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Preface

1

This monograph is the lecture notes of a course I gave in 2022 spring at Tsinghua
University, Yau Mathematical Sciences Center. It is an introduction to the basic theory
of vertex operator algebras (VOAs) and conformal blocks. The audience of that course is
assumed to be familiar with complex analysis, differential manifolds, and the relationship
between (the representations of) Lie groups and Lie algebras.

A key feature of this monograph is the emphasis on the complex analytic aspects of
VOAs and conformal blocks: We prove many well-known results by first proving the
convergence (more precisely: absolute and locally uniform (a.l.u.) convergence) of cor-
relation functions which are defined a priori as formal power/Laurent series of some
formal variables. These results include Dong’s Lemma and Goddard uniqueness (and
hence the reconstruction theorem), construction of contragredient modules, local freeness
of sheaves of conformal blocks for C2-cofinite VOAs (and families of compact Riemann
surfaces).

The algebraic construction of these correlation functions as formal series corresponds
geometrically to deformations of pointed compact Riemann surfaces or pointed nodal
curves. The usual algebraic approaches to VOAs (e.g. [Kac, LL]) avoid showing the con-
vergence of such series. In geometry, this means not considering analytic sewing, but only
formal and infinitesimal sewing. As a compensation, formal calculus and delta functions
are heavily used in these approaches. An advantage of our complex analytic approach
is that by showing that these formal series are convergent, one can view the correlation
functions as genuine functions but not just formal series, so one can understand the na-
ture of VOAs and conformal blocks in a similar way as physicists do.

2

Another feature of this monograph is that we give motivations for many definitions
and results from the perspective of Segal’s picture of conformal field theory. These in-
clude: the definitions of VOA and in particular Jacobi identity; the definitions of con-
formal blocks and sheaves of VOAs; translation covariance, scale covariance, and more
generally Huang’s change of coordinate theorem for vertex operators; the formula for
the vertex operators of contragredient modules; the definition of connections for sheaves
of conformal blocks. These motivational explanations are known to experts, but are not
easily accessible in existing textbooks and articles. We hope that by incorporating these
motivations into a monograph, we can make it easier for beginners to get started on these
topics.

3

The theory of conformal blocks is not only very beautiful, but also crucial to a geo-
metric understanding of the representation theory of VOAs and conformal field theory.
In recent years, there has been an increasing interplay between different approaches to
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conformal field theory. These approaches include VOAs, conformal nets and operator
algebras, tensor categories, low-dimensional topology, probability, etc. We believe that
conformal blocks are a key to understanding the relationships between these approaches.
Unfortunately, most of the literature on conformal blocks is written in the language of
algebraic geometry, which makes it more difficult for people from different fields to un-
derstand this subject. In our monograph, many central ideas about conformal blocks are
explained in the language of (complex) differential manifolds and basic sheaf theory, so
that they can (hopefully) be understood by a much wider audience. Of course, such ele-
mentary language is not sufficient for proving profound results. So we leave the technical
proofs to my monograph [Gui]. Indeed, the present monograph can also be viewed as an
introduction to [Gui].

4

There is some confusion in the proof of local freeness of sheaves of coinvariants and
conformal blocks. This result has two versions: the algebraic one for algebraic families of
smooth curves, and the analytic one for complex analytic families of compact Riemann
surfaces. However, we believe that the following point is not sufficiently recognized in
the literature: the proof for the algebraic version is not directly applicable to the analytic
version.

The algebraic local freeness is proved in the following steps: 1. Prove that the sheaf
of coinvariants over a base scheme B is a coherent OB-module. 2. Prove that the sheaf
of coinvariants admits a connection. 3. By a standard result, coherence and connections
imply local freeness. When adapting this proof to the analytic setting, the difficulties arise
in step 1: one can only show that the sheaf of coinvariants for a complex analytic family
(over base manifold B) is a finite-type OB-module, but not that it is coherent (i.e., that
moreover the sheaves of relations are of finite-type). The proof of algebraic coherence
relies essentially on the Noetherian property of the structure sheaf OB (as well as the quasi-
coherence of the sheaves of coinvariants), which does not hold in the complex-analytic
setting.

