So SU converges a.l.u.. By Proposition 3.3.2-2, S is an actual conformal
block associated to the restricted family 9),x. So 1d[y_(.,} is a conformal block
associated to 1X|y _(,,}. This finishes the proof. O

Corollary 3.4.2. Foreach y € C' — Sk, if we set X, = (C;y,21,...,xN), then the value
of W at y, written as 1§/, is an element of 75 (V@ W.).

Remark 3.4.3. We describe the explicit form of 1|, as an element of J3 (V ®
W.,). Choose local coordinates 7, at z,. Choose a univalent map y defined on a
neighborhood V' of y. Then, o(u1), (defined in (3.4.3)) is a local coordinate at .
Identify U(n.) : #x(W.) = W,. Then for any v € V and w, € W,,

|, Ulo(n)y) v @ w) =1 (U)o, w.)

(3.4.7)

yJ

where we recall that U, ()~ 'v is in ¥ (V).
Note that Theorem 3.4.1 is stronger than Corollary 3.4.2, in that it says also
that |, varies holomorphically over y.

Double propagation

We now want to propagate the conformal block :¢. For any two sets A, B, we
set

Conf(A, B) = {(a,b) e A x B :a # b}, Confy(A) = Conf(A, A). (3.4.8)
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Fix trivialization #%(W.) ~ W, via U(n.). Let V < C — Sy be open. For each
veYo(V)and w, € W,, v ® w, can be regarded as an element of #:(V® W,)(V)
by (3.4.4). Therefore, by Theorem 3.2.5, we have 1! ¢ (v ® w, ), written as 20 ¢ (v, w.)
in the following, sending each u € #(U) (where U is an open subset of C' — Sx
disjoint from V) to an element ! ¢(u,v,w,) € O(U x V). (To apply Theorem
3.2.5, we extend u to an element of #;x(U x V') constantly over V.) This map is
compatible with the restrictions to subsets of U and of V. Using this compatibility,
for any (non-necessarily disjoint) open subsets U, V < C, .1 d(w.) can be extended
to a homomorphism of &/(U)-&'(V') bimodules

L b(w,) : Ye(U) ®c Yo (V) = Oconty(c—sy)(Conf(U — S,V — Sy)) (3.4.9)

compatible with the restrictions to subsets of U and V, such that for any u €
Yo(U),v € ¥=(V) and open subsets Uy < U,Vy < V satisfying Uy n Vy = &,
LU (u, v, W) |y v, 18 the element 22 (u|v,—sy, V|vp—s5; We) describe above (which
is in Ocont,(c—s5)((Uo — Sx) x (Vo — Sx))). For brevity, such compatibility is sum-
marized by saying that 1 ¢(w.) is a homomorphism of & X] &-modules

L (w.) : Yo X Vo — Oconty(C—5x) (3.4.10)

Similar to this description, we can regard ! (w,) as a homomorphism of -
modules

Lh(w.) 1 Vo — Oc—s, (3.4.11)

whose value at each v € &(V) is equal to the one at v|y_g,.

The next theorem is just the restatement of the description of !¢ in Theorem
3.1.2. We assume that foreachi = 1,..., N, n; is defined on W;, and that W; n W =
& if i # j. Let z be the standard coordinate of C.

Theorem 3.4.4. Choose any w, € W,. Choose V. < W, an open disc centered at x;
(under the coordinate n;), identify V with a neighborhood of 0 € C via n;, and identify
Vv ~ V ®c Oy via the trivialization U,(n;) = V,(n;). Choose v € ¥ (V'), and choose
yeV — Sy =V —{x;}. Then

Wb (v, w,)

, = 001 ® - @Y, (v,2)w; ® - @wy)| (3.4.12)

z=n;(y)’

Moreover, we have

W(1,w.)|, = b(w.). (3.4.13)

In this theorem, 1 € 7 (C) is the vacuum section defined in Remark 2.5.3.
Since Yw,(1,2) = 1w, (3.4.13) is clearly true when y is in a neighborhood of
x1,...,zyN. Thus (3.4.13) is true for any y € C.

We now generalize this theorem to 12 ¢.
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Theorem 3.4.5. Choose any w, € W,. Choose any U,V open subsets of C withn : U —
C, p : V — Cunivalent maps, identify ¥, ~ V®c Oy, ¥y ~ V®c Oy via trivializations
Uy(n) = V,o(n),Uy(1r) = V,(u) respectively. Choose u,v in ¥o(U), Yo (V') respectively,
and choose x € U — Sx,y € V — Sy satisfying x # y. Then the following are true.

(1) If U is an open disc in W; centered at x; (under the coordinate n;) and does not
contain y, and if n = n;. Then

L (u, v, w,) oy = ZdD(v,wl®---®Ywi(u,z)wi®---®w1\;)

‘y ‘z:ni(:v)

(3.4.14)

where the series of z on the right hand side converges absolutely, and we regard
u e V® C[[z]] by taking Taylor series expansion of the variable n; at x;.

(2) If U = V and do not contain x, ..., xy, if n = p, and if U contains the closed disc
with center y and radius |n(x) — n(y)| (under the coordinate n), then

L d(u,v,w,) (3.4.15)

=1 (Y(u, 2)v,u1 ® - Q@)

T,y ‘y ‘Z=n(9&)—n(y)

where the series of z on the right hand side converges absolutely, and we regard
u e V® Cl[z]] by taking Taylor series expansion of the variable n — n(y) at y.

(3) We have
NO(L,v,w.) = (v, w,). (3.4.16)
(4) We have
L2 (u, v, w,) ey = U b (v, u, w,) - (3.4.17)
Proof. It is easy to see that
L dey = Dy e (3.4.18)

Thus (1) (2) (3) follow directly from Theorem 3.4.4 and relation (3.4.13) (with ¢
replaced by :$|,). We now prove (4). It suffices to assume that C' is connected.
Assume first of all that N > 1. Let U and V be open discs in W3, W, centered
at z1, 2o and identified with open subsets of C via 7,, 7, respectively. (Note that
under this identification, we have x; = 0 and x; = 0.) Let  be also the standard
coordinate of C. Then from (1) and Theorem 3.4.4, 1! d(u, v, w,) oy equals the

evaluation of

9(2,¢) == & (Yw, (u, 2)w1 ® Yoy, (v, Qwa @ w3 ® - - @ wyy) (3.4.19)

(which is an element of C((z,())) first at ( = n2(y) and then at z = 7;(x). By
varying z and y, 2 (u, v, w, ) is clearly a two-variable holomorphic function f(z, ¢)

94



on (U — {0}) x (V — {0}). Thus, we have for any z, € U — {0},(y € V — {0} that
F(2: Ole=¢olz=20 = 9(2, Olc=colz=20-

By taking Laurant series expansions, we may regard f(z, () as an element of
C[[z*!, ¢*!]]. By applying Res;—oRes._o( - - )2™("dzd( to f and g for any m,n € Z
(note the order of the two residues), we see that f(z, () and g(z, () can be regarded
as identical elements of C[[z*!,(*!]]. Since g is in C((z,()), so is f. Since the
double series f(z, () converges absolutely when z € U — {0} and ¢ € V — {0}, so
does ¢(z,(). Therefore, the evaluations of (3.4.19) at { = 72(y) and at z = n(x)
commute. This proves (4) for the above chosen U, V. By analytic continuation,
one may use the argument in the proof of Proposition 3.2.4 to show (4) when U
is as above and V' is any open subset of C'. Another application of this argument
proves (4) for any open U,V < C.

Finally, we assume that N = 1. Then, by (3.4.13), ¢ is the restriction of a
conformal block 1 on C with two marked points. Since (4) is true for 1, it holds
also for ¢. H

Multiple propagations

Although single and double propagations are sufficient for proving the main
results of this monograph, it would be interesting to generalize them to multiple
propagation.

Choose n € N and define

Conf(Ay,...,A,) ={(a1,...,a,) € Ay x --- Ay 1 a; # a; forany 1 <i < j < n},
Conf, (A) = Conf(A4, A, ..., A).

One can apply the propagation n-times to obtain, for each w, € W,, a homomor-
phism of 65"-modules

Ud(w,) 7/n — Ocont, (C—Sx) (3.4.20)

which means that for any open subsets Uy, ..., U, of C, we have an 0'(U;)®c- - -®c
(U, )-module homomorphism

Vd(w.) : Yo(Ur) ®c - - ®&c Yo (Un) — Ocont,, (0—sy)(Conf (U — Sy, ..., U, — Sx))

compatible with respect to restrictions. We have the following generalization of
Theorem 3.4.5. Recall again that W1, ..., Wy are mutually disjoint neighborhoods
of z1,...,2y on which 7y, ..., 7y are defined respectively.

Theorem 3.4.6. Choose any w, € W,. For each 1 < k < n, choose an open subset U}, of C
equipped with a univalent map py, : U, — C, identify Vi, ~V Q¢ Oy, via trivialization
Uy(pr) = V,o(iur), choose vy, € Yo(Uy) = V®c O (Uy), and choose yy, € Uy, — S satisfying
yj # yi forany 1 < j < k < n. Then the following are true.
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(1) If U, is an open disc of W; centered at x; (under the coordinate n;) and does not
contain ys, . .., Yn, and if py = n;, then

RTINS

:2”_1¢(vz,...,vn,w1®---®Ywi(vl7z>wi®"'®w]v)}yz

----- Yn ‘z=77i(y1)

(3.4.21)

where the series of z on the right hand side converges absolutely, and v, is considered
as an element of V ® C((z)) by taking Taylor series expansion with respect to the
variable n; at x;.

(2) If Uy = U, and do not contain x1, ..., TN, Y3, - ., Yn, if 1 = o, and if Uy contains
the closed disc with center y, and radius |po(y1) — p2(y2)| (under the coordinate
lt2), then

(ot )]

Lt q)(Y(vl, 2) U9, U3, Upy W1 ® -+ ® wN) ‘yQ (3.4.22)

..... Yn ‘z=u2(y1)—ﬂ2(y2)

where the series of z on the right hand side converges absolutely, and v, is considered
as an element of V ® C((z)) by taking Taylor series expansion with respect to the

variable py — pa(yo) at yo.

(3) We have
VD (1, 02,03, . U, we) = U P (e, U, W) (3.4.23)
(4) For any permutation o of the set {1,2,...,n}, we have
U (Vo) o Vo wa)|, =D v )] (3.4.24)
Proof. (1) (2) (3) follow from
U Dy o = 2 Dy (3.4.25)

If o fixes 3, ..., nand exchanges 1, 2, then (4) follows from Theorem 3.4.5-(4). If 1 <
k < nand o exchanges k, k + 1 and fixes the others, then the first two components
of "~k +1¢ are exchangeable. Thus, by propagating (" ~**'¢ for k — 1 times, we see
that the k-th and the (k + 1)-th components of ("¢ are exchangeable. This proves
(4) in general. [
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3.5 A commutator formula

The results of this section will be used in Section 3.6 to define a logarithmic
connection on sheaves of conformal blocks.

Let X = (7 : C — B;s,...,sn) be a family of N-pointed compact Riemann
surfaces. We are going to define a sheaf action 73 ® w¢/z(eSx) —~ #x(eSx) which
is Op-linear on 7x ® we/p(*Sx) and O¢-linear on #x(eS%). In other words, we shall
define a homomorphism of &z-modules

L : 72 @ we/s(eSx) — End,, (7% (eS%)).

Thus, for any open subset W < C, any element of 73 ® wc/s(eSx)(W) gives an
element of Endg,, (#x(eSx)|w).

Choose open W < C together with n € ¢(1V) univalent on each fiber. We
assume that W is small enough such that 7(1V) has coordinates 7, = (71, 72,...).
Write also 7, o 7 as 7, for simplicity. Identify W with an open subset of C x B via
(n,7.), and identify

Vxlw =~ VQ®c Ow, V2 @weslw =~V Qc weyslw

via the trivialization U,(n) = V,(n). Let z be the standard coordinates of C (which
is identified with 7). Then for any udz = u(z,7.)dz in V ®c we/(eSx) (W), open
subset U ¢ W, and v = v(z,7,) in V ®c O (eS%)(U), we define the action of udz
on v, written as L4, v = (Ly4.v)(z, 7. ), to be

Lug. v = Res¢_.— Y(u((, Te), ¢ — z)v(z, T )d( (3.5.1)

where ( is another distinct standard complex variable of C. Note that u, v are V-
valued meromorphic functions on W with possible poles at ¢;(B), . .., sn(B). That
L.q.v has finite poles at Sx follows from the easy calculation

Lyg. v = Z %Y(&Zu(z,r.))nv(z,n) (3.5.2)
n=0

where the sum is finite by the lower truncation property.

Similar to (3.2.4), the definition of this action is independent of the choice of n
thanks to Theorem 2.4.1. Thus, it can be extended to 73 ® we/(eSx) —~ #x(eSk).
(We will not this fact; in Section 3.6, we shall only use the local expression of L as
in (3.5.2).) By tensoring with the identity map of w¢/3, we get a homomorphism
of Oz-modules

L: 7x @we/s(eSx) — End,, (Y2 @ we/s(eSx))

whose local expression under 7 is
L4, vdz = <Res<,zzo Y(u(C, Te), ¢ — z)v(z, T.)d() dz
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-y %Y(agu(z, 7)), v(z 7)dz. (35.3)
n=0

Now, we assume that B is small enough such that we have a family of
N-pointed compact Riemann surfaces with local coordinates X = (7 : C —
Bisi, ... Snim, - .- .nn ). Let Wy, ..., Wy be V-modules associated to the N-points.
Let now W be a neighborhood of ¢;(B) on which 7; is defined, set n = 7,
and take the identifications mentioned above. Recall that by (3.2.4), for each
w; € Wz Rc ﬁ(B) and vdz € V@(C wC/B(OSx)(W),

vdz - w; = Res,—oYw, (v, 2)w;dz.
The following is the main result of this section.
Proposition 3.5.1. For any udz,vdz € V ®c we/p(eSx)(W) and w; e W; ®c 0(B),
udz - vdz - w; — vdz - udz - w; = (Lyg.vdz) - w;.
Note that the same identity holds when w; is replaced by any w € W, ®¢ O(B).

Proof. We write w; as w for simplicity. Since the actions of udz, vdz and the defini-
tion of L can be defined fiberwisely, it suffices to assume that B is a single point.
We thus suppress the symbol 7,. Note that I is identified with n(W') under n. We
assume that W = n(WV) is an open disc. Choose any w’ € W,. Then there exists
a holomorphic function f = f(z,() on Confy(WW — {0}) (recall (3.4.8)) such that
for each fixed z, the series expansion (with respect to the variable () near 0, z are
respectively

a.(¢) = W', Yay, (v, 2)Yw, (u, Quy € C((¢)),
1=(C = 2) = W', Y, (Y(u, ¢ = 2)v, 2)w) - € C((¢ — 2)),

and that for each fixed (, the series expansion with respect to z at 0 is

Be(z) = (', Yag, (u, ()Y, (v, 2)w) € C((2)).

Indeed, let ¢ be the conformal block on (P'; 0, 20) defined in example 3.1.6. Then
f=01d(u,v,w®w'). That its series expansions are described as above follows
from theorems 3.4.4 and 3.4.5.

Choose circles C,Cy,C3 < W centered at 0 with radii rq,r,, 75 respectively
satisfying r; < 2 < r3. For each z € (y, choose a circle C(z) centered at z whose
radius is less than 7y — r; and r3 — 9. Then

(w',vdz - udz - w) = Res,_o(Res¢—oa;(()d(¢)dz = Res,—o(Res¢—o f (2, ()d()d=

= 3€ ( § f(z, g)dg) dz. (3.5.4)

Cy N1
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Similarly,

(o', udz - vdz - w) = 3@ (§ f(z, C)dz) ¢ = 3@ (§ f(z, g)dg) dz. (3.5.5)

C 3 C 2 02 03

Note that in the last equation, the two contour integrals are interchangeable since
f is holomorphic and in particular continuous on Conf, (W — {0}). Also,

W', (Lygsvdz) - w;) = Res,—o(Res¢—,—07:(¢ — 2)d()dz

-§ ( § f<z,<>dc) &,

Ca “C(z)

which, by Cauchy integral theorem (applied to the function ¢ — f(z, () for each
tixed z), equals the difference of (3.5.5) and (3.5.4). This finishes the proof. O

The following useful observation will be used in constructing connections on
sheaves of conformal blocks.

Lemma 3.5.2. For any vdz € V ®c we/p(eSx)(W) and w; e W; @c O(B),
((0.v)dz) - w; + ((L-1v)dz) - w; = 0.

Proof. Recall that when v is a constant section, we have the L_;-derivative prop-
erty (2.2.4). Since we do not assume here that v is constant, we have

0, Yw, (v, 2) = Y, (0,0, 2) + Y, (L_1v, 2).
Thus, the left hand side of the equation we want to prove equals
Res,—¢ 0, (Ywi (v, z)wl) dz.
This residue must be 0 since the series expansion of 0, (- - - ) with respect to z does
not contain 2. O
3.6 The logarithmic connections

Let X = (7 : C — B) be a family of complex curves. If & is an 0z-module, then
a logarithmic connection V on & associates to each open subset U — B a bilinear
map

V:05(—logA)(U) x &U) — &U), (9,5) — Vys

satisfying conditions (a) and (b) of Definition 1.8.3, namely,
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(a) If V is an open subset of U, then V), s|y = (Vys)|v.
(b) If f € 05(U), then
Viys = fVys,
Vy(fs) =v(f)s + [Vys.

Thus, V is a connection if X is a family of compact Riemann surfaces (equivalently,
A= ).

Given a logarithmic connection V on &, one can define on the dual sheaf &*
the dual connection (also denoted by V) as follows. Choose any open U < B,
y € Op(—logA)(U), and o € &*(U) = Homg, (&|y, Oy), then V0, which is an
element of Homg, (&'|v, O ), is defined such that for any open subset V' < U and
se &(U),

(Vy0,s) =no,s)— (0, Vys). (3.6.1)

We now assume that X is a family of N-pointed complex curves X = (7 : C —
B;<i,...,sn) equipped with V-modules Wy, ..., Wy. Our goal of this section is to
define locally a logarithmic connection V on .7;*(W,) near each point of B. Since
our task is local, we assume that B is small enough such that the following hold.

(i) X is either smooth or is obtained by sewing a smooth family.

(ii) If X is smooth, then B is biholomorphic to a Stein open subset of a complex
coordinate space C™ (m € N); if X is obtained by sewing a smooth family X,
then B is biholomorphic to a Stein open subset of C™.

(iii) We can equip ¢, . . ., sy with local coordinates:

X=(m:C—Bist,-..,SNiM, -+, IN).

Note that condition (ii) implies that B is Stein. (If X is obtained by sewing X, then
B is a product of the Stein manifold B and some open discs, which is therefore
Stein.) Recall the description of ©3(—log A) near (1.6.17), which shows that, due
to condition (ii), Op(—log A) is a free Oz-module, i.e., it is generated freely by
finitely many global sections i, 1, - - - € ©p(—log A)(B).

We shall construct a (global) logarithmic connection V over B whenever the
above three conditions are satisfied. For that purpose, we shall define, for each
y € {91,92,...}, a sheaf map (not a homomorphism of &z-modules !)

V,: F2(W.) - (W)
satisfying that for any open U < B, w € 7x(W,)(U), and f € O(U),
Vy(fw) =9(f)w + fVyw.
(Indeed, we will do this for any y € O5(—log A)(B).) Then the differential oper-

ators V,,, V,,. ... extend to a logarithmic connection V on 7;(W,), whose dual
connection is the one V on .73 (W,).
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Defining V on #%x(W.,)

We now fix y € Op(—log A)(B). Recall that .7:(W,) is the quotient of #%(W,) =
W.Qc O (identified viaU(n.)) by the Oz-submodule 7, (¥ ®we/s(Sx)) - #x(W.).
Our plan is to define the action of V, on #%(W,), and then to show that V, pre-
serves that submodule.

Choose any k£ € N. Then, due to (1.6.22), we have a short exact sequence of
Oc-modules

0 — O¢/5(kSx) — Oc(—logCa + kSx) I (1*0p(—log A)) (kSx) — 0.

where O¢(—logCa + kSx) is short for O¢(—log Ca)(kSx). By Theorem 1.5.7, there
exists ko € N such that for any k > ko and b € B, we have H'(Cy, O¢,(kSx)) = 0.
Thus, when k > ko, we have R'm,0¢/5(kSx) = 0 due to Grauert’s Theorem 1.6.2.
Therefore, if we apply (1.3.1) to the above short exact sequence, we get an exact
sequence of Oz-modules

0 — m.0¢/8(kSx) = mOc(—logCa + kSx) 2 (m*Op(—log A)) (kSx) — 0.

Consider this as a short exact sequence of Oz-modules. Since 7,0¢/5(kSx) is
coherent by Grauert direct image theorem (indeed it is locally free by Theo-
rem 1.6.2), and since B is assumed to be Stein, we have H'(B, 7.0¢/5(kSx)) =
0 by Cartan’s theorem B. Therefore, we have an exact sequence of vec-
tor spaces 0 — H(B,mO¢5(kSx)) — HO(B,mO¢(~logCa + kSx)) &
H° (B, . (7*0p(—log A)) (kSx)) — 0. To simplify notations, we take the direct
limit over all & > k, to obtain an exact sequence

0— HO(B, W*QC/B(OSx)) — HO(B, W*@c(— logCa + OSx))
D, HO(B, 7o (7°05(— log A)) (85%)) — 0. (3.6.2)
Choose any 1 € O(—log A)(B). Then, its pull back 7*y is in 7*©g(—log A)(C)
(recall (1.3.2)), which can be viewed as an element of 7, (7*Os(—log A))(B) and

hence of 7, (7*Op(— log A)) (eSx)(B). Since the dr in the above exact sequence is
a surjective, there exists a lift j of v, i.e., an element 1) satisfying

ﬁ € @c(— log Ca + .Sx)(C),
dr(h) = 7*y. (3.6.3)

(Recall that O¢(—log Ca + ¢Sx)(C) equals 7,0¢/5(—logCa + ¢5%)(B).)

