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Abstract

In the framework of Connes fusion, we discuss the relationship between the
(non-necessarily local or irreducible) finite index extensions B of an irreducible lo-
cal Möbius covariant net A on S1 and the C˚-Frobenius algebras Q in ReppAq (the
C˚-tensor category of A-modules). We explain how to prove the 1-1 correspondence
between Q and B in this framework, and show that the C˚-category RepLpQq of left
Q-modules is isomorphic to the one ReppB,Aq of “pB,Aq-modules”. When B is an
irreducible local Möbius extension, this reduces to a braided C˚-tensor isomorphism
of the categories of dyslectic Q-modules and B-modules. We also establish a 1-1 cor-
respondence between the (non-necessarily unitary) isomorphisms of finite index ex-
tensions of A and the isomorphisms of C˚-Frobenius algebras as defined in [NY18].
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0 Introduction

Q-systems (« C˚-Frobenius algebras) were introduced by Longo [Lon94] and are
powerful tools for the study of local and non-local finite index extensions of confor-
mal nets, full and boundary conformal field theory, and defects [LR95, KL04, KLPR07,
LR04, LR09, CKL13, BKL15, BKLR15, BKLR16, BDH19]. Finite index extensions of con-
formal nets were investigated mainly in the framework of DHR (Doplicher-Haag-Roberts
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[DHR71, DHR74]) superselection theory [FRS89, FRS92], but not often in the Connes fu-
sion setting [Con80, Sau83, Was98, BDH17]. Though the Connes fusion approach to ex-
tensions of factors is well established (cf. for instance [Mas97, Yuan19, GY20, CHPJP21]),
its generalization to extensions of nets of factors (for instance, extensions of conformal nets)
is not straightforward.

It is a main goal of this article to give detailed proofs of some basic results on the
relationship betweenC˚-Frobenius algebras and finite index extensions of conformal nets
in the Connes fusion framework. Moreover, the results we shall prove are slightly more
general than those already exist in the literature. Specifically:

• We do not assume the conformal nets are completely rational.

• Our study is not limited to dualizable representations.

• The extensions are not assumed to be irreducible.

• Möbius covariance is assumed only for the smaller net A, but not initially for the
(finite index) extension B; rather, it will be shown to hold as a consequence (see
Thm. 2.6 and 2.12).

Indeed, the only finiteness condition we assume is that of the extension A Ă B.
Let A be any irreducible local Möbius covariant net (irreducible Möbius net for short),

and let ReppAq be the braided C˚-tensor category of (normal) A-modules defined by
Connes fusion. For each C˚-Frobenius algebra Q in ReppAq, we have constructed a fi-
nite index extension BQ in [Gui21b] (see also Thm. 2.6). Here, we show that any finite
index extension arises in this way (Thm. 2.12). In the DHR superselection setting, these
results are due to [LR95, Thm. 4.9] (see also [BKLR15, Sec. 5.2]).

We show that the C˚-tensor category RepLpQq of left Q-modules is isomorphic to the
one ReppBQ,Aq of (naturally defined) pBQ,Aq-modules (Main Thm. A). When BQ is a
local Möbius extension (equivalently, when Q is a Möbius covariant A-module and is
commutative with trivial twist operator, cf. Thm. 5.7), this isomorphism reduces to an
isomorphism of braided C˚-tensor categories Rep0pQq » ReppBQq where Rep0pQq is the
category of dyslectic Q-modules, and ReppBQq is the category of usual BQ-modules. This
is Main Thm. C. In the DHR setting, this result was proved when A is completely rational
and the categories are assumed to contain only dualizable A-modules (cf. [Müg10] and
[BKL15, Prop. 6.4]). Our result does not assume these conditions.

Our third main result is not as familiar as the previous ones. We introduce a natural
definition of isomorphisms of extensions of A. These isomorphisms are in general not
implemented by unitary operators (unless when the extensions are irreducible). We con-
struct a 1-1 correspondence between (1) the isomorphisms φ : Ba Ñ Bb (with respect to
A) of finite index extensions of A and (2) the isomorphisms V : Qa Ñ Qb of C˚-Frobenius
algebras in ReppAq in the sense of [NY18] (cf. Thm. 3.7 or Main Thm. B). Such V is not
only an isomorphism of algebra objects in the usual sense; it also satisfies that V ˚V is a
homomorphism of left Qa-modules. We call such V a left isomorphism in this article. This
result is closely related to choosing two different faithful normal conditional expectations
for a finite index subfactor N Ă M. See the long Remark 3.9.
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Many important topics are not discussed in this article. For instance, when BQ is local,
we do not show that the C˚-category equivalence RepLpQq » ReppBQ,Aq is an equiva-
lence of C˚-tensor categories (though we have proved this for Rep0pQq » ReppBQq), since
the theory of categorical extensions for pBQ,Aq-modules has not been established yet. In
particular, we are not yet ready to translate the tensor-categorical results on orbifold CFT
in [Müg05] to the Connes fusion framework. (Such translation would be useful for the
orbifold VOA-conformal net correspondence.) Also, to keep the article relatively short,
we do not discuss either full or boundary CFT, or fermionic conformal nets here. But
many crucial techniques for exploring these topics through Connes fusion are already
given in the article.
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I would like to thank André Henriques and David Penneys for helpful discussions,
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1 Backgrounds

All Hilbert spaces are assumed to be separable. For a Hilbert space H, x¨|¨y denotes
its inner product whose first variable is linear and the second one antilinear. EndpHi,H2q

denotes the set of bounded linear operators from a Hilbert space Hi to another one Hj .
We follow the usual convention that if M is a von Neumann algebra on a Hilbert space
then M 1 denotes its commutant.

If P,Q,R,S are Hilbert spaces, A,B,C,D are bounded linear operators whose do-
mains and codomains are indicated by the following diagram,

P Q

R S

C

A B

D

(1.1)

we say that this diagram commutes adjointly if DA “ BC and CA˚ “ B˚D. If either
A,B or C,D are unitary, then commuting implies adjoint commuting.

Möbius nets and conformal nets

Let J be the set of all non-empty non-dense open intervals in the unit circle S1. If
I P J , then I 1 P J is by definition the interior of the complement of I . The group Diff`pS1q

of orientation-preserving diffeomorphisms of S1 contains the subgroup PSUp1, 1q of
Möbius transforms of S1. We let ĆPSUp1, 1q and G be respectively the universal coverings
of PSUp1, 1q and Diff`pS1q.

If I P J , we let DiffpIq be the subgroup of all g P Diff`pS1q acting as identity on I 1. We
let G pIq be the connected component of the inverse image of DiffpIq under G Ñ Diff`pS1q

that contains the identity.
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By a Möbius net A, or more precisely, a local Möbius covariant net, we mean that for
each I P J there is a von Neumann algebra ApIq acting on a fixed separable Hilbert space
H0, such that the following conditions hold:

(a) (Isotony) If I1 Ă I2 P J , then ApI1q is a von Neumann subalgebra of ApI2q.

(b) (Locality) If I1, I2 P J are disjoint, then ApI1q and ApI2q commute.

(c) (Möbius covariance) We have a strongly continuous unitary representation U of
PSUp1, 1q on H0 such that for any g P PSUp1, 1q, I P J ,,

UpgqApIqUpgq˚ “ ApgIq.

(d) (Positivity of energy) The generator L0 of the rotation subgroup ϱ is positive.

(e) There exists a PSUp1, 1q-invariant unit vector Ω P H0, called the vacuum vector
which is cyclic under the action of

Ž

IPJ ApIq (the von Neumann algebra generated
by all ApIq).

A is additive, namely, if I is a set of intervals with union J P J , then ApJq is the von
Neumann algebra generated by

Ť

IPIApIq. A satisfies Haag duality, i.e., that ApI 1q “

ApIq1 for each I P J . Moreover, we have the Reeh-Schlieder property, which says that Ω
is cyclic separating vector for each ApIq. We say that A is irreducible if C1 are the only
operators on H0 commuting with the action of ApIq for all I P J . This is equivalent to
that CΩ are the only PSUp1, 1q-invariant vectors in H0, and also equivalent to that each
ApIq is a type III1-factor. See [GL96, Sec. 1] for details.

A Möbius net A is called a conformal (covariant) net if the representation U of
PSUp1, 1q on H0 can be extended to a strongly continuous projective unitary represen-
tation U of Diff`pS1q on H0, such that for any g P Diff`pS1q, I P J , and any representing
element V P UpH0q of Upgq,

VApIqV ˚ “ ApgIq.

Moreover, if g P DiffpIq then V P ApIq.
If A is a Möbius net, a (normal untwisted) A-module is a pair pπi,Hiq, or simply Hi,

such that Hi is a Hilbert space, and that for any I P J there is an (automatically normal)
representation πi,I of ApIq on Hi such that I Ă J ñ πi,J |ApIq “ πi,I . We use symbols
Hi,Hj ,Hk, . . . for A-modules. For x P ApIq and ξ P Hi, πi,Ipxqξ will be written as xξ
when the context is clear. An A-module is called Möbius covariant, if there is a strongly
continuous unitary representation Ui of ĆPSUp1, 1q on Hi such that Upgqπi,IpxqUpgq˚ “

πi,gIpUpgqxUpgq˚q for each g P ĆPSUp1, 1q, I P J , and x P ApIq. Clearly H0 is an A-module,
called the vacuum module of A.

If A is a conformal net, any A-module Hi is automatically Möbius covariant. Indeed,
a stronger property holds. Let UpH0q be the topological group of unitary operators on
H, equipped with the strong operator topology. Let GA be the subgroup of all pg, V q P

G ˆ UpH0q such that V represents Upgq. Then we have a central extension

1 Ñ S1 Ñ GA Ñ G Ñ 1.
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GA naturally acts on H0. As explained in [Gui21a, Thm. 2.2], the results in [Hen19] imply
that each A-module Hi is conformal covariant, which means that there is a (necessarily
unique) strongly continuous unitary representation Ui of GA on Hi such that

Uipgq “ πi,IpUpgqq (1.2)

for each I P J and each g belonging to

GApIq :“ the inverse image of G pIq under GA Ñ G .

It follows easily (cf. the proof of [Gui21a, Cor. 2.6]) that Uipgqπi,IpxqUipgq˚ “ πi,gIpgxq for
each I P J , x P ApIq, g P GA.