In [Gui], we have given an analytic proof, first proving a finiteness result slightly
stronger than the finite-type condition, and then using some sheaf-theoretic arguments.
In this monograph, a different proof was given (cf. Sec. 15). Though this proof relies
on the same finiteness result, the subsequent argument is more analytic and has a clearer
physical meaning: the crucial step is to prove the convergence of a formal series ϕτ of
τ using differential equations, where ϕτ is constructed from a given conformal block ϕ0

of a fixed fiber X0 of the analytic family X; ϕτ is expected to be a conformal block for
the nearby fiber Xτ if the convergence were proved. Therefore, this proof is very similar
to that of convergence of sewing conformal blocks in [Gui] or [Gui20]. Note that Xτ is
the deformation of a compact Riemann surface X0 (with marked points), while sewing is
the deformation of a nodal curve. Thus, by presenting such a proof, we want to convey
the idea that both types of deformations can be treated in the same way in the (complex
analytic) theory of conformal blocks.
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Subsections marked with ‹ can be skipped on first reading.

0 Notations

• N “ t0, 1, 2, . . . u, Z` “ t1, 2, . . . u.

• i “
?

´1, S1 “unit circle, Cˆ “ Czt0u.

• Dr “ tz P C : |z| ă ru, Dˆ
r “ tz P C : 0 ă |z| ă ru, Dcl

r “ tz P C : |z| ď ru

• OpXq (resp. OX ) is the space (resp. sheaf) of holomorphic functions on a complex
manifold X . OX,x is the stalk of OX at x.

• Configuration space ConfnpXq “ tpx1, . . . , xnq P Xn : xi ‰ xj if i ‰ ju.

• z and ζ could mean either points, or the standard coordinate of C, or formal vari-
ables. We will give their meanings when the context is unclear.

• All vector spaces are over C, unless otherwise stated. If W is a vector space
equipped with a Hermitian form x¨|¨y, we let |¨y be the linear variable and x¨| be
the antilinear (i.e. conjugate linear) one, following physicists’ convention.

• If W,W 1 are vector spaces, then HompW,W 1q denote the space of linear operators
from W to W 1. We let EndpW q “ HompW,W q.

• We use symbols x¨, ¨y or p¨, ¨q to denote bilinear forms (i.e., linear on both variables).

• Given a vector space W and a formal variable z,

W rzs “ tpolynomials of z whose coefficients are elements of W u

W rrzss “

!

ÿ

nPN
wnz

n : wn P W
)

W ppzqq “

!

ÿ

nPZ
wnz

n : wn P W, and wn “ 0 when n is sufficiently negative
)

W rrz˘1ss “

!

ÿ

nPZ
wnz

n : wn P W
)

.

Each line is a subspace of the subsequent line. In case there are several formal vari-
ables, the spaces are defined in a similar way, expect W pp¨ ¨ ¨ qq. For instance,

W rrz, ζ˘1ss :“ W rrzssrrζ˘1ss “ W rrζ˘1ssrrzss

consists of
ř

mPN,nPZwm,nz
mζn where each wm,n P W . However, note that

W ppzqqppζqq and W ppζqqppzqq are not equal. (For instance,
ř

mě´n

ř

ně´1 z
mζn be-

longs to Cppzqqppζqq but not Cppζqqppzqq.)

Elements in W rrz˘1ss are called formal Laurent series of z.
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• We let

W ppz1, . . . , zN qq “

!

ÿ

n1,...,nNěL

wn1,...,nN z
n1
1 ¨ ¨ ¨ znN

N for some L P Z
)

.

Then W ppz1, z2qq is a proper subspace of both W ppz1qqppz2qq and W ppz2qqppz1qq.

• We set

Resz“0

ÿ

nPZ
wnz

ndz “ w´1. (0.2)

This is in line with the complex analytic residue.

• A vector ofW1b¨ ¨ ¨bWN writen asw‚ means that it is of the formw1b¨ ¨ ¨bwN where
each wi P Wi. Depending on the context, w‚ will also mean a tuple pw1, . . . , wN q.
Similarly, W‚ may mean W1 b ¨ ¨ ¨ bWN or pW1, . . . ,WN q depending on the context.