We are going to use yj to define V,. Let 7, = (71,7, ... ) be coordinates of m(8).
For each 1 < i < N, choose a neighborhood W; of ¢;(B) on which 7; is defined,
such that W; n W, = & when i # j. Write 7, o 7 also as 7, for simplicity, so that
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(n;, 7o) is a coordinate of W;. Identify W, with its image via (7;, 7.), so that 7, is
identified with the standard coordinate z of C. Write

9= D, 0;(7)0r,. (3.6.4)

Then by (1.6.18) and (3.6.3), when restricted to W}, § can be written as

~

)

w, = hi(z,7.)0: + Z 9;(12)0s, (3.6.5)

J

where, due to the divisor Sy, 2h,(z, 7.) is a holomorphic function on W; for some
k € N. Recall that c is the conformal vector of V. We set

V() € Y2 Quep(eSx) (Wi U - U Wy)
Uy (i) V(D) lw, = hi(z,70)c dz. (3.6.6)

Now, for any open subset U < B and any w; € W; ®¢ O3(U), we define

Vyw; = Y g;(7e)0r,w; — V() - w; (3.6.7)
;

Forany w, = w1 ® - - - @ wy € W, ®c Op(U), we set

N
Vowe = > w1 @ ® -+ @ Vyw; ® -+ @ wy. (3.6.8)

i—1
This finishes the definition of V,.

Remark 3.6.1. It is easy to check that the definition of V, is independent of the
choice of the coordinate 7, of B. Thus, if we assume in (ii) just that B is a Stein
manifold, then one still has a well defined V,, whose local expression is given by
(3.6.7) and (3.6.8) when choosing a coordinate 7, for a small enough open subset
of B. The requirement that B is also biholomorphic to an open subset of C™ is
used to define V, for which the freeness of ©z(— log A) is needed.

Remark 3.6.2. As mentioned before, we define V by first defining V, ,V,,,...
where 11,1, ... generate freely ©3(—1log A), and then extending it &z-linearly to
a logarithmic connection over B. V,,, V,,, ... are defined by formula (3.6.7) using
the lifts 91, 9o, . ... Then for any section t of Og(—log A), the operator V,, can also
be defined by (3.6.7) by choosing the lift § in the following way: choose unique
sections f1, f2,... of Ogsuch thaty = fin; + foyo +---. Then ) = (fiom)h + (f20
77-)'52 4o,
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Remark 3.6.3. One can write down the explicit formula of v(y)) - w;. Write

(2,70) Z hi(k,7.)z (3.6.9)

keZ

noting that /ﬁl(k, 7.) vanishes when £ is sufficiently small. Then, using Y, (c), =
Lj—1, we compute

v(9) - w; =Res.—ohi(z, 7)Yy, (c, 2)widz = Z Ri(k, 7a)Res,_o2" Y, (¢, 2)w;dz

keZ
=" ik, ) Yay, (€)rw; = Y gk, 70) Ly (3.6.10)
keZ keZ
We conclude:
Vyw; = Zgj (74)0- Wi — Zh (k, 7o) Li_1w;. (3.6.11)
keZ

Remark 3.6.4. We give a heuristic explanation of our definition of V,. Assume
that X is a smooth family. For brevity, we also assume N = i = 1, and write
Wi = Wow; = w, = ¢,n =n Let( — ¢land ¢ — cpg be the (complex)
one-parameter flows (in C and in B) integrated from the vector fields y and 1
respectively. Fix b € B and set b(¢) = ¢/(b). Choose a closed disc D(b) in the fiber
Cy centered at ¢(b). Then we have an equivalence of open Riemann surfaces

) 1 Cy — D(b) = Cy) — D(B(C))

where D(b(¢)) is a closed disc inside C,. Now, 1 gives local coordinates of C, — D (b)
and Cy¢) — D(b(¢)) near the circles 0D(b) and d(D(b(¢))) respectively. Pull back
the coordinate n near d(D(b(())) to one near ¢D(b) through the bihomolorphic
map gog, and call this new coordinate 7. Then, we have two local coordinates of
Cy — D(b): they are 7, 7., both defined near 0D (b).

Now, we shall find the condition of w to be a parallel section in the direction
of y. Then w(b) in the n coordinate should be equal to w(b(¢)) in the 7, coordinate.
So one should expect the following identity of elements in #%(W):

U(n) " w(b) = U(ne) ™ w(b(C)).

Here, U(n) and U(7) are the trivilizations of the vector space #5(W) induced by
the local coordinates 7, 7 near the circles. (We have defined such trivializations
in the paragraphs near (3.1.9) when the local coordinates are defined near (neigh-
borhoods of) points. It is reasonable to expect that they can be generalized, at
least formally, to those defined near circles.) Thus, formally, we have

w(b(¢)) = U(nc on Hw(b).
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We now want to take the derivative of this equation. Set h = h;, h o= lAzZ Then
Oc(ncon™1)|c=o, the derivative at ¢ = 0 of the transformation n; o7, should equal
the vector field h(z,7,)0, at 7o = b due to (3.6.5). Thus, the derivative of U(n;on™!)
at 7, = b should equal the action of the vector field h(z,0)0, = >, }Al(k;, b)zko,
on W, which, by the correspondence %0, < Ly, (see (2.3.1))!, should be

A~

Drez P(k,b)Ly_1. So

= > Ak, b) Ly—yw(b).

keZ

o (b(Q))]

By (3.6.11), this is equivalent to V,yw; = 0 at b.

Defining V on .7(W,)
Assume as before that B satisfies conditions (i)-(iii).
Theorem 3.6.5. The logarithmic connection V on #5x(W.,) descends to one on Tx(W,).

To prove this theorem, we need to show that V, descends to one on 7x(W,).
This means that we need to check that V, preserves the Oz-submodule 7, (7 ®
we/(eSx)) - We(W,).

Proof. Choose any open subset U < B. Choose any w; € W; ®¢ Op(U) for each
1 <i< Nandsetw, =w; ®- - ®wy which is in #4(W,)(U) = W, ®c O5(U).
Choose v € m, (¥x ® wes(95x)) (U). So v € ¥ @ wes(9Sx)(Cu). (Recall that by our
notation, Cy = n~!(U).) We shall show that [V,,v] = Lyv, i.e.,

V(v -w;) = v - Vyw; + Lyv - w;. (3.6.12)

Then the same relation holds with w; replaced by w., which will finish the proof of
the theorem. (Note that £ is defined as in Section 2.6, and that L;v is also in 73 ®
we/B(95%)(Cy).) Since both sides of (3.6.12) are W;-valued holomorphic functions
on U, to prove this relation on U, it suffices to verify it on U — A. Therefore, we
assume in the following that A = ¥ and B = U. So X is a smooth family.

Recall that 7, is defined on W;, and that we have identified W; with (n;, 7, ) (W;)
and hence 7; with the standard coordinate z. Since, in (3.6.12), v is acting on W;,
we use U,(1n;) = V() to identify #%|w, ~ V ®c O, and hence 7; ® we/slw, ~
V ®c Ow,dz. Then the section v|w, € ¥x @ we/p(0Sx)(W;) can be written as v = udz
where u = u(z,7,) € V®c Ow,(0Sx)(W;).

We now use (3.6.7) to calculate that

~

Vy(v-w;) = Vy(udz - w;) = Zgj(T.)aTj (udz - w;) — v() - udz - wy,

J

Here, unlike in Section 2.3, the action of 24, is Lo but not ZO.
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which, by Proposition 3.5.1, equals
Zgj (To)udz - Orjw; — udz - V() - w; + Zgj(T.)((ﬁTju)dz ~w;) — (Lygyudz) - w;
' J
zvj- Vyw; + Zgj(T.)((aTju)dz w;) — (Lygudz) - w
J
Thus, one can finish proving (3.6.12) by showing
Lyudz - w; = Zgj(T.)((aTju)dz ~w;) — (Lygyudz) - w
J
By Lemma 3.5.2, the above equation follows if we can show
Lyudz = Z 9;(1e)(0r;u)dz — Lygyudz + (0. + L_1)(- -+ )dz. (3.6.13)
J
By (3.6.6) and (3.5.3), we have
L@ udz = Z (9k (z, 7)Y (c)pu(z, 7a)dz

keN

Z (2, 7o) Lp—1u(z, To ).

keN

By Theorem 2.6.2 and also Remark 2.6.3 (which explains the appearance of
0,hi(z, Te)udz below), we have

“ 1
Lyudz = hi(z,7.) 0 udz + Z 95(7e)0rudz — Z Eﬁghi(z, To)Li—1udz + 0,hi(z, 7o )udz

j=1 k>1

=0, (hi(z, 7e)u)dz + Zg] (7e)0rudz — ; o “hi(z, Te) Li—1udz + hi(z,7e) L_yudz
>0

- Z 95(7e)0r,udz — Z é’kh (z,7e) L—1udz + (0, + L_1)(hi(2, Te)u)dz.
This proves (3.6.13). O
Projective uniqueness of V

We shall show that the definition of V, on 7%(W,) is independent, up to 0-
scalar multiples, of the choice of the lift .
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Proposition 3.6.6. Suppose that vy € O(—log A)(B) has two lifts §, ' € Oc(—logCa +
*Sx)(C) which together with n, define V,, V| respectively. Then there exists f € 0(B)
such that

Vys — Vs = —fs
for any section s of Fx(W.,). Consequently, for any section ¢ of 73 (W, ), we have

Vyp = Vid = fo. (3.6.14)
Remark 3.6.7. A different proof of this proposition will be given in Section 4.2,
and we will see that f = #(y — ') which is calculated by (4.2.4).
Proof. Set 0 = § — 5" and v(0) = v(§) — v(¥'). Then dx(0) = 0, i.e., 0 is a lift of the
zero tangent field of B. Hence, by the exact sequence (3.6.2), we have

0 € m.0¢/5(e5x)(B).

Let W = W, U --- U Wy. Then v(0) is an element of % ® we/p(eSx)(W). We shall
show that the action of \/(6) on #x(W,) = W, ®c Op (defined by acting on each
component as in (3.2.5)) descends to an &z-scalar multiplication on 7% (W.,).

On each W; and under the previously mentioned trivializations, 0 and v(0)
can be written as

Olw, = ai(2,7)0:, Up(n:)v(0)

w, = a;(z,7.)c dz.
So
V(a) € Vi?‘c ® WC/B(.S%)<W)-

By Theorem 1.5.7, there exists k; € N such that for each b € B and k > kj, we
have H'(Cy, wc,(kSx)) = 0. Thus, as argued for (3.6.2), by constructing long exact
sequences twice and using the fact that B is Stein, we see that the short exact
sequence (2.5.16) gives rise to an exact sequence of vector spaces

0 — H°(B, mwe(0Sx)) — H (B, 7, (Vire @ wes(95%))) A HO (B, 70¢/5(Sx)) — 0.

(3.6.15)
Since A is surjective, there is an element u € 7, (Vir. ® wes(05%))(B) = Vire ®

we/B(eSx)(C) such that A(u) = 0. By (2.5.17) (note the identification that = z), on
W, we can express u by

Uy (mi)u

w, = ai(z,Te)c dz + b;(z, 7)1 dz.

Hence

v(O)|w, — ulw, = —bi(z, 7)1 dz.

Set f(r.) = — >, Res.—g b;(2,7.)dz. Then v(0) — u|y acts as f - 1 on #4x(W,) and
hence on .7;(W,). By the definition of .7:(W,) as a quotient of #%(W.,), u acts
trivially on .7%(W.). So v(0) acts as f - 1 on Fx(W,). O

106



3.7 Local freeness

We say that the VOA V is C»-cofinite if the subspace of V spanned by C5(V) :=
{Y'(u)_2v : u,v € V} has finite codimension. The following important result is due
to Buhl.

Theorem 3.7.1 (Cf. [Buhl02] Thm. 1). Assume V is Cy-cofinite. Then there exist () € N
and a finite set IE of homogeneous vectors of V satisfying the following condition: For any
weak V-module W generated by a vector wy, there exists L € N such that W is spanned
by elements of the form

YW(Uk)—nkYW(Ukz—l)—nk_l s Yw(vl)_mwo (371)

where n, = np_qy = -+ = ng > —Land vy,vy,...,v, € E. In addition, for any
1 <j <k ifn;>O0thenn; >n;_y; ifn; < 0then n; = n, for at most Q different i.

We will fix this E in this section.

Corollary 3.7.2. Assume that V is Cy-cofinite. Let W be a finitely generated admissible
V-module. Then for any n € N, there exists v(n) € N such that any Lo-homogeneous
vector w € W whose weight wt(w) > v(n) is a sum of vectors in Yiy(v)_;W(wt(w) —
wt(v) — 1l + 1) wherev e Eand | > n.

Proof. Assume without loss of generality that W is generated by a single Lo-
homogeneous vector wy. Let T' be the set of all vectors of the form (3.7.1)
where n;, < n. Then, by the above theorem, 7' is a finite subset of W. Set
v(n) = max{wt(w;) : w; € T}. Ifw e W is zo-homogeneous with weight
wt(w) > v(n), then we can also write w as a sum of zo-homogeneous vectors of
the form (3.7.1), but now the n;, must be greater than v since such vector is not in
T. This proves that w is a sum of zg-homogeneous vectors of the form Yiy(v)_jws
where v € E, [ > n, and wy, € W is Eo—homogeneous. The same is true if W is as-
sumed finitely generated. By (2.2.6), we have wt(w,) = wt(w) — wt(v) — [ + 1. [

Recall the definition of sheaf of conformal blocks 73 (W,) = #%(W.,)/.#/ where
N =1 (Vx Q@ueyp(9Sx)) - #x(W.,). For any section o of #5x(W.), its equivalence
class (considered as a section of Zx(W,)) is written as [o].

Theorem 3.7.3. Let V be Cy-cofinite, let W1, ..., Wy be finitely generated V-modules,
andlet X = (m: C — B;<1,...,Sn;M1, - - -, Ny ) be a family of N-pointed complex curves
with local coordinates. Assume that B is a Stein manifold. Then there exist finitely
many elements sy, S, ... of Wx(W.)(B) such that for any element o € #5(W.,)(B), its
equivalence class [o] in Tx(W,)(B) is an €'(B)-linear combination of [s1], [sz2], - . ..
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Proof. Since local coordinates are chosen, we identify #%(W,) with W, ®¢ 0. Let
E = max{wt(v) : v € E}. By our assumption on X and 3, and by Theorem 2.4.3,
there exists ky € N such that

Hl(cba/y/CfE®wa(kS%>> =0 (372)

for any b € Band k > k. We fix an arbitrary k € N satisfying k > E + k.

Introduce a weight wt on W, such that wt(w,) = wt(w; ) +wt(wsy) +- - -+ wt(wy)
when wy, ..., wy are Zo—homogeneous. Foreachn € N, Ws" (resp. W,(n)) denotes
the subspace spanned by all zo-homogeneous homogeneous vectors w € W, sat-
isfying wt(w) < n (resp. wt(w) = n). Note that W™ s finite dimensional.
We shall prove the claim of our theorem by choosing sy, sz, ... to be a basis of
W), By induction, it suffices to show that for any n > Nv(k), any vector of
W, (n) (considered as constant sections of W,®c¢ 0'(B)) is a (finite) sum of elements
of W1 ®¢ 0(B) mod A (B).

Choose any w, = w1 ® --- ® wy € W,(n) such that wy,...,wy are ZO-
homogeneous. Then one of w;,...,wy must have zo-weight greater than v(k).
Assume, without loss of generality, that wt(w;) > v(k). Then, by Corollary
3.7.2, wy is a sum of non-zero Zo—homogeneous vectors of the form Yy, (u)_jwy
where v € E, | > k, w{ € W, and wt(w}) = wt(w;) — wt(u) — [ + 1. Thus
wh(wy) —wt(w)) =1 — 1>k > E + k.

It suffices to show that each Y, (u) _jw] ®ws ® - - - @ wy is a sum of elements of
Wsm'®c 0(B) mod A4 (B). Thus, we assume for simplicity that wy = Yy, (u)_jws3.
Then

we = Yy, (u)w] @y ® - - - @ w.
Set also

wy, =w] QW ® - Quwy.

Then n — wt(w?) = wt(w.) — wt(w?) = E + ko. Thus
wt(w?) <n—E — k. (3.7.3)

Consider the short exact sequence of J¢-modules
0— %gE ® weys(koSx) — ”VfE ®uwe(lSx) =9 — 0

where ¢ is the quotient of the previous two sheaves. By (3.7.2) and Grauert’s
Theorem 1.6.2, we see that R'm. (75" @we/s(koSx)) = 0, and 7. (¥~ ®we,5(koSx))
is locally free. Thus, we may apply (1.3.1) to obtain an exact sequence of O-
modules

0 —> Ty (”f/céE ®wc/3(k‘08x)) —> Ty (%éE ®wc/g(le)) —> W*g — 0.
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Since B is assumed to be a Stein manifold, by Cartan’s theorem B, we know
HY (B, m (7" @ we/s(koSx))) = 0. Thus, there is an exact sequence

0 — H*(B, (V™" @ weps(koSx))) — H (B, m (V=" @ weys(15%)))
— H°(B,m.9) — 0. (3.7.4)

Note that H°(B,7.%) is exactly 4(C). Choose mutually disjoint neighbor-
hoods Wy,...,Wx of ¢1(B), ..., sn(B) respectively. For each 1 < ¢ < N, identify
V=P @ wesslw, with VS ®c we/slw, via U,(n;), and identify n; with the standard
coordinate z by identifying W, with (n;, 7)(W;). Define an element v € ¢4(C) as
follows. v|y, is the equivalence class represented by uz"'dz, and v|c_, (5 = 0.
Since the second map in the above exact sequence is surjective, v lifts to an ele-
ment U of H(B, 7. (" ® we/s(15%))), ie., of (¥F ® we/s(1Sx))(C). Moreover,
by the definition of ¢ as a quotient, for each 1 < ¢ < N we have an element v; of
V<E @c Oc(koSx)(W;) (and hence of VSE @¢ Ow. (kos;(B))(W;)) such that

Olw, = uz"'dz + vidz,
Olw, = vidz (2<i<N).

Notice that Res._oY (-, 2)2"dz = Y (-),. It follows that the element ¥ - w, which is
clearly in .4#(B), equals w, + ws where

N
wA:(vle)-w§®w2®---®wi®---®w]v+Zwi®wz®---®(vidz)-wi®~-®wzv-

=2

Thus [w.] = —[wa]. For each 1 < ¢ < N, v; has pole at z = 0 with order at
most kg. Thus, by (2.2.6), the action of v;dz on W; increases the zo-weight by at
most E + ky — 1. It follows from (3.7.3) that wa € Wt ®¢ 0(B). The proof is
complete. O

Theorem 3.7.4. Let V be Cy-cofinite, let W1, ..., Wy be finitely generated V-modules,
and let X = (7 : C — B;<i, ..., sn) be a family of N-pointed compact Riemann surfaces.
Then F%(W,) and (hence) 7.5 (W,) are locally free.

Proof. We have seen that 7x(W,) admits a connection near any point of 5. Thus,
to prove the local freeness, it suffices to verify that .7 (W, ) satisfies the two con-
ditions of Theorem 1.8.5. Assume that B is a Stein manifold, and X is equipped
with local coordinates. Consider A = 7.(7x ® we/s(eSx))(B) as a vector space.
Then #x(W,) = W, ®c 0 and .¥ = A®c W, ®c O are clearly locally free with
infinite rank. Define a homomorphism of &z-modules ¢ : % — #%(W,) such that
foreachve A, we W,, U c Bbeing open, and f € 03(U),

90:<U7w7f)'_)f'<v'w)|U'
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Then both (%) and .4 are Os-submodules of #x(W,). Itis clear that p(.% (U)) <
A (U) and hence ¢(#)(U) < A (U). By Corollary 2.5.8, we have p(.%), = 4
for each b € B. Thus ¢(.#) = A (U). Thus Fx(W,) = coker(y), which verifies
condition (a) of Theorem 1.8.5. By Theorem 3.7.3, 7x(W.,) satisfies condition (b).

O
Corollary 3.7.5. In the setting of Theorem 3.7.4, the dimension function
be B — dime Fx, (W,)
is finite and constant on each connected component of B.
Proof. This follows from theorems 3.7.4 and 3.2.1. O

Remark 3.7.6. For each ¢ € Nand N € Z,, one has a universal family X of N-
pointed connected compact Riemann surfaces with genus g, where B is the Te-
ichmiiller space 7, x of all such curves, and any such curve is biholomorphic to
one of the fibers of X. Since 7,y is well known to be connected, it follows that
the dimensions of the spaces of conformal blocks are finite and depend only on
V,W.,, g, N but not on the complex structures of the Riemann surfaces.
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Chapter 4

Sewing and factorization

4.1 Projective structures

Schwarzian derivatives and projective structures

Let X = (7 : C — B) be a family of compact Riemann surfaces. Let us calculate
the transition functions of Vir. (which is a subsheaf of #%). Choose an open subset
U < C and holomorphic functions 1,1 : U — C univalent on each fiber. If f €
O(U) and 0, f is nowhere zero, we define the Schwarzian derivative of f over
to be

(4.1.1)

Gl 3 (L]
onf  2\0,f
where the partial derivative 0, is defined with respect to (7, ), i.e., it is annihilated

by dr and restricts to d/dn on each fiber. Similarly, one can define S,, f. The change
of variable formula is easy to calculate:

S,f =

Suf = (aﬂ])zsnf + Sun. (4.1.2)
Take f = p and notice S, = 0, we have
S.n = —(3,m)*S,u. (4.1.3)

Assuming f is also univalent on each fiber, we obtain the cocycle relation.