Thus, if A is conformal and Hi is an A-module, we fix the continuous representation
of ĆPSUp1, 1q to be the one inherited from that of GA.

If A is an irreducible conformal net, then A contains the subnet I P J ÞÑ tUpgq :
g P DiffpIqu2 acting on the subspace generated by Ω. This (Möbius) subnet is clearly
irreducible. In that case, it is the Virasoro net Virc of some central charge c (cf. [Car04,
Thm. A.1]). Let Gc :“ GVirc The map pg, V q P GA ÞÑ pg, V |

SpanpVircΩq
q P Gc is clearly a

bijective contiuous group homomorphism. That its inverse is continuous follows from the
fact that H0 is a conformal covariant Virc-module. Thus, we shall make the identification
of topological groups

Gc “ GA, GcpIq “ GApIq

so that the central extension of G is only depending on the central charge c of A.
For any element g of Diff`pS1q or G or Gc, we shall abbreviate Uipgq or Upgq to g when

the context is clear.
For a Möbius net A, we let ReppAq be the C˚-category of A-modules. The space of

morphisms between two modules Hi,Hj is

HomApHi,Hjq “ tT P HompHi,Hjq : Tπi,Ipxq “ πj,IpxqT for each I P J , x P ApIqu.

Hence A is irreducible if and only if H0 is an irreducible A-module.

Categorical extensions of A

In the remaining part of this article,
:::
we

:::::::
always

::::::::
assume

::::
that

::
A

::
is

:::
an

:::::::::::
irreducible

::::::::
Möbius

:::
net.

There are two equivalent ways to make ReppAq a braided C˚-tensor category: the
Doplicher-Haag-Roberts (DHR) superselection theory [DHR71, DHR74, FRS89, FRS92],
and the Connes fusion [Con80, Sau83, Was98, BDH17]. In this article, we focus on the
latter.

The braided C˚-tensor category pReppAq,b, ßq is uniquely determined by the exis-
tence of a categorical extension of A on ReppAq. To recall the definition, we first introduce
some terminology.
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If I P J , an arg function argI : I Ñ R is a continuous function whose value at each
eiθ P I is in θ ` 2πZ. pI, argIq is called an arg-valued interval. Let

rJ “ the set of all arg-valued intervals.

One may regard each rI P rJ as an interval in the universal cover R of S1. Then the actions
of PSUp1, 1q and Diff`pS1q lift to actions of ĆPSUp1, 1q and G on R. Thus ĆPSUp1, 1q and G
(and hence Gc) act on rJ .

We say that rJ “ pJ, argJq is clockwise to rI “ pI, argIq if argIpzq ´ 2π ă argJpζq ă

argIpzq for each z P I, ζ P J . In particular, I X J “ H. We mean

rI Ă rJ ô I Ă J and argJ |I “ argI .

In this case we say rJ contains rI . The clockwise complement of rI is defined to be

rI 1 “ the largest arg-valued interval clockwise to rI.

rI is called the anticlockwise complement of rI 1.
For each A-module Hi and each I P J , we let

HipIq “ HomApI 1qpH0,Hiq ¨ Ω

where HomApI 1qpH0,Hiq is the set of bounded operators from H0 to Hi intertwining the
actions of ApI 1q. Note that by Haag duality, H0pIq “ ApIqΩ. In general, HipIq is a dense
subspace of Hi. This is because every (normal) representation of ApIq (and in particu-
lar Hi) is unitarily equivalent to a unitary subrepresentation of a direct sum of H0. (In
fact, since ApIq is type III, every nonzero separable representation of ApIq is unitarily
equivalent to Hi.)

Definition 1.1. By a (closed and vector-labeled) categorical extension E “

pA,ReppAq,b,Hq (where H denotes the association I ÞÑ HipIq for each module Hi), we
mean the following: b is a ˚-bifunctor such that pReppAq,bq is aC˚-tensor category.1 (We
suppress the associative isomorphisms and the unitors.) Moreover, E associates to any
Hi,Hk P ObjpReppAqq and any rI P rJ , ξ P HipIq bounded linear operators

Lpξ, rIq P HomApI 1qpHk,Hi b Hkq,

Rpξ, rIq P HomApI 1qpHk,Hk b Hiq,

such that the following conditions are satisfied:

(a) (Isotony) If rI1 Ă rI2 P rJ , and ξ P HipI1q, then Lpξ, rI1q “ Lpξ, rI2q, Rpξ, rI1q “ Rpξ, rI2q

when acting on any Hk P ObjpReppAqq.

1This means in particular that the associators and the unitors are unitary isomorphisms, and for the mor-
phisms we have pF b Gq

˚
“ F˚

b G˚. If ReppAq is equipped with a braid structure such that the braiding
isomorphisms are unitary, we say ReppAq is a braided C˚-tensor category.
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(b) (Functoriality) If Hi,Hj ,Hj1 P ObjpReppAqq, rI P rJ , G P HomApHj ,Hj1q, ξ P HipIq,
and η P Hj , then

p1i bGqLpξ, rIqη “ Lpξ, rIqGη, pGb 1iqRpξ, rIqη “ Rpξ, rIqGη. (1.3)

(c) (State-field correspondence) For any Hi P ObjpReppAqq, under the identifications
Hi “ Hi b H0 “ H0 b Hi defined by the unitors, the relation

Lpξ, rIqΩ “ Rpξ, rIqΩ “ ξ (1.4)

holds for any rI P rJ , ξ P HipIq. It follows immediately that when acting on H0,
Lpξ, rIq equals Rpξ, rIq and is independent of argI .

(d) (Density of fusion products) If Hi,Hk P ObjpReppAqq, rI P rJ , then the set
LpHipIq, rIqHk spans a dense subspace of Hi bHk, and RpHipIq, rIqHk spans a dense
subspace of Hk bHi. (Indeed, they span the full space Hi bHk and Hk bHi respec-
tively.)

(e) (Locality) For any Hk P ObjpReppAqq, disjoint rI, rJ P rJ with rI anticlockwise to rJ ,
and any ξ P HipIq, η P HjpJq, the following diagram commutes adjointly.

Hk Hk b Hj

Hi b Hk Hi b Hk b Hj

Rpη, rJq

Lpξ,rIq Lpξ,rIq

Rpη, rJq

(1.5)

(f) (Braiding) There is a unitary linear map ßi,j : Hi b Hj Ñ Hj b Hi for any Hi,Hj P

ObjpReppAqq, such that

ßi,jLpξ, rIqη “ Rpξ, rIqη (1.6)

whenever rI P rJ , ξ P HipIq, η P Hj .

The above ßij is necessarily an A-module isomorphism making pReppAq,b, ßq a
braided C˚-tensor category. Moreover, such categorical extensions over the C˚-category
ReppAq exist and are unique. In particular, if we have another categorical extension
pA,ReppAq,�,Hq which determines a braiding σ, then pReppAq,b, ßq » pReppAq,�, σq.
See Sec. 3.1-3.4, especially Thm. 3.4 and 3.10 of [Gui21a].2 In other words, the existence of
the L and R operations satisfying the above axioms characterizes the braided C˚-tensor
structure.

E was constructed in [Gui21a] using Connes fusion. For a brief explanation of the
construction, see [Gui21b, Sec. A].

2Although [Gui21a] only discusses irreducible conformal nets, any result irrelavent to conformal covari-
ance also holds for irreducible Möbius nets.
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We give some useful facts that will be used later in this article. First, if the irreducible
Möbius net A is conformal, then E is conformal covariant, which means that for each
Hi P ObjpReppAqq, rI P rJ , ξ P HipIq, and g P Gc, there is a vector gξg´1 P HipgIq such that

Lpgξg´1, grIq “ gLpξ, rIqg´1, Rpgξg´1, grIq “ gRpξ, rIqg´1 (1.7)

hold when acting on any A-module. (Cf. [Gui21a, Thm. 3.13].)
Now we do not assume A to be conformal.
By [Gui21b, Rem. 2.2], for any rI “ pI, argIq P rJ , x P ApIq, and any A-module Hi,

LpxΩ, rIq|Hi “ RpxΩ, rIq|Hi “ πi,Ipxq. (1.8)

Moreover, if Hj is an A-module, and if ξ P HipIq, η P HjpJq, then (by locality and state-
field correspondence)

Lpξ, rIqη “ Rpη, rJqξ. (1.9)

The functoriality of E can be generalized to that for every F P HomApHi,Hi1q, G P

HomApHj ,Hj1q, ξ P HipIq, and η P Hj , then

pF bGqLpξ, rIqη “ LpFξ, rIqGη, pGb F qRpξ, rIqη “ RpFξ, rIqGη. (1.10)

See [Gui21b, Sec. 2]. The following (adjoint) fusion relations were proved in [Gui21b,
Prop. 2.3].

Proposition 1.2. Let Hi,Hj ,Hk P ObjpReppAqq, rI P rJ , and ξ P HipIq.
(a) If η P HjpIq, then Lpξ, rIqη P pHi b HjqpIq, Rpξ, rIqη P pHj b HiqpIq, and

Lpξ, rIqLpη, rIq|Hk
“ LpLpξ, rIqη, rIq|Hk

, (1.11)

Rpξ, rIqRpη, rIq|Hk
“ RpRpξ, rIqη, rIq|Hk

. (1.12)

(b) If ψ P pHi bHjqpIq and ϕ P pHj bHiqpIq, then Lpξ, rIq˚ψ P HjpIq, Rpξ, rIq˚ϕ P HjpIq, and

Lpξ, rIq˚Lpψ, rIq|Hk
“ LpLpξ, rIq˚ψ, rIq|Hk

, (1.13)

Rpξ, rIq˚Rpϕ, rIq|Hk
“ RpRpξ, rIq˚ϕ, rIq|Hk

. (1.14)

As a special case, when x P ApIq and ξ P HipIq, then when acting on any Hj ,

Lpxξ, rIq “ xLpξ, rIq, Rpxξ, rIq “ xRpξ, rIq. (1.15)

Lemma 1.3. For each Hi,Hj P ObjpReppAqq, if ξ1, ξ2 P HipIq, then Lpξ1, rIq˚Lpξ2, rIq|H0 P

ApIq, and

Lpξ1, rIq˚Lpξ2, rIq|Hj “ πj,I
`

Lpξ1, rIq˚Lpξ2, rIq|H0

˘

. (1.16)

Proof. Since Lpξ1, rIq˚Lpξ2, rIq|H0 commutes with ApI 1q, it is in ApIq. By the Prop. 1.2 and
(1.8),

Lpξ1, rIq˚Lpξ2, rIq|Hj “ LpLpξ1, rIq˚ξ2, rIq|Hj

“LpLpξ1, rIq˚Lpξ2, rIqΩ, rIq|Hj “ πj,I
`

Lpξ1, rIq˚Lpξ2, rIq|H0

˘

.
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The following lemma is [Gui21a, Lemma 6.1].