• Unless otherwise stated, by a manifold, we mean one without boundaries. Also,
”with boundaries” means ”possibly with boundaries”.
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1 Segal’s picture of 2d CFT; motivations of VOAs and conformal
blocks

1.1

Vertex operator algebras (VOAs) are mathematical objects defined to understand and
construct 2-dimensional conformal field theory (CFT for short). A CFT describes propa-
gations and interactions of strings. The are two types of strings: closed strings » S1 and
open strings » r0, 1s. In this course, we will mainly focus on closed strings.

Let me explain how mathematicians understand CFT. Just like any quantum field the-
ory (QFT), in CFT we must have a Hilbert space H. The vectors in H are called “states”,
but unlike ordinary QFT, a vector ξ P H is not a state of a particle, but a state of a closed
string S1.

The most important and non-trivial part in CFT is to define/understand string inter-
actions. According to Segal’s picture [Seg88], an interaction is uniquely determined by
a compact Riemann surface Σ with boundaries BΣ, where BΣ is a disjoint union of some
circles (strings). Each string is called either an incoming string or an outcomming one.
Suppose BΣ has N incoming strings and M outgoing ones, then this picture describes an
interaction where N strings are going inside, and M strings are going outside.

Moreover, the boundary BΣ must be parametrized. This means that to each connected
component BΣi a diffeomorphism ηi : BΣi

»
ÝÑ S1 is associated. The orientation on BΣi

defined by pulling back the one of S1 along ηi is assumed to be the opposite of the one
defined in Stokes’ theorem, shown as follows

(1.1)

1.2

Unless otherwise stated, we assume that the boundary parametrization is also ana-
lytic. Roughly speaking, this means that Σ can be obtained by removing some open disks
from a compact Riemann surface C (without boundary) such that the parametrizations of
BΣ are given by local holomorphic functions of C.

Here is a more rigorous explanation. By a local coordinate η of C at x P C, we mean η
is a holomorphic injective function on a neighborhood U of x such that ηpxq “ 0. So η is a
biholomorphism between U and a neighborhood ηpUq of 0. Now, suppose we have local
coordinates η1, . . . , ηN at distinct points x1, . . . , xN P C. The data

X :“ pC;x‚; η‚q “ pC;x1, . . . , xN ; η1, . . . , ηN q (1.2)

is called an N -pointed compact Riemann surface with local coordinates.
Let each ηi be defined on a neighborhood Ui Q xi. We assume moreover the following
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Assumption 1.1. Ui XUj “ H if i ‰ j (indeed, η´1
i pDcl

1 q X η´1
j pDcl

1 q “ H is sufficient), and
ηipUiq Ą Dcl

1 for each i. Here Dcl
1 is the closed unit disk.

By removing all η´1
i pD1q, we get Σ with boundary strings η´1

i pBDcl
1 q “ η´1

i pS1q whose
parametrizations are ηi.

1.3

Any Σ as above determines uniquely an interaction of strings. Suppose it has N in-
coming strings and M outgoing ones. Then mathematically, such an interaction is de-
scribed by a bounded linear map T “ TΣ : HbN Ñ HbM . (The boundedness is automatic
thanks to the uniform boundedness principle. But this is not an important point in this
course.) Given ξ‚ “ ξ1 b ¨ ¨ ¨ b ξN P HbN and η‚ “ η1 b ¨ ¨ ¨ b ηM P HbM , the value

xη‚|Tξ‚y (1.3)

describes the probability amplitude that the N incoming closed strings with states
ξ1, . . . , ξN become η1, . . . , ηM after interaction.

The word “conformal” in conformal field theory reflects the fact that T depends only
on the complex structure of Σ and its parametrization, but not on the metric for instance.
Thus, a CFT is more rigid than a topological quantum field theory (TQFT): in the latter
case, T depends only on the topological structures of the manifolds.

1.4

Suppose we have another interaction S : HbM Ñ HbL corresponding to the
parametrized surface Σ1, then the composition of them S ˝ T : HbN Ñ HbL corresponds
to the sewing Σ#Σ1 of Σ and Σ1, where the j-th outgoing string B`Σj of Σ is sewn with
the j-th incoming one B´Σ

1
j of Σ1.