S.n - du? = =S, u - dn?, S.f-du®+Sm-df* +Syu-dn? = 0. (4.1.4)

By (2.5.7), the transition function from u to n is given by U,(n)U,(n)™" =
U(o(n|p)). The vacuum vector 1 is clearly fixed by the transition function. So
we just need to calculate U(o(n|p))c. By Remark 2.1.3 and formula (2.3.9), if
p = p(z) € G, then U(p)c = p/(0)0e2l2c = p'(0)lo(c + Se1) = p/(0)%c + Seol
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where c is the central charge, and c,, which is given by (2.3.10), is %Szp(O). Re-
place p by o(n|u) : U — G. Then p™(0) should be replaced by dpn. Thus the
transition function U (o(n|u)) is described by

C

Ulelm)1 =1, Ulelnlw)e = (0un)*c + 75Sun - 1. (4.15)

We collect some useful properties of the Schwarzian derivatives.
Proposition 4.1.1. The following are true.

(1) If the restriction of n to each fiber U, = U n 7 (b) (where b € B) is a Mobius
transformation of p, i.e., of the form ‘c‘/’ﬁs where ad — bc # 0, then S,n = 0.

(2) Let Q € O(U). Then, for each x € U, one can find a neighborhood V' < U of x and
a function f € O(V') univalent on each fiber Vi, = V- n 7= (b), such that S, f = Q.

(3) If f, g € O(U) are univalent on each fiber, then S, f = S, g if and only if S;g = 0.
(4) If f,Q e O(U), f is univalent on each fiber, and S, f = Q, then

Syf = (0.m)*(Q — S,um). (4.1.6)

We remark that the converse of (1) is also true: If f is univalent on each fiber,
and if S, f = 0, then the restriction of f to each fiber is a Mobius transformation
of .

Proof. (1) can be verified directly. To prove (2), we identify U with an open subset
of C x Bvia (n, 7). So n is identified with the standard coordinate z. We choose a
neighborhood V' < U of x of the form D x W where W < B is open, and D is an
open disc centered at point p = 1(z) € C. Consider the differential equation

*h 4+ Qh/2 =0

which can be transformed to an C*-valued 1-st order differential equation

2 (5) - (e o) (3)

where o, 3 and h are related by a = h,3 = 0,h. By Theorem 1.7.1, there exist
solutions hy, hy € O(V') satisfying the initial conditions h;(-,p) = 1,0,hi(-,p) = 0
and hs(-,p) = 0,0,ha(-, p) = 1. It is easy to check that f := hy/h, satisfies S, f = Q,
and is defined and satisfies 0, f # 0 near {p} x W.

(3) follows from (4.1.2), which says S, g = (9,f)?Srg + S, f. (4) follows from
(4.1.2) and (4.1.3). O
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Definition 4.1.2. An open cover (U,,7a)aca 0f C, where each open set U, is
equipped with a function 7, € &(U,) holomorphic on each fiber, is called a (fam-
ily of) projective chart of X, if for any «, 8 € 2, we have S, 7, = 0 on U, n Up.
Two projective charts are called equivalent if their union is a projective chart. An
equivalence class of projective charts is called a projective structure. Equiva-
lently, a projective structure is a maximal projective chart.

Suppose that X = (7 : C — B;<1,...,Sn;M1,-..,1n) is a family of N-pointed
compact Riemann surfaces with local coordinates. We say that the local coor-
dinates 7, ...,ny admit a projective structure if, by choosing mutually disjoint
neighborhoods W, ..., Wy of ;(B),...,sy(B) on which 7, ..., ny are defined re-
spectively, there is a projective chart of X which contains (Wy,71),..., (W, nn).

Remark 4.1.3. Let 8 be a projective chart on X. Choose an open subset W < C
and a fiberwisely univalent n € &(WW). One can define an element

S,BeO(W)

as follows. Choose any (U, i) € B. Then S, = S, pon W n U. To check that S, B3
is well defined, suppose there is another (V, () € 6. Then S, = 0on U n V. Thus
S, =S,{onU nV n W by Proposition 4.1.1.

Existence and classification of projective structures

In what follows we assume for simplicity that each fiber C; of the family X is
connected. We also assume that c is a non-zero central charge. Recall the exact
sequence (2.5.15), and tensor it by the identity map of w((?/zg. We obtain a short
exact sequence

0 — w®% — Vir. W > ¢ — 0, (4.1.7)
which induces a long one
0 — 7, (wg)/QB) — T (Vir. ® w?/QB) LY/ Rlﬁ*(w?/QB). (4.1.8)

Here, we have used the obvious equivalence 05 — m,.0¢, f — fom. We thus
obtain a linear map

A HY(B,m(Vire ® w3y)) — H'(B, Og). (4.1.9)

Consider 1 € HY(B, 03), i.e. the constant function on B with value 1.

Theorem 4.1.4. There is a one to one correspondence between the subset N~*(1) of
HO(B, ma(Vir. ® W) and the projective structures of X.
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Proof. First of all, observe that by (2.5.17), for any open U < C and pn € O(U)
univalent on each fiber, we have

A U(p) tedp? -1, 1dp* — 0
where 1 is the vacuum section. If € &(U) is also univalent on each fiber, then by
(4.1.5) and du = (0,n) " 'dn, we have

_ _ & _
U,() e du® = U,(n) e dn® + E((M) ’S,m - 1 dn’. (4.1.10)

Choose any v € A~'(1). The corresponding projective chart ‘P is defined as
follows. For any z € C, we choose a neighborhood U of = and ;€ ¢(U) univalent
on each fiber U n 7~ (b). Since v is an element of Vir, ® wg/x(C) sentby A to 1, we
have

c
vy =U,(u) e du® — EQ -1 dp? (4.1.11)

for some Q € 0(U). By Proposition 4.1.1, we may find an open subset U, < U
containing z so that there exists f, € ¢(U) which is univalent on each fiber and
satisfies S, f, = Q. We claim that P := {(U,, f.)}sec is a projective chart. Let
y € C, and let (Uy, f,) be obtained in the same way through a function n € 0 (U,)
univalent on each fiber. Let V' = U, n U,,. Then, by (4.1.10), we have

_ C _
vlv =U,(n) e dn® — 150 (@ =S,um) - 1dn?.

Thus, we have S, f,|v = (3,n7)"%(Q — S,n). On the other hand, by (4.1.6), we also
have S, f.|v = (0,n)2(Q —S,n). S0 S, fz|v = S, f,|v. This implies, by Proposition
4.1.1, that Sy, f, = 0 on V. Thus B is projective. By maximizing ‘B3, we obtain the
projective structure.

If v/ # v defines another projective chart ' = {U., f.}, then for the corre-
sponding ()’ defined similarly by (4.1.11) on U;, we have S, f, = ()'. Since v/ # v,
we may find = such that Q # @Q'. Thus, on U, n U, we have S, f, # S, f.. Hence
Sy, fi # 0 by Proposition 4.1.1. So {U., f.} is not equivalent to {U,, f,}. Thus, the
map v — ‘P is injective.

Finally, we show that this map is also surjective. Choose projective structure
B. If (U, u) and (U, n) belongs to this projective structure, then the transition func-
tion (4.1.10) becomes U, (u) ‘e du? = U,(n) ' c dn?. By this formula, it is clear that
one can find v such that A(v) = 1, and that on each (U, i) belonging to the pro-
jective structure, we have v|y = U,(1)'c du?. Namely, the Q for v|y is zero. It is
obvious that the v corresponds to 3. O

Proposition 4.1.5. The sheaf map § : O — R'7.(wg/p) in (4.1.8) is zero. Consequently,
we have a long exact sequence

0 — H(B, () — H° (B, m(Vir. @ W) 2 H(B, 05) — H' (B, 7. (w82)).
(4.1.12)
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As we will see in the proof, 7, (w; /B) is a locally free O3-module.

Proof. Recall that by Ehresmann’s theorem, the (assumed connected) fibers of X
are diffeomorphic. We let g be the genus. If g > 1, then for each b € B, we have
H'(Cy,w?) = 0 by Corollary 1.2.6. Thus, by Grauert’s Theorem 1.3.1, 7. (wg/s) is
locally free, and R'7,(wg /13) 0, which shows ¢ = 0.

We now treat the case g = 0, 1. Assume first of all that B is a single point. Then
X admits a projective structure. Indeed, when g = 0, X is equivalent to P!, which
obviously admits a projective structure (e.g. {(P* — {0}, 2), (P* — {0},1/2)}). If
g = 1, then it is well known that X is equivalent to C/A where A is a real rank
2 lattice in C generated by 1 and 7 in the upper half plane. (See e.g. [Hain08].)
A projective structure on C preserved by A clearly exists, which descends to one
of X. Thus, by Theorem 4.1.4, A~!(1) is nonempty. Therefore, by the exactness of
(4.1.8), 05 ~ C is in the kernel of §, which shows § = 0.

We now treat the general case where B a complex manifold. Since 03 (as
an Og-module) is generated by the global section 1, it suffices to prove §(1) =
0. We first claim that R'm,(w® /B) is locally free. Indeed, when g = 1, we have
@Cb ~ O, by the lattice realization. Thus, by Serre duality, we have H'(C;, wg?) ~

H°(Cy, ®Cb) ~ H%Cy, Oc,), which has constant (over b € B) dimension 1. Thus
R'm,(wg /B) (and also T, (wg)/%)) is locally free (of rank 1) by Grauert’s Theorem
1.3.1. When g = 0, the same is true since all fibers are equivalent to P'. Moreover,
Grauert’s theorem tells us that the fiber of R'm, (w?/ZB) at b is naturally equivalent
to H'(Cp,w3’). Thus, it suffices to show that for any b € B, the restriction of (1)
to the fiber C, is the zero element of H'(C,, w?f). This follows from the previous
paragraph. O

Theorem 4.1.6. Let X = (7w : C — B) be a family of compact Riemann surfaces. Suppose
that B is a Stein manifold. Then there is a projective chart on X.

Proof. Since B is Stein and 7, (wg /B) is locally free, we have H' (B, 7. (wg /B)) = 0by
Cartan’s theorem B. Therefore, the map A in (4.1.12) is surjective. Thus, a projec-
tive structure exists by Theorem 4.1.4. O

Corollary 4.1.7. Let X = (7 : C — B;<i,...,sn) be a family of N-pointed compact
Riemann surfaces. Then for any b € B, there is a neighborhood V' > b such that the
restricted family Xy can be equipped with local coordinates 1y, ...,ny which admit a
projective structure.

Proof. Assume without loss of generality that B is Stein. Thus we can choose a
projective chart {(Uy, /o) }aea Of X. Choose b € B. Then one may shrink B such
that b is still in B, and that for any 1 < i < N, we can find o € A such that U,
contains ¢;(B). Set n; = 1o, — o ©; © 7, defined near ¢;(B). It is clear that n, ..., 9y
are compatible with the chosen projective chart. O
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4.2 Actions of 7.0¢/3(eS5%)

In this section, we fix X = (7 : C — B;<1,...,s8;M,...,nn) to be a family
of N-pointed compact Riemann surfaces with local coordinates. We assume for
simplicity that B is a Stein manifold with coordinates 7, = (71,...,7x). Let V be

a VOA with central charge ¢, and let Wy, ..., Wy be V-modules. By definition,
T (Vx @ we/s(#Sx)) and hence its subsheaf 7, (Vir. ® we/s(eS%)) act trivially on the
sheaf of covacua 7;(W,).

Recall the exact sequence (3.6.15)

0— HO (B, F*WC/B(OSx)) - HO (B, T4 (Vz’rc ® wC/B(OSx))) A HO (B, W*@C/B(.S%)) — 0.
We shall define an action of H(B, 7,0¢/s(Sx)) on Jx(W.,), which turns out to
be an ¢'(B)-scalar multiplication. Such definition already appears in the proof of
Theorem 3.6.6, where the action of 0 € H° (B, m.Oc/5(#S%)) is f. Our goal in this
section is to express f in terms of a projective structure 3.

Choose mutually disjoint neighborhoods Wi, ...,Wx of ¢ (B),...,sy(B) on
which 7, ...,ny are defined respectively. Write each 7; o 7 as 7; for short, so
that (n;,7.) is a coordinate of W;. Set W = W; u --- U Wy. Choose any
0 € H(B, m.Oc/5(eS%)), which, in each W}, is expressed as

0 w;, = ai(m, T.)(?ni. (4:21)
As in (3.6.6), we define v(0) € Vir. ® we/s(eSx)(W) such that
Ug(n:)v(0)lw, = ai(mi, 7o )c dn. (42.2)

The action of § on 7%x(W,) is defined to be the action of v(#), namely, is determined

by

N
v(@)'w.=Zw1®~~®v(6’)-wi®---®w]v (4.2.3)
=1
forany w, = w1 ® - - - @ wy € W,. (Recall (3.2.4).) Such definition depends on the
choice of local coordinates 7, ..., ny.

Lemma 4.2.1. Assume 1y, ...,nn admit a projective structure. Then the action of § on
Tx(W,) is zero.

Proof. Assume that (Wy,m1),...,(Wy,nn) belong to a projective structure .
Then, by (4.1.5), the transition function for ¢ ® w3 between two projective coor-
dinates is the same as that for ©¢/3, namely, when S, = 0, J, changes to d,7 - J,,
and cdu changes to 0,7 - cdn, sharing the same transition function ¢,n. Thus, as ¢
is over C, v(#) can be extended to a section of Vir, ® we/p(eSx) on C. In particular,
V() is in (¥x ® we/p(0Sx))(C) = m(¥x @ weys(9S5x))(B). Thus, v(6) acts trivially
on Jx(W,). O
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Corollary 4.2.2. In Proposition 3.6.6, if 1, ..., ny admit a projective structure outside
Cn (the union of all the nodal fibers), then the definition of the logarithmic connection V
is independent of the lifts, i.e., we have V, = V.

Thus, the projectiveness of V is controlled by the projective structures of X.
Proof. In the proof of Proposition 3.6.6, we need to show that f = 0. It suffices to
prove this outside the discriminant locus A. Thus, we may assume A = ¢ and

hence X is a smooth family. We know that the action of v(0) on Z%(W,) is the
multiplication by f. By Lemma 4.2.1, the action is trivial. Thus f = 0. [

Proposition 4.2.3. Suppose that X has a projective structure B. Choose 0 €
H°(B, m.Oc/5(eSx)) whose local expression is given by (4.2.1). Then the action of v(6)
on Tx(W,) (defined by the local coordinates n,) is the O (BB)-scalar multiplication by

N
c
#(0) == 5 > Resy—0 Sy P - ailns, 72) dipi. (4.2.4)
i=1

Note that each S, P (defined in Remark 4.1.3) is an element of &'(W;). Also,
the residue Res,, _ is taken with respect to the coordinate (7;, 7).

Proof. 1t suffices to prove that the claim is locally true. Thus, we may shrinking 53
and W1y, ..., Wy such that for each 1 < i < N, there exists a coordinate y; € 0(W;)
at ¢;(B) such that (W;, i;) € B. Then

0

Wi = ai(ﬁh T‘) ’ (aﬂinofla‘ui'
Our strategy is to compare the action of v(6) defined by the coordinates ., (which
is trivial by Lemma 4.2.1) with V(6) defined by 7,. Set V(0) € Vir. ® we/z(eSx)(W)
such that U, (u:)V(0)|lw, = ai(ni,7e) - (04;m:) ' ¢ d;. Then

Up(1)¥ (0w, = ai(mi, 7) - (Opumi) " .

By Lemma 4.2.1, the action of V() on %(W,) is zero. Notice that the action of
v(0) is independent of the choice of local coordinates. (See Lemma 3.1.3 and the
paragraphs before Proposition 3.2.4.) By (4.1.5), we have

Uy (m:)V(0)[w, = U(o(nil ) ) Uy (11:)V(0)

c _
=a;(1;, 7o )c dn; + Eai(ma T.) (auﬂh') ZSuﬂh - 1dn;

W;

By (4.2.2) and (4.1.3), we have

Cc

Ug(mi) V() lw: =Uy(mi) V() lwi — 5ai (i, 7e) - Syopi - Ll
C
ZUQ(WW(Q) w; — Eai<ni7 7-') ’ Sm(‘p -1 dnl

Since the action of V(#) is zero, the action of v(f) equals the sum over i of the
actions of Sa;(n;,7.) - S, B - 1 dn;, which is exactly the scalar multiplication by
(4.2.4). O

117



4.3 Convergence of sewing

In this section, we assume the setting of Section 3.3. In particular, X is a fam-
ily of N-pointed complex curves with local coordinates obtained by sewing the
smooth family

¥ ~. 0 _ 13 . 1o " i )
X=(T:C— B;Gl, oy SNty ey S STs e s Sap Mo s NG ELy oo o S @01, - o, TOM ),

to which the V-modules W, ... , Wy, My, ..., M),, and their contragredient mod-
ules M, ... , M), are associated. Also, we assume throughout this section that
V is Cy-cofinite, W1, ..., Wy are finitely generated V-modules, and M, ..., My, (and
hence their contragredient modules) are semi-simple, i.e., they are finite direct sums of
irreducible modules.

For each n € C, let P, be the projection of each V-module onto its Ly-weight
n subspace. Recall the notation ¢)* = ¢ ---¢)}'. Given VP € ’ZE* (W, ® M, ®

~

M,)(B), we say that S1» converges absolutely and locally uniformly (a.l.u.) if S
converges in the sense of Remark 3.3.1, i.e,, if for any w, € W, and any compact

subsets K c B and Q < D), there exists C' > 0 such that

TepPo”’

necCM

<C

(0. ® (P »@14) @ @ (P, > @r4) ) 0)] -l

forany b € K and q. = (¢1,-..,qm) € Q. When M, ... M, are irreducible (i.e.
simple), since Ly and L, differ by a scalar multiplication, we have S{ = ¢}*S

where Ay, ..., Ay are constants. Thus S\ converges a.l.u. if and only if gll) does.
The same is true when M, . . ., Ml); are semisimple. Recall also that S1 is a formal
conformal block.

As in the proof of Theorem 3.7.3, for each k € N, W* (resp. W, (k)) denotes
the (finite dimensional) subspace spanned by all Eo-homogeneous homogeneous
vectors w € W, satisfying wt(w) < k (resp. wt(w) = k). This gives a filtration
(resp. grading) of W,. We define

SV=F e (W) @c 0(B){q.)

whose evaluation with each w € Wg* is Sy(w). Clearly, the a.l.u. convergence of
Sy holds if and only if SY=F € (Ws#)*®c 0(B— A) for any large enough k. Recall
B =D,,,. x B.

Theorem 4.3.1. Assume that B (and hence B) is a Stein manifold. Then there exists
ko € Z, such that for any k > ky, there exist

Ai,..., Ay € Ende (WS5)*) ®@c 0(B)
not depending on My, ..., My, such that forany 1 < j < M,
0, (SHSF) = A; - SP=F. (4.3.1)
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For simplicity, we shall prove this theorem for M = 1. For general M the idea
of the proof is the same. We set ¢ = ¢; = ¢.,, M = M; = M,, etc.. In this case,

we have B = D,, x Band A = {0} x B. We assume that M and hence M’ are
irreducible, so that Ly and L, are equal up to a constant. Recall the assumptions
of U',U" in Section 1.6: U’ (resp. U") is a neighborhood of ¢'(B) (resp. ¢”(B)) such
that

(&%) :U - D, xB  resp. (w,%):U" — D, x B

is a biholomorphic map. Recall Sx = }}, ;(B). We set Sz = P a(B) + < (B) +
¢"(B) to be a divisor of C. Let

~

I =d(B) ud"(B).

Our first step is to show that 1 is a formal parallel section in the direction of

q. Define 1y € O(—log A)(B) to be y = ¢d,, regarded as constant over B. Choose
§ € Oc(—logCa + S%)(C) satisfying dn(h)) = ¢d, as in (3.6.3). We shall take the
series expansion of the vertical part of 1.

For any open precompact subset V.= C —I'and an 7 € ¢(V) univalent on each
tiber, choose an open subdisc D < D,, centered at 0 with standard coordinate ¢,

and assume that D is small enough such that D x V ~ V x D canbe regarded as
an open subset of C x D,, — F{ — F{ (recall (1.6.9)) and hence of C. Consider 7 also
as an element of &(D x V) which is constant over D. Thus 04n = 0. Then there
exists h € 0(Sx)(D x V) such that

Bl = hédy + qo,. (43.2)

~

Write h = 3 _hnq" where h,, € 0(eS5)(V). For each n € N, set an element
M € Og/5(95z)(V) by

Bilp = hady. 433)

Lemma 4.3.2. The locally defined %;- is independent of the choice of , and hence can be
extended to an element of ©5(e5%)(C —T')

~

Proof. Suppose we have another ;1 € €/(V') univalent on each fiber, which is ex-

tended constantly to D x V. Then @,z = 0 and hence 9 pyir = h-0Opp- 0, +q0,. Note
that 0, is constant over ¢. Thus, if we define ;| using p, then 9|5 = hy, -0yt 0,,
which agrees with (4.3.3). [

We shall show that §;: has poles of finite orders at I'. For that purpose, we need
to describe explicitly § near the critical locus X. Let us first recall the geometry
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of X near . By the paragraph containing (2.5.10), any 2’ € ¥ is contained in a
neighborhood W of the form

W =D, x D, x B,
WA=~ (0,0)x B,
7:W =D, xD, x B Tt Tpxg:B,

where 7, , : D, x D, — D,, is the multiplication map. As usual, we let £, @ be
respectively the standard coordinates of D,,D,. Then ({,w) is a coordinate of
D, xD,.Setq =m,, ={w.

