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Preface to the second edition

Sections 11, 12, and 13 have been added to this monograph. Together with
these sections, this monograph fulfills the task of giving a complete introduc-
tion to the “prehistory” of von Neumann algebras, namely, von Neumann’s solo
works on von Neumann algebras prior to his celebrated series of joint papers with
Murray under the title on rings of operators beginning in 1936.

The 1929 paper [vNeu29], in which von Neumann algebras were first intro-
duced, clearly indicates that one of the early goals of studying von Neumann
algebras is to understand the spectral theory for unbounded operators, or more
precisely, unbounded normal operators. Two deep results about von Neumann
algebras were proved in [vNeu32]. The first one is the bicommutant theorem for
von Neumann algebras (Thm. 6.12 and 6.14), which was used in the same pa-
per to define and study unbounded normal operators. It should be stressed that
unbounded normal operators were initially defined using abelian von Neumann
algebras, not using the condition T ˚T “ TT ˚. Indeed, the correct definition of
adjoint closed operators (together with the proof of the polar decomposition for
closed operators) was discovered in [vNeu32], three years after the publication of
[vNeu29].

The second one is the fact that any abelian von Neumann algebra on a separa-
ble Hilbert space is generated by a single bounded self-adjoint operator, cf. Thm.
13.9. Applications of this result were first given in [vNeu31], the second funda-
mental paper on von Neumann algebras. This paper proved that the von Neu-
mann algebra generated by a collection of mutually commuting bounded self-
adjoint operators pTαqαPA is equal to the set of bounded Borel functional calculi of
pTαqαPA, cf. Thm. 13.8 for the case that pTαq is a finite collection (but not necessarily
bounded). Combining these two theorems together, [vNeu31] proved that these
pTαq are the Borel functional calculi of a common bounded self-adjoint operator
H , and that H is also a Borel functional calculus of pTαq. This is the main result of
[vNeu31].

Although von Neumann didn’t mention why he was interested in this result,
I conjecture that one of his motivations was to prove the theorem that any normal
operator T can be written as T “ fpHq where f : R Ñ C is Borel and H is self-
adjoint, cf. Cor. 13.10. The importance of this theorem should be understood
in view of quantum mechanics, since fpHq seems to be one of the most natural
ways that normal operators appear in quantum mechanics. Mathematically, this
theorem is interesting because of the following reasons:

• The statement of this theorem does not rely on von Neumann algebras.
However, the proof of this theorem does.

• This theorem no longer holds if f is only assumed to be continuous or semi-
continuous; Borel functions are necessary. Therefore, the study of this theo-
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rem improved the understanding of measure theory at that time. In partic-
ular, [vNeu31] gave a proof of the completeness of L2-spaces for Lebesgue-
Stietjes measures, generalizing the L2-completeness of Lebesgue measures
proved by Riesz and Fischer in 1907.

Thus, a proper understanding of von Neumann algebras cannot be separated
from the spectral theory of unbounded normal operators. In the three new sec-
tions of this monograph, we prove all the results mentioned above, except that
we restrict ourselves to the case that pTαqαPA is a finite collection of strongly com-
muting normal closed operators. The generalization to infinite collections follows
from a similar idea, although the proof is more technical since one has to deal
with Borel functions on an infinite product of C.

The proofs of these results (in Sec. 13) give us a good excuse to introduce the
notion of normal representations of von Neumann algebras. Although normal
representations were not explicitly mentioned in [vNeu29, vNeu31], some of its
vague ideas already appeared in [vNeu31]. Therefore, we take this opportunity
to give a systematic account of the basic facts about normal representations in Sec.
11 and 12.

Our treatment of normal representations differs from most books on von Neu-
mann algebras in that we do not study normal states first and then use it as an
intermediate tool for studying normal representations. Instead, we study normal
representations directly. The main result is the equivalence of two types of defini-
tions of normal representations (cf. Thm. 12.13): The first one is extrinsic and uses
the central supports of projections. The second type is intrinsic, calling a represen-
tation normal if it is continuous with respect to the σ-strong*/σ-strong/σ-weak
topology. That these three topologies make no difference for the definition of nor-
mal representations is an interesting fact, reminding one of the definition of von
Neumann algebras using various topologies. Indeed, the bicommutant theorem
also says that the extrinsic definition of von Neumann algebras (in terms of com-
mutant) equals the intrinsic ones. This is no coincidence, since we will use the
bicommutant theorem to prove the equivalence of the these definitions of normal
representations.

Kaplansky’s density theorem roughly says that in von Neumann algebras, any
approximation to a bounded operator can be replaced by another one whose
operator norms are uniformly bounded, cf. Thm. 12.17. We use this re-
sult to give another characterization of normal representations: a representa-
tion of a von Neumann algebra M is normal iff it is σ-strongly*/σ-strongly/σ-
weakly/strongly*/strongly/weakly continous when restricted to the closed unit
ball of M, cf. Thm. 12.18.

We hope that our presentation clarifies the mystery behind the equivalence of
various definitions of normal representations, as well as their relationship with
the bicommutant theorem and Kaplansky’s density theorem.
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Preface to the first edition

The goal of this monograph is to give a detailed and self-contained account of
the spectral theory for strongly commuting normal closed operators on a Hilbert
space H, and their (bounded and unbounded) Borel functional calculus. We
assume the readers are familiar with general topology (as in [Mun]), measure
theory and basic Hilbert space theory (as in [Rud-R]), and basic properties of
bounded linear operators between Hilbert spaces (recalled in Section 1). No pre-
vious knowledge on the general theory of Banach spaces or locally convex spaces
is assumed.

Our approach in this monograph has the following features:
The crucial step in the proof of spectral theorem for adjointly commuting nor-

mal bounded operators is to establish an inequality for polynomial functional
calculus as in Prop. 2.1. Unlike many approaches, ours relies neither on Gelfand-
Naimark theorem nor on Gelfand’s formula supt|λ| : λ P SppT qu “ limnÑ8∥T n∥1{n

for a bounded operator T . Instead, we prove it by establishing the algebraic prop-
erties of holomorphic functional calculus; see Thm. 2.6. We in turn give a new
proof of Gelfand-Naimark theorem; see exercise 2.18.

Before introducing the theory of unbounded closed operators, we first estab-
lish the spectral theory for unbounded positive operators, i.e., those unbounded
T on H satisfying that xTξ|ξy ě 0 for each ξ P H and that 1`T is surjective. This is
easy, since we have spectral theorem for the bounded positive operator p1`T q´1.

Our treatment of the general theory of closed and closable operators rely on
polar decomposition (Thm. 5.5), which factors a closed operator as the product of
a partial isometry and a positive operator. Thus, the spectral theory for strongly
commuting normal closed operators follows from that for adjoint commuting par-
tial isometries and bounded positive operators, which are established in Section
2. Our preference for the method of polar decomposition is due to the fact that
it is also an important tool in the study of non-normal closed operators, or more
generally, non-abelian von Neumann algebras.

We give in this monograph an introduction to the strong commutativity of un-
bounded closed operators, not assuming they are normal. (Indeed, normality can
be understood using strong commutativity; see Def. 7.1). von Neumann algebras
appear naturally in the study of strong commutativity. See Section 7. On the other
hand, we introduce von Neumann algebras mainly to understand strong commu-
tativity. Unlike [Kad], von Neumann algebras are not widely used in our proofs
of spectral theorem and Borel functional calculus. The readers who are not inter-
ested in von Neumann algebras can skip the sections on strong commutativity,
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and read the proof of spectral theorem (Thm. 7.3) by assuming there is only one
normal operator T .

We present spectral theorem in the “multiplication form”: that is, strongly
commuting normal closed operators T1, . . . , TN are simultaneously unitar-
ily equivalent to the multiplication of the coordinate functions z1, . . . , zN on
À

nPN L
2pCN , µnq, where tµnunPN is a collection (indexed by a non-necessarily fi-

nite or countable set N) of positive finite (necessarily Radon) Borel measure on
CN . This is in the same spirit as [RS], but slightly more general. Spectral theo-
rem in the “resolution of the identity” form follows easily from the multiplication
form.

As one can see in Sections 6 and 8, relations like A2T Ă TA1 (where T is an
unbounded (pre)closed operator from H1 to H2 (with dense domain), A1, A2 are
bounded linear operators on H1,H2 respectively) have important analytic conse-
quences.

Our presentation of spectral theory is influenced by [Kad, RS, Rud-F]. These
texts focus mainly on single normal operators rather than several strongly
commuting ones (especially when treating unbounded operators). Besides the
present monograph, we also recommend [Sch] for a text on spectral theory which
treats several unbounded operators.

September 2021
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1 Preliminaries

We set N “ t0, 1, 2, 3, . . . u, Z` “ t1, 2, 3, . . . u.

Nets

A directed set A is a set equipped with a binary relation ď which is reflexive
(α ď α for all α P A), transitive (for each α, β, γ P A, if α ď β and β ď γ then
α ď γ), and satisfies that for any α, β P A, there is γ P A such that α, β ď γ.

A net of elements in a set X is a function from A to X , written as pxαqαPA or
simply x‚. Assume X is a topological space. Then for each x P X , we write

lim
α
xα “ x, (1.1)

or simply limx‚ “ x, if for each neighborhood U of x there is α P A such that
xβ P U for all β ě α. A map f : X Ñ Y (where X and Y are topological spaces) is
continuous at x P X if and only if for each net x‚ converging to x, fpx‚q converges
to fpxq. For the ”if” part, one suffices to choose the directed set A to be the set of
neighborhoods containing x with ď being Ą.

If x‚ is a net in a Hausdorff space X , then any two limits of x‚ are equal.
If Ω is a subset of a topological space X , then the closure of Ω is the set of all

x P X such that there is net x‚ P X converging to x. When X is first countable,
nets can be replaced by sequences.

We refer the readers to [Mun, Chapter 3] for more about nets.

Hilbers spaces and bounded operators

The sesquilinear form on a Hilbert space will be denoted by x¨|¨y, where the
left bracket is linear and the right one antilinear.

Given Hilbert spaces H1,H2, we let HompH1,H2q denote the space of bounded
linear maps from H1 to H2. HompH,Hq is denoted by EndpHq.

HompH1,H2q is a Banach space equipped with the operator norm ∥T∥“

sup0‰ξPH
∥Tξ∥
∥ξ∥ “ sup0‰ξ,ηPH

xTξ|ηy

∥ξ∥∥η∥ . If S P HompH2,H3q, then ∥ST∥ď ∥S∥∥T∥.
The adjoint T ˚ of T is in HompH2,H1q and defined by xTξ|ηy “ xξ|T ˚ηy for

each ξ, η P H. (I.e., T ˚η is the unique vector corresponding to the bounded linear
functional ξ ÞÑ xTξ|ηy, whose existence is guaranteed by Riesz representation
theorem.) It is clear that ∥T ˚∥“ ∥T∥. We also have the C˚-property

∥T ˚T∥“ ∥T∥2. (1.2)

Indeed, ď follows from the above general inequality for ∥ST∥. And ∥T∥2“
supξ‰0∥Tξ∥2{∥ξ∥2“ supξ‰0xT ˚Tξ|ξy{∥ξ∥2ď ∥T ˚T∥.
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The kernel and the range of T P HompH1,H2q are denoted respectively by
KerpT q and RngpT q. We have

RngpT q
K

“ KerpT ˚
q. (1.3)

Indeed, ξ K RngpT q iff 0 “ xξ|Tηy “ xT ˚ξ|ηy for each η, iff T ˚ξ “ 0.
T P EndpHq is called normal resp. self-adjoint resp. positive if T ˚T “ TT ˚

resp. T “ T ˚ (equivalently, xTξ|ξy P R for each ξ P H) resp. xTξ|ξy ě 0 for each
ξ P H.

The strong (resp. weak) operator topology of HompH1,H2q is the one gener-
ated by tT : ∥pT ´ T0qξ1∥ă ϵ, . . . , ∥pT ´ T0qξN∥ă ϵu (resp. tT : |xpT ´ T0qξ1|η1y| ă

ϵ, . . . , |xpT ´ T0qξN |ηNy| ă ϵu) for some N P N, T0 P HompH1,H2q, ϵ ą 0,
ξ1, . . . , ξN P H1, η1, . . . , ηN P H2. A net T‚ in HompT1, T2q is said to converge
strongly (resp. weakly) to T , if and only if they converge in the strong (resp.
weak) topology, if and only if limT‚ξ “ Tξ (resp. limxT‚ξ|ηy “ xTξ|ηy) for each
ξ P H1, η P H2. If ∥T‚∥ď M uniformly for some M ą 0, then it suffices to verify
the limit for ξ, η in dense subspaces of H1,H2 respectively.

If pHnqnPN is a collection of Hilbert spaces indexed by a (non-necessarily count-
able) set N, then

À

nPN Hn denotes elements of the form pξnqnPN where each
ξn P Hn, and

ř

nPN∥ξn∥2ă `8. This is a Hilbert space, called the direct sum
of pHnqnPN. The vector space structure is defined componentwisely. The inner
product between pξnqnPN and pηnqnPN is

ř

nPNxξn|ηny.
The Hahn-Banach separation theorem for H says that if C is a convex subset

of H (i.e. ξ, η P C implies aξ ` bη P C for each a, b ě 0, a ` b “ 1), and if there is
a net of vectors tξαuαPA in C converging weakly to ξ (i.e. xξα|ψy Ñ xξ|ψy for each
ψ P H), then ξ is in the (strong) closure C of C (which is also convex).1

Projections and partial isometries

A projection E on a Hilbert space H is a bounded linear map which fixes
vectors on a closed subspace H0 of H, and maps all vectors in HK

0 to 0. Then
RngpEq “ H0. We say E is projection of H onto H0. Then 1 ´ E is the projection
of H onto HK

0 .
Equivalently, a projection E is a bounded linear operator satisfying E˚ “ E

and E2 “ E. It fixes vectors in RngpEq and acts trivially on RngpEqK.
The range of a projection E is necessarily closed, and we have KerpEq “

RngpEqK.
1Here is one way to see this without appeal to the general Hahn-Banach theorem for locally

convex spaces. Assume for simplicity that ξ “ 0. Note that C has a vector ψ such that ∥ψ∥“

infηPC∥η∥ ([Rud-R, Thm. 4.10]). Consider HR as the real Hilbert space H with inner product
x¨|¨yR :“ Rex¨|¨y. Then for each α, we have xξα|ψyR ě ∥ψ∥2; otherwise, by looking at the (at most
two dimensional) real subspace spanned by ξα and ψ, we see that there must be a vector on the
line segment between ξα and ψ (and hence inside C) whose length is ă ∥ψ∥, impossible. Since
limxξ‚|ψyR “ 0, we must have ∥ψ∥2“ 0 and hence 0 “ ψ P C.
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A net E‚ of projections on H is called increasing if α ď β implies RngpEαq Ă

RngpEβq, or equivalently, Eα “ EαEβ .

Proposition 1.1. An increasing net of projections pEαqαPA on H always converge
strongly. If H0 “

Ť

RngpE‚q, then E‚ converges strongly to the projection E onto
H0.

Proof. E‚ξ “ 0 “ Eξ when ξ K H0. Now assume ξ P H0. For each n P Z`, suppose
we have found α1, ¨ ¨ ¨ , αn´1 P A such that ∥ξ ´Eαj

ξ∥ď 1{j for each 1 ď j ď n´ 1.
Since RngpE‚q is increasing and has union dense in H0, we can find αn P A and a
vector ηn P RngpEαnq such that ∥ξ´ηn∥ă 1{n. Since the smallest distance between
ξ and a vector in RngpEαnq is ∥ξ ´ Eαnξ∥, we conclude ∥ξ ´ Eαnξ∥ă 1{n.

Now that the sequence αn is constructed, for each n P Z`, we have ∥ξ´Eβξ∥ă

1{n for every β ě αn, again by the fact that E‚ is increasing. So E‚ξ Ñ ξ “ Eξ.
This finishes the proof.

A unitary operator/map U from H1 to H2 is by definition a bounded linear
map which is bijective and preserves inner products (xUξ|Uηy “ xξ|ηy for each
ξ, η P H), equivalently, preserves the norms (∥Uξ∥“ ∥ξ∥ for each ξ P H). Equiv-
alently, U P HompH1,H2q satisfies U˚U “ 1H1 , UU

˚ “ 1H2 . U˚ is a unitary map
from H2 to H1. A unitary U : H1 Ñ H2 is an equivalence of the two Hilbert spaces.

A partial isometry U from a Hilbert space H1 to another H2 is by definition a
bounded linear operator, which restricts to a unitary map

U : ςpUq
»
ÝÑ τpUq

from a closed subspace ςpUq of H1 to a (necessarily closed) subspace τpUq of H2,
and which is zero when acting on ςpUqK. We say ςpUq is the source space of U ,
and τpUq the target space of U . Note that RngpUq “ τpUq. U˚ is a partial isometry
with source space ςpU˚q “ τpUq and target space τpU˚q “ ςpUq, U˚ restricts to a
unitary map

U˚ : τpUq
»
ÝÑ ςpUq

which is the inverse of the above restriction of U .
U˚U is the projection of H1 onto ςpUq, and UU˚ is the projection of H2 onto

τpUq. (As a consequence, we have U “ UU˚U and U˚ “ U˚UU˚.)
Equivalently, a partial isometry U : H1 Ñ H2 is defined to be a bounded

operator such that both U˚U and UU˚ are projections. Then U˚U is the projection
of H1 onto ςpUq, and UU˚ is the projection of H2 onto τpUq.

We leave it to the readers to check the equivalence of definitions.
A partial isometry U : H1 Ñ H2 whose source space is H1 is called an isome-

try.
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Borel measures

A positive measure µ on a locally compact Hausdorff space X is called Radon
measure when: (local finiteness)µ is finite on compact subsets; (outer regularity)
for each Borel set E Ă X , µpEq “ inftµpUq : E Ă U,U is openu; (inner regularity
on open sets) if U Ă X is open, then µpUq “ suptµpKq : K Ă U,K is compactu.

The Riesz-Markov representation theorem [Rud-R, Thm.2.14] says that any
positive linear functional onCcpXq (the algebra of continuous functions onX with
compact supports) can be written as f ÞÑ

ş

X
fdµ for a unique Radon measure µ

on X .
All measures are positive unless otherwise stated (that it is a complex mea-

sure). A complex Radon measure is by definition a finite C-linear combination of
finite Radon measures.

In this note, we only consider locally compact Hausdorff spaces X which are
also second countable. (The only exception is the proof of Gelfand-Naimark Theo-
rem, which is not used elsewhere in the note.) Then local finiteness implies inner
and outer regularity [Rud-R, Thm. 2.18]. Thus, locally finite (in particular, finite)
positive Borel measures on X are automatically Radon measures.

Suppose ϕ : X Ñ Y is a Borel map between two measure spaces X, Y . If µ is a
Borel measure on X , its pushforward ϕ˚µ is defined by

ϕ˚µpΩq “ µpϕ´1
pΩqq

for each measurable Ω Ă Y . Then for each measurable f : Y Ñ r0,`8s we have
ż

Y

f dϕ˚µ “

ż

X

f ˝ ϕ dµ. (1.4)

Indeed, this is obvious when f is a characteristic function χΩ, and hence true when
f is a simple function. So it is true in general by monotone convergence theorem.

If ϕ : X Ñ Y is Borel and bijective and if ϕ´1 : Y Ñ X is measurable, for each
Borel measure ν on Y , the pullback measure ϕ˚ν is defined by ϕ˚ν “ pϕ´1q˚ν.
Then for each measurable f : Y Ñ r0,`8s we have

ż

Y

fdν “

ż

X

pf ˝ ϕqdϕ˚ν (1.5)

The support of a Borel measure µ on a topological space is the (necessarily
closed) subset of all points x such that any neighborhood at x has non-zero mea-
sure.

2 Spectral theory for adjointly commuting normal
bounded operators

Fix a Hilbert space H. Choose adjointly commuting normal operators
T1, . . . , TN P EndpHq. This meas that TiTj “ TjTi and T ˚

i Tj “ TjT
˚
i for each
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i, j. Set ℜpT q “ pT ` T ˚q{2 and ℑpT q “ pT ´ T ˚q{2i for each T P EndpHq.
Then ℜpT1q, . . . ,ℜpTNq,ℑpT1q, . . . ,ℑpTNq are (adjointly) commuting self-adjoint
operators. Moreover, a polynomial of T‚, T

˚
‚ is equivalently a polynomial of

ℜpT‚q,ℑpT‚q.
Let PN denote the set of polynomials with complex coefficients and mutu-

ally commuting and independent formal variables z1, . . . , zN , z1, . . . , zN . Thus, a
generic element is a finite sum of elments of the form azm1

1 ¨ ¨ ¨ zmN
N ¨ zn1

1 ¨ ¨ ¨ znN
N

where a P C and m1, . . . ,mN , n1, . . . , nN P N. Multiplications of PN are defined as
multiplications of polynomials. Moreover, there is an involution ˚ (i.e., an anti-
linear2 satisfying f˚˚ “ f ) such that

pazm1
1 ¨ ¨ ¨ zmN

N ¨ zn1
1 ¨ ¨ ¨ znN

N q
˚

“ a ¨ zm1
1 ¨ ¨ ¨ zmN

N ¨ zn1
1 ¨ ¨ ¨ znN

N .

In this way, PN becomes a ˚-algebra.
By changing variables zj “ xj ` iyj, zj “ xj ´ iyj , elements f of PN are equiv-

alently polynomials f
:

of x‚, y‚, related by

f
:

px1, y1, . . . , xN , yNq “ fpx1 ` iy1, x1 ´ iy1, . . . , xN ` iyN , xN ´ iyNq,

fpz1, z1, . . . , zN , zNq “ f
:

pℜpz1q,ℑpz1q, . . . ,ℜpzNq,ℑpzNqq

where ℜpzjq “ pzj ` zjq{2,ℑpzjq “ pzj ´ zjq{p2iq. We have x˚
j “ xj, y

˚
j “ yj .

Note that EndpHq is also a ˚-algebra whose involution ˚ is given by the ad-
joint of operators. We have a unique unital ˚-homomorphism π : PN Ñ EndpHq

defined by

πpzjq “ Tj (2.1)

for each j. Equivalently,

πpxjq “ ℜpTjq, πpyjq “ ℑpTjq.

By (unital) ˚-homomorphism, we mean

πp1q “ 1, πpfgq “ πpfqπpgq, πpf˚
q “ πpfq

˚ (2.2)

for each f, g P PN .
We know that in Linear algebra, polynomial rings play an important role in the

study of spectral theory/Jordan decomposition. In the infinite-dimensional case,
polynomial rings (or more precisely, polynomial ˚-algebras) are not sufficient. We
need to consider CpXq , the ˚-algebra of continous functions on a compact Haus-
dorff space X . It’s ˚-structure is given by f˚pxq “ fpxq for each f P CpXq, x P X .

2An antilinear map T between two C-vector spaces V and W is a map satisfying T pau` bvq “

aTu` bTV for each a, b P C, u, v P V .
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¨ stands for the complex conjugate. Moreover, CpXq is equipped with the norm
topology L8pXq.

The first question in spectral theory is: what is an appropriate X? To answer
this question, we need the following crucial result. For each r ą 0, set

Br “ r´r, rs2 (2.3)

regarded as a subset of C.

Proposition 2.1. Let rj be ∥Tj∥, the operator norm of Tj . Then for each f P PN ,

∥πpfq∥ď sup
xj ,yjPr´rj ,rjs

|f
:

px1, y1, . . . , xN , yNq|. (2.4)

Let

X “ Br1 ˆ ¨ ¨ ¨ ˆ BrN .

Theorem 2.2. There is a unique continuous (unital) ˚-homomorphism π : CpXq Ñ

EndpHq satisfying that for each j, πpzjq “ Tj, πpzjq “ T ˚
j . (Equivalently, πpxjq “

ℜpTjq, πpyjq “ ℑpTjq.)

Proof. For each f P PN , f
:

can be regarded as a continuous function of the variables

x1, y1, . . . , xN , yN . So f
:

P CpXq. Moreover, f
:

as a polynomial is determined by f
:

as a function (since all the coefficients of the polynomial can be calculated by the
values of the multi partial derivatives of f

:
). Thus, PN is identified with a unital

˚-subalgebra of CpXq by identifying f P PN with f
:

P CpXq.

By Stone-Weierstrass theorem, PN is dense in CpXq. Moreover, by Prop. 2.1,
the π defined on PN is continuous with respect to the norm of CpXq. Therefore, π
can be extended uniquely to a continuous unital ˚-homomorphism from CpXq to
EndpHq.

To prepare for the proof of Prop. 2.1, let us consider a slightly different ˚-
algebra QN “ Crt1, . . . , tN s of polynomials of t1, . . . , tN , and the involution ˚ is
defined by t˚j “ tj for each j.

Lemma 2.3. Suppose that for every N P Z` and every self-adjoint bounded operators
H1, . . . , HN on H, the unique unital ˚-homomorphism φ : QN Ñ EndpHq defined by
φpHjq “ tj for every 1 ď j ď N satisfies (by setting rj “ ∥Hj∥)

∥φpfq∥ď sup
tjPr´rj ,rjs

|fpt1, . . . , tNq| (2.5)

for every f P QN . Then Prop. 2.1 is true.
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Proof. Let us assume the condition in this theorem. Choose any f P PN . Let
T1, . . . , TN be adjointly commuting normal bounded operators, and let Hj “

ℜpTjq, Kj “ ℑpTjq. Let φ : Q2N Ñ EndpHq be the unique unital ˚-
homomorphism sending each Hj to t2j´1 and Kj to t2j . Consider the polynomial
f
:

px1, y1, . . . , xN , yNq as an element of Q2N by identifying xj “ t2j´1, yj “ t2j . Then

φpf
:

q “ πpfq for all f P PN since this is true when f “ x1, y1, . . . , xN , yN .

