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Preface to the second edition

Sections 11, 12, and 13 have been added to this monograph. Together with
these sections, this monograph fulfills the task of giving a complete introduc-
tion to the “prehistory” of von Neumann algebras, namely, von Neumann’s solo
works on von Neumann algebras prior to his celebrated series of joint papers with
Murray under the title on rings of operators beginning in 1936.

The 1929 paper [vNeu29], in which von Neumann algebras were first intro-
duced, clearly indicates that one of the early goals of studying von Neumann
algebras is to understand the spectral theory for unbounded operators, or more
precisely, unbounded normal operators. Two deep results about von Neumann
algebras were proved in [vNeu32]. The first one is the bicommutant theorem for
von Neumann algebras (Thm. 6.12 and 6.14), which was used in the same pa-
per to define and study unbounded normal operators. It should be stressed that
unbounded normal operators were initially defined using abelian von Neumann
algebras, not using the condition 7*7" = TT*. Indeed, the correct definition of
adjoint closed operators (together with the proof of the polar decomposition for
closed operators) was discovered in [vINeu32], three years after the publication of
[vNeu29].

The second one is the fact that any abelian von Neumann algebra on a separa-
ble Hilbert space is generated by a single bounded self-adjoint operator, cf. Thm.
13.9. Applications of this result were first given in [vINeu31], the second funda-
mental paper on von Neumann algebras. This paper proved that the von Neu-
mann algebra generated by a collection of mutually commuting bounded self-
adjoint operators (7, ).e is equal to the set of bounded Borel functional calculi of
(To)aen, cf. Thm. 13.8 for the case that (77,) is a finite collection (but not necessarily
bounded). Combining these two theorems together, [vNeu31] proved that these
(T,,) are the Borel functional calculi of a common bounded self-adjoint operator
H, and that H is also a Borel functional calculus of (7). This is the main result of
[vNeu31].

Although von Neumann didn’t mention why he was interested in this result,
I conjecture that one of his motivations was to prove the theorem that any normal
operator 7" can be written as 7' = f(H) where f : R — C is Borel and H is self-
adjoint, cf. Cor. 13.10. The importance of this theorem should be understood
in view of quantum mechanics, since f(H) seems to be one of the most natural
ways that normal operators appear in quantum mechanics. Mathematically, this
theorem is interesting because of the following reasons:

* The statement of this theorem does not rely on von Neumann algebras.
However, the proof of this theorem does.

¢ This theorem no longer holds if f is only assumed to be continuous or semi-
continuous; Borel functions are necessary. Therefore, the study of this theo-



rem improved the understanding of measure theory at that time. In partic-
ular, [vNeu31] gave a proof of the completeness of L?-spaces for Lebesgue-
Stietjes measures, generalizing the L?-completeness of Lebesgue measures
proved by Riesz and Fischer in 1907.

Thus, a proper understanding of von Neumann algebras cannot be separated
from the spectral theory of unbounded normal operators. In the three new sec-
tions of this monograph, we prove all the results mentioned above, except that
we restrict ourselves to the case that (7},).ex is a finite collection of strongly com-
muting normal closed operators. The generalization to infinite collections follows
from a similar idea, although the proof is more technical since one has to deal
with Borel functions on an infinite product of C.

The proofs of these results (in Sec. 13) give us a good excuse to introduce the
notion of normal representations of von Neumann algebras. Although normal
representations were not explicitly mentioned in [vNeu29, viNeu31], some of its
vague ideas already appeared in [vNeu31]. Therefore, we take this opportunity
to give a systematic account of the basic facts about normal representations in Sec.
11 and 12.

Our treatment of normal representations differs from most books on von Neu-
mann algebras in that we do not study normal states first and then use it as an
intermediate tool for studying normal representations. Instead, we study normal
representations directly. The main result is the equivalence of two types of defini-
tions of normal representations (cf. Thm. 12.13): The first one is extrinsic and uses
the central supports of projections. The second type is intrinsic, calling a represen-
tation normal if it is continuous with respect to the o-strong*/o-strong/o-weak
topology. That these three topologies make no difference for the definition of nor-
mal representations is an interesting fact, reminding one of the definition of von
Neumann algebras using various topologies. Indeed, the bicommutant theorem
also says that the extrinsic definition of von Neumann algebras (in terms of com-
mutant) equals the intrinsic ones. This is no coincidence, since we will use the
bicommutant theorem to prove the equivalence of the these definitions of normal
representations.

Kaplansky’s density theorem roughly says that in von Neumann algebras, any
approximation to a bounded operator can be replaced by another one whose
operator norms are uniformly bounded, c¢f. Thm. 12.17. We use this re-
sult to give another characterization of normal representations: a representa-
tion of a von Neumann algebra M is normal iff it is o-strongly*/o-strongly/o-
weakly /strongly*/strongly /weakly continous when restricted to the closed unit
ball of M, cf. Thm. 12.18.

We hope that our presentation clarifies the mystery behind the equivalence of
various definitions of normal representations, as well as their relationship with
the bicommutant theorem and Kaplansky’s density theorem.
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Preface to the first edition

The goal of this monograph is to give a detailed and self-contained account of
the spectral theory for strongly commuting normal closed operators on a Hilbert
space #H, and their (bounded and unbounded) Borel functional calculus. We
assume the readers are familiar with general topology (as in [Mun]), measure
theory and basic Hilbert space theory (as in [Rud-R]), and basic properties of
bounded linear operators between Hilbert spaces (recalled in Section 1). No pre-
vious knowledge on the general theory of Banach spaces or locally convex spaces
is assumed.

Our approach in this monograph has the following features:

The crucial step in the proof of spectral theorem for adjointly commuting nor-
mal bounded operators is to establish an inequality for polynomial functional
calculus as in Prop. 2.1. Unlike many approaches, ours relies neither on Gelfand-
Naimark theorem nor on Gelfand’s formula sup{|A| : A € Sp(T")} = lim,, .|| T"||*/"
for abounded operator 7'. Instead, we prove it by establishing the algebraic prop-
erties of holomorphic functional calculus; see Thm. 2.6. We in turn give a new
proof of Gelfand-Naimark theorem; see exercise 2.18.

Before introducing the theory of unbounded closed operators, we first estab-
lish the spectral theory for unbounded positive operators, i.e., those unbounded
T on H satisfying that (T'¢|¢) > 0 for each ¢ € H and that 1+ 7" is surjective. This is
easy, since we have spectral theorem for the bounded positive operator (1+ 7).

Our treatment of the general theory of closed and closable operators rely on
polar decomposition (Thm. 5.5), which factors a closed operator as the product of
a partial isometry and a positive operator. Thus, the spectral theory for strongly
commuting normal closed operators follows from that for adjoint commuting par-
tial isometries and bounded positive operators, which are established in Section
2. Our preference for the method of polar decomposition is due to the fact that
it is also an important tool in the study of non-normal closed operators, or more
generally, non-abelian von Neumann algebras.

We give in this monograph an introduction to the strong commutativity of un-
bounded closed operators, not assuming they are normal. (Indeed, normality can
be understood using strong commutativity; see Def. 7.1). von Neumann algebras
appear naturally in the study of strong commutativity. See Section 7. On the other
hand, we introduce von Neumann algebras mainly to understand strong commu-
tativity. Unlike [Kad], von Neumann algebras are not widely used in our proofs
of spectral theorem and Borel functional calculus. The readers who are not inter-
ested in von Neumann algebras can skip the sections on strong commutativity,



and read the proof of spectral theorem (Thm. 7.3) by assuming there is only one
normal operator 7.

We present spectral theorem in the “multiplication form”: that is, strongly
commuting normal closed operators Ti,...,Ty are simultaneously unitar-
ily equivalent to the multiplication of the coordinate functions z;,...,zxy on
D, cn L*(CN, uy,), where {1, }nem is a collection (indexed by a non-necessarily fi-
nite or countable set 91) of positive finite (necessarily Radon) Borel measure on
CN. This is in the same spirit as [RS], but slightly more general. Spectral theo-
rem in the “resolution of the identity” form follows easily from the multiplication
form.

As one can see in Sections 6 and 8, relations like A;T < T A; (where T is an
unbounded (pre)closed operator from #; to H, (with dense domain), A, A, are
bounded linear operators on H;, H, respectively) have important analytic conse-
quences.

Our presentation of spectral theory is influenced by [Kad, RS, Rud-F]. These
texts focus mainly on single normal operators rather than several strongly
commuting ones (especially when treating unbounded operators). Besides the
present monograph, we also recommend [Sch] for a text on spectral theory which
treats several unbounded operators.

September 2021



1 Preliminaries

WesetN ={0,1,2,3,...},Z, ={1,2,3,...}.

Nets

A directed set 2 is a set equipped with a binary relation < which is reflexive
(v < afor all a € ), transitive (for each a, 5,7 € %, if « < fand § < ~ then
a < ), and satisfies that for any «, 5 € 2, there is v € 2 such that «, 5 < 7.

A net of elements in a set X is a function from 2( to X, written as (z,)aen OF
simply z,. Assume X is a topological space. Then for each z € X, we write

limz, =z, (1.1)

or simply limz, = z, if for each neighborhood U of x there is o € 2 such that
xgeUforall 5 > a. Amap f: X — Y (where X and Y are topological spaces) is
continuous at « € X if and only if for each net =, converging to z, f(x.) converges
to f(x). For the "if” part, one suffices to choose the directed set 2 to be the set of
neighborhoods containing = with < being >.

If z, is a net in a Hausdorff space X, then any two limits of z, are equal.

If 2 is a subset of a topological space X, then the closure of €2 is the set of all
x € X such that there is net z, € X converging to x. When X is first countable,
nets can be replaced by sequences.

We refer the readers to [Mun, Chapter 3] for more about nets.

Hilbers spaces and bounded operators

The sesquilinear form on a Hilbert space will be denoted by (:|-), where the
left bracket is linear and the right one antilinear.

Given Hilbert spaces H;, Ho, we let Hom(H;, H2) denote the space of bounded
linear maps from #; to H,. Hom(#, H) is denoted by End(H).

Hom(#1,M2) is a Banach space equipped with the operator norm |7'||=
SUPgsecr e = SUDg e e ﬁgﬁ;gﬁ If S € Hom(H,, Hs), then || ST||< ||S]|||T]I.

The adjoint 7% of T is in Hom(#,, H1) and defined by (T'¢|n) = (£|T*n) for
each {,n € H. (Le., T%n is the unique vector corresponding to the bounded linear
functional { — (T¢|n), whose existence is guaranteed by Riesz representation
theorem.) It is clear that ||7*||= ||7’||. We also have the C*-property

IT*T||= |71 (1.2)

Indeed, < follows from the above general inequality for ||ST|. And |T|*=
supgo | 7€/ 1117 = supeo(T*TEIE)/ IEI1*< |1 TT].



The kernel and the range of 7' € Hom(H;,H,) are denoted respectively by
Ker(T) and Rng(7"). We have

Rng(T)* = Ker(T*). (1.3)

Indeed, ¢ L Rng(T) iff 0 = (&|Tn) = (T*|n) for each n, iff T*¢ = 0.

T € End(#) is called normal resp. self-adjoint resp. positive if 7*7 = TT*
resp. T' = T* (equivalently, (T€|¢) € R for each £ € H) resp. (T¢|¢) = 0 for each
e H.

The strong (resp. weak) operator topology of Hom(7#,, H,) is the one gener-
ated by {T": ||(T' — To)&l|< €, ..., (T = To)én|| < €} (resp. {T" : [{(T —Tp)é|m)| <
6 .., |{(T—=To)n|nn)| < €}) for some N € N, T, € Hom(Hi, Hs), € > 0,
&1y &N € Hiym,...,my € Hao A net T, in Hom(73,7T3) is said to converge
strongly (resp. weakly) to 7', if and only if they converge in the strong (resp.
weak) topology, if and only if im7,§ = T¢ (resp. im{(T.{|n) = (T¢|n)) for each
€€ Hi,n e Hy If ||T,||< M uniformly for some M > 0, then it suffices to verify
the limit for £, 7 in dense subspaces of H,, H, respectively.

If (H,,)nem is a collection of Hilbert spaces indexed by a (non-necessarily count-
able) set N, then P, ., H, denotes elements of the form (,),em where each
& € Hy, and > lléal*< +oo. This is a Hilbert space, called the direct sum
of (H,)nem- The vector space structure is defined componentwisely. The inner
product between (&, )nem and (17,)nem 18 D ,c0Cn|Mn)-

The Hahn-Banach separation theorem for H says that if C' is a convex subset
of H (i.e. {,n € C implies a& + bn € C for each a,b > 0,a + b = 1), and if there is
a net of vectors {{, }aeq in C converging weakly to & (i.e. ({,[¢)) — ({|¢) for each
) € H), then ¢ is in the (strong) closure C of C (which is also convex).!

Projections and partial isometries

A projection E on a Hilbert space H is a bounded linear map which fixes
vectors on a closed subspace H, of H, and maps all vectors in Hy to 0. Then
Rng(E) = Ho. We say FE is projection of H onto #H,. Then 1 — E is the projection
of H onto Hj.

Equivalently, a projection E is a bounded linear operator satisfying £* = E
and E? = E. It fixes vectors in Rng(F) and acts trivially on Rng(E)".

The range of a projection E is necessarily closed, and we have Ker(£) =
Rng(E)*.

'Here is one way to see this without appeal to the general Hahn-Banach theorem for locally
convex spaces. Assume for simplicity that £ = 0. Note that C has a vector 1 such that [|¢||=
inf, ;&lln]l ([Rud-R, Thm. 4.10]). Consider Hg as the real Hilbert space # with inner product
(| )r := Re(:|). Then for each o, we have (£, [¢)r > ||1]|?; otherwise, by looking at the (at most
two dimensional) real subspace spanned by &, and v, we see that there must be a vector on the
line segment between &, and ¢ (and hence inside C) whose length is < ||¢||, impossible. Since
lim{&, [ r = 0, we must have ||1/||?= 0 and hence 0 = ¢ € C.
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A net E, of projections on H is called increasing if « <  implies Rng(E,) <
Rng(Ejp), or equivalently, E, = E,Eg.

Proposition 1.1. An increasing net of projections (E,)aeq on H always converge
strongly. If Ho = | JRng(E.), then E, converges strongly to the projection E onto
Ho.

Proof. E.6 =0 = E{when¢ L Hy. Now assume & € H,. For each n € Z,,, suppose
we have found ay, - -+, ;-1 € A such that || — E,,§[|< 1/jforeach1 < j <n—1.
Since Rng(E,) is increasing and has union dense in #,, we can find «,, € 2 and a
vector 7,, € Rng(E,,, ) such that ||{ —7,||< 1/n. Since the smallest distance between
¢ and a vector in Rng(FE,,, ) is || — E., £/, we conclude ||¢ — E, &< 1/n.

Now that the sequence «, is constructed, for each n € Z, we have ||{ — Ez||<
1/n for every > «,, again by the fact that E, is increasing. So E.§ — ¢ = EX.
This finishes the proof. ]

A unitary operator/map U from #; to H, is by definition a bounded linear
map which is bijective and preserves inner products ((U{|Un) = ({|n) for each
¢,m € H), equivalently, preserves the norms (||U¢||= ||£]| for each £ € #H). Equiv-
alently, U € Hom(H,, H,) satisfies U*U = 14,,UU* = 14,. U* is a unitary map
from H, to H;. A unitary U : H; — H, is an equivalence of the two Hilbert spaces.

A partial isometry U from a Hilbert space 7, to another H, is by definition a
bounded linear operator, which restricts to a unitary map

~

U:sU)—7(U)

from a closed subspace ¢(U) of #; to a (necessarily closed) subspace 7(U) of Ha,
and which is zero when acting on ¢(U)*. We say ¢(U) is the source space of U,
and 7(U) the target space of U. Note that Rug(U) = 7(U). U* is a partial isometry
with source space ¢(U*) = 7(U) and target space 7(U*) = ¢(U), U* restricts to a
unitary map

U*:17(U) = ¢(U)

which is the inverse of the above restriction of U.

U*U is the projection of #; onto ¢(U), and UU* is the projection of H; onto
7(U). (As a consequence, we have U = UU*U and U* = U*UU*.)

Equivalently, a partial isometry U : H; — H is defined to be a bounded
operator such that both U*U and UU* are projections. Then U*U is the projection
of H; onto ¢(U), and UU* is the projection of H, onto 7(U).

We leave it to the readers to check the equivalence of definitions.

A partial isometry U : H; — H, whose source space is H; is called an isome-

try.



Borel measures

A positive measure 4 on a locally compact Hausdorff space X is called Radon
measure when: (local finiteness)yu is finite on compact subsets; (outer regularity)
for each Borel set £ < X, pu(E) = inf{u(U) : E < U,U is open}; (inner regularity
on open sets) if U < X is open, then p(U) = sup{u(K) : K < U, K is compact}.

The Riesz-Markov representation theorem [Rud-R, Thm.2.14] says that any
positive linear functional on C,(.X) (the algebra of continuous functions on X with
compact supports) can be written as f — {, fdu for a unique Radon measure
on X.

All measures are positive unless otherwise stated (that it is a complex mea-
sure). A complex Radon measure is by definition a finite C-linear combination of
finite Radon measures.

In this note, we only consider locally compact Hausdorff spaces X which are
also second countable. (The only exception is the proof of Gelfand-Naimark Theo-
rem, which is not used elsewhere in the note.) Then local finiteness implies inner
and outer regularity [Rud-R, Thm. 2.18]. Thus, locally finite (in particular, finite)
positive Borel measures on X are automatically Radon measures.

Suppose ¢ : X — Y is a Borel map between two measure spaces X,Y. If yisa
Borel measure on X, its pushforward ¢, u is defined by

Gxpi(Q) = p(671(Q))
for each measurable 2 Y. Then for each measurable f : Y — [0, +0] we have
| sdoun=] rooan (14)
Y X

Indeed, this is obvious when f is a characteristic function yq, and hence true when
[ is a simple function. So it is true in general by monotone convergence theorem.

If $ : X — Y is Borel and bijective and if ¢~' : Y — X is measurable, for each
Borel measure v on Y, the pullback measure ¢*v is defined by ¢*v = (¢ !),v.
Then for each measurable f : Y — [0, +oc] we have

L fdv = L(f 0 )do*y (15)

The support of a Borel measure 1 on a topological space is the (necessarily
closed) subset of all points = such that any neighborhood at 2 has non-zero mea-
sure.

2 Spectral theory for adjointly commuting normal
bounded operators

Fix a Hilbert space H. Choose adjointly commuting normal operators
Ti,...,Tn € End(H). This meas that 7;7; = T;7; and T;*T; = T;T; for each
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i,j. Set R(T) = (T + T*)/2 and I(T) = (T — T%*)/2i for each T € End(H).
Then R(71),...,R(IN),S(11),...,S(Tn) are (adjointly) commuting self-adjoint
operators. Moreover, a polynomial of 7,,7; is equivalently a polynomial of
R(T,), 3(T).

Let Py denote the set of polynomials with complex coefficients and mutu-
ally commuting and independent formal variables z,...,2x,Z1,...,Zy. Thus, a
generic element is a finite sum of elments of the form az{" --- 2y~ - 21" - - - ZY
where a € Cand my,...,my,nq,...,ny € N. Multiplications of Py are defined as
multiplications of polynomials. Moreover, there is an involution = (i.e., an anti-
linear? satisfying f** = f) such that

(az{nl ZxN zérlll 27\71\7>* :azgnl 27NnN Z{Ll z%N
In this way, Py becomes a =-algebra.
By changing variables z; = z; + iy;,z; = ; — iy;, elements f of Py are equiv-
alently polynomials f of ., y., related by

fxuy, - aon,yn) = flon + iy, o0 — iy, - on + iyn, oy — yw),

f(z1,21, . 2n, 28) = f(R(21),S(21), - - -, R(zw), Szw))

where R(z;) = (z; +%;)/2,3(2;) = (2; — Z;)/(2i). We have 2% = z;,yF = y;.

Note that End(#) is also a #-algebra whose involution = is given by the ad-
joint of operators. We have a unique unital *-homomorphism 7 : Py — End(#)
defined by

for each j. Equivalently,
m(xy) = R(T;),  7ly) = ().
By (unital) *-homomorphism, we mean

(1) =1,  #(fg)==()mlg),  =(f7)==(f)" (2.2)

for each f, g € Py.

We know that in Linear algebra, polynomial rings play an important role in the
study of spectral theory/Jordan decomposition. In the infinite-dimensional case,
polynomial rings (or more precisely, polynomial «-algebras) are not sufficient. We
need to consider C(X) , the -algebra of continous functions on a compact Haus-

dorff space X. It’s »-structure is given by f*(z) = f(x) foreach f € C(X),z € X.

?An antilinear map T between two C-vector spaces V and W is a map satisfying T'(au + bv) =
alu+ bTV foreacha,be C,u,veV.

10



- stands for the complex conjugate. Moreover, C'(X) is equipped with the norm
topology L*(X).

The first question in spectral theory is: what is an appropriate X? To answer
this question, we need the following crucial result. For each r > 0, set

B, = [—T‘, 7,]2 (23)
regarded as a subset of C.

Proposition 2.1. Let r; be ||T}||, the operator norm of T;. Then for each f € P,

Im(Hll<  sup [fl@ry0- 28, yn)]- (2.4)

xj,y5€[—rj,rj]
Let
X =B, x--xB,,.

Theorem 2.2. There is a unique continuous (unital) =-homomorphism = : C(X) —
End(H) satisfying that for each j, n(z;) = T;,7(z;) = T;. (Equivalently, m(x;) =
R(Ty), m(y;) = 3(T5).)

Proof. For each f € Py, f canbe regarded as a continuous function of the variables

T1, Y15, %N, Yn. SO f € C(X). Moreover, f as a polynomial is determined by f

as a function (since all the coefficients of the polynomial can be calculated by the
values of the multi partial derivatives of f). Thus, Py is identified with a unital

+-subalgebra of C'(X) by identifying f € Py with f e C(X).

By Stone-Weierstrass theorem, Py is dense in C'(X). Moreover, by Prop. 2.1,
the 7 defined on Py is continuous with respect to the norm of C'(X). Therefore, 7
can be extended uniquely to a continuous unital *-homomorphism from C'(X) to
End(#H). O

To prepare for the proof of Prop. 2.1, let us consider a slightly different =-
algebra Qy = CJt4,...,ty] of polynomials of ¢, ...,¢y, and the involution « is
defined by ¢ = ¢; for each j.

Lemma 2.3. Suppose that for every N € Z. and every self-adjoint bounded operators
Hy,...,Hy on H, the unique unital =-homomorphism ¢ : Qn — End(H) defined by
w(H;) = t; for every 1 < j < N satisfies (by setting r; = || H,||)

le(HII<  sup  [f(t,... tx)] (2.5)

tje[—rj,rj]

forevery f € Qn. Then Prop. 2.1 is true.