In the following, we let 7, be any biholomorphic map from Btoan open subset
of a complex manifold. If 5 is small enough, then 7, can be a set of coordinates
of B. The purpose of introducing 7, is only to indicate the dependence of certain
functions on the points of B. Thus, (&,¢,7.) and (w, g, 7. ) are respectively biholo-
morphic maps of

W' =D xD,xB,  W'=D,xDXxB
to complex manifolds. By (1.6.20), we can find a,b € 0((¢, @, 7.)(W)) such that
Olw = a(§, @, 7)80 + b(§, @, Te) W0
Since dn(£0¢) = dn(wiy) = qd, by (1.6.21), we must have
a+b=1. (4.3.4)

This relation, together with (1.6.2), shows that under the coordinates (¢, ¢, 7.) and
(wa q, 7—.) respectively,

Blw: = a6, q/6.m)E0 + 90y Dlwr = bla/@, @, 1) @0m + 0y (435)

Lemma 4.3.3. For each n € N, §; has poles of orders at most n — 1 at <'(B) and <" (B).
Consequently, v, is an element of O 5(*S% )(C).

Proof. Let us write

a(§,w, ) = Z A (Te)EM ", b(&, w,T.) = Z b (Te)€

m,neN m,neN

where ap, n, by € O(7o(B)). Then

€ a/em) = Y ahna(mEe’,  bam @)= Yl buem(n)@le™
m=0,l=>—m

n=0,l>—n

(4.3.6)
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Combine these two relations with (4.3.3) and (4.3.5), and take the coefficients be-
fore ¢". We obtain

Bl gy = 20 @806 W] = D) buen(R)E 0, (43)
> v (8) =—n
which finishes the proof. O

One can then let v(§}) be a section of Vir. ® we5(#5%) defined on U’ v U”

(near ¢ '(B),<"(B)) and near ¢ (B), ..., sy (B) as in (4.2.2). Note that Vir, is defined
over C. Also, v(Hh) depends on the local coordinates 7y, ...,ny, &, @. Recall the
correspondence ¢ — cd€, 0, — cdw. We calculate the actions of v(1;;) on M and
on M’ to be respectively

Rese— Z aHn,nYM(C,f)ngdf, Reso—o Z bn,HnYM/(c,w)ledw. (4.3.8)
I=—n I=—n

In the following proofs, we will suppress the symbol 7, when necessary.

Lemma 4.3.4. The following equation of elements of (M ® M')[[q]] is true.

Lt » @« = > VO r @ <+ 3 s @ V(B (439)

neN neN

Note that as M is assumed to be irreducible, the equation still holds if Lo is
replaced by Lj.

Proof. Tt is obvious that U (y;)c = ¢, £fo¢c = ¢%¢c, wloc = w?c. Notice Remark 3.3.4.
We have

Yia(€50¢, €)g™ » @ < ‘a(§,Q/€)%

- Z Z YM(Cag)qn+Eo ’@ < 'al+n,n§l+1d§

n=01>—n

as elements of (M @ M’ ® &(B))((¢))[[¢]]d¢. Take Res¢— and notice (4.3.8). Then,
the above expression becomes the first summand on the right hand side of (4.3.9).
A similar thing could be said about the second summand. Thus, the right hand
side of (4.3.9) equals

" d
Res§:0YM(§L°c, S)qLO R « 'a(ga Q/g)_f

§
i I dw
+Reswp—0q"° » ® Y (w™U(y1)c, w) « -b(q/w,w);.
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By Lemma 3.3.3 and that a + b = 1, it equals

- d N
RGS£:OYM(£LOC,£)qLO X < ?é. = R685:0YM(C’£)QLO >R « gdg

—Yie(c)1g" » @« = Log™ » ® <.
[

Lemma 4.3.5. For any w, € W,, we have the following relation of elements of & (B){q}.

a0 SP(w) = 3 b(ws @ VHNG T > @«) + 3 b(ws @ ¢ > @ V(H)e).

neN neN

Proof. We have
40, SV (wa) = q0h(we @ ¢ » @ «) = P (we ® Log™ » ® ).

By the Lemma 4.3.4 (with Lo replaced by L), the desired equation is proved. [

As usual, we let v(9;:)w, denote > w; @ - @ V(B )w; ® -+ - @ wy. Recall B =
D,, x B. For any w, € W,, one can define Vio,we € We®c O(D;, % B) using (3.6.7)
and (3.6.8), which equals V5, w, = —v(H)w,. The action of v(p) clearly equals that
of >, .y ¢"Vv(D;). Thus, we obtain

Vo, e = = Y q"v(Hx)w (4.3.10)

neN

In particular, the series on the right hand side converges absolutely.
The following lemma claims that up to a formal projective term, S is parallel
in the direction of ¢d,, where the connection is defined by the chosen lift ). Recall

that B is Stein. Thus, we can choose a projective structure 3 on X, which exists
due to Theorem 4.1.6.

Proposition 4.3.6. There exists #(§-) € O/(B) for each n € N, such that for any w, €
W., we have the following equation of elements of 0'(B){q}:

90,5 (ws) = SY(Vya,we) + ) #(0)a" - Sb(w.).

neN

Proof. #(¥;) is defined by Proposition 4.2.3. Moreover, by that proposition, we
have

We @ V(HE)g™ » ® « +we ® g™ » @ V(§1) « +V(H1)we ® ¢7° » ® <
=#Br) we®g"r® «.

By Lemma 4.3.5 and relation (4.3.10), it is easy to prove the desired equation. [
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We still need one more result before we can prove Theorem 4.3.1: the projective
term Y, . #(9;)q" converges absolutely.

Proposition 4.3.7. Y _ #(9)q" is an element of O(D,,, x B) = 0(B).

Proof. Let Vi, ..., Vy be mutually disjoint neighborhoods of < (B),...,sv(B) on
which 7,,...,ny are defined. Assume that they are disjoint from U’,U”. Then
D,, x 171, ... Dy, x ‘N/N are neighborhoods of ¢;(B), ..., sn(B). Write 7, o 7 also as
7. for simplicity. Recall (4.3.2). We may write

6|Drp><\~/i = hl((L Ni, T‘>a"711 + qﬁq
where h;(q,n;, 7e) € Oc(0S%) (D, X IN/Z) Write h; = Y hi,q". Then by (4.3.3),
Bl = P (0, 7). (4.3.11)

Combine (4.3.7) and (4.3.11), and apply Proposition 4.2.3 to the family X. We
obtain

N
#02) = 35 (An+ Bu+ Y, Cin)

i=1

where

A= ] Resemo SeB - arin ()6 dE,

I=—n
B, = ) Resqog S - byin(re)wd,
I=—n

Ciﬂl = Resm:o Smm ) hi,n(niv T-)dni'

Notice that S, B = S, B, 7e), SoP = SP(w, 7.), SP = SP(E, 7.) are holo-
morphic functions on IN/Z-, U',U" which are identified with their images under
(i, 7o), (€, 7o), (ww, ) Tespectively.

We have

DA =D ] Reseno SeP - arin ()6 g de. (4.3.12)

n=0 n=01>—n

~.

We claim that (4.3.12) is an element of &'(D,, x B). Note that a(¢, ¢/, 7.) is defined
when |q|/p < |{] < r. Choose any ¢ € (0,7p). Choose a circle 7' surrounding D,/,

and inside D,. Then, when ¢ is on v, a(§, ¢/&, 7.) can be defined whenever |q| < e.
Thus,

1
2im
5

A= SeB(E,7) - al€, ¢/€, 7)EdE

/
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is a holomorphic function defined whenever |¢| < e. Recall the first equation of
(4.3.6), and note that the series converges absolutely and uniformly when £ € +/
and |¢| < ¢, by the double Laurent series expansion of a(&, ¢/, 7.). Therefore, the
above contour integral equals

Z Z § S&’B 577—0 al+n,n(7_o)£l+1qnd£,

n=z01>—n v

which clearly equals (4.3.12) as an element of & (B)[[¢]]. Thus (4.3.12) is an ele-

ment of 0(D, x E) whenever ¢ < rp, and hence when ¢ = rp.
A similar argument shows } B,,¢" converges a.l.u. to

1

B:==— $SoP(w,7) - blg/w, @, 7. )wdw
2im

:

"

where 7" is any circle in D, surrounding 0. Finally, we compute

Cj = Z Cing" = Z Resy,—o Sy, B (i, ) = hin (1, 70) " dni

n=0 n=0
:Resm=0 Smm(nu T') : hl(qa Nis T-)dni

~

which is clearly inside &(D,, x B). The proof is now complete. We summarize
that the projective term equals

D #O)" = % (A+ B+ Z ). (4.3.13)

neN

O]

Proof of Theorem 4.3.1. We choose k such that the sq, s9, ... found in Theorem 3.7.3
are in W ®c 0(B). We may assume sy, so, ... form a basis of Wk, regarded as
constant sections of W% ®c¢ &'(B). Fix any k > ko, and extend s1, s, . .. to a basis
of WsF,

By propositions 4.3.6 and 4.3.7, for each s; of sq, 59, ..., we have the following
equation of elements of &' (B){q}:

q0,SP(5i) = SPY(Vga,5:) + gSWU(si)

where g € 0(D,, x B) = 0(B) equals (4.3.13) and is hence independent of
51, 82,.... By Theorem 3.7.3, we can find f;; € O(B) such that V,_s; equals
., fijs; mod sections of . (7% @ weyp(95%)) - #x(W.). (Indeed, the proof of
that theorem shows that the relation holds mod a sum of elements of the form
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U w) € m(Yx ® weyp(9Sx)) (B) - #x(W.)(B)). Since, by Theorem 3.3.5, Sy is a
formal conformal block, we must have

10y S(si) = 3 fi5SW(s5) + gSw(s:).

The proof is completed by setting the matrix-valued function 4; = Atobe (f;; +
géi,j)i,j. [

Theorem 4.3.8. Choose p € 75 (W, ®M., QML)(B). Then S\ and S\ converge a.lu..

We are not assuming B to be Stein.

Proof. Assume without loss of generality that M, ..., M, are irreducible. Then

S and Sy differ by ¢ for some Ay, ..., Ay € C.

When M = 1, the a.l.u. convergence follows directly from theorems 4.3.1 and
1.7.2. The general case can be proved by induction. For simplicity, we assume
M = 2 and explain the idea. According to the base case, for any w, € W,, we
know that S (w,)(q1, g2, 7») is an element of &(D,, o X B)[[¢]]. Also, by the base
case (applied to the smooth family over D) | x B), we know that SU(w,)(q1, g2, 7)
converges a.l.u. to an element of O(D; , x D,,,, x B). This finishes the proof. [

Recall that the logarithmic connection on .7¥(W,) is dual to the one on
Tx(W,). From propositions 4.3.6 and 4.3.7 and their proofs, we have:

Theorem 4.3.9. Assume B is Stein. For each 1 < k < M, define Vo, 01 Tx(W,)
and hence on TF(W,) using n, and a lift v of qi.0,, as in Section 3.6. Then there exists a
projective term fy, € €(B) such that

Vo, SO = fi - S

Recall B = D,,,, x B. When M = 1, the projective term f; is (4.3.13). In the
following remark, we give the formula of f; for a general M.

Remark 4.3.10. Let § € O¢(—logCa + S5%)(C) be a lift of y = ¢,J,,. Choose
neighborhoods Uy, ..., U}, U!,..., U}, of {(B),...,sy(B),s{(B),...,si;(B) as in

~

(1.6.6). Choose V4, ..., Vi to be neighborhoods of ¢;(B), . .., sy (B) as in the proof
of Proposition 4.3.7. Assume that they are disjoint from U7, ..., Uy, UY,...,Uy,.

Then D, ,, x 171, coos Dy X Vy are neighborhoods of ¢;(B),...,sn(B) in C. For
eachl1 <7< N,1 <j< M,write

V.., v = 1iqes i 7o) Oy, + G104y,

0lp, D, %D, 0B = G5 T oy Ta) 50, + 05(&5 @5 Gy 7o) 00y + (1= 04) 410
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where h;, a;, b; are holomorphic functions on suitable domains, and
Q; + bj = 5j,k:-

Choose a projective structure B of X. Then S,B = S, B(n;,7.), S,P =
Se, B, 7e), S=, B = Sz, B(wj, 7.) are holomorphic functions on Vi, U;, U7 which
are identified with their images under (7;, 7.), (&;, 7o), (w;, 7o) respectively. Choose
circles v; = D, and 7] < D,, surrounding 0. Then the projective term f; in Theo-
rem 4.3.9 equals

fk:l_cz‘( DA+ ) B+ ). Ci>,
1GEM 1M 1KisN

where

Aj = jgséj‘ﬁ(ijm) 2@ (&5, 65/85, 40y Te) - €585,

%

B; = jgswj‘ﬁ(wjaﬂ) ~bi(qj/5, @, qovgs Te) - widj,
v;

CZ' = ReSm:O Smfﬂp(m; 7—0) ) hi(CIu iy To)dni-

4.4 Linear independence of sewing

We continue the study of sewing, but assume that Xisa single compact Rie-
mann surface, and M =1, i.e.,

X=(Cixy,...,zn; 252" m, . v & ).

The main result of this section can be generalized, by induction, to any M € Z..
As usual, we assume that each connected component of C contains at least one of
x1,...,zn. Let £ be a finite set of mutually inequivalent irreducible V-modules.
Choose open discs W' ~ D, W" ~ D, (with respect to the local coordinates
¢, w) around 2/, ” which do not contain zy, ..., xy. Assume V is Cy-cofinite and
Wi, ..., Wy are finitely-generated V-modules associated to z1, ..., zx.

Let

X=(m:C—>Dup;T1,..., TN, .-, N)

~

be the family of complex curves obtained by sewing X, where

T1,...,TN,M1,...,Mn are extended from those of C and are constant over
D,,. For each ¢ € D;,, we define a linear map
S, @ %*(W. QMEM') — %’Z(W.), 4.4.1)
Me€&
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P b — ZSll)M(CI)-

Similarly, one can define &, by replacing S with S. Notice that 3, Sbu(q) =
> M SUni(g) for some constants Ay depending only on M. Thus G, is injective
if and only if &, is.

Theorem 4.4.1. Choose any q € D;,. Then &, and éq are injective linear maps.

Proof. Let us fix qo € Dy, and let ¢ denote a complex variable. Let us prove that
S,, is injective. Suppose that the finite sum )}, SPm(qo) equals 0. We shall prove
by contradiction that {; = 0 for any M € £.

Suppose this is not true. Let F be the (finite) subset of all M € £ satisfying
Py # 0. Then F is not an empty set. We first show that ¢ := >, Sy (which is
a multivalued holomorphic function on D)) satisfies ¢(q) = 0 for each ¢q € Dy,
Choose any large enough k € N. Then, by Theorem 4.3.1, $=F satisfies a linear
differential equation on D, of the form d,¢<F = ¢~' A - $=F. Moreover, it satisfies
the initial condition $=(¢g) = 0. Thus, by Theorem 1.7.1, $<* is constantly 0. So
is ¢.

Consider the V x V-module X := @,,.» M ® M. Define a linear map  : X —
Wi as follows. If m ® m’ € M ® M/, then the evaluation of x(m ® m’) with any
w, € W, is

k(m@m'), we) = Yy(we @ m @ m’).

We claim that Ker(x) is a non-zero subspace of X invariant under the action of
V x V. If this can be proved, then, by Lemma 4.4.2, we have M ® M’ < ker(x) for
some M e F. Therefore, Y (w.@m®m’) = 0 for any w, € W, and m@m’ e MQM'.
Namely, Y = 0. So M ¢ F, which gives a contradiction.

For any n € C, let P, be the projection of M onto its Ly-weight n subspace.
Then

$(w.)(q) = 2 Zﬂ)M(w.@)Pn »® <)q".

MeF neC

Since this multivalued function is always 0, by Lemma 4.4.3, any coefficient before
q" is 0. Thus P, » @ « (which is an element of M) ® M, ) is in ker(x) for any n.
Thus ker(x) must be non-empty.

Suppose now that };; m; ® m/; € Ker(x) where each m; ® m/; belongs to some
M@ M'. We set Py (we @ m; ®m;-) =0 ifM,1\7J1 e F and M # M. Choose anyn e N
and [ € Z. We shall show that };, V' (u)ym; @ m/; € Ker(x) for any u € V". (Here Y’
denotes Yy for a suitable M.) Thus Ker(x) is V x 1-invariant. A similar argument
will show that Ker(x) is 1 x V-invariant, and hence V x V-invariant.

Setdivisors D; = x1+- - -+xy and D, = 2’ +2”. Choose a natural number ky > [
such that Y'(u)ym; = Y (u),m} = 0 for any j, any k > ky, and any u € V<". This
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is possible by the lower truncation property. By Corollary 1.2.2, we can choose
k, € Nsuch that H(C, V. §”®w5(/ﬁ Dy —kyD5)) = 0. Thus, the short exact sequence

0 — V5" @uwg(kiDy = koDy) = V5" @wa(ki Dy — IDy) > 4 — 0
(where ¥ is the quotient of the previous two sheaves) induces another one
q p

0— HO (é, 7/51@ ®w5(k:1D1 - kQDQ)) — HO (6, ayégn ®w5(/€1D1 - lDQ))
— H°(C,9) — 0.

Choose any u € V<", Choose v € H(C,%) to be U,(¢)'u&ld¢ in W' and 0 in
C — {2'}. Then v has a lift v in H°(C, V5" ® ws(k1 D1 — 1Ds)), which must be of
the form

Uy (E)v|wr = u€'d¢ + €™ (elements of V" @c 0(W'))dE,
U, (@)v|wr = @™ (elements of V" ®@c O(W"))dw.

It is clear that v - m; = Y (u)ym; and v - m; = 0. Thus, as each 1y vanishes on
v- (W, @ M®M'), we have

D 2 bu(we @Y (wyim; @ml) = = 37 (v - w.) @ m; @m))

MeF j MeF j

S Z@(mj ®m}),v - w.) = 0.

So > Y (u)im; ® m; € Ker (k). O

Lemma 4.4.2. If Ker (k) is non-zero subspace of X invariant under the action of V x V,
then it contains an irreducible summand M @ M'.

Proof. Set A = Ker(k). By basic representation theory, A contains an irreducible
V x V-submodule A,. (See for instance [Lang] section XVIL.2.) Let ¢ : Ay — X
be the inclusion, and let py; : X — M ® M’ be the standard projection. Then
pm ot Ay — M® M is non-zero for some M € F. Since M ® M’ is an irreducible
V x V-module (see Proposition 4.5.16 and Theorem 4.5.12), py o ¢ is surjective.
Since A, is irreducible and py; o ¢ is non-zero, the kernel of py o ¢ must be empty.
So pw o ¢ is an isomorphism. Hence A is isomorphic to M ® M'. If pg; o ¢ is non-
zero for another M e F, then the same argument shows A, ~ M ® M/, which
is impossible since Ml ® M is not isomorphic to M ® M. So A, must be exactly
M & M. OJ

Lemma 4.4.3. Let E be a finite subset of C. Choose an element

f(z) = Z Ca 2™

acE+N
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of C{z}. Let € > 0. Assume that f(z) converges absolutely to 0 on D). Namely, for any
z € DY, there is C > 0 such that

D ez <C, (4.4.2)

acE+N
and the infinite sum ;o caz™ converges to 0. Then c, = 0 for each c.

Remark 4.4.4. Note that f(z) can be written as z* f1(z) + --- + 2% f,(z) where
fis.-., fa € C[[2]], and any two of ay,...,a, do not differ by an integer. It is
easy to see that f(z) converges absolutely on D if and only if fi,..., f, € O(D.).
Indeed, the if part is obvious; the only if part follows from the root test. Moreover,
it is clear that fi,..., f, € O(D.) implies f(z) converges a.l.u. on D7, i.e., for

€’

compact subset K < D, there is C' > 0 such that (4.4.2) holds for any z € K.

Proof of Lemma 4.4.3. Assume that the coefficients of f are not all 0. We can let
r € R be the smallest number such that ¢, # 0 for some a € E + N satisfying
Re(a) = r. Let 51 = r +isy,..., [, = r + isy be all the elements of £ + N whose
real parts are 7. (So s1, ..., s, € R.) Notice s; # s; when ¢ # j. Then

Z_Tf<z> = Cﬁlzi51 +oet cﬁkZiSk + g(Z)
where g(z) € C{z} can be written as
g(z) = 2" hy(2) + - - + 27 Ry (2)

for some hy, ..., h, € C[[z]], the real parts of v1,...,7, € Care all > 0, and any
two of v, ..., 7, do not differ by an integer. Since 2" f(z) converges absolutely
on D, we have hy, ..., h,, € O(D.) by Remark 4.4.4. Let t be a real variable. Then
it is easy to see by induction that for any j € N,

: J iy
Jim d7g(e") = 0.