It is important to specify how B`Σj (with parametrization ηj) is identified with B´Σ
1
j

(with parametrization η1
j). Pick x P B`Σj and y P B´Σ

1
j . Then

x “ y ðñ ηjpxqη1
jpyq “ 1. (1.4)
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It is clear from the picture that the orientations of B`Σj and B´Σj are opposite to each
other. This is related to the fact that our rule for sewing is ηjpxq “ 1{η1

jpyq but not (say)
ηjpxq “ η1

jpyq.
Recall we assume that the parametrizations are analytic. We leave it to the readers

to check that the sewing of Σ and Σ1, a priori only a topological surface, has a natural
complex analytic structure.

1.5

Suppose T1 : HbN1 Ñ HbM1 corresponds to Σ1 and T2 : HbN2 Ñ HbM2 to Σ2, then
T1 b T2 : HbpN1`N2q Ñ HbpM1`M2q corresponds to the disjoint union Σ1 \ Σ2.

1.6

Consider an annulus Ar,R “ tz P C : r ă |z| ă Ru obtained by removing two open
disks from the compact Riemann sphere P1 via the local coordinate η1pzq “ z{r at 0 and
η2pzq “ R{z at 8. We call such Ar,R (with the given boundary parametrization) a stan-
dard annlus. Let r Õ 1, R Œ 1. The limit of this annulus is a “degenerate” Riemann
surface with 1 incoming boundary circle and 1 outing one. Both circles are S1. The in-
coming one has parametrization z ÞÑ z and the outgoing one z ÞÑ z´1. We call this
annulus the standard thin annulus and denote it by A1,1. The map T : H Ñ H associated
to A1,1 is the identity map. This reflects the fact that sewing any Σ with a disjoint union of
A1,1 gives Σ.

1.7

We give a fancy way to summarize what we have so far: Let C be the monoidal cat-
egory of compact 1-dimensional smooth manifolds such that a morphism from an object
S1 to another S2 is a compact Riemann surface with incomming parametrized boundary
» S1 and outgoing one » S2, that the identity morphism for a union of N circles is a
disjoint union of N pieces of A1,1, that the unit object is the empty set, and that the ten-
sor product of objects and morphisms are respectively the disjoint unions of strings and
Riemann surfaces. Then a CFT is a monoidal functor from C to the monoidal category of
Hilbert spaces. So, roughly speaking, a CFT is a representation of C .

Since we choose Hilbert spaces as our underlying spaces, we should expect that the
representation of C is unitary. Technically, the functor mentioned above should be a ˚-
functor: this means that for each morphism Σ from N strings to M strings, we should
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define its adjoint morphism Σ˚ from M strings to N ones whose corresponding map is
the adjoint T ˚ : HbM Ñ HbN of T . Σ˚ is defined simply to be the complex conjugate Σ
of Σ:

Definition 1.2. Σ consists of points x where x P Σ; the local holomorphic functions on Σ
are η˚ where η is a locally defined holomorphic function on Σ and

η˚pxq “ ηpxq (1.5)

whenever η is defined on x P Σ; similarly, boundary parametrizations are given by η˚
j .

Note that if Σ is obtained by removing open disks from an N pointed X “ pC;x‚; η‚q,
then Σ is obtained by removing disks from

X :“ pC;x1, . . . , xN ; η˚
1 , . . . , η

˚
N q (1.6)

η˚ should not be confused with η defined on Σ by

ηpxq “ ηpxq.

In the present context, we should assume that an incoming (resp. outgoing) string of Σ
becomes an outgoing (resp. incoming) one of Σ via the conjugate map A : x P Σ ÞÑ x P Σ.
In the future, we will often consider all strings as incoming ones if necessary (cf. 1.9). In
that case, we shall also assume all the boundary strings of Σ as incoming.

We should point out that although unitarity is a very important condition, there are
important non-unitary CFTs, for instance, the logarithmic CFTs. (In such cases, H is a vec-
tor space without inner products.) Also, many VOA results and techniques do not rely on
the unitarity. Nevertheless, assuming unitarity will often reasonably simply discussions
or give motivations.

Example 1.3. Let X “ pP1; 0;λζq where ζ is the standard coordinate of C and λ P Cˆ. We
can identify the conjugate of P1 with P1 by letting x P P1 ÞÑ x be the standard conjugate
of C: z ÞÑ z. Then pλζq˚pzq “ λζpzq “ λ ¨ z “ λζpzq. So the conjugate of X is isomorphic
to X “ pP1; 0;λζq.