11



Proof. Let us assume the condition in this theorem. Choose any f € Py. Let
Ti,...,Tx be adjointly commuting normal bounded operators, and let H; =
R(T;), K; = S(T;). Let ¢ : Qonv — End(H) be the unique unital »-
homomorphism sending each H;, to t5;_; and K] to t,;. Consider the polynomial
f(x1,91,. .., 28, yn) as an element of Qo by identifying x; = t5;_1,y; = ty;. Then

o(f) = m(f) forall f € Py since this is true when f = 2, y1,...,2n,yn.
Let ; = ||T}||. Then | H}||, || K;||< r;. By (2.5), we have

Im (D= lle(HlI<  sup [flz,pn. . 28, un)].

z5,y5€[—r;5,7;]
O

The crucial step of proving Prop. 2.1 is to extend the ¢ in Lemma 2.3 to a
unital »-homomorphism from a larger class A of functions, where A contains Qy
and the positive “square root” (defined in a proper sense) of any r? — f* f where
f e Ovandr > |f|Lex). As we see below, A is the set of analytic functions
defined near X.

Holomorphic functional calculus

Let 7' € End(#). Define the spectrum
Sp(T) = {\ e C: X\ — T is not invertible}. (2.6)
Note the following easy fact:

Proposition 2.4. Let r = ||T|. Then Sp(T) < {\ € C : |\ < r}. Moreover, if T is
self-adjoint, then Sp(T') < [—r,7].

Proof. If |\| > r = ||T'||, then A — T has inverse

+00
YA, (2.7)
n=0

Now assume T' = T*. We shall show that A—T is invertible when &(\) # 0. By
scalar multiplication and replacing 7" by T' 4+ a (where a € R), it suffices to show
that S := i — T is invertible. By 7' = T*, we have (S¢|Sn) = ({|n) + (T¢|Tn) and
hence ||S¢||2= [|€]|*+]|T¢|]*= [|€]|?. So S is injective (and similarly S* = —i — T is
injective), and its inverse S~ : Rng(S) — H is continuous. To finish the proof, we
shall show that Rng(S) = H.

If S¢, is a Cauchy sequence, then so is &,, which converges to some & € H. So
S¢, — S¢. This shows that Rng(S) is complete, equivalently, a closed subspace
of H. Thus, it remains to show that Rng(S) is dense in . This follows because
Rng(S)*+ = Ker(S*) (by (1.3)) and S* is injective. O

12



Lemma 2.5. Let O be an open subset of C disjoint from Sp(T'). Then the map z € O —
(z — T)~* is holomorphic (in the sense of Sec. A).

Proof. Note first of all that if T is invertible and a € C satisfies |a|||T!||< 3, then
e (—a)"T "t converges since | 77" 1|< [|[T71|"*!, and the limit is clearly the
inverse of a + T'. It is easy to check, using the infinite sum expression for (a+7)*,

that
I(a+T)~ < 2T~

Now, assume z € O so that z — T is invertible. Using the above inequality, we
see that for any h such that z + h € O, the operator (z + h—T)~' — (2 —T)~!, which
clearly equals —h(z — T)"!(z + h — T')~!, has norm bounded by

Al (z = T) M (R + 2 = T) < 2[RIz = T)

whenever |h|||(z — T)~!||< 1/2. This shows that the map z € O — (z = T) ' is
continuous.
Finally, we compute the derivative: as h — 0,

(z+h-T)t—(z-T)"1
h

=—(z-T)'"(z+h-T)"

converges to —(z — T') 72 by the continuity proved in the previous paragraph. [

We now let Hy,..., Hy be self-adjoint operators on # with operator norms
ry,...,rn. Let

Y = [—r;,r] x - x[=ry,ry]

Let A be the set of complex analytic functions f (¢, . .., tx) analytic on a connected
neighborhood of (¢1,...,tx) € Y. (Thus, here we understand ¢, as complex vari-
ables. By saying that f is analytic, we mean that it is continous as a multi-variable
functions, and that it is holomorphic on each variable.) A is a *-algebra, whose
involution = is defined by.

[ty tn) = f(ty, ... tn).

(Note that f* is holomorphic, cf. Prop. A.1.) In this way, Qn can be identified
naturally as a unital -subalgebra of .A. Note that any f € A is determined by its
values on Y. This is due to the fact that any single-valued holomorphic function
on a connected open subset of C is determined by its values on a line segment in-
side this open subset; our case of multi-variable functions follows from induction
on the number of variables. Thus, we equip .4 with the topology of L*(Y)-norm.
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For each j, we choose an anticlockwise piecewise-smooth simple closed curves
R; < C such that R; surrounds [—r;,r;] © Sp(H;), and that f is holomorphic
when (¢, ...,ty) is inside and also on a neighborhood of R, x - -- x Ry. Define

p(f) = jg @2mi) ™V f(tr,.tw) (= H)TH o (b — Hy) 7 dt o diy. (2.8)

tjERj

Note that the integrand is holomorphic in the sense of Sec. A, thanks to Lemma
2.5. The integral is defined as in Sec. A. By complex analysis, (2.8) is independent
of the choice of Ry, R, ..., Ry, Ry. Also, note that (t; — H;)~' commutes with
(t; — Hj)~".

Theorem 2.6. ¢ : A — End(H) is a continuous unital =-homomorphism and satisfies
le(FIN (1] (x) for each f € A. Moreover, if f € Qn, then the (f) defined by (2.8)
agrees with the o( f) defined in Lemma 2.3.

Proof. For each connected open set O containing X, we let Ao be the set of analytic
functions on O. Then A is the union of all Ap.

Step 1. Assume f = ' ---t}, and assume each R, is a circle with radius
larger than || 7}| so that we can substitute each (t; — H;)™! = >, _¢;" ' H} into
(2.8). One then checks easily that the ¢(f) equals the ¢(f) defined by (2.1).

Step 2. We show that ¢ restricts to a unital *-homomorphism from each Ao
to End(H). This will imply that ¢ : A — End(#) is a unital *-homomorphism.
That ¢(1) = 1 follows from step 1. That ¢(f*) = ¢(f)* follows by applying
successively Prop. A.1 to each single variable integral of the multiple integral in
(2.8). (Note that according to the notations in Prop. A.1, if C' is anticlockwise then
C'is clockwise.)

We now show ¢(f)p(g9) = ¢(fg) for every f,g € Ap. Assume for simplic-
ity that N = 2. The general case of N variables follows from the same method.
For each i = 1,2, we choose a smooth simple closed anticlockwise I';, R; contain-
ing [—r;, r;|, assume R; is small enough so that it is inside the interior of I';, and
assume f is analytic near and inside I'; x I';. Set differential d = (2ir)~'d. Then

e(e(g)
:J RiyeR J Iy wel flz,y)g(z,w)(@x — Hy) ' (z — Hy) 'y — Hy) ™' (w — Hy) ™!
- dxdydzdw

Note that when z # z,
(x—H)'z-H)'=C—a) Y ae—H)"'—(z—-2) (2z—H)"

Since z € Ry, z € I'y, and since R, is inside I';, by complex analysis, we see that
J flz,y)g(z,w) (z —2) (2= H) ™ (y — Hy) Hw — Hy) 'da = 0.
:EGR1
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So
o(f)elg)
B f R f - f@myglew)(e — H) 7y~ H) 7w - BT
'dM%ZdZ;fw. o

In this integrand, only (z — z)~!

g(z,w) depends on z, and

| =g ds = g
zel'1
by Cauchy’s formula. Thus

o(f)elg)

RiyeR f er Fla,y)g(w, w)(@ — H) " (y = H) ™ (w = Ha) ™" - dadydw

J Z'—Hl
eRy

JER L,ep @, y)g(e, w)y — H2)71<'w - H2)71d?/dw> dx.

A similar factorization for (y — Hy) ™' (w — Hy) ™' shows
| | syt - B - )yl
yeRy Jwel'y
= f@yg(z,y)(y — H2) ' dy.

yER2

This proves ¢ (f)¢(g) = »(f9)-
Step 3. It remains to show that for each f € A we have |o(f)||< ||f|lz=x

Choose any > 0, and let r = 0 + || f||z(x). Choose O such that f € Ap. Note
that r? — f* f takes values in [0?, +00) when restr1cted to X. Thus, we may choose
O small enough such that r* — f* f takes values in C\(—0, 0] when defined on O.
Since we can define a holomorphic square root function 1/z on C\(—c0, 0] which
is positive on (0, +), we can define g = /r? — f*f in Ao which satisfies ¢g* =
r? — f*f and takes positive real values on X. So g equals ¢* on X and hence on O.
It follows that g*g = r* — f* f. Thus, for any £ € H, we have

le(HEN*= ColfFIELE) = rlIgll* —Ce (g™ 9)él€) = r*lIEI*~lle(g)éll*< r*|1€]1*.

This proves ||¢(f)|°< r* = (6 + || fllz=(x))? for each 6 > 0, hence finishes the
proof. O

Prop. 2.1 follows immediately from the above Theorem and Lemma 2.3.
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Spectral theorem

We come back to the setting of adjointly commuting normal bounded opera-
tors T3, ...,T5 on H with norms rq, ..., ry. Recall that X is defined by (2.4).

The Riesz-Markov representation theorem for C'(X) can be presented in terms
of cyclic representations. First of all, we say a vector { € H is cyclic for C(X), if
7(C(X))¢ spans a dense subspace of H. If 11 is a Borel measure on X, then C'(X)
acts on L*(X, u) by multiplication.

Proposition 2.7 (Riesz-Markov representation theorem). Suppose that £ € H is a
cyclic vector for C(X). Then the representation m of C(X) on H is unitarily equiva-
lent to the one of C(X) on L*(X, u) for some Borel measure u satisfying u(X) < +co.
More precisely, there is a unitary map U : H — L*(X, u) such that Ur(f)U* is the
multiplication of f € C(X) on L*(X, ).

Moreover, we can choose U such that U¢ equals the constant function 1.

Proof. Since 7 is a *-homomorphism, the linear functional f — {(n(f)|¢) is
positive since, when f > 0, we have (7(f)¢|¢) = ||7(v/f)¢]|*> 0. By Riesz-
Markov representation theorem, we can find a finite Borel measure ;1 such that
(m(f)E|E) = § fdu for each f e C(X). Thus

(PEl(g)) = L g fdu = {Flgdrcen

which shows that the linear map 7(f)¢ € n(C(X))E — f € L*(X, u) is well-defined
and extends to a unitary map U : H — L?*(X, ) (note that the cyclic condition is
used here). One checks easily that U satisfies the desired property. O

Theorem 2.8 (Spectral theorem). Let X = B,, x --- x B, where each r; = ||T;||.
Then there exist a set (i, )nen Of finite (positive) Borel measures, and also a unitary map

U:H— P LX, pn)
neNn

satisfying that for each 1 < j < N and each (f,)nem € @,,cq L2 (X, 11n),

UT;U* - (fa)nem = (2 fn)nen (2.9)

Here we let z; be function indicating the j-th component B; of X, i.e., the one
sending (z1,...,2n) € By, X --- x B, to z;. Thus, the spectral theorem says that
the action of adjointly commuting 71, ...,Tx on H; is unitarily equivalent to the
multiplication of zy, ..., zy on a direct sum of Borel L?-spaces over X.

We write UT;U* as M., and call it the multiplication operator of z;.

Proof. By Zorn’s lemma, H is an (orthogonal) direct sum of C'(X)-invariant cyclic
subspaces, i.e., H = @, H, where each subspace #,, is invariant under the action
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of C(X), and the action of C(X) on H,; possesses a cyclic vector. (Consider the par-
tially ordered set, each element of which is a set of mutually orthogonal non-zero
cyclic C(X) invariant closed subspaces.) By Proposition 2.7, each subrepresenta-
tion H,, is unitarily equivalent to the multiplication of C(X) on L*(X, u,), such
that 7j is equivalent to the multiplication of z;. The theorem thus follows imme-
diately. O

Bounded Borel functional calculus

Lemma 2.9. For each bounded Borel function f on C¥, there exists a net go = (go)ac
in C.(CN), such that ||ga || )< || fllie(cn) for each o, and that lim § . | f — ga|dp = 0
for each finite (positive) Borel measure ji on CN.

It follows that lim {y | f — gu[?dp = 0 for each p > 1, since |f — g.|’ < |f — go| -
(2] £l )P~
Proof. Let 2 be the directed set of all (K, ¢) where K is a finite set of finite Borel
measures on CV, and ¢ > 0. (Ki,¢;) < (Ky,€) means K; « Ky and ¢; > .
By Lusin’s Theorem [Rud-R, Thm. 2.24], for each o = (K, ¢) € 2, we can find

go € C(C") whose sup norm is bounded by || f ||, such that the subset {z € C" :

f(z) # go(z)} has (X, p)-measure less than €/[| floo. Then [|f — gallricn < €
for each 11 € K. So g, is a desired net. O]

Recall X = B,, x --- x B,,.

Definition 2.10. For each bounded Borel function f on X, we define a bounded
operator

w(f)= f(Th,...,TN)
on H such that U f(T},...,Ty)U* is the multiplication of f on @, .y, L*(X, i), i-€.
M;.

Let B(X) be the set of bounded Borel functions on X, which is a unital =-
algebra, whose #-structure is defined by f*(z1,...,2y) = f(z1,...,2n). Let z; :
X — C denote the j-th standard coordinate (¢i,...,(n) — (.

Theorem 2.11. 7 : f € B(X) — f(Ty,...,Ty) € End(H) is the unique unital =-
homomorphism satisfying the following properties

1. mw(z;) =1j.
2. If f € B(X), and f, is a net of bounded Borel functions on X satisfying
i [ 17 = 1P =0
X

for each finite (positive) Borel measure on X, then f,(Ty,...,Ty) converges
strongly to f(Ty,...,Tn).
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Proof. m : f — f(T1,...,Ty) is clearly a unital *-homomorphism satisfying
m(z;) = T;. For each & € H, write U{ = (gn)nem € @D,, L*(X, f1n). Then

I(f(T1,. . Tn) = fo(Th, . T)JEN
:HU(f(Tlv S 7TN) - f‘(Tb cee 7TN))U*(gn)n€‘ﬁ”2

=0 1= £ gnlPdpn

nem vX

which converges to 0 by choosing 1 = Y, |gn|?ttn-

Uniqueness: Let 7 be as described in the theorem. Clearly 7(f) is uniquely
determined when f is a polynomial. Since 7 is continuous (by Prop. 2.12), by
Stone-Weierstrass, 7(f) is uniquely determined when f € C'(X). By Lem. 2.9,
7(f) is uniquely determined when f € B(X). O

The following proposition gives a variant of Prop. 2.1.

Proposition 2.12. Let </ be a unital =-algebra equipped with a function | - | : &/ — Rx,
satisfying the following property:

o If f € o, then there exists g € o such that f*f + g*g = ||f|*- 1.

Assume that w : o/ — End(H) is a unital -homomorphism, i.e., preserves the identities,
multiplications and linear combinations, and =-structures. Then ||7(f)| < ||f|| for each
fed.

For example, <7 can be the space of bounded complex continuous functions on
a topological space and | - | is the sup norm, or the space of bounded measurable
functions and || is the L*-norm. .2 can also be any unital =-subalgebra of End(K)
(where K is a Hilbert space) such that if 7' € ¢/ is positive then v/T € 7.

Proof. The idea here is similar to (but slightly simpler than) Step. 3 of the proof of
Thm. 2.6. Letr = ||f||. Then r? — f*f = g*g for some g € 7. For each £ € H, we
compute

(m(PEIm(f)E) = (m(f* FIEIE) = {m(r® — g*9)€l€) = r?&]I* =l (9)€]I*< I
0

Another form of spectral theorem

Spectral theorems are often presented in a form that is independent of the L?
spaces L*(X, u,,). To begin with, we set

E(Q) = xa(Ty, ..., T,) (2.10)
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where xq is the characteristic function of Q2. Then F(Q2) is clearly a projection. E is
a projection-valued Borel measure, in the sense that £ associates to each {,7 € H
the measure (E¢|n) defined by (E¢|n)(2) = (xa(T1, ..., Ty)En). Itis easy to check
that this is a complex Borel measure, which is (finite and) positive when £ = 7.
Also, E is determined by its evaluation(E{[¢) for each £ € H. We say E is the
resolution of the identity for 73, ..., 7.

If f isbounded Borel on X, we define S « fdE tobe the bounded linear operator

on H satisfying
([ saB)elny = | scarem,

Theorem 2.13. For each bounded Borel function f on X, and for any §,n € H, we have

ST Tl = | FaBED, (2.11)
Thus, we may write
F(Th, ... Ty) = L fdE. (2.12)

Proof. By linearity, it suffices to assume 1 = ¢ so that (E¢[¢) is a positive Borel
measure. Then, from the definition of F, it is clear that (2.11) holds when f is a
characteristic function. Thus (2.11) holds when f is a simple function, hence (by
monotone convergence theorem) when f is a positive bounded Borel function,
and hence when f is a bounded complex Borel function. O

Definition 2.14. Let T, ...,Tx be adjointly commuting normal operators. Let
Sp(T1, ..., Ty) be the set of all points of CV at which there is a neighborhood W
satisfying E(W) = xw(T1,...,Tn) # 0. This is a closed subset of C", called the
joint spectrum of 77, ..., T. In the setting of Theorem 2.8, one checks easily that
Sp(T1,...,Tn) is the closure of the union of the supports of all ji,, (n € 91). In the
case of a single normal operator 7, the Sp(7') defined here agrees with the one
defined by (2.6).

Exercise 2.15. In the case of a single normal operator 7', use the relation between
Sp(T") and the supports of y,, to deduce that T is self-adjoint (resp. positive (i.e.
(T€|E) > 0 for every £ € H), unitary), if and only if Sp(T') is a subset of R (resp.
[0, +00), the unit circle).

Exercise 2.16. Use the relation between joint spectrum and the supports of 1, and
also the definition of Sp(7}) in (2.6) to show that Sp(7} x --- x Ty) < Sp(T3) x - - - x
Sp(Tn).

Remark 2.17. The above two exercises show that, once we have a bounded Borel
function f on Sp(7; x --- x T), we can define f(71,...,Ty) by extending f to
a Borel function on C" and define it as in Def. 2.10. Again, this definition is
independent of spectral decompositions.
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Appendix: Gelfand-Naimark theorem

The following exercise outlines a proof of the celebrated Gelfand-Naimark
Theorem using Prop. 2.1. This theorem will not be used in rest of this mono-
graph, and hence can be safely skipped.

Exercise 2.18. Let & be a (not necessarily finite) set of adjointly commuting self-
adjoint bounded operators on H.

1.

Let P be the set of polynomials with commuting formal variables {tr :
T € ®}. Namely, a general element is a C-linear combination of ¢7; - - - ;"
where ny,...,n, € Nand T1,...,T, € &. The involution of P is defmed
by (aty} -- t":) = aty -ty (a € C). Define a linear map 7 : P —
End(H) sending each aty} ---t7 to a7y --- T}'*. Show that 7 is a unital «-
homomorphism.

. LetYy = [—||T|,||IT||]* < C. LetY = | [, Yr, whichis a compact Hausdorff

space by Tychonoff’s theorem. Use Prop. 2.1 to show that 7(f) < || f|[i=(v):=
SUPy,cv; vres |.f ((tr)res)| for each f e P. Conclude that 7 can be extended
uniquely to a unital *-homomorphism 7 : C(Y') — End(#).

. Let A be the smallest unital (norm-)closed #-subalgebra of End(#) con-

taining &, called the C*-algebra generated by &. Use Stone-Weierstrass
theorem to show that A = 7(C(Y)). Thus we have a surjective unital -
homomorphism 7 : C'(Y') — A.

. Let Z = Ker(m). Show that Z is a closed =-ideal of C'(Y'), which means that

7 is a closed subspace of C(Y'), and that for each f € Z,g € C(Y) we have
fhel f*el.

Let X be the (necessarily closed) subset of all = € Y satisfying f(z) = 0 for
each f € Z. Apply Stone-Weierstrass theorem for locally compact Hausdorff
spaces to the family 7 of functions to show thatZ = {f € C(Y) : f|x = 0}.

By Tiezte extension theorem, the restriction map f € C(Y) — f|x € C(X) is
surjective and has kernel Z. Conclude that we have a well-defined bijective
unital -homomorphism 7 : C(X) — A sending each f|x to 7(f) (where
f € C(Y)). Apply the proof of Prop. 2.12 to 7 and 7' to show that 7 is
isometric, i.e., |7(f)||= || flli=(x) for each f € C(X).

Let A be any commutative (unital) C*-subalgebra of End(#), i.e., Ais a com-
mutative unital norm-closed *-subalgebra of End(#). Show that A is gen-
erated by a set & of mutually-commuting self-adjoint operators. Conclude
that any A is equivalent (as a normed unital *-algebra) to C'(X) for some
compact Hausdorff space X. (This is the Gelfand-Naimark theorem.)
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3 Unbounded operators

An unbounded operator 7' from H,; to H, is, by definition, a linear map from
a subspace Z(T") of H; (called the domain of T') to H,. Unless otherwise stated,
unbounded operators are densely defined, which means Z(7') is a dense subspace
of H,. In the case that H; = Hs = H, we say 7' is an unbounded operator on .

Unbounded operators mean non-necessarily bounded operators. Thus,
bounded linear operators are also unbounded operators. A continuous un-
bounded operator is understood in the obvious way, i.e., themap 7" : 2(T") — H.
is continuous with respect to the Hilbert-space norms. Thus, bounded operators
are precisely continuous unbounded operators whose domains are the full Hilbert
space.

Remark 3.1. The study of unbounded operators 7" from H; to H, can be trans-
formed to the study of T" on a single Hilbert space H, if we set H = Hi ® Ho,
D(T)=D(T)DHy,and T(EDn) =TEifE € P(T) and n € Hs.

For (non-necessarily densely defined) unbounded operators A, B from H; to
H,, and a, b € C, we define

aA+bB: 2(A)n P(B) — Ha, £ — aA€ + bBE,
which is an unbounded operator with domain
P(aA+bB) = 2(A) n 2(B).
We clearly have
(A+B)+C=A+(B+C)

both of which are denoted by A + B + C.

Note that by our definition, we have A — A — 0, with < becomes = if and only
if 7(A) = Hi.

We say

AcB
provided that

2(A) = 2(B),
A= BE (Ve D(A)).