Let rj “ ∥Tj∥. Then ∥Hj∥, ∥Kj∥ď rj . By (2.5), we have

∥πpfq∥“ ∥φpf
:

q∥ď sup
xj ,yjPr´rj ,rjs

|f
:

px1, y1 . . . , xN , yNq|.

The crucial step of proving Prop. 2.1 is to extend the φ in Lemma 2.3 to a
unital ˚-homomorphism from a larger class A of functions, where A contains QN

and the positive “square root” (defined in a proper sense) of any r2 ´ f˚f where
f P QN and r ą ∥f∥L8pXq. As we see below, A is the set of analytic functions
defined near X .

Holomorphic functional calculus

Let T P EndpHq. Define the spectrum

SppT q “ tλ P C : λ ´ T is not invertibleu. (2.6)

Note the following easy fact:

Proposition 2.4. Let r “ ∥T∥. Then SppT q Ă tλ P C : |λ| ď ru. Moreover, if T is
self-adjoint, then SppT q Ă r´r, rs.

Proof. If |λ| ą r “ ∥T∥, then λ ´ T has inverse

`8
ÿ

n“0

λ´n´1T nj . (2.7)

Now assume T “ T ˚. We shall show that λ´T is invertible when ℑpλq ‰ 0. By
scalar multiplication and replacing T by T ` a (where a P R), it suffices to show
that S :“ i ´ T is invertible. By T “ T ˚, we have xSξ|Sηy “ xξ|ηy ` xTξ|Tηy and
hence ∥Sξ∥2“ ∥ξ∥2`∥Tξ∥2ě ∥ξ∥2. So S is injective (and similarly S˚ “ ´i ´ T is
injective), and its inverse S´1 : RngpSq Ñ H is continuous. To finish the proof, we
shall show that RngpSq “ H.

If Sξn is a Cauchy sequence, then so is ξn, which converges to some ξ P H. So
Sξn Ñ Sξ. This shows that RngpSq is complete, equivalently, a closed subspace
of H. Thus, it remains to show that RngpSq is dense in H. This follows because
RngpSqK “ KerpS˚q (by (1.3)) and S˚ is injective.

12



Lemma 2.5. Let O be an open subset of C disjoint from SppT q. Then the map z P O ÞÑ

pz ´ T q´1 is holomorphic (in the sense of Sec. A).

Proof. Note first of all that if T is invertible and a P C satisfies |a|∥T´1∥ă 1
2
, then

ř

nPNp´aqnT´n´1 converges since ∥T´n´1∥ď ∥T´1∥n`1, and the limit is clearly the
inverse of a`T . It is easy to check, using the infinite sum expression for pa`T q´1,
that

∥pa ` T q
´1∥ď 2∥T´1∥.

Now, assume z P O so that z ´ T is invertible. Using the above inequality, we
see that for any h such that z`h P O, the operator pz`h´T q´1 ´ pz´T q´1, which
clearly equals ´hpz ´ T q´1pz ` h ´ T q´1, has norm bounded by

|h|∥pz ´ T q
´1∥∥ph ` z ´ T q

´1∥ď 2|h|∥pz ´ T q
´1∥2

whenever |h|∥pz ´ T q´1∥ă 1{2. This shows that the map z P O ÞÑ pz ´ T q´1 is
continuous.

Finally, we compute the derivative: as h Ñ 0,

pz ` h ´ T q´1 ´ pz ´ T q´1

h
“ ´pz ´ T q

´1
pz ` h ´ T q

´1

converges to ´pz ´ T q´2 by the continuity proved in the previous paragraph.

We now let H1, . . . , HN be self-adjoint operators on H with operator norms
r1, . . . , rN . Let

Y “ r´r1, r1s ˆ ¨ ¨ ¨ ˆ r´rN , rN s

Let A be the set of complex analytic functions fpt1, . . . , tNq analytic on a connected
neighborhood of pt1, . . . , tNq P Y . (Thus, here we understand t‚ as complex vari-
ables. By saying that f is analytic, we mean that it is continous as a multi-variable
functions, and that it is holomorphic on each variable.) A is a ˚-algebra, whose
involution ˚ is defined by.

f˚
pt1, . . . , tNq “ fpt1, . . . , tNq.

(Note that f˚ is holomorphic, cf. Prop. A.1.) In this way, QN can be identified
naturally as a unital ˚-subalgebra of A. Note that any f P A is determined by its
values on Y . This is due to the fact that any single-valued holomorphic function
on a connected open subset of C is determined by its values on a line segment in-
side this open subset; our case of multi-variable functions follows from induction
on the number of variables. Thus, we equip A with the topology of L8pY q-norm.

13



For each j, we choose an anticlockwise piecewise-smooth simple closed curves
Rj Ă C such that Rj surrounds r´rj, rjs Ą SppHjq, and that f is holomorphic
when pt1, . . . , tNq is inside and also on a neighborhood of R1 ˆ ¨ ¨ ¨ ˆ RN . Define

φpfq “

¿

tjPRj

p2πiq´Nfpt1, . . . , tNq ¨ pt1 ´ H1q
´1

¨ ¨ ¨ ptN ´ HNq
´1

¨ dt1 ¨ ¨ ¨ dtN . (2.8)

Note that the integrand is holomorphic in the sense of Sec. A, thanks to Lemma
2.5. The integral is defined as in Sec. A. By complex analysis, (2.8) is independent
of the choice of R1, R

1
1, . . . , RN , R

1
N . Also, note that pti ´ Hiq

´1 commutes with
ptj ´ Hjq

´1.

Theorem 2.6. φ : A Ñ EndpHq is a continuous unital ˚-homomorphism and satisfies
∥φpfq∥ď ∥f∥L8pXq for each f P A. Moreover, if f P QN , then the φpfq defined by (2.8)
agrees with the φpfq defined in Lemma 2.3.

Proof. For each connected open setO containingX , we let AO be the set of analytic
functions on O. Then A is the union of all AO.

Step 1. Assume f “ tn1
1 ¨ ¨ ¨ tnN

N , and assume each Rj is a circle with radius
larger than ∥Tj∥ so that we can substitute each ptj ´ Hjq

´1 “
ř

ně0 t
´n´1
j Hn

j into
(2.8). One then checks easily that the φpfq equals the φpfq defined by (2.1).

Step 2. We show that φ restricts to a unital ˚-homomorphism from each AO

to EndpHq. This will imply that φ : A Ñ EndpHq is a unital ˚-homomorphism.
That φp1q “ 1 follows from step 1. That φpf˚q “ φpfq˚ follows by applying
successively Prop. A.1 to each single variable integral of the multiple integral in
(2.8). (Note that according to the notations in Prop. A.1, if C is anticlockwise then
C is clockwise.)

We now show φpfqφpgq “ φpfgq for every f, g P AO. Assume for simplic-
ity that N “ 2. The general case of N variables follows from the same method.
For each i “ 1, 2, we choose a smooth simple closed anticlockwise Γi, Ri contain-
ing r´ri, ris, assume Ri is small enough so that it is inside the interior of Γi, and
assume f is analytic near and inside Γ1 ˆ Γ2. Set differential {d “ p2iπq´1d. Then

φpfqφpgq

“

ż

xPR1,yPR2

ż

zPΓ1,wPΓ2

fpx, yqgpz, wqpx ´ H1q
´1

pz ´ H1q
´1

py ´ H2q
´1

pw ´ H2q
´1

¨ {dx{dy{dz{dw

Note that when z ‰ x,

px ´ H1q
´1

pz ´ H1q
´1

“ pz ´ xq
´1

px ´ H1q
´1

´ pz ´ xq
´1

pz ´ H1q
´1.

Since x P R1, z P Γ1, and since R1 is inside Γ1, by complex analysis, we see that
ż

xPR1

fpx, yqgpz, wq ¨ pz ´ xq
´1

pz ´ H1q
´1

¨ py ´ H2q
´1

pw ´ H2q
´1{dx “ 0.
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So

φpfqφpgq

“

ż

xPR1,yPR2

ż

zPΓ1,wPΓ2

pz ´ xq
´1fpx, yqgpz, wqpx ´ H1q

´1
py ´ H2q

´1
pw ´ H2q

´1

¨ {dx{dy{dz{dw.

In this integrand, only pz ´ xq´1gpz, wq depends on z, and
ż

zPΓ1

pz ´ xq
´1gpz, wq ¨ {dz “ gpx,wq

by Cauchy’s formula. Thus

φpfqφpgq

“

ż

xPR1,yPR2

ż

wPΓ2

fpx, yqgpx,wqpx ´ H1q
´1

py ´ H2q
´1

pw ´ H2q
´1

¨ {dx{dy{dw

“

ż

xPR1

px ´ H1q
´1

¨

´

ż

yPR2

ż

wPΓ2

fpx, yqgpx,wqpy ´ H2q
´1

pw ´ H2q
´1{dy{dw

¯

{dx.

A similar factorization for py ´ H2q´1pw ´ H2q
´1 shows

ż

yPR2

ż

wPΓ2

fpx, yqgpx,wqpy ´ H2q
´1

pw ´ H2q
´1{dy{dw

“

ż

yPR2

fpx, yqgpx, yqpy ´ H2q
´1{dy.

This proves φpfqφpgq “ φpfgq.
Step 3. It remains to show that for each f P A we have ∥φpfq∥ď ∥f∥L8pXq.

Choose any δ ą 0, and let r “ δ ` ∥f∥L8pXq. Choose O such that f P AO. Note
that r2 ´ f˚f takes values in rδ2,`8q when restricted to X . Thus, we may choose
O small enough such that r2 ´ f˚f takes values in Czp´8, 0s when defined on O.
Since we can define a holomorphic square root function

?
z on Czp´8, 0s which

is positive on p0,`8q, we can define g “
a

r2 ´ f˚f in AO which satisfies g2 “

r2 ´ f˚f and takes positive real values on X . So g equals g˚ on X and hence on O.
It follows that g˚g “ r2 ´ f˚f . Thus, for any ξ P H, we have

∥φpfqξ∥2“ xφpf˚fqξ|ξy “ r2∥ξ∥2´xφpg˚gqξ|ξy “ r2∥ξ∥2´∥φpgqξ∥2ď r2∥ξ∥2.

This proves ∥φpfq∥2ď r2 “ pδ ` ∥f∥L8pXqq
2 for each δ ą 0, hence finishes the

proof.

Prop. 2.1 follows immediately from the above Theorem and Lemma 2.3.
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Spectral theorem

We come back to the setting of adjointly commuting normal bounded opera-
tors T1, . . . , T2 on H with norms r1, . . . , rN . Recall that X is defined by (2.4).

The Riesz-Markov representation theorem for CpXq can be presented in terms
of cyclic representations. First of all, we say a vector ξ P H is cyclic for CpXq, if
πpCpXqqξ spans a dense subspace of H. If µ is a Borel measure on X , then CpXq

acts on L2pX,µq by multiplication.

Proposition 2.7 (Riesz-Markov representation theorem). Suppose that ξ P H is a
cyclic vector for CpXq. Then the representation π of CpXq on H is unitarily equiva-
lent to the one of CpXq on L2pX,µq for some Borel measure µ satisfying µpXq ă `8.
More precisely, there is a unitary map U : H Ñ L2pX,µq such that UπpfqU˚ is the
multiplication of f P CpXq on L2pX,µq.

Moreover, we can choose U such that Uξ equals the constant function 1.

Proof. Since π is a ˚-homomorphism, the linear functional f ÞÑ xπpfqξ|ξy is
positive since, when f ě 0, we have xπpfqξ|ξy “ ∥πp

?
fqξ∥2ě 0. By Riesz-

Markov representation theorem, we can find a finite Borel measure µ such that
xπpfqξ|ξy “

ş

X
fdµ for each f P CpXq. Thus

xπpfqξ|πpgqξy “

ż

X

g˚fdµ “ xf |gyL2pX,µq,

which shows that the linear map πpfqξ P πpCpXqqξ ÞÑ f P L2pX,µq is well-defined
and extends to a unitary map U : H Ñ L2pX,µq (note that the cyclic condition is
used here). One checks easily that U satisfies the desired property.

Theorem 2.8 (Spectral theorem). Let X “ Br1 ˆ ¨ ¨ ¨ ˆ BrN where each rj “ ∥Tj∥.
Then there exist a set pµnqnPN of finite (positive) Borel measures, and also a unitary map

U : H Ñ
à

nPN

L2
pX,µnq

satisfying that for each 1 ď j ď N and each pfnqnPN P
À

nPN L
2pX,µnq,

UTjU
˚

¨ pfnqnPN “ pzjfnqnPN. (2.9)

Here we let zj be function indicating the j-th component Bj of X , i.e., the one
sending pz1, . . . , zNq P Br1 ˆ ¨ ¨ ¨ ˆ BrN to zj . Thus, the spectral theorem says that
the action of adjointly commuting T1, . . . , TN on Hj is unitarily equivalent to the
multiplication of z1, . . . , zN on a direct sum of Borel L2-spaces over X .

We write UTjU˚ as Mzj and call it the multiplication operator of zj .

Proof. By Zorn’s lemma, H is an (orthogonal) direct sum of CpXq-invariant cyclic
subspaces, i.e., H “ ‘nHn where each subspace Hn is invariant under the action
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ofCpXq, and the action ofCpXq on Hi possesses a cyclic vector. (Consider the par-
tially ordered set, each element of which is a set of mutually orthogonal non-zero
cyclic CpXq invariant closed subspaces.) By Proposition 2.7, each subrepresenta-
tion Hn is unitarily equivalent to the multiplication of CpXq on L2pX,µnq, such
that Tj is equivalent to the multiplication of zj . The theorem thus follows imme-
diately.

Bounded Borel functional calculus

Lemma 2.9. For each bounded Borel function f on CN , there exists a net g‚ “ pgαqαPA

in CcpCNq, such that ∥gα∥l8pCN qď ∥f∥l8pCN q for each α, and that lim
ş

CN |f ´ g‚|dµ “ 0
for each finite (positive) Borel measure µ on CN .

It follows that lim
ş

CN |f ´ g‚|pdµ “ 0 for each p ě 1, since |f ´ g‚|p ď |f ´ g‚| ¨

p2}f}l8qp´1.

Proof. Let A be the directed set of all pK, ϵq where K is a finite set of finite Borel
measures on CN , and ϵ ą 0. pK1, ϵ1q ď pK2, ϵ2q means K1 Ă K2 and ϵ1 ě ϵ2.
By Lusin’s Theorem [Rud-R, Thm. 2.24], for each α “ pK, ϵq P A, we can find
gα P CpCNq whose sup norm is bounded by ∥f∥8, such that the subset tx P CN :
fpxq ‰ gαpxqu has p

ř

µPK µq-measure less than ϵ{∥f∥8. Then ∥f ´ gα∥L1pCN ,µqă ϵ
for each µ P K. So g‚ is a desired net.

Recall X “ Br1 ˆ ¨ ¨ ¨ ˆ BrN .

Definition 2.10. For each bounded Borel function f on X , we define a bounded
operator

πpfq ” fpT1, . . . , TNq

on H such that UfpT1, . . . , TNqU˚ is the multiplication of f on
À

nPN L
2pX,µnq, i.e.

Mf .

Let BpXq be the set of bounded Borel functions on X , which is a unital ˚-
algebra, whose ˚-structure is defined by f˚pz1, . . . , zNq “ fpz1, . . . , zNq. Let zj :
X Ñ C denote the j-th standard coordinate pζ1, . . . , ζNq ÞÑ ζj .

Theorem 2.11. π : f P BpXq ÞÑ fpT1, . . . , TNq P EndpHq is the unique unital ˚-
homomorphism satisfying the following properties

1. πpzjq “ Tj .

2. If f P BpXq, and f‚ is a net of bounded Borel functions on X satisfying

lim

ż

X

|f ´ f‚|
2dµ “ 0

for each finite (positive) Borel measure on X , then f‚pT1, . . . , TNq converges
strongly to fpT1, . . . , TNq.
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Proof. π : f ÞÑ fpT1, . . . , TNq is clearly a unital ˚-homomorphism satisfying
πpzjq “ Tj . For each ξ P H, write Uξ “ pgnqnPN P

À

n L
2pX,µnq. Then

∥pfpT1, . . . , TNq ´ f‚pT1, . . . , TNqqξ∥2

“∥UpfpT1, . . . , TNq ´ f‚pT1, . . . , TNqqU˚
pgnqnPN∥2

“
ÿ

nPN

ż

X

|f ´ f‚|
2

¨ |gn|
2dµn

which converges to 0 by choosing µ “
ř

n |gn|2µn.
Uniqueness: Let π be as described in the theorem. Clearly πpfq is uniquely

determined when f is a polynomial. Since π is continuous (by Prop. 2.12), by
Stone-Weierstrass, πpfq is uniquely determined when f P CpXq. By Lem. 2.9,
πpfq is uniquely determined when f P BpXq.

The following proposition gives a variant of Prop. 2.1.

Proposition 2.12. Let A be a unital ˚-algebra equipped with a function } ¨ } : A Ñ Rě0

satisfying the following property:

• If f P A , then there exists g P A such that f˚f ` g˚g “ }f}2 ¨ 1.

Assume that π : A Ñ EndpHq is a unital ˚-homomorphism, i.e., preserves the identities,
multiplications and linear combinations, and ˚-structures. Then ∥πpfq} ď ∥f∥ for each
f P A .

For example, A can be the space of bounded complex continuous functions on
a topological space and } ¨ } is the sup norm, or the space of bounded measurable
functions and }¨} is the L8-norm. A can also be any unital ˚-subalgebra of EndpKq

(where K is a Hilbert space) such that if T P A is positive then
?
T P A .

Proof. The idea here is similar to (but slightly simpler than) Step. 3 of the proof of
Thm. 2.6. Let r “ ∥f∥. Then r2 ´ f˚f “ g˚g for some g P A . For each ξ P H, we
compute

xπpfqξ|πpfqξy “ xπpf˚fqξ|ξy “ xπpr2 ´ g˚gqξ|ξy “ r2∥ξ∥2´∥πpgqξ∥2ď r2∥ξ∥2.

Another form of spectral theorem

Spectral theorems are often presented in a form that is independent of the L2

spaces L2pX,µnq. To begin with, we set

EpΩq “ χΩpT1, . . . , Tnq (2.10)

18



where χΩ is the characteristic function of Ω. Then EpΩq is clearly a projection. E is
a projection-valued Borel measure, in the sense that E associates to each ξ, η P H
the measure xEξ|ηy defined by xEξ|ηypΩq “ xχΩpT1, . . . , TNqξ|ηy. It is easy to check
that this is a complex Borel measure, which is (finite and) positive when ξ “ η.
Also, E is determined by its evaluationxEξ|ξy for each ξ P H. We say E is the
resolution of the identity for T1, . . . , TN .

If f is bounded Borel onX , we define
ş

X
fdE to be the bounded linear operator

on H satisfying
A´

ż

X

fdE
¯

ξ|η
E

“

ż

X

fxdEξ|ηy.

Theorem 2.13. For each bounded Borel function f on X , and for any ξ, η P H, we have

xfpT1, . . . , TNqξ|ηy “

ż

X

fxdEξ|ηy. (2.11)

Thus, we may write

fpT1, . . . , TNq “

ż

X

fdE. (2.12)

Proof. By linearity, it suffices to assume η “ ξ so that xEξ|ξy is a positive Borel
measure. Then, from the definition of E, it is clear that (2.11) holds when f is a
characteristic function. Thus (2.11) holds when f is a simple function, hence (by
monotone convergence theorem) when f is a positive bounded Borel function,
and hence when f is a bounded complex Borel function.

Definition 2.14. Let T1, . . . , TN be adjointly commuting normal operators. Let
SppT1, . . . , TNq be the set of all points of CN at which there is a neighborhood W
satisfying EpW q ” χW pT1, . . . , TNq ‰ 0. This is a closed subset of CN , called the
joint spectrum of T1, . . . , TN . In the setting of Theorem 2.8, one checks easily that
SppT1, . . . , TNq is the closure of the union of the supports of all µn (n P N). In the
case of a single normal operator T , the SppT q defined here agrees with the one
defined by (2.6).

Exercise 2.15. In the case of a single normal operator T , use the relation between
SppT q and the supports of µn to deduce that T is self-adjoint (resp. positive (i.e.
xTξ|ξy ą 0 for every ξ P H), unitary), if and only if SppT q is a subset of R (resp.
r0,`8q, the unit circle).

Exercise 2.16. Use the relation between joint spectrum and the supports of µn and
also the definition of SppTjq in (2.6) to show that SppT1 ˆ ¨ ¨ ¨ ˆTNq Ă SppT1q ˆ ¨ ¨ ¨ ˆ

SppTNq.

Remark 2.17. The above two exercises show that, once we have a bounded Borel
function f on SppT1 ˆ ¨ ¨ ¨ ˆ TNq, we can define fpT1, . . . , TNq by extending f to
a Borel function on CN and define it as in Def. 2.10. Again, this definition is
independent of spectral decompositions.
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Appendix: Gelfand-Naimark theorem

The following exercise outlines a proof of the celebrated Gelfand-Naimark
Theorem using Prop. 2.1. This theorem will not be used in rest of this mono-
graph, and hence can be safely skipped.

Exercise 2.18. Let G be a (not necessarily finite) set of adjointly commuting self-
adjoint bounded operators on H.

1. Let P be the set of polynomials with commuting formal variables ttT :
T P Gu. Namely, a general element is a C-linear combination of tn1

T1
¨ ¨ ¨ tnk

Tk
where n1, . . . , nk P N and T1, . . . , Tk P G. The involution of P is defined
by patn1

T1
¨ ¨ ¨ tnk

Tk
q˚ “ atn1

T1
¨ ¨ ¨ tnk

Tk
(a P C). Define a linear map π : P Ñ

EndpHq sending each atn1
T1

¨ ¨ ¨ tnk
Tk

to aT n1
1 ¨ ¨ ¨T nk

k . Show that π is a unital ˚-
homomorphism.

2. Let YT “ r´∥T∥, ∥T∥s2 Ă C. Let Y “
ś

TPG YT , which is a compact Hausdorff
space by Tychonoff’s theorem. Use Prop. 2.1 to show that πpfq ď ∥f∥l8pY q:“
suptT PYT ,@TPG |fpptT qTPGq| for each f P P . Conclude that π can be extended
uniquely to a unital ˚-homomorphism π : CpY q Ñ EndpHq.

3. Let A be the smallest unital (norm-)closed ˚-subalgebra of EndpHq con-
taining G, called the C˚-algebra generated by G. Use Stone-Weierstrass
theorem to show that A “ πpCpY qq. Thus we have a surjective unital ˚-
homomorphism π : CpY q Ñ A.

4. Let I “ Kerpπq. Show that I is a closed ˚-ideal of CpY q, which means that
I is a closed subspace of CpY q, and that for each f P I, g P CpY q we have
fh P I, f˚ P I.

5. Let X be the (necessarily closed) subset of all x P Y satisfying fpxq “ 0 for
each f P I. Apply Stone-Weierstrass theorem for locally compact Hausdorff
spaces to the family I of functions to show that I “ tf P CpY q : f |X “ 0u.

6. By Tiezte extension theorem, the restriction map f P CpY q ÞÑ f |X P CpXq is
surjective and has kernel I. Conclude that we have a well-defined bijective
unital ˚-homomorphism rπ : CpXq Ñ A sending each f |X to πpfq (where
f P CpY q). Apply the proof of Prop. 2.12 to rπ and rπ´1 to show that rπ is
isometric, i.e., ∥rπpfq∥“ ∥f∥l8pXq for each f P CpXq.

7. LetA be any commutative (unital) C˚-subalgebra of EndpHq, i.e.,A is a com-
mutative unital norm-closed ˚-subalgebra of EndpHq. Show that A is gen-
erated by a set G of mutually-commuting self-adjoint operators. Conclude
that any A is equivalent (as a normed unital ˚-algebra) to CpXq for some
compact Hausdorff space X . (This is the Gelfand-Naimark theorem.)
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3 Unbounded operators

An unbounded operator T from H1 to H2 is, by definition, a linear map from
a subspace DpT q of H1 (called the domain of T ) to H2. Unless otherwise stated,
unbounded operators are densely defined, which means DpT q is a dense subspace
of H1. In the case that H1 “ H2 “ H, we say T is an unbounded operator on H.

Unbounded operators mean non-necessarily bounded operators. Thus,
bounded linear operators are also unbounded operators. A continuous un-
bounded operator is understood in the obvious way, i.e., the map T : DpT q Ñ H2

is continuous with respect to the Hilbert-space norms. Thus, bounded operators
are precisely continuous unbounded operators whose domains are the full Hilbert
space.

Remark 3.1. The study of unbounded operators T from H1 to H2 can be trans-
formed to the study of rT on a single Hilbert space H, if we set H “ H1 ‘ H2,
Dp rT q “ DpT q ‘ H2, and rT pξ ‘ ηq “ Tξ if ξ P DpT q and η P H2.

For (non-necessarily densely defined) unbounded operators A,B from H1 to
H2, and a, b P C, we define

aA ` bB : DpAq X DpBq Ñ H2, ξ ÞÑ aAξ ` bBξ,

which is an unbounded operator with domain

DpaA ` bBq “ DpAq X DpBq.

We clearly have

pA ` Bq ` C “ A ` pB ` Cq

both of which are denoted by A ` B ` C.
Note that by our definition, we have A´A Ă 0, with Ă becomes “ if and only

if DpAq “ H1.
We say

A Ă B

provided that

DpAq Ă DpBq,

Aξ “ Bξ p@ξ P DpAqq.