1.8

An interaction process could have no incoming or outgoing strings. The Hilbert space
for the empty string H is C. The most elementary and important example with no incoming
boundary is the closed unit disk Dcl

1 with 1 outgoing boundary parametrized by z ÞÑ z´1.
The corresponding map C Ñ H can be identified with its value at 1. This element in H is
denoted by 1 and called the vacuum vector.

(1.7)

Assume as before that out theory is unitary. Then conjugate of the above disk is the same
disk and boundary parametrization, but the original outgoing string is now the incoming
one. The corresponding map H Ñ C is, according to 1.7, the linear functional x1|¨y.
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1.9

In general, one may wonder what the interaction T : HbN Ñ C means physically for
a surface Σ with N incoming strings but no outgoing ones. Choose 0 ă M ă N , and
make M of the N strings of BΣ be outgoing strings. Then the corresponding interaction
is a map rT : HbpN´Mq Ñ HbM . In unitary CFT, T can be related to rT by a anti-unitary
(i.e. conjugate-unitary) map Θ on H, called the CPT operator, such that for ξ1, . . . , ξN P H
(where the last M vectors are associated to the outgoing strings), we have

T pξ1 b ¨ ¨ ¨ b ξN q “ xΘξN´M`1 b ¨ ¨ ¨ b ΘξN | rT pξ1 b ¨ ¨ ¨ b ξN´M qy, (1.8)

interpreted pictorially as

The operator Θ is an involution, i.e., Θ2 “ 1H.
Such a linear functional T corresponding to an interaction with no outgoing strings

is called a correlation function (or an N -point function). These functions are the central
objects in CFT (and indeed, in any quantum field theory). Relation (1.8) teaches us that:
(1) correlation functions can be interpreted as probability amplitudes in string interactions
with the help of Θ, and (2) to study arbitrary interactions, it suffices to study those with
no outgoing strings.

Let me close this subsection by mentioning an important fact: suppose the complex
structure of Σ and the (assumed analtytic) boundary parametrizations are parametrized
holomorphically by some complex variables τ‚ “ pτ1, . . . , τkq, then the value of T pξ‚q is
now a real analytic function of τ‚, i.e., it is locally a power series of τ1, . . . , τk and their
conjugates. Actually, the word “function” in “correlation function” means a function of
τ‚, but not of ξ‚.

1.10

You must be curious what CPT means. Indeed, Θ is responsible for the simultaneous
symmetry of charge conjugation (C), parity transformation (P), and time reversal (T). P+T
together means an anti-biholomorphism Σ Ñ Σ1. Now we have arrived at a point that
we missed previously: since anti-holomorphic maps are also conformal maps, should
we expect that the interaction maps (or the correlation functions) for anti-biholomorphic
surfaces are equal? The answer is no. (Namely, P+T are not preserved.) Indeed, if we let
Σ have N incomes and no outcomes, let Σ be its complex conjugate (cf. 1.7) but still with
N incomes, and let TΣ, TΣ be the correlation functions associated to them. Then from 1.7
and relation (1.8), we have

TΣpξ1 b ¨ ¨ ¨ b ξN q “ TΣpΘξ1 b ¨ ¨ ¨ b ΘξN q. (1.9)
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Proof. By the description in Subsec. 1.7, the interaction map rTΣ associated Σ with no input
and N outputs is T ˚

Σ : C Ñ HbN , the adjoint of TΣ. By Θ2 “ 1, we have

TΣpξ1 b ¨ ¨ ¨ ξN q “ x1|TΣpξ1 b ¨ ¨ ¨ b ξN qy “ xT ˚
Σ1|ξ1 b ¨ ¨ ¨ b ξNy

“xξ1 b ¨ ¨ ¨ b ξN | rTΣ1y
(1.8)

ùùùù TΣpΘξ1 b ¨ ¨ ¨ b ΘξN q.

Note that mathematically, the point of formula (1.9) is to translate (using (1.8)) the relation
rTΣ “ T ˚

Σ (regarding all the strings of Σ as outgoing) to the case that all the strings of Σ are
incoming.

