On a Connes Fusion Approach to Finite Index
Extensions of Conformal Nets
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Abstract

In the framework of Connes fusion, we discuss the relationship between the
(non-necessarily local or irreducible) finite index extensions B of an irreducible local
Mobius covariant net A and the C*-Frobenius algebras () in Rep(A) (the C*-tensor
category of .A-modules). We explain how to prove the 1-1 correspondence between @
and B in this framework, and show that the C*-category Rep"(Q) of left Q-modules is
isomorphic to the one Rep(5, A) of “(B, A)-modules”. When B is an irreducible local
Mobius extension, this reduces to a braided C*-tensor isomorphism of the categories
of dyslectic ()-modules and B-modules. We also establish a 1-1 correspondence be-
tween the (non-necessarily unitary) isomorphisms of finite index extensions of A and
the isomorphisms of C*-Frobenius algebras as defined in [NY18].
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Q-systems (~ C*-Frobenius algebras) were introduced by Longo [Lon94] and are
powerful tools for the study of local and non-local finite index extensions of confor-
mal nets, full and boundary conformal field theory, and defects [LR95, KL04, KLPRO7,
LR04, LR09, CKL13, BKL15, BKLR15, BKLR16, BDH19]. Finite index extensions of con-
formal nets were investigated mainly in the framework of DHR (Doplicher-Haag-Roberts



[DHR71, DHR74]) superselection theory [FRS89, FRS92], but not often in the Connes fu-
sion setting [Con80, Sau83, Was98, BDH17]. Though the Connes fusion approach to ex-
tensions of factors is well established (cf. for instance [Mas97, Yuan19, GY20, CHPJP21]),
its generalization to extensions of nets of factors (for instance, extensions of conformal nets)
is not straightforward.

It is a main goal of this article to give detailed proofs of some basic results on the
relationship between C*-Frobenius algebras and finite index extensions of conformal nets
in the Connes fusion framework. Moreover, the results we shall prove are slightly more
general than those already exist in the literature: we do not assume the conformal nets are
completely rational; our study is not limited to dualizable representations; the extensions
are not assumed to be irreducible; Mobius covariance is assumed only for the smaller net
A but not for the extension B or for the .A-modules. Indeed, the only finiteness condition
we assume is that of the extension A c B.

Let A be any irreducible local Mébius covariant net (irreducible Mobius net for short),
and let Rep(A) be the braided C*-tensor category of (normal) .A-modules defined by
Connes fusion. For each C*-Frobenius algebra @ in Rep(.A), we have constructed a fi-
nite index extension Bg in [Gui2lb] (see also Thm. 2.6). Here, we show that any finite
index extension arises in this way (Thm. 2.12). In the DHR superselection setting, these
results are due to [LR95, Thm. 4.9] (see also [BKLR15, Sec. 5.2]).

We show that the C*-tensor category Rep(Q) of left Q-modules is isomorphic to the
one Rep(Bg,.A) of (naturally defined) (Bg, A)-modules (Main Thm. A). When By is a
local Mobius extension (equivalently, when @ is a Mobius covariant .A-module and is
commutative with trivial twist operator, cf. Thm. 5.7), this isomorphism reduces to an
isomorphism of braided C*-tensor categories Rep’(Q) ~ Rep(Bg) where Rep”(Q) is the
category of dyslectic Q-modules, and Rep(Bg) is the category of usual Bg-modules. This
is Main Thm. C. In the DHR setting, this result was proved when A is completely rational
and the categories are assumed to contain only dualizable .A-modules (cf. [Miig10] and
[BKL15, Prop. 6.4]). Our result does not assume these conditions.

Our third main result is not as familiar as the previous ones. We introduce a natural
definition of isomorphisms of extensions of .4. These isomorphisms are in general not
implemented by unitary operators (unless when the extensions are irreducible). We con-
struct a 1-1 correspondence between (1) the isomorphisms ¢ : B* — Bb (with respect to
A) of finite index extensions of A and (2) the isomorphisms V : Q¢ — Q° of C*-Frobenius
algebras in Rep(.A) in the sense of [NY18] (cf. Thm. 3.7 or Main Thm. B). Such V is not
only an isomorphism of algebra objects in the usual sense; it also satisfies that V*V is a
homomorphism of left Q*-modules. We call such V' a left isomorphism in this article. This
result is closely related to choosing two different faithful normal conditional expectations
for a finite index subfactor ' = M. See the long Remark 3.9.

Many important topics are not discussed in this article. For instance, when B, is local,
we do not show that the C*-category equivalence Rep™(Q) ~ Rep(Bg, A) is an equiva-
lence of C*-tensor categories (though we have proved this for Rep®(Q) ~ Rep(Bg)), since
the theory of categorical extensions for (Bg, .A)-modules has not been established yet. In
particular, we are not yet ready to translate the tensor-categorical results on orbifold CFT
in [Miig05] to the Connes fusion framework. (Such translation would be useful for the
orbifold VOA-conformal net correspondence.) Also, to keep the article relatively short,



we do not discuss either full or boundary CFT, or fermionic conformal nets here. But
many crucial techniques for exploring these topics through Connes fusion are already
given in the article.
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1 Backgrounds

All Hilbert spaces are assumed to be separable. For a Hilbert space #, {:|-) denotes
its inner product whose first variable is linear and the second one antilinear. End(#,;, #2)
denotes the set of bounded linear operators from a Hilbert space #; to another one #;.
We follow the usual convention that if M is a von Neumann algebra on a Hilbert space
then M’ denotes its commutant.

If P,Q,R,S are Hilbert spaces, A, B,C, D are bounded linear operators whose do-
mains and codomains are indicated by the following diagram,

P50

Al lB (1.1)

R-P,s

we say that this diagram commutes adjointly if DA = BC and CA* = B*D. If either
A, B or C, D are unitary, then commuting implies adjoint commuting.

Mobius nets and conformal nets

Let J be the set of all non-empty non-dense open intervals in the unit circle S*. If
I € J,thenI’ € J isby definition the interior of the complement of I. The group Diff ¥ (S')
of orientation-preserving diffeomorphisms of S! contains the subgroup PSU(1,1) of
Mébius transforms of St. We let lsgﬁ(l, 1) and ¢ be respectively the universal coverings
of PSU(1, 1) and Diff *(S1).

If I € 7, welet Diff (I) be the subgroup of all g € Diff " (S') acting as identity on I’. We
let 4(I) be the connected component of the inverse image of Diff (1) under ¥ — Diff " (S?).

By a Mobius net A, or more precisely, a local Mobius covariant net, we mean that for
each I € J there is a von Neumann algebra .A([/) acting on a fixed separable Hilbert space
Ho, such that the following conditions hold:

(a) (Isotony)If I} < Iy € J, then A(I) is a von Neumann subalgebra of A(l3).
(b) (Locality) If I, I € J are disjoint, then A(/;) and A(/2) commute.

(c) (Mobius covariance) We have a strongly continuous unitary representation U of
PSU(1,1) on Hy such that for any g € PSU(1,1),1 € J,,

U(g)A(U(g)* = A(gl).
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(d) (Positivity of energy) The generator L of the rotation subgroup ¢ is positive.

(e) There exists a PSU(1, 1)-invariant unit vector 2 € H,, called the vacuum vector
which is cyclic under the action of \/ ;. ; A(I) (the von Neumann algebra generated
by all A(1)).

A is additive, namely, if J is a set of intervals with union J € 7, then A(J) is the von
Neumann algebra generated by | J;.5 A(I). A satisfies Haag duality, i.e., that A(I") =
A(I) for each I € J. Moreover, we have the Reeh-Schlieder property, which says that
is cyclic separating vector for each A(I). We say that A is irreducible if C1 are the only
operators on Hy commuting with the action of A(I) for all I € J. This is equivalent to
that C2 are the only PSU(1, 1)-invariant vectors in H,, and also equivalent to that each
A(I) is a type III;-factor. See [GL96, Sec. 1] for details.

A Mobius net A is called a conformal (covariant) net if the representation U of
PSU(1,1) on H, can be extended to a strongly continuous projective unitary represen-
tation U of Diff* (S') on H,, such that for any g € Diff *(S!), I € 7, and any representing
element V € U(Hy) of U(yg),

VAI)V* = Agl).

Moreover, if g € Diff (1) then V € A(I).

If A is a Mobius net, a (normal untwisted) .A-module is a pair (7;, H;), or simply #,;,
such that #; is a Hilbert space, and that for any I € J there is a normal representation
ey of A(I) on H; such that c J = 7T7;’J|A(I) = ;1. We use symbols Hi, Hj, Hiey .. for
A-modules. For z € A(I) and § € H;, m; ;(x)§ will be written as x{ when the context is
clear. An A-module is called Mdbius covariant, if there is a strongly continuous unitary
representation U; of ﬁgﬁ(l, 1) on H; such that U(g)m; 1(x)U(9)* = m g1(U(g)xU(g)*) for
each g € §§IJJ(1, 1), I € J,and = € A(I). Clearly H, is an .A-module, called the vacuum
module of A.