This notation is justified by the definition of the graph of T : DpT q Ñ T , which is
a subset of H1 ‘ H2 defined by

G pT q :“ tpξ, T ξq : ξ P DpT qu.
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Then A Ă B means precisely G pAq Ă G pBq.
If A,B are both (densely/non-densely defined) unbounded operators on H,

we set

AB : DpABq Ñ H, ξ ÞÑ A ¨ Bξ

where

DpABq “ B´1DpAq “ tξ P DpBq : Bξ P DpAqu.

If this subspace is dense, then AB is an unbounded operator on H.

Proposition 3.2. Let A,B,C be (non-necessarily densely-defined) unbounded operators
on H. Then

pABqC “ ApBCq

pA ` BqC “ AC ` BC

ApB ` Cq Ą AB ` AC

Moreover, the Ą in the last relation becomes “ ifA is everywhere defined, i.e., DpAq “ H.
(E.g., when A is bounded.)

As an example that the last Ą is not “, take any A whose DpAq is not the full
Hilbert space H, and take B “ 1, C “ ´1.

Proof. For each line, if ξ belongs to the domains of both sides, then it is clear that
the left and the right send ξ to the same vector. Therefore, it is enough to verify
the three relations on the level of domains.

One verifies that both sides on the first relation have domain

tξ P H : ξ P DpCq, Cξ P DpBq, BCξ P DpAqu,

that both sides of the second relation have domain

C´1
pDpAq X DpBqq “ C´1DpAq X C´1DpBq,

and that the left and the right of the third relation have domains

tξ P DpBq X DpCq : Bξ ` Cξ P DpAqu,

tξ P DpBq X DpCq : Bξ P DpAq, Cξ P DpAqu.

The relations are thus verified. When DpAq “ H, the last two domains are both
DpBq X DpCq.
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Definition 3.3. Let T be an unbounded operator from H1 to H2. We define

DpT ˚
q :“ tη P H2 : There exists ψ P DpH1q such that

xTξ|ηy “ xξ|ψy for each ξ P DpT qu.

Such ψ is unique and is denoted by T ˚η. So for each ξ P DpT q, η P DpT ˚q, we have

xTξ|ηy “ xξ|T ˚ηy.

T ˚ is a non-necessarily densely defined unbounded operator from H2 to H1 with
domain DpT ˚q, called the adjoint of T .Note that by the Riesz representation the-
ory for Hilbert spaces, we have

DpT ˚
q :“ tη P H2 : The linear functional ξ P DpT q ÞÑ xTξ|ηy is boundedu. (3.1)

It is obvious that

A Ă B ñ B˚
Ă A˚. (3.2)

Proposition 3.4. Let A,B be unbounded operators on H. Assume that A ` B and AB
are densely defined. Then

pA ` Bq
˚

Ą A˚
` B˚

pABq
˚

Ą B˚A˚

Moreover, if A is bounded, then the Ą in the two relations are both “.

Proof. The first Ą is easy to verify using (2.7). For the second one, suppose η P

DpB˚A˚q. Then η P DpA˚q, and A˚η P DpB˚q. The first property says xAξ|ηy “

xξ|A˚ηy for a vector A˚η and every ξ P DpAq, in particular, every vector Bψ where
ψ P DpABq. Thus xABψ|ηy “ xBψ|A˚ηy, which because of A˚η P DpB˚q is equal
to xψ|B˚A˚ηy for a vector B˚A˚η and every ψ P DpABq. This proves the second
Ą.

Now assume A is bounded. Choose any ξ P DppA ` Bq˚q. Then the function
from η P DpA ` Bq “ DpBq to xξ|pA ` Bqηy is continuous. Since xξ|Aηy is clearly
continuous over η, so is xξ|Bηy. So ξ P DpB˚q “ DpA˚ `B˚q. This proves the first
equality. Now choose any η P DppABq˚q. Note that A˚η is defined. Then for each
ξ P DpBq, we have xBξ|A˚ηy “ xABξ|ηy “ xξ|pABq˚ηy, showing that A˚η P DpB˚q

and hence η P DpB˚A˚q. The second equality is also proved

Definition 3.5. An unbounded operator T from H1 to H2 is called adjointable if
T ˚ has dense domain in H2. Assume T is adjointable. It is clear that

T Ă T ˚˚. (3.3)

Thus T ˚ is also adjointable (because its adjoint has dense domain, which contains
a dense subspace DpT q).
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Thus, roughly speaking, an adjointable operator is one that we can take adjoint
any times we want. But this does not mean that taking adjoints of T will give us
infinitely many different operators. Instead, we have only three different ones:
T, T ˚, T ˚˚, as indicated by the following obvious property:

Proposition 3.6. Let T be adjointable. Then T ˚ “ T ˚˚˚.

Proof. Since T Ă T ˚˚ in general, replace T by T ˚ and we get T ˚ Ă T ˚˚˚. Take the
adjoint of T Ă T ˚˚ and notice (3.2), we have T ˚ Ą T ˚˚˚.

Adjointability is an analytic condition, since it says roughly that many vectors
η in H2 makes the linear functional ξ ÞÑ xTξ|ηy continuous.

Exercise 3.7. Define an unbounded operator T : l2pZ`q Ñ C whose domain
DpT q is the set of all pa1, a2, . . . q having finitely many non-zero elements. De-
fine T pa1, a2, . . . q “

ř

n an. Show that T is not adjointable. In general, show that
any non-continuous linear map from an infinite dimensional Hilbert space to a
finite dimensional one is not adjointable.

Remark 3.8. Let T be a (densely defined) unbounded operator from H1 to H2. Let
E be the projection of H2 onto the closure of DpT ˚q. Then the restriction ET from
H1 to RngpEq is adjointable.

Continuous operators are certainly adjointable. Recall that if A is bounded,
then KerpAq “ RngpA˚qK, which shows that A is injective (resp. has dense range)
if and only if A˚ has dense domain (resp. injective). Using this fact, we can easily
produce many unbounded adjointable operators.

Example 3.9. Let A : H1 Ñ H2 be bounded, injective, and has dense range.
By (1.3), A˚ : H2 Ñ H1 is also bounded, injective, and has dense range. Let
DpA´1q “ RngpAq, define A´1pAξq “ ξ for each ξ P H1. Then A´1 is an adjointable
unbounded operator from H2 to H1 with domain DpA´1q, and

pA´1
q

˚
“ pA˚

q
´1. (3.4)

Note that A´1 (and similarly pA˚q´1) are surjective.

Proof. If ξ P DppA˚q´1q, then for any η P DpA´1q, we have xA´1η|ξy “

xA´1η|A˚pA˚q´1ξy “ xAA´1η|pA˚q´1ξy “ xη|pA˚q´1ξy, which shows ξ P DppA´1q˚q

and pA´1q˚ξ “ pA˚q´1ξ. Thus pA´1q˚ Ą pA˚q´1. In particular, since pA˚q´1 has
dense domain (which is the range of A˚), so does pA´1q˚. So A´1 is adjointable.

Conversely, let ξ P DppA´1q˚q. Then xξ|γy “ xξ|A´1Aγy “ xpA´1q˚ξ|Aγqy “

xA˚pA´1q˚ξ|γy for each γ P H1 shows ξ “ A˚pA´1q˚ξ. Therefore ξ is in the range
of A˚, i.e., in the domain of pA˚q´1. This implies DppA´1q˚q Ă DppA˚q´1q, which
finishes the proof.
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4 Spectral theorem for unbounded positive operators

Recall that a bounded operator A on H is called positive if xAξ|ξy ě 0 for each
ξ P H. Equivalently, A is normal, and in the setting of Thm. 2.8, all µn have
supports inside r0,`8q. It is also clear from Thm. 2.8 that 1 ` A is invertible,
and its inverse is also bounded and positive. Motivated by this observation, we
consider:

Proposition 4.1. Let T be an unbounded operator on H. Assume xTξ|ξy ě 0 for each
ξ P DpT q. Then the following two equivalent conditions are satisfied:

• The range of 1 ` T is H.

• 1 ` T is the inverse of a bounded injective positve operator A on H. (Cf. Example
3.9. Note that A has dense range since A “ A˚.)

The second condition also implies ∥A∥ď 1.

We say that an unbounded operator T satisfying xTξ|ξy ě 0 for each ξ P DpT q

and the above two equivalent conditions is positive.

Proof. We prove the equivalence of the two conditions. The second one clearly
implies the first one by spectral decomposition of A. On the other hand, as-
sume 1 ` T has range H. Note that 1 ` T is injective, since if p1 ` T qξ “ 0 then
0 “ xp1 ` T qξ|ξy “ ∥ξ∥2`xTξ|ξy ě ∥ξ∥2. Thus, we simply define A to be the (ev-
erywhere defined) linear operator on H satisfying that Ap1 ` T qξ “ ξ for every
ξ P Dp1 ` T q. A is clearly injective. For each ξ P DpT q, since xTξ|ξy “ xξ|Tξy ě 0,
we have ∥p1 ` T qξ∥2ě }ξ∥2“ ∥Ap1 ` T qξ∥2, which shows that A is bounded and
∥A∥ď 1. Moreover, xAp1 ` T qξ|p1 ` T qξy “ xξ|p1 ` T qξy ě 0, showing that A is
positive.

The condition that 1`T is the inverse of a bounded injective positive operator
has many useful implications. As our first application, we define:

Definition 4.2. An unbounded operator T on H is called symmetric if xTξ|ηy “

xξ|Tηy for every ξ, η P DpT q. Equivalently, T Ă T ˚. We say that T is self-adjoint
if T “ T ˚.

Then we have:

Proposition 4.3. Positive unbounded operators are self-adjoint.

Proof. Let T be positive, and let A be the inverse of 1 ` T , which is bounded,
injective, and positive. So A˚ “ A. By Example 3.9, we have 1 ` T ˚ “ p1 ` T q˚ “

pA´1q˚ “ pA˚q´1 “ A´1 “ 1 ` T .

Thus, positive operators are adjointable.
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Definition 4.4. Let X be a measurable space equipped with a family of measures
pµnqnPN. Let f : X Ñ C be measurable. The multiplication operator Mf on
H :“

À

nPN L
2pX,µnq is the unbounded operator with domain

DpMf q “

!

‘n gn :
ÿ

n

}gn}
2

ă `8,
ÿ

n

}fgn}
2

ă `8

)

and satisfying Mf p‘ngnq “ ‘nfgn for each ‘ngn P DpMf q.

Proposition 4.5. In Def. 4.4, we have DpMf q is dense in H, and

pMf q
˚

“ Mf˚

where f˚pxq “ fpxq.

Proof. If r ą 0 and Ωr “ tx P X : |fpxq| ď ru, then for each ξ P H we have
MχΩr

ξ P DpMf q and limrÑ`8 MχΩr
ξ “ ξ by the dominated convergence theorem.

This shows the subspace of all MχΩr
ξ (where r ą 0 and ξ P H) is clearly contained

in DpMf q and is dense in H. Thus DpMf q is dense in H.
One checks easily that xMfξ|ηy “ xξ|Mf˚ηy for each ξ P DpMf q, η P DpMf˚q,

i.e., Mf˚ Ă pMf q˚. It remains to show that for any η P DppMf q˚q we have
η P DpMf˚q, i.e., writing η “ ‘nηn where ηn P L2pX,µnq, we have

ř

nPN }f˚ ¨

ηn}2L2pX,µnq
ă `8. By the monotone convergence theorem, it suffices to find C ě 0

such that for any finite subset r ą 0 we have

ÿ

nPN

ż

Ωr

|f˚
¨ ηn|

2
ď C2

namely, }Mf˚χΩr
η}2 ď C2.

Note that MfχΩr
is a bounded operator with adjoint Mf˚χΩr

. For each ξ P H,
recalling that MχΩr

ξ P DpMf q and (clearly) MfMχΩr
ξ “ MfχΩr

ξ, we have

xξ|Mf˚χΩr
ηy “ xMfχΩr

ξ|ηy “ xMfMχΩr
ξ|ηy “ xMχΩr

ξ|pMf q
˚ηy

Thus |xξ|Mf˚χΩr
ηy| ď C}MχΩr

} ď C for all ξ P H if we set C “ }pMf q˚η}. Therefore
}Mf˚χΩr

η} ď C.

Proposition 4.6. Let ϕ : X Ñ Y be a Borel isomorphism of topological spaces. Let
pνnqnPN be a family of Borel measures on Y . Then

U :
à

n

L2
pY, νnq Ñ

à

n

L2
pX,ϕ˚νnq Ug “ g ˝ ϕ

is unitary. Moreover, if f : Y Ñ C is Borel, then on
À

n L
2pY, νnq we have

UMfU
´1

“ Mf˝ϕ

In particular, UDpMf q “ Mf˝ϕ.
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Proof. That U is unitary follows from (1.5). That UDpMf q “ Mf˝ϕ and UMfU
´1 “

Mf˝ϕ are easy to check.

Theorem 4.7 (Spectral theorem for a positive operator). Let T be a positive un-
bounded operator on H. Then there exists a set pµnqnPN of finite (positive) Borel measures
on r0,`8q and a unitary

U : H Ñ
à

nPN

L2
pr0,`8q, µnq

satisfying UTU˚ “ Mx where x is the identity function on r0,`8q.

Note that any unbounded operator described in such way is a positive opera-
tor, since the multiplication operator defined by p1`xq´1 is bounded and positive.

Proof. Let A be the bounded invertible positive operator whose inverse is 1 ` T .
Since A is bounded and positive, we have SppAq Ă r0,`8q. Since ∥A∥ď 1, we
have SppAq Ă r0, 1s.

By Thm. 2.8. T is unitarily equivalent to Mx on K “
À

n L
2pr0, 1s, νnq where

pνnqn is a family of finite Borel measure on r0, 1s. SinceA is injective, we must have
νnpt0uq “ 0, and hence K “

À

n L
2pp0, 1s, νnq. Then T “ Mx´1´1 on K. The proof is

finished by applying Prop. 4.6 to the homeomorphism t P r0,`8q ÞÑ p1 ` tq´1 P

p0, 1s.

The following exercise is important for future application.

Exercise 4.8. Assume T is positive. This exercise shows that we can safely restrict
T to a closed subspace containing RngpT q, which is a positive operator and con-
tains all the information of T . This is similar to restricting a function to a subset
containing its support.

1. In Thm. 4.7, show that the closure of RngpUTU˚q is the set of all pfnqnPN such
that fnp0q “ 0 for each n.

2. Use the above result to show that

DpT q “
`

DpT q X RngpT q
˘

‘ RngpT q
K,

that T acts trivially on RngpT qK, and that the restriction of T to RngpT q is a
positive operator with domain DpT q X RngpT q and dense range RngpT q.

3. Let H0 be a closed subspace of H containing RngpT q. Use the previous result
to show that

DpT q “
`

DpT q X H0

˘

‘ HK
0 ,

that T acts trivially on HK
0 , and that T |H0 is a positive operator with domain

DpT |H0q :“ DpT q X H0 and range RngpT |H0q “ RngpT q.

(Hint: Write H0 “ RngpT q ‘H1. By the previous step, we have DpT q “ pDpT q X

RngpT qq ‘ H1 ‘ HK
0 and DpT |H0q “ pDpT q X RngpT qq ‘ H1.)
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4. Let E be the projection of H onto a closed subspace H0 containing RngpT q.
Use the above description to show T “ ET “ TE.

Remark 4.9. Let T be a positive operator on H. Assume U is a partial isometry
from H to K with source space ςpUq Ą RngpT q and target space τpUq. Then S :“
UTU˚ is a positive operator on K whose range is RngpSq “ URngpT q. Its domain
is DpSq “ UDpT q ‘ τpUqK.

Indeed, as shown in the previous exercise, the action T decomposes into two
parts: on ςpUqK it acts trivially; on ςpUq it restricts to a positive operator with
range RngpT q and domain DpT q X ςpUq. Thus, S decomposes into two parts: on
τpUqK it acts trivially; on τpUq it is unitarily equivalent to the action of T on ςpUq

via the unitary map U : ςpUq
»
ÝÑ τpUq. So S has domain UpDpT q X ςpUqq ‘ τpUqK,

which equals UDpT q ‘ τpUqK since U “ UU˚U and U˚U (which is the projection
onto ςpUq) projects DpT q “ pDpT q X ςpUqq ‘ ςpUqK onto DpT q X ςpUq.

The following Lemma will be used later to obtain polar decomposition.

Lemma 4.10. Assume T is a positive unbounded operator on H. Then there is a unique
positive operator on H satisfying H2 “ T . We say H is the (positive) square root of T
and write H “ T

1
2 “

?
T .

Proof. Existence: Apply the spectral theorem to T , we see that T clearly has a
positive square root, i.e. M?

x if T “ Mx.
Uniqueness: Suppose H,K are positive, and H2 “ K2 “ T . By the spec-

tral theorem 4.7, H is unitarily equivalent to Mx on
À

n L
2pr0,`8q, µnq. Assume

WLOG that H “ Mx. Then T “ pMxq2 “ Mx2 .
One checks easily p1 `Mx2q´1 “ Mp1`x2q´1 . Thus fpp1 `Mx2q´1q “ Mfpp1`x2q´1q

whenever f is a polynomial, and hence, by Stone-Weierstrass theorem and Prop.
2.12, whenever f P Cpr0, 1sq. Set fpxq “

?
x

?
x`

?
1´x

“ 1
1`

?
x´1´1

. Then

fpp1 ` Mx2q
´1

q “ Mfpp1`x2q´1q “ Mp1`xq´1 “ p1 ` Mxq
´1

Hence p1 `Hq´1 “ fpp1 ` T q´1q. Similarly p1 `Kq´1 “ fpp1 ` T q´1q. This proves
H “ K.

5 Closable and closed operators, polar decomposition

As an application of the spectral theorem for positive operators, we study the
problem of closures of unbounded operators. If T is adjointable, then we may
regard T ˚˚ as the algebraic closure of T . One may wonder whether T ˚˚ (the alge-
braic closure of T ) can be approximated by T in an appropriate sense. We shall
answer this question in this section.
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Recall the graph G pT q “ tpξ, T ξq : ξ P DpT qu. Equivalently, we can consider
GpT q to be the same as DpT q as vector spaces, but equipped with a different inner
product: for each ξ, η P DpT q, we set

xξ|ηyGpT q “ xξ|ηy ` xTξ|Tηy (5.1)

where x¨|¨y is the original inner product of H. To avoid confusion, we write the
vector in GpT q corresponding to ξ P DpT q as Ψξ. Namely, we have a bijective
linear map

Ψ : DpT q Ñ GpT q,

xΨξ|Ψηy “ xξ|ηy ` xTξ|Tηy (5.2)

for each ξ, η P DpT q. Then GpT q is equivalent to G pT q as inner product spaces.

Definition 5.1. Let T be an unbounded operator from H1 to H2. We say T is closed
if the following clearly equivalent conditions are satisfied:

• G pT q is a closed subspace of H1 ‘ H2.

• GpT q is a complete metric space (i.e., a Hilbert space).

• Suppose ξn is a sequence in DpT q such that both ξn and Tξn converge. Let
ξ “ limnÑ8 ξn and η “ limnÑ8 Tξn. Then ξ P DpT q, and Tξ “ η.

Note that the above statement about sequences can be replaced by that of nets.
A closed operator is not necessarily determined by its action on a dense sub-

space of DpT q. The appropriate density notion for unbounded closed operators is
that of cores:

Definition 5.2. Suppose T is an unbounded operator from H1 to H2. A subspace
D0 of DpT q is called a core for T if the following clearly equivalent conditions are
satisfied

• G pT |D0q is a dense subspace of G pT q.

• ΨD0 is a dense subspace of ΨDpT q “ GpT q.

• For each ξ P DpT q there exists a sequence ξn P D0, such that ξn Ñ ξ and
Tξn Ñ Tξ.

In the case that T is closed, D0 is a core for T if and only if for each ξ P DpT q,
there exists a sequence ξn P D0, such that ξn converges to ξ and Tξn is a Cauchy
sequence.

Note that a core for T is automatically a dense subspace of DpT q and of H1. T
is uniquely determined by its restriction to a core.
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Example 5.3. If T is adjointable, then T ˚ is closed.

For example, the Mf in Prop. 4.5 is closed, since it is the adjoint of Mf˚ .

Proof. Let ηn P DpT ˚q such that ηn Ñ η P H2 and T ˚ηn Ñ ψ P H1. Choose any
ξ P DpT q. Then

xη|Tξy “ lim
nÑ8

xηn|Tξy “ lim
nÑ8

xT ˚ηn|ξy “ xψ|ξy,

which shows η P DpT ˚q and T ˚η “ ψ.

As a consequence, we see that for every adjointable T , its algebraic closure T ˚˚

is closed. Also, any self-adjoint operator (and in particular, positive operator cf.
Prop. 4.3) is closed.

We shall show the converse of the above example, namely, closed operators
are adjoints of (adjointable) unbounded operators. If we define an unbounded
operator to be algebraically closed provided that it is the adjoint of another one,
then we will see that algebraically closedness and (previously defined) analyti-
cally closedness are equal. Then it follows easily that for every adjointable un-
bounded operator, its algebraic closure equals analytic closure. Moreover, the
adjointability condition is equivalent to an analytic one.

We first need a crucial result; our treatment here follows [Kad, Rem. 2.7.7].

Lemma 5.4. Let T be an unbounded closed operator from H1 to H2. Then T ˚T is a
(densely defined) unbounded positive operator on H1. Moreover, DpT ˚T q is a core for T .

In this lemma, we do not assume that T ˚ is densely defined. Then T ˚T is
defined on all ξ P DpT q such that Tξ P DpT ˚q.

Proof. Notice the bijective map Ψ in (5.2). Since T is closed, GpT q is a Hilbert
space. We regard Ψ as an unbounded operator from H to GpT q with dense domain
DpΨq “ DpT q. We claim that

Ψ˚Ψ “ 1 ` T ˚T. (5.3)

Choose any ξ P DpΨ˚Ψq Ă DpΨq “ DpT q, and choose any η P DpΨq “ DpT q, we
use (5.2) to calculate

xΨ˚Ψξ|ηy “ xΨξ|Ψηy “ xξ|ηy ` xTξ|Tηy,

which shows Tξ P DpT ˚q and T ˚Tξ “ Ψ˚Ψξ ´ ξ. So Ψ˚Ψ Ă 1 ` T ˚T . Conversely,
choose ξ P DpT ˚T q Ă DpT q and η P DpT q, then

xΨξ|Ψηy “ xξ|ηy ` xTξ|Tηy “ xξ|ηy ` xT ˚Tξ|ηy

shows Ψξ P DpΨ˚q and Ψ˚Ψξ “ ξ ` T ˚Tξ. So Ψ˚Ψ Ą 1 ` T ˚T .
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Since Ψ is injective, and since its range is GpT q, we can define its inverse A “

Ψ´1 to be a linear map from GpT q to H1 with dense image DpT q. A is clearly
injective and bounded. Thus, Example 3.9 applies and Ψ “ A´1. Now, noting
(3.4), we have

p1 ` T ˚T qAA˚
“ Ψ˚ΨAA˚

“ pA´1
q

˚A´1AA˚

“pA˚
q

´1A´1AA˚
“ pA˚

q
´11GpT qA

˚
“ pA˚

q
´1A˚

“ 1H1 .

Since the domain of p1 ` T ˚T qAA˚ is the set of all ξ P H1 satisfying that AA˚ξ P

Dp1 ` T ˚T q “ DpT ˚T q, we see that DpT ˚T q contains the range of AA˚. Since A is
bounded and has dense range DpT q, and since A˚ also has dense range (since A
is injective), we see that AA˚ has dense range. So T ˚T has dense domain. Next,
the above long calculation shows that 1 ` T ˚T has range H1. Since xpT ˚T qξ|ξy “

xTξ|Tξy ě 0 whenever ξ P DpT ˚T q, we have that T ˚T is positive.
Finally, we show DpT ˚T q “ DpΨ˚Ψq is a core for T by showing that ΨDpΨ˚Ψq

is a dense subspace of GpT q “ ΨDpΨq. Since we have proved Ψ˚ΨAA˚ “ 1H1 , we
see that RngpAA˚q Ă DpΨ˚Ψq. Since ΨAA˚ “ A˚, we see that ΨRngpAA˚q equals
RngpA˚q, which is a dense subspace of GpT q since A is injective. We are done.

Theorem 5.5 (Polar decomposition). Let T be a closed operator from H1 to H2.

1. There exist unique U,H satisfying the following conditions: H is a positive operator
on H1, U is a partial isometry from H1 to H2 whose source space ςpUq is the closure
of RngpHq, and

T “ UH.

2. There exist unique V,K satisfying the following conditions: K is a positive operator
on H2, V is a partial isometry from H1 to H2 whose target space τpV q is the closure
of RngpKq, and

T “ KV.

Moreover, we have U “ V , H “ pT ˚T q
1
2 , K “ pTT ˚q

1
2 , T is adjointable, and

T ˚
“ HU˚

“ U˚K

are the right and the left polar decompositions of T ˚.

We call T “ UH and T “ KV respectively the left polar decomposition and
the right polar decomposition of T . U “ V is called the phase of T , and H is
called the absolute value of T .
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Proof. Existence: By Lemma 5.4, T ˚T is a positive operator, which by spectral
theorem admits a positive square root H “

?
T ˚T . So H2 “ T ˚T . Note that

DpH2q “ DpT ˚T q are inside the domains of H and T . We define a linear map

U : HDpT ˚T q Ñ TDpT ˚T q

sending Hξ ÞÑ Tξ for each ξ P DpT ˚T q. This map is well defined and preserves
inner products since, for another η P DpT ˚T q, we have

xHξ|Hηy “ xH2ξ|ηy “ xT ˚Tξ|ηy “ xTξ|Tηy.