Formula (1.9) explains CPT symmetry: the symmetries of charge (taking complex
conjugate of the values of correlation functions) and parity+time (the conjugate biholo-
mophism A : Σ Ñ Σ) are preserved, and the operator realizing this simultaneous symme-
try is Θ.

Note that mathematically, charge conjugationC is related to taking complex conjugate
of numbers (but not of Σ). Physically, it means making a string into its “antistring”, or (in
general QFT) making a particle (e.g. an election with negative charge) to its anti-particle
(e.g. an antielectron with positive charge).

1.11

The CFT we have described so far is actually very special: it has no conformal
anomaly. There are indeed no nontrivial CFTs which are both unitary and without
anomaly. In this course, we will be mainly interested in CFTs with conformal anomaly.
Technically, the conformal anomaly is determined by a complex number c (positive for
unitary CFT), called central charge. To describe such CFT, we modify the previous de-
scriptions as follows: The map (or the correlation function) TΣ for Σ is only up to a pos-
itive scalar multiplication depending on Σ. TΣ1 ˝ TΣ2 “ λTΣ1#Σ2 where λ ą 0. (The
constants are not necessarily positive in non-unitary CFT.) If Σ is parametrized holomor-
phically by some complex variables τ‚, then by shrinking the domain of τ‚, we can choose
TΣ depending real analytically on τ‚.

There are many important cases where a real analytic (or even a holomorphic) TΣ can
be chosen globally for τ‚. This will be studied later in details.

Unless otherwise stated, a CFT always means one with (possible) conformal anomaly.
Using the fancy language of 1.7, one can say that a unitary CFT is a projective monoidal
˚-functor from the category C in 1.7 to the category of Hilbert spaces. Namely, it is a
projective unitary representation of C .

1.12

To study the representations of a topological group G, one must first understand very
well the topological and the algebraic structures of G. Similarly, the study of CFTs relies
heavily on the geometric and analytic structures of compact Riemann surfaces. However,
from what we have discussed, there is a huge obstacle for studying CFTs: the correlation
functions are real analytic, but not complex analytic (i.e. holomorphic) functions of the

12



parameters τ‚. Thus, in order to study CFTs using the powerful tools of complex analysis
(residue theorem, for instance), we make the following Ansatz: A correlation function T
is a sum : TΣ “

ř

j Φ
j
Σ ¨ Ψj

Σ
, where each Φj and Ψj relies holomorphically on Σ and Σ

respectively (so Ψj

Σ
relies anti-holomorphically on Σ).

This Ansatz is very vague. Let me explain it in more details. Consider the annulus
Ar,R with boundary parametrization as in 1.6. We move the inside circle to another one
centered at z (where z P Ar,R is reasonably small), still with radius r. The new eccentric
annulus Az,r,R has larger outgoing string parametrized by R{ζ and the smaller incoming
one parametrized by pζ ´ zq{r, where ζ is the standard coordinate of P1. Namely, it is
determined by the data

pP1; z,8; pζ ´ zq{r,R{ζq. (1.10)

Let Tz : H Ñ H be the corresponding map. As we have said, for general vectors ξ, η P H,
the expression xη|Tzξy “ xΘη, Tzξy can be chosen to be real analytic with respect to z. We
now let

V “ tξ P H : For all r,R, the map T can be chosen such that
z ÞÑ xν|Tzξy is holomorphic for all ν P H, and
ξ has “finite energy”u

(1.11)

“Finite energy” is a minor condition to be explained later. (See 2.8.)
We can sew Az,r,R with any Σ, and the motion of the smaller string inside the annulus

becomes, after sewing, the motion of a boundary string of Σ:

(1.12)

Therefore, if a vector ξ P V is assigned to an incoming string of Σ with (analytic) boundary
parametrization ηi, then, when translating this parametrized string with respect to ηi,
the correlation function TΣpξ b ¨ ¨ ¨ q should be holomorphic with respect to the motion,
whatever states we assign to the other strings. We can therefore study V with the help of
complex analysis. V is called a vertex operator algebra (VOA).