If A is a conformal net, any .A-module H; is automatically Mobius covariant. Indeed,
a stronger property holds. Let U/(#) be the topological group of unitary operators on H.
Let ¢4 be the subgroup of all (¢, V') € 4 x U(H,) such that V represents U(g). Then we
have a central extension

l1-St>94 -9 1.

¢ 4 naturally acts on Hy. As explained in [Gui2la, Thm. 2.2], the results in [Hen19] imply
that each A-module #; is conformal covariant, which means that there is a (necessarily
unique) strongly continuous unitary representation U; of ¢4 on #H; such that

Ui(g) = mi,1(U(g)) (1.2)
for each I € J and each g belonging to
9 4(I) := the inverse image of 4 (/) under ¥4 — ¥.

It follows easily (cf. the proof of [Gui2la, Cor. 2.6]) that U;(g)m; 1 (z)Ui(9)* = migr(gx) for
eachle J,xe A(I),g € Y4.



Thus, if A is conformal and #; is an A-module, we fix the continuous representation
of PSU(1, 1) to be the one inherited from that of %4.

If A is an irreducible conformal net, then A contains the subnet / € J — {U(g) :
g € Diff(I)}” acting on the subspace generated by €. This (M&bius) subnet is clearly
irreducible. In that case, it is the Virasoro net Vir. of some central charge ¢ (cf. [Car04,
Thm. A.1]). Let ¥, := %y, The map (g,V) € 94 — (g,V|W) € ¥, is clearly a
bijective contiuous group homomorphism. That its inverse is continuous follows from the
fact that Hg is a conformal covariant Vir.-module. Thus, we shall make the identification
of topological groups

Ye=9n,  Ye(I) =9aI)

so that the central extension of ¢ is only depending on the central charge c of A.

For any element g of Diff " (S!) or ¢ or ¢., we shall abbreviate U;(g) or U(g) to g when
the context is clear.

For a Mobius net A, we let Rep(.A) be the C*-category of A-modules. The space of
morphisms between two modules H;, H; is

Hom 4(H;, H;) = {T € Hom(H;, H;) : T 1(z) = m;(x)T foreach I € J,x € A(I)}.

Hence A is irreducible if and only if H is an irreducible .A-module.

Categorical extensions of A

In the remaining part of this article, we always assume that A is an irreducible Mobius
net.

There are two equivalent ways to make Rep(.A) a braided C*-tensor category: the
Doplicher-Haag-Roberts (DHR) superselection theory [DHR71, DHR74, FRS89, FRS92],
and the Connes fusion [Con80, Sau83, Was98, BDH17]. In this article, we focus on the
later.

The braided C*-tensor category (Rep(A),[x],8) is uniquely determined by the exis-
tence of a categorical extension of A on Rep(.A). To recall the definition, we first introduce
some terminology.

If I € J, an arg function arg; : I — R is a continuous function whose value at each
el € I'isin 0 + 2n7Z. (I,arg;) is called an arg-valued interval. Let

J = the set of all arg-valued intervals.

One may regard each I € 7 as an interval in the universal cover R of S'. Then the actions
of PSU(1,1) and Diff *(S!) lift to actions of ﬁgﬁ(l, 1) and ¢4 on R. Thus 1/3@{/}(1, 1) and ¥
(and hence ¢.) act on J.

We say that J = (J,arg;) is clockwise to I = (I,arg;) if arg;(z) — 27 < arg;(¢) <

argy(z) foreach z € I,( € J. In particular, I n J = ¢J. We mean

IcJ < 1IcJandarg, | = arg;.



In this case we say J contains I. The clockwise complement of I is defined to be
I' = the largest arg-valued interval clockwise to I

I is called the anticlockwise complement of I
For each A-module H; and each I € J, we let

Hi(I) = Hom gy (Ho, Hi) - ©

where Hom 47 (Ho, Hi) is the set of bounded operators from # to H; intertwining the
actions of A(I’). Note that by Haag duality, Ho(I) = A(I)Q2. In general, H;(I) is a dense
subspace of H,;.

Definition 1.1. By a (closed and vector-labeled) categorical extension & =
(A,Rep(A), X, H) (where H denotes the association I — H;(I) for each module H;), we
mean that [x] is a #-bifunctor such that (Rep(A),X]) is a C*-tensor category.! We sup-
press the associative isomorphisms and the unitors. Then & associates to any H;, Hj, €
Obj(Rep(A)) and any T € 7, ¢ € H;(I) bounded linear operators

I)e Hom 4y (Hi, Hi X Hi,),

~

LT
I) € HOH]A([/)(HkaHk %7,)7

£
R(¢

9
)

such that the following conditions are satisfied:

~ ~ ~

(a) (Isotony) If Iy = I € J, and € € H; (1), then L(¢, I1) = L(&, Io), R(¢, 1) = R(&, Io)
when acting on any H;, € Obj(Rep(A)).

(b) (Functoriality) If H;, H;, H; € Obj(Rep(A)), TeJ Ge Hom 4 (H;,H;0), & € Hi(1),
and 7 € H;, then

~ ~ ~ ~

(LXG)L(E )n =L 1)Gn,  (GRL)R(E I)n = R(E 1)Gn. (1.3)

(c) (State-field correspondence) For any #; € Obj(Rep(A)), under the identifications
Hi = HiXIHo = Ho XI H; defined by the unitors, the relation

~ ~

L, )= R(§, )2 = ¢ (1.4)

holds for any T e J,6e Hi(I). It follows immediately that when acting on H,,

~ ~

L(&,1) equals R(€, I) and is independent of arg;.

(d) (Density of fusion products) If H;,Hir € Obj(Rep(A)), I € J, then the set
L(#H;(I),I)H}, spans a dense subspace of H; X Hy, and R(H;(I), I)H} spans a dense
subspace of Hj X]H;. (Indeed, they span the full space H; X]H; and H, X H; respec-

tively.)

!This means in particular that the associators and the unitors are unitary isomorphisms, and for the mor-
phisms we have (F X G)* = F* [x] G*. If Rep(A) is equipped with a braid structure such that the braiding
isomorphisms are unitary, we say Rep(A) is a braided C*-tensor category.



(e) (Locality) For any H; € Obj(Rep(.A)), disjoint I,J € J with I anticlockwise to J,
and any & € H;(I),n € H;(J), the following diagram commutes adjointly.

Hye % Hy, X H,j
L(S,T)l . lL(g,T) (1.5)
R(n,J)

HiXHy ———— HiKHL X H;

(f) (Braiding) There is a unitary linear map 8; ; : H; X H; — H,; X H; for any H;, H; €
Obj(Rep(.A)), such that

~ ~

BijL(§, I)n = R(&,1)n (1.6)
whenever I € 7, ¢ € Hi(I),n € H;.

The above B8;; is necessarily an A-module isomorphism making (Rep(A),X,5) a
braided C*-tensor category. Moreover, such categorical extensions over the C*-category
Rep(A) exist and are unique. In particular, if we have another categorical extension
(A,Rep(A), @, H) which determines a braiding o, then (Rep(A),x],8) ~ (Rep(A), [, 0).
See Sec. 3.1-3.4, especially Thm. 3.4 and 3.10 of [Gui21a].? In other words, the existence of
the L and R operations satisfying the above axioms characterizes the braided C*-tensor
structure.

& was constructed in [Gui2la] using Connes fusion. For a brief explanation of the
construction, see [Gui2lb, Sec. A].

We give some useful facts that will be used later in this article. First, if the irreducible
Mobius net A is conformal, then & is conformal covariant, which means that for each
H; € Obj(Rep(A)), I € J, ¢ € Hi(I),and g € 4., there is a vector &g~ € H;(gI) such that

L(gég~,gI) = gL(€, g™, R(gég ', gI) = gR(&, g™ (17)

hold when acting on any A-module. (Cf. [Gui2la, Thm. 3.13].)
Now we do not assume A to be conformal.
By [Gui21b, Rem. 2.2], for any I = (I,arg;) € J, = € A(I), and any A-module H;,

Lz, Dy, = R@Q, 1|y, = mig(z). (1.8)
Moreover, if #; is an A-module, and if £ € H;(I),n € H;(J), then (by locality and state-
tield correspondence)
L& Dyn = R(n, J)¢. (19)
The functoriality of & can be generalized to that for every ' € Hom 4(H;, Hi'), G €
Hom 4(H;,H;), § € Hi(I), and 1 € H;, then

~ ~ ~ ~

(FRIG)L(E, Dn = L(FE, NGy,  (GRF)R(E, Dy = R(FE, DG, (1.10)

See [Gui2lb, Sec. 2]. The following (adjoint) fusion relations were proved in [Gui2lb,
Prop. 2.3].

2Although [Gui21a] only discusses irreducible conformal nets, any result irrelavent to conformal covari-
ance also holds for irreducible Mébius nets.