Since the j-th derivative of e~ f(e") over ¢ is constantly 0, we have

. 7—1 isyt J—1 ispty __
tEEnOO(cmsl el + . +cgs, €)= 0.

Let A = (s{‘l)lgi,jgk € Myxx(C). Then

lim (cg €', ... cg e™') - A = 0.

t——0o0

Since A is a Vandermonde matrix which is invertible, we conclude that
cp et .. cg e all converge to 0, which forces cg,, ..., cs, to be 0. This gives
a contradiction. O
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Corollary 4.4.5. There are finitely many equivalence classes of irreducible V-modules.

Recall that V is assumed to be Cy-cofinite.

Proof. We let X = (P 1;0;00; 2 — 1;2;1/2). Setr = p = 1. Let X be obtained by
sewing X. Then, for each ¢ € D}, C, is of genus 1. Choose £ to be an arbitrary finite
set of mutually inequivalent irreducible V-modules. We claim that the cardinality
of £ is bounded by dimension of .7 (V) which is finite by Theorem 3.7.3. Indeed,
consider the map &, in (4.4.1), where we set W, to be V. For each M € &, the
vector space .7 (V ® M ® M’) is nontrivial by the construction in example 3.1.6.
Thus, the dimension of the domain of &, must be no less than the cardinality of
&, which is bounded by the dimension of 73 (V) since &, is injective. O

4,5 More on VOA modules

We fix a VOA V. In this section, we do not assume V is C5-cofinite.

A criterion on weak V-modules

Let W be a vector space. Let Yy associates to each v € V and n € Z an oper-
ator Yy (v), € End(W), and assume that the map v € V — Yi(v), is linear. Set
Yw(v,2) = >, o, Yw(v),z7"t € End(W)[[z, 2 !]]. We assume that for each v € V
and w € W, we have Yy (v),w = 0 for any n small enough, i.e.,

Yw (v, 2)w € W((z)).

We say that (W, Yiy) (or simply W) is a (lower-truncated) linear representation of
\%

Let W° be a subspace of the dual space W* of W. We say that W° is dense, if
for any w € W, we have w = 0 iff (w’, w) = 0 for any w’ € W°.
Proposition 4.5.1. Let W be a linear representation of V. Assume that Yy (1, z) = 1.
Assume that W* has a dense subspace W° satisfying the following condition: For each
w' € W°, there exist € > 0 such that

(1) foreachv e V,we W, Yy(v,z)w,w") € C((2)) is the laurent series expansion of
an element of (D)),

(2) for each u,v € V,w € W, there exists f = f((,z) € 0(Confy(D))) such that for
anyn € Zand z € D,

Yy (v, 2) Yy (u)w, w') = Resc—o f(¢, 2)¢"dC, (4.5.1)
Y (Y (w)nv, z)w,w'y = Rese_,—o f(¢, 2)(¢ — 2)"dC, (4.5.2)

and for any n € Z and ( € DY,
Yy (u, Q) Yw(v)pw, w"y = Res.—o f((, 2)2"dz. (4.5.3)
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Then W is a weak V-module.

(2) says that for each z € DX, (W, Yw(v,2)Yw(u,Qw) € C((¢)) and
W', Yaw(Y(u, ¢ — 2)v, 2)w)y € C((¢ — z)) are respectively the Laurent series expan-
sions of f((,z) at ( = 0 and ¢ = z; for each ( € D , Yw(u,()Yw(v, 2)w,w’) €
C((2)) is the Laurent series expansion of f(¢, z) at z = 0.

We remark that in practice, we can often choose ¢ independent of w'.

Proof. Choose circles C, Cy, C5 in D surrounding 0 with radii r; < ry < r3. For
each z € (5, choose a circle C'(z) centered at z whose radius is less than r, —r; and
rs — 2. Choose any m,n € Z. Then P(z) = Q(z) — R(z) where

Pw%:§f@wch—@wa

C(z

)
Q@)=§f@wxm@—2WM,
Cs
R@)=§f@&ﬁ”@—2ﬁ%-
C1

As in the proof of Theorem 2.1.2, we may use (4.5.1) and (4.5.2) to calculate that

Pl = 3 () )ty (W sty

leN

R(z) = Z (7) (—1)" Yy (v, 2) Yay () g, w'H2" .

Thus, for any h € Z,

jQP(z)zhdz -y

Cy leN

§R(z)zhdz =)

leN

<nzl) V(Y (W) str, 2™

Co

Also, by (4.5.3), it is not hard to see that

)t = § § 16 2)em - 2 dcas

Cy C3

:;§f@¢n%m«—a%uﬂ

C3 Co

131



( )1 i Vo g

g
ZN< > ) Yoy () st Yo (0) e, w'.

This proves the Jacobi identity (2.2.2) since we have §, P )2hdz = §, @ )2hdz —
§C2 R(2)2"dz. ]

Lowest weight weak V-modules

Most results in this section is well-known.
Let (W, Yiy) be a weak V-module. We define its lowest weight subspace to be

QW) = {w e W : Yy(v),w = 0 for any homogeneous v € V,n > wt(v)}.

Using (2.2.3), it is easy to see that Y (v),Q(W) < Q(W) when wt(v) = n + 1. If
W is admissible, then the lowest zo—weight space of W is a subspace of Q(W).
In particular, Q(W) is non-trivial if W is so. Also, if (W;); is a collection of weak
V-modules, then

Q(@ WZ) - @ Q(W,). (4.5.4)

Indeed, it is clear that a vector w in the direct sum is annihilated by any Yy (v),
(where n > wt(v)) if and only if each component of w is so. We say that W is a
lowest weight weak V-module, if W is generated by the lowest weight vectors,
i.e., vectors in Q(W).

It will be interesting to know if a weak module has non-trivial lowest weight
subspace. The following lemma provides a criterion.

Lemma 4.5.2. Assume that W is admissible, and let M be a non-trivial weak V-
submodule of W. Then (M) is non-trivial.

Note that in general, we always have the obvious relation Q(M) = Q(W) n M.

Proof. Choose any w € M. For each k € N, let W<* be the subspace spanned by

the Ly-homogeneous vectors with weights < k. Since Ml = | J ren(M N WSF) we
can find the smallest k such that M n W<* is non-trivial. If v € V is homogeneous,
n € Z, and n > wt(v). Then Y (v),WsF <« W< by (2.2.6). Thus Y (v),(M n
WsF) « M A WsF1 = {0}. So M n W<* is a non-trivial subspace of Q(M). O

Let 4(V) be the universal unital associative algebra generated freely by the el-
ements (v, n) where v € V is homogeneous and n € Z. Then, W is a representation
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of 4(V) defined by (v,n) - w = Yy (v),,w. We say that (v, n) is raising (resp. lower-
ing, strictly raising, strictily lowering) if wt(v) —n —1is > 0 (resp. < 0, > 0, < 0).
Then (W) is precisely the subspace of vectors annihilated by all strictly lowering
elements.

We let 4, (V) be the subalgebra of $(V) of generated by 1 and (vq,n1) - - - (vg, )
where k € Z, and

k
D i(wh(v;) = n; — 1) = 0.
i=1
Then U(V)Q(W) < Q(W). Thus, (W) is a representation of (V). Using the
commutator formula (2.2.3) to move all the strictly lowering elements to the right,
we see that the action of {,(V) on Q(W) is determined by (v, n) where v is homo-
geneous and n = wt(v) — 1.

Proposition 4.5.3. Assume that W is an irreducible admissible V-module. Then QQ(W)
equals the lowest nontrivial Ly-weight space, and is an irreducible 4, (V)-module.

Proof. Assume without loss of generality that W(0) is the lowest nontrivial Lg-
weight space. Clearly W(0) < Q(W). If w € Q(W), we let w(k) be the (non-
zero) component of w in ), _ W(n) with the largest weight k. We claim £ = 0,
which shows w € W(0), and hence Q(W) < W(0). By the irreducibility of W,
there exists = € 4(V) lowering the Ly-weights by k, such that zw(k) is a non-
zero vector of W(0). We must have zw = zw(k), which shows zw is non-zero.
Suppose k > 0. Then x must contain strictly lowering components. By using the
commutator formula (2.2.3) to move all the strictly lowering components of = to
the right, we can find a strictly lowering element whose action on w is non-zero.
This contradicts w € Q(W).

Let U be any non-trivial {,(V)-invariant subspace of W(0). By (2.2.6), it is easy
to see that L(V)U n W(0) < LUpy(V)U. So h(V)U n W(0) < U. YU(V)U is clearly
a non-trivial weak V-submodule of W. Thus, by the irreducibility of W, we have
U(V)U = W. Hence W(0) = U. O

Corollary 4.5.4. Let W be an irreducible (ordinary) V-module. Then QQ(W) equals
the lowest non-trivial eigenspace of Lo. In particular, Q(W) is non-trivial and finite-
dimensional.

Proof. Set Lo = Lo and apply Proposition 4.5.3. O

Remark 4.5.5. Let W be an irreducible (ordinary) V-module. Choose Lo whose
lowest weight is 0. We know that Q(W) = W(0) and Q(W’) = W’(0). Note that
W’(0) is the dual space of W(0). Moreover, if v € V is homogeneous, by (2.2.10),
we know that for any w € W(0), w’ € W'(0) = W(0)*,
Wt(
Y (V) () 10, W) = Z (!, Yag (LA 0) o)1 0). (4.5.5)

leN
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Thus, the action of £,(V) on W'(0) is completely determined by that of {,(V) on
W(0). We will see a stronger result in Section 4.6, that the irreducible V-module
W is completely determined by the l(V)-module W(0).

Proposition 4.5.6. Assume that (W, Yy) is a lowest weight weak V-module with finite
dimensional Q(W). Then W is an admissible V-module.

Proof. For any A € C, we let W, be the subspace of all w € W satisfying (Lo —
MNw = 0 for some N € Z, . For any homogeneous v € V and m € Z, we have by
(2.2.5) that

Yir(0)m (Lo — ) = (Lo — (wt(v) + A —m — 1)) Yig(v)m.
Thus
Yy (0)m (Lo — MY = (Lo — (Wt(v) + X —m — 1))V Yag () m, (4.5.6)
which shows
Yir (V)W) © Wi sawt(o)—m—1]- (4.5.7)

That \/ .« Wi = @ ,cc Wi follows as in the finite dimensional case: Suppose
vy + -+ v, = 0where (Ly— X\;)Vv; = 0foreach 1 <i <nand \; # \; when i # j.
Set polynomials p(z) = (z — M)V, q(z) = (x — X))V -+ - (x — \,)N. Then p(Ly)vy = 0
and ¢(Lo)vy = q(Lo)(vi+ve+---+vy) = 0. Since p(z), ¢(z) have no common divisor
other than 1, there exist polynomials a(x), b(z) such that a(z)p(z)+b(x)q(x) = 1. So
v1 = a(Lo)p(Lo)vi + b(Lo)g(Lo)vy = 0. Similar argument shows vy = --- = v,, = 0.

We say that a vector w € W is a generalized eigenvector of L, if w € W, for
some A € C. Since LyQQ(W) < Q(W) and Q(W) is finite dimension, by the Jordan
canonical form for Lo|qw), 2(W) must be spanned by generalized eigenvectors
of Ly. By (4.5.7), the same is true for W. We thus have grading W = @, _ W}
Moreover, by (4.5.7) and that (W) is finite-dimensional, we may find a finite
subset £ = C such that W = @,_,, W», and that any two elements of E do
not differ by an integer. Set W(n) to be W, if A —n € E for some A € £ + N
(such A must be unique); otherwise, set W(n) = 0. Then (2.2.6) is satisfied, and
W =@, .y W(n). Thus, W is admissible. O

Theorem 4.5.7. Assume that (W, Yy) is a lowest weight weak V-module with finite
dimensional Q(W).

(1) M is an irreducible weak V-submodule of W if and only if Ml is generated by Q2(M),
and Q(M) is an irreducible U,(V)-module. In that case, M is an admissible V-
module.

(2) There is a 1-1 correspondence between irreducible weak V-submodules M of W and
irreducible 1o (V)-submodules U of Q(W). The relation is given by U = Q(M) and
M = $(V)U.
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(3) W is completely reducible if and only if Q(W) is so. In that case, there are finitely
many irreducible weak V-submodules M, . . . , M, (which are admissible) such that

M = éMi, QM) = éQ(Mi).

Proof. By Proposition 4.5.6, W is admissible.

(1): Let M be a weak V-submodule of W. Note that by Lemma 4.5.2, (M)
is nontrivial. Assume first of all that M is an irreducible (non-trivial) weak V-
module. Then M is generated by any non-trivial subspace, and hence by (M).
Since Q(M) < Q(W), Q(M) is finite-dimensional. By Proposition 4.5.6, M is admis-
sible. Thus, by Proposition 4.5.3, (M) is irreducible. Conversely, assume (M)
is irreducible. Let M; be a non-trivial weak V-submodule of M. By Lemma 4.5.2,
Q(M,) is a non-trivial ${(V)-submodule of Q(M). Thus Q(M;) = Q(M). Suppose
M is generated by Q(M). Then M is generated by (M ). So Ml = M;. Hence M is
irreducible.

(2): Note that by part (1), 4(V)U is irreducible. We shall show (V)Q(M) = M
and Q(U(V)U) = U. Since Q(M) is a nontrivial subspace of M, we must have
U(V)Q(M) < M and hence, by the irreducibility of M, that £(V)Q(M) = M. Since
U(V)U is clearly nontrivial, Q($(V)U) is a nontrivial {,(V)-submodule of U. So
QUV)U) = U.

(3) If W is completely reducible, i.e., equivalent to @, W, where each W; is
an irreducible weak V-module, then by (4.5.4), Q(W) is equivalent to @, Q(W,)
where each Q(W,) is irreducible. So Q(W) is completely reducible.

Now, assume that Q(W) is completely reducible. Since Q(W) is finite dimen-
sional, it is semisimple, i.e., Q(W) = @f\il U, where N € Z_, and each U; is an
irreducible $,(V)-submodule of Q(W). Since W is generated by Q(W), it is clear
that W = \/;", 4(V)(U;). Thus, W is a sum of irreducible modules. By basic
representation theory (see for instance [Lang] section XVIL2.), W is completely
reducible. O]

Definition 4.5.8. Let U be a finite dimensional representation of ly(V). We say
that U is V-admissible if there exists a weak V-module such that the l(V)-
module Q(W) is equivalent to U. By restricting W to {(V)Q(W), we may assume
that W is a lowest weight weak V-module.

By the previous results, we clearly have:
Proposition 4.5.9. The following are equivalent.

(a) Every lowest weight admissible V-module W with finite dimensional QQ(W) is com-
pletely reducible.

(b) Every lowest weight weak V-module W with finite dimensional Q(W) is a finite
direct sum of irreducible admissible V-modules.
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(c) Every finite-dimensional V-admissible $4,(V)-module is semi-simple.

Definition 4.5.10. If V satisfies one of the three conditions of Proposition 4.5.9, we
say that V is rational.

Note that by Corollary 4.5.13, if V is C,-cofinite and rational, each lowest
weight weak V-module W with finite dimensional (W) is a finite direct sum
of irreducible (ordinary) V-modules.

Remark 4.5.11. Our definition of rationality is weaker than the usual one, which
says any admissible V-module is completely reducible. Assuming V is C5-cofinite,
then the two notations are equivalent. Indeed, our rationality is equivalent to the
semisimplicity of the Zhu's algebra A(V) of V. The latter is equivalent to the usual
rationality due to [McR21].

Suppose now that (W, Y, .Y_) is a weak V x V-module. We let Q2. (M) (resp.
2_(M)) be the lowest weight subspace of (W, Y., ) (resp. (W, Y_)). Set

Qs (W) = Q4 (W) A Q_(W). (4.5.8)

Then, it is clear that 2, (W) is Ly(V) x Ly (V)-invariant.

Some results for associative algebras

Let A be an associative algebra and U be a representation of A. It is clear that
if Uy, U, are inequivalent irreducible representations of A, then Hom4(U;, U,) =
0. Indeed, choose any 7" € Homy(U;,Uy) = 0. If T # 0, then Ker(T') is a A-
submodule of U; not equal to U;. So Ker(T") = 0. Also, since the range of 7" is a
non-trivial A-submodule of Uy, T'must be surjective. This is impossible.

We say that U is strongly irreducible, if U is irreducible, and End4(U) = Cly.
We say that U is strongly and completely reducible if U ~ @, U; where each U,
is strongly irreducible. For instance, this is so if U is a direct sum of irreducible
finite dimensional representations.

We have seen in Proposition 2.2.7 that any irreducible (ordinary) V-module is
strongly irreducible. More generally, we have:

Theorem 4.5.12. Let W be an irreducible admissible V-module with finite-dimensional
Q(W). Then W is strongly irreducible (as an $(V)-module), and Ly differs Ly by a

constant. Moreover, Q(W) equals the lowest non-trivial eigenspaces of both Lo and Lo,
and is a (strongly) irreducible $4o(V)-module.

Note that by Corollary 4.5.4, if W is an irreducible (ordinary) V-module, then
it automatically has finite-dimensional Q(W).
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Proof. Choose any T' € Endy(W). Since [T, Yw(v),] = 0 for any homogeneous
veVandn > wt(v), we have TQ(W) < Q(W). Since (W) is non-trivial (since it
contains the lowest Ly-weight space) and finite-dimensional, T|W s has an eigen-
value \ € C. It follows that Ker(7 — Alw) is a non-trivial weak V-submodule of
W, which must be W. So T = Alw. In particular, INLO — Ly is a constant. The rest of
the statements follows from Proposition 4.5.3. O

Corollary 4.5.13. Assume that V is Cy-cofinite. Let W be an irreducible admissible V-
module. Then W is an irreducible (ordinary) V-module.

Proof. By Theorem 3.7.1 and the description (3.7.1), it is clear that each Lo-
weight space is finite-dimensional. In particular, this is true for the lowest non-
trivial Lo-weight space, which by Proposition 4.5.3 is Q(W). So Q(W) is finite-
dimensional. Thus, by Theorem 4.5.12, L, is diagonalizable with finite dimen-
sional eigenspaces, and the eigenvalues are in A + N for some A € C. O

Proposition 4.5.14. Let U be a strongly irreducible A-module. Let V, W be vector spaces.
Consider the A-modules U ® V, U ® W where the actions of A are on the U-component.
Define a linear map

¢ : Hom(V, W) - Hom,(U® V.U W), T—-1g®T
Then ® is an isomorphism of vector spaces.

Proof. @ is clearly injective. Let us prove that ® is surjective. Choose any S €
Hom 4 (U®V, U®W). We shall show that for each v € V, there exists a (necessarily
unique) w € W such that S(u®v) = u®w foreach u € U. Then S = 1y ® T where
T sends each v to w. By the uniqueness of w with respect to v, the map 7' is linear.

Let us fix any v € V, and let 1 ® v denote the homomorphism U — U® V
sending each vy € U to uy ® v. For each w’ € W*, let 1 ® w’ denote the homomor-
phism from U ® V to U sending each 1y ® vy to v'(vp) - up. Then (1 @ w')S(1 ®v)
is an endomorphism of U, which is of the form \,/1y for some A, € C.

Choose a basis {e;} of U;. Fix a basis element ¢;,. Then we can find a set of
vectors {w;} in W such that S(e; ® v) = >}, ¢; ® w;. Choose any w’ € W*. Then

Awei = (1@uW)S(1R®v)e; = (1@ w)S(e; ®v) = Zw'(wj) - €.
J
Thus, whenever j # i, we have w'(w;) = 0 for any w’, and hence w; = 0. Therefore
S(e; ®v) = e; ®w;, and hence S(u®v) = u® w; for each u € U. O
Set V = C. We obtain:
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Corollary 4.5.15. Let U be a strongly irreducible A-module. Let V' be a vector space.
Consider the A-module U ® W where the action of A is on the U-component. Define a
linear map

O W — Homu (U, U W), w — d(w)
where ®(w)(u) = u® w for each u € U. Then ® is an isomorphism of vector spaces.

Suppose that A, B are associative algebras, and W is both an A-module and
a B-module. We say that W is an A x B-module if the actions of A and B on W
commute.

Proposition 4.5.16. If U is a strongly irreducible A-module, and 'V is an irreducible B-
module, then UQV is an irreducible A x B-module. If V is moreover strongly irreducible,
then so is the A x B-module U® V.

Proof. Choose any non-zero vector w € U ® V. Since U ® V is clearly completely
reducible as an A-module, by basic representation theory, the submodule (A®1)w
is also completely reducible,! hence contains an irreducible submodule, which
must be equivalent to U. By Corollary 4.5.15, this submodule must be of the form
U ® v for a non-zero vector v € V. Thus, as (A® B)(U®v) = U® V, we have
(A® B)w = U® V, which proves that U ® V is irreducible.

Choose any S € Endaxp(U ® V). Then S commutes with the actions of A.
Thus, by Proposition 4.5.14, S = 1y ® T where T' € End(V). Since S commutes
with the actions of B, so does 7. Thus 7' € Endg(V), which must be a scalar
multiplication if V is strongly irreducible. O

Proposition 4.5.17. Let W be a representation of A x B. Suppose that W is strongly and
completely reducible as an A-module, and (resp. strongly and) completely reducible as a
B-module. Then, there exist strongly irreducible A-modules {U,};ez and (resp. strongly)
irreducible B-modules {V;}cz, such that

1€l

Proof. Since A —~ W is strongly and completely reducible, by Corollary 4.5.15,
we can find a collection of mutually inequivalent strongly irreducible A-modules
{U,}; such that the equivalence

W =~ P U; ® Hom, (U;, W) (4.5.9)
holds for A-modules. Here, A is acting on U; ® Hom,(U;, W) by acting on the

U,-component. Moreover, the natural embedding U; ® Hom4(U;, W) — W is
givenby u® T — Tuif ue U;,T € Homy(U;, W).