Since DpT ˚T q “ DpH2q is a core forH and T by Lemma 5.4,HDpT ˚T q “ HDpH2q

is dense in RngpHq, and TDpT ˚T q is dense in TDpT q “ RngpT q. Thus U is ex-
tended uniquely to a unitary map from RngpHq to RngpT q. It is further extended
to a partial isometry from H1 to H2 by acting trivially on RngpH1q

K. So the source
space ςpUq and target space τpUq are respectively RngpHq and RngpT q.

From the construction of U , we see that T |DpT˚T q “ UH|DpT˚T q. Recall that
DpT ˚T q is a core for both T and H , and hence also a core for UH . Thus, passing
the closures of the graphs we must have T “ UH .

Since U˚U is the projection of H1 onto ςpUq “ RngpHq, by Exercise 4.8, we
have H “ HU˚U and hence T “ pUHU˚qU . Let K “ UHU˚. By Remark 4.9,
K is a positive operator and RngpKq “ URngpHq “ τpUq. So T “ KU is a right
decomposition for T .

We now prove the existence of polar decompositions for T ˚. By Prop. 3.4, T “

UH shows T ˚ “ HU˚. Since τpU˚q “ ςpUq “ RngpHq, T ˚ “ HU˚ is a right polar
decomposition for T ˚. Since we define K to be UHU˚, we have T ˚ “ U˚UHU˚ “

U˚K, which is a left polar decomposition for T since ςpU˚q “ τpUq “ RngpKq.
Also, DpT ˚q “ DpKq is a dense subspace of H2. So T ˚ is adjointable.

Uniqueness: Suppose T “ UH “ KV as described in the theorem. Then
T ˚T “ H2. Thus, by Lemma 4.10, H is the unique positive square root pT ˚T q

1
2 of

T ˚T . Similarly, K “ pTT ˚q
1
2 is uniquely determined by T .

It remains to show that U and V are uniquely determined. Since RngpHq is
the source space of U , U acts trivially on RngpHqK. The action of U on RngpHq is
determined by T , since it sends Hξ to Tξ (ξ P DpT q “ DpUHq “ DpHq). So U is
unique. Finally, since RngpKq is assumed to be τpV q, we have T “ V V ˚KV . So
T “ V ¨ pV ˚KV q is a left polar decomposition of T since V ˚KV is positive and its
range is dense in ςpV q by Remark 4.9 again. Thus, by the uniqueness of left polar
decomposition which we have just proved, V is uniquely determined.

Remark 5.6. In the above polar decompositions, it is clear from the proof that we
have

pTT ˚
q
1
2 “ UpT ˚T q

1
2U˚, pT ˚T q

1
2 “ U˚

pTT ˚
q
1
2U.
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Remark 5.7. Suppse H is a positive operator on H1, and U : H1 Ñ H2 is a partial
isometry with ςpUq Ą RngpHq. Then UH is closed, sinceH is closed, and U˚UH “

H shows that GpHq and GpUHq are DpHq with the same inner product. Now
assume ςpUq “ RngpHq. Then U ¨ H is the left polar decomposition for T :“ UH .

Theorem 5.8. Let T be an unbounded operator from H1 to H2.

1. The following three are equivalent.

(a) T is closed.

(b) T is adjointable and T “ T ˚˚.

(c) T “ S˚ for some adjointable unbounded operator S from H2 to H1.

2. T is adjointable if and only if T is closable (or preclosed), the latter means that T
is contained in a closed operator from H1 to H2.

3. Suppose D0 is a core for T . Then pT |D0q˚ “ T ˚.

Thus, “adjointable” and “closable” are interchangeable. We will use “closable”
more often in the remaining parts of this note.

Proof. 1. (a) ñ (b): If T is closed, then by Theorem 5.5, T is adjointable, and we
have polar decompisitions T “ KU and T ˚ “ UK. By Prop. 3.4, pT ˚q˚ “ pU˚Kq˚

equals KU˚ “ T .
(b) ñ (c): Take S “ T ˚.
(c) ñ (a): Example 5.3.
2. If T is adjointable then T is contained in the closed operator T ˚˚. Conversely,

if T Ă T1 for a (densely defined) closed T1, then T ˚ Ą T ˚
1 and (by part 1) T ˚

1 has
dense domain. So T ˚ has dense domain, which means T is adjointable.

3. T |D0 Ă T implies pT |D0q˚ Ą T ˚. Suppose η P DppT |D0q˚q. For each ξ P DpT q,
choose ξn P DpT |D0q such that Tξn Ñ Tξ. Then

xTξ|ηy “ lim
nÑ8

xpT |D0qξn|ηy “ lim
nÑ8

xξn|pT |D0q
˚ηy “ xξ|pT |D0q

˚ηy,

which shows η P DpT ˚q.

We give a useful method for showing the closability:

Proposition 5.9. An unbounded operator T : H1 Ñ H2 is adjointable/closable if and
only if the following is true: for any sequence ξn P DpT q converging to 0 such that Tξn
converges, we have Tξn Ñ 0.

Proof. If T is closable, let ξn P DpT q converge to 0 such that Tξn “ T ˚˚ξn con-
verges. Then as T ˚˚ is closed, we have T ˚˚ξn Ñ T ˚˚ ¨ 0 “ 0.

Conversely, suppose for each ξn P DpT q converging to 0 such that Tξn con-
verges we have Tξn Ñ 0. Then it is clear that for any two sequences ξn, ξ1

n P DpT q
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converging to the same vector ξ P H such that both Tξn and Tξ1
n converge, then

they converge to the same vector in H2, which we denote by T1ξ. All such ξ form
a subspace DpT1q of H1 which is dense since it contains DpT q. We thus have an
unbounded operator from H1 to H2 with domain DpT1q sending each ξ to T1. It
is clear that the graph G pT1q is the closure of G pT q. So T1 is a closed operator
containing T . So T is closable.

If T is contained in T1, any linear subspace G0 between G pT q and G pT1q is the
graph of an operator T0 (satisfying G pT q Ă G pT0q Ă G pT1q). Indeed, we set DpT0q

to be the set of all ξ where pξ, ηq P G0 for some η P H2. Then we necessarily have
η “ T1ξ. Define T0 sending each ξ P DpT0q to T1ξ. Then G0 “ G pT0q. Thus we can
define:

Definition 5.10. Assume T : H1 Ñ H2 is adjointable/closable. Then the (neces-
sarily closed) operator T : H1 Ñ H2 whose graph G pT q is the closure of G pT q in
H1 ‘ H1 is called the closure of T .

Proof. Let G0 be the closure of G pT q. Since T is closable, T Ă T1 for a closed
operator T1. (E.g. T1 “ T ˚˚.) Then G pT1q is closed and contain G pT q. Therefore G0

is between G pT q and G pT1q. Thus, according to the previous discussion, G0 is the
graph of a necessarily closed operator T .

Remark 5.11. Note that if D0 is a core for a closable T , then, as the graph of T |D0

is dense in that of T , they have the same closure. So T |D0 “ T .
Also, if T is closable, then DpT q is a core for the closure T , since G pT q is the

closure of G pT |DpT qq “ G pT q.

Theorem 5.12. Let T : H1 Ñ H2 be adjointable/closable. Then

T “ T ˚˚.

Proof. Since DpT q is a core for T , by Theorem 5.8 we see that T ˚ “ pT q˚, and hence
T ˚˚ “ pT q˚˚. Since T is closed, by Theorem 5.8, pT q˚˚ “ T . We are done.

6 Strong commutativity of closed operators, von Neu-
mann algebras

Recall our notation that EndpHq is the ˚-algebra of bounded linear operators
of H. The ˚-structure is defined by the adjoint. We begin with the following easy
observation.

Remark 6.1. Suppose T is an unbounded operator from H1 to H2, and A1 P

EndpH1q, A2 P EndpH2q. Then the following are equivalent.
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• A2T Ă TA1.

• A1DpT q Ă DpT q and A2Tξ “ TA1ξ for each ξ P DpT q.

Proposition 6.2. Let T : H1 Ñ H2 be closable and A1 P EndpH1q, A2 P EndpH2q.

1. If A2T Ă TA1, then A˚
1T

˚ Ă T ˚A˚
2 and A2T Ă TA1.

2. If T is closed and H1 “ H2 “ H, the set of all A P EndpHq satisfying AT Ă TA
form a strongly closed unital subalgebra of EndpHq

The second statement means that the set of all A P EndpHq is closed under lin-
ear combination, multiplication, and approximation under strong operator topol-
ogy (i.e., if a net A‚ P EndpHq satisfies A‚T Ă TA‚ and converges strongly to
A P EndpHq, then AT Ă TA). Moreover, the set contains identity.

Proof. 1. We have pA2T q˚ Ą pTA1q
˚. By Prop. 3.4, A˚

1T
˚ Ă pTA1q

˚ Ă pA2T q˚ “

T ˚A˚
2 . Take adjoint again. We have A˚˚

2 T
˚˚ Ă T ˚˚A˚˚

1 , i.e., A2T Ă TA1.
2. By Prop. 3.2, the set of all A P EndpHq satisfying AT Ă TA is closed

under addition and multiplication. Suppose A‚ is a net converging strongly to
A P EndpHq such that A‚T Ă TA‚. Choose any ξ P DpT q. Then A‚ξ P DpT q

and A‚Tξ “ TA‚ξ. Since A‚ converges strongly, we have A‚ξ Ñ Aξ and
TA‚ξ “ A‚Tξ Ñ ATξ. Thus pAξ,ATξq is in the closure of the graph G pT q. Thus,
as T is closed, we conclude ξ P DpAq and TAξ “ ATξ.

Definition 6.3. Let A P EndpHq and let T be a closable operator on H. We say A
and T commute strongly if

AT Ă TA, A˚T Ă TA˚.

If A and T commute strongly, then so do A and T ˚, A˚ and T , A˚ and T ˚ by Prop.
6.2.

Remark 6.4. Two bounded operatorsA,B commute strongly if and only if they com-
mute adjointly, which means AB “ BA and AB˚ “ B˚A.

In the case thatA is unitary, strong and ordinary commutativities are the same:

Proposition 6.5. A unitary operator U P EndpHq commutes strongly with a closable
operator T on H if and only if UT “ TU (equivalently, UTU˚ “ T ).

Proof. If UT “ TU , then UTU˚ “ T , so TU˚ “ U˚T . This shows U commutes
strongly with T .

Conversely, suppose UT Ă TU and U˚T Ă TU˚. UT Ă TU implies UTU˚ Ă

TUU˚ “ T . U˚T Ă TU˚ implies U˚TU Ă TU˚U “ T . So T “ UU˚TUU˚ Ă UTU˚.
So T “ UTU˚.
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We now discuss the meaning of strong commutativity when A is a projection.

Proposition 6.6. Let T be an unbounded operator on H. Let E be a projection on H. Set
EK “ 1 ´ E. Then the following are equivalent.

(1) ET Ă TE.

(2) DpT q “ D1 ‘ D2 where D1 Ă EH and D2 Ă EKH are linear subspaces satisfying
TD1 Ă EH and TD2 Ă EKH.

Moreover, if (2) is true, then

D1 “ EDpT q “ EH X DpT q D2 “ EKDpT q “ EKH X DpT q (6.1a)

DpTEq “ D1 ‘ EKH DpTEK
q “ EH ‘ D2 (6.1b)

Proof. Assume (1). Then EDpT q Ă DpT q. Since we also have EKT Ă TEK,
we have EKDpT q Ă DpT q. This proves DpT q “ EDpT q ‘ EKDpT q. We have
TEDpT q Ă ETDpT q Ă EH and, similarly, TEKDpT q Ă EKH. This proves (2).

Assume (2). The decomposition DpT q “ D1‘D2 with D1 Ă EH and D2 Ă EKH
clearly implies (6.1a). It is also easy to check (6.1b). Now (6.1a) shows EDpT q “

D1 Ă DpT q. For each ξ P DpT q, we have Eξ P D1, and hence TEξ P TD1 Ă EH.
Similarly TEKξ Ă EKH. Therefore we have ETEξ “ TEξ and ETEKξ “ 0. Thus
ETξ “ ETEξ ` ETEKξ “ TEξ. This proves (1).

Remark 6.7. By Prop. 6.6, ET Ă TE if and only if there exist a unitary map
U : H Ñ K1 ‘ K2 (where K1,K2 are Hilbert spaces) such that:

• UEH “ K1. Hence UEKH “ K2.

• There exists unbounded operators S1, S2 on K1,K2 with dense domains such
that UTU˚ “ diagpS1, S2q. In particular, DpT q “ U˚DpS1q ‘ U˚DpS2q.

It is clear that T is closed (resp. closable) iff both S1 and S2 are so.

From Prop. 6.2, we see that the set of all A P EndpHq commuting strongly
with a closed T is a strongly closed unital ˚-subalgebra of EndpHq, i.e., a strongly
closed unital subalgebra which is closed under taking adjoints. In other words,
such A form a von Neumann algebra.

Definition 6.8. A strongly closed unital ˚-subalgebra of EndpHq is called a von
Neumann algebra on H. If S is a set of closed operators, then the set S1 of all
A P EndpHq commuting strongly with every operator of S is a von Neumann
algebra on H. We call S1 the commutant of S. The double commutant S2 “ pS1q1

is also called the von Neumann algebra generated by S. If M is a von Neumann
algebra on H and T is a closed operator on H, we say that T is affiliated with M
if tT u2 Ă M.
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Proof. We have seen, from Prop. 6.2, that each tT u1 (where T P S) is a von Neu-
mann algebra. Then S1 “

Ş

TPStT u1 is clearly also a von Neumann algebra.

Remark 6.9. It is obvious that if S Ă T then S1 Ą T1 and hence S2 Ă T2. Also,
similar to the reasoning in Prop. 3.6, we have S1 “ S3.

Strong commutativity of two unbounded closed operators T1, T2 cannot be de-
fined in the same way as in 6.3. Indeed, our definition of strong commutativity
will be equivalent to the following form: If we write T1 “ U1H1 and T2 “ U2H2

then we require each of U1 and H1 commutes strongly with each of U2, H2. How-
ever, we must show that this definition agrees with the one in Definition 6.3. This
requires showing that if A commutes strongly with T (or more generally, if A be-
longs to a von Neumann algebra), then so does its phase UA and absolute value
H “

?
A˚A. We provide a proof below, which suggests the importance of study-

ing von Neumann algebras. A different proof for the general case of unbounded
polar decompositions is given in Theorem 6.15.

Proposition 6.10. Let M be a von Neumann algebra on H.

1. Suppose A1, . . . , AN P M are normal and strongly commuting, and f is a bounded
Borel function on CN . Then fpA1, . . . , ANq P M.

2. Let A P EndpHq with left (resp. right) polar decomposition A “ UH (resp. A “

KU ). Then A belongs to M if and only if both U and H (resp. both U and K)
belong to M.

3. Any element in M is a linear combination of four unitary elements in M.

Proof. 1. Obvious when f is a polynomial of z1, z1, . . . , zN , zN , and hence true
when f is continuous on SppT1, . . . , TNq by Prop. 2.12 and Stone-Weierstrass the-
orem. The general case follows from Lemma 2.9 and Thm. 2.11.

2. It is clear that U,H P M (resp. K,U P M) implies A P M. Conversely, we
assume A P M. Then A˚ P M since M is a ˚-algebra. So A˚A,AA˚ P M and
hence, by part 1, H “

?
A˚A,K “

?
AA˚ belong to M.

We show that U P M. For each r ą 0, define fr P L8pr0,`8qq to be
fpxq “ x´1χpr,`8q. Then by part 1, we have fpT q P M and hence Uχpr,`8qpT q “

UTfrpT q “ AfrpT q P M. As r Ñ 0, χpr,`8q converges to χp0,`8q pointwise. So by
Thm. 2.11, we see that χpr,`8qpT q converges strongly to χp0,`8qpT q, which shows
Uχp0,`8qpHq P M. Recall our assumption in polar decomposition that the source
space ςpUq equals RngpHq. The spectral theorem for H shows that the projection
onto RngpHq is χp0,`8qpHq. So U “ Uχp0,`8qpHq belongs to M.

3. AnyA P M is a linear combination of two self-adjoint elments in M, namely
A ` A˚ and ipA ´ A˚q. Any self-adjoint A P M satisfying ∥A∥ď 1 (and hence
SppAq Ă r´1, 1s) is a sum of two unitary elements in M: A “ f`pAq ` f´pAq,
where f˘pxq “ x ˘ i

?
1 ´ x2.
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It follows immediately that a bounded operator A commutes strongly with a
closed T if and only if the phase of A and

?
A˚A (or

?
AA˚) commutes strongly

with T .

Remark 6.11. The above proof indicates why, for the problem of (strong) com-
mutativity, it is not enough to consider C˚-algebras, namely, norm-closed ˚-
subalgebras of EndpHq: The phase U of a bounded operator A cannot in general
be approximated in the norm topology by linear combinations of multiplications
and powers of A,A˚.

The close relation between strong/weak operator topology and
strong/adjoint commutativity is also indicated by the following celebrated
theorem of von Neumann. This result has some similarities with Theorem 5.8 for
closed operators.

Theorem 6.12 (Bicommutant theorem). Let M be a unital ˚-subalgebra of EndpHq.
Then the following are equivalent.

(a) M is closed under strong operator topology (i.e., is a von Neumann algebra).

(b) M is closed under weak operator topology.

(c) M “ M2.

(d) M “ S1 where S is a set of closed operators on H.

Proof. We have (c) ñ (b) and (b) ñ (a). The first arrow is due to a routine check
that the commutant of any set of bounded operators is weakly closed, the second
one is obvious.

We also have (c) ñ (d) and (d) ñ (a). The first arrow is obvious, and the second
one is by Prop. 6.2. So it remains to show (a) ñ (c).

We assume (a), and show that for each ξ1, . . . , ξN P H, A P M2, and ϵ ą 0, there
exists B P M such that ∥Aξj ´ Bξj∥ă ϵ for each 1 ď j ď N .

We first consider the case N “ 1 and ξ1 “ ξ. Let e be the projection of H onto
the closure of Mξ “ txξ : x P Mu. For each x P M, since x leaves Mξ (and hence
its closure) invariant, we see xe “ exe. Similarly, we have x˚e “ ex˚e, whose
adjoint gives ex “ exe. So xe “ ex. Similarly x˚e “ ex˚. This proves e P M1.
Choose any A P M2. Then A commutes with e, which shows Ae “ Ae2 “ eAe,
i.e A leaves Mξ invariant. In particular, Aξ belongs to Mξ, which thus could be
approximated by some Bξ where B P M.

Now, we consider the general case ofN vectors. Let M act on
ÀN

1 H “ HbCN

diagonally by πpxqpξ1, . . . , ξNq “ pxξ1, . . . , xξNq. πpMq (the set of all πpxq) is a
unital ˚-subalgebra of EndpHq. By easy matrix calculation, one verifies that its
commutant πpMq1 equals M1 b EndpCNq, i.e., the set of N ˆ N matrices whose
elements are in M1. Its commutant is then πpM2q, the set of all y P M2 acting
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diagonally on
ÀN

1 H. Thus, by the result of the previous paragraph, for each
A P M2 and ϵ ą 0 one can find B P M such that ∥pπpAq ´ πpBqqξ∥ă ϵ where we
set ξ “ pξ1, . . . , ξNq. This shows ∥pA ´ Bqξj∥ă ϵ for each j.

Remark 6.13. In the above theorem, it can be shown that M “ M2 if and only
if M is closed under strong* operator topology, whose open sets are unions of
tT P EndpHq : ∥Tξj ´ T0ξj∥ă ϵ, ∥T ˚ξj ´ T ˚

0 ξj∥ă ϵ, 1 ď j ď Nu (where T0 P

EndpHq, N P N, ξ1, . . . , ξN P H, ϵ ą 0). Thus, M is a von Neumann algebra iff for
every net T‚ P M such that T‚ and T ˚

‚ converge strongly to T, T ˚ respectively, we
have T P M.

Proof. The only if part is obvious. For the if part, assume M is strongly* closed,
and choose A P M2. As argued in the proof of Thm. 6.12, A belongs to the
strong operator closure of M, and hence belongs to the weak operator closure.
Therefore, for each ξ P H, pAξ,A˚ξq P H ‘ H is in the weak closure of C :“
tpBξ,B˚ξq : B P Mu. Since C is convex, by Hahn-Banach separation theorem,
pAξ,A˚ξq is in the (strong) closure of C.

As indicated in the proof of Thm. 6.12, letting π be the direct sum representa-
tion of M on

ÀN
1 H, we have πpMq2 “ πpM2q. Applying the first paragraph to

πpMq instead of M, we see that for any ξ “ pξ1, . . . , ξNq P
ÀN

1 H and A P M2,
pπpAqξ, πpAq˚ξq can be approximated by pπpBqξ, πpBq˚ξq where B P M. Thus A is
in the strong* closure of M, and hence A P M.

The following theorem indicates how a set of bounded operators can approx-
imate its double commutant.

Theorem 6.14. Let G be a set of bounded operators on H. Let A be the smallest unital
˚-subalgebra of EndpHq containing G. Let A be either the strong* or the strong or the
weak operator closure of A in EndpHq. The following are true.

1. G1 “ A1 “ A1.

2. A “ G2.

Note that A is the set of linear combinations of multiplications of elements of
t1u Y G Y tx˚ : x P Gu.

Proof. That G Ă A Ă A shows G1 Ą A1 Ą A1
. It is direct to check that any

element commutes strongly/adjointly with G commutes strongly with those in A
and moreover those in A. (One may also use Prop. 6.2.) This proves part 1. Part
two follows from the bicommutant theorem.

As a consequence, we see that any self-adjoint bounded operator H P G2 can
be approximated strongly by self-adjoint operators of A. (Indeed, we can find a
net A‚ P A converging strongly* to H . So pA‚ ` A˚

‚q{2 converges strongly to H .)
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Theorem 6.14 provides us with a useful method of showing that a bounded
operator A can be approximated strongly or weakly by elements of A: instead of
explicitly constructing the approximation, one checks that A commutes adjointly
with any element in G1. Moreover, it suffices to check that A commutes strongly
with a small collection F of bounded or closed operators which generates G1, i.e.,
which satisfies F2 “ G1. Then A P F1 “ F3 “ G2 “ A. This method has a Hilbert
space analog: to show that a subspace W of a Hilbert space H is dense, one shows
that any vector in H whose inner product with all elements of W vanishes is 0.
Such algebraic verification is often easier than explicitly constructing approxima-
tions.

In the case that we have a set of unbounded closed operators G, the study of
G2 can be reduced to the bounded case via polar decompositions.

Theorem 6.15. Let G be a set of closed operators on H. For each T , we let UT be its
phase, and let HT be one of

?
T ˚T and

?
TT ˚. Then G2 “ tUT , p1 ` HT q´1 : T P Gu2.

Proof. By Prop. 6.10, it suffices to show that any unitary operator V commutes
strongly with every T iff it commutes strongly with each UT and p1 ` HT q´1.
Recall Prop. 6.5. We treat the case HT “

?
T ˚T as the other case is similar.

V TV ˚ “ pV UTV
˚qpV HTV

˚q is the left polar decomposition of V TV ˚: indeed,
V HTV

˚ is clearly positive; we have RngpHT q “ ςpUT q, so RngpV HTV ˚q “ V HT “

V ςpUT q “ ςpV UV ˚q. By the uniqueness of polar decomposition in Thm. 5.5,
we see that V TV ˚ “ T if and only if V UTV ˚ “ U and V HTV

˚ “ HT . Note
that p1 ` V HTV

˚q´1 “ V p1 ` HT q´1V ˚ since V is unitary. So V HTV
˚ “ HT iff

V p1 ` HT q´1V ˚ “ p1 ` HT q´1. This finishes the proof.

It follows immediately that a closed operator T is affiliated with a von Neu-
mann algebra M (i.e., tT u2 Ă M) if and only if its phase and one of p1`

?
T ˚T q´1

and p1 `
?
TT ˚q´1 are in M.

Definition 6.16. Let T, S be closable operators on H. We say T and S commute
strongly if tT u2 commutes (adjointly) with tSu2, i.e. tT u2 Ă tSu1. In the case that
S, T are closed and at least one of them is bounded, this definition agrees with
that in Def. 6.3.

Proof. We check that the current definition agrees with the previous one when
S is bounded and T is closed. S commutes strongly with T iff tSu Ă tT u1 iff
tSu2 Ă tT u3 iff tSu2 commutes (adjointly) with with tT u2.

Corollary 6.17. Let S, T be closed operators on H with phases US, UT respectively. Let
HS (resp. HT ) be one of

?
S˚S,

?
SS˚ (resp.

?
T ˚T ,

?
TT ˚). Then the following are

equivalent.

1. S and T commute strongly.

2. US and p1 ` HSq´1 commute adjointly with UT and p1 ` HT q´1.
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3. US and p1 ` HSq´1 commute strongly with T .

Proof. The equivalent of 1 ô 3 and 2 ô 3 are immediate from the above definition
and Theorem 6.15.

Corollary 6.18. Let S,T be two sets of closed operators on H. Then S2 commutes
(adjointly) with T2 (i.e. S2 Ă T3 “ T1) if and only if every S P S and T P T commute
strongly.

Proof. Take left polar decompositions S “ USHS, T “ UTHT . Then each S and T
commute strongly iff each US, p1 ` HSq´1 commute strongly with UT , p1 ` HT q´1,
iff S and T commute strongly where S “ tUS, p1 ` HSq´1 : S P Su and T “

tUT , p1 ` HT q´1 : T P Tu, iff S Ă T1, iff S2 Ă T3 “ T1. By theorem 6.15, we have
S2 “ S2 and T1 “ T1.

7 Spectral theorem for strongly commuting normal
closed operators

Definition 7.1. A closed operator T on H with phase U satisfying the following
equivalent conditions is called normal:

1. T ˚T “ TT ˚.

2. U is normal and commutes strongly with
?
T ˚T .

3. U is normal and commutes strongly with
?
TT ˚.

4. T commutes strongly with T .

In particular, self-adjoint operators are normal.