Proposition 1.2. Let 1, 1, Hy € Obj(Rep(A)), I € J, and & € Hi(I).
(a) If n € H;(I), then L& e (M K H;)(I), R I)ne (H; ®H;) (D), and

L& DL, Dl = LLE D, Dy, (1.11)
R(& DR, 1), = R(RE T)n, Dl (1.12)
(b) If ¢ € (Hi R H;)(I) and ¢ € (H; R H;)(I), then L(¢,1)*y € H;(I), R(&, 1)*¢ € H;(I), and

(0, Dy = LIL(E D , D)3y, (1.13)

~

*L(v
R(&1)*R(¢. D)l = R(R(E 1)* ¢, D)l (1.14)
As a special case, when x € A(I) and & € H;(I), then when acting on any H;,
L&, D) = oL, ), R(x&,1) = aR(E ). (1.15)

Lemma 1.3. For each H;,H; € Obj(Rep(A)), if &1,& € Hi(I), then L&, D*L(&, Dy, €
A(I), and

L(&, D)* L&, D)lay, = w0 (L(&, D* L&, Dlay, ). (1.16)

Proof. Since L(¢1,1)*L(&a, I)|y, commutes with A(I'), it is in A(I). By the Prop. 1.2 and
(1.8),

L(&1, I)* L&, I)la, = L(L(&1, 1)*&, Dy,
:L(L(§17f)*L(§27I~)QJf)|HJ = ﬂ-j,f( (glaf)*L(§27I~)’HO)‘

The following lemma is [Gui2la, Lemma 6.1].

Lemma 1.4. Suppose & € H;(I) and L(&, Dy = R(E D), is a unitary map from Ho to
i, then for each A-module H;, L(§, I)\Hj are unitary maps from H; to H; XI H; and H; X1 H;
respectively. In this case, we say & is unitary.

Note that unitary vectors in #;(/) always exist since H; and H are equivalent repre-
sentations of the type III factor A(I").

For eacht € R, let o(t) € ﬁgﬁ(l, 1) be the anticlockwise rotation by ¢. The following
property will not be used until Sec. 5.

Lemma 1.5. For each A-module H;, H;, each I e J and each EeHi(I),neH,,
L(&, o(2m)T)n = BjBi  L(E, ). (1.17)

Note that (o(27)I)" = 1.



Proof. Let I} = o(27)I. Assume without loss of generality that n € H;(I") = H;(I7). Then
by (1.9) and the braiding axiom (1.6),

L(¢&, )y = R(n, I})€ = 8;,L(n, 1})& = B, R(¢, I])n
=B, R(&, I)n = B;:B; ;L(E, I)n.
O

Recall that an .A-module H; is dualizable if there is also a module #; and homomor-
phisms ev; ; : H; K H; — Ho, ev,; : H; XIH; — Ho satistying the conjugate equations
(17, ev;i)((evﬁ)* 11) = 1“ (1; evm)((evh)* 1;) = 1; (118)

We refer the readers to [LR97, Yam04, BDH14] for general results on dualizable objects in
C*-tensor categories. Recall that the spaces of morphisms between dualizable objects are
finite dimensional. We let

Rep!(A) = the category of dualizable Mbius covariant .A-modules.

By [GL96, Prop. 2.2], for each H; € Obj(Rep'(A)) there is a unique strongly continu-
ous unitary representation of PSU(1,1) on H; making the A-module H; Mobius covari-
ant. From this uniqueness, it is easy to see that the morphisms of Mobius covariant
A-modules intertwine the actions of ISS\I/J(L 1) (cf. [Gui2lb, Lemma B.1]). By [Gui2lb,
Sec. B], Rep!(A) is closed under [x] and hence is a full braided C*-tensor subcategory of
Rep(A), and the restriction of & to Rep'(A) is Mobius covariant, which means that for
each #; € Obj(Rep'(A)), T € J, £ € Hi(I),and g € ISS\I/J(L 1),

L(g¢, gI) = gL(&,T)g™",  R(g&,91) = gR(E,D)g™" (1.19)

when acting on any object of Rep!(A).

2 ("-Frobenius algebras and finite index extensions

Recall that A is always assumed to be an irreducible Mobius net.

Definition 2.1. A C*-Frobenius algebra in Rep(A) is a triple Q = (H,, pt, 1) where H,, is
an A-module, 1 € Hom 4(H, X Ha, Ha), and ¢ € Hom 4(Ho, H,) satisfying the following
conditions

e (Unit) u(t X 1,) = 14 = p(1g X 1).
* (Associativity+Frobenius relation) The following diagram commutes adjointly.

ulal M 2.1)

Ho K Hy — s H,



If, moreover, ¢ is an isometry (i.e. t*1 = 1p), we say () is normalized.

H, is necessarily dualizable, since we can choose dual object Hz = H, and evaluations
€Vaa = €Vg,q = L L.

Definition 2.2. A (unitary) left ()-module means (#;, u;) where H; is an .A-module, y; €
Hom 4(H, X Hi, Hi), and the following are satisfied:

* (Unit) p;(¢ ¥ 1;) = 1;.

* (Associativity+Frobenius relation) The following diagram commutes adjointly.

Ho B Ho MH: — s W, BH;
/,L].il llti (2'2)
H,R[H; — s

Assuming the unit property and that (2.2) commutes, then it is not hard to check that
(2.2) commutes adjointly if and only if p} = (1, X i;)(coevq o X 1;) where coevg, , = p*t.
Thus, the definition here agrees with the usual one.

Definition 2.3. A (non-local) extension of A denotes (#,, B, ), or simply B, where H, is
an A-module, ¢« € Hom 4(#Ho, H,), and B associates to each I € J a von Neumann algebra

~

B(I) on H, such that the following conditions hold.

(Extension property) For each I = (I, arg;) € J, we have mo ;(A(I)) < B(I).

(Isotony) If I  .J then B(I) < B(J).

(Reeh-Schlieder property) For each I,Qisa cyclic separating vector for B (D).

(Relative locality) For each ITeJ,[B(), 7o, (A(I"))] = 0.

Definition 2.4. If 5 is a non-local extension as above, a (B,.A)-module is (7;, H;) where
H; is a A-module, and 7; associates to each I € J a (normal) representation =, ; of B([)
on H; satistying the following conditions.

« (Extension property) For each I € 7, when acting on .A([),

)

Tl =T, 70 Mgl (2.3)
e (Compatibility) If I = .J then 7, 5l B = Tii

Clearly H, itself is a (B, .A)-module, called the vacuum (5, A)-module.
Remark 2.5. Any (B, .A)-module is automatically relatively local, which means that for
each J € J (without arg value) disjoint from I, [7, 3(B(I)), m; s(A(J))] = 0. To see this,

assume without loss of generality that I and .J are contained in K € J (since A is addi-

tive). Then [, ;(B(D)), 7.1 (A())] = [r, 3 (BID), mixc (AN = 7, i (BA), mac (AWD))])
equals 0 by the relative locality of 5.
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Theorem 2.6. If Q = (Hq, 11, ) is a C*-Frobenius algebra, then (’H ) can be equipped with a
(necessarily unique) extension (Ha, Bg, 1) of A such that for each I € J,

Bo(I) = {pL(& Dl, : € € Ha(D)}. (2:4)
Moreover, B satisfies the following properties:

® The commutant of BQ(T ) is
Bo(D)' = {uR(n, I')n, : 1 € Ha(I')} (2.5)
where I' is the clockwise complement of I.

o If H, is Mobius covariant, then Bg is Mobius covariant, which means that for each g €
PSU(1,1) and I € J, we have

9Bq(I)g™" = Bg(gI). (2.6)

e IfAisa conformal net, then Bg is conformal covariant, which means that (2.6) holds for
eachge 9, andleJ.

Proof. That B, is an extension is due to Thm. 4.7-(a,b,c,d) of [Gui21b]. Formula (2.5) is
due to [Gui2lb, Prop. 4.5]. Note that although in [Gui21b] we only considered Md&bius
covariant modules, the proof of these results do not rely on Mobius covariance. The key
idea is to show for each fixed I that (1) uL(¢, I)|3, commutes adjointly with pR(n, |n,
for all £ € Ho(I) and n € Ho(I') by diagram (2.10) (setting H; = H, and p; = p), and (2)
any operator X (resp. Y) on H, commuting with all R(n, I')|5, (resp. all uL(&,1)|3,)
satisfies X102 € Ho(I) and X = pL(X1Q, 1), (resp. Yid € Ho(I') and Y = pR(Y 19, ).
See [Gui21b, Prop. 4.3, 4.5].

The proof of Mobius or conformal covariance follows from that of the categorical ex-
tension & (see (2.6) and (1.7)) and the fact that the morphism p intertwines the actions of
PSU(1,1) or %.. O

Remark 2.7. Note that the von Neumann algebra Bg(I) is not just generated by all
uL(€, T )|.. It is exactly the set of all such operators. Also, for each X € BQ(f ) and
§eHa(l),

X =pL(¢ Dy, < &= X 2.7)
Indeed, assume the left, then X:Q = pL(&, 1) = p(le KL D = £ Assume the
right, then X and uL(€, I)|3, both send £ to €. So they are equal since 2 is separating

for Bo(I).
From this observation, we see that ) is uniquely determined by B, since  must send
each L(X .9, I)n (where X € Bg(I ) ne Hg) to Xn.