A submodule of a completely reducible module is completely reducible; see [Lang] section
XVIIL.2.
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Since the actions of A and B commute, each b € B can be viewed as an element
of End4(W). Thus, Hom4(U;, W) is naturally a B-module where each b € B acts
onT € Homy(U;, W) as bT'. It is easy to see that (4.5.9) is an equivalence of A x B-
module.

By the irreducibility of U;, for each nonzero u € U;, the map Hom4(U;, W) —
W, T — Tu is an injective homomorphism of B-modules. It follows that each
Hom4(U;, W) is equivalent to a B-submodule of W. Thus, it is a direct sum of
irreducible B-modules. We can thus write Hom4(U;, W) as a direct sum P i Vi
of irreducible B-modules. It follows that W ~ @, . U; ® V, ;. It is easy to see
that any irreducible submodule of a direct sum of strongly irreducible modules is
strongly irreducible (since it is isomorphic to one of the strongly irreducible sum-
mand). So V, ; is strongly irreducible if W is strongly and completely reducible
as a B-module. O

4.6 Dual tensor products
Let
X=(Ciay,...,on; 252", N & ) (4.6.1)

be an (N + 2)-pointed compact Riemann surface with local coordinates. Through-
out this section, we fix mutually disjoint neighborhoods W1, ..., Wy, W/, W" of
x1,...,zN, 2", 2" respectively, on which the local coordinates are defined. We as-
sume that each connected component of C' contains at least one of x4, ..., zy, and
call such X an N-pointed compact Riemann surface with local coordiates and 2
outputs. We let

Sx=$1+--'+33N, DxZ.CCI—FZ'”.
For each a,b € N, define

Vay = V" (—=(LoDx + az’ + bx")) (Vn e N),

. <n
Vxab = h_H}/V%,a,b‘
neN

Here, 755, is a locally free &-submodule of #;=" described as follows: Outside

<n

2’ and 2”, V=1 equals VS Vool lwe and ¥4, |we are generated by
U, (&) tex oy resp.  Uy(w) ' oy

where v is any homogeneous vector of V<". It is easy to check that this definition
is independent of the local coordinates &, w.
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Let V be a VOA. We do not assume V to be Cs-cofinite. Let Wy, ..., Wy be
V-modules associated to z1,...,zy. We define a truncated X-tensor product of
Wiy, ... Wy to be the vector space

W,
~ HYC, Vxap @we(eSy)) - W,

T a0(W,) (4.6.2)
Its dual space is denoted by 7%, ,(W,) and called a truncated dual X-tensor prod-
uct. Note that when o’ > @ and ¢/ > b, we have a natural injective linear map
Tap = T o - We can thus define

Nx(W,) = lim F57, (W),

a,beN
called the dual X-tensor product of Wy, ..., Wy.

In a similar way, one can define 7/;;?1,, V% b, and (the sheaves of) (truncated)
(dual) X-tensor products when X is a family of N-pointed compact Riemann sur-
faces with local coordinates and M-outputs. In the case that M/ = 0, we obtain
the spaces/sheaves of covacua and conformal blocks. All the results in chapters
2 and 3 can be generalized to these sheaves/vector spaces using almost the same
idea. For instance, notice that in the setting (4.6.1), we have

Vst Ve - = V(n) @c ©8"(—nDx — az’ — bx"). (4.6.3)

Thus, we have the vanishing Theorem 2.4.3 with #5" replaced by 7.5",. (Of
course, the integer £ in that theorem should now also depend on a, b.) In the fol-
lowing, we will directly claim and use the generalizations of those results without
proving them again.

Example 4.6.1. Let M, M be irreducible V-modules. By Convention 2.2.6, their

lowest Zo—weights (with non-trivial weight subspaces M; (0), M(0)) are both 0.
Choose any ¢ € 73 (W, ® M; ® Ms). Then there is a natural linear map

Ty MF* @M5" — T, (W)

defined such that for any w, € W,, m; € M§% my € M5?,

Uy (my @ ma)(ws) = d(we ® my @ ma). (4.6.4)

Here, M is the subspace spanned by all Eo-homogeneous vectors with weight
< a, and M5 is understood in a similar way. By taking the direct limit over (a, b),
we obtain

Uy o My @ My — Nx(W,).

Our next goal is to define a weak V x V-module structure on Nx(W,) such that
VU, is a homomorphism. This will imply, by the irreducibility of M, M, that W,
is injective when ¢ # 0.
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Actions of V

Similar to the treatment for conformal blocks, one can prove that the formal
sewing of a dual tensor product element is a formal dual tensor product element.
Moreover, if one is sewing ¥ with (P';0, 1, 00) (which has 0 outputs), the a.l.u.
of sewing can be proved with the help of the strong residue theorem. Thus, we
are able to prove the propagation of dual tensor product elements. For each
a,b,neN, b e 7, (W,), w, € W,, we have a homomorphism of 0%"-modules

2n(b(wo) : 7/:{:5 - ﬁConfn(C—Sx)7

i.e., for each open subsets Uy, ..., U, < C, we have a homomorphism of &(U;) ®
-+ ® O(U,)-modules

Vd(we) : Y2ap(Ur) @c -+ - ®c Px,00(Un) = Ocont,(c—s2) (U x -+ x Uy),

(Recall that Ocont,, (c—s5) (U1 X - - - xU,) = O(Conf(U; - Sx, ..., U,—S%)).) and these
maps are compatible under restrictions to open subsets. We have ¢ = ¢. More-
over, for theny, ..., nn, 21, ..., 2y chosen at the beginning of this section, Theorem
3.4.6 holds verbatim if we replace 7 with 7% ;. Since 7 equals 7% 4, outside the
output points 2, 2", Theorem 3.4.6 also holds if (following the notations of that
theorem) for each 1 < k < n, we still choose v, € #;(Uy), but assume in addition
that 2/, 2" ¢ Uy. In particular, v, . . ., y, cannot be 2’, 2”. We will use this theorem
only forn = 1,2.

Remark 4.6.2. Write C'— {2/, 2"} as C' — Dy for simplicity. Note that (¥4 q|c—p. )"
equals ¥, . The restricted homomorphism

U (w,) : ”V_an — Ocont,, (C—Sx—Dx) (4.6.5)

is independent of the numbers a, b making ¢ belonging to 7", ,(W.,). Indeed, the
case n = 0 is obvious. Suppose the case for n — 1 is true. By Theorem 3.4.6-(1),
VP (vy, ..., vy, w,) is independent of a, b when v, is a section of #_p, defined near
x1,...,zn. Thus, by the argument in the proof of Proposition 3.2.4, the indepen-
dence of a, b is true for any v;. To summarize, we have a well defined "¢ in (4.6.5)
for any ¢ € Nx(W,).

We also regard
znd)<w°) : 7/” - ﬁConfn(C—Sx—Dx)

sending each vy € ¥¢(Uh),...,v, € Yc(U,) to "d(vi|v,—pys - - - s Un|Un—Dy, We). In
particular, for each homogeneous v € V, considered as a constant section of V ®¢
O (W), we have 1d(U, (&) v, w,) € O(W' — {a’}). Moreover, choose a, b such that
¢ € T, ,(W.). Then £"(")*9y is an element of ¥4 q,(W'). So

W (U,(E) v, w.) € Oa((wt(v) + a)x’) (W), (4.6.6)
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Now, for each v € V, n € Z, we define
Vi (v)y : Nx(We) — W7

as follows. Identify W’ with £(WW') via . (So ¢ is identified with the standard
coordinate z.) Identify %, ~ V ®¢ Oy via U,(§). Then, for any ¢ € Nx(W,), the
evaluation of Y, (v),,¢ with any w, € W, is

Y, (v)nd(we) = Res,—o L b (v, w,e)2"dz (4.6.7)
Then, by (4.6.6), we have
Yi(v),d =0 (if n = wt(v) + a). (4.6.8)

Set Yy (v,2) = 3, ., Y:(v),2~""1. Then the lower truncation property is satisfied:
Yi(v,2)d € Wi[[z]]. Thus, (Nx(W.),Y,) becomes a linear representation of V if
we can show that Y. (v),,$ € Nx(W,).

Lemma 4.6.3. For any homogeneous vector v e V, n € Z,and ¢ € T, ,(W.), we have
Yi(0)nh € T (We) where o’ = a + max{0, wt(v) —n — 1}.

Proof. Let ¢ be another standard coordinate of C. So both z and ( are identified
with ¢ as coordinates. (But they are independent as variables.) In the following,
for a two-variable holomorphic function, we will let ¢ (resp. z) denote the first
(resp. second) complex variable.

Identify W’ ~ £(W') via € and %y ~ V ®c¢ Oy via U,(§) as above. One can
define Y € H(C' — Sy — Dx, ¥¢) such that for any section u of ¥¢ defined in an
open subset W of C' — Sy — Dx,

P(u) = Res.—o L1 (u, v, w,)z"dz,

or more precisely, if we also identify W with an open subset of C so that ¢ is
a complex variable on W, then ¥ (u)(¢) = Res,—o 11 (u, v, w.)((, 2)2"dz. If u is
defined near z”, then 12 (£ F0u, w*Lov, w,) is holomorphic (with no poles) near
¢ =2,z = x'. Thus, P (£ ou) hasno pole at 2. Sop € H*(C'—Sx—a', ¥, ;). We
shall show \ € H(C' — Sx, ¥, ). Suppose this can be proved. By Theorem 3.4.6-
(1), if we identify W; ~ n;(W;) via n; and identify iy, ~ V ®c¢ Ow, via U,(n;), then
for any section u of %% o ,(W;) = ¥ (W;) (Which restricts to a section on W; — {x;}),
we have

P(u)(€) = Res.cpl d(v,un ® - - ® Yy, (u, w; ® - - - @ wn ) 2" dz
=Y, (v)nd(w1 ® - ® Yiy,(u, Quw; ® - - - Q wy).

So 1 restricts to (Y, (v)n,$)., (defined similarly as in (3.1.5)) near each z;. Thus,
as in the proof of Theorem 3.1.2, the Residue theorem implies that Y, (v),¢ €

%ﬁa’,b(w')'
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Choose any homogeneous vector u € V with weight wt(u), considered as a
constant section of 7 (W’). Consider {(u) as a holomorphic function with vari-
able (. We shall show that {(u) € Oy ((wt(v) + a')z")(W'). Set f = f((,2) to
be

f=0d(u,v,w,) € O(Confy (W' — {2'})).
Then, as (Wt Wy, 20770 e ¥4 . (W'), we have
Ca+wt(u)za+wt(v)f(c’ Z) c ﬁ(CODfQ(W/))

Choose circles C1, Cy, C5 in W' surrounding 2’ with radii r; < ry < r3. For each
z € (5, choose a circle C'(z) with center z and radius less than ry — 1 and r3 — rs.
Let m € Z. Then

Resc-o C™plu)dc =  § ¢ fdzd¢ = § § ¢

03 C'2 CQ 03
= jg ﬂggmz”fd(dz + % § ¢"2" fd(dz.
Ca Cy C2 C(z)

When 2z € Cy, since (“*"*™ f has no pole at ( = 0, we have §Cl (M2 fd¢ =
whenever m > a + wt(u).
Apply Theorem 3.4.6-(2) (by choosing U; = U, to be W’ — {2'}), we have

§ § szndedZ=§ § ¢ Vb (u, v, we )dCdz

@2 C(z) G2 C(2)
:§ § C"2" L d(Y (u, ¢ — 2)v,w,e)d(dz

C2 C(z)

< >§ § l ke l ¢<Y<U7C_Z)U7wo)dCdZ

leN & Cla)
_Z< ) § m+n_lzd)(y(u)lv,w.>dz

leN )
_Z < ) lv)m+n ld)(w.)

leN

where we have used (4.6.7) in the last step. By (4.6.8), the above expression equals
0 when

m+n—10=wt(Y(u)w)+a=wt(u) +wt(v) -l —1+a,
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and hence when
m = wt(u) + wt(v) +a — 1 —n.
Thus, we conclude that Res.—o (" (u)d¢ equals 0 when m > a + wt(u) +

max{0, wt(v) — n — 1}, i.e.,, when m > wt(u) + o'. This finishes the proof. O

The weak V-module Ny (W,)

We now show that the linear representation (Nx(W,),Y,) is indeed a weak
V-module.

Lemma 4.6.4. Choose any ¢ € Nx(W,), m,n € Z. Identify W' ~ (W) via €. Choose
u,v € V, considered as constant sections of Vo(W') defined by U,(§). Then for any
We € Wo/

Yi(w)mYs (v)nd(we) = Resc—oRes,—o L1 (u, v, w, )" 2" dzd(. (4.6.9)

As previously, 1t ¢(u, v, w,) is short for 1 ¢ (u, v, w.)((, ) where (, z are both
standard complex variables of C.

Proof. By (4.6.7), we have
Yo (u)m Y (0)nd(ws) = Resco 0 (Y (0)n ) (u, we )™ dC.
Thus, (4.6.9) will follow if we can show
(Y (V)0 d) (1, wa) = Res,—o 11 (u, v, w,)2"dz (4.6.10)

for any section u of Y¢_g,. If u is defined on an open subset of W;, then, by
Theorem 3.4.6, under the identification ¥4y, ~ V ®c Oy, defined by U,(n;), we
have

(Y3 (0)nd)(u, we) = (Vi (0)n ) (w1 @ -+ @Y (u, ) w;, ® - - - @ wn)
=Res.—o 1 ¢(v, w1 ® - @ Y (u, n)w;, ® - - Quy)2"dz
=Res,—o L1d(u, v, w,)z"dz.

Thus, (4.6.10) holds when u is near 1, ...,zy. Using the argument in the proof
of Proposition 3.2.4 together with the fact that each connected component of C
contains at least one of 21, . .., xy, it is easy to see that (4.6.10) holds for any u. [

Proposition 4.6.5. (Nx(W.,),Y, ) is a weak V-module.
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Proof. We shall show that (Nx(W.,), Y, ) satisfies the criteria in Proposition 4.5.1. It
is clear that W, projects to a dense subspace of the dual space of Nx(W,). Also, we
have Y, (1, 2) = 1g,(w.) by Theorem 3.4.6-(3). Choose any u,v € V, ¢ € Nx(W.,),
w, € W,. ¢ and w, play the role of w,w" in Proposition 4.5.1. Identify W’ with
E(W') via ¢, and choose r > 0 such that D, < W’. Identify #» with V®¢ Oy via
U,(§) as usual. Set f = f((,z) € 0(Confy(D))) to be

f(¢2) = 0 d(u, v, wa)(C, 2).
By Lemma 4.6.4 and Theorem 3.4.6-(4), we clearly have

Y. (0)n Yy (0)md(we) = Res,—oResc—o f(¢, 2)("2"d(dz,
Y () (0)nh(1,) = Res—oRes.—o f(C, 2)C™2"dzdC,

which verify (4.5.1), (4.5.3). With the help of Theorem 3.4.6, we compute

Res,—oRes¢_.—o f((,2)(¢ — 2)"2"dCd=
=Res,_oRes¢_.—o L1b(u, v, w.)((, 2) - (¢ — 2)"2"dCdz
=Res,—oRes¢c_,—0 L P(Y(u,( — 2)v,w.)((, 2) - (C — 2)"2"dCdz
=Res,—o L P(Y (u)mv, we)(2) - 2"dz,

which, by (4.6.7), equals Y (Y (u),,v),,$(w. ). This verifies (4.5.2). O

The weak V x V-module N (W,)

One can define similarly a weak module structure Y_ on Nx(W,) by using the
sections near z”. To be more precise, for each v € V, n € Z, we define

Y_(v), : Nx(W,) — Wi

as follows. Identify W” with w(WW") via w. (So w is identified with the standard
coordinate z.) Identify #jy» ~ V®c Ow» vial,(w). Then, for any ¢ € Nx(W,), the
evaluation of Y_(v),,$ with any w, € W, is

Y_(v),d(we) = Res,—o L b (v, w,.)2"dz (4.6.11)

Then (Nx(W.,),Y_) is also a weak V-module.
Recall Definition 2.2.8.

Theorem 4.6.6. Y, and Y_ commute. So (Nx(W.,),Y,,Y_) is a weak V x V-module.

Proof. Identify W’ ~ {(W’) via £ and W” ~ w(W") via w. Let z, ( be the standard
complex variables of W', W" respectively. Choose any v € V, considered as a
constant section of 7 (W’) defined by U,(£). In the proof of Lemma 4.6.4, we

145



have shown that (4.6.10) is true for any section u of ¥-_g,. In particular, this is
true if we take u € V and consider it as a constant section of ¥¢(W” —{z"}) defined
by U,(w). Thus, we may apply Resc_o(- - - )("d( to obtain

Yo (w)m Y4 (v)nd(we) = Resc—oRes,—o L1 (u, v, w,)(C, 2) - ("2"dzd(.

A similar argument shows

Yo (0)n Y- (u)md(ws) = Res,—oResc—o L1d (v, u, w,)(2,¢) - ("2"d(dz.

By Theorem 3.4.6-(4), we have 1! ¢(u, v, w.)((, 2) = 1 (v, u, w.)(2,() (When z €
W', ¢ € W"). The commutativity of Y_(u),, and Y, (v),, follows. O

To determine the lowest weight subspace of Nx(W.,), we first need a lemma.

Lemma 4.6.7. Choose any a,b € Nand ¢ € Nx(W.). Then ¢ € 7, ,(W.) if and
only if Y. (v),d = Y_(u),d = 0 whenever u,v are homogeneous, n > Wt( ) + a, and
m = wt(u) + b.

Proof. The “only if” part follows from (4.6.8) and a similar equation for Y_. We
now prove the “if” part. Suppose Y, (v),$ = Y_(u),,d = 0 for the u,v,m,n de-
scribed above. Choose any w, € W,. Consider :d(w.) € H(C' — Sx — Dx, /.4,
whose expression near each z; is given by (3.1.5). If v is a section of 7% ,; defined
near 2/, then U,(£)v is an Oy -linear sum of elements of the form v{"d¢, where v is
homogeneous and n > wt(v) + a. By (4.6.7), Res¢—o ! d(v, w,)E"dE = 0. So 1d (v, w,)
has no pole near ¢ = 0. Thus (p(w,) € H*(C — Sx — {2"}, #¥,,)- A similar argu-
ment shows 1 (w,.) € H°(C' — Sx, #,,)- Thus, as in the proof of Theorem 3.1.2,
we may use Residue theorem to deduce ¢ € 73, , (W.). O

Corollary 4.6.8. We have
+—(N3€ (W-)) = %fo,o(W-) (4.6.12)
Moreover, if V is Cy-cofinite, then Q. (Nx (W,)) is finite dimensional.

Proof. The equation follows directly from Lemma 4.6.7 and the definition of Q2 _
in (4.5.8). If V is Cy-cofinite, we may show that % 0(W.,) is finite dimensional
using the idea in the proof of Theorem 3.7.3. (In particular, the vanishing Theorem
2.4.3,in which 7" is replaced by 7,5, is used.) O

The following result is claimed in Remark 4.5.5. We are now ready to prove it.
Note that neither Cs-cofiniteness nor rationality is assumed here.

Proposition 4.6.9. Let M, M be irreducible (ordinary) V-modules. Suppose that the
o (V)-modules (M), Q(I\\/JI) are equivalent. Then M ~ M.
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Proof. We set X = (P';1;0;0;2 — 1;2;1/2). Namely, we choose C = P!, N =
Lzy=12"=0,2"=00,m =2—-1,§ = z,w = 1/2. Weset W, = W; = V. Define
¢ € (VOM®M')* to be b (v@m®@m') = (Yyw(v, 1)m, m’). Then, as shown in example
3.1.6, ¢ is a (non-zero) element of .7 (VO M @ M'). Define Uy : MM’ — Nz (V)
as in example 4.6.1, i.e., by

Vo (m@m')(v) = Yw(v, )m, m") = Yy (v)wiw-1ym, m').

U, is clearly a homomorphism of weak V x V-modules. Since M and (hence) M’
are irreducible ordinary V-modules, by Proposition 4.5.16, M®M' is an irreducible
weak V x V-module. Thus ¥4 must be injective. So Ml ® M’ is isomorphic to an
irreducible weak V x V-module K := ¥(M ® M’)

In a similar way, we can define d) A usmg I\\/JI and M @ M’ is isomorphic to
K := ¢(M ® M'). Now, let T : Q(M) — Q(M) be an 1somorph1sm of LUy(V)-
module. Then, by Remark 4.5.5, its transpose 7" : Q(M/ ) — Q(M') is also an

isomorphism. Choose any m € M, m’ € M. Then
\Ilaj(T_lm RT'm')(v) = Y5y (v)wi(wy—1 T "m, T*m')
:<YM(v)wt(v)—1ma m/> = \I]¢(m ® ml)(v)'

This shows that K and K have at least one non-zero common element. So K n K is
a non-trivial weak V x V-submodule of K, which must be K by the irreducibility

of K. Thus K c K and, similarly, K = K. Therefore, Ml @ M’ and M ® M are both
isomorphic to K = K as weak V x V-modules. In particular, they are equivalent
as weak V x 1-modules. So Ml ~ M. O

The following proposition can be thought of as a converse of example 4.6.1.