Proof of equivalence. By Cor. 6.17, 4 is equivalent to both 2 and 3. Thus, it suffices
to prove the equivalence of 1 and 2.

Let H :“
?
T ˚T and K :“

?
TT ˚. Part 1 is equivalent to H “ K. Note that

by Remark 5.6, we have K “ UHU˚ and H “ U˚KU . Suppose H “ K. Then
ςpUq “ RngpHq equals τpUq “ RngpKq, so U˚U “ UU˚, which shows U is normal.
We haveH “ UHU˚ andH “ U˚HU . The first relation shows U˚H “ U˚UHU˚ “

HU˚ since U˚U projects onto ςpUq “ RngpHq. (Recall Exercise 4.8.) Likewise, the
second equation shows UH “ UU˚HU “ HU where τpUq “ ςpUq “ RngH is
used. So U commutes strongly with H .

Conversely, suppose U is normal and commutes strongly with H . UH Ă HU
implies UHU˚ Ă HUU˚ “ HU˚U “ H where the last equality is due to ςpUq “

RngpHq. Similarly, U˚H Ă HU˚ implies U˚HU Ă HU˚U “ H and hence H “

UU˚HUU˚ Ă UHU˚. So H “ UHU˚ “ K.
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Example 7.2. Let X be a measure space with a set of measures tµn : n P Nu. Let
f : X Ñ C be Borel. Let u : X Ñ C be equal to upxq “ fpxq{|fpxq| when fpxq ‰ 0,
and upxq “ 0 when fpxq “ 0. Then one checks easily that Mf “ MuM|f | “ M|f |Mu

gives the left and right polar decompositions of Mf . Thus Mf is normal.

Spectral theorem says that any finitely many strongly commuting normal op-
erators are simultaneously unitarily equivalent to some complex Borel functions
acting as multiplication on the Hilbert space given in Example 7.2.

The meaning that the closed operators T1, . . . , TN on a Hilbert space H are
normal and commute strongly (with each other) is clear: Ti commutes strongly
with Tj for each 1 ď i, j ď N .

Theorem 7.3 (Spectral theorem). Let T1, . . . , TN be strongly commuting normal closed
operators on H. Then there exist a set pµnqnPN of finite Borel measures on CN , and also a
unitary map

U : H Ñ
à

nPN

L2
pCN , µnq

satisfying for every 1 ď j ď N that

UTjU
˚

“ Mzj (7.1)

Here we let zj be j-th standard coordinate of CN , i.e., the one sending
pζ1, . . . , ζNq to ζj .

Proof. Step 1. Let Tj “ VjHj “ HjVj be the polar decomposition of Tj , where
Hj ě 0 and Vj is the phase. Let Rj “ p1 ` Hjq

´1. By Cor. 6.17, V1, R1, . . . , VN , RN

are strongly commuting normal bounded operators. By the spectral Thm. 2.8,
after applying a unitary map on H, one may assume that H “

À

nPN L
2pX, νnq

where X “ C2N , νn is a finite Borel measure on X , Vj “ Mz2j´1
, and Rj “ Mz2j .

Let πk : C2N Ñ C be the projection onto the k-th component (where 1 ď k ď

2N ). Since Vj is a partial isometry, we must have νnpπ´1
2j´1pCzpS1 Y t0uqqq “ 0 for

all n. (Otherwise, V ˚
j Vj “ M|z2j´1|2 will not be a projection.) Since 0 ď Rj ď 1 and

Rj is injective, we must have νnpπ´1
2j pCzp0, 1sqq “ 0. Therefore, we may assume

that X “
`

pS1 Y t0uq ˆ p0, 1s
˘N .

Let R` “ r0,`8q and

Y “ pS1
Y t0uq ˆ R`

Applying Prop. 4.6 to the homeomorphism Y N Ñ X sending pu1, t1, . . . , uN , tNq

to pu1, p1 ` t1q
´1, . . . , uN , p1 ` tNq´1q, we see that one may assume that H “

À

n L
2pY N , ωnq where ωn is a finite Borel measure on Y N and

Vj “ Mvj Rj “ Mp1`xjq´1
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Here, vj, xj denote the p2j´1q-th and the 2j-th standard coordinates of Y N . Hence

Hj “ Mxj

Step 2. Since V ˚
j Vj is the projection onto RngpHjq, each νn is supported on ZN

where

Z “ pS1
ˆ Rą0q Y pt0u ˆ t0uq

In fact, if this is not true, then there exist n, j such that νnpAjq ` νnpBjq ą 0 where

Aj “ Y ˆ ¨ ¨ ¨ ˆ Y ˆ S1
ˆ t0u

looomooon

j-th component

ˆY ˆ ¨ ¨ ¨ ˆ Y

Bj “ Y ˆ ¨ ¨ ¨ ˆ Y ˆ t0u ˆ Rą0
loooomoooon

j-th component

ˆY ˆ ¨ ¨ ¨ ˆ Y

We view χAj
and χBj

as elements of H. Then χAj
P RngpV ˚

j Vjq and χAj
K RngpHjq.

So we must have χAj
“ 0 and hence νnpAjq “ 0. Similarly, we have χBj

P RngpHjq

and VjχBj
“ 0 (and hence χBj

K RngpV ˚
j Vjq). So χBj

“ 0, and hence νnpBjq “ 0.
This gives a contradiction.

Now, we can assume that H “
À

n L
2pZN , ωnq and Vj “ Mvj , Hj “ Mxj . Ap-

plying Prop. 4.6 to the Borel isomorphism ΦN : ZN Ñ CN where Φ : Z Ñ C
is the Borel isomorphism sending puj, tjq to ujtj , we see that there is a unitary
map U : H Ñ

À

n L
2pCN , µnq (where µn is a finite Borel measure on CN ) such

that U´1MzjU equals Mvjxj . One checks easily that Mvjxj equals MvjMxj . (In
particular, their domains are the same, being the L2-functions whose multipli-
cation by xj are L2 (equivalently, whose multiplication by vjxj are L2).) Therefore
Mvjxj “ VjHj “ T .

8 Approximating unbounded closed operators by
bounded ones

We begin with the following observation. Note the easy fact that any (densely
defined) continuous closed operator from H1 to H2 must be bounded, i.e., have
domain H1.

Proposition 8.1. Let T : H1 Ñ H2 be a closed operator, and let A be a bounded operator
on H1. Assume TA has dense domain.

1. TA is closed.

2. If the linear map TA : DpTAq Ñ H2 is continuous, then TA is an (everywhere
defined and) bounded operator from H1 to H2. In particular, AH1 Ă DpT q.

43



Proof. If ξn P DpTAq converges to ξ and TAξn converges, then Aξn P DpT q con-
verges to Aξ. Since T is closed, we conclude that Aξ P DpT q and TAξ is the limit
of TAξn. This proves that TA is closed. Alternatively, the fact that pA˚T ˚q˚ “ TA
(cf. Prop. 3.4) shows that pA˚T ˚q˚ is densely defined and hence closed; therefore
TA is closed.

Now assume TA is continuous. Since any closed continuous operator is (ev-
erywhere defined and) bounded, TA is in particular so.

Definition 8.2. Let T be a closable operator from H1 to H2. A net E‚ “ pEαqαPA

of projections on H1 is called a net of right bounding projections for T if the
following hold:

• E‚ is increasing. Namely, if α ď β, then RngpEαq Ă RngpEβq (equivalently,
Eα “ EαEβ).

• E‚ converges strongly to 1H1 . Equivalently,
Ť

RngpE‚q “ H1.

• For each α P A there exists a bounded operator Fα on H2 such that

FαT Ă TEα,

limF‚ converges strongly to some F P EndpH2q.

In particular, TEα has dense domain (containing DpT q).

• Each TEα is continuous, equivalently, T |RngpEαq is continuous.

If we can choose F‚ “ E‚, we say E‚ is a net of (two-sided) bounding projections
for T . When T is closed, a net of left bounding projections for T is by definition
a net of right bounding projections for T ˚.

Remark 8.3. By Prop. 6.2, if E‚ is a net of right (resp. two-sided) bounding pro-
jections for a closable T , then it is so for T . Then (by Prop. 8.1) each TEα is
(everywhere defined and) bounded.

Also by Prop. 6.2, a net of bounding projections for T is also a net of bounding
projection for T ˚.

Example 8.4. Let T “ V H “ KV be the left and right polar decomposition for a
closed operator T : H1 Ñ H2. Let H1 be unitarily equivalent via a unitary operator
U to

À

nPN L
2pr0,`8q, µnq where each µn is a positive finite Borel measure, such

that UHU˚ “ Mx where x is the standard coordinate function of r0,`8q. Then
Mχr0,rs

increases and converges to 1 as r Õ `8. It is clear that Mχr0,rs
is a net of

bounding projections for Mx.
Let Er “ U˚Mχr0,rs

U . Then Er is a net of bounding projections for H , and
hence a net of right bounding projections for T . Fr :“ V ErV

˚ is a net of bounding
projections for K “ V HV ˚, and hence (noting T ˚ “ V ˚K) a net of left bounding
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projections for T . We have FrT Ă TEr. We say E‚, F‚ are respectively right and
left bounding projections for T via polar decompositions.

We note that each Er is in the von Neumann algebra generated by p1 ` Hq´1

(and is hence in tT u2), and similarly Fr is in the von Neumann algebra generated
by p1 ` Kq´1 (and is hence in tT u2). (This fact will be generalized later, cf. Thm.
9.2.)

Proof. The statement about bounding projections is easy to check. Note that
FrT Ă TEr is from ErH Ă HEr.

We explain why each Er is in tp1 ` Hq´1u2; equivalently, we show Mχr0,rs
P

tMhu2 where h “ p1 ` xq´1. This result follows from the general Thm. 9.2. Thus,
the following proof can be skipped. However, since the proof is elementary, we
include it here.

Note that p1 ` Mxq´1 “ Mh. Clearly Mf˝h belongs to tMhu2 if f is a polyno-
mial (since Mf˝h “ fpMhq). Note that h takes values in r0, 1s. Then, by Stone-
Weierstrass theorem, Mf˝h P tMhu2 whenever f P Cpr0, 1sq. Now choose a se-
quence fn P Cpr0, 1sq with ∥fn∥8ď 1 and converging pointwise to χr1{p1`rq,1s. Then
fn ˝h is uniformly (with respect to n and r0,`8q) bounded and converging point-
wise to χr1{p1`rq,1s ˝ h “ χr0,rs. The dominated convergence theorem shows that
Mfn˝h (as a sequence of multiplication operators) converges strongly to Mχr0,rs

.
This proves Mχr0,rs

P tMhu2.

The reason we are interested in left and right bounding projections is due to
the following property.

Theorem 8.5. Let E‚ “ pEαqαPA be a net of right bounding projections for a closable
unbounded operator T : H1 Ñ H2. Then the dense subspace

D0 :“
ď

αPA

Eα
`

DpT q
˘

is a subspace of DpT q and is a core for T .

In particular, D0 is dense in H1. Note that if T is closed, then by Prop. 8.1, TEα
is bounded, and hence EαH Ă DpT q. It follows that

Ť

αPAEαpHq is a core for T .

Proof. Let F‚ converge strongly to F P EndpH2q. That FαT Ă TEα shows that
EαDpT q Ă DpT q. This proves D0 Ă DpT q. Suppose ξ P DpT q. Then E‚ξ belongs
to D0 and converges to ξ (since E‚ Ñ 1). Moreover, TE‚ξ “ F‚Tξ converges to
FTξ. Therefore pξ, FTξq belongs to the closure of the graph of T (i.e., belongs
to G pT q). So FTξ “ Tξ “ Tξ. Hence pξ, T ξq P G pT q can be approximated by
pE‚ξ, TE‚ξq. So D0 is a core for T .

The above proof shows:
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Lemma 8.6. Assume T : H1 Ñ H2 is closable. Let F P EndpH2q be the strong operator
limit of F‚ in Def. 8.2. Then

FT “ T. (8.1)

Thus, to determine a closable T , it suffices to restrict to each RngpEαq on which
T is continuous (and hence (everywhere defined and) bounded when T is closed).

We give another approximation theorem, which is more useful for the strong
commutativity problem.

Theorem 8.7. Let E‚ “ pEαqαPA be a net of right bounding projections for a closed
operator T on H. Then tT u2 Ă tTEα : α P Au2. If moreover each Eα is in tT u2 (e.g. the
case in Example 8.4), then tT u2 “ tTEα : α P Au2.

As an application, we get an equivalent condition for the strong commuta-
tivity of closed operators T and S: that the bounded operator TEr commutes
strongly with S, where Er is as in Example 8.4.

Proof. Choose any A P tTE‚u1. Then ATEα “ TEαA as (everywhere defined)
bounded operators (since A and TEα are both bounded, notice Prop. 8.1). Choose
any ξ P DpT q. Then EαAξ converges to Aξ. Also TEαAξ “ ATEαξ “ AFαTξ
converges to AFTξ since the net Fα converges strongly to F . By the closedness of
T , we haveAξ P DpT q and TAξ “ AFTξ. By Lemma 8.6, FTξ “ Tξ. SoAT Ă TA.
Similarly, A˚T Ă TA˚.

Now assume each Eα P tT u2. We shall show that each TEα is in tT u2, equiv-
alently, that each TEα commutes adjointly with tT u1. Choose any A P tT u1 (i.e. A
commutes strongly with T ). Note that Eα P tT u2 implies A commutes adjointly
with Eα. Then AT Ă TA, so ATEα Ă TAEα “ TEαA. Similarly, A˚T Ă TA˚

implies A˚TEα Ă TEαA
˚. So A commutes adjointly with TEα.

The following theorem gives an application of Thm. 8.7. It is not used else-
where in this note.

Theorem 8.8. Let S, T be strongly commuting closed operators on H. Assume ξ P

DpTSq X DpT q. Then ξ P DpST q and STξ “ TSξ.

Proof. LetEr, Fr be nets of right resp. left bounding projections of T as in Example
8.4, which satisfies TEr P tT u2 also by Thm. 8.7. Then these three commute
adjointly with tSu2, equivalently, commute strongly with S. So TErS Ă STEr. In
particular, TErDpSq Ă DpSq.

Choose ξ P DpTSq X DpT q. Then TErξ P DpSq, and STErξ “ TErSξ “ FrTSξ.
As r Ñ `8, we have TErξ “ FrTξ Ñ Tξ (since ξ P DpT q) and STErξ “ FrTSξ Ñ

TSξ (since ξ P DpTSq). We see pTErξ, STErξq approaches pTξ, TSξq. Since S is
closed, pTξ, TSξq must be on the graph of S. So Tξ P DpSq and STξ “ TSξ.
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The above theorem does not imply ST “ TS when S, T commute strongly,
since we don’t know whether DpST q equals DpTSq or not.

In the case that we have bounding projections for several strongly commuting
normal closed operators T1, . . . , TN on H, we have an approximation for polyno-
mials of these operators and adjoints.

Let us for now assume T1, . . . , TN are closed, but not necessarily normal
or strongly commuting. To begin with, a polynomial ppT1, T

˚
1 , . . . , TN , T

˚
Nq of

T1, T
˚
1 , . . . , TN , T

˚
N is by definition a finite linear combination of multiplications

and powers of T1, T ˚
1 , . . . , TN , T

˚
N , e.g.

?
2T 2

1 pT ˚
1 q

5T 6
3 T

3
1 ´ p1 `

?
2iqpT ˚

4 q
7T 3

1 pT ˚
4 q

2T4.

We also define its adjoint polynomial p˚pT1, T
˚
1 , . . . , TN , T

˚
Nq in an obvious way, by

sending each complex number to its conjugate, the order of operators is reversed,
and Tj and T ˚

j are exchanged. For instance, the adjoint polynomial of the above
expression is

?
2pT ˚

1 q
3
pT ˚

3 q
6T 5

1 pT ˚
1 q

2
´ p1 ´

?
2iqT ˚

4 T
2
4 pT ˚

1 q
3T 7

4 .

By Prop. 3.4, if p is densely defined, then

p˚
pT1, T

˚
1 , . . . , TN , T

˚
Nq Ă ppT1, T

˚
1 , . . . , TN , T

˚
Nq

˚. (8.2)

In particular, if both pp¨ ¨ ¨ q and p˚p¨ ¨ ¨ q are densely defined, then pp¨ ¨ ¨ q is closable
since the domain of its adjoint contains a dense subspace, which is the domain of
p˚p¨ ¨ ¨ q.

Note that even in the case that T1, . . . , TN are normal and commute strongly, it
is not a priori true that each Ti and Tj (or T ˚

j ) commute, due to the domain issue
mentioned above.

Proposition 8.9. Let T1, . . . , TN be closed operators on H.

1. If T1, . . . , TN are normal and strongly commuting, then there is a sequence En
of (two-sided) bounding projections for T1, . . . , TN (and hence for T ˚

1 , . . . , T
˚
N ) in

tT1, . . . , TNu2.

2. Suppose there is a net E‚ of (two-sided) bounding projections for T1, . . . , TN .
Let ppT1, T

˚
1 , . . . , TN , T

˚
Nq be a polynomial of T1, T

˚
1 , . . . TN , T

˚
N . Then

ppT1, T
˚
1 , . . . , TN , T

˚
Nq is densely defined and closable, andE‚ is also a net of bound-

ing projections for ppT1, T
˚
1 , . . . , TN , T

˚
Nq (and hence for its closure).

Proof. 1. We assume the setting of Thm. 7.3. Let Dr be the open disc in C with
center 0 and radius r. We let En “ U˚MχDnˆ¨¨¨ˆDn

U . Then one checks easily that
pEnqnPN is a sequence of bounding projections for T1, . . . , TN .
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2. Since EαTj Ă TjEα and TjEα is continuous (and hence bounded by
Prop. 8.1), by (6.1b) of Prop. 6.6, we have EαH “ EDpTjq where the lat-
ter is a Tj-invariant subspace of DpTjq. Similarly, EαH is a T ˚

j -invariant sub-
space of DpT ˚

j q. Therefore, EαH is a ppT1, T
˚
1 , . . . , TN , T

˚
Nq-invariant subspace of

the domain of ppT1, T
˚
1 , . . . , TN , T

˚
Nq. Thus ppT1, T

˚
1 , . . . , TN , T

˚
Nq has domain con-

taining D0 “
Ť

αPAEαH. Similarly, p˚p¨ ¨ ¨ q has dense domain. Thus, by (8.2),
ppT1, T

˚
1 , . . . , TN , T

˚
Nq is closable since its adjoint has dense domain. Using Prop.

3.2, one checks easily that Eαpp¨ ¨ ¨ q Ă pp¨ ¨ ¨ qEα. Clearly pp¨ ¨ ¨ q is bounded when
restricted to EαH for each α. This proves that E‚ is a net of bounding projection
of pp¨ ¨ ¨ q.

9 Unbounded Borel functional calculus

In this section, we let BpXq be the unital ˚-algebra of complex-valued (non-
necessarily bounded) Borel functions on a topological spaceX . The algebra struc-
ture is given in an obvious way, and the ˚-structure is given by f˚pxq ” fpxq “

fpxq. We let BpXq be the unital ˚-subalgebra of bounded Borel functions.
We fix strongly commuting normal closed operators T1, . . . , TN on H. In the

following statement of the theorem, to avoid confusion of notations, we write
the closure of a closable operator A as A˚˚. Let zj denote the function sending
pζ1, . . . , ζNq to ζj .

Theorem 9.1 (Unbounded Borel functional calculus). There is a unique map π from
BpCNq to the set of closed normal operators on H satisfying the following conditions for
each f, g P BpCNq, a, b P C.

1. πpfq commutes strongly with πpgq.

2. πpzjq “ Tj for each 1 ď j ď N .

3. πp1q “ 1, πpaf ` bgq “
`

aπpfq ` bπpgq
˘˚˚, πpfgq “

`

πpfqπpgq
˘˚˚, πpf˚q “

πpfq˚. (Note Prop. 8.9 for the closability.)

4. If f P BpCNq, then πpfq is a bounded linear operator on H.

5. Assume f P BpCNq, and pfαqαPA P BpCNq is a net such that

lim

ż

X

|f ´ f‚|
2dµ “ 0 (9.1)

for each finite Borel measure µ on CN . Then πpf‚q Ñ πpfq strongly.

Moreover, for any π satisfying the above conditions, if we choose spectral decomposition
as in Thm. 7.3, then for each f P BpCNq we have UπpfqU˚ “ Mf .
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We write

fpT1, . . . , TNq :“ πpfq (9.2)

if we want to stress the dependence on the operators.

Proof of existence. Choose spectral decomposition as in Thm. 7.3. We define
πpfq “ U˚MfU for each f P BpCNq. By Example 7.2, Mf is normal with left
and right polar decomposition Mf “ MvfM|f | “ M|f |Mvf , where vf is defined
to be f{|f | when f ‰ 0, and 0 otherwise. So πpfq is normal with left and right
polar decompositions πpfq “ πpvf qπp|f |q “ πp|f |qπpvf q. Clearly πpzjq “ Tj , and
πpfq is bounded when f is so. For any other g P BpCNq, it is clear that Mvg and
p1`M|g|q

´1 “ Mp1`|g|q´1 commute strongly with Mvf and p1`M|f |q
´1 “ Mp1`|f |q´1 .

So Mf ,Mg commute strongly by Cor. 6.17. Hence πpfq, πpgq commute strongly.
Clearly πp1q “ 1. For each n P Z`, let Ωn Ă CN be the set of all points at which

|f |, |g|, |af`bg|, |fg| ď n. AsMχΩn
commute strongly withMf ,Mg,Mfg (as proved

above), it is clear that MχΩn
is a sequence of (two-sided) bounding projections

for Mf ,Mg,Mfg. So En “ U˚MχΩn
U is a sequence of bounding projections for

πpfq, πpgq, πpfgq, and also for πpfqπpgq by Prop. 8.9. It is clear that πpfgq and
πpfqπpgq are equal on each RngpEnq (noting that URngpEnq “ RngpMχΩn

q is the set
of pf‚q P

À

L2pCN , µnq which are 0 outside Ωn). So πpfgq and πpfqπpgq are equal
on D0 :“

Ť

nRngpEnq, which by Thm. 8.5 is a core for both operators. So they are
the same closed operators. The same method shows also πpaf ` bgq “ πpaf ` bgq.
That πpfq˚ “ πpf˚q follows from the fact that both sides have core D0 (since E‚ is
also a bounding sequence for πpfq˚).

Finally, for bounded Borel functions, the strong convergence of πpf‚q Ñ πpfq

for a net f‚ in BpCNq converging to f in the L2pCN , µq norm (for every finite posi-
tive Borel µ) can be proved using exactly the same method as in Thm. 2.11.

Proof of uniqueness. Step 1. If Ω is a Borel subset of CN , then πpχΩq˚ “ πpχ˚
Ωq “

πpχΩq and πpχΩq2 “ πpχ2
Ωq “ πpχΩq shows πpχΩq is a projection. If f P BpCNq is

bounded on Ω, then πpχΩqπpfq Ă πpχΩqπpfq “ πpfχΩq. Also, since πpfqπpχΩq has
closure πpfχΩq, by Prop. 8.1, we learn that πpfqπpχΩq is bounded and equals its
closure. We conclude πpχΩqπpfq Ă πpfqπpχΩq. It then follows that if Ω‚ “ pΩαqαPA

is an increasing net of Borel subsets of CN satisfying that
Ť

αΩα “ CN , and that on
each Ωα the function f is bounded, then πpχΩ‚

q is a net of (two-sided) bounding
projections for πpfq.

By Thm. 8.5, the closed operator πpfq is determined by its restriction to
each RngpπpχΩαqq, and hence determined by πpfqπpχΩαq “ πpfχΩαq, where
fχΩα P BpCNq. Since we can always find such Ω‚ for f (e.g., Ωn is the set of all
points at which |f | ă n), it suffices to prove the uniqueness of π on BpCNq.
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Step 2. Choose f P BpCNq with positive values. We claim that πpfq is a posi-
tive closed operator. We have

πpfq “ πpf
1
2 qπpf

1
2 q Ą πpf

1
2 qπpf

1
2 q “ πpf

1
2 q

˚πpf
1
2 q

since the conjugate of f
1
2 is itself. Let A “ πpf

1
2 q˚πpf

1
2 q, which is positive and

hence self-adjoint. πpfq is also self-adjoint since f˚ “ f . So πpfq Ą A implies
πpfq˚ Ă A˚, and hence πpfq Ă A. So πpfq equals A, which is therefore positive.

Step 3. Choose f P BpCNq, and let Ω Ă CN be the subset of all points at which
f ‰ 0. We claim Rngpπpfqq “ RngpπpχΩqq. (Recall that πpχΩq is a projection.)
Note that f “ fχΩ. So πpχΩqπpfq “ πpχΩfq “ πpfq, which shows Rngpπpfqq Ă

RngpπpχΩqq.
Conversely, for each n P Z` we let Ωn Ă CN be the set of all points at

which 1{n ă |f |. Then the l8-norms of χΩn are uniformly bounded, and χΩn

converges to χΩ in the L1pCN , µq-norm for any positive finite Borel µ. So πpχnq

converges strongly to πpχq. Thus, to prove Rngpπpfqq “ RngpπpχΩqq, it suffices
to show RngpπpχΩnqq Ă Rngpπpfqq for each n. Define gn P BpCNq to be 0
outside Ωn and 1{f in Ωn. Then fgn “ χΩn . So πpχΩnq “ πpfqπpgnq proves
RngpπpχΩnqq Ă Rngpπpfqq.