This notation is justified by the definition of the graph of 7' : #(T") — T', which is
a subset of H; @ H, defined by

G(T):={(T¢): £ 2(T)}.
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Then A c B means precisely ¢ (A) c ¢4(B).
If A, B are both (densely/non-densely defined) unbounded operators on #,
we set

AB: 9(AB) > H, (- A B¢
where
P(AB) = B'9(A) = {£ € 9(B) : BE€ 2(A)}.
If this subspace is dense, then AB is an unbounded operator on H.

Proposition 3.2. Let A, B, C be (non-necessarily densely-defined) unbounded operators
on H. Then

(AB)C = A(BC)
(A+ B)C = AC + BC
A(B+C) > AB+ AC

Moreover, the = in the last relation becomes = if A is everywhere defined, i.e., 7(A) = H.
(E.g., when A is bounded.)

As an example that the last © is not =, take any A whose Z(A) is not the full
Hilbert space H, and take B = 1,C' = —1.

Proof. For each line, if { belongs to the domains of both sides, then it is clear that
the left and the right send £ to the same vector. Therefore, it is enough to verify
the three relations on the level of domains.

One verifies that both sides on the first relation have domain

{eH: e 2(0),CEe P(B),BCEe P(A)},
that both sides of the second relation have domain

CH2(A)nP(B)) =C'2(A)nC'9(B),
and that the left and the right of the third relation have domains

(€€ 2(B) n 2(C) : Bt + Ct € D(A)},
(€€ D(B)n 2(C): BE e 9(A),CE € D(A)).

The relations are thus verified. When 2(A) = H, the last two domains are both
2(B) n 2(C). O
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Definition 3.3. Let T be an unbounded operator from H; to H,. We define

D(T*) := {n € Hz : There exists ¢ € Z(H;) such that
(T¢|ny = &Jv) for each £ € Z(T)}.

Such ¢ is unique and is denoted by 7*1. So for each { € Z(T'),n € 2(1*), we have
(TElny = &[T

T* is a non-necessarily densely defined unbounded operator from H, to H; with
domain Z(7T*), called the adjoint of 7".Note that by the Riesz representation the-
ory for Hilbert spaces, we have

P(T*) := {n € Ha : The linear functional £ € Z(T") — (T¢|n) is bounded}. (3.1)
It is obvious that
AcB = B*c A (3.2)

Proposition 3.4. Let A, B be unbounded operators on H. Assume that A + B and AB
are densely defined. Then

(A+ B)* o A* + B*
(AB)* > B*A*

Moreover, if A is bounded, then the > in the two relations are both =.

Proof. The first o is easy to verify using (2.7). For the second one, suppose 7 €
2(B*A*). Thenn € 2(A*), and A*n € 2(B*). The first property says (A&|n) =
(€| A*n) for a vector A*n and every £ € Z(A), in particular, every vector By where
Y € D(AB). Thus (ABvy|n) = (B|A*n), which because of A*n € Z(B*) is equal
to (¢)|B*A*n) for a vector B*A*n and every ¢ € Z(AB). This proves the second
D.

Now assume A is bounded. Choose any ¢ € Z((A + B)*). Then the function
fromn e Z(A+ B) = 2(B) to (£|(A + B)n) is continuous. Since ({|An) is clearly
continuous over 7, so is (¢|Bn). So £ € Z(B*) = 2(A* + B*). This proves the first
equality. Now choose any n € Z((AB)*). Note that A*n is defined. Then for each
€ € 2(B), we have (BE|A*n) = (ABE|n) = (£|(AB)*n), showing that A*n e 2(B*)
and hence n € 2(B*A*). The second equality is also proved O

Definition 3.5. An unbounded operator T" from #; to H is called adjointable if
T* has dense domain in Hs. Assume 7' is adjointable. It is clear that

T« T** (3.3)

Thus T is also adjointable (because its adjoint has dense domain, which contains
a dense subspace Z(T)).
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Thus, roughly speaking, an adjointable operator is one that we can take adjoint
any times we want. But this does not mean that taking adjoints of 7" will give us
infinitely many different operators. Instead, we have only three different ones:
T,T*,T**, as indicated by the following obvious property:

Proposition 3.6. Let T be adjointable. Then T* = T***,

Proof. Since T' = T** in general, replace 7' by T* and we get T* < T™**. Take the
adjoint of T' = T** and notice (3.2), we have T > T"**, O

Adjointability is an analytic condition, since it says roughly that many vectors
n in H, makes the linear functional £ — (T'¢|n) continuous.

Exercise 3.7. Define an unbounded operator 7' : [*(Z,;) — C whose domain
2(T) is the set of all (a1, as,...) having finitely many non-zero elements. De-
fine T'(ay,as,...) = Y, a,. Show that 7" is not adjointable. In general, show that
any non-continuous linear map from an infinite dimensional Hilbert space to a
tinite dimensional one is not adjointable.

Remark 3.8. Let T be a (densely defined) unbounded operator from H; to H,. Let
E be the projection of #, onto the closure of Z(7*). Then the restriction £7" from
H, to Rng(F) is adjointable.

Continuous operators are certainly adjointable. Recall that if A is bounded,
then Ker(A) = Rng(A*)*, which shows that A is injective (resp. has dense range)
if and only if A* has dense domain (resp. injective). Using this fact, we can easily
produce many unbounded adjointable operators.

Example 3.9. Let A : H; — H, be bounded, injective, and has dense range.
By (1.3), A* : H, — H, is also bounded, injective, and has dense range. Let
P2(A7") = Rng(A), define A~1(A¢) = ¢ for each € € H;. Then A~! is an adjointable
unbounded operator from H, to H; with domain Z(A~'), and

(A7) = (A7)~ (3.4)
Note that A~! (and similarly (A*)~') are surjective.

Proof. If ¢ € PD((A*)™1), then for any n € Z(A™'), we have (A~ 1n\§>
(A7 A*(A*)71E) = (AA™ | (A*)71E) = (n|(A*)~'E), which shows & € Z((A™)*)
and (A71)*¢ = (A*)7'¢. Thus (A™1)* o (A*)"!. In particular, since (A*)~! has
dense domain (which is the range of A*),so does (A~1)*. So A~ lis adjointable.
Conversely, let £ € P((A71)*). Then ({]y) = ({[A7 T Ay) = ((ATH)*¢|Ay)) =
(A*(A~1)*¢|y) for each v € H; shows & = A*(A~1)*¢. Therefore € is in the range
of A*, i.e., in the domain of (A*)~!. This implies Z((A~ D*)y < 2((A*)71), which
finishes the proof. O
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4 Spectral theorem for unbounded positive operators

Recall that a bounded operator A on H is called positive if (A{|¢) = 0 for each
¢ € H. Equivalently, A is normal, and in the setting of Thm. 2.8, all p, have
supports inside [0, +0). It is also clear from Thm. 2.8 that 1 + A is invertible,
and its inverse is also bounded and positive. Motivated by this observation, we
consider:

Proposition 4.1. Let T be an unbounded operator on H. Assume {T'¢|€) = 0 for each
¢ € D(T). Then the following two equivalent conditions are satisfied:

® Therangeof 1 + T is H.

* 1+ T is the inverse of a bounded injective positve operator A on ‘H. (Cf. Example
3.9. Note that A has dense range since A = A*.)

The second condition also implies || A||< 1.

We say that an unbounded operator T satisfying (T°¢|¢) > 0 for each & € 2(T)
and the above two equivalent conditions is positive.

Proof. We prove the equivalence of the two conditions. The second one clearly
implies the first one by spectral decomposition of A. On the other hand, as-
sume 1 + 7" has range H. Note that 1 + T is injective, since if (1 + 7'){ = 0 then
0 = {1+T)EE) = |EIP+H(TEIE) = ||€]]*. Thus, we simply define A to be the (ev-
erywhere defined) linear operator on # satisfying that A(1 + 7'){ = & for every
£e P(1+T). Ais clearly injective. For each ¢ € 2(T), since (T¢|£) = (&|T¢) = 0,
we have [|(1 + T)¢||*= |€|]*= ||A(1 + T)&]|?, which shows that A is bounded and
|A||< 1. Moreover, (A(1+ T)(1+T)E) = (1 +T)¢) = 0, showing that A is
positive. [

The condition that 1 + 7' is the inverse of a bounded injective positive operator
has many useful implications. As our first application, we define:

Definition 4.2. An unbounded operator 7" on # is called symmetric if (T¢|n) =
(&|Tn) for every &, € Z(T). Equivalently, T' = T*. We say that T is self-adjoint
if T'=T*.

Then we have:
Proposition 4.3. Positive unbounded operators are self-adjoint.

Proof. Let T be positive, and let A be the inverse of 1 + 7', which is bounded,
injective, and positive. So A* = A. By Example 3.9, wehave 1 + T* = (1 + T)* =
(A=A 1T=A1=1+T. O

Thus, positive operators are adjointable.
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Definition 4.4. Let X be a measurable space equipped with a family of measures
(ttn)nem- Let f : X — C be measurable. The multiplication operator My on
H =P, L*(X, uy) is the unbounded operator with domain

Q(Mf) = {C‘Dn dn :Z ”gnH2 < +OO,Z ||fgnH2 < +OO}

and satisfying M;(®,,9,) = @, f g, for each ®,g, € Z(Mj).
Proposition 4.5. In Def. 4.4, we have 9 (M) is dense in H, and
(My)* = Mys

where f*(z) = f(z).

Proof. If r > 0 and Q, = {x € X : |f(z)| < r}, then for each ¢ € H we have
M, & € P(My) and lim,_, o, M, & = £ by the dominated convergence theorem.
This shows the subspace of all M,,, £ (where r > 0 and £ € H) is clearly contained
in 2(Mjy) and is dense in ‘H. Thus Z(My) is dense in H.

One checks easily that (M¢&|n) = ({|M«n) for each & € D (My),n € D(My+),
ie, Mp < (My)*. It remains to show that for any n € 2((My)*) we have
n € D(My«), ie, writing n = @,n, where n, € L*(X,p,), we have >, . |f* -
Mn H%Q( X < To0. By the monotone convergence theorem, it suffices to find ¢' > 0
such that for any finite subset » > 0 we have

ZJ £ oml? < C?
neN r

namely, ||Mf*xm77\|2 < C=.
Note that M, is a bounded operator with adjoint My«,,, . For each £ € H,
recalling that M,,, { € 2(My) and (clearly) M;M,,, & = My, £, we have

<§|Mf*xm77> = <Mf>mr§‘77> = <MfMXQT€|T]> = <MXQT§‘(MJC>*T]>

Thus [(¢|Mpxy, 1] < C| My, | < Cforall€ € Hif weset C' = | (My)*n|. Therefore
[ Mo, mll < C. O

Proposition 4.6. Let ¢ : X — Y be a Borel isomorphism of topological spaces. Let
(Vn)nem be a family of Borel measures on'Y'. Then

U:PL(Y, ) > D L(X, ¢*v,) Ug=goo

is unitary. Moreover, if f : Y — C is Borel, then on @, L*(Y, v,,) we have
UMU ™ = Mo
In particular, UD(My) = Mo
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Proof. That U is unitary follows from (1.5). That UZ(M;) = Moy and UMU ! =
M., are easy to check. O

Theorem 4.7 (Spectral theorem for a positive operator). Let T' be a positive un-
bounded operator on H. Then there exists a set (i, )nem Of finite (positive) Borel measures
on [0, +o0) and a unitary

U:H— @ L0, +%), ptn)
neN
satisfying UTU* = M, where x is the identity function on [0, +0).

Note that any unbounded operator described in such way is a positive opera-
tor, since the multiplication operator defined by (14 )~ ' is bounded and positive.

Proof. Let A be the bounded invertible positive operator whose inverse is 1 + 7.
Since A is bounded and positive, we have Sp(A4) < [0, +). Since ||A[|< 1, we
have Sp(4) < [0, 1].

By Thm. 2.8. T is unitarily equivalent to M, on K = @, L*([0,1], v,) where
(Vn)n is a family of finite Borel measure on [0, 1]. Since A is injective, we must have
v, ({0}) = 0, and hence K = @, L*((0,1],v,,). Then T = M,-1_; on K. The proof is
finished by applying Prop. 4.6 to the homeomorphism ¢ € [0, +0) — (1 +¢)!
(0,1]. O

The following exercise is important for future application.

Exercise 4.8. Assume 7' is positive. This exercise shows that we can safely restrict
T to a closed subspace containing Rng(7"), which is a positive operator and con-
tains all the information of 7. This is similar to restricting a function to a subset
containing its support.

1. In Thm. 4.7, show that the closure of Rng(UTU*) is the set of all ( f,,),em such
that f,,(0) = 0 for each n.

2. Use the above result to show that
2(T) = (2(T) n Rug(T)) ® Rng(T)*,

that T acts trivially on Rng(7)*, and that the restriction of 7" to Rng(T) is a
positive operator with domain 2(T) n Rng(T)) and dense range Rng(T).

3. Let H, be a closed subspace of H containing Rng(7"). Use the previous result
to show that

2(T) = (2(T) n Ho) ®Hy,

that T" acts trivially on Hg, and that T'|4, is a positive operator with domain
D(T|y,) := 2(T) N Ho and range Rng(7T'|w,) = Rng(T).

(Hint: Write Hy = Rng(T) @ H,. By the previous step, we have 2(T') = (Z(T') n
Rug(T)) ® H1 ® Hg and Z(T|y,) = (2(T)  Rug(T)) © H1.)
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4. Let E be the projection of H onto a closed subspace H, containing Rng(7").
Use the above description to show T' = ET = TE.

Remark 4.9. Let T be a positive operator on . Assume U is a partial isometry
from # to K with source space ¢(U) > Rng(T') and target space 7(U/). Then S :=
UTU* is a positive operator on K whose range is Rng(S) = URng(T). Its domain
is2(S)=U2(T)®r(U)".

Indeed, as shown in the previous exercise, the action 7" decomposes into two
parts: on ¢(U)* it acts trivially; on ¢(U) it restricts to a positive operator with
range Rng(7T") and domain Z(T") n ¢(U). Thus, S decomposes into two parts: on
7(U)* it acts trivially; on 7(U) it is unitarily equivalent to the action of 7' on ¢(U)
via the unitary map U : ¢(U) = 7(U). So S has domain U(Z2(T) n<(U)) @ 7(U)*4,
which equals UZ(T) @ 7(U)* since U = UU*U and U*U (which is the projection
onto ¢(U)) projects Z(T) = (2(T) n s(U)) ®<(U)* onto Z(T) n (V).

The following Lemma will be used later to obtain polar decomposition.

Lemma 4.10. Assume T is a positive unbounded operator on H. Then there is a unique
positive operator on ‘H satisfying H* = T. We say H is the (positive) square root of T
and write H = T2 = /T.

Proof. Existence: Apply the spectral theorem to 7, we see that T clearly has a
positive square root, i.e. M 5 if T = M,.

Uniqueness: Suppose H, K are positive, and H*> = K? = T. By the spec-
tral theorem 4.7, H is unitarily equivalent to M, on @, L*([0, +), u1,). Assume
WLOG that H = M,. Then T = (M,)? = M.

One checks easily (1 + M,2) ™" = M1 42)-1. Thus f((1 + M,2)™") = Myaa2)-1)
whenever f is a polynomial, and hence, by Stone-Weierstrass theorem and Prop.

2.12, whenever f € C([0,1]). Set f(x) = ﬁfjﬂ = 1+¢m1*1—1' Then

f((l + MmQ)_l) = Mf((1+ac2)*1) = ‘]\4(1-&-9[:)*1 = (1 + Mz)_l

Hence (1+ H) ' = f((1+T)'). Similarly (1 + K)~' = f((1 4+ T)~!). This proves
H=K. [

5 Closable and closed operators, polar decomposition

As an application of the spectral theorem for positive operators, we study the
problem of closures of unbounded operators. If 7' is adjointable, then we may
regard 7™ as the algebraic closure of 7. One may wonder whether 7% (the alge-
braic closure of 7) can be approximated by 7" in an appropriate sense. We shall
answer this question in this section.
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Recall the graph 4(T') = {(£,T€) : £ € 2(T)}. Equivalently, we can consider
&(T) to be the same as Z(T') as vector spaces, but equipped with a different inner
product: for each §,n e 2(T), we set

Elmer = &lny + (TE[Tn) (5.1)

where (:|-) is the original inner product of H. To avoid confusion, we write the
vector in &(T) corresponding to £ € Z(T) as ¥¢. Namely, we have a bijective
linear map

U:9(T)— &(7T),
(WE[n) = (&lny + (TE[Tn) (5.2)
foreach {,n € Z(T). Then &(T) is equivalent to ¢ (7T’) as inner product spaces.

Definition 5.1. Let 7" be an unbounded operator from #, to #,. We say 7' is closed
if the following clearly equivalent conditions are satisfied:

* ¢4 (T) is a closed subspace of H; @ Hs.
e B(T) is a complete metric space (i.e., a Hilbert space).

* Suppose &, is a sequence in Z(T') such that both ¢,, and T, converge. Let
¢ =lim, &, and n = lim,,_,o, T¢,. Then £ € Z(T), and T = 1.

Note that the above statement about sequences can be replaced by that of nets.

A closed operator is not necessarily determined by its action on a dense sub-
space of (7). The appropriate density notion for unbounded closed operators is
that of cores:

Definition 5.2. Suppose T is an unbounded operator from #; to H,. A subspace
Py of 2(T) is called a core for 7' if the following clearly equivalent conditions are
satisfied

* 4(T|g,) is a dense subspace of 4(T").
* V%, is a dense subspace of V(T = &(T).

* For each £ € Z(T) there exists a sequence &, € %, such that §, — ¢ and
T¢, — TE.

In the case that 7" is closed, % is a core for T if and only if for each £ € 2(T),
there exists a sequence ¢,, € %, such that ,, converges to ¢ and T¢,, is a Cauchy
sequence.

Note that a core for 7" is automatically a dense subspace of Z(T") and of H;. T
is uniquely determined by its restriction to a core.
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Example 5.3. If T"is adjointable, then 7™ is closed.
For example, the M, in Prop. 4.5 is closed, since it is the adjoint of M «.

Proof. Let n, € 2(T*) such that n, — n € Hy and T*n, — ¢ € H;. Choose any
€e 2(T). Then

ITE) = T Gl TE) = T (T, |6) = (W16),

which shows n € 2(T*) and T*n = . O

As a consequence, we see that for every adjointable 7', its algebraic closure 7™**
is closed. Also, any self-adjoint operator (and in particular, positive operator cf.
Prop. 4.3) is closed.

We shall show the converse of the above example, namely, closed operators
are adjoints of (adjointable) unbounded operators. If we define an unbounded
operator to be algebraically closed provided that it is the adjoint of another one,
then we will see that algebraically closedness and (previously defined) analyti-
cally closedness are equal. Then it follows easily that for every adjointable un-
bounded operator, its algebraic closure equals analytic closure. Moreover, the
adjointability condition is equivalent to an analytic one.

We first need a crucial result; our treatment here follows [Kad, Rem. 2.7.7].

Lemma 5.4. Let T' be an unbounded closed operator from H, to Ho. Then T*T is a
(densely defined) unbounded positive operator on Hy. Moreover, 2(T*T) is a core for T.

In this lemma, we do not assume that 7* is densely defined. Then 77T is
defined on all £ € Z(T') such that T¢ € 2(T*).

Proof. Notice the bijective map W in (5.2). Since 7T is closed, &(7') is a Hilbert
space. We regard ¥ as an unbounded operator from # to &(71") with dense domain
2(¥) = 2(T). We claim that

Uy = 1+ T*T. (5.3)

Choose any £ € Z(V*V¥) ¢ 2(V) = 2(T), and choose any n € 2(V) = Z(T), we
use (5.2) to calculate

(U*WEn) = (WEUn) = &n)y + (TE|Tn),

which shows T¢ € 2(T*) and T*T¢ = U*W¢ — €. So V*W < 1 + T*T'. Conversely,
choose { € 2(T*T) « 2(T) and n € Z(T), then

QW) = &y + (TETn) = &y + {T*TEn)
shows W¢ € Z(U*) and W*WE = € + T*TE. So U*W o 1 + T*T.
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Since V is injective, and since its range is &(7"), we can define its inverse A =
U~! to be a linear map from &(7') to H; with dense image Z(T). A is clearly
injective and bounded. Thus, Example 3.9 applies and ¥ = A~!. Now, noting
(3.4), we have

(1+ T*T)AA* = U*TAA* = (A1)* A1 AA*
—(A*)TTATLAAY = (A%) Mgy AT = (A%)TTAY = 1y,

Since the domain of (1 + T*T')AA* is the set of all £ € H, satisfying that AA*¢
P(1+T1*T) = 2(T*T), we see that Z(1T*T) contains the range of AA*. Since A is
bounded and has dense range Z(7'), and since A* also has dense range (since A
is injective), we see that AA* has dense range. So 77" has dense domain. Next,
the above long calculation shows that 1 + 7%*T has range #;. Since {(T*T)¢{[¢) =
(T¢|T€) = 0 whenever ¢ € Z(T*T), we have that T*T is positive.

Finally, we show 2(T*T) = 2(¥*V¥) is a core for T by showing that V2 (U* V)
is a dense subspace of & (7") = VZ(W¥). Since we have proved V*WAA* = 14,, we
see that Rng(AA*) ¢ 2(V*V¥). Since VAA* = A*, we see that VRng(AA*) equals
Rng(A*), which is a dense subspace of &(T") since A is injective. We are done. [

Theorem 5.5 (Polar decomposition). Let T" be a closed operator from Hy to H.

1. There exist unique U, H satisfying the following conditions: H is a positive operator
on Hy, U is a partial isometry from H, to Hy whose source space s(U) is the closure
of Rug(H), and

T =UH.

2. There exist unique V, K satisfying the following conditions: K is a positive operator
on Hsy, V' is a partial isometry from H, to Ho whose target space (V') is the closure
of Rng(K), and

T =KV.

Moreover, we have U =V, H = (T*T)%, K = (TT*)%, T is adjointable, and
T* = HU* =U*K
are the right and the left polar decompositions of T*.

We call T = UH and T' = KV respectively the left polar decomposition and
the right polar decomposition of 7. U = V is called the phase of T, and H is
called the absolute value of 7.
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Proof. Existence: By Lemma 5.4, T*T is a positive operator, which by spectral
theorem admits a positive square root H = +T*T. So H? = T*T. Note that
9 (H?) = 9(T*T) are inside the domains of H and T. We define a linear map

U: HP(T*T) — T2(T*T)

sending H{ — T¢ for each £ € 2(T*T). This map is well defined and preserves
inner products since, for another n € 2(7T*T), we have

(HE|Hny = (H?Eny = (T*T¢|ny = (TE|Th).