Proposition 4.6.10. Let M, M be V-modules, and let ® : M @ M — Nx(W,) be a
homomorphism of weak V x V-modules. Then there exists \p € 7F (W, ® M ® M) such
that for any m € M, m € M, w, € W,,

S(mRm)(w.) = P(we ®m R m).
Thus, using the notation of example 4.6.1, we have ¥, = .

Proof. Define 1 to be a linear functional on W, ®M®M whose value at w, @M@
is ®(m ® m)(w.). Consider 1®(m ® m)(w.,), which is an element of H°(C' — Sy —
Dy, 7). By Theorem 3.4.6, its series expansion near z; is of the form

SP(m@m)(w ® - ® Y, (v,n)w; ® - - @ wy)
=Pp(w @ - @ Yoy, (v, m)w; ® - - @ wy @ m QM)
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when evaluated with U,(n;)'v (v € V). When evaluated with U,(§) v (consid-
ered as a constant section of 7¢(IV')), it becomes, by (4.6.7),

L (m@m)(v, w.) = (Yy(v,§)2(m @m))(w,) = S(Yu(v, §)m & m)(w.)
=W(we ® Y (v, §)m @ m).

Similarly, its evaluation with U,(w) v is P(w. ® m ® Yy (v, w)m). Thus, by Theo-
rem 3.1.2, ¢ is a conformal block. O

The weak V x V-module N"(W,)

In application, it would be more suitable to consider NV (W, ), the (V) x L(V)-
submodule of Nx (W, ) generated by Q.. _ (Kx (W, )). Recall in Definition 4.5.10 the
meaning of rationality.

Lemma 4.6.11. Assume that V is Cy-cofinite and rational. Then we have the following
equivalence of weak V x V-modules

SRY(W.) ~ DM @M, (4.6.13)

where each M; and I\\]IZ are irreducible (ordinary) V-modules.

Proof. By proposition 4.5.17 and Theorem 4.5.12, it suffices to check that N¥™ (W, )
is a direct sum of irreducible admissible (and hence ordinary by Corollary 4.5.13)
V x 1-modules and also a direct sum of irreducible admissible 1 x V-modules.
Indeed, suppose this is true. Then we have (4.6.13) where each M, and M, are
irreducible weak V-modules. M; must be isomorphic to an irreducible weak V x 1-

submodule of [<[2¥(W,), which is therefore ordinary. Similary, M, is ordinary.

For each m € Z, we let {_,,(V) be the elements of (V) raising the [N/O-weights
by m. Namely, it is spanned by (v1,n1) - - - (vy, ) satisfying 3% (wt(v;) —n;—1) =
m. For each b € N, we consider the V x 1-module

Xy = (U(V) x Uop(V)) T (W)

whose lowest weight subspace is denoted by €2, (X;). Using the commutator for-
mula (2.2.3), it is easy to see that X, is annihilated by Y_ (u),, where v is homoge-
neous and wt(u) —m — 1 + b < 0 (i.e., (u,m) lowers the Eo-weight by more than
b). Thus, by Lemma 4.6.7, we obtain

(1 x Uy (V) T 0(We) = Q4 (Xp) & T (W)

The first inclusion shows that €2, (X,) generates X,. The second one shows that
0, (X,) is finite-dimensional since .73, ,(W.) is so by the proof of Theorem 3.7.3.
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Thus, by the rationality of V, X, is a direct sum of irreducible admissible V x 1-
modules. Since NV (W.) = \/,.y X5, we conclude that N (W,) is a sum, and
hence a direct sum, of irreducible admissible V x 1-modules. The claim for 1 x V
is proved similarly. O

Let £ be a complete list of mutually inequivalent irreducible (ordinary) V-
modules, which is finite by Corollary 4.4.5. The word “complete” means that
any irreducible V-module is equivalent to one object in £. The following theorem
gives a complete characterization of N (W,) when V is Cy-cofinite and rational.

Theorem 4.6.12. Define a homomorphism of weak V x V-modules

U: P MOM® ZFH(W, @ M M) — ;g (W.), (4.6.14)

M,MES

memE e — Vy(mem)

where U, is defined in example 4.6.1. Then WV is injective. If V is Cy-cofinite and rational,
then WV is an isomorphism.

Note that that the image of each ¥, is in Ny¥(W,) follows from the obvious
fact that M @ M is generated by (M) ® Q(M).

Proof. If Ker(¥) is non-trivial, then it is a non-trivial (V) x 4{(V)-submodule of
the domain (V) of W. Since Z(¥) is clearly completely reducible, by basic repre-
sentation theory, so is Ker(¥). Thus, Ker(V) contains an irreducible $4(V) x $(V)-
submodule W. The projection of W onto one of the irreducible component of
2(¥) is non-trivial. Thus, W ~ M ® M for some M, M € &. By Corollary 4.5.15,
there exists a nonzero ¢ € F3 (W, @ M ® M) such that W = M@ M ® $. As
W c Ker(¥), we have ¥, = 0. By (4.6.4), for any w, € W.,m € M, € M, we
have ¢p(w. ® m ®@m) = 0. So ¢ = 0, which gives a contradiction.

When V is Cs-cofinite and rational, the surjectivity of ¥ follows from Proposi-
tion 4.6.10 and Lemma 4.6.11. O]

4,7 Factorization

We assume the setting of Section 4.4. Thus, we recall that X is a fam-
ily over D,, obtained by sewing an N-pointed compact Riemann surface X =
(5;1’1, ooy xiaing ooy € ). Recall Sy = x4+ - + xy and Dy = 2/ + 2.
Note that for each ¢ € D,,, the fiber C, is nodal (with one node) if and only if
g = 0. Moreover, C'is the normalization of the nodal curve C' := Cp. In particular,
we have v : C' — C defined by gluing ', 2”. Also, Xy = (C;x1,..., 2N, .-, N)-
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We assume that V is both Cs-cofinite and rational. By Convention 2.2.6, for

each irreducible V-module M, its lowest Eo-weight (with nontrivial weight space)
is 0. Thus Q(M) = M(0).
Choose any ¢ € 7% (W,). Then ¢ is a linear functional on W,.

Lemma 4.7.1. ¢ is an element of %* 0. o(Wo).

Proof. Recall that W', W” are open discs in C' centered at z, 2" respectively and
disjoint from z,,...,zy. A section v of 73, ® wy defined on W’ u W”" is of the
form

Up(§)VIwr = ghoudg, Uy(w)v|wn = wlovdw

where u € V®c O(W'),v € V®c O(W"). v can be viewed as an element of
Yo Q@we (W' —2') u (W” — 2")). By the description of ¥ and w¢ near the node
(see (2.4.13) and (1.5.5)), it is easy to see that v belongs to 7 ® we(v(W' v W")).
(Indeed, one can check that the value of v at the node ¢ = v(z') = v(2”) (as an
element of 7 ® wcly') is 0.) So 7/3?:,0,0 ® wg is naturally a subsheaf of 7 ® we.
Thus, as ¢ vanishes on H°(C, 7c ® wc(eSx)) - W., it vanishes on the subspace
HO(C, V%00 ®we(0Sx)) - W,. This proves ¢ € T, o(W.,). O

Lemma 4.7.2. For any homogeneous v €'V,

Wt (v)— l(b Z llv)wt(v) l— ld) (471)

leN

Proof. Consider ¢ as a conformal block on C. Choose any homogeneous v € V<",
As argued in the proof of Theorem 4.4.1, one can construct v € H°(C, "//5" ®
wei(eSx + Dyx)) such that
U,(E)V]wr = £ udE + €™ (elements of VS" ®@¢ O(W'))dE,
Uy(w)Vv|wr = —o™ U (v )vdw + @™ (elements of VS @c O(W"))dw.
By (1.5.5) and (2.4.12), it is clear that v can be viewed as an element of H°(C, ¥c ®
wc(eS%)). Thus ¢(v - w,) = 0.

Consider 1dp(w,) € H(C — Sy — Dx, ¢). Then b (v, w,) € H°(C — Sx — Dx, We)-
By residue theorem, we have

Resy 1 (v, w.) + Resyr L (v, w,) = ZResx L (v, w.),

=1

which, by Theorem 3.4.6, equals —¢ (v - w,) and hence is zero. By (4.6.7), we have,
under the identification ¥ ~ V ®c Oy via U, (),

Res, 1 d(v, w.) = Reseg? d)(th(”)_lv + - wa)dE = Y (V)wew)—1P(wa).
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By (2.3.15),

oo U (v, ) = whotel (—1)Foy = 2 —(_1)Wt(v) Lo o™=,
l!
leN
Thus, by (4.6.11),
-1 wt(v)
Resg L (v, w,) = _Z %Y_(Lﬁv)wt(v)lld)(w.).
leN ’
This proves (4.7.1). O

Let £ be a complete list of mutually inequivalent irreducible V-modules. By
Corollary 4.4.5, £ is a finite set. Recall the map

&, : P FHW.QMEM) — F (W.),

Me€&

@¢W~Z&m

Me&

defined for any ¢ € D} in Section 4.4. When ¢ = 0, an element in the image of éq
is a linear functional on W.,, which must be also in .7;% (W,) by Proposition 3.2.4.

Recall our assumption on ZD, which implies that
Shur(ws)(0) = brg(w. ® P(0) » Ry 4).

Here, P(n) is the projection onto the ZO-Weight n subspace, and hence P(0) is the
projection onto the lowest weight subspace.

Proposition 4.7.3 (Nodal factorization). Sy isa surjective linear map.

Indeed, one can use the same method for Theorem 4.4.1 to prove that (N‘:')O is
also injective.

Proof. Choose ¢ € 73 (W,). By Corollary 4.6.8, ¢ is in the finite-dimensional
space Q,_ ( Nz (W,)). By Theorem 4.6.11, we can find finitely many irreducible

V-modules My, ... Ml,Ml, .. Ml such that @l<z<lM ® M’ is a weak V x V-
submodule of N3z(W ) that ¢ € @,_,., M;(0) ® M (0 1(0), and that the projection
of 1 to each M;(0) ® M(0), which we denote by

¢ € M, (0) @ M;(0),
is non-zero. By Lemma 4.7.2 and equation (4.5.5), we have for each i that
(Yo, (V) wi() -1 @ 1) = (1 ® YMi(U)xtm(v)—ﬁﬁbi-
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Identify M;(0) ® I\A/I[;(O) naturally with Hom¢ (M (0), MZ(O)) Then the above equa-
tion shows that ¢; € Homy,v)(M;(0), M;(0)). Since ¢; is assumed to be non-zero,
we have M (0) ~ M;(0). Thus, by Proposition 4.6.9, we have the equivalence of

V-modules M; ~ M. We may thus assume that M; = M. As §; € Endy, vy (M;(0)),
it is a scalar multiplication. We may thus find a (non-zero) A\, € C such that
;i = NP(0) » ®;4.

By Theorem 4.6.12 or Proposition 4.6.10, we can find for each i a non-zero
conformal block ¥; € 77 (W, ® M; ® M) such that

(mi; @ ;) (wa) = Pi(we @ m; @ ;)
for each w, € W,,m; € M;, m. € I\Aﬂ; In particular,
di(we) = Wi(we ® ;) = Nidbs(we @ P(0) » ®i«) = \iSW;(w.)(0)
Thus ¢ = ., AiSP;(0). It is now clear that ¢ is in the image of So. O

Theorem 4.7.4 (Factorization). Assume that V is Cy-cofinite and rational. Then (%q is
an isomorphism for each q € D,,, and &, is an isomorphism for each q € Dy,

Proof. As explained before Theorem 4.4.1, it suffices to prove that éq is an isomor-
phism for each ¢q € D,,. Let D € N be the dimension of the domain of (N‘Sq, which is
finite by Theorem 3.7.3 and Corollary 4.4.5. Let K, be the dimension of the image
of éq. By Corollary 3.7.5, if ¢ # 0 then K|, is independent of ¢q. We fix ¢ € D;,. By
Proposition 1.8.1 (Nakayama'’s lemma), K, < K,. By Theorem 4.4.1, D < K,. By
Proposition 4.7.3, Ky < D. Thus D = K, = K. l

Remark 4.7.5. The above two theorems show that if a nodal curve C' (with nor-
malization C) has one node, then its dimensions of spaces of conformal blocks
can be calculated from those of C. Note that the results in Section 4.6 can be
generalized to N-pointed compact Riemann surfaces with local coordinates and
arbitrary numbers of outputs. Accordingly, we may prove the nodal factoriza-
tion for an N-pointed nodal curve (C; x4, ..., xy) with an arbitrary number M of
nodes in the same way: the dimension of the space of conformal blocks associated
to the modules Wy, ..., Wy is

> dim ZF(W. @M. ® M) (4.7.2)

where X is the compact Riemann surface C with N + 2M marked points, and
We =W, ® - Wy, M, =M; ®--- @M, M, = M| ® - ®M),, as usual.

Theorem 4.7.6. Assume that V is Cy-cofinite and rational. Let X = (v : C —
B;<1,...,sn) be a family of N-pointed complex curves. Then Jx(W,) and (hence)
TE(W,) are locally free. Consequently, the function b € B — dim 7 (W.) is locally
constant.
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Proof. Recall that by Theorem 3.2.1, the dimensions of the fibers of .73(W,) are
given by the dimensions of the spaces of conformal blocks. Outside the discrim-
inant locus A, the dimensions equal (4.7.2) by applying Theorem 4.7.4 several
times. In A, the same is true by nodal factorization (Remark 4.7.5). Thus, the rank
function of 7%(W,) is locally constant. By Theorem 3.7.3, 7%(W,) is finite-type.
Thus, it is locally free by Theorem 1.8.2. O
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Chapter 5

More on the connections

5.1 Connections and local coordinates

Consider a family of N-pointed compact Riemann surfaces X = (7 : C —
B;s1,...,sn). Assume B is biholomorphic to a Stein open subset of C™, and X ad-
mits a set of local coordinates 7, ..., ny. For each y € ©5(B), we have defined in
Section 3.6 a differential operator V, depending on 7, and a lift) € H%(C, O¢(eS%))
(satisfying dn () = 7*p). We have also seen that if 7, is fixed, then V, is deter-
mined up to an &'(B)-scalar addition by 1. In this section, we show the same is
true for the dependence of V,, on n, if Wy, ..., Wy are simple V-modules.

Let 7, = (1, ..., 7,n) be coordinates of B, and write 7,07 also as 7, for simplicity.
Then we can write

= Z 9;(7e) 0,

for some ¢i,...,9m € O(7.(B)). Choose mutually disjoint neighborhoods
Wi,...,Wyof(B),...,sn(B) onwhich,,...,ny are defined respectively. Then
(n;, 7e) is a coordinate of W;. So we can find h; € &((n;, 7.)(W;)) such that

5|W1 = hi(ni’T.)ani + Zgj(To)aTj/n“ (5.1.1)

J

where (37]- /m; means the partial derivative 0, defined with respect to the coordinate
(nh Te ) .
Let V‘(, *) denote the differential operator defined by 7, and 1. Let i, be another

set of local coordinates of X, and let V,(,“ *) denote the differential operator defined

by p. and 1. Let

a; = (i) : B—G
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be a holomorphic family of transformations whose value at each b € B is defined
similar to (3.2.14), namely «;,(z) = p; o (n;, ) (2, ) for each b € B. Equivalently,
consider «; as a holomorphic function defined near 0 x B < C x B,

o (mi, ™) = (pi, ). (5.1.2)

Let o/(0) € 0(B) whose value at each b € B is 0, 4(2)|.—0. Assume V has central
charge ¢, and W, ..., Wy are simple V-modules. For each W;, we let Ay, € C be
the unique number such that W; = P, .n(Wi)(aw, +n) and (W;)(a,, ) is non-trivial.

Thus, according to Convention 2.2.6, Ly — Lo = Aw,1 on W,. Ay, is called the
conformal weight of W,.

Theorem 5.1.1. Let f € 0(B) be

f= Z (Resm hi (i, 7o) Sy pridn; — Ay, Zgj 7e) 0, log a; (O)) (5.1.3)

7=1
Then for each section s of Tx(W,),

Vg"‘)s — Vg“')s = —fs.

Consequently, for each section ¢ of TF(W.,),
Vi = Ve = fo.

Note that the first part on the right hand side of (5.1.3) is similar to 5C; where
C; is defined in Remark 4.3.10. Also, the residue Res,,_ is taken w1th respect to
the coordinate (7;, 7).

Proof Choose w; € Wyi,...,wuy € Wy. Recall w, = w; ® --- ® wy. Let
=U(n.) 1w, € #x(W,)(B). So
U(pe)s =U(a)w ® - QU(an)wy. (5.1.4)
By (3.6.8) and (3.6.10),

u(n’)vl()m)s:2w1®w2®”'®ﬁi®---®w1\;

where
iDi = —RGSTHIO hz<7’]z, T-)YWZ- (C, nl)wzdm
Thus

Upa) Vs = ZU(al)wl Q- QU)W @+ QU(an)wy. (5.1.5)
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By (4.1.5),
U(o(eil1e))e = Ulolulm))e = Py ) + Sy 1.

Using Theorem 2.4.1, we compute

Z/{(Ckl)lbl = —Resm:o hl . Z/{(C(Z)YWZ (C, nl)wldm
= — Resy,—o hy - Yw, (U (0(c[1c)) e, ps)U () widn;

= — RGSM:Q hzﬁmuz : le (C, MZ)U(QZ)U}ZCZ'LLZ — Resmzo 1—c2hzsmﬂ,z : U(az)w,dnz
(5.1.6)

We write § in the (p;, 7. )-coordinate:
i5|VV1 = (hlamlu’z + 2 gjﬁTj/niMi> aui + 2 gjaTj/Mj'
J J

Recall (5.1.4), apply (3.6.8) and (3.6.10) again, and use the above expression of §
in the (u;, 7. )-coordinate, we have

U(u.)vg“‘)s = ZZ/{(al)wl ® QU U(ay)wy (5.1.7)

where (defining v using /..)

v = 2 50U, — VEU ()w;.
7

= Zgja’rju(ai)wi — Resy,—o <hz‘5mm + Z gjﬁfj/mui>Ywi(C, i U (i )widp;.
- .

J

From (5.1.2), it is easy to see

Oy mibi = (Ory i) (mi, ) = (aTjOéi)(afl(Mi,W)aﬂ)

where o; ! is the fiberwise inverse of «;. Identify W; with a neighborhood of 0 x B
via (y;, ) so that (p;, 7) is identified with (2, 1), and think of «; as a family of
transformation and write the parameter of B as the subscript of ;, we have

07']-/7]1-/1%(27[)) = (aTjai)(a;l(z7b)7b) = (aTjOéi>b<Oéz‘Tb1(z))
or simply
877/%‘“'1' = (aTjai) © O‘i_l'

Use this relation and apply Lemma 5.1.2 to the family «;, we have

Or,U (a)w; = Res,_o (0r, ) (a; ' (2))Yaw (e, 2)U (0 )widz — Aw, 0, log o (0)U (o )w;
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=Resy,—0 Or, m, i - Y (C, pa)U (i) widp; — Awy, 0-, log o (0)U (o )w;.
Thus

V; = —Resy,—0 hily, i Yw, (€, pi)U (0 )widp; — A, Z%‘% log o (0)U (v )w;. (5.1.8)

J

Combine (5.1.5), (5.1.6), (5.1.7), (5.1.8) together, and notice (5.1.4), we obtain
U(p)V§™'s —U(n) Vs = — fUl(p)s. O

Lemma 5.1.2. Let T' be an open subset of C. Let p : T — G, — p¢ be a holomorphic
family of transformations. Then for any V-module W, if we let A = Ly — Ly, then

OU (pe)w = Res.—o (Ocpe) (p7 ' (2)) Y (e, 2)U (o) wdz — 0¢ log p(0) AU (pe)w. (5.1.9)

Proof. Choose any ¢, € T and apply Lemma 2.3.4 and Remark 2.3.5 to the family
¢ — pcopg,, wehave

a(“(ﬂ()w‘czco = aCu(pC © pi)l)u(pCo)wlgzco
=Res.—o Oc(pc © pg, ) (2)Yau(e, 2)U (pey Jwdz| _ . — Oc(pe 0 ') (0) AU (pgy Jw] . -

0c(pc 0 pg)(2) is just (0cpe)(pg, (2)). Note that pz! is the inverse function of p,,
whose derivative is 1/(p, © p&)l). Thus

(oo pg, ) = (pzopg ) (pg) = 7—25

‘ “ ‘ “ “ p /CO °p Col

whose value at z = 0 (noticing p&)l(o) = 0) is p¢(0)/p¢, (0). Therefore,
c(pc 0 pg ) (0)] _, = Pt (0)/p, (0)] _, = Oclog p(0)] ., -

This proves the desired equation at ¢ = (. O

5.2 Projective flatness of connections

Our goal of this section is to calculate the curvature of the connection associ-
ated to a family of N-pointed compact Riemann surfaces with local coordinates
X=(r:C— B;s,...,sn;m1,---,nn). Choose sections v, 3 of O defined on Stein
open subsets of B. Choose lifts 1,3 as in the previous section as in Section 5.1 or
3.6. We write their local expressions at W; as

~

)

w; = hi(niaT')aﬂi + Zgj(T')aTj’

J
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3w, = K, )@y, + Y 1i(7) 0,

J

For brevity, in the above expressions, we set
Y = g(r)e,,  Z =) 1i()én,,
J J

which have the same expressions as v, 3, although their meanings are slightly dif-
ferent. We let [, 3] be the lift of [y, 3]. Define V,, V;, V|, ;) using these lifts and the
local coordinates 7,. Let R(1,3) = V,V, — V,V, — V[, ,;. Choose V with central
charge ¢, and V-modules W, ..., Wy.