Step 4. We know each πpzjq is uniquely determined. Let vj be zj{|zj| when
zj ‰ 0 and be 0 otherwise. We know that Tj “ πpzjq “ πpvjqπp|zj|q. We claim that
πpvjqπp|zj|q is a left polar decomposition for Tj . Then, by the uniqueness of left
polar decompositions, πpvjq and πp|zj|q are uniquely determined by Tj .

From the previous steps, we know πp|zj|q is positive, and Rngpπp|zj|qq equals
RngpχΩj

q, where Ωj is the set of all points at which zj ‰ 0. Since v˚
j vj “ vjv

˚
j “ χΩj

,
we see that πpvjq is a partial isometry whose source space and target space are
both RngpχΩj

q, which equals Rngpπp|zj|qq. Thus, by Remark 5.7, πpvjqπp|zj|q is
closed (and hence equals Tj), and this product is a left polar decomposition,
which must be that of Tj .

Step 5. Let rj “ p1 ` |zj|q
´1 P BpXq. Then by Prop. 8.1, πp1 ` |zj|qπprjq is a

closed operator, which must be (everywhere defined and) bounded and equals 1.
So πp1 ` |zj|q sends each πprjqξ to ξ, and πprjq is injective (and has dense range
by (1.3) and the fact that πprjq

˚ “ πpr˚
j q “ πprjq.) We conclude πp1 ` |zj|q Ą A

where A is the inverse of πprjq (which is self-adjoint by Example 3.9), and hence
πp1 ` |zj|q “ πp1 ` |zj|q

˚ Ă A˚ “ A. This proves πp1 ` |zj|q equals the A, the
inverse of πprjq. So πprjq is unique since (we have proved) πp1 ` |zj|q is so.

Step 6. Let

Y “
`

S1
ˆ p0, 1q

˘

Y
`

t0u ˆ t1u
˘
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Then we have a Borel isomorphism Φ “ pv1, r1, . . . , vN , rNq : CN Ñ Y N whose
inverse is

Φ´1
pu1, ρ1, . . . , uN , ρNq “ pu1pρ´1

1 ´ 1q, . . . , puNρ
´1
N ´ 1qq

The map g P BpY Nq Ñ πpg ˝Φq P EndpHq satisfies the conditions of the (bounded)
Borel functional calculus for πpv1q, πpr1q, . . . , πpvNq, πprNq in Thm. 2.11. In partic-
ular, if g P BpY q, and if pgnq is a net in BpY q such that lim

ş

Y
|g‚ ´ g|2dν “ 0 for

each finite Borel measure ν on Y , then for each finite Borel measure µ on CN we
have

lim

ż

CN

|g‚ ˝ Φ ´ g ˝ Φ|
2dµ “ lim

ż

CN

|g‚ ´ g|
2dΦ˚µ “ 0

Thus πpg‚ ˝ Φq converges strongly to πpgq.
By Step 5, πpv1q, πpr1q, . . . , πpvNq, πprNq are uniquely determined. Thus, by

Thm. 2.11, πpg ˝ Φq is uniquely determined for each g P BpY Nq. Now, for each
f P BpCNq, writing g “ f ˝ Φ´1, we conclude that πpfq “ πpg ˝ Φq is uniquely
determined.

Theorem 9.2. For each f P BpCNq, fpT1, . . . , TNq is affiliated with tT1, . . . , TNu2.

Proof. If we can prove that fpT1, . . . , TNq commuts strongly with any element U in
M “ tT1, . . . , TNu1, then M Ă tfpT1, . . . , TNqu1, which proves tfpT1, . . . , TNqu2 Ă

tT1, . . . , TNu2. By Prop. 6.10, it suffices to assume U is unitary and prove (cf.
Prop.6.5) that UfpT1, . . . , TNqU˚ “ fpT1, . . . , TNq. Note that this is true when f “

z1, . . . , zN since UTjU˚ “ Tj . Thus, the map π : f P BpCNq ÞÑ UfpT1, . . . , TNqU˚

satisfies all the conditions in Thm. 9.1. So π is the unique functional calculus,
which equals f ÞÑ fpT1, . . . , TNq. This finishes the proof.

An alternative proof: By Thm. 6.15, if we take left polar decomposition of each
Tj “ VjHj , then Vj, p1 ` Hjq

´1 P N :“ tT1, . . . , TNu2. The proof of uniqueness in
Thm. 9.1 shows that any fpT1, . . . , TNq (where f P BpCNq) can be approximated
strongly by polynomials of V1, p1 ` H1q´1, . . . , VN , p1 ` HNq´1. Hence it is in N .
In the general case that g P BpCNq, one constructs bounding projections and uses
Thm. 8.7 to conclude tfpT1, . . . , TNqu2 Ă N .

We discuss compositions of functional calculus. In the following, we write
T1, . . . , TN as T‚ for short.

Theorem 9.3. Let g1, . . . , gL P BpCNq and f P BpCLq. Then

fpg1pT‚q, . . . , gLpT‚qq “ pf ˝ pg1, . . . , gLqqpT‚q. (9.3)

Note that on the left hand side, the functional calculus of g1, . . . , gL is defined
using T‚, and f is defined using g1pT‚q, . . . , gLpT‚q. On the right hand side, we
have the functional calculus of the function f ˝ pg1, . . . , gLq defined using T‚.
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Proof. Define a map π : f P BpCLq ÞÑ pf ˝ pg1, . . . , gLqqpT‚q. It suffices to check that
this is the unique functional calculus for g1pT‚q, . . . , gNpT‚q. Namely, we shall ver-
ify all the conditions in Thm. 9.1 (with Tj replaced by gjpT‚q). The only nontrivial
condition is the last one about continuity. Choose f P BpCLq and pfαqαPA a net
satisfying supαPA∥fα∥l8pCLqă `8 and

ş

CL |fα ´ f |dν Ñ 0 for each finite (positive)
Borel measure ν on CL. Now, for any finite positive Borel measure µ on CN , we
let γ “ pg1, . . . , gLq, and let ν “ γ˚µ which is finite positive Borel measure. Then
by (1.4),

ż

CN

|f ˝ pg1, . . . , gLq ´ fα ˝ pg1, . . . , gNq|dµ “

ż

CL

|f ´ fα|dν

converges to 0. So fα˝pg1, . . . , gLqpT‚q converges strongly to f ˝pg1, . . . , gLqpT‚q.

Corollary 9.4. Let N,L P Z`, and let T1, . . . , TN`L be strongly commuting normal
closed operators on H. Assume f P BpCN`Lq depend only on the first N variables
z1, . . . , zN , and let rf P BpCNq be the restriction of f to CN » CN ˆ t0CLu. Then

fpT1, . . . , TN`Lq “ rfpT1, . . . , TNq.

Proof. Let p : CN`L Ñ CN be the projection on the firstN variables. Then f “ rf ˝p.
So by Thm. 9.3, fpT1, . . . , TN`Lq “ rfpppT1, . . . , TN`Lqq “ rfpT1, . . . , TNq.

Remark 9.5. Define SppT1, . . . , TNq to be the set of all points in CN such that every
open set W containing this point satisfies χW pT1, . . . , TNq ‰ 0. This is a closed
subset of CN , called the joint spectrum of T1, . . . , TN .

If we choose spectral decomposition as in Thm. 7.3, then it is clear that
SppT1, . . . , TNq is the closure of the union of the supports of all µn. From this
description, we see that fpT1, . . . , TNq depends only on the values of f on the joint
spectrum. Also, for f1, . . . , fL P BpCNq, using Thm. 9.3 (by composing character-
istic functions with pf1, . . . , fLq) one sees that

Sppf1pT1, . . . , TNq, . . . , fLpT1, . . . , TLqq Ă pf1, . . . , fLqpSppT1, . . . , TNqq. (9.4)

Remark 9.6. For strongly commuting normal T1, . . . , TN , we have

SppT1, . . . , TNq Ă SppT1q ˆ ¨ ¨ ¨ ˆ SppTNq. (9.5)

Indeed, suppose pλ1, . . . , λNq R SppT1q ˆ ¨ ¨ ¨ ˆ SppTNq. Then one of λ1, . . . , λN is
not in SppTjq, say λ1 R SppT1q. Choose a neighborhood W Ă C of λ1 such that
χW pT1q “ 0. Then Cor. 9.4 shows that χWˆCN´1pT1, . . . , TNq “ χW pT1q “ 0. So
pλ1, . . . , λNq, which has W ˆ CN´1 as a neighborhood, is outside SppT1, . . . , TNq.

Exercise 9.7. Let T be normal. Use spectral theorem to show that SppT q Ă r0,`8q

iff T is positive, that SppT q Ă R iff T is self-adjoint, and that SppT q is compact iff
T is bounded.
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Example 9.8. To see the power of Theorem 9.3, we do an example about von
Neumann algebras and commutants, which can easily be generalized to other
more complicated examples. Let A,B be strongly commuting closed operators
on H, A is self-adjoint and B is positive. We show that tA,Bu2 “ tA ` B2, A3u2.
(Note that by the spectral theorem 7.3, it is clear that A3 is closed.)

Solution. Let C “ A ` B2 and D “ A3. That tA,Bu2 Ą tC,Du2 follows from Thm.
9.2. Note that SppA,Bq Ă SppAq ˆ SppBq Ă X :“ R ˆ r0,`8q. Let pf1, f2q “ pz1 `

z22 , z
3
1q. Then pC,Dq “ pf1, f2qpA,Bq. The range of pf1, f2q is in Y :“ tpw1, w2q P R2 :

w1 ´ 3
?
w2 ě 0u. We can define an inverse function pg1, g2q : Y Ñ X by gpw1, w2q “

p 3
?
w2,

a

w1 ´ 3
?
w2q. Then g ˝ f “ pz1, z2q. So, by Thm. 9.3, pg1, g2qpC,Dq “ pg1 ˝

f1, g2 ˝ f2qpA,Bq “ pA,Bq. By Thm. 9.2 again, we conclude tA,Bu2 Ă tC,Du2.

For each Borel Ω Ă SppT1, . . . , TNq, set

EpΩq “ χΩpT1, . . . , Tnq (9.6)

as in the bounded case. Then following theorem is similar to Thm. 2.13.

Theorem 9.9. Let X “ SppT1, . . . , TNq. For each f P BpXq, a vector ξ P H belongs to
DpfpT1, . . . , TNqq if and only if

ż

X

|f |
2
xdEξ|ξy ă `8.

Moreover, for such ξ, we have

xfpT1, . . . , TNqξ|ξy “

ż

X

fxdEξ|ξy. (9.7)

Due to the above relation, we also write
ż

X

fdE :“ fpT1, . . . , TNq. (9.8)

Proof. Choose a spectral decomposition as in Thm. 7.3, and note that all µn have
supports in X “ SppT1, . . . , TNq. So we may replace CN by X . For each ξ P H, if
we write Uξ “ pfnqnPN P

À

n L
2pX,µnq, it follows easily that

xdEξ|ξy “
ÿ

n

|fn|
2dµn. (9.9)

It is now straightforward to verify the claimed properties.
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10 Self-adjoint operators, Stone’s theorem

We begin this section with a useful criterion on self-adjoint operators.

Theorem 10.1. Let T be a closed and symmetric (i.e. T Ă T ˚) operator on H. The
following are equivalent.

(a) T is self-adjoint.

(b) The ranges of T ` i and T ´ i are both H.

(c) The ranges of T ` i and T ´ i are both dense in H.

Proof. (a) ñ (b): If T is self-adjoint, then SppT q Ă R. By spectral theorem, one
can identify T with the multiplication operator Mx on

À

L2pR, µnq. It is clear that
Mx ˘ i “ Mx˘i are surjective.

(b) ñ (c): Obvious.
(c) ñ (b): That xpT ` iqξ|pT ` iqηy “ xTξ|Tηy ` xξ|ηy “ xΨξ|Ψηy (cf. (5.2)) for

all ξ, η P DpT q shows that RngpT ` iq is unitarily equivalent to RngpΨq “ GpT q

under the unitary map pT ` iqξ ÞÑ Ψξ. So RngpT ` iq is complete since GpT q is so.
So RngpT ` iq must be H. So does RngpT ´ iq for a similar reason.

(b) ñ (a): It suffices to show DpT q “ DpT ˚q. By Prop. 3.4, pT ` iq˚ “ T ˚ ´ i Ą

T´i. Note that T´i is surjective. Thus, if we can show that pT`iq˚ is injective, then
we have pT ` iq˚ “ T ´ i and therefore DpT ˚q “ DpT ˚ ´ iq “ DppT ` iq˚q “ DpT q.

Choose any ξ P DppT ` iq˚q such that pT ` iq˚ξ “ 0. Then xξ|pT ` iqηy “ 0 for
each η P DpT q, namely, ξ is orthogonal to RngpT ` iq “ H. So ξ must be 0.

A one parameter unitary group on H is by definition a strongly continuous
map R Ñ EndpHq, t ÞÑ Ut (i.e., continuous with respect to the strong operator
topology) satisfying that each Ut is unitary, U0 “ 1, and Us`t “ UsUt for each s, t.
It follows that U˚

t “ U´t and Us commutes adjointly with Ut.

Theorem 10.2. Let H be a self-adjoint closed operator on H. Then t ÞÑ eitH is a one
parameter unitary group on H. Moreover, any ξ P H belongs to DpHq if and only if the
limit

lim
tÑ0

eitH ´ 1

t
¨ ξ (10.1)

exists. In that case, the limit is iHξ.

Proof. We have SppHq Ă R since H is self-adjoint. Let E be the resolution of the
identity for H . By properties of functional calculus, it is clear that Ut :“ eitH are
unitary and satisfies U0 “ 1 and Us`t “ UsUt. Since Usξ ´ Utξ “ pUs´t ´ 1qUtξ, to
check the strong continuity, it suffices to check Utξ´ ξ Ñ 0 for each ξ as t Ñ 0. But

∥peitH ´ 1qξ∥2“ xpeitH ´ 1q
˚
peitH ´ 1qξ|ξy “

ż

R
|eitx ´ 1|

2
xdEξ|ξy,
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which converges to 0 by dominated convergence theorem.
We now choose ξ P DpHq and show that the derivative of Utξ at t “ 0 exists

strongly and equals iHξ. We have∥∥∥eitH ´ 1

it
¨ ξ ´ Hξ

∥∥∥2

“

ż

R

ˇ

ˇ

ˇ

eitx ´ 1

it
´ x

ˇ

ˇ

ˇ

2

xdEξ|ξy

“

ż

R

ˇ

ˇ

ˇ

eitx ´ 1

itx
´ 1

ˇ

ˇ

ˇ

2

¨ |x|
2
xdEξ|ξy,

Since ξ P DpHq, we have
ş

Rp1 ` |x|2qxdEξ|ξy ă `8. So by Lemma 10.3 and
dominated convergence theorem, the above expression converges to 0 as t Ñ 0.
This proves that (10.1) converges strongly to iHξ whenever ξ P DpHq.

Conversely, assume ξ P H satisfies that (10.1) converges strongly to iψ P H.
Then using the result from the last paragraph, for any η P DpHq, we have

xξ|Hηy “ lim
tÑ0

xξ|pitq´1
peitH ´ 1qηy “ lim

tÑ0
xp´itq´1

pe´itH
´ 1qξ|ηy “ xψ|ηy. (10.2)

This shows ξ P DpH˚q “ DpHq and Hξ “ H˚ξ “ ψ. This proves ξ P DpHq.

Lemma 10.3. For each h P R ´ t0u we have

ˇ

ˇ

ˇ

eih ´ 1

ih
´ 1

ˇ

ˇ

ˇ
ď 3.

Proof. If |h| ě 1 then the left hand side is ď 3. If |h| ă 1 then

eih ´ 1

ih
´ 1 “ ih

ÿ

nPN

pihqn

pn ` 2q!

whose absolute value is ď |h|e|h| ă 3|h|.

To prove the converse of the above Theorem, we first need:

Lemma 10.4. Let T be a closed operator on H affiliated with an abelian von Neumann
algebra M (i.e., any two elements of M commute (strongly)). Then T is normal, and in
particular DpT q “ DpT ˚q.

Proof. We have tT u2 Ă M. Since M commutes strongly with M (as M is abelian),
tT u2 commutes strongly with tT u2. So T commutes strongly with T . Hence T is
normal by Def. 7.1. We know DpT q “ Dp

?
T ˚T q “ Dp

?
TT ˚q “ DpT ˚q.

Theorem 10.5. Let Ut be a one parameter unitary group on H. Then Ut “ eitH for some
self-adjoint closed operator H on H.
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Proof. We let D0 be the subspace of all ξ such that limtÑ0pUtξ ´ ξq{pitq exists. We
first show that D0 is a dense subspace of H. Indeed, any ξ P H can be approxi-
mated by

ξpfq “

ż

R
fpsqUsξds

where f P C8
c pRq,

ş

R fdt “ 1. (Consider a sequence fn where each fn has support
inside r´1{n, 1{ns. Then ξpfnq Ñ ξ.) Note that the above Riemann integral makes
sense because s ÞÑ Us is strong operator continuous. Thus, all such ξpfq span a
dense subspace of H. We claim ξpfq P D0. Indeed,

Utξpfq “

ż

R
fpsqUs`tξds “

ż

R
fps ´ tqUsξds,

whose derivative at t “ 0 converges in norm to ´ξpf 1q. This proves the claim, and
we see that D0 is dense in H.

We define DpHq “ D0, and let Hξ be the derivative of Utξ at t “ 0 for each
ξ P DpHq. Using the calculation in (10.2), it is easy to check that xξ|Hηy “ xHξ|ηy

for each ξ, η P DpHq. Thus H is symmetric, i.e. H Ă H˚. In particular, H is
closable.

Let M “ tUs : s P Ru2, which is abelian since any Us, Ut commute adjointly.
We claim that H is affiliated with M, equivalently, that M1 Ă tHu1. By Prop. 6.10,
it suffices to show that H commutes strongly with any unitary V P M1. Indeed,
we note that Utξ has derivative at t “ 0 iff pV UtV

˚q ¨ V ξ does. So the derivative
of V UtV ˚ at t “ 0 exists precisely when acting on VD0 “ VDpHq. When the
derivative exists, it must be the action of V HV ˚. But V UtV ˚ “ Ut since V P M1.
So H “ V HV ˚, and hence H “ V HV ˚. This proves tHu2 Ă M. By Lemma 10.4,
we know DpHq “ DpH

˚
q. So H “ H

˚
.

We now show Ut “ eitH for each t. By Thm. 10.2, for each ξ P DpHq, eitHξ “

ξ ` itHξ ` optq where optq P H denotes an expression satisfying limtÑ0 optq{t Ñ 0.
Similarly, Utη “ η ` itHη ` optq for each η P DpHq. So

xU´te
itHξ|ηy “ xeitHξ|Utηy “ xξ ` itHξ ` optq|η ` itHη ` optqy

“xξ|ηy ` itpxHξ|ηy ´ xξ|Hηyq ` optq “ xξ|ηy ` optq.

Note that pUt ´ 1qUsη{it equals UspUt ´ 1qη{it, and hence converges to UsHη as
s Ñ 0. Therefore Usη P DpHq. Since H commutes strongly with eisH , we have
eisHHe´isH “ H and hence eisHDpHq “ DpHq. Therefore eisHξ P DpHq. Therefore,
in the above formula, we can replace ξ, η with eisH , Usη and get

xU´t´se
ipt`sqHξ|ηy “ xU´te

itHeisHξ|Usηy “ xeisHξ|Usηy ` optq “ xU´se
isHξ|ηy ` optq.

Thus, the derivative of s ÞÑ xU´se
isHξ|ηy is zero everywhere for all ξ P DpHq, η P

DpHq, which shows that U´se
isH must be constant, which is 1.
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The following proposition provides a criterion for self-adjoint operators H,K
on H to commute strongly: it is equivalent to that eitH commutes (adjointly) with
eisK for each t, s P R.

Proposition 10.6. Let H be a self-adjoint closed operator on H. Then tHu2 “ teitH : t P

Ru2.

Proof. Let Ut “ eitH . We have shown in the proof of Thm. 10.5 that tHu2 Ă M :“
tUt : t P Ru2. The relation Ą follows from Thm. 9.2.

Let f be a Lebesgue L1 function on R. Its Fourier transform is pfpsq “
ş

R fptqe´itsdt, which is a bounded continuous function on R. On the other hand,
we can define

ş

R fptqe´itHdt to be the bounded operator sending any ξ P H to the
vector whose evaluation with every η P H is

A

`

ż

R
fptqe´itHdt

˘

ξ|η
E

“

ż

R

@

fptqe´itHξ|η
D

dt.

The following proposition relates functional calculus and the one parameter
group eitH .

Proposition 10.7. We have

pfpHq “

ż

R
fptqe´itHdt.

Proof. By spectral theorem, it suffices to assume H “
À

nPN L
2pR, µnq (where each

µn is Borel) and H “ Mx where x is the identity map of R. Then for any ξ “

pgnqnPN, η “ phnqnPN in H,
ż

R
xfptqe´itHξ|ηydt “

ż

R

ÿ

n

ż

R
fptqe´itsgnpsqhnpsqdµnpsqdt.

The above sum and integrals are interchangeable, since the terms to be integrated
and summed are L1. So the above expression becomes

ÿ

n

ż

R

ż

R
fptqe´itsgnpsqhnpsqdtdµnpsq “

ÿ

n

ż

R

pfpsqgnpsqhnpsqdtdµnpsq,

which equals x pfpHqξ|ηy.

11 Central supports and normal representations of
von Neumann algebras

Recall that if A is a ˚-algebra, a (unitary) representation of A on a Hilbert
space is defined to be a ˚-homomorphism π : A Ñ EndpHq, i.e., π is a homomor-
phism satisfying πpx˚q “ πpxq˚ for all x P A . If A is unital, a representation π is
also assumed to be unital, i.e. πp1q “ 1.
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In this section, normal representations are defined using central supports in
the same spirit that von Neumann algebras are defined as the commutant of a set
of operators. In the next section, we will show that this definition is equivalent to
those using various topologies.

Recall that if A,B are bounded self-adjoint operators, we write A ď B when-
ever B ´ A is a positive operator. If E,F are projections, one checks easily that
E ď F iff EH Ă FH.3

Central supports

Lemma 11.1. Let M be a von Neumann algebra on H. Let pxαqαPA be a family of ele-
ments of M. Let E be the projection onto the closure of

Ž

αRngpxαq. Then E P M.

Proof. Choose any y P M1. Then
Ž

αRngpxαq is clearly invariant under y. Thus
yE “ EyE. Similarly y˚E “ Ey˚E, and hence Ey “ EyE. Thus yE “ Ey, i.e.
E P M.

Definition 11.2. Let M be a von Neumann algebra on H. Let e P M be a projec-
tion. The central support of e, denoted by zMpeq (or simply zpeq), is the projection
onto

ł

xPM
Rngpxeq

Then zpeq belongs to the center ZpMq :“ M X M1. For each ξ P H it is clear that

ξ K zpeqH ξ K xeH for all x P M (11.1)

Proof that zpeq is central. By Lem. 11.1, we have zpeq P M. It is clear that zpeqH in
invariant under the action of M. Therefore zpeq P M1.

Proposition 11.3. If p P ZpMq is a projection, then p “ zppq. Consequently, for any
projection p P M, we have zpzpeqq “ zpeq. Moreover, zpeq is the smallest central projec-
tion ě e.

In other words, if q P ZpMq is a projection and q ě e then q ě zpeq.

Proof. If x P M then Rngpxpq “ Rngppxq Ă pH. Thus zppq ď p, and hence zppq “ p.
Thus zpzpeqq “ zpeq. Now, if q P ZpMq is a projection and q ě e, then q “ zpqq ě

zpeq.

Definition 11.4. Let e, f P M be projections. We write f ÀM ef ÀM ef ÀM e (or simply f À ef À ef À e) if
there is a partial isometry u P M such that uu˚ “ f and u˚u ď e.

3Proof of ñ: Choose any ξ orthogonal to FH. Then xEξ|ξy ď xFξ|ξy “ 0, and hence }Eξ}2 “

xEξ|ξy “ 0, showing that ξ K EH.
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Theorem 11.5. Let e, f P M be projections. The following are equivalent.

(1) f ď zpeq. Equivalently (by Prop. 11.3), zpfq ď zpeq.

(2) f can be written as a (possibly infinite) sum f “
ř

i fi where each fi is a projection,
and fifj “ 0 if i ‰ j. Moreover, fi À e for each i.

We write f !M ef !M ef !M e (or simply f ! ef ! ef ! e) and say that f is generated by e if one of the above
conditions hold. We write f „ ef „ ef „ e if f ! e and e ! f , equivalently, if zpfq “ zpeq.

It follows from (2) that f À e implies f ! e.

Proof. Clearly (2) implies (1). Assume (1). By Zorn’s lemma, there is a maximal
set of mutually orthogonal nonzero projections of M (denoted by P) satisfying
ř

pPP p ď f and p À e for each p P P. Let us prove that
ř

pPP p “ f . Suppose
that q “ f ´

ř

pPP p is a non-zero projection. Then by (11.1), there is x P M such
that qH is not orthogonal to xeH. Hence qxe ‰ 0. Therefore, let u be the phase of
qxe. Then p1 :“ uu˚ is a projection in M orthogonal to every p P P and satisfying
p1 À e and p1 ď f . Thus PY tp1u is strictly larger than P but satisfies the condition
that P satisfies. This contradicts the maximality of P.

Corollary 11.6. Let e P M be a projection. Then

zMpeqH “
ł

Rngpuq

where the span is over all partial isometries u P M satisfying u˚u ď e.

Proof. If u P M is a partial isometry satisfying u˚u ď e, then clearly Rngpuq Ă

zpeq. This proves “Ą”. The direction “Ă” follows by applying Thm. 11.5 to f :“
zpeq.