Remark 2.8. Since 7, ;(A(I)) < BQ(I), for each « € A(I), mq 1(x) can be written in the
form puL (&, 1), In fact, as 7, 1(2)Q = 1zt € Ho(I), by (2.7) we have

Ta,1(x) = pL(1xf, D, (2.8)
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We recall the following well known facts about von Neumann algebra representations.

Lemma 2.9. Let G be a set. Let (v5)ses and (ys)ses be collections (labeled by &) of bounded
linear operators on Hilbert spaces H and IC respectively. Let M be the von Neumann algebra on
H generated by {4, z% : s € &}. Suppose that there is a set T of bounded linear maps from H to
IC such that Spanqec(TH) is dense in KC, and that for each s € & and T € T we have

Txgs =ysT, Txi=vy:T.
Then there is a unique (normal) representation m of M on I satisfying m(xs) = ys for each s € &.
Consequently, if z,, = z,,, then we must have y5, = v,,.

Proof. Uniqueness is obvious. As for the existence, let N be the commutant of {y,, y : s €
G}. By Zorn’s lemma, there is a maximal set ¢ of mutually orthogonal projections in N
such that for each e € € there is a partial isometry U, : H — K such that U.U} = e, and
that Uexs = ysUe, Uexk = yiU, for each s € 6. Let £ = ) _.e. We claim that £ = 1.
Then 7(z) = >, .ce UeaU (z € M) is the desired representation.

If E # 1, then there is T' € T such that T := (1 — E)T # 0. Note that the following

diagram commutes adjointly

H 2

— H
T lT1
K25 K

Thus, if we polar-decompose T as 17 = U; Hi where U is the partial isometry, then the
above diagram also commutes adjointly if 7} is replaced by U;. Then the set & u {U,U;'}
is larger than & but satisfies the condition described in the first paragraph. This is a
contradiction. O

The following theorem is the Connes-fusion version of [EP03, Lem. 3.1] and [BKLR15,
Prop. 3.24].

Theorem 2.10. If (H;, u;) is a left Q-module, then the A-module H; can be equipped with a
(necessarily uniquely) (Bg, A)-module structure (H;, m;) such that forall I € J,€ € Hqo(I),

Conversely, if (H;, ;) is a (Bg, A)-module, then the associated A-module H; is equipped with
a (necessarily unique) left Q-module structure (H;, p1;) which gives rise to (H;, m;) via the relation
(2.9).

We divide the proof into two parts.
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Part 1 of the proof. We choose a left @-module (Hi, i) and construct the (Bg, .A)-module
(H;, 7). Choose J € J clockwise to I and 7 € H;(J).

HCL R(%J) Ha Hz 1223 Hl
L, T)l N L, T)l L, f)j
Ho@Hy —2D sy, U BH — 2 U, R H, (2.10)
Hl Nlil Hz‘l
R(n,J) i
,Ha 7 Ha Hz - Hz

By the locality and the functorality of & (as well as (F X G)* = F* [x] G*), together with
the associativity and Frobenius relation for 1;, each of the four small diagrams commutes
adjointly. Thus, the largest diagram commutes adjointly. Note that y; is surjective since
wi(¢®1;) = 1;. Thus, if we choose 7 to be unitary, then p; R(n, J N) : Hq — H,; is surjective.
Therefore, by Lemma 2.9, there is a unique representation m, 7 of Bo (I I) on H, such that
(2.9) holds. The compatibility condition is easy to check.

It remains to check the extension property (2.3) on A(I). Choose any x € A([) and
recall (2.8). Then

7, 7o ma1(x) = m, {(nL(129, D) = wiL (e, 1) |,

~

:/J,Z'<L ]-z)L( I)‘ = L(JJQ, I)"Hl = 7TZ‘7[(.%'>. (211)
]

Part 2 of the proof. We choose a (Bg, A)-module (H;,m;) and define the left @-module

(Hia N’L) ~ ~
Step 1. Let A > 0 be ||u||%, the square operator norm of p. Choose any I € J. Then for
any &1, ...,¢n € H;(I), we have the following Pimsner-Popa inequality

| L6 2w ul@ Dy, |, , < Amar (L6 D) L& Dl )| 212)

for the elements of BQ(T) ® End(CY). Indeed, choose any ¢e = (¢P1,...,9¥N) € Ho ® CN,
then by Lemma 1.3,

N ~
= || Y uL(&, D[

=1

N
HZ él’ le <[ §k7 ) (fl?f)b{a]k’l.w.
=1

(L D* L (& Do, ),

Vo)

(1.16)

=M [0t (L& D * L&, T 10 ] - o).
Apply 7, 7 ® 1¢n to both sides of (2.12) and notice (2.3), we get

[Wz’j(L(fk’f)*“*“[’(él’f)’%a)] < [W”( (& 1)" (él’f)’%)]k,z'

13



By (1.16) again, this is equivalent to
[m,f(ML(fk, IN)’HG)*WZJ(ML(&,T)‘HG)] [ (&, D*L(&, T \H ] (2.13)

Therefore, we have a bounded linear map

7 Ha B H: — Hy

- - (2.14)
L(&a 1)77 = 7Ti7]~(ML(§a I) |7{a)’r’

(V€ € Ho(I),n € H;) with norm < \F = HMH
Step 2. Clearly M7= My 5 when I < J, hence when K < I, J for some K, and hence
for all I, , J. Therefore the map (2.14) is independent of I and hence can be written as -
To see that y; is an A-module homomorphism, we choose any = € A(I), and note
that by (1.15) and the fact that p is an .A-module homomorphism, 1; sends zL(¢, ) m =

L(w¢, )y to

7 f (L@, Dl )n = 7, {1 L(E Dl )n = 7, 1(7a,1 (@) pL(E, D, )
(3)

——mi,r(@)m, {(WL(& Dl = m1(x) s (LE D).

To check that p; satisfies the unit property, note that by the argument in (2.11), we
have

w10 Tar(@) = pi( L) L Dy, mip(2) = L, 1)

Since ™, 7O 7o, 1(1) = m; 1(1) = 1;, we obtain p; (¢ X1 1;) = 1;.

Finally, we check the associativity and the Frobenius relation. Choose any ¢1,& €
Ho(I) and 1 € H;. Then

7 7 (L&, D)7, f (WL (S, D, ) = (€1, DpiL(€2, T
=11 (1a B9 i) (&1, ) L(&2, D

equals

7 7 (WL (&, DL€, Tlao)n = 7, 1(1(1a B ) L(&1, DL (&2, D)0
=7, (R 1) L(L(&1, D2, Dlay) = 7, f(nL(L(Ex, D)o, Tl )1
= L(nL (&, D)éa, Dn = pi(n B 1) LL(E, Déa, Dy

=i (1@ 1) L&, 1) L(&, D)n

where the naturality (1.10) is used many times. Thus, by the density of fusion product,
we must have p; (14 X1 ;) = pi(pX1;).

We now know that in (2.10), the lower right small diagram commutes, and the other
three commute adjointly. Therefore, the largest diagram commutes. Namely, for X =
pL(E, D) n,, we have i R(n) - X = m, #(X) - i R(n). By (2.4), X* = puL(¢',T)]3, for some
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¢ € Ha(I). Therefore pi;R(n) - X* = 7, (X)* - piR(n), which is equivalent to that the
largest diagram of (2.10) commutes adjointly. Therefore, in (2.10), the two paths —1—1
and ——11 from the lower left corner #, to the upper right corner #; are equal. Thus, by
the density of fusion product, the lower right cell must commute adjointly. This proves

the Frobenius relation. O

Let us formulate the above theorem in a more categorical way. Let Rep™(Q) be the
C*-category of left Q-modules. If (#;, 11;) and (H;, ;) are left Q-modules, then

HomIQ(Hi,Hj) = {T € Homy(Hi, H;) : Tpi = pj(1,=T)}.

(It is easy to check that 7" € Homlé(’Hi, H;) < T* e Homlé(’}—[j, H;).) If B is an extension of
A, we let Rep(B, A) be the C*-category of (B, A)-modules such that for (3, .4)-modules
(H;,m;) and (H;, 7;), the space of morphims is

Homp(Hi, Hj) = {T' € Hom(H;, H;) : Tm; 7(X) = 7, 3(X)T for all TeJ,XeB().
It is clear that
Homp(H;, H;) < Homa(Hi, H;).

Main Theorem A. Let Q = (Hq, p1,t) be a C*-Frobenius algebra in Rep(A). For each left
Q-module (H;, pu;), define the corresponding (Bg, A)-module (H;, ;) as in Thm. 2.10. Then for
any objects H;, H; we have HomI@ (Hi, H;) = Homp,, (Hi, H;). Therefore, the s-functor

3 : Rep"(Q) — Rep(Bg, A)
(Hs, i) € Obj(Rep"(Q)) — (Hi, ;) € Obj(Rep(Bg, A)),
Te HomI@(Hi,’Hj) —Te HomBQ ('Hi,’Hj)

is an isomorphism of C*-tensor categories.