Lemma 1.4. Suppose ξ P HipIq and Lpξ, rIq|H0 “ Rpξ, rIq|H0 is a unitary map from H0 to
Hi, then for each A-module Hj , Lpξ, rIq|Hj are unitary maps from Hj to Hi b Hj and Hj b Hi

respectively. In this case, we say ξ is unitary.

Note that unitary vectors in HipIq always exist since Hi and H0 are equivalent repre-
sentations of the type III factor ApI 1q.

For each t P R, let ϱptq P ĆPSUp1, 1q be the anticlockwise rotation by t. The following
property will not be used until Sec. 5.

Lemma 1.5. For each A-module Hi,Hj , each rI P rJ and each ξ P HipIq, η P Hj ,

Lpξ, ϱp2πqrIqη “ ßj,ißi,jLpξ, rIqη. (1.17)

Note that pϱp2πqrIq2 “ rI .

Proof. Let rI1 “ ϱp2πqrI . Assume without loss of generality that η P HipI
1q “ HipI

1
1q. Then

by (1.9) and the braiding axiom (1.6),

Lpξ, rI1qη “ Rpη, rI 1
1qξ “ ßj,iLpη, rI 1

1qξ “ ßj,iRpξ, rI2
1 qη

“ßj,iRpξ, rIqη “ ßj,ißi,jLpξ, rIqη.

Recall that an A-module Hi is dualizable if there is also a module Hi and homomor-
phisms evi,i : Hi b Hi Ñ H0, evi,i : Hi b Hi Ñ H0 satisfying the conjugate equations

p1i b evi,iqppevi,iq
˚ b 1iq “ 1i, p1i b evi,iqppevi,iq

˚ b 1iq “ 1i (1.18)

We refer the readers to [LR97, Yam04, BDH14] for general results on dualizable objects in
C˚-tensor categories. Recall that the spaces of morphisms between dualizable objects are
finite dimensional. We let

RepfpAq “ the category of dualizable Möbius covariant A-modules.

By [GL96, Prop. 2.2], for each Hi P ObjpRepfpAqq there is a unique strongly continu-
ous unitary representation of ĆPSUp1, 1q on Hi making the A-module Hi Möbius covari-
ant. From this uniqueness, it is easy to see that the morphisms of Möbius covariant
A-modules intertwine the actions of ĆPSUp1, 1q (cf. [Gui21b, Lemma B.1]). By [Gui21b,
Sec. B], RepfpAq is closed under b and hence is a full braided C˚-tensor subcategory of
ReppAq, and the restriction of E to RepfpAq is Möbius covariant, which means that for
each Hi P ObjpRepfpAqq, rI P rJ , ξ P HipIq, and g P ĆPSUp1, 1q,

Lpgξ, grIq “ gLpξ, rIqg´1, Rpgξ, grIq “ gRpξ, rIqg´1 (1.19)

when acting on any object of RepfpAq.
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2 C˚-Frobenius algebras and finite index extensions

Recall that A is always assumed to be an irreducible Möbius net.

Definition 2.1. A C˚-Frobenius algebra in ReppAq is a triple Q “ pHa, µ, ιq where Ha is
an A-module, µ P HomApHa b Ha,Haq, and ι P HomApH0,Haq satisfying the following
conditions

• (Unit) µpιb 1aq “ 1a “ µp1a b ιq.

• (Associativity+Frobenius relation) The following diagram commutes adjointly.

Ha b Ha b Ha Ha b Ha

Ha b Ha Ha

1abµ

µb1a µ

µ

(2.1)

If, moreover, ι is an isometry (i.e. ι˚ι “ 10), we say Q is normalized.

Ha is necessarily dualizable, since we can choose dual object Ha “ Ha and evaluations
eva,a “ eva,a “ ι˚µ.

Definition 2.2. A (unitary) left Q-module means pHi, µiq where Hi is an A-module, µi P

HomApHa b Hi,Hiq, and the following are satisfied:

• (Unit) µipιb 1iq “ 1i.

• (Associativity+Frobenius relation) The following diagram commutes adjointly.

Ha b Ha b Hi Ha b Hi

Ha b Hi Hi

1abµi

µb1i µi

µi

(2.2)

Assuming the unit property and that (2.2) commutes, then it is not hard to check that
(2.2) commutes adjointly if and only if µ˚

i “ p1a b µiqpcoeva,a b 1iq where coeva,a “ µ˚ι.
Thus, the definition here agrees with the usual one.

Definition 2.3. A (non-local) extension of A denotes pHa,B, ιq, or simply B, where Ha is
an A-module, ι P HomApH0,Haq, and B associates to each rI P rJ a von Neumann algebra
BprIq on Ha such that the following conditions hold.

• (Extension property) For each rI “ pI, argIq P rJ , we have πa,IpApIqq Ă BprIq.

• (Isotony) If rI Ă rJ then BprIq Ă Bp rJq.

• (Reeh-Schlieder property) For each rI , ιΩ is a cyclic separating vector for BprIq.

• (Relative locality) For each rI P rJ , rBprIq, πa,I 1pApI 1qqs “ 0.

10



Definition 2.4. If B is a non-local extension as above, a pB,Aq-module is pπi,Hiq where
Hi is a A-module, and πi associates to each rI P J a (normal) representation π

i,rI
of BprIq

on Hi satisfying the following conditions.

• (Extension property) For each rI P rJ , when acting on ApIq,

πi,I “ π
i,rI

˝ πa,I (2.3)

• (Compatibility) If rI Ă rJ then π
i, rJ

|BprIq
“ π

i,rI
.

Clearly Ha itself is a pB,Aq-module, called the vacuum pB,Aq-module.

Remark 2.5. Any pB,Aq-module is automatically relatively local, which means that for
each J P J (without arg value) disjoint from rI , rπ

i,rI
pBprIqq, πi,JpApJqqs “ 0. To see this,

assume without loss of generality that rI and J are contained in rK P rJ (since A is addi-
tive). Then rπ

i,rI
pBprIqq, πi,JpApJqqs “ rπ

i, rK
pBprIqq, πi,KpApJqqs “ π

i, rK
prBprIq, πa,KpApJqqsq

equals 0 by the relative locality of B.

Theorem 2.6. If Q “ pHa, µ, ιq is a C˚-Frobenius algebra, then pHa, ιq can be equipped with a
(necessarily unique) extension pHa,BQ, ιq of A such that for each rI P rJ ,

BQprIq “ tµLpξ, rIq|Ha : ξ P HapIqu. (2.4)

Moreover, BQ satisfies the following properties:

• The commutant of BQprIq is

BQprIq1 “ tµRpη, rI 1q|Ha : η P HapI 1qu (2.5)

where rI 1 is the clockwise complement of rI .

• If Ha is Möbius covariant, then BQ is Möbius covariant, which means that for each g P

ĆPSUp1, 1q and rI P rJ , we have

gBQprIqg´1 “ BQpgrIq. (2.6)

• If A is a conformal net, then BQ is conformal covariant, which means that (2.6) holds for
each g P Gc and rI P rJ .

Proof. That BQ is an extension is due to Thm. 4.7-(a,b,c,d) of [Gui21b]. Formula (2.5) is
due to [Gui21b, Prop. 4.5]. Note that although in [Gui21b] we only considered Möbius
covariant modules, the proof of these results do not rely on Möbius covariance. The key
idea is to show for each fixed rI that (1) µLpξ, rIq|Ha commutes adjointly with µRpη, rI 1q|Ha

for all ξ P HapIq and η P HapI 1q by diagram (2.10) (setting Hi “ Ha and µi “ µ), and (2)
any operator X (resp. Y ) on Ha commuting with all µRpη, rI 1q|Ha (resp. all µLpξ, rIq|Ha)
satisfies XιΩ P HapIq and X “ µLpXιΩ, rIq|Ha (resp. Y ιΩ P HapI 1q and Y “ µRpY ιΩ, rI 1q).
See [Gui21b, Prop. 4.3, 4.5].

The proof of Möbius or conformal covariance follows from that of the categorical ex-
tension E (see (2.6) and (1.7)) and the fact that the morphism µ intertwines the actions of
ĆPSUp1, 1q or Gc.
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Remark 2.7. Note that the von Neumann algebra BQprIq is not just generated by all
µLpξ, rIq|Ha . It is exactly the set of all such operators. Also, for each X P BQprIq and
ξ P HapIq,

X “ µLpξ, rIq|Ha ô ξ “ XιΩ. (2.7)

Indeed, assume the left, then XιΩ “ µLpξ, rIqιΩ “ µp1a b ιqLpξ, rIqΩ “ ξ. Assume the
right, then X and µLpξ, rIq|Ha both send ιΩ to ξ. So they are equal since ιΩ is separating
for BQprIq.

From this observation, we see that Q is uniquely determined by BQ since µ must send
each LpXιΩ, rIqη (where X P BQprIq, η P Ha) to Xη.

Remark 2.8. Since πa,IpApIqq Ă BQprIq, for each x P ApIq, πa,Ipxq can be written in the
form µLpξ, rIq|Ha . In fact, as πa,IpxqιΩ “ ιxΩ P HapIq, by (2.7) we have

πa,Ipxq “ µLpιxΩ, rIq|Ha . (2.8)

We recall the following well known facts about von Neumann algebra representations.

Lemma 2.9. Let S be a set. Let pxsqsPS and pysqsPS be collections (labeled by S) of bounded
linear operators on Hilbert spaces H and K respectively. Let M be the von Neumann algebra on
H generated by txs, x

˚
s : s P Su. Suppose that there is a set T of bounded linear maps from H to

K such that SpanTPTpTHq is dense in K, and that for each s P S and T P T we have

Txs “ ysT, Tx˚
s “ y˚

sT.