Since 2(T*T) = 9(H?) is a core for H and T by Lemma 5.4, HZ(T*T) = HZ(H?)
is dense in Rng(H), and T2(T*T) is dense in T%(T) = Rng(T'). Thus U is ex-
tended uniquely to a unitary map from Rng(H) to Rng(T). It is further extended
to a partial isometry from H; to H, by acting trivially on Rng(H;)*. So the source
space ¢(U) and target space 7(U) are respectively Rng(H) and Rng(7).

From the construction of U, we see that T|y+r) = UH|gr+r). Recall that
2(T*T) is a core for both 7" and H, and hence also a core for UH. Thus, passing
the closures of the graphs we must have T' = U H.

Since U*U is the projection of H; onto ¢(U) = Rng(H), by Exercise 4.8, we
have H = HU*U and hence T' = (UHU*)U. Let K = UHU*. By Remark 4.9,
K is a positive operator and Rng(K) = URng(H) = 7(U). So T = KU is a right
decomposition for 7.

We now prove the existence of polar decompositions for 7. By Prop. 3.4, T' =
UH shows T* = HU*. Since 7(U*) = ¢(U) = Rng(H), T* = HU* is a right polar
decomposition for T*. Since we define K tobe UHU*, we have T* = U*UHU* =
U*K, which is a left polar decomposition for 7" since ¢(U*) = 7(U) = Rng(K).
Also, 7(T*) = 2(K) is a dense subspace of H,. So T™* is adjointable.

Uniqueness: Suppose T = UH = KV as described in the theorem. Then
T*T = H?. Thus, by Lemma 4.10, H is the unique positive square root (T*T)2 of
T*T. Similarly, K = (TT*)z is uniquely determined by 7.

It remains to show that U and V' are uniquely determined. Since Rng(H) is
the source space of U, U acts trivially on Rng(H)*. The action of U on Rng(H) is
determined by 7', since it sends H{ to T¢ (§ € 2(T) = 2(UH) = 2(H)). So U is
unique. Finally, since Rng(K) is assumed to be 7(V'), we have T' = VV*KV. So
T =V . (V*KV) is aleft polar decomposition of 7" since V*KV is positive and its
range is dense in ¢(V') by Remark 4.9 again. Thus, by the uniqueness of left polar
decomposition which we have just proved, V' is uniquely determined. O

Remark 5.6. In the above polar decompositions, it is clear from the proof that we
have

[SIE
N|=

(TT*)z = U(T*T):U*,  (T*T)z = U*(TT*)U.
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Remark 5.7. Suppse H is a positive operator on H;, and U : H; — H is a partial
isometry with ¢(U) > Rng(H ). Then U H is closed, since H is closed, and U*UH =
H shows that &(H) and &(UH) are Z(H) with the same inner product. Now

assume ¢(U) = Rng(H). Then U - H is the left polar decomposition for T’ := UH.

Theorem 5.8. Let T" be an unbounded operator from H, to Hs.

1. The following three are equivalent.
(a) T is closed.
(b) T is adjointable and T' = T™*.
(c) T = S* for some adjointable unbounded operator S from Hs to H;.

2. T is adjointable if and only if T' is closable (or preclosed), the latter means that T'
is contained in a closed operator from H; to Ho.

3. Suppose % is a core for T. Then (T'|4,)* = T*.

Thus, “adjointable” and “closable” are interchangeable. We will use “closable”
more often in the remaining parts of this note.

Proof. 1. (a) = (b): If T is closed, then by Theorem 5.5, T" is adjointable, and we
have polar decompisitions 7' = KU and T* = UK. By Prop. 3.4, (T%)* = (U*K)*
equals KU* =T.

(b) = (c): Take S = T*.

(c) = (a): Example 5.3.

2. If T'is adjointable then 7" is contained in the closed operator 7**. Conversely,
if ' < T for a (densely defined) closed T}, then T* > T} and (by part 1) 7} has
dense domain. So 7* has dense domain, which means 7" is adjointable.

3. T|g, < T implies (T'|,)* = T*. Suppose n € Z((T'|4,)*). Foreach £ € 2(T),
choose &, € Z(T|4,) such that T¢,, — T¢. Then

(Tl = i (Tl )l = lim (6al(T]a ) ) = CEI(T1r)*n).

which shows n e 2(T*). O
We give a useful method for showing the closability:

Proposition 5.9. An unbounded operator T' : H, — Hs is adjointable/closable if and
only if the following is true: for any sequence &, € 2(T') converging to 0 such that T,
converges, we have T'¢,, — 0.

Proof. If T is closable, let &, € 2(T) converge to 0 such that 7€, = T**¢, con-
verges. Then as T™** is closed, we have T**¢,, — T** .0 = 0.

Conversely, suppose for each ¢, € Z(T") converging to 0 such that T, con-
verges we have T¢,, — 0. Then it is clear that for any two sequences &, &, € Z(T)
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converging to the same vector £ € H such that both T°¢,, and T¢], converge, then
they converge to the same vector in H,, which we denote by 737&. All such £ form
a subspace Z(1') of H; which is dense since it contains Z(7'). We thus have an
unbounded operator from #; to H, with domain Z(7}) sending each { to 7;. It
is clear that the graph ¢(77) is the closure of ¢(7"). So 1) is a closed operator
containing 7'. So T'is closable. [

If T is contained in 7}, any linear subspace ¢, between ¢ (7") and ¢(7) is the
graph of an operator 7; (satisfying 4(T") < ¥ (1) < ¥(11)). Indeed, we set 2(Ty)
to be the set of all £ where (£,7) € ¢, for some 1 € H,. Then we necessarily have
n = T1€. Define Tj sending each & € Z(1j) to T1€. Then ¢, = ¢(15). Thus we can
define:

Definition 5.10. Assume T : Hy — Ha is adjointable/_ closable. Then the (neces-
sarily closed) operator 7" : H; — H, whose graph ¢(T') is the closure of ¢ (7T') in
H, @D H, is called the closure of 7.

Proof. Let %, be the closure of ¢ (7). Since T is closable, T < Tj for a closed
operator 7. (E.g. 71 = T**.) Then ¥ (1) is closed and contain ¢ (7T"). Therefore ¥
is between ¢(7") and ¢ (7). Thus, according to the previous discussion, % is the
graph of a necessarily closed operator 7. O

Remark 5.11. Note that if % is a core for a closable 7', then, as the graph of 7’| 4,
is dense in that of 7', they have the same closure. So 7|, = 7.

Also, if T is closable, then 2(T) is a core for the closure T, since ¢(T) is the
closure of (T 4(1y) = 4(T).

Theorem 5.12. Let T : H1 — Ho be adjointable/closable. Then

T =T

Proof. Since (T') is a core for T, by Theorem 5.8 we see that T* = (T')*, and hence
T** = (T')**. Since T is closed, by Theorem 5.8, (T")** = T. We are done. O

6 Strong commutativity of closed operators, von Neu-
mann algebras

Recall our notation that End(H) is the =-algebra of bounded linear operators
of H. The #-structure is defined by the adjoint. We begin with the following easy
observation.

Remark 6.1. Suppose 7' is an unbounded operator from H; to H,, and A; €
End(H,), A € End(#H2). Then the following are equivalent.
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o A, T cTA,.
e Ly9(T) < 2(T) and AT¢ = T A€ foreach £ € 2(T).

Proposition 6.2. Let T : H, — Hs be closable and A, € End(H;), A € End(Hs).
1. If A;T < TA,, then AYT* < T* A} and A,T < TA,.

2. If T'is closed and H, = Ho = H, the set of all A € End(H) satisfying AT < T'A
form a strongly closed unital subalgebra of End(H)

The second statement means that the set of all A € End(#) is closed under lin-
ear combination, multiplication, and approximation under strong operator topol-
ogy (i.e., if a net A, € End(H) satisfies A, 7 < T A, and converges strongly to
A € End(#H), then AT < T'A). Moreover, the set contains identity.

Proof. 1. We have (A.T)* o (T'A;)*. By Prop. 3.4, AjT* < (TAy)* < (AT)* =
T* As. Take adjoint again. We have A3*T** < T** At ie., AT < TA,.

2. By Prop. 3.2, the set of all A € End(#) satisfying AT < TA is closed
under addition and multiplication. Suppose A, is a net converging strongly to
A € End(H) such that A,T < T A,. Choose any { € Z(T'). Then A € 2(T)
and AT = TAK. Since A, converges strongly, we have A,{ — A{ and
TAL = ATE — ATE. Thus (AL, AT¢) is in the closure of the graph ¢(T'). Thus,
as T is closed, we conclude £ € Z(A) and TAE = ATE. O

Definition 6.3. Let A € End(#) and let T" be a closable operator on . We say A
and 7' commute strongly if

AT c TA, A*T < TA*.

If A and T' commute strongly, then so do A and 7%, A* and 7', A* and T* by Prop.
6.2.

Remark 6.4. Two bounded operators A, B commute strongly if and only if they com-
mute adjointly, which means AB = BA and AB* = B*A.

In the case that A is unitary, strong and ordinary commutativities are the same:

Proposition 6.5. A unitary operator U € End(#H) commutes strongly with a closable
operator T on H if and only if UT = TU (equivalently, UTU* = T).

Proof. If UT = TU, then UTU* = T, so TU* = U*T. This shows U commutes
strongly with 7.

Conversely, suppose UT' < TU and U*T < TU*. UT < TU implies UTU* <
TUU* =T.U*T c TU* implies U*TU c TU*U =T.So T = UU*TUU* < UTU".
SoT =UTU*. O
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We now discuss the meaning of strong commutativity when A is a projection.

Proposition 6.6. Let T' be an unbounded operator on H. Let E be a projection on ‘H. Set
E* =1 — E. Then the following are equivalent.

(1) ET c TE.

(2) D(T) = 2, ® D, where 9, =« EH and D, = E+H are linear subspaces satisfying
T91 c EH and T.@Q C EJ‘,H

Moreover, if (2) is true, then

D =EPT)=EHn2(T) Do=FE"PT)=FE"HnPT) (6.1a)
P(TE)= D9 ®FE'H  9(TE') =EH® 2, (6.1b)

Proof. Assume (1). Then EZ(T) = 2(T). Since we also have E'T < TE*,
we have E+9(T) < 9(T). This proves 2(T) = EZ(T) ® E*2(T). We have
TEZ(T) « ETZ2(T) < EH and, similarly, TE+%(T) < E*+H. This proves (2).
Assume (2). The decomposition 2(T) = 2:®%, with 2, ¢ EH and 2, < E*+H
clearly implies (6.1a). It is also easy to check (6.1b). Now (6.1a) shows EZ(T') =
D < P(T). For each £ € 2(T), we have E¢ € 9, and hence TES € T9, < EH.
Similarly TE+¢ < E+H. Therefore we have ETES = TES and ETE*¢ = 0. Thus
ET¢ = ETES + ETEYE = TEE. This proves (1). O

Remark 6.7. By Prop. 6.6, ET < TFE if and only if there exist a unitary map
U:H — K@Ky (where Ky, K, are Hilbert spaces) such that:

o UEH = K,. Hence UE*H = K.

¢ There exists unbounded operators 51, S, on K1, Ky with dense domains such
that UTU* = diag(S1, S2). In particular, 2(T') = U*2(5:) @ U*2(Ss).

It is clear that 7" is closed (resp. closable) iff both S; and S, are so.

From Prop. 6.2, we see that the set of all A € End(H) commuting strongly
with a closed 7' is a strongly closed unital #-subalgebra of End(#), i.e., a strongly
closed unital subalgebra which is closed under taking adjoints. In other words,
such A form a von Neumann algebra.

Definition 6.8. A strongly closed unital «-subalgebra of End(#) is called a von
Neumann algebra on H. If & is a set of closed operators, then the set &' of all
A € End(H) commuting strongly with every operator of & is a von Neumann
algebra on H. We call &' the commutant of S. The double commutant &” = (&)’
is also called the von Neumann algebra generated by S. If M is a von Neumann
algebra on H and 7' is a closed operator on H, we say that 7" is affiliated with M
if {T'}" < M.

36



Proof. We have seen, from Prop. 6.2, that each {T'}’ (where T' € &) is a von Neu-
mann algebra. Then &' = (), _{T} is clearly also a von Neumann algebra. [

Remark 6.9. It is obvious that if & < T then & > T’ and hence &” < T”. Also,
similar to the reasoning in Prop. 3.6, we have &' = &".

Strong commutativity of two unbounded closed operators 77, T, cannot be de-
fined in the same way as in 6.3. Indeed, our definition of strong commutativity
will be equivalent to the following form: If we write 7} = U H; and T, = UsH,
then we require each of U; and H; commutes strongly with each of U, H,. How-
ever, we must show that this definition agrees with the one in Definition 6.3. This
requires showing that if A commutes strongly with 7" (or more generally, if A be-
longs to a von Neumann algebra), then so does its phase U, and absolute value
H = +/A*A. We provide a proof below, which suggests the importance of study-
ing von Neumann algebras. A different proof for the general case of unbounded
polar decompositions is given in Theorem 6.15.

Proposition 6.10. Let M be a von Neumann algebra on H.

1. Suppose Ay, ..., An € M are normal and strongly commuting, and f is a bounded
Borel function on CV. Then f(Ai, ..., Ax) € M.

2. Let A € End(H) with left (resp. right) polar decomposition A = UH (resp. A =
KU). Then A belongs to M if and only if both U and H (resp. both U and K)
belong to M.

3. Any element in M is a linear combination of four unitary elements in M.

Proof. 1. Obvious when f is a polynomial of z;,%y,..., 2y, Zy, and hence true
when f is continuous on Sp(71, . ..,Ty) by Prop. 2.12 and Stone-Weierstrass the-
orem. The general case follows from Lemma 2.9 and Thm. 2.11.

2. Itis clear that U, H € M (resp. K,U € M) implies A € M. Conversely, we
assume A € M. Then A* € M since M is a *-algebra. So A*A, AA* € M and
hence, by part 1, H = Vv A*A, K = v/ AA* belong to M.

We show that U € M. For each »r > 0, define f, € L*([0,4+x)) to be
f() = 27" (r400)- Then by part 1, we have f(T) € M and hence Ux 1) (T) =
UTf.(T) = Af.(T) € M. Asr — 0, X(r.+o) cONverges to x(o,+) pointwise. So by
Thm. 2.11, we see that x(, +«)(1) converges strongly to X (o,+«)(7"), which shows
UX(0,4+00)(H) € M. Recall our assumption in polar decomposition that the source
space ¢(U) equals Rng(H). The spectral theorem for H shows that the projection
onto Rng(H) is X(0,4+00)(H). So U = Ux(0,+)(H ) belongs to M.

3. Any A € M is a linear combination of two self-adjoint elments in M, namely
A+ A* and i(A — A*). Any self-adjoint A € M satisfying ||A[|< 1 (and hence
Sp(A) < [—1,1]) is a sum of two unitary elements in M: A = f,(A) + f_(4),
where fi(z) =z +iv1 — 22. O

37



It follows immediately that a bounded operator A commutes strongly with a
closed T if and only if the phase of A and v/A*A (or v/ AA*) commutes strongly
with T

Remark 6.11. The above proof indicates why, for the problem of (strong) com-
mutativity, it is not enough to consider C*-algebras, namely, norm-closed -
subalgebras of End(H): The phase U of a bounded operator A cannot in general
be approximated in the norm topology by linear combinations of multiplications
and powers of A, A*.

The close relation between strong/weak operator topology and
strong/adjoint commutativity is also indicated by the following celebrated
theorem of von Neumann. This result has some similarities with Theorem 5.8 for
closed operators.

Theorem 6.12 (Bicommutant theorem). Let M be a unital +-subalgebra of End(H).
Then the following are equivalent.

(a) M is closed under strong operator topology (i.e., is a von Neumann algebra).
(b) M is closed under weak operator topology.

(c) M= M".

(d) M = &' where & is a set of closed operators on H.

Proof. We have (c) = (b) and (b) = (a). The first arrow is due to a routine check
that the commutant of any set of bounded operators is weakly closed, the second
one is obvious.

We also have (c) = (d) and (d) = (a). The first arrow is obvious, and the second
one is by Prop. 6.2. So it remains to show (a) = (c).

We assume (a), and show that for each &;,...,{xy € H, A€ M”,and € > 0, there
exists B € M such that || A¢; — B¢;||< eforeach1 < j < N.

We first consider the case N = 1 and &; = &. Let e be the projection of ‘H onto
the closure of M¢ = {x€ : v € M}. For each x € M, since x leaves M¢ (and hence
its closure) invariant, we see ze = exe. Similarly, we have z*e = ex*e, whose
adjoint gives ex = exe. So ze = ex. Similarly z*e = ex*. This proves e € M'.
Choose any A € M”. Then A commutes with e, which shows Ae = Ae? = eAe,
i.e A leaves M¢ invariant. In particular, A¢ belongs to M¢, which thus could be
approximated by some B¢ where B € M.

Now, we consider the general case of N vectors. Let M acton P H = HR®CN
diagonally by 7(z)(&1,...,¢n) = (z&,...,2&y). m(M) (the set of all 7(z)) is a
unital #-subalgebra of End(#). By easy matrix calculation, one verifies that its
commutant (M)’ equals M’ ® End(CY), i.e., the set of N x N matrices whose
elements are in M’. Its commutant is then 7(M”"), the set of all y € M”" acting
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diagonally on @Y H. Thus, by the result of the previous paragraph, for each
A e M” and € > 0 one can find B € M such that |[(7(A4) — 7(B))&||< € where we
set{ = (&1,...,&y). This shows ||(A — B)¢;||< € for each j. O

Remark 6.13. In the above theorem, it can be shown that M = M” if and only
if M is closed under strong* operator topology, whose open sets are unions of
(T € End(H) : |T& — Toésll< e |T*& — TEgjll< 6,1 < j < N} (where Tp €
End(H),N € N,&,...,&nv € H,e > 0). Thus, M is a von Neumann algebra iff for
every net T, € M such that 7, and T converge strongly to 7', T* respectively, we
have T'e M.

Proof. The only if part is obvious. For the if part, assume M is strongly* closed,
and choose A € M". As argued in the proof of Thm. 6.12, A belongs to the
strong operator closure of M, and hence belongs to the weak operator closure.
Therefore, for each & € H, (A¢, A*¢) € H @ H is in the weak closure of C' :=
{(B¢,B*¢) : B € Mj}. Since C is convex, by Hahn-Banach separation theorem,
(AE, A*¢) is in the (strong) closure of C.

As indicated in the proof of Thm. 6.12, letting 7 be the direct sum representa-
tion of M on @Y H, we have 7(M)” = 7(M"). Applying the first paragraph to
7(M) instead of M, we see that for any & = (&,...,¢x) € @Y H and A € M,
(m(A)¢, m(A)*€) can be approximated by (7(B)¢, w(B)*¢) where B € M. Thus A is
in the strong* closure of M, and hence A € M. O

The following theorem indicates how a set of bounded operators can approx-
imate its double commutant.

Theorem 6.14. Let & be a set of bounded operators on H. Let A be the smallest unital
«-subalgebra of End(H) containing &. Let A be either the strong™ or the strong or the
weak operator closure of A in End(H). The following are true.

1. & =A=A.
2. A=8".

Note that A is the set of linear combinations of multiplications of elements of
{1} B U {z*: 2 e &}

Proof. That & c A c Ashows & > A > A. Itis direct to check that any
element commutes strongly /adjointly with & commutes strongly with those in .A
and moreover those in A. (One may also use Prop. 6.2.) This proves part 1. Part
two follows from the bicommutant theorem. O

As a consequence, we see that any self-adjoint bounded operator H € &” can
be approximated strongly by self-adjoint operators of A. (Indeed, we can find a
net A, € A converging strongly* to H. So (A. + A})/2 converges strongly to H.)
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Theorem 6.14 provides us with a useful method of showing that a bounded
operator A can be approximated strongly or weakly by elements of A: instead of
explicitly constructing the approximation, one checks that A commutes adjointly
with any element in &’. Moreover, it suffices to check that A commutes strongly
with a small collection § of bounded or closed operators which generates &', i.e.,
which satisfies §” = &'. Then A € §F = §” = &” = A. This method has a Hilbert
space analog: to show that a subspace IV of a Hilbert space H is dense, one shows
that any vector in # whose inner product with all elements of IV vanishes is 0.
Such algebraic verification is often easier than explicitly constructing approxima-
tions.

In the case that we have a set of unbounded closed operators &, the study of
®" can be reduced to the bounded case via polar decompositions.

Theorem 6.15. Let & be a set of closed operators on ‘H. For each T, we let Ur be its
phase, and let Hr be one of /T*T and /TT*. Then &" = {Ur, (1 4+ Hy)™' : T € &}".

Proof. By Prop. 6.10, it suffices to show that any unitary operator I commutes
strongly with every T iff it commutes strongly with each Ur and (1 + Hrp) ™'
Recall Prop. 6.5. We treat the case Hy = T*T as the other case is similar.
VITV* = (VUpV*)(VHpV*) is the left polar decomposition of VI'V*: indeed,
V HyV* is clearly positive; we have Rng(Hr) = ¢(Ur), so Rug(VHyV*) = VHy =
Vs(Ur) = <(VUV*). By the uniqueness of polar decomposition in Thm. 5.5,
we see that VI'V* = T if and only if VUrV* = U and VH;V* = Hp. Note
that (1 + VHzV*)™! = V(1 4+ Hr) 'V* since V is unitary. So VHrV* = Hry iff
V(1+ Hy) 'V* = (1 + Hr)"'. This finishes the proof. O

It follows immediately that a closed operator 7' is affiliated with a von Neu-
mann algebra M (i.e., {T'}" = M) if and only if its phase and one of (1 +v/7T*T)~*
and (1 ++/TT*)"! are in M.

Definition 6.16. Let T, S be closable operators on . We say 7" and S commute
strongly if {T'}" commutes (adjointly) with {S}”,i.e. {T}" = {S}'. In the case that
S,T are closed and at least one of them is bounded, this definition agrees with
that in Def. 6.3.

Proof. We check that the current definition agrees with the previous one when
S is bounded and 7 is closed. S commutes strongly with 7" iff {S} < {T'} iff
{S}" < {T}" iff {S}" commutes (adjointly) with with {T'}". O

Corollary 6.17. Let S, T be closed operators on H with phases Ug, Ur respectively. Let
Hg (resp. Hrp) be one of \/S*S,+/SS* (resp. \/T*T,~TT*). Then the following are

equivalent.
1. S and T commute strongly.

2. Usand (1 + Hg)~* commute adjointly with Ur and (1 + Hy)™ .
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3. Usand (1 + Hg)~' commute strongly with T

Proof. The equivalent of 1 < 3 and 2 < 3 are immediate from the above definition
and Theorem 6.15. O

Corollary 6.18. Let &, T be two sets of closed operators on ‘H. Then &" commutes
(adjointly) with T" (ie. 8" < T = T') if and only if every S € & and T € T commute
strongly.