~ ~

Proof. Choose any T' € Hom 4(#;, H;). For each X e B(I) written as X = pL(§,1)|x,
where £ € H,(I), we have (for any n € H;)

T, {(X)m =T L(&,I)n

and

~ ~

7 {(X) Ty = (&, DTy = p(La B T)L(E, Dn.

SoT e HomIQ(Hi, H;) iff T' e Homp,, (Hi, H;). O

~

Remark 2.11. The above proof actually shows that if 7" intertwines .A and Bg (/) for some
IeJ, thenT € HomIé(Hi, ;). We conclude

HomI@(Hi,Hj) = Homp, (Hi, H;) = Hom a(H;, Hj) N HomBQ(f) (Hi, H;j). (2.15)

Thus, if H;, H; are both M6bius covariant and dualizable as A-modules, then for each I,as
Hom 4 (H;, Hj) = Hom gy a1y (Hi, Hy) by [GL96, Thm. 2.3], we see that Homp, (H;, H;)

~

is precisely the set of bounded operators intertwining the actions of Bg(I) and A(I").
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We now study the question of when an extension arises from a C*-Frobenius algebra.
We first review some basic facts about finite index extensions of type III factors [Lon89,
Lon90, Kos98, BDH14]. Let N' € M be a pair of von Neumann algebras where N is
a type III factor, and suppose that there is a (normal) faithful conditional expectation
& : M — N. Then & has finite index if and only if there is A > 0 such that for each N > 0
and each X, ..., Xy € M, we have the Pimsner-Popa inequality

[Xle*]k,l < )\[E(Xle*)]k,l (2.16)

for the two elements of M ® End(C"). Note that if the finite index holds for one &, then
it holds for every faithful normal conditional expectation M — N, cf. [Lon89, Prop. 5.4]
and the paragraph thereafter. (See also Rem. 3.9 for a related discussion.) In this case, we
say N/ © M has finite index.

In the following theorem (which is the Connes-fusion version of (a variant of) [LR95,
Thm. 4.9]), H, is not assumed to be Mobius covariant.

Theorem 2.12. Let (H,, B, ) be an extension of A. Then the following are equivalent.
(1) H, is a dualizable object in Rep(A).

(2) For each I € J, consider H, as an A(I) — A(I")°PP bimodule. Then H, is dualizable
in the C*-tensor category of A(I) — A(I')°PP bimodules. Equivalently®, the extension
7o, 1(A(I)) < 7 1(A(L")) has finite index.

(3) ForeachIe J, 7a,1(A)) B(I) is a finite index extension.
(4) B = Bg for some C*-Frobenius algebra Q) = (Hq, i1, t) in Rep(A).
Moreover, the Q) in (4) is unique.

We call any B satisfying one of the above equivalent conditions a (non-local) finite
index extension of A.

Proof. (1)=(2) since Rep(A) is naturally a (non-necessarily full)* C*-tensor subcategory
of the category of A(I) — A(I")°PP bimodules. (2)=(3) is obvious. (4)=>(1) since, as men-
tioned, any object with a C*-Frobenius algebra structure is dualizable. So we only need
to prove (3)=(4). Let us assume (3).

Step 1. Since A is irreducible, by scaling ¢, we may assume ¢ is an isometry. For
each I € 7, by the Reeh-Schlieder property for B, B(f )12 is dense in H,. Moreover,

~

by the relative locality, for each X € B(I), X. intertwines the actions of A(I"). Hence

~

B(I)tQ < Hq(I). Therefore, by the density of fusion product, all L(X:Q)n = R(n)X 2
(where X € B(I),n € Ho(I")) form a dense subspace of H, X Hag.

Note that «.* is the projection of H, onto ¢(#). Thus it determines a faithful normal
conditional expectation & : B(I) — 7q,1(A(I)) satisfying

w* Xu* = EX)u*

3See [Lon90], [LR95, Sec. 2.7], or [BDH14, Sec. 7]
*Note that Rep' (A) is actually a full subcategory, due to [GL96, Thm. 2.3]. But we will not use this fact
here.
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~ ~

for each X € B(I). Note that X = L(X €, I) since both sides intertwine A(I’) and send

Q to XQ. Thus, foreach N > 0and X¢,..., Xy € B(IN), we have
W XE X = oL(X50, 1) * DX, T)e* = 7 1 (L(X e, T)* (X708, 1) |34 ) 10*.
Thus
~ ~ 1.1 ~ ~
Ef(Xp X1) = ma, 1(L( X5, 1)* L(Xye82, 1) [34,) L2 DX D DX, D, (217)
Choose A\ > 0 satisfying (2.16) for each N. Then

(X7 X)), , < AL(Xu, 1)* L(XpQ, 1)

oy (2.18)

for the elements of B(I) ® End(CV). We conclude that there is a unique bounded linear
operator

~

pi: Ho K Ha — Ha, L(XuQ,I)n— Xn (2.19)
for each X € B(I),n € H,.

Step 2. Similar to the proof of Thm. 2.10, 7 is independent of I. So we write it as w. For

~ ~ ~

eachz € A(I), peL(X1Q,1)n = pL(mq 1(x) X, 1)n = 74 1(2) X1 = 7o 1(x)pL(XQ, I)n.
Thus p is an A-module morphism. To check that 1 satisfies the unit property, we choose
any n € H, and compute

1.8) ~ ~
(B L0 = (e 1a)L(Q, Dy = pL(LQ, Ty = 1 = n,

~

and choose any X € B(I) and compute

1, X ngi 1, X)L XLQ,sz,uL XLQ,fLQzXLQ.
M M

For each X, X5 € B(I) and n € H,, X1 X2n equals both

pL(X1 X002, Dy = pL(pL(X10, 1) X900, T)n

~ ~ ~ ~

ZM(,U 1G)L(L(XILQ7 I)X2bga 1)77 = :u(:u 1(1)L(X15Q7 I)L(XQLQa 1)77

and

~ ~ ~ ~

pL (X1, DL (X202, 1)1 = pu(1g X p) L(X 10, I) L( X202, I,
This proves the associativity of ;.. The Frobenius relation can be proved in the same way
as the last paragraph of the proof of Thm. 2.10.
We have constructed a C*-Frobenius algebra () = (Hq, i, ¢). Then Bg (I) consists of all
pL(€, 1) |3, where ¢ € Ho(I). Thus, itis generated by all pL (X2, I) = X where X € B(I).
Therefore B = Bg. Thus the map @ — By is surjective. By Rem. 2.7, it is injective. O

Remark 2.13. In this article, we construct extensions from () using L operators. One can
also use R operators. Then one obtains a finite index extension (H,, B, ¢) where

Bo(D) = {uR(n, D), : n € Ha()}. (2.20)

(Note that Bb(:f " = BQ(f ) by (2.5).) Then similar results as Thm. 2.10, 2.12, and Main
Thm. A hold for such extensions. For instance, the C*-category of right ()-modules is
canonically isomorphic to the C*-category of B,-modules.
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3 Isomorphisms of C*-Frobenius algebras and extensions

Definition 3.1. Let Q* = (H,, %, 1*) and Q° = (Hy, 1b, %) be C*-Frobenius algebras in
Rep(A). A left isomorphism V : Q% — Q° denotes V' € Hom 4(H,, Hp) with bounded
inverse V1 € Hom 4(Hy, H,) satisfying

Vit =P,
V' = (VRV), (3.1)
VA (VEL) = (1R V).

If V is unitary, we say that V' is a unitary isomorphism.

Remark 3.2. It is a routine check that V=1 : Q®° — Q® is a left isomorphism, and that if
W : Q% — Q°is aleft isomorphism, then sois WV : Q% — Q°.

Remark 3.3. Assuming the second equation of (3.1), it is easy to see that the third one of
(3.1) is equivalent to V*V e EndI@(’HQ), namely,

VAV S = p (1, ®V*V). (3.2)

Thus, our definition is in line with [NY18, Def. 2.4].

From this observation, we see that if H,, H; are irreducible ()-modules, then a left
isomorphism V : Q% — Q' is unitary up to scalar multiplication. It is unitary if we
also have (1%)*/* = (:*)*:%. Thus, all left isomorphisms of irreducible normalized C*-
Frobenius algebras are unitary.

More generally, by polar-decomposing V, we see that the positive operators H €
EndI@(HQ) with bounded inverse correspond surjectively to the unitary isomorphism
classes of C*-Frobenius algebras in Rep(.A) that are left isomorphic to Q). The correspon-

dence is given by
H— (Mo, p"(H ' XM 1,), H®). (3.3)

This relation is similar to that between the faithful normal conditional expectations for a
subfactor ' € M and the relative commutant N/ n M (cf. [CD75] or [K0s98, Sec. A.3]).
See Rem. 3.9 for further discussions.

Remark 3.4. It was shown in [NY18, Thm. 2.9] that any C*-Frobenius algebra in a C*-
tensor category is left isomorphic to a standard special C*-Frobenius algebra (i.e., a stan-
dard @)-system). See [NY18] for the meanings of these names.