Then there is a unique (normal) representation π of M on K satisfying πpxsq “ ys for each s P S.

Consequently, if xs1 “ xs2 , then we must have ys1 “ ys2 .

Proof. Uniqueness is obvious. As for the existence, let N be the commutant of tys, y
˚
s : s P

Su. By Zorn’s lemma, there is a maximal set E of mutually orthogonal projections in N
such that for each e P E there is a partial isometry Ue : H Ñ K such that UeU

˚
e “ e, and

that Uexs “ ysUe, Uex
˚
s “ y˚

sUe for each s P S. Let E “
ř

ePE e. We claim that E “ 1K.
Then πpxq “

ř

ePE UexU
˚
e (x P M ) is the desired representation.

If E ‰ 1K, then there is T P T such that T1 :“ p1 ´ EqT ‰ 0. Note that the following
diagram commutes adjointly

H H

K K

xs

T1 T1

ys

Thus, if we polar-decompose T1 as T1 “ U1H1 where U1 is the partial isometry, then the
above diagram also commutes adjointly if T1 is replaced by U1. Then the set S Y tU1U

˚
1 u

is larger than S but satisfies the condition described in the first paragraph. This is a
contradiction.

The following theorem is the Connes-fusion version of [EP03, Lem. 3.1] and [BKLR15,
Prop. 3.24].
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Theorem 2.10. If pHi, µiq is a left Q-module, then the A-module Hi can be equipped with a
(necessarily uniquely) pBQ,Aq-module structure pHi, πiq such that for all rI P rJ , ξ P HapIq,

π
i,rI

`

µLpξ, rIq|Ha

˘

“ µiLpξ, rIq|Hi . (2.9)

Conversely, if pHi, πiq is a pBQ,Aq-module, then the associated A-module Hi is equipped with
a (necessarily unique) leftQ-module structure pHi, µiq which gives rise to pHi, πiq via the relation
(2.9).

We divide the proof into two parts.

Part 1 of the proof. We choose a left Q-module pHi, µiq and construct the pBQ,Aq-module
pHi, πiq. Choose rJ P rJ clockwise to rI and η P HipJq.

Ha Ha b Hi Hi

Ha b Ha Ha b Ha b Hi Ha b Hi

Ha Ha b Hi Hi

Rpη, rJq

Lpξ,rIq

µi

Lpξ,rIq Lpξ,rIq

Rpη, rJq

µ

1abµi

µb1i µi

Rpη, rJq µi

(2.10)

By the locality and the functorality of E (as well as pF b Gq˚ “ F ˚ b G˚), together with
the associativity and Frobenius relation for µi, each of the four small diagrams commutes
adjointly. Thus, the largest diagram commutes adjointly. Note that µi is surjective since
µipιb 1iq “ 1i. Thus, if we choose η to be unitary, then µiRpη, rJq : Ha Ñ Hi is surjective.
Therefore, by Lemma 2.9, there is a unique representation π

i,rI
of BQprIq on Ha such that

(2.9) holds. The compatibility condition is easy to check.
It remains to check the extension property (2.3) on ApIq. Choose any x P ApIq and

recall (2.8). Then

π
i,rI

˝ πa,Ipxq “ π
i,rI

pµLpιxΩ, rIq|Haq “ µiLpιxΩ, rIq|Hi

“µipιb 1iqLpxΩ, rIq|Hi “ LpxΩ, rIq|Hi “ πi,Ipxq. (2.11)

Part 2 of the proof. We choose a pBQ,Aq-module pHi, πiq and define the left Q-module
pHi, µiq.

Step 1. Let λ ě 0 be ∥µ∥2, the square operator norm of µ. Choose any rI P rJ . Then for
any ξ1, . . . , ξN P HipIq, we have the following Pimsner-Popa inequality

”

Lpξk, rIq˚µ˚µLpξl, rIq
ˇ

ˇ

Ha

ı

k,l
ď λ

”

πa,I
`

Lpξk, rIq˚Lpξl, rIq
ˇ

ˇ

H0

˘

ı

k,l
(2.12)

for the elements of BQprIq b EndpCN q. Indeed, choose any ψ‚ “ pψ1, . . . , ψN q P Ha b CN ,
then by Lemma 1.3,

@“

Lpξk, rIq˚µ˚µLpξl, rIq|Ha

‰

k,l
¨ ψ‚

ˇ

ˇψ‚

D

“
∥∥ N

ÿ

l“1

µLpξl, rIqψl

∥∥2
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ďλ
∥∥ N

ÿ

l“1

Lpξl, rIqψl

∥∥2 “ λ
@“

Lpξk, rIq˚Lpξl, rIq|Ha

‰

k,l
¨ ψ‚

ˇ

ˇψ‚

D

(1.16)
ùùùùùλ

@“

πa,IpLpξk, rIq˚Lpξl, rIq|H0q
‰

k,l
¨ ψ‚

ˇ

ˇψ‚

D

.

Apply π
i,rI

b 1CN to both sides of (2.12) and notice (2.3), we get

”

π
i,rI

`

Lpξk, rIq˚µ˚µLpξl, rIq
ˇ

ˇ

Ha

˘

ı

k,l
ď λ

”

πi,I
`

Lpξk, rIq˚Lpξl, rIq
ˇ

ˇ

H0

˘

ı

k,l
.

By (1.16) again, this is equivalent to
”

π
i,rI

`

µLpξk, rIq
ˇ

ˇ

Ha

˘˚
π
i,rI

`

µLpξl, rIq
ˇ

ˇ

Ha

˘

ı

k,l
ď λ

”

Lpξk, rIq˚Lpξl, rIq
ˇ

ˇ

Hi

ı

k,l
. (2.13)

Therefore, we have a bounded linear map

µ
i,rI

: Ha b Hi Ñ Hi

Lpξ, rIqη ÞÑ π
i,rI

`

µLpξ, rIq
ˇ

ˇ

Ha

˘

η
(2.14)

(@ξ P HapIq, η P Hj) with norm ď
?
λ “ ∥µ∥.

Step 2. Clearly µ
i,rI

“ µ
i, rJ

when rI Ă rJ , hence when rK Ă rI, rJ for some rK, and hence

for all rI, rJ . Therefore the map (2.14) is independent of rI and hence can be written as µi.
To see that µi is an A-module homomorphism, we choose any x P ApIq, and note

that by (1.15) and the fact that µ is an A-module homomorphism, µi sends xLpξ, rIqη “

Lpxξ, rIqη to

π
i,rI

pµLpxξ, rIq|Haqη “ π
i,rI

pµxLpξ, rIq|Haqη “ π
i,rI

pπa,IpxqµLpξ, rIq|Haqη

(2.3)
ùùùùπi,Ipxqπ

i,rI
pµLpξ, rIq|Haqη “ πi,IpxqµipLpξ, rIqηq.

To check that µi satisfies the unit property, note that by the argument in (2.11), we
have

π
i,rI

˝ πa,Ipxq “ µipιb 1iqLpxΩ, rIq|Hi , πi,Ipxq “ LpxΩ, rIq|Hi .

Since π
i,rI

˝ πa,Ip1q “ πi,Ip1q “ 1i, we obtain µipιb 1iq “ 1i.
Finally, we check the associativity and the Frobenius relation. Choose any ξ1, ξ2 P

HapIq and η P Hi. Then

π
i,rI

pµLpξ1, rIq|Haqπ
i,rI

pµLpξ2, rIq|Haqη “ µiLpξ1, rIqµiLpξ2, rIqη

“µip1a b µiqLpξ1, rIqLpξ2, rIqη

equals

π
i,rI

pµLpξ1, rIqµLpξ2, rIq|H0qη “ π
i,rI

pµp1a b µqLpξ1, rIqLpξ2, rIq|H0qη

“π
i,rI

pµpµb 1aqLpLpξ1, rIqξ2, rIq|H0q “ π
i,rI

pµLpµLpξ1, rIqξ2, rIq|H0qη
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“µiLpµLpξ1, rIqξ2, rIqη “ µipµb 1iqLpLpξ1, rIqξ2, rIqη

“µipµb 1iqLpξ1, rIqLpξ2, rIqη

where the naturality (1.10) is used many times. Thus, by the density of fusion product,
we must have µip1a b µiq “ µipµb 1iq.

We now know that in (2.10), the lower right small diagram commutes, and the other
three commute adjointly. Therefore, the largest diagram commutes. Namely, for X “

µLpξ, rIq|Ha , we have µiRpηq ¨ X “ π
i,rI

pXq ¨ µiRpηq. By (2.4), X˚ “ µLpξ1, rIq|Ha for some
ξ1 P HapIq. Therefore µiRpηq ¨ X˚ “ π

i,rI
pXq˚ ¨ µiRpηq, which is equivalent to that the

largest diagram of (2.10) commutes adjointly. Therefore, in (2.10), the two paths ÑÒÑÒ

and ÑÑÒÒ from the lower left corner Ha to the upper right corner Hi are equal. Thus, by
the density of fusion product, the lower right cell must commute adjointly. This proves
the Frobenius relation.

Let us formulate the above theorem in a more categorical way. Let RepLpQq be the
C˚-category of left Q-modules. If pHi, µiq and pHj , µjq are left Q-modules, then

HomL
QpHi,Hjq “ tT P HomApHi,Hjq : Tµi “ µjp1a b T qu.

(It is easy to check that T P HomL
QpHi,Hjq ô T ˚ P HomL

QpHj ,Hiq.) If B is an extension of
A, we let ReppB,Aq be the C˚-category of pB,Aq-modules such that for pB,Aq-modules
pHi, πiq and pHj , πjq, the space of morphims is

HomBpHi,Hjq “ tT P HompHi,Hjq : Tπi,rIpXq “ π
j,rI

pXqT for all rI P rJ , X P BprIqu.

It is clear that

HomBpHi,Hjq Ă HomApHi,Hjq.

Main Theorem A. Let Q “ pHa, µ, ιq be a C˚-Frobenius algebra in ReppAq. For each left
Q-module pHi, µiq, define the corresponding pBQ,Aq-module pHi, πiq as in Thm. 2.10. Then for
any objects Hi,Hj we have HomL

QpHi,Hjq “ HomBQ
pHi,Hjq. Therefore, the ˚-functor

F : RepLpQq Ñ ReppBQ,Aq
#

pHi, µiq P ObjpRepLpQqq ÞÑ pHi, πiq P ObjpReppBQ,Aqq,

T P HomL
QpHi,Hjq ÞÑ T P HomBQ

pHi,Hjq

is an isomorphism of C˚-tensor categories.