Proof. Take left polar decompositions S = UsHg,T = UpHyp. Then each S and T'
commute strongly iff each Ug, (1 + Hg) ™' commute strongly with Ur, (1 + Hr) ™,
iff S and T commute strongly where S = {Ug,(1 + Hg)™' : S € G} and T =
{Ur,(1+ Hy) ' : T e %},iff S « T/, iff S” <« T” = T'. By theorem 6.15, we have
S"=6"and T = ¥ O

7 Spectral theorem for strongly commuting normal
closed operators

Definition 7.1. A closed operator 7" on H with phase U satisfying the following
equivalent conditions is called normal:

1. T*T =TT*.

2. U is normal and commutes strongly with v/7*T'.
3. U is normal and commutes strongly with v/7T*.
4. T commutes strongly with 7.

In particular, self-adjoint operators are normal.

Proof of equivalence. By Cor. 6.17, 4 is equivalent to both 2 and 3. Thus, it suffices
to prove the equivalence of 1 and 2.

Let H := VT*T and K := /TT*. Part 1 is equivalent to H = K. Note that

by Remark 5.6, we have K = UHU* and H = U*KU. Suppose H = K. Then

¢(U) = Rng(H) equals 7(U) = Rng(K), so U*U = UU*, which shows U is normal.
Wehave H = UHU* and H = U*HU. The first relation shows U*H = U*UHU* =
HU* since U*U projects onto ¢(U) = Rng(H). (Recall Exercise 4.8.) Likewise, the
second equation shows UH = UU*HU = HU where 7(U) = ¢(U) = RngH is
used. So U commutes strongly with H.

Conversely, suppose U is normal and commutes strongly with H. UH < HU
implies UHU* < HUU* = HU*U = H where the last equality is due to ¢(U) =
Rng(H). Similarly, U*H < HU* implies U*HU — HU*U = H and hence H =
UU*HUU* c UHU*. So H = UHU* = K. O
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Example 7.2. Let X be a measure space with a set of measures {;,, : n € 9}. Let
f: X — Cbe Borel. Letu : X — Cbe equal to u(x) = f(z)/|f(z)| when f(x) # 0,
and u(x) = 0 when f(x) = 0. Then one checks easily that M; = M, My = M s M,
gives the left and right polar decompositions of M. Thus M} is normal.

Spectral theorem says that any finitely many strongly commuting normal op-
erators are simultaneously unitarily equivalent to some complex Borel functions
acting as multiplication on the Hilbert space given in Example 7.2.

The meaning that the closed operators 73,...,Tx on a Hilbert space H are
normal and commute strongly (with each other) is clear: 7; commutes strongly
with T foreach 1 <i,j < N.

Theorem 7.3 (Spectral theorem). Let T4, ..., T'n be strongly commuting normal closed
operators on H. Then there exist a set (i, )nem of finite Borel measures on CV, and also a
unitary map

U:H—@LCY, )
neNn

satisfying for every 1 < j < N that
UT;U* = M., (7.1)

Here we let z; be j-th standard coordinate of CV, i.e., the one sending

(Ciy---,Cn) to G-

Proof. Step 1. Let T; = V;H; = H;V; be the polar decomposition of T, where
H; = 0 and Vj is the phase. Let R; = (1 + H;)~'. By Cor. 6.17, V4, Ry, ..., VN, Ry
are strongly commuting normal bounded operators. By the spectral Thm. 2.8,
after applying a unitary map on #, one may assume that H = @, _, L*(X, v;,)
where X = C?V, v, is a finite Borel measure on X, V; = M., ,,and R; = M., ..

Let 7, : C* — C be the projection onto the k-th component (where 1 < k <
2N). Since V; is a partial isometry, we must have v, (m,;"; (C\(S' U {0}))) = 0 for
all n. (Otherwise, V;*V; = M., 2 will not be a projection.) Since 0 < R; < 1 and
R; is injective, we must have v, (75, (C\(0,1])) = 0. Therefore, we may assume
that X = ((S' U {0}) x (0,1])".

Let R, = [0,+40c0) and

Y = (S'u{0}) xRy

Applying Prop. 4.6 to the homeomorphism YV — X sending (uy,t1,...,un,tx)
to (ug, (1 + ¢1)7% ... un, (1 + tx)7'), we see that one may assume that H =
@, L*(Y" w,) where w, is a finite Borel measure on Y and

‘/j = Mvj Rj = M(lerj)—l
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Here, v;, z; denote the (2j —1)-th and the 2j-th standard coordinates of Y. Hence
Hj = M,,

Step 2. Since V}*V/; is the projection onto Rng(H;), each v, is supported on Z*
where

Z = (S" x Rog) U ({0} x {0})
In fact, if this is not true, then there exist n, j such that v,(A;) + v,(B;) > 0 where

Aj=Y x--xY x S'x{0} xYx- - xY
——
j-th component

B =Y x---xY x {0} xRyp xY x--- xY
—_—

j-th component

We view x 4, and x g, as elements of H. Then x, € Rng(V;*V;) and x4, L Rng(H;).
So we must have x4, = 0 and hence v,,(4;) = 0. Similarly, we have x5, € Rng(H;)
and V;xp;, = 0 (and hence xp; L Rng(V;*V};)). So xp, = 0, and hence v, (B;) = 0.
This gives a contradiction.

Now, we can assume that H = @, L*(Z",w,) and V; = M,,, H; = M,,. Ap-
plying Prop. 4.6 to the Borel isomorphism &V : Z¥ — C¥ where ® : Z — C
is the Borel isomorphism sending (u;,t;) to u;t;, we see that there is a unitary
map U : H — @, L*(CN, u,) (where p, is a finite Borel measure on CV) such
that U _1MZjU equals M, .. One checks easily that M, ., equals M, M, . (In
particular, their domains are the same, being the L*-functions whose multipli-
cation by z; are L? (equivalently, whose multiplication by v;x; are L?).) Therefore
M,,., = V;H; = T. O

8 Approximating unbounded closed operators by
bounded ones

We begin with the following observation. Note the easy fact that any (densely
defined) continuous closed operator from H; to H, must be bounded, i.e., have
domain H;.

Proposition 8.1. Let T' : H, — H, be a closed operator, and let A be a bounded operator
on H,. Assume T A has dense domain.

1. T A is closed.

2. If the linear map TA : P(T A) — H is continuous, then T'A is an (everywhere
defined and) bounded operator from H, to Hy. In particular, AH, < 2(T).
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Proof. If &, € Z(T'A) converges to £ and T AE,, converges, then A¢, € Z(T) con-
verges to A¢. Since T is closed, we conclude that A¢ € Z(T') and T A€ is the limit
of T'A¢,,. This proves that T'A is closed. Alternatively, the fact that (A*7T*)* = T'A
(cf. Prop. 3.4) shows that (A*7T™)* is densely defined and hence closed; therefore
T Ais closed.

Now assume T'A is continuous. Since any closed continuous operator is (ev-
erywhere defined and) bounded, T'A is in particular so. O

Definition 8.2. Let 7" be a closable operator from #; to H,. A net E, = (E,)qex
of projections on H; is called a net of right bounding projections for 7' if the
following hold:

* FE, is increasing. Namely, if o < f3, then Rng(E,) < Rng(Ejp) (equivalently,
E. = E,Ej).

e E, converges strongly to 14,. Equivalently, | JRng(E.) = H,.

* For each « € U there exists a bounded operator F,, on H, such that

E,T c TE,,
lim F, converges strongly to some F' € End(Hs).

In particular, TE, has dense domain (containing Z(T)).
e Each T'E, is continuous, equivalently, T'|gng(£,) is continuous.

If we can choose F, = E,, we say FE, is a net of (two-sided) bounding projections
for T. When T’ is closed, a net of left bounding projections for 7" is by definition
a net of right bounding projections for 7.

Remark 8.3. By Prop. 6.2, if E, is a net of right (resp. two-sided) bounding pro-
jections for a closable T, then it is so for T. Then (by Prop. 8.1) each TE, is
(everywhere defined and) bounded.

Also by Prop. 6.2, a net of bounding projections for 7' is also a net of bounding
projection for 7. O

Example 8.4. Let T' = VH = KV be the left and right polar decomposition for a
closed operator 1" : Hi — Hs. Let H; be unitarily equivalent via a unitary operator
U to @, L*(]0, +0), 1) where each p, is a positive finite Borel measure, such
that UHU* = M, where z is the standard coordinate function of [0, +c0). Then
M, ,, increases and converges to 1 as r / +o0. It is clear that M, , is a net of
bounding projections for M,.

Let £, = U*M,, ,,U. Then E, is a net of bounding projections for H, and
hence a net of right boundmg projections for T'. F,. := V E,V* is a net of bounding

projections for K = VHV*, and hence (noting 7™ = V*K) a net of left bounding
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projections for 7. We have F, T < TE,. We say L., F, are respectively right and
left bounding projections for 7" via polar decompositions.

We note that each E, is in the von Neumann algebra generated by (1 + H)™*
(and is hence in {7'}"), and similarly F, is in the von Neumann algebra generated
by (1 + K)~! (and is hence in {T'}"). (This fact will be generalized later, cf. Thm.
9.2.)

Proof. The statement about bounding projections is easy to check. Note that
F.T cTE,isfrom E,H c HE,.

We explain why each E, is in {(1 + H)~'}"; equivalently, we show M, €
{M,}" where h = (1 4+ x)~'. This result follows from the general Thm. 9.2. Thus,
the following proof can be skipped. However, since the proof is elementary, we
include it here.

Note that (1 + M,)~' = M,. Clearly M., belongs to {M,}" if f is a polyno-
mial (since M., = f(M,)). Note that h takes values in [0,1]. Then, by Stone-
Weierstrass theorem, My.;, € {M;}" whenever f € C([0,1]). Now choose a se-
quence f, € C([0, 1]) with || f,.||»< 1 and converging pointwise to x[1/(1+r),1]- Then
frn 0 his uniformly (with respect to n and [0, +0)) bounded and converging point-
wise to X(1/a1+r),1] © B = X[o,]- The dominated convergence theorem shows that
My, on (as a sequence of multiplication operators) converges strongly to M, ..
This proves M, , € {M,}". O

The reason we are interested in left and right bounding projections is due to
the following property.

Theorem 8.5. Let E, = (E,)acu be a net of right bounding projections for a closable
unbounded operator T : Hy — Ho. Then the dense subspace

Dy = U E.(2(T))

ae

is a subspace of 2(T') and is a core for T..

In particular, %, is dense in ;. Note that if T"is closed, then by Prop. 8.1, TE,,
is bounded, and hence E,H < Z(T). It follows that | o Ea(H) is a core for T'.

Proof. Let F, converge strongly to F' € End(H,). That F,T < TE, shows that
E.2(T) < 2(T). This proves 2y < 2(T'). Suppose { € Z(T'). Then E,£ belongs
to %, and converges to £ (since £, — 1). Moreover, TE,§ = F,T¢ converges to
FT¢. Therefore (€, FTE) belongs to the closure of the graph of T (i.e., belongs
to 4(T)). So FT¢ = T¢ = T¢. Hence (€,T€) € 9(T) can be approximated by
(E&, TE). So 9, is a core for T O

The above proof shows:
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Lemma 8.6. Assume T : H, — H, is closable. Let ' € End(H,) be the strong operator
limit of F, in Def. 8.2. Then

FT =T. (8.1)

Thus, to determine a closable 7', it suffices to restrict to each Rng(E,) on which
T is continuous (and hence (everywhere defined and) bounded when 7' is closed).

We give another approximation theorem, which is more useful for the strong
commutativity problem.

Theorem 8.7. Let E, = (E,)aea be a net of right bounding projections for a closed
operator T'on H. Then {T'}" < {TE, : a € A}". If moreover each E,, is in {T'}" (e.g. the
case in Example 8.4), then {T}" = {TE,, : o € A}".

As an application, we get an equivalent condition for the strong commuta-
tivity of closed operators 7' and S: that the bounded operator TE, commutes
strongly with S, where E, is as in Example 8.4.

Proof. Choose any A € {TE,}'. Then ATE, = TE,A as (everywhere defined)
bounded operators (since A and T'E,, are both bounded, notice Prop. 8.1). Choose
any { € 2(T). Then E,A¢ converges to A{. Also TE,A{ = ATE = AF,T¢
converges to AFT¢ since the net F,, converges strongly to F. By the closedness of
T,wehave A € Z(T') and TAE = AFTE. By Lemma 8.6, FT¢ = T¢. So AT < T A.
Similarly, A*T < T A*.

Now assume each E, € {T'}". We shall show that each T'E,, is in {T'}", equiv-
alently, that each T'E,, commutes adjointly with {T'}'. Choose any A € {T'}’ (i.e. A
commutes strongly with T'). Note that £, € {T'}” implies A commutes adjointly
with E,. Then AT < TA, so ATE, c TAE, = TE,A. Similarly, A*T < TA*
implies A*TE, < TE,A*. So A commutes adjointly with T'E,,. O

The following theorem gives an application of Thm. 8.7. It is not used else-
where in this note.

Theorem 8.8. Let S, T be strongly commuting closed operators on H. Assume & €
D(TS)nD(T). Then { € D(ST) and STE = TSE.

Proof. Let E,, F, be nets of right resp. left bounding projections of 7" as in Example
8.4, which satisfies TE, € {T'}" also by Thm. 8.7. Then these three commute
adjointly with {S}”, equivalently, commute strongly with S. So TE,.S < STE,. In
particular, TE, 2(S) < 2(9).

Choose { € Z(TS)n2(T). ThenTE, € 9(S),and STE,§ = TE,.S¢ = F,TSE.
Asr — +w,wehave TE,{ = F,T¢ — T¢ (since & € 2(T)) and STE, = F,TS¢ —
TS¢ (since € € 2(T5)). We see (TE, &, STE, ) approaches (T¢,TSE). Since S is
closed, (T¢,TS§) must be on the graph of S. So T¢ € 2(S) and STE¢ = T'SE. O
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The above theorem does not imply ST = T'S when S, T commute strongly,
since we don’t know whether (ST equals Z(1'S) or not.

In the case that we have bounding projections for several strongly commuting
normal closed operators T7,...,Ty on H, we have an approximation for polyno-
mials of these operators and adjoints.

Let us for now assume 77,...,Ty are closed, but not necessarily normal
or strongly commuting. To begin with, a polynomial p(7},77,...,Tn,T%) of
1,1y, ..., Ty, T is by definition a finite linear combination of multiplications
and powers of 11,17, ..., Ty, T5, e.g.

VRTH(TT)TETY — (1 + V2)(T3) T3 (T )T,

We also define its adjoint polynomial p*(71, 17, ..., T, T5) in an obvious way, by
sending each complex number to its conjugate, the order of operators is reversed,
and T; and T} are exchanged. For instance, the adjoint polynomial of the above
expression is

V2T (T3 TH(TY)? = (1= VAT T
By Prop. 3.4, if p is densely defined, then
p*(Tl,Tl*, R ,TN,TE{}) c p(leTl*a R 7TN7T]>I\<])*' (82)

In particular, if both p(- - - ) and p*(- - - ) are densely defined, then p(- - - ) is closable
since the domain of its adjoint contains a dense subspace, which is the domain of
()

Note that even in the case that 77, .. ., Ty are normal and commute strongly, it
is not a priori true that each 7; and T; (or 7}') commute, due to the domain issue
mentioned above.

Proposition 8.9. Let T, ..., T be closed operators on H.

1. If Tv,..., TN are normal and strongly commuting, then there is a sequence E,
of (two-sided) bounding projections for 11, ..., Tn (and hence for T}, ..., T%) in
{Th,...,Ty}".

2. Suppose there is a net E, of (two-sided) bounding projections for T, ..., Ty.
Let p(Ty,TY,...,Tn,T%) be a polynomial of T\, T7,...Tn,Tx. Then
p(Th, 17, ..., Tn, T ) is densely defined and closable, and E, is also a net of bound-
ing projections for p(T1, 15, ..., Tn,Tx ) (and hence for its closure).

Proof. 1. We assume the setting of Thm. 7.3. Let D, be the open disc in C with
center 0 and radius ». We let E,, = U*M U. Then one checks easily that

XDp x+-xDn
(Ey)nen is a sequence of bounding projections for 77, ..., Ty.
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2. Since E,T; < T;E, and T;E, is continuous (and hence bounded by
Prop. 8.1), by (6.1b) of Prop. 6.6, we have E,H = EZ%(T;) where the lat-
ter is a Tj-invariant subspace of Z(T;). Similarly, E,H is a T}-invariant sub-
space of Z(T7). Therefore, E,H is a p(T1,TY, ..., T, T¥)-invariant subspace of
the domain of p(T1, T, ..., TN, T5). Thus p(Ty,T5, ..., T, T5) has domain con-
taining %y = (J,cq EoH. Similarly, p*(---) has dense domain. Thus, by (8.2),
p(Ty,T75, ..., TN, T%) is closable since its adjoint has dense domain. Using Prop.
3.2, one checks easily that E,p(---) < p(---)E,. Clearly p(---) is bounded when
restricted to E,H for each a. This proves that E, is a net of bounding projection
of p(---). O

9 Unbounded Borel functional calculus

In this section, we let Z(X) be the unital «-algebra of complex-valued (non-
necessarily bounded) Borel functions on a topological space X. The algebra struc-
ture is given in an obvious way, and the s-structure is given by f*(r) = f(r) =
f(x). We let B(X) be the unital *-subalgebra of bounded Borel functions.

We fix strongly commuting normal closed operators 77,...,7Ty on H. In the
following statement of the theorem, to avoid confusion of notations, we write

the closure of a closable operator A as A**. Let z; denote the function sending

(Ciy---,Cn) to G-

Theorem 9.1 (Unbounded Borel functional calculus). There is a unique map m from
HB(CN) to the set of closed normal operators on H satisfying the following conditions for
each f,g e B(CN),a,be C.

1. w(f) commutes strongly with 7(g).

2. w(zj) =Tjforeach1 < j < N.
3. 7(1) = 1, w(af +bg) = (an(f) + br(9))™, 7(fg) = (7(H)m(9))™, n(f*) =
7(f)*. (Note Prop. 8.9 for the closability.)

4. If f € B(CN), then 7(f) is a bounded linear operator on H.
5. Assume f € B(CN), and (f.)aca € B(CY) is a net such that

lim JX |f — fo|?du =0 9.1)

or each finite Borel measure pon CV. Then w(f,) — w(f) strongly.
8ty

Moreover, for any 7 satisfying the above conditions, if we choose spectral decomposition
as in Thm. 7.3, then for each f € B(CN) we have Un(f)U* = M.
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We write

f(Tl, Ce ,TN) = 7T(f> (92)

if we want to stress the dependence on the operators.

Proof of existence. Choose spectral decomposition as in Thm. 7.3. We define
m(f) = U*M;U for each f € A(CY). By Example 7.2, M; is normal with left
and right polar decomposition M; = M, My = MM, where v; is defined
to be f/|f| when f # 0, and 0 otherwise. So 7(f) is normal with left and right
polar decompositions 7 (f) = w(ve)w(|f|) = #(|f|)7(vf). Clearly 7(z;) = T}, and
7(f) is bounded when f is so. For any other g € #(C"), it is clear that M, and
(1+Myg)~" = Mg -1 commute strongly with M, and (1+Mz)~" = M1
So My, M, commute strongly by Cor. 6.17. Hence 7(f), 7(g) commute strongly.
Clearly 7(1) = 1. For each n € Z,, let Q,, = CV be the set of all points at which
1,19l laf+0bgl,| fg] <n. As M, commute strongly with M, M,, M, (as proved
above), it is clear that M,,, is a sequence of (two-sided) bounding projections
for My, My, Msy. So E, = U*M,, U is a sequence of bounding projections for

7w(f),m(g),7(fg), and also for n(f)n(g) by Prop. 8.9. It is clear that =(fg) and
7(f)m(g) are equal on each Rng(E,,) (noting that URng(E,) = Rng(M,, ) is the set

X0
of (f.) € @ L*(CY, u,) which are 0 outside €,,). So 7(fg) and 7(f)m(g) are equal
on %, := | J,, Rng(E,), which by Thm. 8.5 is a core for both operators. So they are
the same closed operators. The same method shows also 7(af + bg) = w(af + bg).
That 7(f)* = n(f*) follows from the fact that both sides have core %, (since F, is
also a bounding sequence for 7 (f)*).

Finally, for bounded Borel functions, the strong convergence of 7(f,) — 7(f)
for a net f, in B(C") converging to f in the L*(C", ) norm (for every finite posi-
tive Borel 1) can be proved using exactly the same method as in Thm. 2.11. O

Proof of uniqueness. Step 1. If Q is a Borel subset of CV, then 7(xq)* = 7(x§) =
m(xq) and m(xq)? = 7(x3) = 7(xq) shows 7(xq) is a projection. If f € Z(C") is
bounded on €, then 7w (xq)7(f) < m(xa)7(f) = 7(fxa). Also, since 7(f)m(xq) has
closure 7(fxq), by Prop. 8.1, we learn that 7 (f)n(xq) is bounded and equals its
closure. We conclude 7(xq)n(f) < 7(f)m(xq). It then follows that if Q, = (2,)aen
is an increasing net of Borel subsets of C" satisfying that | J, Q. = C", and that on
each (2, the function f is bounded, then 7(xq,) is a net of (two-sided) bounding
projections for 7(f).

By Thm. 8.5, the closed operator 7(f) is determined by its restriction to
each Rng(m(xq,)), and hence determined by 7(f)r(xq,) = 7(fxq.), where
fxq, € B(CY). Since we can always find such Q, for f (e.g., 2, is the set of all
points at which | f| < n), it suffices to prove the uniqueness of = on B(CY).
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Step 2. Choose f € Z(C") with positive values. We claim that 7(f) is a posi-
tive closed operator. We have

[N

w(f) = a(f)n(F2) > 7 (F2)m(f2) = n(f2)"n(F2)

since the conjugate of f 2 is itself. Let A = 7(f2)*r(f2), which is positive and
hence self-adjoint. 7(f) is also self-adjoint since f* = f. So n(f) o A implies
m(f)* < A*, and hence 7(f) < A. So 7(f) equals A, which is therefore positive.