We have only described V as a vector space. But in which sense is V an algebra? An
obvious candidate is as follows: consider P1 with three marked points 0, z,8 and usual
coordinates, e.g. η0 “ ζ{r1, ηz “ pζ ´ zq{r2, η8 “ R{ζ at 0, z,8 where r1, r2 ą 0 are small
and R ą 0 is large, and ζ is again the standard coordinate of C. We assume the strings
around 0 and z are ingoing and that around 8 outgoing. If we assign ξ1, ξ2 P V to the
incoming strings, then the outcome can be viewed as a product of ξ1 and ξ2.
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Although this product does not have finite energy, it does satisfy the statement before the
last line in (1.11). Thus, this product is almost a vector in V. By modifying this product
suitably, we can ensure that the products of vectors in V are always in V. Details will be
give in later sections.

Similarly to (1.11), we define pV Ă H to be the set of finite energy vectors ξ such that
xν|Tzξy is anti-holomorphic over z. The vacuum vector 1 belongs to V X pV: The result of
gluing the unit disk into the inside ofAz,r,R is just the disk with radiusR and parametriza-
tion R{ζ, which is independent of z. So Tz1 and hence xν|Tz1y are constant over z, and
hence both holomorphic and anti-holomorphic over z.

1.13

Now we can give a more detailed presentation of our Ansatz. We let Hfin be the
(indeed dense) subspace of vectors in H with “finite energy”, which is acted on by Vb pV.
Ansatz:

1. Hfin as a V b pV-module has decomposition

Hfin “
à

iPI

Wi b xWi Ą V b pV (1.13)

where each Wi,xWi are respectively irreducible V-modules and pV-modules. V and
pV are (according to their definition cf. (1.11)) subspaces of Hfin by identifying them
with Vb1 and 1b pV respectively. The vacuum vector 1 of H is identified with 1b1

(which belongs to V b pV).

2. For some Σ without outgoing boundaries, let TΣ : HbN Ñ C be the corresponding
map. Then, corresponding to the above direct sum decomposition, we have

TΣ

ˇ

ˇ

ˇ

pHfinqbN
“

ÿ

i1,...,iNPI

ΦΣ,i‚
b ΨΣ,i‚

(1.14)

where

ΦΣ,i‚
: Wi1 b ¨ ¨ ¨ b WiN Ñ C,

ΨΣ,i‚
: xWi1 b ¨ ¨ ¨ b xWiN Ñ C

are linear. Moreover, when the complex structure and boundary parametrization
are parametrized analytically by complex variables τ‚, then locally (with respect to
the domain of τ‚), TΣ,ΨΣ,i‚

,ΨΣ,i‚
can be chosen such that ΨΣ,i‚

is holomorphic over
τ‚ (for all input vectors), and ΨΣ,i‚

holomorphic over τ‚. ΦΣ,i‚
and ΨΣ,i‚

are called

conformal blocks associated to Σ (resp. Σ) and V (resp. pV).

In part one,
À

could be finite (our main focus in this course), infinite but discrete, or
continuous.
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The second part can be summarized by saying that the CFT is separated into the
chiral halves (those Φ or Wi) and the anti-chiral halves (those Ψ or xWi). Here, “chi-
ral”=“holomorphic”.

When physicists say a CFT is rational, they usually mean that the above direct sum is
finite, and each Wik ,

xWik are semi-simple (hence, by further decomposition, can be irre-
ducible). So far, the mathematical theory of conformal blocks is complete almost only for
rational CFTs. These will be the main examples of this course. For non-rational logarith-
mic CFTs, even the above Ansatz needs to be modified. (So far, it is not even clear how to
do it.)

Physicists more or less consider the above description as the definition of conformal
blocks. We mathematicians should do the opposite: define conformal blocks in a different
way, and use them to construct CFTs following the above Ansatz.

1.14

You may notice that to make this Ansatz compatible with 1.4 and 1.5, it is necessarily
to assume that

1. The tensor product of conformal blocks ΦΣ1 ,ΦΣ2 associated to Σ1,Σ2 respectively
should be a conformal block associated to Σ1 \ Σ2.

2. The composition of ΦΣ1 ,ΦΣ2 (or more precisely, their contractions) should be con-
formal blocks associated to the sewings of Σ1 and Σ2, where the pair of V-modules
to be contracted must be dual to each other.