Proof. Choose any T P HomApHi,Hjq. For each X P BprIq written as X “ µLpξ, rIq|Ha

where ξ P HapIq, we have (for any η P Hi)

Tπ
i,rI

pXqη “ TµiLpξ, rIqη

and

π
j,rI

pXqTη “ µiLpξ, rIqTη “ µip1a b T qLpξ, rIqη.

So T P HomL
QpHi,Hjq iff T P HomBQ

pHi,Hjq.
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Remark 2.11. The above proof actually shows that if T intertwines A and BQprIq for some
rI P rJ , then T P HomL

QpHi,Hjq. We conclude

HomL
QpHi,Hjq “ HomBQ

pHi,Hjq “ HomApHi,Hjq X HomBQprIq
pHi,Hjq. (2.15)

Thus, if Hi,Hj are both Möbius covariant and dualizable as A-modules, then for each rI , as
HomApHi,Hjq “ HomApIq,ApI 1qpHi,Hjq by [GL96, Thm. 2.3], we see that HomBQ

pHi,Hjq

is precisely the set of bounded operators intertwining the actions of BQprIq and ApI 1q.

We now study the question of when an extension arises from a C˚-Frobenius algebra.
We first review some basic facts about finite index extensions of type III factors [Lon89,
Lon90, Kos98, BDH14]. Let N Ă M be a pair of von Neumann algebras where N is
a type III factor, and suppose that there is a (normal) faithful conditional expectation
E : M Ñ N . Then E has finite index if and only if there is λ ą 0 such that for each N ą 0
and each X1, . . . , XN P M, we have the Pimsner-Popa inequality

rXkX
˚
l sk,l ď λrEpXkX

˚
l qsk,l (2.16)

for the two elements of M b EndpCN q. Note that if the finite index holds for one E , then
it holds for every faithful normal conditional expectation M Ñ N , cf. [Lon89, Prop. 5.4]
and the paragraph thereafter. (See also Rem. 3.9 for a related discussion.) In this case, we
say N Ă M has finite index.

In the following theorem (which is the Connes-fusion version of (a variant of) [LR95,
Thm. 4.9]), Ha is not assumed to be Möbius covariant.

Theorem 2.12. Let pHa,B, ιq be an extension of A. Then the following are equivalent.

(1) Ha is a dualizable object in ReppAq.

(2) For each I P J , consider Ha as an ApIq ´ ApI 1qopp bimodule. Then Ha is dualizable
in the C˚-tensor category of ApIq ´ ApI 1qopp bimodules. Equivalently3, the extension
πa,IpApIqq Ă πa,IpApI 1qq1 has finite index.

(3) For each rI P rJ , πa,IpApIqq Ă BprIq is a finite index extension.

(4) B “ BQ for some C˚-Frobenius algebra Q “ pHa, µ, ιq in ReppAq.

Moreover, the Q in (4) is unique.

We call any B satisfying one of the above equivalent conditions a (non-local) finite
index extension of A.

Proof. (1)ñ(2) since ReppAq is naturally a (non-necessarily full)4 C˚-tensor subcategory
of the category of ApIq ´ ApI 1qopp bimodules. (2)ñ(3) is obvious. (4)ñ(1) since, as men-
tioned, any object with a C˚-Frobenius algebra structure is dualizable. So we only need
to prove (3)ñ(4). Let us assume (3).

3See [Lon90], [LR95, Sec. 2.7], or [BDH14, Sec. 7]
4Note that Repf

pAq is actually a full subcategory, due to [GL96, Thm. 2.3]. But we will not use this fact
here.
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Step 1. Since A is irreducible, by scaling ι, we may assume ι is an isometry. For
each rI P rJ , by the Reeh-Schlieder property for B, BprIqιΩ is dense in Ha. Moreover,
by the relative locality, for each X P BprIq, Xι intertwines the actions of ApI 1q. Hence
BprIqιΩ Ă HapIq. Therefore, by the density of fusion product, all LpXιΩqη “ RpηqXιΩ

(where X P BprIq, η P HapI 1q) form a dense subspace of Ha b Ha.
Note that ιι˚ is the projection of Ha onto ιpH0q. Thus it determines a faithful normal

conditional expectation E
rI
: BprIq Ñ πa,IpApIqq satisfying

ιι˚Xιι˚ “ E
rI
pXqιι˚

for each X P BprIq. Note that Xι “ LpXιΩ, rIq since both sides intertwine ApI 1q and send
Ω to XιΩ. Thus, for each N ą 0 and X1, . . . , XN P BprIq, we have

ιι˚X˚
kXlιι

˚ “ ιLpXkιΩ, rIq˚LpXlιΩ, rIqι˚ “ πa,IpLpXkιΩ, rIq˚LpXlιΩ, rIq|H0qιι˚.

Thus

E
rI
pX˚

kXlq “ πa,IpLpXkιΩ, rIq˚LpXlιΩ, rIq|H0q
(1.16)

ùùùùù LpXkιΩ, rIq˚LpXlιΩ, rIq|Ha . (2.17)

Choose λ ą 0 satisfying (2.16) for each N . Then

“

X˚
kXl

‰

k,l
ď λ

“

LpXkιΩ, rIq˚LpXlιΩ, rIq
ˇ

ˇ

Ha

‰

k,l
(2.18)

for the elements of BprIq b EndpCN q. We conclude that there is a unique bounded linear
operator

µ
rI
: Ha b Ha Ñ Ha, LpXιΩ, rIqη ÞÑ Xη (2.19)

for each X P BprIq, η P Ha.

Step 2. Similar to the proof of Thm. 2.10, µ
rI

is independent of rI . So we write it as µ. For
each x P ApIq, µxLpXιΩ, rIqη “ µLpπa,IpxqXιΩ, rIqη “ πa,IpxqXη “ πa,IpxqµLpXιΩ, rIqη.
Thus µ is an A-module morphism. To check that µ satisfies the unit property, we choose
any η P Ha and compute

µpιb 1aqη
(1.8)

ùùùù µpιb 1aqLpΩ, rIqη “ µLp1ιΩ, rIqη “ 1η “ η,

and choose any X P BprIq and compute

µp1a b ιqXιΩ
(1.4)

ùùùù µp1a b ιqLpXιΩ, rIqΩ “ µLpXιΩ, rIqιΩ “ XιΩ.

For each X1, X2 P BprIq and η P Ha, X1X2η equals both

µLpX1X2ιΩ, rIqη “ µLpµLpX1ιΩ, rIqX2ιΩ, rIqη

“µpµb 1aqLpLpX1ιΩ, rIqX2ιΩ, rIqη “ µpµb 1aqLpX1ιΩ, rIqLpX2ιΩ, rIqη
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and

µLpX1ιΩ, rIqµLpX2ιΩ, rIqη “ µp1a b µqLpX1ιΩ, rIqLpX2ιΩ, rIqη.

This proves the associativity of µ. The Frobenius relation can be proved in the same way
as the last paragraph of the proof of Thm. 2.10.

We have constructed a C˚-Frobenius algebraQ “ pHa, µ, ιq. Then BQprIq consists of all
µLpξ, rIq|Ha where ξ P HapIq. Thus, it is generated by all µLpXιΩ, rIq “ X whereX P BprIq.
Therefore B “ BQ. Thus the map Q ÞÑ BQ is surjective. By Rem. 2.7, it is injective.

Remark 2.13. In this article, we construct extensions from Q using L operators. One can
also use R operators. Then one obtains a finite index extension pHa,B1

Q, ιq where

B1
QprIq “ tµRpη, rIq|Ha : η P HapIqu. (2.20)

(Note that B1
QprI 1q “ BQprIq1 by (2.5).) Then similar results as Thm. 2.10, 2.12, and Main

Thm. A hold for such extensions. For instance, the C˚-category of right Q-modules is
canonically isomorphic to the C˚-category of B1

Q-modules.

3 Isomorphisms of C˚-Frobenius algebras and extensions

Definition 3.1. Let Qa “ pHa, µ
a, ιaq and Qb “ pHb, µ

b, ιbq be C˚-Frobenius algebras in
ReppAq. A left isomorphism V : Qa Ñ Qb denotes V P HomApHa,Hbq with bounded
inverse V ´1 P HomApHb,Haq satisfying

V ιa “ ιb,

V µa “ µbpV b V q,

V ˚µbpV b 1bq “ µap1a b V ˚q.

(3.1)

If V is unitary, we say that V is a unitary isomorphism.

Remark 3.2. It is a routine check that V ´1 : Qb Ñ Qa is a left isomorphism, and that if
W : Qb Ñ Qc is a left isomorphism, then so is WV : Qa Ñ Qc.

Remark 3.3. Assuming the second equation of (3.1), it is easy to see that the third one of
(3.1) is equivalent to V ˚V P EndLQpHaq, namely,

V ˚V µa “ µap1a b V ˚V q. (3.2)

Thus, our definition is in line with [NY18, Def. 2.4].
From this observation, we see that if Ha,Hb are irreducible Q-modules, then a left

isomorphism V : Qa Ñ Qb is unitary up to scalar multiplication. It is unitary if we
also have pιaq˚ιa “ pιbq˚ιb. Thus, all left isomorphisms of irreducible normalized C˚-
Frobenius algebras are unitary.

More generally, by polar-decomposing V , we see that the positive operators H P

EndLQpHaq with bounded inverse correspond surjectively to the unitary isomorphism
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classes of C˚-Frobenius algebras in ReppAq that are left isomorphic to Q. The correspon-
dence is given by

H ÞÑ pHa, µ
apH´1 b 1aq, Hιaq. (3.3)

This relation is similar to that between the faithful normal conditional expectations for a
subfactor N Ă M and the relative commutant N 1 X M (cf. [CD75] or [Kos98, Sec. A.3]).
See Rem. 3.9 for further discussions.

Remark 3.4. It was shown in [NY18, Thm. 2.9] that any C˚-Frobenius algebra in a C˚-
tensor category is left isomorphic to a standard special C˚-Frobenius algebra (i.e., a stan-
dard Q-system). See [NY18] for the meanings of these names.