Definition 3.5. Let (H,, B%,:%) and (H;, B°,(*) be extensions of .A. An isomorphism ¢ :
B* — BY (with respect to A) is a collection of (normal) isomorphisms of von Neumann
algebras

~

py: B(I) = B*(I)

(for all TeJg ) satisfying the compatibility and the extension property as in Def. 2.4
(namely, (Hy, ¢) is a (B%, A)-module, or equivalently, (H,, ¢~ ') isa (B°,.4)-module).
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Such ¢ is called a unitary isomorphism if there is a (necessarily unique) unitary op-
erator V' : H, — H, satisfying

Vit =4, (3.4)
VX = p:(X)V (3.5)

forallT e 7, X e Bo().
Proof. The uniqueness of V' follows from the fact that VX :°Q = ¢3(X ). O

The composition of two isomorphisms is clearly a morphism of extensions. Thus, the
extensions of A form a category whose objects are the isomorphisms.

Lemma 3.6. Let Q%, QP be as in Def. 3.1, and choose V' € Hom 4(H 4, H;) with bounded inverse
satisfying V1® = (0. Set

p = pP(VK1) € Homa(Ha B Hy, Hy). (3.6)
Then V : Q% — QY is a left isomorphism if and only if (Hy, 1V’ is a left Q%-module.
Proof. The unit property of (H;, 1) is automatic. The associativity

p (1@ ") = p¥ (1" B 1)

of (Hp, 1"") means

PP p) VRV EL) = 6 (Ve K1),
By the associativity of u°, this is equivalent to

(VR V)R L) = pb(Vi® ©1).

By applying 1, X1, (b to this relation and using the unit property of u?, we see that the
above relation (and hence the associativity of 1) is equivalent to Vu? = p>(V V).

Set ev, = (17)*u® € Hom 4 (Ha <) Ha, Ho). Then the Frobenius relation of 11" is equiva-
lent to

p = (eva K1) (Lo & (1V)*).
Since 1V = pb (V1) = Vu(1, X1 V1), the above relation means
p(VEL) = (V7 (eva 8 1a) (Lo & (1*)*)(1a B V).

By the Frobenius relation of 1%, we have (ev,[X1,) (14X (1*)*) = p®. So the above relation
is equivalent to

P VEL) = (V) (1.1 V*).

This is equivalent to the third of (3.1). O
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In the following theorem, we let Q¢ = (H,, u%, %), QY = (Hp,pb,ib), etc. be C*-
Frobenius algebras in Rep(A).

Theorem 3.7. The following are true.

(@) IfV : Q* — QP is a left isomorphism of C*-Frobenius algebras, then there is a unique
isomorphism oV : Bga — Bge (with respect to A) satisfying

VX = ol (X)V (3.7)

forallTe J,X e Bge (I). Moreover, V is unitary if and only if oV is so.
(b) IfW : Q¥ — Q° is also a left isomorphism, then V'V = oW o ¢V

(c) If (Hp, B®,17) is an extension of A, and if ¢ : Bga — B is an isomorphism (with respect
to A), then B® = By for a unique C*-Frobenius algebra Q°, and o = ©"" for a unique left
isomorphism V : Q* — Q.

Proof. (a) The uniqueness of ¢V follows from the surjectivity of V. As for the existence,
by Thm. 2.10 (applied to 1"') and Lemma 3.6, we have a (Bge, A)-module (H;, »"") such
that forall I € 7 and € € Hq (1),

oY (UL Dlpe,) = nPL(VE D, (3.8)

Clearly cp}/ (Bga (I)) = Bge (I). Since we have a similar homomorphism @}fl sending each
WL(VET )|, to p*L(E, Dln,, ap}/ must be an isomorphism of von Neumann algebras.
Thus, " is an isomorphism from Bga to Bgs. (3.7) holds since

VL&, Dlp, = p(VRV)LE Dy, = W LVE D) 3, - V.

If V is unitary, then ¢" is clearly so. Conversely, if ¢" is unitary, then there is a unitary
W : H, — H, satisfying W@ = 1> and W(-)W~! = ¢7- Therefore, for each X € BQa(f),
both W and V send X :*Q) to ¢3(X):*Q2. Therefore V = W, and hence V is unitary.

(b) is obvious.

(c) Let ¢ : Bga — B’ be an isomorphism. Since (Hy, ¢) is a (Bge, .A)-module, by Thm.
2.10, we have a left Q*-module (H, i) (Where zi € Hom 4(H, X Hp, Hp)) such that for each
TeJ, e Hal),

(WL D) = AL(E D,
In particular, each Y € Bb(I) is of the form Y = L(¢, I) |74, Set
V =[i(1,6:") € Homa(Ha, Hp)- (39)
Then

Vb = AL(E, NP0 = (1, ® ) L(E, D = VE.
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Thus, V has dense range since Bb(f )22 is dense.

Let us show that V' has bounded inverse. Note that I and V*V have the same null
space. Also, since V*V € End4(#H,) where End 4(H,) is finite-dimensional (as H, is
dualizable), the spectrum of V*V must be a finite set. Thus, if we can show that V*V'
has trivial null space, then VV*V and hence (V*V)% must have bounded inverse. Then by
polar decomposition, V' would have bounded inverse.

Suppose the null space of V*V is non-trivial. Since it is an .A-submodule of H,, it must
contain a non-zero element £ € H,(I). Thus, as V& = 0, we have Yt = 0 where Y =
fiL(€,1)|3,. By the Reeh-Schlieder property for 5%, we have Y = 0. So ¢3(u®L(&, I)|n,) =
0. As oy is faithful, u*L(¢, DNy, =0.S0€ =0 by Rem. 2.7. This is a contradiction. Thus,
we have finished proving that V" has bounded inverse.

~

Now, foreachn e Hyand Y = gL(&, I)|y,,
L(Yd*Q, D)y = L(VE, D)n = (VR 1) L(E, D,

and

~

Yn = pL(& I)n.
Thus we have a bounded map, namely 7i(V ! X1 1,), from H,;, [x] Hy, to H,, sending
LY2Q, I — Y

foreach I € J and Y e B*(I). Thus, as argued in Step 2 of the proof of Thm. 2.12, 1 :=
(V1 1,) defines a C*-Frobenius algebra structure Q° = (H,, u°, (%), and B = Bge. By
(3.9) and the unit property of i, we have V% = i*. As i = u(V [XI1,) equals the 1" in
Lemma 3.6, by that lemma, V' is a left isomorphism from Q“ to Q°b.

Finally, the uniqueness of isomorphisms V : Q¢ — QP satisfying ¢ = " (namely,

~

satisfying VX = p3(X)V for all X € Bga(I)) is due to
VX170 = pp(X)b (3.10)
O
Remark 3.8. In Def. 3.1, if we replace the third relation of (3.1) by
VA (1, V) = p(V* R 1) (3.11)

(this is equivalent to V*V i, = pa(V*V X 1,)), then such V : Q¢ — @ is called a right
isomorphism. In Thm. 3.7, if we replace By, Bg« by B’Qa, 822" (cf. Rem. 2.13) and replace
the left isomorphisms by the right isomorphisms, then the theorem still holds.

Similar to Main Thm. A, we formulate (part of) Thm. 3.7 in terms of isomorphism of
categories. Let Frob™(A) be the category of C*-Frobenius algebras in Rep(.A) whose mor-
phisms are the left isomorphisms. Let Ext?(.A) be the category of finite index extensions
of A whose morphisms are the isomorphisms (with respect to A).

Main Theorem B. The functor & : Frob"(A) — Extd(A) sending each Q to Bg and each left
isomorphism V to ¢V is an isomorphism of categories.
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Remark 3.9. Let us translate the results of these two sections to the language of subfactors
and von Neumann bimodules. We fix a von Neumann factor A together with a faithful
normal state w. We call Hg := L*(N,w) the vacuum N — A bimodule. The element 1 in
L*(N,w) is denoted by ). An abstract extension of A is an inclusion N’ = M (where M
is a von Neumann algebra) such that there exists a faithful normal conditional expectation
& : M — N. (We only assume the existence of £ but do not include it as part of the data
of an abstract extension.) A concrete extension of N is (H,, N < M, ), where M is a von
Neumann algebra containing N, H, is an M — N bimodule, ¢ : Hy — H, is an isometric
homomorphism of N'— A bimodules, and ({2 is cyclic and separating under the left action
of M.

A concrete extension (H,, N < M, ) determines a faithful normal conditional expec-
tation £ : M — m,(N) (Where 7, is the left representation of A" on H,) satisfying

wWXu* =E(X)u”.

We say this extension has finite index if £ has finite index (in the sense of Pimsner-Popa
condition). Conversely, any abstract extension ' = M with a chosen faithful normal con-
ditional expectation £ determines a concrete extension (L*(M,w o £),N' = M, ) where
v is the canonical embedding L?(N,w) — L?(M,w o &). Thus, concrete extensions are
roughly the same as abstract extensions with chosen conditional expectations.

A (resp. finite index) concrete extension of N is analogous to a (resp. finite index) ex-
tension of conformal net A. On each side, a finite index extensions is described uniquely
by a C*-Frobenius algebra Q. The analogous result of Main Thm. A for a concrete exten-
sion (H,, N < M, ) determined by @ (in the C*-tensor category of A" — A/ bimodules) is
the well known fact that the C*-category of left ()-modules is canonically isomorphic to
the C*-category of M — N bimodules.