Generating representations

Definition 11.7. A ˚̊̊-set is defined to be a set S together with an involution, i.e.,
bijective map ˚ : S Ñ S satisfying a˚˚ “ a for each a P S. If S is a ˚-set, a
representation of S on a Hilbert space H is defined to be a map φ : S Ñ EndpHq

satisfying πpa˚q “ πpaq˚ for all x P S.

Definition 11.8. Let pH, φq and pK, ψq be representations of a ˚-set S. Then
HomSpH,KqHomSpH,KqHomSpH,Kq denotes the set of homomorphisms from H to K, i.e., bounded lin-
ear maps T : H Ñ K satisfying Tφpaq “ ψpaqT for all a P S. T is called unitary
equivalence/isomorphism if T is unitary. A subrepresentation of H is a closed
subspace invariant under φpSq.

It is clear that if T P HomSpH,Kq then T ˚ P HomSpK,Hq.
In the following, unless otherwise stated, pH, φq and pK, ψq are representations

of a ˚-set S.
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Remark 11.9. There is a one to one correspondence between the subrepresenta-
tions of pH, φq and the projections of φpSq1. In fact, if W is a subrepresentation
of H, then the projection E onto W belongs to φpSq1. (Proof: Let a P S. Then
φpaqW Ă W implies φpaqE “ EφpaqE. Similarly, φpa˚qE “ Eφpa˚qE, and hence
Eφpaq “ EφpaqE. So φpaqE “ Eφpaq and similarly φpa˚qE “ Eφpa˚q.) Con-
versely, if E P φpSq1 is a projection, then EH is a subrepresentation of pH, φq.

Remark 11.10. Define the direct sum representation φ ‘ ψ of S on H ‘ K by
pφ‘ ψqpaq “ φpaq ‘ ψpaq. Then it is clear that HomSpH,Kq is precisely an element
T P pφ‘ ψqpSq1 satisfying T “ TE “ FT where E,F are the projections of H ‘ K
onto H resp. K.

More generally, we can define infinite direct sums:

Definition 11.11. Let pHi, φiqiPI be a collection of representations of the ˚-set S.
Assume that for each a P S we have

sup
iPI

}φipaq} ă `8

Then for each a P S we have a bounded linear map

‘iφipaq :
à

i

Hi Ñ
à

i

Hi ‘i ξi ÞÑ ‘iφipaqξi

Then
`

À

iHi,‘iφi
˘

is a representation of S, called the direct sum representation
of pHi, φiqiPI.

Definition 11.12. We sayK À HK À HK À H if K is unitarily equivalent to a subrepresentation
of H. From Rem. 11.10, it is clear that each of the following is equivalent to K À H.

• There is a partial isometry U P HomSpH,Kq such that UU˚ “ 1K.

• Let E,F be the projections of H ‘ K onto H,K. Then F Àpφ‘ψqpSq1 E.

Definition 11.13. We say that K is generated by H and writeK ! HK ! HK ! H if settingE,F
to be the projections of H‘K onto H,K, and setting T “ pφ‘ψqpSq, the following
equivalent conditions hold.

(1) zT1pEq “ 1H‘K.

(2) F !T1 E.

(3) K is a (possibly infinite) orthogonal direct sum of subrepresentations that
are À H.

(4)
Ž

TPHomSpH,Kq
TH is dense in K.
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We say that K is quasi-isomorphic (or quasi-equivalent) to H and writeK „ HK „ HK „ H if
K ! H and H ! K.

Proof of equivalence. (1)ô(2): F ! E means F ď zpEq. If F ď zpEq then clearly
1 “ F ` E ď zpEq. Hence 1 “ zpEq. Conversely, if 1 “ zpEq then F ď zpEq.

(2)ô(3): This is clear from Thm. 11.5. (2)ô(4): This is obvious.

Definition 11.14. Let M ñ H and N ñ K be von Neumann algebras. Let π :
M Ñ N be a unital ˚-homomorphism. We say that π is normal if the ˚-set repre-
sentation π : M Ñ EndpKq is generated by the inclusion map ιM : M ãÑ EndpHq,
in short

pK, πq ! pH, ιMq

Definition 11.15. Let M ñ H be a von Neumann algebra. Let K be a Hilbert
space. A normal unital ˚-homomorphism π : M Ñ EndpKq is called a normal
representation of M. In other words, pK, πq is an orthgonal direct sum of subrep-
resentations that are À to the representation M ñ H.

Basic facts about generating representations

Proposition 11.16. Let pK1, ψ1q, pK2, ψ2q be representations of S. Assume that K1 ! H
and K2 ! K1. Then K2 ! H.

Proof. This is clear from Def. 11.13-(4).

Proposition 11.17. Assume that K À H. Then K ! H.

Proof. Obvious.

Proposition 11.18. Let pHi, φiqiPI be a collection of representations of the ˚-set S sat-
isfying supi }φipaq} ă `8 for every a P S. Assume that H1 ! H for every i. Then
À

iHi ! H.

Proof. This is clear from (3) or (4) Def. 11.13.

Corollary 11.19. Let pH, φq and pK, ψq be representations of a ˚-set S. The following
are equivalent.

(1) K ! H.

(2) K is unitarily equivalent to an orthogonal direct sum of subrepresentations of H.

(3) K is unitarily equivalent to a subrepresentation of a direct sum of H.

Proof. (1)ô(2) is tautology. (2)ñ(3): A direct sum of subrepresentations is clearly
a subrepresentation of a direct sum.

(3)ñ(1): Assume (3). By Prop. 11.18,
À

iH ! H. By Prop. 11.17, K !
À

iH.
Thus, by Prop. 11.16, K ! H.
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12 Normal representations and the σ-topologies

By Cor. 11.19, the study of representations ! H reduces to the study of the
subrepresentations of H and direct sums of H. Let us compute the commutants
and double commutants in both cases.

Commutants of subrepresentations and direct sums

Let pH, φq be a representation of a ˚-set S.

Theorem 12.1. Let M “ φpSq2. Assume that pK, ψq is a subrepresentation of pH, φq.
Let E be the projection of H onto K, which is a projection of M1 “ φpSq1. Then

ψpSq
1

“ EM1E|K ψpSq
2

“ M|K (12.1)

We abbreviate EM1E|K and M|K “ ME|K to EM1E and ME. Then (12.1)
reads

ψpSq
1

“ EM1E ψpSq
2

“ ME

Proof. Since E P φpSq1, and since ψ is the restriction of φ to K, for each T P φpSq1

and a P S we clearly have

rψpaq, ETEs
ˇ

ˇ

K “ rφpaq, ETEs
ˇ

ˇ

K “ Erφpaq, T sE
ˇ

ˇ

K “ 0

Thus EφpSq1E|K Ă ψpSq1. Conversely, if y P ψpSq1, define ry : H Ñ H by ryξ “

yEξ. Since y commutes with φpaq when acting on K, we have

φpaqryξ “ φpaqyEξ “ yφpaqEξ “ yEφpaqξ “ ryφpaqξ

So ry P φpSq1, and clearly y “ EryE. This proves EφpSq1E|K “ ψpSq1.
We now prove the second relation, which by the first relation is equivalent to

`

EM1E|K
˘1

“ M|K (12.2)

namely, pEM1Eq1 “ ME. Clearly we have “Ą”. To prove the other direction, we
first consider the case that zM1pEq “ 1. Then 1 ´ E ď zpEq. By Thm. 11.5, 1 ´ E
is an orthogonal sum of projections À E. Therefore, there exists a collection of
partial isometries pUiqiPI in M1 such that setting Fi “ UiU

˚
i , we have U˚

i Ui ď E,
FiFj “ 0 if i ‰ j, and

ř

j Fj “ 1. Moreover, there is an element of I , say 0, such
that U˚

0U0 “ E and U0|EH : EH Ñ H is the inclusion map. Let U˚
i Ui “ Ei.

Each η P H can be written as the orthogonal sum η “
ř

i Uiξi where ξi P EH
and

ř

i }Uiξi}
2 is finite. (Proof: Let ξi “ U˚

i η.) Note
›

›

›

ÿ

i

Uiξi

›

›

›

2

“
ÿ

i

}Uiξi}
2

“
ÿ

i

}Eiξi}
2
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Let x P pEM1E|Kq1. Then
›

›

›

ÿ

i

Uixξi

›

›

›

2

“
ÿ

i

}Eixξi}
2

“
ÿ

i

}xEiξi}
2

ď }x}
2

¨
ÿ

i

}Eiξi}
2

and hence
›

›

›

ÿ

i

Uixξi

›

›

›

2

ď }x}
2

¨

›

›

›

ÿ

i

Uiξi

›

›

›

2

Therefore, we have a well-defined bounded linear operator rx on H satisfying

rx
ÿ

i

Uiξi “
ÿ

i

Uixξi

for any η “
ř

i Uiξi P H.
If η P EH “ K, then a way of writing η as

ř

i Uiξi is η “ U0η. It follows
immediately that rx|K “ x. It remains to show rx P M. Choose any y P M1. Then

rxy
ÿ

i

Uiξi “ rx
ÿ

j

Fjy
ÿ

i

Uiξ “ rx
ÿ

i,j

UjpU
˚
j yUiqξi

Viewing each
ř

i U
˚
j yUiξi as an element of K, the definition of rx shows that the

expression above equals
ř

i,j UjxpU˚
j yUiqξi. Since x P pEM1E|Kq1 and U˚

j yUj P

EM1E, we see that the expression above equals
ÿ

i,j

UjxpU˚
j yUiqξi “

ÿ

i,j

UjpU
˚
j yUiqxξi “

ÿ

i

yUixξi “ yrx
ÿ

i

Uiξi

So rrx, ys “ 0. Thus
`

EM1E
˘1

Ă ME holds when zpEq “ 1.
Now we consider the general case. Let p “ zpEq. Applying the special case to

pMp “ Mp on pH we have

pEpMpq
1Eq

1
“ MpE “ ME

By the first relation of (12.1) we have pMpq1 “ pM1p “ M1p. Thus pEM1Eq1 “

pEM1pEq1 “ pEpMpq1Eq1 “ ME.

Corollary 12.2. Let M be a von Neumann algebra on H. Let E P M1 be a projection.
Then ME is a von Neumann algebra on EH with commutant

pMEq
1

“ EM1E

Let I be a set. Our next goal is to calculate the commutant and bicommutant
of

À

iPI H.
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Definition 12.3. Let I, J be sets. Let E Ă EndpHq. An EEE-valued I ˆ JI ˆ JI ˆ J matrix is a
function T : I ˆ J Ñ E. Let finp2Iqfinp2Iqfinp2Iq resp. finp2Jq be the set of finite subsets of I
resp. J . For each I0 P finp2Iq, J0 P finp2Jq, the restriction T |I0ˆJ0 : I0 ˆ J0 Ñ E can
be viewed as a bounded linear map

T |I0ˆJ0 :
à

jPJ

Hj Ñ
à

iPI

Hi

à

jPJ

ξj ÞÑ
à

iPI0

´

ÿ

jPJ0

T pi, jqξj

¯

We say that T is bounded if

sup
I0Pfinp2Iq,J0Pfinp2J q

}T |I0ˆJ0} ă `8 (12.3)

Then the net limit limI0Pfinp2Iq,J0Pfinp2J q T |I0ˆJ0 clearly converges pointwise on the
dense subspace of

À

j ξj having finitely many nonzero components. Hence it
converges pointwise to a bounded linear map

T :
à

jPJ

Hj Ñ
à

iPI

Hi

due to the following easy fact:

Exercise 12.4. Let pTαqαPA be a net in EndpH,Kq converging pointwise on a dense
subspace of H and satisfying supα }Tα} ă `8. Show that pTαq converges point-
wise on H to a bounded linear map T : H Ñ K.

Theorem 12.5. Let I be a set. Let M “ φpSq2. Let p
À

iH,Φ “ ‘iφq be the direct sum
representation. Then ΦpSq1 is the set of bounded M1-valued I ˆ I matrices, and

ΦpSq
2

“ t‘ix : x P Mu

Proof. Clearly every bounded M1-valued IˆI matrix commutes with ΦpSq. Con-
versely, let S P ΦpSq1. For each i P I , let Ui be the partial isometry H Ñ

À

iH
sending ξ to the vector whose i-th component is ξ and whose other components
are 0, which belongs to HomSpH,

À

iHq. Then for each i, j P I we have

U˚
i SUj P EndSpHq “ φpSq

1
“ M1

Let T : I ˆ I Ñ M1 be defined by T pi, jq “ UiSUj . Let Ei “ UiU
˚
i . For each

I0 P finp2Iq, let EI0 “
ř

iPI0
Ei. Then for each I0 P finp2Iq, J0 P finp2Jq we have

}T |I0ˆJ0} “ }EI0TEJ0} ď }S}

So T is a bounded M1-valued I ˆ I matrix, which clearly represents S.
It is clear that any ‘ix (where x P M) commutes (adjointly) with bounded

M1-valued I ˆ I matrices. Conversely, suppose that A P EndpHq commutes with
any bounded M1-valued Iˆ I matrix. Then it commutes with ‘iy for any y P M1.
Therefore, by the first paragraph, A is a bounded M-valued I ˆ I matrix. Since
this matrix commutes with UjU˚

i for any i, j P I , one shows easily that this matrix
is diagonal, and that all diagonal elements are equal. So A “ ‘ix for some x P

M.
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Isomorphisms of von Neumann algebras

Theorem 12.6. Let M ñ H be a von Neumann algebra. Let pK, πq be a normal repre-
sentation of M. Then πpMq is a von Neumann algebra on K. Moreover, the following
are equivalent.

(1) π : M Ñ πpMq is bijective.

(2) pK, πq „ pH, ιMq where ιM : M Ñ EndpHq is the inclusion.
Proof. By Thm. 11.19, π is unitarily equivalent to a subrepresentation of ϑ where
ϑ is an orthogonal direct sum of M ñ H. By Thm. 12.5, ϑpMq is a von Neumann
algebra. By Cor. 12.2, πpMq is a von Neumann algebra.

Consider the direct sum representation pH ‘ K,Φ :“ ιM ‘ πq of M, which
is ! H (since K ! H). Therefore ΦpMq is also a von Neumann algebra, and
Φ : M Ñ ΦpMq is clearly injective, and hence is an isomorphism of von Neumann
algebras. Thus, π : M Ñ πpMq is injective iff ϖ “ π ˝ Φ´1 : ΦpMq Ñ πpMq is
injective.

Let F be the projection of H ‘ K onto K. Let zpF q “ zΦpMq1pF q. Then ϖ :
ΦpMq Ñ πpMq is simply the restriction map ΦpMq Ñ ΦpMqF . This map is
the composition of ΦpMq Ñ ΦpMqzpF q and ΦpMqzpF q Ñ ΦpMqF . Since zpF q

is an orthogonal sum of projections that are ÀΦpMq1 F (cf. Thm. 11.5), the map
ΦpMqzpF q Ñ ΦpMqF is injective. Therefore

Ker
`

ΦpMq Ñ πpMq
˘

“ ΦpMqp1 ´ zpF qq (12.4)

Thus ΦpMq Ñ πpMq is injective iff zpF q “ 1, iff pH, ιMq ! pK, πq. This proves
(1)ô(2).

Remark 12.7. Eq. (12.4) can be reformulated as follows. Let p be the projection
onto the subspace

tξ P H : ξ K RngpT q for all T P HomMpK,Hqu

Then p P ZpMq, and Ker
`

M Ñ πpMq
˘

“ Mp.

Corollary 12.8. Let M ñ H and N ñ H be von Neumann algebras. Let π : M Ñ N
be a unital ˚-homomorphism. Then the following conditions are equivalent.

(1) π is bijective and normal, and π´1 is normal.

(2) π is bijective and normal.

(3) π is surjective, and pH, ιMq „ pK, πq.
If π satisfies the above conditions, we say that π is an isomorphism of von Neumann
algebras.
Proof. Clearly (1)ñ(2). By Thm. 12.6, we have (2)ô(3).

Assume (2) and (3). Then pH, ιMq „ pK, πq is equivalent to pH, π´1q „ pK, ιN q

(as representations of the ˚-set N ). Therefore π´1 is a normal representation of N .
This proves (1).
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The σ-topologies on von Neumann algebras

We shall give an intrinsic description of normal representations.

Definition 12.9. Let H,K be Hilbert spaces. Theσσσ-strong topology is the topology
on HompH,Kq defined by the seminorms of the form

T P HompH,Kq ÞÑ

d

ÿ

iPI

}Tξi}2

where pξiqiPI is a family of vectors of H satisfying
ř

i }ξi}
2 ă `8. (In particular,

only countably many ξi are nonzero.) Thus, a net pTαq in HompH,Kq converges
σ-strongly to T iff

lim
α

ÿ

iPI

}Tξi ´ Tαξi}
2

“ 0

for each family pξiqiPI in H satisfying
ř

i }ξi}
2 ă `8.

Similarly, the σ-σ-σ-strong* topology is the one defined by the seminorms

T P HompH,Kq ÞÑ

d

ÿ

iPI

}Tξi}2 `
ÿ

iPI

}T ˚ξi}2

So pTαq converges σ-strongly* to T iff pTαq converges σ-strongly to T and pT ˚
α q

converges strongly to T ˚.
The σ-σ-σ-weak topology is the one defined by the seminorms

T P HompH,Kq ÞÑ
ÿ

iPI

ˇ

ˇxTξi|ηiy
ˇ

ˇ

where pξiqiPI and pηiqiPI are collections of vectors of H,K satisfying
ř

i }ξi}
2 ă `8

and
ř

i }ηi}
2 ă `8. Thus pTαq converges σ-weakly to T iff

lim
α

ÿ

i

ˇ

ˇxpT ´ Tαqξi|ηiy
ˇ

ˇ

for all such pξiq and pηiq.

Remark 12.10. With respect to net convergence, we have

σ-strongly* ùñ σ-strongly ùñ σ-weakly

Indeed, the first implication is obvious. The second one follows from
ÿ

i

|xTξi|ηiy| ď

c

ÿ

i

}Tξi}2 ¨

c

ÿ

i

}ηi}2

due to Hölder’s inequality.
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Theorem 12.11 (Bicommutant theorem). Let S Ă EndpHq. Let A be the unital ˚-
subalgebra of EndpHq generated by S. Let T be one of the following topologies:

(a) The σ-strong* topology.

(b) The σ-strong topology.

(c) The σ-weak topology.

Then S2 equals the closure of A under the topology T

Recall that by Thm. 6.14, one can also choose T to be the strong, the strong*,
or the weak topology. However, these three topologies are not the correct ones
for the description of normal representations: If M ñ H is a von Neumann al-
gebra and I is an infinite set, the diagonal representation p

À

iPI H,‘iιMq is not
continuous under these three topologies.

Proof. Replacing S with S Y tx˚ : x P Su, we assume that S is a ˚-subset of
EndpHq. Let A be the closure of A under T . Then clearly A Ă S2. Now choose
x P S2. Let us prove that x P A.

Choose any collection pξiq in H satisfying
ř

i }ξi}
2 ă `8. Let ιA : A ãÑ EndpHq

be the inclusion map. Let p
À

iPI H,Φq be the direct sum representation of S. Then
by Thm. 12.5 we have ‘ix P ΦpSq2. Thus, by Thm. 6.14, ‘ix is in the strong*
closure of ΦpAq. This shows that x can be strongly* approximated by elements of
A. Thus x P A, since the σ-strong* topology is the strongest one.

Normal representations and the σ-topologies

We now relate normal representations to the three types of σ-topologies. We
first need a relation between the normality and the closedness under these topolo-
gies.

Theorem 12.12 (Closed graph theorem). Let M ñ H be a von Neumann algebra.
Let pK, πq be a representation of M, i.e., a unital ˚-homomorphism M Ñ EndpKq. Then
the following are equivalent.

(1) π is normal.

(2) The graph G pπq “ tx ‘ πpxq : x P Mu is a von Neumann algebra on H ‘ K.

Note that G pπq is clearly a unital ˚-subalgebra of H ‘ K. Therefore, that G pπq

is a von Neumann algebra means e.g. that it is closed under the correct topology.

Proof. Let Φ “ ιM ‘ π be the direct sum representation. Then G pπq “ ΦpMq. If
π is normal, then Φ is normal (Thm. 11.18), and hence ΦpMq is a von Neumann
algebra by Thm. 12.6.
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Conversely, assume that ΦpMq is a von Neumann algebra. We view H as a
subrepresentation of ΦpMq ñ H ‘ K. Since ΦpMq Ñ ΦpMq|H is clearly bijective.
By Thm. 12.6, we have H ‘ K ! H as representations of ΦpMq. Therefore, if we
let E be the projection of H‘K onto H, then zΦpMq1pEq “ 1. Thus π is normal.

Theorem 12.13. Let M ñ H be a von Neumann algebra. Let pK, πq be a representation
of M. Let T be one of the three σ-topologies in Thm. 12.11. Then the following are
equivalent

(1) π is normal.

(2) π is continuous with respect to the topologies T on M and on EndpKq.

Proof. Suppose that π is normal. Then by Thm. 11.19, π is unitarily equivalent to
a subrepresentation of ϖ where ϖ is an orthogonal direct sum of M ñ H. One
checks easily that ϖ is T -continuous4, and hence π is T -continuous. This proves
(1)ñ(2).

Conversely, assume that π is T -continuous. Then the graph G pπq is closed
under the topology T on EndpH ‘ Kq. The closed graph Thm. 12.12 implies that
π is normal. Hence (2)ñ(1).

The following theorem relates the generating property of the ˚-set representa-
tions and the normal homomorphisms/isomorphisms of von Neumann algebras.
Its importance lies in the fact that von Neumann algebras and their representa-
tions often arise from ˚-set representations, cf. e.g. Thm. 13.7.

Theorem 12.14. Let pH, φq and pK, ψq be representations of a ˚-set S. Let M “ φpSq2

and N “ ψpSq2. Assume pK, ψq ! pH, φq. Then the following are true.

1. There is a unique normal unital ˚-homomorphism π : M Ñ N such that

πpφpaqq “ ψpaq p@a P Sq (12.5)

Moreover, π is surjective.

2. pK, ψq „ pH, φq if and only if the above map π : M Ñ N is bijective (i.e., π is an
isomorphism of von Neumann algebras, cf. Cor. 12.8).

Proof. 1. Let A be the unital ˚-subalgebra of EndpHq generated by φpSq. Then the
uniqueness of π follows from the fact that π is σ-strongly continuous (Thm. 12.13)
and that A is σ-strongly dense in M (Thm. 12.11). We now address the existence.
By Cor. 11.19, we may view pK, ψq as a subrepresentation of p

À

iH,‘iφq. Let E
be the projection of

À

iH onto K, Then by Thm. 12.1 and 12.5, N “ p‘iφqpMq ¨E.
Then π can be defined by sending x P M to p‘iφqpxqE, and π is clearly surjective.

4Note that one cannot show that ϖ is strongly*/strongly/weakly continuous.

68



2. Assume pK, ψq „ pH, φq. By Part 1, there is a normal unital ˚-
homomorphism ϖ : N Ñ M such that ϖpψpaqq “ φpaq for all a P S. Then
ϖ ˝ π “ id on φpSq, and hence on M by the uniqueness in part 1. Similarly
π ˝ ϖ “ id. So π is bijective.

Conversely, assume that π is an isomorphism. Then by Cor. 12.8, we have
pK, πq „ pH, ιMq as M-representations. From this one easily checks that pK, ψq „

pH, φq.

Example 12.15. Let M be the set of finite Borel measures on CN . Recall that
BpCNq is the unital ˚-algebra of bounded Borel functions on CN . Then the mul-
tiplication operator Mf of f P BpCNq defines a representation of BpCNq on
K “

À

µPM L2pCN , µq. This representation is faithful. (Proof: Suppose Mf “ 0,
by choosing µ to be the Dirac measure on x P CN we see that fpxq “ 0. So f “ 0.)
Therefore, we can view BpCNq as a unital ˚-subalgebra of EndpKq. In particular,
BpCNq is equipped with the σ-strong topology.

Let T1, . . . , TN be strongly commuting normal closed operators on a Hilbert
space H. Let π : f P BpCNq ÞÑ fpT1, . . . , TNq. Then pH, πq is a normal representa-
tion of BpCNq. In other words, we have pH, πq ! pK,Mq as ˚-set representations
of BpCNq. This is clear, since the spectral Thm. 7.3 implies that pH, πq is unitarily
equivalent to a direct sum of some of the components of

À

µPM L2pCN , µq.
Alternatively, the fact that π is normal follows from the easy observation that

the property (9.1) is equivalent to the fact that π is σ-strongly continuous.
If T1, . . . , TN are also bounded, then the Borel functional calculus Thm. 2.11

can be reformulated as saying that π is the unique normal representation ofBpCNq

sending z1, . . . , zN to T1, . . . , TN .

‹ The σ-topologies on the unit balls of von Neumann algebras

Remark 12.16. If M is a von Neumann algebra, one shows easily that the σ-
strong*/σ-strong/σ-weak topology on the unit ball BM “ tx P M : }x} ď 1u

is equal to the strong*/strong/weak topology.

The bicommutant theorem has the following refinement; compare this with
the uniform boundedness property in Lem. 2.9.

Theorem 12.17 (Kaplansky’s density theorem). Let S be a set of bounded operators
on H. Let A be the unital ˚-subalgebra of EndpHq generated by S. Let T be one of the
topologies as in Thm. 12.11. Let M “ S2. Then BA “ tx P A : }x} ď 1u is T -dense in
BM “ tx P M : }x} ď 1u.

Sketch of the proof. It suffices to show that any self-adjoint x P BM can be approx-
imated strongly (and hence σ-strongly*) by self-adjoint elements of BA. By Thm.
12.11, there is a self-adjoint net pxαq in A converging strongly to x.
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We first consider the special case that C :“ supα }xα} is finite. Then one shows
easily that limα fpxαq converges strongly to fpxq whenever f is a polynomial, and
hence (by Stone-Weierstrass) whenever f : R Ñ R is a continuous. Take f to
be any continuous function satisfying }f}l8pRq ď 1 and fptq “ t if |t| ď 1. Then
pfpxαqq is a net in BA converging strongly to fpxq “ x, finishing the proof.