Definition 3.5. Let pHa,Ba, ιaq and pHb,Bb, ιbq be extensions of A. An isomorphism φ :
Ba Ñ Bb (with respect to A) is a collection of (normal) isomorphisms of von Neumann
algebras

φ
rI
: BaprIq

»
ÝÑ BbprIq

(for all rI P rJ ) satisfying the compatibility and the extension property as in Def. 2.4
(namely, pHb, φq is a pBa,Aq-module, or equivalently, pHa, φ

´1q is a pBb,Aq-module).
Such φ is called a unitary isomorphism if there is a (necessarily unique) unitary op-

erator V : Ha Ñ Hb satisfying

V ιa “ ιb, (3.4)
V X “ φ

rI
pXqV (3.5)

for all rI P rJ , X P BaprIq.

Proof. The uniqueness of V follows from the fact that V XιaΩ “ φ
rI
pXqιbΩ.

The composition of two isomorphisms is clearly a morphism of extensions. Thus, the
extensions of A form a category whose objects are the isomorphisms.

Lemma 3.6. Let Qa, Qb be as in Def. 3.1, and choose V P HomApHa,Hbq with bounded inverse
satisfying V ιa “ ιb. Set

µV “ µbpV b 1bq P HomApHa b Hb,Hbq. (3.6)

Then V : Qa Ñ Qb is a left isomorphism if and only if pHb, µ
V q is a left Qa-module.

Proof. The unit property of pHb, µ
V q is automatic. The associativity

µV p1a b µV q “ µV pµa b 1bq

of pHb, µ
V q means

µbp1b b µbqpV b V b 1bq “ µbpV µa b 1bq.
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By the associativity of µb, this is equivalent to

µbpµbpV b V q b 1bq “ µbpV µa b 1bq.

By applying 1a b 1a b ιb to this relation and using the unit property of µb, we see that the
above relation (and hence the associativity of µV ) is equivalent to V µa “ µbpV b V q.

Set eva “ pιaq˚µa P HomApHa b Ha,H0q. Then the Frobenius relation of µV is equiva-
lent to

µV “ peva b 1bqp1a b pµV q˚q.

Since µV “ µbpV b 1bq “ V µap1a b V ´1q, the above relation means

µbpV b 1bq “ pV ´1q˚peva b 1aqp1a b pµaq˚qp1a b V ˚q.

By the Frobenius relation of µa, we have pevab1aqp1abpµaq˚q “ µa. So the above relation
is equivalent to

µbpV b 1bq “ pV ´1q˚µap1a b V ˚q.

This is equivalent to the third of (3.1).

In the following theorem, we let Qa “ pHa, µ
a, ιaq, Qb “ pHb, µ

b, ιbq, etc. be C˚-
Frobenius algebras in ReppAq.

Theorem 3.7. The following are true.

(a) If V : Qa Ñ Qb is a left isomorphism of C˚-Frobenius algebras, then there is a unique
isomorphism φV : BQa Ñ BQb (with respect to A) satisfying

V X “ φV
rI

pXqV (3.7)

for all rI P rJ , X P BQaprIq. Moreover, V is unitary if and only if φV is so.

(b) If W : Qb Ñ Qc is also a left isomorphism, then φWV “ φW ˝ φV .

(c) If pHb,Bb, ιbq is an extension of A, and if φ : BQa Ñ Bb is an isomorphism (with respect
to A), then Bb “ BQb for a unique C˚-Frobenius algebra Qb, and φ “ φV for a unique left
isomorphism V : Qa Ñ Qb.

Proof. (a) The uniqueness of φV follows from the surjectivity of V . As for the existence,
by Thm. 2.10 (applied to µV ) and Lemma 3.6, we have a pBQa ,Aq-module pHb, φ

V q such
that for all rI P rJ and ξ P HapIq,

φV
rI

`

µaLpξ, rIq|Ha

˘

“ µbLpV ξ, rIq|Hb
. (3.8)

ClearlyφV
rI

pBQaprIqq “ BQbprIq. Since we have a similar homomorphismφV ´1

rI
sending each

µbLpV ξ, rIq|Hb
to µaLpξ, rIq|Ha , φV

rI
must be an isomorphism of von Neumann algebras.

Thus, φV is an isomorphism from BQa to BQb . (3.7) holds since

V µaLpξ, rIq|Ha “ µbpV b V qLpξ, rIq|Ha “ µbLpV ξ, rIq|Hb
¨ V.
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If V is unitary, then φV is clearly so. Conversely, if φV is unitary, then there is a unitary
W : Ha Ñ Hb satisfying Wιa “ ιb and W p¨qW´1 “ φ

rI
. Therefore, for each X P BQaprIq,

both W and V send XιaΩ to φ
rI
pXqιbΩ. Therefore V “ W , and hence V is unitary.

(b) is obvious.
(c) Let φ : BQa Ñ Bb be an isomorphism. Since pHb, φq is a pBQa ,Aq-module, by Thm.

2.10, we have a left Qa-module pHb, pµq (where pµ P HomApHa bHb,Hbq) such that for each
rI P rJ , ξ P HapIq,

φ
rI

`

µaLpξ, rIq|Ha

˘

“ pµLpξ, rIq|Hb
.

In particular, each Y P BbprIq is of the form Y “ pµLpξ, rIq|Hb
. Set

V “ pµp1a b ιbq P HomApHa,Hbq. (3.9)

Then

Y ιbΩ “ pµLpξ, rIqιbΩ “ pµp1a b ιbqLpξ, rIqΩ “ V ξ.

Thus, V has dense range since BbprIqιbΩ is dense.
Let us show that V has bounded inverse. Note that V and V ˚V have the same null

space. Also, since V ˚V P EndApHaq where EndApHaq is finite-dimensional (as Ha is
dualizable), the spectrum of V ˚V must be a finite set. Thus, if we can show that V ˚V

has trivial null space, then V ˚V and hence pV ˚V q
1
2 must have bounded inverse. Then by

polar decomposition, V would have bounded inverse.
Suppose the null space of V ˚V is non-trivial. Since it is an A-submodule of Ha, it must

contain a non-zero element ξ P HapIq. Thus, as V ξ “ 0, we have Y ιbΩ “ 0 where Y “

pµLpξ, rIq|Hb
. By the Reeh-Schlieder property for Bb, we have Y “ 0. So φ

rI

`

µaLpξ, rIq|Ha

˘

“

0. As φ
rI

is faithful, µaLpξ, rIq|Ha “ 0. So ξ “ 0 by Rem. 2.7. This is a contradiction. Thus,
we have finished proving that V has bounded inverse.

Now, for each η P Hb and Y “ pµLpξ, rIq|Hb
,

LpY ιbΩ, rIqη “ LpV ξ, rIqη “ pV b 1bqLpξ, rIqη,

and

Y η “ pµLpξ, rIqη.

Thus we have a bounded map, namely pµpV ´1 b 1bq, from Hb b Hb to Hb sending

LpY ιbΩ, rIqη ÞÑ Y η

for each rI P rJ and Y P BbprIq. Thus, as argued in Step 2 of the proof of Thm. 2.12, µb :“
pµpV ´1 b 1aq defines a C˚-Frobenius algebra structure Qb “ pHa, µ

b, ιbq, and Bb “ BQb . By
(3.9) and the unit property of pµ, we have V ιa “ ιb. As pµ “ µbpV b 1aq equals the µV in
Lemma 3.6, by that lemma, V is a left isomorphism from Qa to Qb.

Finally, the uniqueness of isomorphisms V : Qa Ñ Qb satisfying φ “ φV (namely,
satisfying V X “ φ

rI
pXqV for all X P BQaprIq) is due to

V XιaΩ “ φ
rI
pXqιbΩ. (3.10)
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Remark 3.8. In Def. 3.1, if we replace the third relation of (3.1) by

V ˚µbp1b b V q “ µapV ˚ b 1aq (3.11)

(this is equivalent to V ˚V µa “ µapV ˚V b 1aq), then such V : Qa Ñ Qb is called a right
isomorphism. In Thm. 3.7, if we replace BQa ,BQa by B1

Qa ,B1
Qb (cf. Rem. 2.13) and replace

the left isomorphisms by the right isomorphisms, then the theorem still holds.

Similar to Main Thm. A, we formulate (part of) Thm. 3.7 in terms of isomorphism of
categories. Let FrobLpAq be the category of C˚-Frobenius algebras in ReppAq whose mor-
phisms are the left isomorphisms. Let ExtdpAq be the category of finite index extensions
of A whose morphisms are the isomorphisms (with respect to A).

Main Theorem B. The functor G : FrobLpAq Ñ ExtdpAq sending each Q to BQ and each left
isomorphism V to φV is an isomorphism of categories.

Remark 3.9. Let us translate the results of these two sections to the language of subfactors
and von Neumann bimodules. We fix a von Neumann factor N together with a faithful
normal state ω. We call H0 :“ L2pN , ωq the vacuum N ´ N bimodule. The element 1 in
L2pN , ωq is denoted by Ω. An abstract extension of N is an inclusion N Ă M (where M
is a von Neumann algebra) such that there exists a faithful normal conditional expectation
E : M Ñ N . (We only assume the existence of E but do not include it as part of the data
of an abstract extension.) A concrete extension of N is pHa,N Ă M, ιq, where M is a von
Neumann algebra containing N , Ha is an M ´ N bimodule, ι : H0 Ñ Ha is an isometric
homomorphism of N ´N bimodules, and ιΩ is cyclic and separating under the left action
of M.

A concrete extension pHa,N Ă M, ιq determines a faithful normal conditional expec-
tation E : M Ñ πapN q (where πa is the left representation of N on Ha) satisfying

ιι˚Xιι˚ “ EpXqιι˚.

We say this extension has finite index if E has finite index (in the sense of Pimsner-Popa
condition). Conversely, any abstract extension N Ă M with a chosen faithful normal con-
ditional expectation E determines a concrete extension pL2pM, ω ˝ Eq,N Ă M, ιq where
ι is the canonical embedding L2pN , ωq Ñ L2pM, ω ˝ Eq. Thus, concrete extensions are
roughly the same as abstract extensions with chosen conditional expectations.