We may define isomorphisms of concrete extensions (Hq,, N < M* %), (Hp, N <
M®, %) to be the isomorphisms of von Neumann algebras M® — M? that restrict to
the identity map on N. Unitary isomorphisms are those implemented by unitary maps
V : H, — Hp such that Vi® = b, Then the isomorphism classes of concreted exten-
sions are roughly the same as abstract extensions. The analogous result of Thm. 3.7 is the
following;:

@) If (Ha, N © M®,1%), (Hp, N = MP, %) are isomorphic, and if the first concrete ex-
tension is realized by a C*-Frobenius algebra )¢, then the second one is realized by
some Q°.

(b) Left isomorphisms from Q¢ to Qb correspond bijectively to isomorphisms from the
first concrete extension to the second one. A left isomorphism is unitary iff the
corresponding isomorphism of concrete extensions is unitary.

We do not prove these statements in this article. But they can be proved using arguments
similar to those in this article.

In the more familiar subfactor language, (a) says the well known fact that if N' < M
has a finite index faithful normal conditional expectation &1, then any other faithful nor-
mal conditional expectation & : M — N also has finite index (i.e., can be realized by
C*-Frobenius algebras). We have used this result in the proof of Thm. 2.12. But we have
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avoided using this when proving Thm. 3.7. (b) says that two extensions (V' < M% £%)
and (N = MP, &) with the data of finite index faithful normal conditional expectations,
together with an isomorphism of von Neumann algebras M® — M? fixing N\, corre-
sponds to a left isomorphism of C*-Frobenius algebras. If the isomorphism M® — AM?
intertwines £% and £°, then it corresponds to a unitary isomorphism of C*-Frobenius al-
gebras.

In particular, by choosing M® = M? = M and choosing the isomorphism to be 1,
we see that an ordered pair of two finite index faithful normal conditional expectations
(&1,&2) for N = M corresponds to a (non-necessarily unitary) left isomorphism of C*-
Frobenius algebras. Therefore, the study of the faithful normal conditional expectations
for a given abstract finite index extension ' € M can be transformed to that of the left
isomorphisms of C*-Frobenius algebras.

We remark that the relation between concrete extensions and extensions with fixed
conditional expectations is similar to that between Connes fusion and the theory of (su-
perselection) sectors: the former “Schrodinger picture” focuses on representations of von
Neumann algebras on Hilbert spaces, and the latter “Heisenberg picture” focuses on
maps (morphisms and conditional expectations) between von Neumann algebras.

4 An example

In this section, we choose a dualizable A-module H; with dual object #; and A-
module morphisms ev; ; : H; X H; — Ho,ev,; : Hi X H; — Ho satistying the conjugate
equations (1.18). Then we have a net of Jones-Wassermann subfactors I — ; ;(A(I)) <
mi r(A(I"))". This is not an extension in our sense (cf. Def. 2.3). But we shall see that it is
a module of a finite index extension B¢ of A.

Set coev, ; = (ev,;7)* and coev; ; = (ev;;)*. For each § € H;(I), set

S3€ = L(¢, f)*coevﬁﬁ.
Then, as L(¢, T )*coev, ; € Hom a(Ho, Hz), we have Sy € H;(I). We need a special case of
[Gui2lb, Cor. 5.6]:

~ ~

vy, L(SFE, D, = L(E, 1) |, (4.1)

We give a proof here since it is straightforward: we have

ev;  L(S5, Dy, = evy; L(L(&, IN)*coeVMQ, I|x,

=evi; L(E, 1)*(coev, ; B L) L(, D) |, = L&, 1)* (Li R evy ;) (coev, 5 69 14) |,

~

which equals L(&, I)* by the conjugate equations (1.18).
We define a C*-Frobenius algebra Q = (H; X H;, 1, Coevlﬁ) where

p=1Kev;;X1; € Homa(H;XH;XH; X H; HiXH;).
Then (H;, ;) is a left @Q-module where
pi =1;Xev;, € Homa(H; XIH; & Hi, Hi).
Let (H;, m;) be the corresponding (Bg,.A)-module defined by Thm. 2.10.

23



Proposition 4.1. For each IeJ , we have
. 1(Bo() = mip (A(I')).
Therefore, the subfactors m; 1(A(I)) = m; 1r(A(I"))" and 7 (A(1)) = BQ(IN) are iso-
morphic.

Proof. The c is obvious due to the relative locality (cf. Rem. 2.5). Choose any 7' €
mir(A"))'. We claim that T = L(n, DL(&,1)*|3, for some &, 1) € Hi(I). Indeed, choose
any unitary vector § € H;(I) (cf. Lemma 1.4). Since TL(§, I )’Ho : Ho — H; intertwines the
actions of A(I"), n := TL(¢, 1) belongs to #;(I). The relation L(n, )|z, = TL(&, )|,
holds when acting on 2. Thus, it holds when acting on A(I")2 since both sides intertwine
the actions of A(I’). This proves T' = L(n, I)L(¢, I)*|3, by the unitarity of L(¢, T).

Now, by (4.1),

~

T = L(n, Devy ,L(S36, 1), = (1 Eevy ) L(n, DL(S3€, D,
=i L(L(n f) ~€ D)y,

By (2.9), T equals 7, +(X) where X = uL(L(n, IN)SI{, f)|%;{; belongs to Bg (I) (cf. (2.4)).
O

5 Commutative C*-Frobenius algebras and local extensions

In this section, we fix a C*-Frobenius algebra Q) = (Hq, it,¢), and let (H4, Bg) be the
extension of A associated associated to @ = (Hq, 14, ).

Definition 5.1. () is called commutative if 88, , = p. (Recall that 8 is the braid operator.)
It is called irreducible if it is an irreducible left Q-module.

Note that by [NY18, Rem. 2.7], Q is irreducible if and only if dim Hom 4(Ho, H,) = 1
Proposition 5.2. Fix any Iy € J. Then the following are equivalent
(1) Bo(lo) = Bo(I})-
(2) BQ(IN)’ = BQ(f')for every I e J.
(3) Q is commutative.

If any of these holds, we say Bg is a local extension of A. If Bq is local, then Bg (I) depends only
on I but not on the arg function arg;. So we may write Bg (I I) as Bo(I).

Proof. Note that for each n € H;(I"), By o L(n, g, = pRm, 1) |n, by the braiding axiom
(1.6). Also (2)=>(1) is obvious. N

(3)=(2): If pu = iBu,q, then pL(n, )3, = pR(n, )|, By 2.5), pR(n, I')|n, € Bo(I),
and any element of Bg(/ I) is of this form. Thus BQ( " = B().
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(1)=(3): Suppose BQ(T(’)) = BQ(TO)’. For each n € H;(Ij), Y = uL(n,f{))ma is an
element of B(Ip)’, which by (2.5) is of the form pR(no, I})|3, for some 1y € Hi(I}). We
have 7y = 7 since Y1) = pL(n,IN{))LQ = pu(1, X ¢)L(n, f(’))Q = 1 and similarly Y2 = 1.
So uL(n, 1)) |3, = 1Ba.aL(n, 1)) \HQ By the density of fusion product, we get 11 = iq,a.

If By is local, then both Bq(I) and Bg(I” ) Bo(o(—2n)I) are the commutants of
Bo(I I). So they are equal. This proves that By (/ I)is independent of arg;. O

Definition 5. 3 A dyslectic Q-module (H;, ;) is by definition a left Q-module satisfying
williq = ulﬁ . Thus, H; is automatically a Q-bimodule with left action y; and right action

1iBi -
Definition 5.4. When B, is local, a (Bg, A)-module (#;, ;) is called dyslectic if 7, 7 de-

pends only on I but not on arg;. So we may write 7; yas m; ;. A dyslectic (Bg, A)-modules
is simply called a Bp-module, which is in line with the definition of A-modules in Sec. 1.

Proposition 5.5. Let Q) be commutative. Let (H;, u;) be a left Q-module, and let (H,;, ;) be the
corresponding (Bg, A)-module as in Thm. 2.10. Then (H,;, p;) is dyslectic if and only if (H;, m;)
is s0.

Proof. Foreach I € 7, let I} = o(2)I. For each X = puL(&,1)|3, = pL(€1, 1) |3, in Bo(I),
¢ and &; must be equal since both equal X2 by Rem. 2.7. By Lemma 1.5, we have

7 /(X0 = (& Dlrgy 7,5 (X) = 1iBiaBai L(E Tl -
Thus, by the density of fusion product, we have =T 1ff i = 1iBi o Bai- ]

Definition 5.6. We say that B, is a local M6bius extension of A if B is a (local) Mébius
net, and if the representation of PSU(1, 1) on H, extends to that of H,. Similarly, when A
is a conformal net, we say that B is a local conformal extension of A if B is a conformal
net, and if the projective representation of Diff " (S!) on H, extends to that of H,. In either
case, we let {2 be the vacuum vector for Bg.