Step 3. Choose f € Z(CV), and let 2 = CV be the subset of all points at which
f # 0. We claim Rng(n(f)) = Rng(m(xa)). (Recall that 7(xq) is a projection.)
Note that f = fyxq. So m(xo)7(f) = 7(xaf) = 7(f), which shows Rng(w(f)) <
Rng(m(xa))-

Conversely, for each n € Z, we let 2, < CV be the set of all points at
which 1/n < |f|. Then the [*-norms of yq, are uniformly bounded, and xq,
converges to xq in the L'(CY, y)-norm for any positive finite Borel p. So 7(x,)
converges strongly to m(x). Thus, to prove Rng(n(f)) = Rng(m(xq)), it suffices
to show Rng(m(xq,)) = Rng(n(f)) for each n. Define g, € B(CY) to be 0
outside 2, and 1/f in Q,. Then fg, = xq,. So 7(xa,) = 7(f)7(9,) proves

Rng(7(xq,)) = Rug(w(f))-

Step 4. We know each 7(z;) is uniquely determined. Let v; be z;/|z;| when
z; # 0 and be 0 otherwise. We know that T; = 7(z;) = m(v;)7(|2;|). We claim that
m(v;)m(|2;]) is a left polar decomposition for 7;. Then, by the uniqueness of left
polar decompositions, 7(v;) and 7(|z;|) are uniquely determined by 7.

From the previous steps, we know 7(|z;|) is positive, and Rng(n(|z;|)) equals
Rng(xq,), where () is the set of all points at which z; # 0. Since viv; = v;v} = xaq,,
we see that 7(v;) is a partial isometry whose source space and target space are
both Rng(xq,), which equals Rng(n(|z;|)). Thus, by Remark 5.7, m(v;)7(|2;]) is
closed (and hence equals 7)), and this product is a left polar decomposition,
which must be that of 7).

Step 5. Let r; = (1 + |z;])~' € B(X). Then by Prop. 8.1, w(1 + |z;|)7(r;) is a
closed operator, which must be (everywhere defined and) bounded and equals 1.
So 7(1 + |z;|) sends each 7(r;)¢ to &, and 7(r;) is injective (and has dense range
by (1.3) and the fact that 7(r;)* = n(rj) = 7(r;).) We conclude 7(1 + [z]) o A
where A is the inverse of 7(r;) (which is self-adjoint by Example 3.9), and hence
(1 + |z]) = 7(1 + |z])* < A* = A. This proves 7(1 + |z;|) equals the A, the
inverse of 7(r;). So 7(r;) is unique since (we have proved) 7(1 + |z;|) is so.

Step 6. Let
Y = (S" % (0,1)) u ({0} x {1})
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Then we have a Borel isomorphism ® = (vy,71,...,vy,7y) : CV — Y whose
inverse is

q)il(ul’pl’ T ’uN’ION) = (Ul(ﬂfl - 1)7 SRR (uijivl - 1))

Themap g € B(Y") — n(go®) € End(H) satisfies the conditions of the (bounded)
Borel functional calculus for 7(vy), 7(r1), ..., 7(vn), 7(ry) in Thm. 2.11. In partic-
ular, if g € B(Y), and if (g,) is a net in B(Y) such that lim {, |g. — g|?dv = 0 for
each finite Borel measure v on Y/, then for each finite Borel measure p on CV we
have

lim |g,oq)—goq)‘2du=limf |ge — g|?d®.p =0
CN CN

Thus 7(g. o ®) converges strongly to 7(g).

By Step 5, m(v1),7(r1),...,m(vn), m(rn) are uniquely determined. Thus, by
Thm. 2.11, n(g o ®) is uniquely determined for each g € B(Y"). Now, for each
f € B(CY), writing g = f o ®~!, we conclude that 7(f) = m(g o ®) is uniquely
determined. O

Theorem 9.2. For each f € B(CV), f(T,...,Tw) is affiliated with {T1, ..., Txn}".

Proof. If we can prove that f(T7, ..., Tx) commuts strongly with any element U in
M =A{Ty,...,ITn}, then M < {f(T1,...,Tn)}, which proves {f(T1,...,Tn)}" <
{Th,...,Ty}". By Prop. 6.10, it suffices to assume U is unitary and prove (cf.
Prop.6.5) that U f(11,...,Ty)U* = f(11,...,Ty). Note that this is true when f =
21,...,2y since UT;U* = T;. Thus, the map 7 : f € B(CY) — Uf(Ty,...,Tn)U*
satisfies all the conditions in Thm. 9.1. So 7 is the unique functional calculus,
which equals f — f(T1,...,Tx). This finishes the proof.

An alternative proof: By Thm. 6.15, if we take left polar decomposition of each
T; = V;H;, then V;, (1 + H;)"' € N := {T1,...,Tx}". The proof of uniqueness in
Thm. 9.1 shows that any f(T3,...,Ty) (where f € B(C")) can be approximated
strongly by polynomials of Vi, (1 + H;)™', ..., Vy, (1 + Hy)~'. Hence it is in V.
In the general case that g € Z(C"), one constructs bounding projections and uses
Thm. 8.7 to conclude {f(T1,...,Tn)}" < N. O

We discuss compositions of functional calculus. In the following, we write
Ti,...,Ty as T, for short.

Theorem 9.3. Let gy, ..., g € B(CN) and f € B(CE). Then

Fr(Te), - gu(TV)) = (f o (915 -, 90))(T). (9.3)

Note that on the left hand side, the functional calculus of g1, ..., g;, is defined
using 7,, and f is defined using ¢;(7%), ..., g.(7.). On the right hand side, we
have the functional calculus of the function f o (g1, ..., g1) defined using 7..
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Proof. Defineamap  : f € B(C") — (fo(g,...,91))(T.). It suffices to check that
this is the unique functional calculus for ¢;(7%), . .., gn(7.). Namely, we shall ver-
ify all the conditions in Thm. 9.1 (with 7} replaced by g¢;(7%)). The only nontrivial
condition is the last one about continuity. Choose f € B(C*) and (f,)aca a net
satisfying sup,q || fallie(cz)< +o0 and §., | fo — f|dv — 0 for each finite (positive)
Borel measure v on C*. Now, for any finite positive Borel measure ;. on CV, we

lety = (¢1,...,91), and let v = v, which is finite positive Borel measure. Then
by (1.4),

J ‘fo(gh---;gL)—fao(917-~-,gN)|dN=f |f — faldv
CN CL

converges to 0. So f,o(g1, ..., 9r)(T.) converges strongly to fo(g1,...,9.)(7.). O

Corollary 9.4. Let N, L € Z,, and let T}, ..., Ty be strongly commuting normal
closed operators on H. Assume f € B(CNTL) depend only on the first N variables

21, ..., 2y, and let f € B(CN) be the restriction of f to CN ~ CN x {0cs}. Then

~

F(Ty, .. Tnir) = f(Th, ..., Tx).

Proof. Letp : CN+L — CN be the projection on the first N variables. Then f = fop.

~ ~

Soby Thm. 9.3, f(T1,...,Tw+1) = J(p(Th...., Tvar)) = f(Th...., Tw). O
Remark 9.5. Define Sp(T1, ..., T ) to be the set of all points in C" such that every
open set W containing this point satisfies xw (74,...,7n) # 0. This is a closed
subset of C¥, called the joint spectrum of T, ..., Ty.

If we choose spectral decomposition as in Thm. 7.3, then it is clear that
Sp(Th,...,Tx) is the closure of the union of the supports of all y,. From this

description, we see that f(71, ..., Ty) depends only on the values of f on the joint
spectrum. Also, for f1,..., fr, € Z(CY), using Thm. 9.3 (by composing character-
istic functions with (fi,..., f)) one sees that
Sp(flTh - In)sos fu(Thy oo To)) < (froeos f)Sp(Ths - Tw)). - 94)
Remark 9.6. For strongly commuting normal 71, ..., Ty, we have
Sp(Tla"'aTN) = Sp(T1> X X Sp(TN) (95)

Indeed, suppose (A1,...,Ax) ¢ Sp(71) x --- x Sp(Ty). Then one of Ay,..., Ay is
not in Sp(7}), say A1 ¢ Sp(731). Choose a neighborhood W < C of \; such that
xw(T1) = 0. Then Cor. 9.4 shows that xy . cv-1(11,...,Tny) = xw(T1) = 0. So
(A1, ..., Ay), which has W x CV~! as a neighborhood, is outside Sp(T7, . .., Ty).

Exercise 9.7. Let 1" be normal. Use spectral theorem to show that Sp(7") < [0, +o0)
iff T is positive, that Sp(7") < R iff T is self-adjoint, and that Sp(7’) is compact iff
T is bounded.
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Example 9.8. To see the power of Theorem 9.3, we do an example about von
Neumann algebras and commutants, which can easily be generalized to other
more complicated examples. Let A, B be strongly commuting closed operators
on H, A is self-adjoint and B is positive. We show that {A, B} = {A + B2, A3}".
(Note that by the spectral theorem 7.3, it is clear that A* is closed.)

Solution. Let C = A+ B?and D = A3. That {A, B} > {C, D}" follows from Thm.
9.2. Note that Sp(A, B) < Sp(A4) x Sp(B) <« X := R x [0, +o). Let (f1, f2) = (21 +
22,23). Then (C, D) = (f1, f2)(A, B). Therange of (f1, f2)isinY := {(wy,ws) € R? :
wy — Ywy = 0}. We can define an inverse function (g1, g2) : Y — X by g(wy, ws) =

(Ywg, A/wi — Ywy). Then go f = (21, 22). So, by Thm. 9.3, (g1, 92)(C, D) = (g1 ©
fi,g20 f2)(A, B) = (A, B). By Thm. 9.2 again, we conclude {4, B} < {C,D}". O

For each Borel Q2 = Sp(T1,...,Ty), set
EQ) = xao(Th,...,T,) 9.6)
as in the bounded case. Then following theorem is similar to Thm. 2.13.

Theorem 9.9. Let X = Sp(T4,...,Tn). Foreach f € (X), a vector £ € H belongs to
2(f(Th,...,Ty)) if and only if

f fIXdBEle) < o,
X

Moreover, for such £, we have

ST Tl = | ) 97)
X
Due to the above relation, we also write
X

Proof. Choose a spectral decomposition as in Thm. 7.3, and note that all y,, have
supports in X = Sp(T3,...,Ty). So we may replace C" by X. For each { € H, if
we write U = (fn)nem € @,, L*(X, p1,), it follows easily that

(AEE[E) = Y | fal dptn. (9.9)

It is now straightforward to verify the claimed properties. O

53



10 Self-adjoint operators, Stone’s theorem

We begin this section with a useful criterion on self-adjoint operators.

Theorem 10.1. Let T be a closed and symmetric (i.e. T < T*) operator on H. The
following are equivalent.

(a) T is self-adjoint.
(b) The ranges of T' + iand T — i are both H.

(c) The ranges of T'+ iand T' — i are both dense in H.

Proof. (a) = (b): If T is self-adjoint, then Sp(7') < R. By spectral theorem, one
can identify T with the multiplication operator M, on (P L*(R, ). It is clear that
M, +1i= M,.; are surjective.

(b) = (c): Obvious.

(c) = (b): That (T + DE[(T + i)y = (TE[Tn) + (Elny = (V&) (cf. (5.2)) for
all £,n € 2(T) shows that Rng(T" + i) is unitarily equivalent to Rng(¥V) = &(T')
under the unitary map (7" + )¢ — W&, So Rng(7" + i) is complete since &(T') is so.
So Rng(7T + i) must be H. So does Rng(T" — i) for a similar reason.

(b) = (a): It suffices to show Z(T") = 2(1T*). By Prop. 3.4, (I'+i)* =T* —-i>
T—i. Note that 7'—iis surjective. Thus, if we can show that (7'+i)* is injective, then
we have (T +1)* = T — i and therefore 2(T*) = 2(T* —i) = 2((T +1)*) = 2(T).

Choose any ¢ € Z((T + i)*) such that (T + 1)*{ = 0. Then (|(T +1i)n) = 0 for
each n € 2(T'), namely, ¢ is orthogonal to Rng(T" + i) = H. So £ must be 0. O

A one parameter unitary group on H is by definition a strongly continuous
map R — End(H),t — U, (i.e., continuous with respect to the strong operator
topology) satisfying that each U, is unitary, Uy = 1, and U,;; = U,U, for each s, t.
It follows that U;* = U_, and U; commutes adjointly with U;.

Theorem 10.2. Let H be a self-adjoint closed operator on H. Then t — e'*H is a one
parameter unitary group on H. Moreover, any & € H belongs to Z(H) if and only if the
limit
6i1EH -1
lim
t—0 t

¢ (10.1)

exists. In that case, the limit is iHE.

Proof. We have Sp(H) < R since H is self-adjoint. Let £ be the resolution of the
identity for H. By properties of functional calculus, it is clear that U, := €'¥ are
unitary and satisfies Uy = 1 and U, = U,U,. Since U — U = (Us—y — 1)UiE, to

check the strong continuity, it suffices to check U,§ —¢ — 0 for each { ast — 0. But
(" = 1)¢]*= (™ = 1)* (e — 1)¢[¢) = JR | — 1 EE[6),
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which converges to 0 by dominated convergence theorem.
We now choose ¢ € Z(H) and show that the derivative of U;{ att = 0 exists
strongly and equals i/¢. We have

|
-

Since { € Z(H), we have {,(1 + [z[*){(dF¢|§) < +o©. So by Lemma 10.3 and
dominated convergence theorem, the above expression converges to 0 as ¢t — 0.
This proves that (10.1) converges strongly to iH{ whenever { € Z(H).

Conversely, assume ¢ € H satisfies that (10.1) converges strongly to i) € H.
Then using the result from the last paragraph, for any n € Z(H), we have

(€l = TimCe] )™ (e~ 1)) = T (=it) (e~ 1)eln) = Wy (102)

ith;t_ 1 . HfHQ _ fR
L peparge),

e eltr — 1 2
—— —af (dEEle)

(&

itz

This shows £ € Z(H*) = 2(H) and H, = H*¢ = . This proves £ € Z(H). O

Lemma 10.3. For each h € R — {0} we have

el —1
ih

Proof. If |h| = 1 then the left hand side is < 3. If || < 1 then

e —1 ) (ih)"
in _1:lh2(n+2)!

neN

—1‘<3.

whose absolute value is < |h|el"l < 3|h|. O
To prove the converse of the above Theorem, we first need:

Lemma 10.4. Let T" be a closed operator on ‘H affiliated with an abelian von Neumann
algebra M (i.e., any two elements of M commute (strongly)). Then T is normal, and in
particular 2(T) = 2(T*).

Proof. We have {T'}" < M. Since M commutes strongly with M (as M is abelian),
{T'}" commutes strongly with {7'}". So T commutes strongly with 7. Hence 7' is
normal by Def. 7.1. We know Z(T") = 2(VT*T) = 2(VTT*) = 2(T*). O

Theorem 10.5. Let U, be a one parameter unitary group on H. Then U, = e for some
self-adjoint closed operator H on H.
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Proof. We let 2, be the subspace of all ¢ such that lim,_,o(U;§ — €)/(it) exists. We
tirst show that %, is a dense subspace of H. Indeed, any £ € H can be approxi-
mated by

£(f) = fR F(s)U.eds

where f € CX(R), §; fdt = 1. (Consider a sequence f,, where each f, has support
inside [—1/n, 1/n]. Then £(f,) — £.) Note that the above Riemann integral makes
sense because s — Uj is strong operator continuous. Thus, all such £(f) span a
dense subspace of H. We claim &(f) € Zp. Indeed,

UE(f) = f F(5) Uit = fRf(s OUeds,

whose derivative at ¢ = 0 converges in norm to —&(f’). This proves the claim, and
we see that 7, is dense in H.

We define Z(H) = %,, and let H{ be the derivative of U,{ at ¢t = 0 for each
¢ € 2(H). Using the calculation in (10.2), it is easy to check that (¢|Hn) = (H&|n)
for each ¢,n € Z(H). Thus H is symmetric, i.e. H < H*. In particular, H is
closable.

Let M = {U, : s € R}, which is abelian since any U, U, commute adjointly.
We claim that H is affiliated with M, equivalently, that M’ = {H}'. By Prop. 6.10,
it suffices to show that H commutes strongly with any unitary V € M’. Indeed,
we note that U;§ has derivative at t = 0 iff (VU,V*) - V¢ does. So the derivative
of VU, V* at t = 0 exists precisely when acting on V%, = VZ(H). When the
derivative exists, it must be the action of VHV*. But VU,V* = U, since V € M’.
So H = VHV*, and hence H = VHV*. This proves {H}" = M. By Lemma 104,
we know 2(H) = 2(H').SoH = H'.

We now show U; = €l for each t. By Thm. 10.2, for each ¢ € Z(H), etf¢ =
£ + itHE + o(t) where o(t) € H denotes an expression satisfying lim; . o(t)/t — 0.
Similarly, U;n = n + itHn + o(t) for each n € Z(H). So

(U_ e lny = (" g|Um) = (€ +IHE + ot)|n + itHn + o(t))
=(&|ny + it(CHE|ny — E|Hnp) + oft) = (E|n) + o(t).

Note that (U; — 1)Usn/it equals Us(U; — 1)n/it, and hence converges to U;Hn as
s — 0. Therefore U,y € 2(H). Since H commutes strongly with ¢*”, we have
eI He 57 — T and hence €7 2(H) = 2(H). Therefore ¢*7¢ € 9(H). Therefore,
in the above formula, we can replace &, with ¢/ U, and get

(U IHely) = (U H U = (HEUm) + ot) = U-se* e[y + o(t).

Thus, the derivative of s — <U:Sei5ﬁ£ In) is zero everywhere for all ¢ € 2(H),n €
9(H), which shows that U_,e'*!! must be constant, which is 1. O
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The following proposition provides a criterion for self-adjoint operators H, K
on H to commute strongly: it is equivalent to that ¢/ commutes (adjointly) with
e*K for each t,s € R.

Proposition 10.6. Let H be a self-adjoint closed operator on H. Then {H}" = {" : t €
R}".

Proof. Let U, = ¢, We have shown in the proof of Thm. 10.5 that {H}" = M
{U; : t € R}. The relation o follows from Thm. 9.2.

O

Let f be a Lebesgue L' function on R. Its Fourier transform is f(s) =
{g f(t)e™"*dt, which is a bounded continuous function on R. On the other hand,
we can define §, f(¢)e "#dt to be the bounded operator sending any £ € # to the
vector whose evaluation with every n € H is

(] swemanginy = | roe e

The following proposition relates functional calculus and the one parameter

group e,
f(H) = f Ft)e Hat.
R

Proof. By spectral theorem, it suffices to assume H = @, ., L*(R, p,,) (Where each
it is Borel) and H = M, where z is the identity map of R. Then for any ¢ =

(gn)ne‘ﬂa n= (hn)nefn in#H,

| e mgimar = | 5. | e g6 Gl (s)ar

The above sum and integrals are interchangeable, since the terms to be integrated
and summed are L'. So the above expression becomes

) | ] e o maGlarans fo )90 () () dtdp (5),

which equals (f (H YE|n). O

Proposition 10.7. We have

11 Central supports and normal representations of

von Neumann algebras
Recall that if .7 is a +-algebra, a (unitary) representation of 7 on a Hilbert
space is defined to be a *-homomorphism 7 : &/ — End(H), i.e., 7 is a homomor-

phism satisfying 7 (2*) = 7(x)* for all z € &/. If o/ is unital, a representation = is
also assumed to be unital, i.e. 7(1) = 1.
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In this section, normal representations are defined using central supports in
the same spirit that von Neumann algebras are defined as the commutant of a set
of operators. In the next section, we will show that this definition is equivalent to
those using various topologies.

Recall that if A, B are bounded self-adjoint operators, we write A < B when-
ever B — A is a positive operator. If I, F' are projections, one checks easily that
E<Fiff EH c FH?

Central supports

Lemma 11.1. Let M be a von Neumann algebra on H. Let (x,)qeq be a family of ele-
ments of M. Let E be the projection onto the closure of \/ , Rng(z,). Then E € M.

Proof. Choose any y € M'. Then \/_ Rng(z,) is clearly invariant under y. Thus
yE = EyE. Similarly y*F = Ey*E, and hence Fy = EyE. Thus yE = Ey, i.e.
Ee M. [

Definition 11.2. Let M be a von Neumann algebra on H. Let e € M be a projec-
tion. The central support of e, denoted by z,,(e) (or simply z(e)), is the projection
onto

\/ Rng(xe)
xeM

Then z(e) belongs to the center Z(M) := M n M'. For each ¢ € H it is clear that
&1l z(e)H ¢ L xeH forall z e M (11.1)

Proof that z(e) is central. By Lem. 11.1, we have z(e) € M. It is clear that z(e)H in
invariant under the action of M. Therefore z(¢) € M'. O

Proposition 11.3. If p € Z(M) is a projection, then p = z(p). Consequently, for any
projection p € M, we have z(z(e)) = z(e). Moreover, z(e) is the smallest central projec-
tion > e.

In other words, if ¢ € Z(M) is a projection and ¢ > e then ¢ > z(e).

Proof. If x € M then Rng(zp) = Rng(pz) < pH. Thus 2(p) < p, and hence z(p) = p.
Thus z(z(e)) = z(e). Now, if ¢ € Z(M) is a projection and ¢ > ¢, then ¢ = 2(q) >
0

z(e).

Definition 11.4. Let e, f € M be projections. We write f <aq e (or simply f < e) if
there is a partial isometry u € M such that uvu* = f and u*u < e.

3Proof of =: Choose any ¢ orthogonal to FH. Then (E¢|¢) < (FE|¢) = 0, and hence |E¢|? =
(E¢|E) = 0, showing that £ 1 EH.
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Theorem 11.5. Let e, f € M be projections. The following are equivalent.
(1) f < z(e). Equivalently (by Prop. 11.3), z(f) < z(e).

(2) f can be written as a (possibly infinite) sum f = ). f; where each f; is a projection,
and f;f; = 0if i # j. Moreover, f; < e for each i.

We write f «a e (or simply f « e) and say that f is generated by e if one of the above
conditions hold. We write f ~ e if f < eand e « f, equivalently, if z(f) = z(e).

It follows from (2) that f < e implies f « e.

Proof. Clearly (2) implies (1). Assume (1). By Zorn’s lemma, there is a maximal
set of mutually orthogonal nonzero projections of M (denoted by ‘) satisfying
Zpemp < fand p X e for each p € P. Let us prove that Zpemp = f. Suppose
thatq = f — Zpem p is a non-zero projection. Then by (11.1), there is € M such
that ¢H is not orthogonal to xze#. Hence gze # 0. Therefore, let u be the phase of
qre. Then p’ := wu* is a projection in M orthogonal to every p € P and satisfying
p' < eandp < f. Thus B u {p'} is strictly larger than *B but satisfies the condition
that °B satisfies. This contradicts the maximality of 3. O

Corollary 11.6. Let e € M be a projection. Then

zul(e)H = \/ Rug(u)
where the span is over all partial isometries u € M satisfying u*u < e.