A (resp. finite index) concrete extension of N is analogous to a (resp. finite index) ex-
tension of conformal net A. On each side, a finite index extensions is described uniquely
by a C˚-Frobenius algebra Q. The analogous result of Main Thm. A for a concrete exten-
sion pHa,N Ă M, ιq determined by Q (in the C˚-tensor category of N ´ N bimodules) is
the well known fact that the C˚-category of left Q-modules is canonically isomorphic to
the C˚-category of M ´ N bimodules.

We may define isomorphisms of concrete extensions pHa,N Ă Ma, ιaq, pHb,N Ă

Mb, ιbq to be the isomorphisms of von Neumann algebras Ma Ñ Mb that restrict to
the identity map on N . Unitary isomorphisms are those implemented by unitary maps
V : Ha Ñ Hb such that V ιa “ ιb. Then the isomorphism classes of concreted exten-
sions are roughly the same as abstract extensions. The analogous result of Thm. 3.7 is the
following:
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(a) If pHa,N Ă Ma, ιaq, pHb,N Ă Mb, ιbq are isomorphic, and if the first concrete ex-
tension is realized by a C˚-Frobenius algebra Qa, then the second one is realized by
some Qb.

(b) Left isomorphisms from Qa to Qb correspond bijectively to isomorphisms from the
first concrete extension to the second one. A left isomorphism is unitary iff the
corresponding isomorphism of concrete extensions is unitary.

We do not prove these statements in this article. But they can be proved using arguments
similar to those in this article.

In the more familiar subfactor language, (a) says the well known fact that if N Ă M
has a finite index faithful normal conditional expectation E1, then any other faithful nor-
mal conditional expectation E2 : M Ñ N also has finite index (i.e., can be realized by
C˚-Frobenius algebras). We have used this result in the proof of Thm. 2.12. But we have
avoided using this when proving Thm. 3.7. (b) says that two extensions pN Ă Ma, Eaq

and pN Ă Mb, Ebq with the data of finite index faithful normal conditional expectations,
together with an isomorphism of von Neumann algebras Ma Ñ Mb fixing N , corre-
sponds to a left isomorphism of C˚-Frobenius algebras. If the isomorphism Ma Ñ Mb

intertwines Ea and Eb, then it corresponds to a unitary isomorphism of C˚-Frobenius al-
gebras.

In particular, by choosing Ma “ Mb “ M and choosing the isomorphism to be 1,
we see that an ordered pair of two finite index faithful normal conditional expectations
pE1, E2q for N Ă M corresponds to a (non-necessarily unitary) left isomorphism of C˚-
Frobenius algebras. Therefore, the study of the faithful normal conditional expectations
for a given abstract finite index extension N Ă M can be transformed to that of the left
isomorphisms of C˚-Frobenius algebras.

We remark that the relation between concrete extensions and extensions with fixed
conditional expectations is similar to that between Connes fusion and the theory of (su-
perselection) sectors: the former “Schrödinger picture” focuses on representations of von
Neumann algebras on Hilbert spaces, and the latter “Heisenberg picture” focuses on
maps (morphisms and conditional expectations) between von Neumann algebras.

4 An example

In this section, we choose a dualizable A-module Hi with dual object Hi and A-
module morphisms evi,i : Hi b Hi Ñ H0, evi,i : Hi b Hi Ñ H0 satisfying the conjugate
equations (1.18). Then we have a net of Jones-Wassermann subfactors I ÞÑ πi,IpApIqq Ă

πi,I 1pApI 1qq1. This is not an extension in our sense (cf. Def. 2.3). But we shall see that it is
a module of a finite index extension BQ of A.

Set coevi,i “ pevi,iq
˚ and coevi,i “ pevi,iq

˚. For each ξ P HipIq, set

S
rI
ξ “ Lpξ, rIq˚coevi,iΩ.

Then, as Lpξ, rIq˚coevi,i P HomApH0,Hiq, we have S
rI
ξ P HipIq. We need a special case of

[Gui21b, Cor. 5.6]:

evi,iLpS
rI
ξ, rIq|Hi “ Lpξ, rIq˚|Hi . (4.1)
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We give a proof here since it is straightforward: we have

evi,iLpS
rI
ξ, rIq|Hi “ evi,iLpLpξ, rIq˚coevi,iΩ,

rIq|Hi

“evi,iLpξ, rIq˚pcoevi,i b 1iqLpΩ, rIq|Hi “ Lpξ, rIq˚p1i b evi,iqpcoevi,i b 1iq|Hi ,

which equals Lpξ, rIq˚ by the conjugate equations (1.18).
We define a C˚-Frobenius algebra Q “ pHi b Hi, µ, coevi,iq where

µ “ 1i b evi,i b 1i P HomApHi b Hi b Hi b Hi,Hi b Hiq.

Then pHi, µiq is a left Q-module where

µi “ 1i b evi,i P HomApHi b Hi b Hi,Hiq.

Let pHi, πiq be the corresponding pBQ,Aq-module defined by Thm. 2.10.

Proposition 4.1. For each rI P rJ , we have

π
i,rI

pBQprIqq “ πi,I 1pApI 1qq1.

Therefore, the subfactors πi,IpApIqq Ă πi,I 1pApI 1qq1 and πibi,IpApIqq Ă BQprIq are iso-
morphic.

Proof. The Ă is obvious due to the relative locality (cf. Rem. 2.5). Choose any T P

πi,I 1pApI 1qq1. We claim that T “ Lpη, rIqLpξ, rIq˚|Hi for some ξ, η P HipIq. Indeed, choose
any unitary vector ξ P HipIq (cf. Lemma 1.4). Since TLpξ, rIq|H0 : H0 Ñ Hi intertwines the
actions of ApI 1q, η :“ TLpξ, rIqΩ belongs to HipIq. The relation Lpη, rIq|H0 “ TLpξ, rIq|H0

holds when acting on Ω. Thus, it holds when acting on ApI 1qΩ since both sides intertwine
the actions of ApI 1q. This proves T “ Lpη, rIqLpξ, rIq˚|Hi by the unitarity of Lpξ, rIq.

Now, by (4.1),

T “ Lpη, rIqevi,iLpS
rI
ξ, rIq|Hi “ p1i b evi,iqLpη, rIqLpS

rI
ξ, rIq|Hi

“µiLpLpη, rIqS
rI
ξ, rIq|Hi .

By (2.9), T equals π
i,rI

pXq where X “ µLpLpη, rIqS
rI
ξ, rIq|HibHi

belongs to BQprIq (cf. (2.4)).

5 Commutative C˚-Frobenius algebras and local extensions

In this section, we fix a C˚-Frobenius algebra Q “ pHa, µ, ιq, and let pHa,BQq be the
extension of A associated associated to Q “ pHa, µ, ιq.

Definition 5.1. Q is called commutative if µßa,a “ µ. (Recall that ß is the braid operator.)
It is called irreducible if it is an irreducible left Q-module.

Note that by [NY18, Rem. 2.7], Q is irreducible if and only if dimHomApH0,Haq “ 1
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Proposition 5.2. Fix any rI0 P rJ . Then the following are equivalent

(1) BQprI0q1 “ BQprI 1
0q.

(2) BQprIq1 “ BQprI 1q for every rI P rJ .

(3) Q is commutative.

If any of these holds, we say BQ is a local extension of A. If BQ is local, then BQprIq depends only
on I but not on the arg function argI . So we may write BQprIq as BQpIq.

Proof. Note that for each η P HipI
1q, µßa,aLpη, rI 1q|Ha “ µRpη, rI 1q|Ha by the braiding axiom

(1.6). Also (2)ñ(1) is obvious.
(3)ñ(2): If µ “ µßa,a, then µLpη, rI 1q|Ha “ µRpη, rI 1q|Ha . By (2.5), µRpη, rI 1q|Ha P BQprIq1,

and any element of BQprIq1 is of this form. Thus BQprI 1q “ BprIq1.
(1)ñ(3): Suppose BQprI 1

0q “ BQprI0q1. For each η P HipI
1
0q, Y “ µLpη, rI 1

0q|Ha is an
element of BprI0q1, which by (2.5) is of the form µRpη0, rI 1

0q|Ha for some η0 P HipI
1
0q. We

have η0 “ η since Y ιΩ “ µLpη, rI 1
0qιΩ “ µp1a b ιqLpη, rI 1

0qΩ “ η and similarly Y ιΩ “ η0.
So µLpη, rI 1

0q|Ha “ µßa,aLpη, rI 1
0q|Ha . By the density of fusion product, we get µ “ µßa,a.

If BQ is local, then both BQprIq and BQprI2q “ BQpϱp´2πqrIq are the commutants of
BQprI 1q. So they are equal. This proves that BQprIq is independent of argI .

Definition 5.3. A dyslectic Q-module pHi, µiq is by definition a left Q-module satisfying
µißi,a “ µiß

´1
a,i . Thus, Hi is automatically aQ-bimodule with left action µi and right action

µißi,a.

Definition 5.4. When BQ is local, a pBQ,Aq-module pHi, πiq is called dyslectic if π
i,rI

de-
pends only on I but not on argI . So we may write π

i,rI
as πi,I . A dyslectic pBQ,Aq-modules

is simply called a BQ-module, which is in line with the definition of A-modules in Sec. 1.

Proposition 5.5. Let Q be commutative. Let pHi, µiq be a left Q-module, and let pHi, πiq be the
corresponding pBQ,Aq-module as in Thm. 2.10. Then pHi, µiq is dyslectic if and only if pHi, πiq
is so.

Proof. For each rI P rJ , let rI1 “ ϱp2πqrI . For each X “ µLpξ, rIq|Ha “ µLpξ1, rI1q|Ha in BQpIq,
ξ and ξ1 must be equal since both equal XιΩ by Rem. 2.7. By Lemma 1.5, we have

π
i,rI

pXq “ µiLpξ, rIq|Ha , π
i,rI1

pXq “ µißi,aßa,iLpξ, rIq|Ha .

Thus, by the density of fusion product, we have π
i,rI

“ π
i,rI1

iff µi “ µißi,aßa,i.