Theorem 5.2.1. Let f € O(B) be
N c
f - _; (Resm:o Eafhhl(nlv ’7‘.) ’ kz(”u 7‘.)an> (521)

Then for each section s of Tx(W,),

R(Uaﬁ)s = —fS.
Consequently, for each section ¢ of TF(W,),

Thus, the (local) connections defined by these differential operators are pro-
jectively flat, and the curvatures depend only on the central charge c of V, but not
on V or its modules.

Proof. We have

Vs =2Zs— Z(kicdm) .S

)

and hence
VyVs =Y Zs — YZ(k,-cdm) s — Z(hicdm)Zs + Z(hicdm)(kjcdnj)s.
i i ij
Similarly,

7 27]

VVys = ZY's — Z Y (hicdn;) - s — Y (kiedn;)Y s + > (kjedn; ) (hiedn;)s.

Note that [Y, k;cdn;] = (Yki)edn; and [Z, kicdn;] = (Zk;)cdn; since Y, Z are
orthogonal to dn,. Also, if i # j then h;cdn; and kjcdn; are acting on different
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tensor-components of s. So they commute. Using Proposition 3.5.1, we see that in
the case that i = j, the action of [h;cdn;, kicdn;] on F%x(W,) equals

(3.5.3) 1 .,
[hicdn;, kiedn;] = Ly kicdn ——= ) m(émhi)kiY(c)ncdni

n=0

_ Z DL yedn;, 2218 gk L yedn; + 2(6,,hi) kicdn; + %(agihi)kimm

n>0

where the three summands in the last expression correspond respectively to n =
0,1, 3, the only cases that L,,_;c # 0. By Lemma 3.5.2,

[hicdn;, kiedn;] = —0y, (hik:)edn; + 2(6y,hi)kicdn; + T;(agihi)kildm
= (0, hi)kicdn; — hi(0,,ki)edn; + E( 03 hq)kiLdn;
when acting on Z%(W,). Thus,

[Vy, Vils =[Y, Z]s = > [(Ykicdn;)s + Z(Zhicdm)s

+ ((Onihl-)l;cdm)s — (h,-((?,,jki)cdm)s — fs. (5.2.2)
On the other hand,
[0, 3]lw, = (hiOp ki — kiOp,hi + Y'ki — Zh;)oy, + [Y, Z],
which shows V[, .15 equals the sum of all the terms on the right hand side of (5.2.2)
except — fs. This proves the desired relation. O

5.3 Constructing flat connections

The goal of this section is to define flat connections on sheaves of conformal
blocks depending on as few parameters as possible. We adopt the following no-
tation: If .Z is a line bundle on a complex manifold X, then for any sections s, s2
of £ on an open U c X, if s, is nowhere zero, then i—; is the unique element of
0 (U) whose multiplication with s; is ;.

Assume Wy, ..., Wy are simple V-modules. We explain how to obtain a flat
connection associated to sheaves of covacua and conformal blocks of V. Let

X=(m:C—>B;s1,...,SN;V1,---,UN)

be a family of N-pointed compact Riemann surfaces with jets. This means that
(m:C — B;si,...,qv) is N-pointed, and the jet

v; € §fwep(B)

is nowhere zero for each 1 < ¢ < N. Thus, for each b € B, v;(b) can be regarded as
a (holomorphic) cotangent Vector of Cy at ;(b).
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Example 5.3.1. If X is a family of N-pointed compact Riemann surfaces with local
coordinates 7,, then X has a natural choice of jets: let v; = ¢*dn;.

Example 5.3.2. Assume X = (7 : C — B;<,) is N-pointed. For each i, we let B
be the open subset of non-zero vectors of the line bundle ¢}we/s. Let p; : B' — B
be the projection sending the vectors to their initial points. Using these projec-
tions, we define the relative product B = B! x5 B? x5 --- xp BY, i.e., the closed
submanifold of all (v*,...,yY) € B! x --- x BY satisfying p;(y!) = - = pny(7V).
Let p : B4 — B be the natural projection defined by pi,...,py. Then we may
pull back X along p : B4 — B to obtain an N-pointed X2 = (7 : C® — B>;¢2).
More precisely: we let C® = C x 3 B> which can be considered as a submanifold of
C x B2. ¢ is determined by ¢ (b2) = (G;(p(b2)),b>) for every b> € B2. Then X
has natural jets v, such that for each b* € B>, if we consider b = (v},...,v") as
an element of B x - -+ x BY = ¢fwe/s x - x siwess and set b = p(b>), then v;(b%),
a cotangent vector of Cp. = G, x b ~ Cyat s (b°) = (si(b),b°) ~ Gi(b), is 7.

Let X be N-pointed with jets v, as above. Fix a Cs-cofinite rational VOA U with
non-zero central charge cy. We assume that U is holomorphic, i.e., U has only one
simple module which is U itself. For instance, one can take U to be the VOA
associated to an even self-dual lattice, or the moonshine VOA. By factorization,
any space of conformal block associated to U and a pointed curve has dimension
one. Thus the sheaves of conformal blocks of U are line bundles. We fix the sheaf
of conformal blocks of U associated to X and the U-modules U, ..., U:

L =TV - ®U)

and consider it as a line bundle on B.

Flat connections depending on v, and a nowhere zero 0 € .2 (B)

We assume that there is a nowhere zero section 6 € ZY(B). Then we shall
define a flat connection V® independent of local coordinates and lifts of tangent
vectors. It suffices to define such connection locally. So we assume temporarily
that B is Stein and small enough so that we can choose local coordinates 7,. For
each i, ¢'dn; € ¢fwe/s(B) is nowhere zero. Thus ¢dn;/v; € O(B). If p, is another
set of local coordinates, we define «; and hence o/(0) € 0(B) as in (5.1.2). Then it
is easy to see

Sidp; = ai(0) - ¢ dm. (5.3.1)

For each section v of O, choose a lift §j. Define V(™) using 7, and § as in Section
3.6. For each section ¢ of .7;*(W,), let

§Z»*d i
Vip = Vi - LS - Y A, .1,<10g7:7> .. (53.2)



Theorem 5.3.3. V° is a flat connection of 7¥(W.,). Moreover, V° depends on the jets
ve and the nowhere zero section 0 € £ (B) but not on n, or the lift § of v. Therefore, V°
can be defined globally without assuming 13 is Stein or local coordinates exist.

Proof. By Proposition 3.6.6 and Remark 3.6.7, V| is independent of . That V,»
is independent of the local coordinates 77. follows from (5.3.1) and Theorem 5.1.1.

Note that if 6 = V0, then V{"'V{")o = Vi) (f0) = n(f)0 + fV¥6. From
this we see

<v§“')e > _vyvie  vite vie
N7 /7 o 0 o
With help of this relation and Theorem 5.2.1, it is straightforward to check that V
is has zero curvature. ]

Example 5.3.4. In the case that one cannot find a nowhere zero 6 € .%/(B3), one can
consider a “central extension” of X as follows. Regard B as a closed submanifold
of £y consisting of zero vectors. Note that we have a natural projection

p: LY — B

sending each vector to its initial point. We can pull back X along p : & — B — B
and obtain a new family 9) (with base manifold .%;’ — B8). One can also pullback
the jets of X. Then ) has a natural global nowhere section 6 of .%;).

Connections depending on v, and a projective structure ‘3

Suppose X has a projective structure 3 and jets v,, one can define a connection
V* as follows. Choose a lift §j of the tangent field 1, and let h; be as in (5.1.1). Then

i )8, Bl — ZAW (1o ) o,
(5.3.3)

N
VEd = Vb — > Res,, g 5
=1

Theorem 5.3.5. V¥ is independent of the choice of n, and the lift § of v.

Proof. To compare the definition of V using two sets of local coordinates 7, and
Ite, it suffices to assume 4, . . ., p1y belong to 3. Then the coincidence follows from
Theorem 5.1.1. When the local coordinates belong to I3, V is independent of the
choice of lift by Remark 3.6.7 and Lemma 4.2.1 (or equation (4.2.4)). Thus, for a
general 7,, the independence on ) is also true. O

Note that unlike the previous connection, V¥ might not be flat.
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5.4 Functoriality

Assume for simplicity that V is Cs-cofinite so that the sheaves of conformal
blocks are holomorphic vector bundles. If F; : W; — M is a homomorphism of V-
modules for each 1 < i < N, then we clearly have an 03-module homomorphism
Fy: 7F(M,) — 75 (W,) defined by sending each ¢ to o (F1®- - -QF,). If we have
Gi : M; — P, where each P; is also an V-module, then by setting (GF);, = G,F;, we
have (GF)} = F}G}. Moreover, if each F; is identity, then so is F. Thus, we have
a contravariant functor W, — Z,*(W,).

We may also fix V-modules W,,..., Wy, and consider morphisms between
two families of compact Riemann surfaces. To be more precise, if X/ = (77 : ¢/ —
B;¢l,..., k) (j = 1,2) are families of N-pointed compact Riemann surfaces, then
amorphism F' : X! — X?isapair F' = (F¢, Fg) where F¢ : C! — C*and Iy : B! —
B? are holomorphic maps, 7% o Fg = Fgom!, Foog! = ¢ foreach 1 <i < N, and
Fg restricts to an isomorphism of compact Riemann surfaces C; — C7, ) for each
b e B'. We will write both I and Fg as F for short when no confusion arises.

We can pull back 7%5(W,) along Fp to get an Ogi-module F*.7%(W,) =
F3.75(W,). Thus we have F* : J%5(W,)(V) — F*7%(W.)(F~1(V)) for each
open V € B%. We can define a similar map

Fo 2 ZE(W.)(V) - T (W) (F(V)) (5.4.1)

as follows. For each b € F~(V), F¢ restricts to an isomorphism of N-pointed
fibers C; — C7,,)- This gives a natural isomorphism

Fy « TE (W) |F(b) — Z55(W,)|b.

Then F* is defined such that for each ¢ € Z5(W,)(V)and be F~1(V), (F°$)(b) =
Fy$(F(b)). One can write down the explicit formula: Assume the restriction X3,
admits local coordinates 7. Then one can define local coordinates n! of the re-
stricted family X}, . ;) such that

n =n} o Fo (54.2)
for each 1 < i < N. Choose w € W,. Then
(Feo)Un,) " w) = dU )™ w). (5.4.3)
If G : ¥* — X? is another morphism, we clearly have
(GF) = F°G°. (5.4.4)

Also, if F'is the identity map, then F* is clearly also the identity.
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F*° and F* can be related in the following way. Define an 0z1-module isomor-
phism

p: F* T8 (W,) = TH(W,),
@FF*(D — FQ(D (5.4.5)

for each section ¢ of 7%5(W,). Namely, it is defined by ®r(f - F*¢) = fF° for
any holomorphic function f of B*. To check that @ is well-defined and is an -
isomorphism, note that for each b € B we define an isomorphism of vector spaces
Ff = (Fp)f + 75 (WL)|F(b) — F*7%5(W,)|b by pullback. Then we can define an
isomorphism

Cpp : F*T(We) b = T35 (W),
Op,Fy = Fy.

Thenitis clear that ®p(f-F*$)(b) = f(b)-(F°P)(b) = f(b)-Fy-d(b) = f(b)-Pppky -
¢ (b) which depends only on f(b)d(b). So ®F is a well-defined isomorphism of
vector bundles whose restriction to each fiber over b is ®5;. To summarize, we
have

Theorem 5.4.1. For each morphism F : X' — X? of families of N-pointed com-

pact Riemann surfaces, there is an isomorphism of (holomorphic) vector bundles ®p :

F*T5(Wo) = Z5(W,) such that ®pF*d = F°¢ for each section ¢ of T (W), and

F°¢ is described by (5.4.3). If F is the identity morphism, then ® is the identity map.

If G : X* — X3 is also a morphism, then for each open W < B3, the following maps from
(W) (W) = TZE(W)(F'GH(W)) are equal.

Sgp - (GF)* = ®p - F* - B¢ - G*.

The last equation is due to (5.4.4).

Recall that if V is a connection on 7% (W,), then its pullback F*V = FgV
is a connection on F*.7%(W,) defined by (F*V),(F*$) = F*(Vapw$) for each
section ¢ of 7% (W,) and each tangent vector y of B.

Suppose that X? admits jets v2. Then one can define jets v! of X' such that
for each b € B!, the cotangent vector v} (b) of C} at ¢} (b) is F*dv?(b). If X* also
admits a projective structure P, then one can define a projective chart (and hence
a projective structure) PB* consisting of all (F;'(U),n o Fc) where (U, ) belongs
to P! (In particular, U is an open subset of C> and n € &(U) is univalent on
each fiber.) Then for the connections defined by (5.3.3) (assume Wy, ..., Wy are
simple), it is not hard to check that for any tangent field y of 8¢,

V= op - (F*VY), - o) (5.4.6)
when acting on sections of .7 (W,).
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Alternatively, suppose that, instead of projective structures, we have a global
section 0% of .Z%. We can define a global section of .2 tobe 0! = F°0% = & F*02.
Then for the flat connections defined by (5.3.2), we also have

V= 0p - (F*VY), - 05" (5.4.7)

Example 5.4.2. Let G'be a group of automorphisms of X, i.e., we have a homomor-
phism G — Aut(X). For each g € G, we have an action ¢° = ®,-¢* : 7¥(W,)(V) —
TE(W,)(g~V) for each open V < B, and we have (gh)® = h°g° for each g,h € G.
Thus, we have a right action of G on .73*(W,)(B).

Suppose that X admits jets v, and a projective structure 33, and both are invari-
ant under the action of G. Suppose also that 3 is simply-connected and V¥ is flat.
We can define the vector space ¢x(W.,) of all ¢ € .7¥(W,)(B) which are parallel
under V¥, i.e., annihilated by V¥ for each tangent field y of B. Then dim %% (W.)
is equal to the rank of the vector bundle .73 (W,). Moreover, g € G — (g7')¢ de-
fines a (left) action of G on the vector space ¢x(W.,). This is also true when we not
assume the existence of a set of G-invariant jets, but assume Wy,..., Wy areall V
so that Ay, = -+ = Ay, = 0.

5.5 Modular invariance

Let V be Cs-cofinite and rational. Let f) = (P';1,0,00). We associate local
coordinates z to 0 and z~! to co. Then we can sew ) along 0, o to get a family ) =
(R — Dy;0) of 1-pointed elliptic curves. Recall Dy is the punctured unit open
disc. Associate to 1,0, oo simple V-modules W, M, M’ where M’ is contragredient
to M. Then for each { € 95;‘ (W®M ® M), we have the sewn conformal block

Sy e Ty (W)(Dy) and S = PSP, Let Q be unique projective structure of
P!, i.e., the one containing (C, z). This in turn gives a projective structure Q of ).
More precisely: the local coordinate z—1 of P! at 1 extends constantly (with respect
to sewing) to a local coordinate . of ). 9 is the projective structure containing .
Let v be a jet of ) whose value at each ¢ € Dy is the cotangent vector dp.. Then
the definition of the connection V) of Ty (W) using the local coordinate 4 (as
in Section 3.6) is the same as the connection V2* defined by Q and the jet v (as
in (5.3.3)), and is independent of the choice of lifts. Since the local coordinates of
0, o0 belong to 9, by Theorem 4.3.9 and Remark 4.3.10, $1 is parallel under Van,
Let H be the (open) upper half plane of C. Define

B=HxC*.

Define an action of Z? on C x B such that for each a,b € Z and (z,7,{) € CxHxC*,
(a,b)(z,7,() = (2 + a + br,7,(). Then we have a (universal) family of 1-pointed
elliptic curves

X=(r:C— B;g)
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where
C=(Cx B)/ZQ,

the projection 7 is defined by the standard one C x B — B, and ¢ comes from the
section B — C x B, (7,() — (0,7,(). Let I" be the modular group, i.e.,

[ = SLy(Z) = { <‘CL 2) ca,b,c,deZ, ad — be = 1}.

Then we have a group action of I" on X such that for any g = (CCL b) el

g:B— B, g(T, )=< (c7'+d)§>,

et +d’

and the action of g on C descends from the one on C x B determined by

z ar +b
cr+d er+d

g:CxB—CxB, g(z,T,g)z( (c¢+d)§).

Then we have X/I' = (C/I' — B/I';s) where B/I' is the (fine) moduli space of 1-
pointed elliptic curves with jet.! The jet of X/T" come from v of X which will be
described later. By example 5.4.2, I" acts on .73 (W)(B).

There are two natural choices of flat connections on .7;¥(W). We have a mor-
phism F' : X — Q) described as follows. As a holomorphic map between base
manifolds, we have

F:B=HxC*— Dy, (1,¢) — exp(2irT).
The map F': C — R is defined such that for each (7, () € B, the map
C — P!, z — exp(2irz)

descends to C — Rexp(2irr), and furthermore descends to C; = Rexp(2inr)- Then
we can pullback the projective structure Q and the jet A of ) to P’, " of X as
described above (5.4.6). Then by (5.4.6), V¥ is equivalent to F*V2* via & :
F* 73 (W) = 7 (W), and is therefore flat since V' is acting on a 1-dimensional
complex manifold. So

FoSY = ®pF*SY = ™2 . o F* S

is a global section of .7¥(W) parallel under V¥+*'. (Recall that F° is described
by (5.4.3).) By factorization, .7;*(W) is Oi-generated by, and hence the vector

!One reason to work with B instead of H and to consider jets is that pointed elliptic curves with
jet have trivial automorphism groups. So we can have a fine moduli space.
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space of V¥ -parallel sections in .7;*(W)(B) is spanned by all F°S{ where \ €
9@* (W®M® M) and M is a simple V-module.

Unfortunately, neither P’ nor v/ is modular invariant (i.e. I'-invariant). As a
consequence, V¥ is not modular invariant. To get modular invariant ones, we
let P be the projective structure of X whose pull back to the family C x B — B

is the standard one, i.e., its restriction to each fiber C is the one containing (C, z).
We let v be the jet of X to be

v=_-dz

i.e., for each (7,() € B, v(7,() is the cotangent vector (dz of the fiber C(, () at 0
(when lifted to C) where dz is defined by the standard coordinate z of C. Then
both ¥ and v are modular invariant. So is V¥,

Theorem 5.5.1. Let 7, ( also denote the standard coordinates of H, C* respectively. Then,
when acting on sections of 7¥ (W), we have

iem

Py _ ¥
VI =VEY 4oL
A
P _ P w
V3 =VET + : 1.

As an immediate consequence, V** is also flat.

Proof. V' is the differential of exp(2irz) at z = 0. So v/ = 2indz, and hence v =
s-v. Hence 0, (log(v/v')) = (. This, together with (5.3.3), shows the second the
identity. Since 0. (log(v/v')) = 0, we have V?T/”’ = V?T/”/. Thus, it suffices to prove
VI = VI 4+ 11 Let 5 be the local coordinate of X defined by the standard
coordinate dz of C. Let 1 be the pullback of ;. along F, ie., ' = exp(2irz) — 1.
Then 7 belongs to P and 7’ belongs to F’. Let 1 be a lift of 0;, and assume its
expression near ¢(B) is

h(n,7,C)0y + 0O

where the partial derivatives are defined by the coordinates (7, 7,(). Then by
Theorem 5.1.1 and relation (5.3.3), we have V?i’” - V?i’” = f1 where

C
f = Res,—o —h(n,7,¢)Syn'dn.

12
It is easy to calculate that S,7’ = S.(exp(2inz) — 1) = (2im)? — 3(2ir)? = 272,
We can pullback 3 to a global meromorphic tangent field of C x B whose poles are
in Z? - ({0} x B). Denote this pullback also by 1, and notice 7 is just the standard
coordinate z of C, we have §y = h(z,7,()d, + 0, and h is a meromorphic function
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on C x B with poles in Z? - ({0} x B). Moreover, ) is invariant under the action of
Z*. From this it is easy to see that

h(z+1,7,0) = h(z7.¢),  hlz+7,7.¢) =h(z7,()+1

Let v, be an anticlockwise parallelogram of C around 0 described by A, — B, —
C. - D, - A, where A, = —0.5—-0.57, B, = 0.5 —0.57, C; = 0.5 + 0.57,
D; = —0.5 4+ 0.57. Then by the above relation,

J hdz+f hdz:J hdz—f (h—l—l)dz:—f dz = —1,
A, B, C.D, A, B, A, B, A, B,
f hdz + f hdz = J hdz — J hdz = 0.
-,-Cq— TAT ATDT ATDT
So
1 1
_ohdz = — Qphdz = ———.
Res:=o hdz 2im jg ‘ 2ir
Yr
Thus f = Res.—o 5h - o2mldz = if—;, which completes the proof. l
Corollary 5.5.2. For any simple M and any \ € ;7@* (WeMe M),
—Aw _ 10_71' ©
¢ exp ( = T)F S (5.5.1)

is a multivalued (with respect to () global section of 73F (W) parallel under the modular
invariant flat connection V¥". Moreover, any such V¥ -parallel section of 7 (W) is a
C-linear combination of sections of this form.

If we let ¢- = F(7) = exp(2ir7), then the projective factor exp(—%Z7) becomes
the celebrated ¢, **.

Corollary 5.5.3 (Modular invariance). For any ¢ in the form (5.5.1), and for any g €
I' = SLy(Z), g°P is also a C-linear combination of sections of the form (5.5.1).
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