Since any rigid braided C*-tensor category has a canonical ribbon structure [Miig00],
we have a unitary twist operator 9, € End 4(#,) which commutes with End 4(#,). (Note
that H, is automatically dualizable.) When #, is Mobius covariant, by the conformal
spin-statistics theorem ([GL96, Thm. 3.13], [Jorf3, Sec. 4.1], or [Gui2lb, Thm. 6.8]), ¥

equals the action of p(27) € ﬁgﬁ(l, 1) (the rotation by 27).

Theorem 5.7. Let Q = (Hq,p,t) be a C*-Frobenius algebra in Rep(.A). Then Bg is a local
Mobius extension of A with vacuum vector S2 if and only if the following are true:

(1) H, is a Mobius covariant A-module.
(2) Q is commutative and the twist ¥, = 1,.

Moreover, Bg is irreducible if and only if Q) is irreducible. If A is a conformal net, then (1)
automatically holds, and (2) is equivalent to that B is a local conformal extension.

Note that when () is commutative and irreducible, it is automatic that ¢4, = 1,. See
[CGGH23, Prop. 2.22].
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Proof. H, is automatically a Mobius covariant .A-module if B is a local Mébius extension.
So we may always assume (1) in the rest of the proof. Then by [BCL98, Cor. 4.4] or (in the
case that A is a conformal net) [Wei06], the generator L of the rotation subgroup p has
positive spectrum when acting on H,,. The representation of PSU(1, 1) descends to a true
representation of PSU(1, 1) iff p(27) acts as 1,. Therefore, the equivalence of (2) and that
Bg is a local Mobius resp. conformal extension follows from Prop. 5.2 and the covariance
property of Bg stated in Thm. 2.6. The equivalence of the two irreducible conditions
follows from Main Thm. A. O

We now assume () is commutative and irreducible. Let RepO(Q) be the full C*-
subcategory of Rep™(Q) consisting of dyslectic Q-modules. By considering each object
of Rep’(Q) as Q — Q bimodules, Rep’(Q) becomes naturally a braided C*-tensor cate-
gory: For each dyslectic -modules (#;, (i), (H;, 1;), we choose an dyslectic Q-module
Hi; and a surjective left -module morphisms

pij: HiXIH; — Hij = Hi Xl H; (5.1)

satisfying
pi (s B 15) = a5 (13 B ) (Ba,i 41 15), (5.2)
pi iy = (piBia X 15) (1 X ) = (13 & pg) (piBia) ™ X 1) (5.3)

For instance, we may take H; Xlg H; to be the range of the right hand side of (5.3). The fu-
sion F'Xlg G of dyslectic Q-module morphisms F' : H; — H;, G : H; — Hj is determined

by
pij(FRG) = (F X G)pi;- (5.4)

The unitors of Rep®(Q) are determined by the fact that after identifying the three dyslectic
Q-modules H, Xlg H;i, Hi, Hi Xlg H, using the unitors, then p; equals 11, (as described
in (5.1)) and p;8; , equals p; . The associativity isomorphisms are determined by the fact
that, after suppressing these isomorphisms, for each dyslectic Q-modules #H;, H;, Hy, the
following diagram commutes adjointly

17;>< 7
Hi X Hi XIH,; S Hi < (Hi X Hy)

Nz‘,kljl lﬂi,kj (5-5)

Hik,j

(HiXlg Hi) IH; ——————— HiXlg Hi X H;

where each arrow denotes the corresponding fusion product morphism as in (5.1). See
[Guil9, Sec. 3.2, 3.4], especially (3.10) and (3.11) for the above diagram. Finally, the braid-
ing ng € Homb‘(’Hi Xo Hj, H; X Hi) is determined by

piildi g = Bz%ﬂi,j- (5.6)

Assume now that B := By is an irreducible local Mobius extension of A. Let Rep(B)
be the C*-category of B-modules (i.e., dyslectic (B,.4)-modules), which is a full C*-
subcategory of Rep"(B). Then one can use Connes fusion to make Rep(B) a braided
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C*-tensor category (Rep(13), X, B%) as in Sec. 1 for Rep(A). In particular, this braided
C*-tensor structure is determined by the existence of a categorical extension &5 on the
C*-category Rep(B). We let L, R denote the L and R operators of £Z. As in the pre-
vious sections, we do not write superscripts for the L and R operators of the categorical
extension of A over Rep(.A).

Given a B-module H;, recall that H;(I) = Hom4(#;, Ho)S2. Similarly, we define
HB(I) = Homp(Hi, Ha )12

Lemma 5.8. We have H;(I) = HB(I).

2

Proof. H;(I) o ’HB( ) since Hom 4 (i, Ho) > Homp(Hi, Ha). Now choose any 7 € H;(I).
We have u; R(n, )LQ — (0 ®1)R(n, 1)Q = 1. Moreover, let K be the anticlockwise
complement of .J. Then p;R(n, I)|3, intertwines the actions of B(K) since for each ¢ e
Hao(K),

piR(n, DL (€, K) e, = pil (€, K)ui R, D,
by the diagram (2.10). So n € HF(1). O

By Prop. 5.5, the s-functor § : Rep™(Q) — Rep(B,.A) in Main Thm. A reduces to an
isomorphism of C*-categories § : Rep’(Q) — Rep(B). Moreover:

Main Theorem C. Assume that B := B is an irreducible local Mobius extension of A. Then the
s-functor § can be extended to a braided x-functor (F, ®) : Rep®(Q) — Rep(B) implementing an
isomorphism of braided C*-tensor categories. More precisely: We have an operation ® associating
to any dyslectic Q-modules (equivalently, B-modules) H;, H; a unitary A-module morphism

(I)ZJ : Hi B Hj - /Hi Q 7‘[]' (5-7)
satisfying that for any I € J,¢ € Hi(I),n € H;,

(PjyiRB(ﬁ, IN)TI = Hj,iR(ga )77-

® is natural, namely, for morphisms of dyslectic Q-modules (equivalently, B-modules) F : H; —
Hi, G Hj — Hjr, we have @; ;(F X G) = (F Xlg G)®; ;. Then the unitary equivalence of the
assoczators umtors and braid operators of the two categories are implemented by ®.°

Proof. We identify Rep®(Q) with Rep(B) via § so that they can be viewed as the same
C*-category. By [Gui2la, Thm. 3.10], it suffices to show the existence of a categorical

extension (3, Rep’(Q),Xg, H) over Rep”(Q). For each B-module ;, TeJ,and ¢ e H;(I),
we define the L and R operators acting on each dyslectic #, to be

LOET) = puipL(6,1) : Hy, — Hi Bg Ha,

ROET) = pu i R(E,T) « Hi — Hi K Hi.
T

5The precise statement can be found in [Gui21a] Thm. 3.10-(a,b,c); the [x]and & in that theorem correspond
respectively to the X]z and Xl here.
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We need to check that they satisfy the axioms in the definition of categorical extensions
(cf. Def. 1.1). The locality axiom follows from the adjoint commutativity of the diagram

R(n,J) Pko,j

Hi Hi XIH; Hi X H;
L(&J)l . L(g,f)l L(»;T)l
11'>< ;
M He —D Ly M R H = (M Ko Hy) (5.9)

Ni,kl ui,kljl Ni,ij/

Hi Xl He ) (H; Mo M) [H; ——2— H,; Ko Hy Ko H;
in which € € H;(I),n € H;(J) and J is clockwise to I. In particular, by letting #; or
be H, and noticing that j1,; = i, ptia = 1iia, we see that both LR(¢, f) and RO(¢, I~)
intertwine the actions of B(I"). We now check the other axioms. Isotony is obvious.

Functoriality: For any G € Homp(H;,H;) and & € H;(),n € H; (1; Xg
G)uiij(g,f)n = pi;(1; X G)L(E, I~)77 = umL(f,f)Gn. A similar relation holds for the
RY operators.

State-field correspondence: i o L(¢, IN)LQ = uiB; o L(E, T)LQ = u;R(&, T)LQ = ;L
1,)R(E, IN)Q = ¢, and similarly p,; R(€, IN)LQ =£.

Density of fusion products: Because 1i; ; is surjective.

Braiding: B,41i,L(&, )n = piBi s L(&, ) = pjaR(E, ). O

Remark 5.9. In Main Thm. C, it is clear that a dyslectic ()-module #; is dualizable in
Rep(B) iff it is dualizable in Rep’(Q). Using induced representations, it is easy to see
that the latter is equivalent to that 7{; is dualizable in Rep(.A). (See for instance [KO02],
[NY16], or [Guil9, Thm. 3.18].) Therefore, the braided -functor (§, ®) in Main Thm. C
restricts to an isomorphism of braided C*-tensor categories

(3,®) : Rep”!(Q) = Rep?(B)

where Repo’d(Q) is category of all dyslectic Q-modules #; that are dualizable as A-
modules, and Rep?(B) is the category of all dualizable B-modules. Moreover, from
(1.19) and the construction of (B,.4)-modules from left Q-modules, we see that H; €
Obj(Rep’(Q)) is Mébius covariant as an A-module if and only if it is so as a B-module.
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