Proof. If uw € M is a partial isometry satisfying u*u < e, then clearly Rng(u)

1" 4 1" 7

z(e). This proves “>”. The direction “c” follows by applying Thm. 11.5 to f :
z(e).

LN

Generating representations

Definition 11.7. A #-set is defined to be a set & together with an involution, i.e.,
bijective map * : & — & satisfying a** = a for each a € &. If & is a #-set, a
representation of G on a Hilbert space # is defined to be a map ¢ : & — End(H)
satisfying 7(a*) = m(a)* for all z € &.

Definition 11.8. Let (#, ) and (K,¢) be representations of a #-set G. Then
Homg(H, K) denotes the set of homomorphisms from H to K, i.e., bounded lin-
ear maps T : H — K satisfying T'p(a) = ¢(a)T for all @ € &. T is called unitary
equivalence/isomorphism if 7" is unitary. A subrepresentation of H is a closed
subspace invariant under ¢(S).

It is clear that if 7' € Homg(#, K) then 7% € Homg (IC, H).
In the following, unless otherwise stated, (H, ¢) and (K, 1) are representations
of a -set G.
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Remark 11.9. There is a one to one correspondence between the subrepresenta-
tions of (#, ¢) and the projections of ¢(&)’. In fact, if W is a subrepresentation
of H, then the projection £ onto W belongs to p(S)’. (Proof: Let a € &. Then
p(a)W < W implies p(a)E = Ep(a)E. Similarly, p(a*)E = E¢(a*)E, and hence
Ep(a) = Ep(a)E. So g(a)E = Ep(a) and similarly p(a*)E = Ep(a*).) Con-
versely, if E' € (&)’ is a projection, then E'H is a subrepresentation of (H, ¢).

Remark 11.10. Define the direct sum representation ¢ @ ¢ of & on H @ K by
(p@v)(a) = p(a) ®Y(a). Then it is clear that Homg(#, K) is precisely an element
T e (¢®vY)(6) satisfying ' = TE = FT where E, F are the projections of H ® K
onto H resp. K.

More generally, we can define infinite direct sums:

Definition 11.11. Let (#;, ;)ic; be a collection of representations of the =-set &.
Assume that for each a € & we have

sup [pi(a)]| < +o0

1€J
Then for each a € & we have a bounded linear map
Dipi(a) : @Hz — @Hz @i & — Dipi(a)é;
Then ( @D, Hi, @igpi) is a representation of &, called the direct sum representation
of (Hz‘, %’)z’ej-

Definition 11.12. We say K < H if K is unitarily equivalent to a subrepresentation
of H. From Rem. 11.10, it is clear that each of the following is equivalent to £ < H.

* There is a partial isometry U € Homg(#, K) such that UU* = 1.
* Let I, I be the projections of H @ K onto H, K. Then F' < ay) @) E.

Definition 11.13. We say that K is generated by H and write K « H if setting F, F
to be the projections of H@ K onto , K, and setting T = (¢ ®)(6), the following
equivalent conditions hold.

(1) Zg/(E) = 17.[@;(.
(2) F «¢ E.

(3) K is a (possibly infinite) orthogonal direct sum of subrepresentations that
are < H.

4) V retiome () TH is dense in K.
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We say that K is quasi-isomorphic (or quasi-equivalent) to H and write KL ~ H if
K «Hand H « K.

Proof of equivalence. (1)<(2): F « E means F' < z(FE). If F' < z(FE) then clearly
1=F+ E <z(E). Hence 1 = z(E). Conversely, if 1 = z(E) then F' < z(E).
(2)<(3): This is clear from Thm. 11.5. (2)<>(4): This is obvious. [

Definition 11.14. Let M —~ H and N/ —~ K be von Neumann algebras. Let 7 :
M — N be a unital -homomorphism. We say that 7 is normal if the =-set repre-
sentation 7 : M — End(K) is generated by the inclusion map ¢ : M — End(#H),
in short

(K, m) <« (H,tm)

Definition 11.15. Let M —~ H be a von Neumann algebra. Let K be a Hilbert
space. A normal unital »-homomorphism 7 : M — End(K) is called a normal
representation of M. In other words, (K, 7) is an orthgonal direct sum of subrep-
resentations that are < to the representation M —~ H.

Basic facts about generating representations

Proposition 11.16. Let (KCy, 1), (Ko, 12) be representations of S. Assume that ICy <« H
and ICy « KCy. Then Ky « H.

Proof. This is clear from Def. 11.13-(4). O]
Proposition 11.17. Assume that K < H. Then I < H.
Proof. Obvious. O

Proposition 11.18. Let (H;, i)icy be a collection of representations of the =-set S sat-
isfying sup; ||pi(a)|| < +oo for every a € &. Assume that H, « H for every i. Then
@, Hi < H.

Proof. This is clear from (3) or (4) Def. 11.13. O

Corollary 11.19. Let (H, ) and (KC,) be representations of a «-set &. The following
are equivalent.

(1) K «H.
(2) K is unitarily equivalent to an orthogonal direct sum of subrepresentations of H.
(3) K is unitarily equivalent to a subrepresentation of a direct sum of H.

Proof. (1)<(2) is tautology. (2)=(3): A direct sum of subrepresentations is clearly
a subrepresentation of a direct sum.

(3)=(1): Assume (3). By Prop. 11.18, @, H « #H. By Prop. 11.17, K « P, H.
Thus, by Prop. 11.16, K « H. O
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12 Normal representations and the o-topologies

By Cor. 11.19, the study of representations « H reduces to the study of the
subrepresentations of H and direct sums of H. Let us compute the commutants
and double commutants in both cases.

Commutants of subrepresentations and direct sums
Let (H, ¢) be a representation of a *-set &.

Theorem 12.1. Let M = ©(&)". Assume that (IC,v) is a subrepresentation of (H, p).
Let E be the projection of H onto K, which is a projection of M’ = p(&)'. Then

Y(G&) = EM'Elx  (6)" = M| (12.1)

We abbreviate EM'E|x and M|x = ME|x to EM'E and ME. Then (12.1)
reads

H(&) = EM'E (&) = ME

Proof. Since E € ¢(&)’, and since v is the restriction of ¢ to IC, for each T" € (&)’
and a € G we clearly have

W(a),ETE]‘,C = [Sp(a)vETE”,C = E[80<a),T]E‘K =0

Thus Ep(G)' E|x < ¢¥(6)". Conversely, if y € ¢(&)’, define y : H — H by y¢ =
yE¢. Since y commutes with ¢(a) when acting on K, we have

p(a)y€ = p(a)yEE = yp(a)EE = yEp(a)l = gp(a)§

So § € ¢(6)’, and clearly y = EyE. This proves E@(&)'E|x = ¥(6)'.
We now prove the second relation, which by the first relation is equivalent to

(EM'E|c) = M| (12.2)

namely, (EM'E)" = ME. Clearly we have “>”. To prove the other direction, we
first consider the case that zy¢(E) = 1. Then 1 — E < 2(E). By Thm. 11.5,1 — E
is an orthogonal sum of projections < E. Therefore, there exists a collection of
partial isometries (U;);e5 in M’ such that setting F; = U;U}, we have U*U; < E,
F,F; = 0ifi # j, and ), ; Fj = 1. Moreover, there is an element of /, say 0, such
that U;Uy = E and Up| gy : EH — H is the inclusion map. Let U;U; = E;.

Each 7 € H can be written as the orthogonal sum 1 = »,. U;{; where & € EH
and Y, |U;&|? is finite. (Proof: Let & = Ujn.) Note

|Sve] = S el = Yimer
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Let z € (EM'E|c). Then

H Z Uﬂ&

ZHE%HQ ZH%EQHQ - > NE&)

7

and hence

2 2
HZUzﬂ?fi < - HZUi&
Therefore, we have a well-defined bounded linear operator 2 on H satisfying
552 Ui& = Z Uix&;

forany n = > U& € H.
If n e EH = K, then a way of writing n as >, U;&§; is n = Upn. It follows
immediately that Z|x = x. It remains to show Z € M. Choose any y € M’. Then

:cyZU@_xZ yZUf—xZU (UryU)&;

Viewing each }; UryU;¢; as an element of K, the definition of 7 shows that the
expression above equals > Ur(UsyU;)g;. Since z € (EM'E|x)" and UjyU; €
EM'E, we see that the expressmn above equals

D U (UsyUy)é ZU (UryUy)a; = ZyUxéz—y:cngl

2%

So [%,y] = 0. Thus (EM'E)" ¢ ME holds when z(E) = 1.
Now we consider the general case. Let p = z(E). Applying the special case to
pMp = Mp on pH we have

(E(Mp)E) = MpE = ME

By the first relation of (12.1) we have (Mp)" = pM'p = M'p. Thus (EM'E)" =
(EM'pE) = (E(Mp)E) = ME. O

Corollary 12.2. Let M be a von Neumann algebra on H. Let E € M’ be a projection.
Then ME is a von Neumann algebra on E'H with commutant

(ME) = EM'E
Let I be a set. Our next goal is to calculate the commutant and bicommutant

Of @ie[ H
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Definition 12.3. Let [, J be sets. Let € — End(#). An E-valued I x J matrix is a
function 7 : I x J — €. Let fin(2!) resp. fin(2’) be the set of finite subsets of I
resp. J. For each I, € fin(27), Jy € fin(2”), the restriction T'|;,x 5, : Io x Jo — € can
be viewed as a bounded linear map

Tligxio : DH; - PH: PE—D ( > T(i,j)&)

jeJ icl jeJ ielo  jedo
We say that 7" is bounded if

sup [T 1950 || < 40 (12.3)
IoEﬁn(QI),J()Eﬁn(QJ)

Then the net limit lim,cqn(ar), syefin27) I |1 x g, Clearly converges pointwise on the
dense subspace of @), ¢; having finitely many nonzero components. Hence it
converges pointwise to a bounded linear map

T : (—B Hj - @ ,Hl

jed el

due to the following easy fact:

Exercise 12.4. Let (7},)qeq be a net in End(#, K) converging pointwise on a dense
subspace of H and satisfying sup,, |7, < +oo. Show that (7},) converges point-
wise on H to a bounded linear map 7" : H — K.

Theorem 12.5. Let I be a set. Let M = p(&)". Let (P, H, P = ®ip) be the direct sum
representation. Then (&)’ is the set of bounded M’-valued I x I matrices, and

O(6)" = {@®ix:xe M}

Proof. Clearly every bounded M’-valued I x I matrix commutes with ¢(&). Con-
versely, let S € ®(&)’. For each i € I, let U; be the partial isometry H — @, H
sending ¢ to the vector whose i-th component is ¢ and whose other components
are 0, which belongs to Home (H, @), #). Then for each ¢, j € I we have

UFSU; € Endg(H) = o(&) = M’

LetT : I x I — M’ be defined by T'(i,j) = U;SU;. Let E; = U;U}. For each
Iy € fin(2"), let By, = Y., Ei. Then for each I € fin(2'), J; € fin(2”) we have

[Tl = 1B TEs | < [S]

So T'is a bounded M'-valued I x I matrix, which clearly represents S.

It is clear that any @,z (Where z € M) commutes (adjointly) with bounded
M'-valued I x I matrices. Conversely, suppose that A € End(H) commutes with
any bounded M’-valued I x I matrix. Then it commutes with ®;y for any y € M.
Therefore, by the first paragraph, A is a bounded M-valued I x I matrix. Since
this matrix commutes with U,;U; for any ¢, j € I, one shows easily that this matrix
is diagonal, and that all diagonal elements are equal. So A = @®;x for some x €
M. O
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Isomorphisms of von Neumann algebras

Theorem 12.6. Let M —~ H be a von Neumann algebra. Let (IC, ) be a normal repre-
sentation of M. Then w(M) is a von Neumann algebra on K. Moreover, the following
are equivalent.

(1) m™: M — w(M) is bijective.

(2) (K,7) ~ (H,1pm) where g : M — End(H) is the inclusion.

Proof. By Thm. 11.19, 7 is unitarily equivalent to a subrepresentation of © where
¥ is an orthogonal direct sum of M —~ H. By Thm. 12.5, (M) is a von Neumann
algebra. By Cor. 12.2, 7(M) is a von Neumann algebra.

Consider the direct sum representation (H @ K, := vy @ 7) of M, which
is « H (since K « H). Therefore (M) is also a von Neumann algebra, and
¢ : M — ®(M) is clearly injective, and hence is an isomorphism of von Neumann
algebras. Thus, 7 : M — 7(M) is injective iff @ = 710 &' : (M) — 7(M) is
injective.

Let F be the projection of H ® K onto K. Let 2(F) = zomy(F). Then w :
(M) — mw(M) is simply the restriction map ®(M) — P(M)F. This map is
the composition of ®(M) — &(M)z(F) and ®(M)z(F) — ®(M)F. Since z(F)
is an orthogonal sum of projections that are <gnqy £ (cf. Thm. 11.5), the map
P(M)z(F) — &(M)F is injective. Therefore

Ker(®(M) — 7(M)) = (M) (1 — 2(F)) (12.4)
Thus (M) — ©(M) is injective iff z(F) = 1, iff (H,tm) « (K, 7). This proves
(1)=(2). O

Remark 12.7. Eq. (12.4) can be reformulated as follows. Let p be the projection
onto the subspace

{€eH: & L Rng(T) forall T € Hom (K, H)}
Then p € Z(M), and Ker(M — 7(M)) = Mp.

Corollary 12.8. Let M — H and N' —~ H be von Neumann algebras. Let 7 : M — N
be a unital «-homomorphism. Then the following conditions are equivalent.

(1)  is bijective and normal, and =~ is normal.
(2) 7 is bijective and normal.

(3) m is surjective, and (H, 1) ~ (K, 7).
If 7 satisfies the above conditions, we say that 7 is an isomorphism of von Neumann
algebras.
Proof. Clearly (1)=(2). By Thm. 12.6, we have (2)<(3).
Assume (2) and (3). Then (H,tp) ~ (K, ) is equivalent to (H,77!) ~ (K, ty)
(as representations of the «-set ). Therefore 7! is a normal representation of .
This proves (1). [
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The o-topologies on von Neumann algebras
We shall give an intrinsic description of normal representations.

Definition 12.9. Let H, K be Hilbert spaces. The o-strong topology is the topology
on Hom(H, K) defined by the seminorms of the form

T e Hom(H,K) — [> |T&]?
iel

where (§;)ies is a family of vectors of H satisfying > .. [&|° < +oo. (In particular,
only countably many ¢; are nonzero.) Thus, a net (7,) in Hom(#, K) converges
o-strongly to T iff

”

hglz |T¢ - To&[* =0

el

for each family (&;)cr in H satisfying Y. [|&:]? < +oo.
Similarly, the o-strong* topology is the one defined by the seminorms

T ¢ Hom(H, K) \/Z Tl + Y |6 P

el el

So (T,) converges o-strongly* to T iff (T,,) converges o-strongly to 7" and (77)
converges strongly to 7.
The o-weak topology is the one defined by the seminorms

T € Hom(H, K) Z |<T5z|77@>|

el

where (&;);e; and (1;)er are collections of vectors of H, K satisfying >, [&[* < 4+
and Y, ||n;||* < +co. Thus (7,,) converges o-weakly to 7 iff

lim )3 [((T — Tu)élno)

for all such (&;) and (7;). O

Remark 12.10. With respect to net convergence, we have
o-strongly* — o-strongly — o-weakly

Indeed, the first implication is obvious. The second one follows from
2IKTEnol < [YITEL- [l

due to Holder’s inequality.
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Theorem 12.11 (Bicommutant theorem). Let S < End(H). Let A be the unital »-
subalgebra of End(#H) generated by &. Let T be one of the following topologies:

(a) The o-strong* topology.
(b) The o-strong topology.
(c) The o-weak topology.
Then &" equals the closure of A under the topology T

Recall that by Thm. 6.14, one can also choose 7 to be the strong, the strong*,
or the weak topology. However, these three topologies are not the correct ones
for the description of normal representations: If M —~ H is a von Neumann al-
gebra and / is an infinite set, the diagonal representation (P,_; H,®itr) is not
continuous under these three topologies.

Proof. Replacing & with & U {z* : © € &}, we assume that & is a *-subset of
End(H). Let A be the closure of A under 7. Then clearly A = &”. Now choose
x € &". Let us prove that v € A.

Choose any collection (&;) in H satisfying > [|&[? < 4. Let 14 : A — End(H)
be the inclusion map. Let (P, ; H, ®) be the direct sum representation of &. Then
by Thm. 12.5 we have ®;z € ®(&)”. Thus, by Thm. 6.14, @z is in the strong*
closure of ®(.A). This shows that = can be strongly* approximated by elements of
A. Thus z € A, since the o-strong* topology is the strongest one. O

Normal representations and the o-topologies

We now relate normal representations to the three types of o-topologies. We
tirst need a relation between the normality and the closedness under these topolo-
gies.

Theorem 12.12 (Closed graph theorem). Let M —~ H be a von Neumann algebra.
Let (K, ) be a representation of M, i.e., a unital »-homomorphism M — End (k). Then
the following are equivalent.

(1) 7 is normal.
(2) The graph ¢ (m) = {x ® 7(x) : x € M} is a von Neumann algebra on H @ K.

Note that ¢ (r) is clearly a unital +-subalgebra of H @ K. Therefore, that ¢ ()
is a von Neumann algebra means e.g. that it is closed under the correct topology.

Proof. Let ® = 1y @ 7 be the direct sum representation. Then ¥ (7) = ®(M). If
7 is normal, then @ is normal (Thm. 11.18), and hence ®(M) is a von Neumann
algebra by Thm. 12.6.
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Conversely, assume that (M) is a von Neumann algebra. We view H as a
subrepresentation of ®(M) —~ H @ K. Since (M) — &(M )|y is clearly bijective.
By Thm. 12.6, we have H @ K « H as representations of ®(M). Therefore, if we
let E be the projection of # @ IC onto #, then zo(ay (E) = 1. Thus 7 is normal. [

Theorem 12.13. Let M —~ H be a von Neumann algebra. Let (IC, ) be a representation
of M. Let T be one of the three o-topologies in Thm. 12.11. Then the following are
equivalent

(1) is normal.
(2) m is continuous with respect to the topologies T on M and on End(K).

Proof. Suppose that 7 is normal. Then by Thm. 11.19, 7 is unitarily equivalent to
a subrepresentation of @ where w is an orthogonal direct sum of M —~ H. One
checks easily that w@ is T-continuous?, and hence 7 is T-continuous. This proves
(1)=(2).

Conversely, assume that 7 is 7-continuous. Then the graph ¢ () is closed
under the topology 7 on End(H @ K). The closed graph Thm. 12.12 implies that
7 is normal. Hence (2)=(1). [

The following theorem relates the generating property of the #-set representa-
tions and the normal homomorphisms/isomorphisms of von Neumann algebras.
Its importance lies in the fact that von Neumann algebras and their representa-
tions often arise from #-set representations, cf. e.g. Thm. 13.7.

Theorem 12.14. Let (H, ) and (IC, 1)) be representations of a -set &. Let M = p(&S)”
and N = p(8)". Assume (KC,v)) « (H, ). Then the following are true.

1. There is a unique normal unital =-homomorphism 7 : M — N such that

m(p(a)) = (@)  (Vae ) (12.5)

Moreover, T is surjective.

2. (K,9¥) ~ (H, ) if and only if the above map 7 : M — N is bijective (i.e., 7 is an
isomorphism of von Neumann algebras, cf. Cor. 12.8).

Proof. 1. Let A be the unital -subalgebra of End(#) generated by ¢(&). Then the
uniqueness of 7 follows from the fact that 7 is o-strongly continuous (Thm. 12.13)
and that A is o-strongly dense in M (Thm. 12.11). We now address the existence.
By Cor. 11.19, we may view (K, ) as a subrepresentation of (P, H,®;¢). Let E
be the projection of P, H# onto K, Then by Thm. 12.1 and 12.5, N = (®;p)(M) - E.
Then 7 can be defined by sending = € M to (®;¢)(z)E, and 7 is clearly surjective.

“Note that one cannot show that w is strongly*/strongly / weakly continuous.
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2. Assume (K,v) ~ (H,p). By Part 1, there is a normal unital =*-
homomorphism @ : N — M such that w(¢(a)) = ¢(a) for all a € &. Then
wom = id on ¢(&), and hence on M by the uniqueness in part 1. Similarly
mow = id. So 7 is bijective.

Conversely, assume that 7 is an isomorphism. Then by Cor. 12.8, we have
(K, m) ~ (H,1m) as M-representations. From this one easily checks that (C, ) ~
(", ). O

Example 12.15. Let 9 be the set of finite Borel measures on CV. Recall that
B(CY) is the unital =-algebra of bounded Borel functions on CV. Then the mul-
tiplication operator M; of f € B(CV) defines a representation of B(C") on
K = @,cm L*(CY, p). This representation is faithful. (Proof: Suppose M; = 0,
by choosing 1 to be the Dirac measure on x € CV we see that f(x) = 0. So f = 0.)
Therefore, we can view B(CY) as a unital #-subalgebra of End(K). In particular,
B(CY) is equipped with the o-strong topology.

Let T1,...,Ty be strongly commuting normal closed operators on a Hilbert
space H. Let 7 : f € B(CN) — f(T1,...,Ty). Then (H,n) is a normal representa-
tion of B(CY). In other words, we have (H,7) « (K, M) as =-set representations
of B(CY). This is clear, since the spectral Thm. 7.3 implies that (#, 7) is unitarily
equivalent to a direct sum of some of the components of @, .y L*(C", ).

Alternatively, the fact that 7 is normal follows from the easy observation that
the property (9.1) is equivalent to the fact that 7 is o-strongly continuous.

It Ty, ..., Ty are also bounded, then the Borel functional calculus Thm. 2.11
can be reformulated as saying that 7 is the unique normal representation of B(C")
sending z1,...,z2y to T4, ..., Tn. H

* The o-topologies on the unit balls of von Neumann algebras

Remark 12.16. If M is a von Neumann algebra, one shows easily that the o-
strong*/o-strong/o-weak topology on the unit ball By = {xr € M : |z| < 1}
is equal to the strong*/strong/weak topology.

The bicommutant theorem has the following refinement; compare this with
the uniform boundedness property in Lem. 2.9.

Theorem 12.17 (Kaplansky’s density theorem). Let S be a set of bounded operators
on ‘H. Let A be the unital =-subalgebra of End(H) generated by &. Let T be one of the
topologies as in Thm. 12.11. Let M = &". Then By = {x € A : |z| < 1} is T-dense in
By ={reM:|z| <1}

Sketch of the proof. 1t suffices to show that any self-adjoint z € By can be approx-
imated strongly (and hence o-strongly*) by self-adjoint elements of B 4. By Thm.
12.11, there is a self-adjoint net (z,) in A converging strongly to x.
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We first consider the special case that C' := sup,, ||z, is finite. Then one shows
easily that lim,, f(z,) converges strongly to f(z) whenever f is a polynomial, and
hence (by Stone-Weierstrass) whenever f : R — R is a continuous. Take f to
be any continuous function satisfying || f|;»®) < 1 and f(t) = tif |t/ < 1. Then
(f(z4)) is anet in B4 converging strongly to f(z) = x, finishing the proof.