In the general case, the Cayley transform yα “ pxα ´ iq ¨ pxα ` iq´1 (which is
unitary) converges strongly to y “ px ´ iq ¨ px ` iq´1 since

y ´ yα “ 2ipx ` iq´1
px ´ xαqpxα ` iq´1

Let f be as in the above paragraph, but also having compact support. Then gpzq “

fpip1 ` zq{p1 ´ zqq defines a continuous function S1 Ñ R. Then gpyαq converges
strongly to gpyq “ fpxq “ x by the same reasoning as in the previous paragraph.

We leave the details to the readers, or cf. [Kad, Sec. 5.3].

Theorem 12.18. Let M ñ H be a von Neumann algebra. Let pK, πq be a representation
of M. Let T be one of the three σ-topologies in Thm. 12.11. Let BM “ tx P M : }x} ď

1u. Then the following are equivalent

(1) π is normal.

(2) The restriction π : BM Ñ EndpHq is continuous with respect to the topologies T
on BM and on EndpHq.

Note that the range πpBMq must be in the closed unit ball due to Prop. 2.12.
Therefore, any σ-topologies on πpBMq is equivalent to the topology without σ.

Proof. (1)ñ(2) is obvious. Assume (2). Then the continuity of π|BM implies that
BG pπq is T -closed in EndpH ‘ Kq, and hence T -closed in BG pπq2 . By Kaplansky’s
density Thm. 12.17, we have BG pπq “ BG pπq2 . Hence G pπq “ G pπq2. Therefore π is
normal by the closed graph Thm. 12.12.

‹ Normal cyclic representations and positive linear functionals

We give an application of Thm. 12.18. If pK, πq is a presentation of a unital
˚-algebra A , we say that Ω P H is a cyclic vector if A Ω is dense in K. A represen-
tation equipped with a cyclic vector is called a cyclic representation.

By Zorn’s lemma, any representation of A is an (orthogonal) direct sum of
cyclic representations. Now we let A be a von Neumann algebra M ñ H. Then
by Prop. 11.18, the normality of K is equivalent to that of each cyclic component.
The latter has the following criteria:

Corollary 12.19. Let pK, πq be a cyclic representation of a von Neumann algebra M ñ

H with cyclic vector Ω. Let

ω : M Ñ C x ÞÑ xπpxqΩ|Ωy (12.6)
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Let M` “ tx P M : x ě 0u and B`
M “ tx P M : 0 ď x ď 1u. Let T be one of the three

σ-topologies in Thm. 12.11. Then the following are equivalent.

(1) pK, πq is a normal representation of M.

(2) There exists a collection pξiqiPI in H satisfying
ř

i }ξi}
2 ă `8, such that

ωpxq “
ÿ

i

xxξi|ξiy

for all x P M.

(3) ω is T -continuous.

(4) ω|M` is T -continuous.

(5) ω|B`
M

is T -continuous.

Proof. (1)ñ(2): This follows from the fact that pK, πq is unitarily equivalent to a
subrepresentation of a direct sum of H. Hence Ω can be viewed as an element of
À

iH.
(2)ñ(3), (3)ñ(4), and (4)ñ(5) are obvious.
(5)ñ(1): Assume (5). By Thm. 12.18, to show (1), it suffices to show that if pxαq

is a net in BM “ tx P M : }x} ď 1u converging (σ-)strongly* to x P BM, then for
each ξ P K we have

lim
α

xπpxαqξ|ξy “ xxξ|ξy (‹)

Since supα }xα} ă `8, it suffices to prove (‹) for any ξ in a given dense subspace,
say πpMqΩ.

Note that pxα´xq˚pxα´xq converges σ-strongly to 0. Choose any y P M. Then

hα “ y˚
pxα ´ xq

˚
pxα ´ xqy

converges σ-strongly in rB`
M “ tra : a P B`

Mu to 0 where r is a suitable num-
ber ą 0. Note that ω|B`

M
is T -continuous. So ω|rB`

M
is T -continuous, and hence

σ-strongly* continuous, and hence σ-strongly continuous (since the elements of
rB`

M are self-adjoint). So limα ωphαq “ 0, which means precisely that (‹) holds for
ξ “ πpyqΩ. This finishes the proof of (1).

Remark 12.20. A linear functional ω : M Ñ C is called positive if ωpxq ě 0
whenever x P M is ě 0. Clearly, if pK, πq is a cyclic representation of a von Neu-
mann algebra M ñ H, then (12.6) gives a positive linear functional. Conversely,
a positive linear functional ω gives rise to a cyclic representation pK, πq of M if we
let K be the completion of the (possibly degenerate) inner products space whose
elements are x P M and whose (degenerate) inner products are given by

xx|yy “ ωpy˚xq
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The left multipliction of M on M gives rise to the action of M on K. The cyclic
vector is 1. This is called the Gelfand-Naimark-Segal (GNS) construction. One
checks easily that the GNS constructions implements a bijection between:

• Equivalence classes of cyclic representations of M.

• Positive linear functionals on M.

Here, we say that two cyclic representations pK1, π1q and pK2, π2q (with cyclic vec-
tors Ω1,Ω2) are equivalent if there is a unitary equivalence of M-representations
U : K1 Ñ K2 such that UΩ1 “ Ω2.

Using Cor. 12.19, we can define a positive linear functional ω to be normal if
it satisfies one of (2), (3), (4), (5) of Cor. 12.19, equivalently, if its associated cyclic
representation is normal.

13 Classification of abelian von Neumann algebras
and their affiliated closed operators

In this section, we fix X to be a measurable space. We shall discuss measure
theoretic representations of the algebra of bounded measurable complex func-
tions L8pXq. If µ‚ “ pµiqiPI is a collection of measures on X , for each (not nec-
essarily bounded) Borel function f : X Ñ C on L2pX,µq we let Mµ‚

f denote the
multiplication operator of f on

À

iPI L
2pX,µiq.

Proposition 13.1. Let µ be a σ-finite measure on X . The following are true.

1. There exists a measurable h : X Ñ Rą0 such that dν “ hdµ is a finite measure on
X .

2. Let h : X Ñ Rą0 be measurable. Let dν “ hdµ. Then there is a unique unitary
map

U : L2
pX, νq Ñ L2

pX,µq ξ ÞÑ
?
hξ

Moreover, for each measurable f : X Ñ C we have

UM ν
fU

´1
“ Mµ

f pon L2
pX,µqq

In particular, both sides have domain tξ P L2pX,µq :
ş

X
|fξ|2dµ ă `8u.

Proof. To prove part 1, one writes X as a countable disjoint union of µ-finite mea-
surable subsets A1 \ A2 \ ¨ ¨ ¨ , and takes h “

ř

n n
´2µpAnq´1 ¨ χAn . The proof of

part 2 is straightforward.
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Remark 13.2. If µ is a finite measure, the map f P L8pX,µq ÞÑ Mf1 P L2pX,µq is
injective. Thus, we view L8pX,µq as a unital ˚-subalgebra of EndpL2pX,µqq. Then
L8pX,µq also equals tMf : f P L8pXqu. By Prop. 13.1, we can do the same thing
if µ is only σ-finite.

A special case of the classification of abelian von Neumann algebras is the
following result.

Proposition 13.3. Let µ be a σ-finite measure on X . Then on L2pX,µq we have
L8pX,µq1 “ L8pX,µq. In particular, L8pX,µq is a von Neumann algebra on L2pX,µq

defined by multiplication.

Proof. By Prop. 13.1, we assume WLOG that µ is finite. Let T P L8pX,µq1. Since
1 P L2pX,µq, we can define f “ T1 which is in L2pX,µq. Then for each g P

L8pX,µq we have

Tg “ TMg1 “ MgT1 “ gf “ fg (‹)

If }f}L8 “ `8, then E :“ |f |´1
`

r}T } ` 1,`8q
˘

is not µ-null. Thus χE is nonzero
in L2pX,µq and

}TχE}
2
L2 “ }fχE}

2
L2 “

ż

E

|f |
2dµ ě p}T } ` 1q

2
¨ µpEq “ p}T } ` 1q

2
¨ }χE}

2
L2

This is impossible. So f P L8pX,µq. Now (‹) shows that T “ Mg on L8pX,µq.
Hence T “ Mg on L2pX,µq since both operators are bounded.

Recall that if µ, ν are measures on X , we say that ν is absolutely continuous
with respect to µ and write ν ! µν ! µν ! µ if for every measurableE Ă X satisfying µpEq “

0 we must have νpEq “ 0. More generally:

Definition 13.4. Let pµiqiPI and pνjqjPJ be collections of σ-finite measures on X .
We say that pνjqjPJ is absolutely continuous with respect to pµiqiPI and write

pνjqjPJ ! pµiqiPIpνjqjPJ ! pµiqiPIpνjqjPJ ! pµiqiPI

if for each j P J there exists a countable set Ij Ă I such that for every measurable
E Ă X satisfying µipEq “ 0 for all i P Ij , we have νjpEq “ 0 .

Our next goal is to relate pνjqjPJ ! pµiqiPI and the generating property for rep-
resentations of L8pXq. The following theorem gives a fun and alternative proof
of the Radon-Nikodym theorem.

Theorem 13.5 (Radon-Nikodym). Let µ, ν be σ-finite measures on X . The following
are equivalent.

(1) ν ! µ.
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(2) We have pL2pX, νq,Mνq À pL2pX,µq,Mµq as representations of L8pXq.

(3) dν “ hdµ for some measurable h : X Ñ Rě0.

Proof. (1)ñ(2): By Prop. 13.1, we assume WLOG that µ, ν are finite. Let T be an
unbounded operator L2pX,µq Ñ L2pX, νq with dense domain L8pX,µq defined
by Tξ “ ξ. This is well defined, since ν ! µ implies that if }ξ}L2pX,µq “ 0 then
}ξ}L2pX,νq “ 0. We claim that T is closable. Suppose that pξnq is a sequence in
L8pX,µq that is L2pX,µq-converging to 0, and that pξnq is a Cauchy sequence in
L2pX, νq. Let ω “ µ ` ν. Then pξnq is a Cauchy sequence in L2pX,ωq. So there is a
measurable ξ : X Ñ C such that

ş

|ξ|2dω ă `8 and limn

ş

|ξ ´ ξn|2dω “ 0, i.e.,

lim
n

ż

|ξ ´ ξn|
2dµ ` lim

n

ż

|ξ ´ ξn|
2dν “ 0

Since lim
ş

|ξn|2dµ “ 0, we must have
ş

|ξ|2dµ “ 0. So
ş

|ξ|2dν “ 0 (because ν ! µ).
Hence limn

ş

|ξn|2dν “ 0, i.e., pTξnq converges to 0 in L2pX, νq.
We have proved that T is closable. RngpT q clearly contains L8pX, νq, and

hence is dense. Thus, if we let U be the phase of T , then U : L2pX,µq Ñ L2pX, νq

is a partial isometry satisfying UU˚ “ 1. For each f P L8pXq we clearly have
M ν

f T Ă TMµ
f . Since M˚

f “ Mf˚ , we have pMν
f q˚T Ă T pMµ

f q˚. Thus, view-
ing T as an unbounded operator on L2pX,µq ‘ L2pX, νq (with dense domain
L8pX,µq ‘ L2pX,µq, and which is zero when restricted to L2pX, νq), we have

Mµ‘ν
f T Ă TMµ‘ν

f pMµ‘ν
f q

˚T Ă T pMµ‘ν
f q

˚

where Mµ‘ν
f is the multiplication operator of f on L2pX,µq ‘L2pX, νq. Therefore,

by Prop. 6.2, Mµ‘ν
f commutes strongly with T , and hence commutes adjointly

withU (by Cor. 6.17). ThusU˚ realizesL2pX, νq as a subrepresentation ofL2pX,µq.
(2)ñ(3): Again, by Prop. 13.1, we assume that µ, ν are finite. Let V :

L2pX, νq Ñ L2pX,µq be an isometric homomorphism of L8pXq-representations.
Since 1 P L2pX, νq, we have T1 P L2pX,µq, which is represented by some measur-
able g : X Ñ C satisfying

ş

X
|g|2dµ ă `8. Then for each f P L8pXq we have

ż

X

|f |
2dν “ }Mν

f 1}
2
L2pX,νq “ }VMν

f 1}
2
L2pX,µq “ }Mµ

f V 1}
2
L2pX,µq “

ż

X

|fg|
2dµ

So dν “ |g|2dµ.
(3)ñ(1): This is obvious.

Theorem 13.6. Let pµiqiPI and pνjqjPJ be collections of σ-finite measures on X . For each
f P L8pX,µq, The following are equivalent.

(1) pνjqjPJ ! pµiqiPI .

(2) For each j P J we have L2pX, νjq À
À

iPI L
2pX,µiq.
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(3) p
À

jPJ L
2pX, νjq,M

ν‚q ! p
À

iPI L
2pX,µiq,M

µ‚q as representations of the ˚-set
L8pX,µq.

Proof. By Prop. 13.1, we assume that all µi and νj are finite measures. Note that
(2)ñ(3) is obvious.

(1)ñ(2): Assume (1). Choose any j P J . Let Ij Ă I be a countable set such that
for each measurable E Ă X satisfying µipEq “ 0 for all i P Ij we have νjpEq “ 0.
By scaling each µi, we assume ω :“

ř

iPIj
µi is a finite measure. Then νj ! ω, and

hence L2pX, νjq À L2pX,ωq by Thm. 13.5. Let 1µi be the constant function 1 of
L2pX,µiq. Then for each ξ P L2pX,ωq we have

ÿ

iPIj

}ξ}
2
L2pX,µiq

“ }ξ}
2
L2pX,ωq ă `8

which shows that ‘iPIj1µi belongs to DpMξq, and

U : L2
pX,ωq Ñ

à

iPIj

L2
pX,µiq ξ ÞÑ Mf p‘iPIj1µiq

is an isometry. One checks easily that U is a homomorphism. So L2pX,ωq À
À

iPI L
2pX,µiq. This proves (2).

(3)ñ(1). Assume (3). It suffices to fix each j P J and show νj ! pµiqiPI . We
know L2pX, νjq !

À

iPI L
2pX,µiq. By Cor. 11.19, L2pX, νjq is À to a direct sum of

À

iPI L
2pX,µiq. Thus, we may find pµkqkPK such that

tµi : i P Iu “ tµk : k P Ku

as sets, andL2pX, νjq À
À

kPK L
2pX,µkq. Clearly pµkqkPK ! pµiqiPI . Thus, it suffices

to prove νj ! pµkqkPK .
Let U : L2pX, νjq Ñ

À

kPK L
2pX,µkq be an isometric homomorphism. Let 1νj

be the constant function 1 in L2pX, νjq. Then U1 “ ‘kPKξk where
ř

k }ξk}2 ă `8.
Thus there is a countable set Kj Ă K outside of which }ξk}L2pX,µkq “ 0. Similar
to the proof of (2)ñ(3) of Thm. 13.5 one sees that dνj “

ř

kPKj
|ξk|2dµk. Clearly

νj ! pµkqkPKj
. This proves (1).

Theorem 13.7. Let pµiqiPI be a
:::::::::
countable collection of σ-finite measures on X . Define

L8
pX,µ‚q :“ tMµ‚

f : f P L8
pXqu (13.1)

Then L8pX,µ‚q is a von Neumann algebra on
À

iPI L
2pX,µiq.

Proof. By Prop. 13.1 we assume WLOG that ν :“
ř

i µi is a finite measure. Then
pµiqiPI ! ν, and hence

À

i L
2pX,µiq ! L2pX, νq by Thm. 13.6. By Prop. 13.3,

L8pX, νq is a von Neumann algebra on L2pX, νq. Therefore, by the surjectivity
mentioned in part 1 of Thm. 12.14, L8pX,µ‚q is a von Neumann algebra.
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Recall that BpCNq is the set of bounded complex Borel functions on CN .

Theorem 13.8. Let T1, . . . , TN be strongly commuting normal closed operators on a
:::::::::
separable Hilbert space H. Then

tT1, . . . , TNu
2

“ tfpT1, . . . , TNq : f P BpCN
qu (13.2)

More generally, a closed operator affiliated with tT1, . . . , TNu2 is precisely of the form
fpT1, . . . , TNq where f : CN Ñ C is Borel.

Proof. Step 1. By Thm. 9.2, fpT1, . . . , TNq is affiliated with M “ tT1, . . . , TNu2 for
each Borel f : CN Ñ C. In particular, we have “Ą” in (13.2). Let us prove ”Ă”.
Let Tn “ VnHn “ HnVn be the polar decomposition of Tn where Hn ě 0 and Vn is
the phase. Set Rn “ p1 ` Hnq´1. One sees easily (e.g. by spectral theorem) that
Ti is an unbounded Borel functional calculus of Vi, Ri. Therefore, if we can prove
that any x P M is a bounded Borel functional calculus of V1, R1, . . . , VN , RN , then
by Thm. 9.3, x is a bounded Borel functional calculus of T1, . . . , TN . Note that
M “ tV1, R1, . . . , Vn, Rnu2 by Thm. 6.15.

From the above discussion, we see that in order to prove ”Ă” for (13.2), it
suffices to assume that T1, . . . , TN are bounded. Since H is separable, by Thm. 2.8,
we may assume that H “

À

iPI L
2pCN , µiq where pµiqiPI is a countable collection

of finite Borel measures on CN , and Tn “ Mzn . Then M “ tMz1 , . . . ,MzN u2. Since
Mzi belongs to L8pCN , µ‚q (which is a von Neumann algebra by Thm. 13.7),
we obtain M Ă L8pCN , µ‚q. But the elements of L8pCN , µ‚q are precisely the
bounded Borel functional calculi of Mz1 , . . . ,MzN . We are done with the proof of
(13.2).

Step 2. It remains to prove that every closed operator T affiliated with M
is of the form fpT1, . . . , TNq. Since M is abelian, T is normal. Therefore, T has
polar decomposition T “ V H “ HV where V and H commutes strongly. Let
R “ p1 ` Hq´1. By Step 1, there exist α, β P BpCNq such that V “ αpT‚q and
R “ βpT‚q. As in Step 1, let us assume that H “

À

iPI L
2pCN , µiq and Tn “ Mzn .

Then R “ Mβ .
Let E “ tp P CN : 0 ă βppq ď 1u. Since 0 ď R ď 1 and R is injective, for all i we

have µipCNzEq “ 0. Replace β with χE ¨ β `χCN zE . Then, besides R “ Mβ we also
have 0 ă β ď 1 everywhere. Let γ “ ´1`1{β. Then H “ ´1`R´1 “ Mγ “ γpT‚q.
Thus T “ αpT‚qγpT‚q. Since pαγqpT‚q is the closure of αpT‚qγpT‚q (cf. Thm. 9.1),
we must have T “ pαγqpT‚q.

We are ready to classify abelian von Neumann algebras on separable Hilbert
spaces.

Theorem 13.9. Let M be an abelian von Neumann algebra on a
::::::::
separable Hilbert space

H. Then there exists a bounded positive operator H P M such that

M “ tfpHq : f is a bounded Borel function R Ñ Cu
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More generally, a closed operator affiliated with M is precisely of the form fpHq where
f : R Ñ C is Borel.

Proof. By Thm. 13.8, it suffices to prove that M is generated by a bounded positive
operator H . We first show that BM “ tT P EndpHq : }T } ď 1u is separable under
the weak operator topology. Note that BM is weakly compact: If pT‚q is a net in
BM, then viewed as a net of functions HˆH Ñ C, pξ, ηq ÞÑ xT‚ξ|ηy, it has a subnet
converging to a function on H ˆ H due to the Tychonoff theorem. One checks
easily that this function is sesquilinear and is bounded on the unit ball of H, and
hence defines T P EndpHq. Thus the subnet of T‚ converges weakly to T , and
hence T P BM. This proves that BM is weakly compact.

The weak operator topology on BM is metrizable by the metric

dpT1, T2q “
ÿ

m,n

2´m´n
¨ |xpT1 ´ T2qξm|ξny|

where ξ1, ξ2, . . . are a countable dense subset of the closed unit ball of H. Recall
that every compact metric space is second countable. Therefore BM is weakly
second countable, and hence separable.

It follows that M is weakly separable. Note that if H P EndpHq is self-adjoint,
then tHu2 is generated by χra,bspHq where a, b P Q. Therefore M is weakly gen-
erated by countably many projections e0, e1, e2, . . . where are clearly commuting.
Let H “

ř

ně0 3
´nen.

Let us show that e0 P tHu2. Write H “ e0 ` H1. Then 0 ď H1 ď 1{2. By
the spectral Thm. 2.8, by performing a unitary equivalence on H, we have that
H “

À

iPI L
2pC2, µiq (where I is countable) and e0 “ Mf and H1 “ Mg. By adding

functions to f and g that are µi-a.e. zero for all i, we assume that f “ χE for some
Borel E Ă C2 and 0 ď g ď 1{2. Thus f ` g ě 1 precisely on E, i.e. χr1,`8q˝pf`gq “

χE . Therefore, noting H “ Mf`g, we obtain

χr1,`8qpHq “ χr1,`8qpMf`gq
Thm. 9.3

ùùùùùù Mχr1,`8q˝pf`gq “ MχE
“ e0

This proves e0 P tHu2.
Similarly, for each k ě 0, setting Hk “

ř

něk 3
´nen, we have ek P tHku2. Thus

e0 P tHu2 implies H1 P tHu2, and hence e1 P tH1u
2 Ă tHu2 implies H2 P tHu2, and

hence e2 P tH2u2 Ă tHu2 implies H3 P tHu2, etc. Repeating this procedure, we see
that ek P tHu2 for all k. Thus tHu2 “ M.

Corollary 13.10. Let T be a closed operator on a separable Hilbert space. The following
are equivalent.

(1) T is normal.

(2) T “ fpHq for some Borel function f : R Ñ C and some bounded positive operator
H .
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(3) T “ fpHq for some Borel function f : R Ñ C and some self-adjoint closed operator
H .

Proof. (2)ñ(3) and (3)ñ(1) are clear. Assume (1). Then M “ tT u2 is abelian. Thus,
(2) follows from Thm. 13.9.

A Vector/operator valued holomorphic functions

Let B be a Banach space, and let O be an open subset of C. A function f : O Ñ

B is called holomorphic if the limit

lim
wÑz

fpwq ´ fpzq

w ´ z

exists for each z P O. The limit is denoted by f 1pzq or Bzfpzq.
If f : O Ñ B is holomorphic, and C is an oriented piecewise smooth curve in

O, we define
ż

C

fpzqdz “

ż b

a

fpγptqqγ1
ptqdt (A.1)

for any parametrization γ : ra, bs Ñ O of C, and the right hand side can be un-
derstood as e.g. approximation in the norm topology of B using Riemann sums.
Thus

φ
´

ż

C

fpzqdz
¯

“

ż

C

φ ˝ fpzqdz

for each bounded linear functional φ P B˚, which shows that our definition of
ş

C
fdz is independent of the choice of γ.

Proposition A.1. Assume B “ EndpHq, f : O Ñ EndpHq is holomorphic, and C is
a piecewise smooth curve in O. Let O “ tz : z P Ou. Let C “ tz : z P Cu whose
orientation is the reflection of that of C along the x-axis. Define f˚ : O Ñ EndpHq by
f˚pzq “ fpzq˚ (i.e., the adjoint of fpzq). Then f˚ is holomorphic, and

´

ż

C

fpzqdz
¯˚

“

ż

C

f˚
pzqdz. (A.2)

Proof. It is a straightforward check using definition that f˚ is holomorphic. If
γ : ra, bs Ñ C is a parametrization of C, then γ : t P ra, bs ÞÑ γptq is one of C. Then

´

ż

C

fpzqdz
¯˚

“

´

ż b

a

fpγptqqγ1
ptqdt

¯˚

“

ż b

a

fpγptqq
˚γ1

ptqdt

“

ż b

a

f˚
pγptqqγ1

ptqdt “

ż

C

f˚
pzqdz.
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Theorem A.2. Assume f is continuous in the norm topology of B. Let Φ be a set of
(bounded) linear functionals of B, separating in the sense that for any x, y P B, if ϕpxq “

ϕpyq for every ϕ P Φ, then x “ y. Assume that for each ϕ P Φ, the function ϕ˝f : O Ñ C
is holomorphic, then f is holomorphic.

Proof. Choose any circle C such that both C and its inside is contained in O. Then
for any z P O, as φ ˝ f is holomorphic,

φpfpzqq “

ż

C

φpfpζqq

ζ ´ z
dζ.

It follows that

fpzq “

ż

C

fpζq

ζ ´ z
dζ,

and hence

fpwq ´ fpzq

w ´ z
“

ż

C

fpζq

pζ ´ zqpζ ´ wq
dζ,

which converges as w Ñ z, because the integrand converges uniformly with re-
spect to ζ .

Remark A.3. The above Proposition reduces the study of holomorphic oper-
ator/vector valued functions to that of ordinary ones. For instance, suppose
fn : O Ñ B is a sequence of holomorphic functions converging uniformly to a
function f : O Ñ B on compact subsets of O. f is clearly continuous. Since
the evaluation of f with any bounded linear functional of B is clearly holomor-
phic, we conclude that f is holomorphic. As a special case,

ř

nPN anz
n (where each

an P B) is holomorphic on any open set on which the series converges absolutely.

If O is a subset of Cn, we say f : O Ñ B is holomorphic if f “ fpz1, . . . , znq is
continuous (with respect to the norm topology) and holomophic on each variable
zj (when the other variables are fixed).
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