Definition 5.6. We say that BQ is a local Möbius extension of A if BQ is a (local) Möbius
net, and if the representation of PSUp1, 1q on H0 extends to that of Ha. Similarly, when A
is a conformal net, we say that BQ is a local conformal extension of A if BQ is a conformal
net, and if the projective representation of Diff`pS1q on H0 extends to that of Ha. In either
case, we let ιΩ be the vacuum vector for BQ.
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Since any rigid braided C˚-tensor category has a canonical ribbon structure [Müg00],
we have a unitary twist operator ϑa P EndApHaq which commutes with EndApHaq. (Note
that Ha is automatically dualizable.) When Ha is Möbius covariant, by the conformal
spin-statistics theorem ([GL96, Thm. 3.13], [Jörß, Sec. 4.1], or [Gui21b, Thm. 6.8]), ϑa
equals the action of ϱp2πq P ĆPSUp1, 1q (the rotation by 2π).

Theorem 5.7. Let Q “ pHa, µ, ιq be a C˚-Frobenius algebra in ReppAq. Then BQ is a local
Möbius extension of A with vacuum vector ιΩ if and only if the following are true:

(1) Ha is a Möbius covariant A-module.

(2) Q is commutative and the twist ϑa “ 1a.

Moreover, BQ is irreducible if and only if Q is irreducible. If A is a conformal net, then (1)
automatically holds, and (2) is equivalent to that BQ is a local conformal extension.

Note that when Q is commutative and irreducible, it is automatic that ϑa “ 1a. See
[CGGH23, Prop. 2.22].

Proof. Ha is automatically a Möbius covariant A-module if BQ is a local Möbius extension.
So we may always assume (1) in the rest of the proof. Then by [BCL98, Cor. 4.4] or (in the
case that A is a conformal net) [Wei06], the generator L0 of the rotation subgroup ϱ has
positive spectrum when acting on Ha. The representation of ĆPSUp1, 1q descends to a true
representation of PSUp1, 1q iff ϱp2πq acts as 1a. Therefore, the equivalence of (2) and that
BQ is a local Möbius resp. conformal extension follows from Prop. 5.2 and the covariance
property of BQ stated in Thm. 2.6. The equivalence of the two irreducible conditions
follows from Main Thm. A.

We now assume Q is commutative and irreducible. Let Rep0pQq be the full C˚-
subcategory of RepLpQq consisting of dyslectic Q-modules. By considering each object
of Rep0pQq as Q ´ Q bimodules, Rep0pQq becomes naturally a braided C˚-tensor cate-
gory: For each dyslectic Q-modules pHi, µiq, pHj , µjq, we choose an dyslectic Q-module
Hij and a surjective left Q-module morphisms

µi,j : Hi b Hj Ñ Hij ” Hi bQ Hj (5.1)

satisfying

µi,jpµi b 1jq “ µi,jp1i b µjqpßa,i b 1jq, (5.2)
µ˚
i,jµi,j “ pµißi,a b 1jqp1i b µ˚

j q ” p1i b µjqppµißi,aq˚ b 1jq. (5.3)

For instance, we may take Hi bQHj to be the range of the right hand side of (5.3). The fu-
sion F bQG of dyslectic Q-module morphisms F : Hi Ñ Hi1 , G : Hj Ñ Hj1 is determined
by

µi,jpF bGq “ pF bQ Gqµi,j . (5.4)

The unitors of Rep0pQq are determined by the fact that after identifying the three dyslectic
Q-modules Ha bQ Hi,Hi,Hi bQ Ha using the unitors, then µi equals µa,i (as described
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in (5.1)) and µißi,a equals µi,a. The associativity isomorphisms are determined by the fact
that, after suppressing these isomorphisms, for each dyslectic Q-modules Hi,Hj ,Hk, the
following diagram commutes adjointly

Hi b Hk b Hj Hi b pHk bQ Hjq

pHi bQ Hkq b Hj Hi bQ Hk bQ Hj

1ibµk,j

µi,kb1j µi,kj

µik,j

(5.5)

where each arrow denotes the corresponding fusion product morphism as in (5.1). See
[Gui19, Sec. 3.2, 3.4], especially (3.10) and (3.11) for the above diagram. Finally, the braid-
ing ßQi,j P HomL

QpHi bQ Hj ,Hj bQ Hiq is determined by

µj,ißi,j “ ßQi,jµi,j . (5.6)

Assume now that B :“ BQ is an irreducible local Möbius extension of A. Let ReppBq

be the C˚-category of B-modules (i.e., dyslectic pB,Aq-modules), which is a full C˚-
subcategory of RepLpBq. Then one can use Connes fusion to make ReppBq a braided
C˚-tensor category pReppBq,bB, ß

Bq as in Sec. 1 for ReppAq. In particular, this braided
C˚-tensor structure is determined by the existence of a categorical extension E B on the
C˚-category ReppBq. We let LB, RB denote the L and R operators of E B. As in the pre-
vious sections, we do not write superscripts for the L and R operators of the categorical
extension of A over ReppAq.

Given a B-module Hi, recall that HipIq “ HomApHi,H0qΩ. Similarly, we define
HB

i pIq “ HomBpHi,HaqιΩ.

Lemma 5.8. We have HipIq “ HB
i pIq.

Proof. HipIq Ą HB
i pIq since HomApHi,H0q Ą HomBpHi,Haqι. Now choose any η P HipIq.

We have µiRpη, rIqιΩ “ µipι b 1iqRpη, rIqΩ “ η. Moreover, let rK be the anticlockwise
complement of rJ . Then µiRpη, rIq|Ha intertwines the actions of Bp rKq since for each ξ P

HapKq,

µiRpη, rIqµLpξ, rKq|Ha “ µiLpξ, rKqµiRpη, rIq|Ha

by the diagram (2.10). So η P HB
i pIq.

By Prop. 5.5, the ˚-functor F : RepLpQq Ñ ReppB,Aq in Main Thm. A reduces to an
isomorphism of C˚-categories F : Rep0pQq Ñ ReppBq. Moreover:

Main Theorem C. Assume that B :“ BQ is an irreducible local Möbius extension of A. Then the
˚-functor F can be extended to a braided ˚-functor pF,Φq : Rep0pQq Ñ ReppBq implementing an
isomorphism of braided C˚-tensor categories. More precisely: We have an operation Φ associating
to any dyslectic Q-modules (equivalently, B-modules) Hi,Hj a unitary A-module morphism

Φi,j : Hi bB Hj Ñ Hi bQ Hj (5.7)
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satisfying that for any rI P rJ , ξ P HipIq, η P Hj ,

Φi,jL
Bpξ, rIqη “ µi,jLpξ, rIqη,

Φj,iR
Bpξ, rIqη “ µj,iRpξ, rIqη.

(5.8)

Φ is natural, namely, for morphisms of dyslectic Q-modules (equivalently, B-modules) F : Hi Ñ

Hi1 , G : Hj Ñ Hj1 , we have Φi,jpF bB Gq “ pF bQ GqΦi,j . Then the unitary equivalence of the
associators, unitors, and braid operators of the two categories are implemented by Φ.5

Proof. We identify Rep0pQq with ReppBq via F so that they can be viewed as the same
C˚-category. By [Gui21a, Thm. 3.10], it suffices to show the existence of a categorical
extension pB,Rep0pQq,bQ,Hq over Rep0pQq. For each B-module Hi, rI P rJ , and ξ P HipIq,
we define the L and R operators acting on each dyslectic Hk to be

LQpξ, rIq “ µi,kLpξ, rIq : Hk Ñ Hi bQ Hk,

RQpξ, rIq “ µk,iRpξ, rIq : Hk Ñ Hk bQ Hi.

We need to check that they satisfy the axioms in the definition of categorical extensions
(cf. Def. 1.1). The locality axiom follows from the adjoint commutativity of the diagram

Hk Hk b Hj Hk bQ Hj

Hi b Hk Hi b Hk b Hj Hi b pHk bQ Hjq

Hi bQ Hk pHi bQ Hkq b Hj Hi bQ Hk bQ Hj

Rpη, rJq

Lpξ,rIq

µk,j

Lpξ,rIq Lpξ,rIq

Rpη, rJq

µi,k

1ibµk,j

µi,kb1j µi,kj

Rpη, rJq µik,j

(5.9)

in which ξ P HipIq, η P HjpJq and rJ is clockwise to rI . In particular, by letting Hi or Hj

be Ha and noticing that µa,i “ µi, µi,a “ µißi,a, we see that both LQpξ, rIq and RQpξ, rIq

intertwine the actions of BpI 1q. We now check the other axioms. Isotony is obvious.
Functoriality: For any G P HomBpHj ,Hj1q and ξ P HipIq, η P Hj , p1i bQ

Gqµi,jLpξ, rIqη “ µi,jp1i b GqLpξ, rIqη “ µi,jLpξ, rIqGη. A similar relation holds for the
RQ operators.

State-field correspondence: µi,aLpξ, rIqιΩ “ µißi,aLpξ, rIqιΩ “ µiRpξ, rIqιΩ “ µipι b

1iqRpξ, rIqΩ “ ξ, and similarly µa,iRpξ, rIqιΩ “ ξ.
Density of fusion products: Because µi,j is surjective.
Braiding: ßQi,jµi,jLpξ, rIqη “ µj,ißi,jLpξ, rIqη “ µj,iRpξ, rIqη.

Remark 5.9. In Main Thm. C, it is clear that a dyslectic Q-module Hi is dualizable in
ReppBq iff it is dualizable in Rep0pQq. Using induced representations, it is easy to see
that the latter is equivalent to that Hi is dualizable in ReppAq. (See for instance [KO02],

5The precise statement can be found in [Gui21a] Thm. 3.10-(a,b,c); the b and � in that theorem correspond
respectively to the bB and bQ here.
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[NY16], or [Gui19, Thm. 3.18].) Therefore, the braided ˚-functor pF,Φq in Main Thm. C
restricts to an isomorphism of braided C˚-tensor categories

pF,Φq : Rep0,dpQq
»
ÝÑ RepdpBq

where Rep0,dpQq is category of all dyslectic Q-modules Hi that are dualizable as A-
modules, and RepdpBq is the category of all dualizable B-modules. Moreover, from
(1.19) and the construction of pB,Aq-modules from left Q-modules, we see that Hi P

ObjpRep0pQqq is Möbius covariant as an A-module if and only if it is so as a B-module.
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[Müg00] Müger, M., 2000. Galois theory for braided tensor categories and the modular closure. Advances

in Mathematics, 150(2), pp.151-201.
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