In the general case, the Cayley transform y, = (z, — 1) - (z, +1)~! (which is
unitary) converges strongly toy = (z — i) - (x + i)' since

Y— Yo =2i(z +1) 7 (z — 20) (20 +1)7!

Let f be as in the above paragraph, but also having compact support. Then g(z) =

f(1 + 2)/(1 — 2)) defines a continuous function S' — R. Then ¢(y,) converges

strongly to g(y) = f(x) = = by the same reasoning as in the previous paragraph.
We leave the details to the readers, or cf. [Kad, Sec. 5.3]. ]

Theorem 12.18. Let M —~ H be a von Neumann algebra. Let (IC, ) be a representation
of M. Let T be one of the three o-topologies in Thm. 12.11. Let Byy = {x € M : |z| <
1}. Then the following are equivalent

(1) m is normal.

(2) The restriction m : By — End(#H) is continuous with respect to the topologies T
on Bp and on End(H).

Note that the range 7(B) must be in the closed unit ball due to Prop. 2.12.
Therefore, any o-topologies on 7(B ) is equivalent to the topology without o.

Proof. (1)=(2) is obvious. Assume (2). Then the continuity of 7|z,, implies that
By (z) is T-closed in End(H @ K), and hence T-closed in By(ry. By Kaplansky’s
density Thm. 12.17, we have By () = By(xy». Hence ¥(r) = ¢4 (n)". Therefore 7 is
normal by the closed graph Thm. 12.12. O

*» Normal cyclic representations and positive linear functionals

We give an application of Thm. 12.18. If (K, 7) is a presentation of a unital
+-algebra .o/, we say that () € H is a cyclic vector if &/} is dense in K. A represen-
tation equipped with a cyclic vector is called a cyclic representation.

By Zorn’s lemma, any representation of .2 is an (orthogonal) direct sum of
cyclic representations. Now we let &/ be a von Neumann algebra M —~ H. Then
by Prop. 11.18, the normality of K is equivalent to that of each cyclic component.
The latter has the following criteria:

Corollary 12.19. Let (K, 7) be a cyclic representation of a von Neumann algebra M —~
‘H with cyclic vector (2. Let

w:M—->C - {n(z)QQ) (12.6)
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Let Mt ={x e M :2 > 0}and By, = {xr € M : 0 <z < 1}. Let T be one of the three
o-topologies in Thm. 12.11. Then the following are equivalent.

(1) (K, ) is a normal representation of M.

(2) There exists a collection (&;);er in H satisfying > |&|* < +oo, such that

w(z) =) (@&l

forall x € M.
(3) wis T-continuous.
(4) w|m+ is T-continuous.
(5) wlgy is T-continuous.

Proof. (1)=(2): This follows from the fact that (IC, 7) is unitarily equivalent to a
subrepresentation of a direct sum of . Hence (2 can be viewed as an element of
DA

(2)=(3), (3)=(4), and (4)=(5) are obvious.

(5)=(1): Assume (5). By Thm. 12.18, to show (1), it suffices to show that if (x,)
isanetin By = {x € M : |z|| < 1} converging (o-)strongly* to € B4, then for
each ¢ € K we have

limr(a)E16) = (€16 (*

Since sup,, ||| < 400, it suffices to prove (x) for any ¢ in a given dense subspace,
say m(M)Q.
Note that (z, —x)*(zo — x) converges o-strongly to 0. Choose any y € M. Then

ho = y* (2o — )" (10 — 1)y

converges o-strongly in rBy, = {ra : a € B},} to 0 where r is a suitable num-
ber > 0. Note that w| pt, 18 T-continuous. So wl, pt, 18 T-continuous, and hence
o-strongly* continuous, and hence o-strongly continuous (since the elements of
rB}, are self-adjoint). So lim, w(h,) = 0, which means precisely that () holds for
¢ = m(y)Q2. This finishes the proof of (1). O

Remark 12.20. A linear functional w : M — C is called positive if w(z) > 0
whenever z € M is > 0. Clearly, if (IC, ) is a cyclic representation of a von Neu-
mann algebra M —~ H, then (12.6) gives a positive linear functional. Conversely,
a positive linear functional w gives rise to a cyclic representation (I, 7) of M if we
let IC be the completion of the (possibly degenerate) inner products space whose
elements are v € M and whose (degenerate) inner products are given by

(zly) = w(y*x)
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The left multipliction of M on M gives rise to the action of M on K. The cyclic
vector is 1. This is called the Gelfand-Naimark-Segal (GNS) construction. One
checks easily that the GNS constructions implements a bijection between:

¢ Equivalence classes of cyclic representations of M.
¢ Positive linear functionals on M.

Here, we say that two cyclic representations (K, ;) and (Ko, m2) (with cyclic vec-
tors (24, (),) are equivalent if there is a unitary equivalence of M-representations
U : K; — Kq such that UQ); = Q.

Using Cor. 12.19, we can define a positive linear functional w to be normal if
it satisfies one of (2), (3), (4), (5) of Cor. 12.19, equivalently, if its associated cyclic
representation is normal. O

13 Classification of abelian von Neumann algebras
and their affiliated closed operators

In this section, we fix X to be a measurable space. We shall discuss measure
theoretic representations of the algebra of bounded measurable complex func-
tions £L%(X). If pe = (1;)ier is a collection of measures on X, for each (not nec-
essarily bounded) Borel function f : X — Con L*(X,u) we let M}* denote the
multiplication operator of f on @B, ; L*(X, u;).

Proposition 13.1. Let i be a o-finite measure on X. The following are true.

1. There exists a measurable h : X — R such that dv = hdy is a finite measure on
X.

2. Let h : X — R.( be measurable. Let dv = hdu. Then there is a unique unitary
map

Ut L(X,v) - LA(X,n) &= Vhe
Moreover, for each measurable f : X — C we have
UM{U™ = M} (on L*(X, )
In particular, both sides have domain {§ € L*(X, p) : § | f?dp < 40}

Proof. To prove part 1, one writes X as a countable disjoint union of p-finite mea-
surable subsets A; L Ay L -+, and takes h = Y, n~2u(A,)" - xa,. The proof of
part 2 is straightforward. O
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Remark 13.2. If ;i is a finite measure, the map f € L*(X, u) — M;1 € L*(X, ) is
injective. Thus, we view L*(X, ;1) as a unital «-subalgebra of End(L?*(X, i)). Then
L*(X, u) also equals {M; : f e L#(X)}. By Prop. 13.1, we can do the same thing
if 1 is only o-finite.

A special case of the classification of abelian von Neumann algebras is the
following result.

Proposition 13.3. Let p be a o-finite measure on X. Then on L*(X,u) we have
L®(X, p) = L™(X, w). In particular, L (X, ) is a von Neumann algebra on L*(X, p)
defined by multiplication.

Proof. By Prop. 13.1, we assume WLOG that p is finite. Let 7' € L*(X, p). Since
1 € L*(X,pu), we can define f = T1 which is in L?*(X,u). Then for each g €
L*(X, 1) we have

Tg=TMy=MTl=gf=fg (%)
If | f| e = +oo, then E := |f|7([|T] + 1, +0)) is not p-null. Thus x is nonzero

in L?(X, p) and

ITxel7e = | fxeli: = L [fPdp = (1T +1)* - p(E) = (1T + 1) - [xel2
This is impossible. So f € L*(X, u). Now (x) shows that T = M, on L*(X, p).
Hence T' = M, on L*(X, 1) since both operators are bounded. O

Recall that if i, v are measures on X, we say that v is absolutely continuous
with respect to ;1 and write v « p if for every measurable E — X satisfying j1(E) =
0 we must have v(F) = 0. More generally:

Definition 13.4. Let (y;)ic; and (v;),e; be collections of o-finite measures on X.
We say that (v;),e; is absolutely continuous with respect to (1;);c; and write

(V3)jer < (Mi)ier

if for each j € J there exists a countable set /; < I such that for every measurable
E c X satisfying ;1;(E) = 0 forall i € I;, we have v;(E) = 0.

Our next goal is to relate (});e; < (i;)ier and the generating property for rep-
resentations of £L*(X). The following theorem gives a fun and alternative proof
of the Radon-Nikodym theorem.

Theorem 13.5 (Radon-Nikodym). Let p, v be o-finite measures on X. The following
are equivalent.

(1) v < p.
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(2) We have (L*(X,v), M) < (L*(X, n), M*) as representations of L*(X).
(3) dv = hdy for some measurable h : X — Ry

Proof. (1)=(2): By Prop. 13.1, we assume WLOG that p, v are finite. Let 7" be an
unbounded operator L?(X, u) — L*(X,v) with dense domain L (X, 1) defined
by T¢ = . This is well defined, since v « y implies that if |£].2(x,) = 0 then
€] z2(x,,) = 0. We claim that 7" is closable. Suppose that (§,) is a sequence in
L*(X, ) that is L*(X, p)-converging to 0, and that (¢,) is a Cauchy sequence in
L*(X,v). Letw = p + v. Then (¢,) is a Cauchy sequence in L?(X,w). So there is a
measurable £ : X — C such that { [{[*dw < +o0 and lim,, { |§ — &,|?dw = 0, i.e.,

im [ J¢ = &P+l [ 1€ - P = 0

Since lim { [&,[*dp = 0, we must have § |¢|*du = 0. So ( |£]*dv = 0 (because v « p).
Hence lim,, { [, [?dv = 0, i.e., (T¢,) converges to 0 in L*(X,v).

We have proved that T is closable. Rng(T") clearly contains L*(X,v), and
hence is dense. Thus, if we let U be the phase of T, then U : L?(X, ) — L*(X,v)
is a partial isometry satisfying UU* = 1. For each f € L£L¥(X) we clearly have
M{T < TMj. Since Mj = M;jx, we have (My)*T" = T(M{)*. Thus, view-
ing T" as an unbounded operator on L*(X, u) @ L*(X,v) (with dense domain
L*(X, u) & L*(X, 1), and which is zero when restricted to L?(X, v)), we have

ME®'T = TMP® (MP®)*T < T(MF®)*

where M J‘f@” is the multiplication operator of f on L*(X, ) ® L*(X, v). Therefore,
by Prop. 6.2, M J’f@” commutes strongly with 7', and hence commutes adjointly
with U (by Cor. 6.17). Thus U* realizes L?(X, v) as a subrepresentation of L*( X, u).

(2)=(3): Again, by Prop. 13.1, we assume that p, v are finite. Let V :
L*(X,v) — L*(X,p) be an isometric homomorphism of £*(X)-representations.
Since 1 € L*(X,v), we have T'1 € L?(X, uu), which is represented by some measur-
able g : X — C satisfying {, |g|*dju < +c0. Then for each f € L*(X) we have

| 1P = 17 iy = IV = IV = | 1 FolPd
So dv = |g|*dp.
(3)=(1): This is obvious. O

Theorem 13.6. Let (u;)ier and (v;) jes be collections of o-finite measures on X. For each
f e L*(X, u), The following are equivalent.

(1) (Vj)jeJ « (Nz‘)z‘el-

(2) Foreach j € J we have L*(X,v;) < @,c; L*(X, ;).

el
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(3) (Djes L*(X,v5), M™) < (Do L*(X, i), M¥) as representations of the «-set
L7(X, p).

Proof. By Prop. 13.1, we assume that all ;; and v; are finite measures. Note that
(2)=(3) is obvious.

(1)=(2): Assume (1). Choose any j € J. Let I; = I be a countable set such that
for each measurable £ — X satisfying 1,(E) = 0 for all ¢ € I; we have v;(E) = 0.
By scaling each p;, we assume w := > ,; i is a finite measure. Then v; « w, and
hence L*(X,v;) < L*(X,w) by Thm. 13.5. Let 1,, be the constant function 1 of
L3(X, j1;). Then for each ¢ € L?(X, w) we have

D€z = €172y < o0

iEIj
which shows that @, 1,, belongs to Z(M;), and

U: LQ(Xv (.U) - C—BLQ(Xa ”Z) 5 = Mf(C_BiEIjlm)

lGIj

is an isometry. One checks easily that U is a homomorphism. So L*(X,w) <
@,.; L*(X, w;). This proves (2).

(3)=(1). Assume (3). It suffices to fix each j € J and show v; « (;)ie;. We
know L*(X,v;) « @®,.; L*(X, ;). By Cor. 11.19, L*(X, v;) is < to a direct sum of
@,.; L*(X, ;). Thus, we may find (px)ger such that

{piiel}={u: ke K}

as sets, and L?(X,v;) < @, ;e L*(X, ui,). Clearly (pux)rer < (11:)ier- Thus, it suffices
to prove v; < (fu)kek -

Let U : L*(X,vj) = @y L*(X, p1y,) be an isometric homomorphism. Let 1,
be the constant function 1 in L?(X,v;). Then Ul = @ex&, where >, &[> < +co.
Thus there is a countable set K; — K outside of which ||,/ 12(x ) = 0. Similar
to the proof of (2)=(3) of Thm. 13.5 one sees that dv; = ZkeKj |k ?dpy. Clearly

Vv;j < (k) kek;- This proves (1). O
Theorem 13.7. Let (y;):cr be a countable collection of o-finite measures on X. Define

L#(X, 1) = {MI* : [ € £2(X)} (13.1)
Then L*(X, p.) is a von Neumann algebra on @, ; L*(X, ;).

Proof. By Prop. 13.1 we assume WLOG that v := ), j; is a finite measure. Then
(pi)ier < v, and hence @, L*(X, ;) <« L*(X,v) by Thm. 13.6. By Prop. 13.3,
L*(X,v) is a von Neumann algebra on L?(X,v). Therefore, by the surjectivity
mentioned in part 1 of Thm. 12.14, L* (X, i) is a von Neumann algebra. ]
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Recall that B(C") is the set of bounded complex Borel functions on C”.

Theorem 13.8. Let T,...,Tn be strongly commuting normal closed operators on a
separable Hilbert space H. Then
{Tlv"'aTN}”:{f(Tlv"'aTN):fEB((CN)} (132)

More generally, a closed operator affiliated with {T},...,Tn}" is precisely of the form
f(Ty, ..., Ty) where f : CN — C is Borel.

Proof. Step 1. By Thm. 9.2, f(11,...,Ty) is affiliated with M = {1}, ..., Ty}" for
each Borel f : CV — C. In particular, we have “>” in (13.2). Let us prove "c”.
Let T, = V,H, = H,V, be the polar decomposition of 7,, where H,, > 0 and V,, is
the phase. Set R,, = (1 + H,) '. One sees easily (e.g. by spectral theorem) that
T; is an unbounded Borel functional calculus of V;, R,. Therefore, if we can prove
that any € M is a bounded Borel functional calculus of V;, Ry, ..., Vn, Ry, then
by Thm. 9.3, x is a bounded Borel functional calculus of T3, ...,Tx. Note that
M ={Vi,Ry,...,V,, R,}" by Thm. 6.15.

From the above discussion, we see that in order to prove "c” for (13.2), it
suffices to assume that 71, . .., Ty are bounded. Since H is separable, by Thm. 2.8,
we may assume that H = @,_; L*(C", u;) where (p;);es is a countable collection
of finite Borel measures on CV, and T}, = M,,. Then M = {M,,,..., M, }". Since
M., belongs to L*(CY, u,) (which is a von Neumann algebra by Thm. 13.7),
we obtain M < L*(CV, u,). But the elements of L*(C", p,) are precisely the
bounded Borel functional calculi of M., ..., M,,. We are done with the proof of
(13.2).

Step 2. It remains to prove that every closed operator 7" affiliated with M
is of the form f(73,...,Tx). Since M is abelian, 7" is normal. Therefore, 7" has
polar decomposition ' = VH = HV where V and H commutes strongly. Let
R = (1+ H)™'. By Step 1, there exist a, 3 € B(C") such that V = «(T,) and
R = B(T.). As in Step 1, let us assume that H = @, ; L*(CY, ;) and T, = M,, .
Then R = Mjp.

Let B ={pe C":0 < B(p) < 1}.Since 0 < R < 1 and Ris injective, for all i we
have 1;(CV\E) = 0. Replace 8 with xg - 3 4+ xcv\ p- Then, besides R = Mz we also
have 0 < 3 < 1everywhere. Lety = —1+1/8. Then H = -1+ R~! = M, = v(T.).
Thus T = «(T.)y(T.). Since (a7y)(T,) is the closure of a(7,)v(T.) (cf. Thm. 9.1),
we must have 7' = (ay)(T%). O

el

We are ready to classify abelian von Neumann algebras on separable Hilbert
spaces.

Theorem 13.9. Let M be an abelian von Neumann algebra on a separable Hilbert space
H. Then there exists a bounded positive operator H € M such that

M = {f(H) : f is a bounded Borel function R — C}
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More generally, a closed operator affiliated with M is precisely of the form f(H) where
f : R — Cis Borel.

Proof. By Thm. 13.8, it suffices to prove that M is generated by a bounded positive
operator H. We first show that By = {T' € End(H) : |T'| < 1} is separable under
the weak operator topology. Note that B, is weakly compact: If (7,) is a net in
B, then viewed as a net of functions H x H — C, (§,n) — (T.£|n), it has a subnet
converging to a function on H x H due to the Tychonoff theorem. One checks
easily that this function is sesquilinear and is bounded on the unit ball of #, and
hence defines 7' € End(H). Thus the subnet of 7, converges weakly to 7', and
hence T' € Bp4. This proves that B is weakly compact.
The weak operator topology on B, is metrizable by the metric

d(T,Ty) = Z 27 (T = T2)6mlén)

where £, &, ... are a countable dense subset of the closed unit ball of H. Recall
that every compact metric space is second countable. Therefore By is weakly
second countable, and hence separable.

It follows that M is weakly separable. Note that if 7 € End(#) is self-adjoint,
then {H}" is generated by x[q4,(H) where a,b € Q. Therefore M is weakly gen-
erated by countably many projections ey, e1, e, ... where are clearly commuting.
Let H =3 ;3 "en.

Let us show that ey € {H}". Write H = ¢y + H;. Then 0 < H; < 1/2. By
the spectral Thm. 2.8, by performing a unitary equivalence on H, we have that
H = @,.; L*(C? p;) (where I is countable) and ¢y = M; and H; = M,. By adding
functions to f and ¢ that are y;-a.e. zero for all i, we assume that f = yx for some
Borel E « C*and 0 < g < 1/2. Thus f + g > 1 precisely on E, i.e. X[1,+x)o(f+g) =
xe- Therefore, noting H = My, ,, we obtain
Thm. 9.3

M

X[1,+w)o(f+9) = MXE = €0

X[1,+0) (H) = X[1,+) (Mf+g)

This proves e, € {H}".

Similarly, for each k > 0, setting i, = >, ., 37 "e,, we have ¢, € {H}". Thus
ep € {H}" implies H, € {H}", and hence ¢, € {H,}" < {H}" implies H, € {H}", and
hence ey € {H,}" < {H}" implies H; € {H}", etc. Repeating this procedure, we see
that e, € {H}" for all k. Thus {H}" = M. O

Corollary 13.10. Let T' be a closed operator on a separable Hilbert space. The following
are equivalent.

(1) T is normal.

(2) T = f(H) for some Borel function f : R — C and some bounded positive operator
H.
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(3) T = f(H) for some Borel function f : R — C and some self-adjoint closed operator

H.
Proof. (2)=(3) and (3)=(1) are clear. Assume (1). Then M = {T'}"is abelian. Thus,
(2) follows from Thm. 13.9. O

A Vector/operator valued holomorphic functions

Let B be a Banach space, and let O be an open subset of C. A function f : O —
B is called holomorphic if the limit

i £0) = 1)
w—z w—z

exists for each z € O. The limit is denoted by f’(z) or 0, f(z).
If f: O — Bis holomorphic, and C' is an oriented piecewise smooth curve in
O, we define

b
f f(2)dz = f SO (t)dt (A1)
C a

for any parametrization v : [a,b] — O of C, and the right hand side can be un-
derstood as e.g. approximation in the norm topology of 5 using Riemann sums.
Thus

sO(L f(2)dz) = wa(z)dz

for each bounded linear functional ¢ € B*, which shows that our definition of
§. fdz is independent of the choice of .

Proposition A.1. Assume B = End(H), f : O — End(H) is holomorphic, and C'is
a piecewise smooth curve in O. Let O = {Z : z € O}. Let C = {Z : z € C} whose
orientation is the reflection of that of C along the x-axis. Define f* : O — End(H) by
f*(z) = f(Z)* (i.e., the adjoint of f(Z)). Then f* is holomorphic, and

(L f(2)dz) = L £ (2)dz. (A2)

Proof. It is a straightforward check using definition that f* is holomorphic. If
7 : [a,b] — C is a parametrization of C, then 7 : t € [a, b] — 7(t) is one of C. Then

(L f(z)dz>* = (Lbf(”y(t))’y’(t)dt>* = Lbf(fy(t))*i’(t)dt
= Lb fr @)y (t)dt = JC F*(2)dz.

78



Theorem A.2. Assume f is continuous in the norm topology of B. Let ® be a set of
(bounded) linear functionals of B, separating in the sense that for any x,y € B, if p(z) =
o(y) for every ¢ € ®, then x = y. Assume that for each ¢ € ®, the function o f : O — C
is holomorphic, then f is holomorphic.

Proof. Choose any circle C' such that both C' and its inside is contained in O. Then
forany z € O, as ¢ o f is holomorphic,

o) - | P 4

c (-2

It follows that

F(z) = L O 4,

¢(—=z
and hence
f(w) = f(2) _J ()
— = g,
w— 2 ¢ (€ =2) (¢ ~w)
which converges as w — z, because the integrand converges uniformly with re-
spect to (. [

Remark A.3. The above Proposition reduces the study of holomorphic oper-
ator/vector valued functions to that of ordinary ones. For instance, suppose
fn : O — B is a sequence of holomorphic functions converging uniformly to a
function f : O — B on compact subsets of O. f is clearly continuous. Since
the evaluation of f with any bounded linear functional of B is clearly holomor-
phic, we conclude that f is holomorphic. As a special case, > a,2" (Where each
a, € B) is holomorphic on any open set on which the series converges absolutely.

If O is a subset of C"*, we say f : O — B is holomorphicif f = f(z,...,2,)1s
continuous (with respect to the norm topology) and holomophic on each variable
z; (when the other variables are fixed).
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