(A side note on linear algebra: If V _ is the dual space (or a suitable dense subspace
of the dual space) of a vetor space V , we choose a basis tvαuαPA labeled by elements of
A, and choose a dual basis tv_

α uαPA of V _ (i.e. the one determined by xvα, vβy “ δα,β),
then taking contraction means substituting

ř

αPA vα b v_
α inside the linear functional on a

tensor product of vector spaces such that V, V _ are tensor components.)
After we define conformal blocks rigorously, we will see that the first point is obvious,

while the second one is a non-trivial theorem.
We briefly explain the meaning of “dual”, and why the dual modules appear in H.

For instance, in the above picture, the unitary V-module containing ξ2 is dual to the one
containing η1. As vector spaces, they are “graded” dual spaces of each other. (It is a dense
subspace of the full dual space, the subspace of “finite energy” linear functionals. We will
talk about this in future sections.) In unitary CFTs, all V and pV modules are unitary, and
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ΘpWi b xWiq is equivalent to W1
i b xW1

i where W1
i is a V-module dual to Wi, and xW1

i a pV-
module dual to xWi. The formal name for dual module is contragredient module, to be
defined rigorously in Sec. 9.

1.15

Let us describe the equivalence ΘpWi b xWiq » W1
i b xW1

i in more details.
For each wi b pwi P Wi bxWi, the vector Θpwi b pwiq is regarded as a linear functional on

Wi b xWi in the following way. Let the (clearly symmetric) bilinear form x¨, ¨y : Hb2 Ñ C
be the correlation function TA1,1 for the standard thin annulus A1,1 (with two inputs and
no outputs). Note that by (1.8), for each ξ, ν P H, we have

xΘξ, νy “ xξ|νy. (1.15)

Then Θpwi b pwiq is equivalent to the linear functional

xΘpwi b pwiq, ¨y “ xwi b pwi|¨y (1.16)

restricted onto Wi b xWi.
A conformal block withM`N inputs ΦΣ : Wi1 b¨ ¨ ¨bWiN bWj1 b¨ ¨ ¨bWjN Ñ C can

be regarded as one withN inputs andM outputs ΦΣ : Wj1 b ¨ ¨ ¨ bWjN Ñ H1
i1

b ¨ ¨ ¨ bH1
iM

where H1
ik

is the Hilbert space completion of W1
ik

and W1
ik

is the contragredient V-module
of Wik . Using (1.15), it is not hard to show that taking compositions of conformal blocks
with outputs is equivalent to taking contractions for conformal blocks without outputs.

2 Virasoro relations; change of boundary parametrizations;
strings vs. punctures

2.1

The goal of this section is to understand conformal blocks associated to 2-pointed
Riemann spheres, equivalently, genus-0 surfaces with two boundary strings. We simply
call them annuli, although their complex structures and boundary parametrizations are
not necessarily the standard ones as in 1.6.

Let us first consider some degenerate examples whose boundary parametrizations are
not necessarily analyic. Let Diff`pS1q be the topological group of orientation preserving
diffeomorphisms of S1. For each g P Diff`pS1q, we let Ag

1,1 be the thin annulus whose
incoming and outgoing strings are both S1 with parametrizations

Incoming : z ÞÑ z, Outgoing : z ÞÑ 1{gpzq.

Lemma 2.1. If h P Diff`pS1q, then Agh
1,1 is obtained by gluing the incoming circle of Ag

1,1 with
the outgoing one of Ah

1,1.
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Proof. By (1.4), a point z P Ah
1,1 is glued with ζ P Ag

1,1 iff ζ ¨ 1{hpzq “ 1, i.e., ζ “ hpzq. Now,
a point z of Ah

1,1 becomes the point hpzq of Ag
1,1 after gluing, which is sent by the outgoing

parametrization of Ag
1,1 to 1{gphpzqq.

This proof is not rigorous since we are considering degenerate annuli. A rigorous one
would be approximating Ag

1,1 and Ah
1,1 by genuine annuli, identifying the sewn annuli,

and then taking the limit. This proof is not easy, unless when g and h are real-analytic (e.g.,
rotations). Nevertheless, we only need this lemma to motivate our following discussions.

2.2

Thus, we may consider Diff`pS1q as the group of thin annuli whose product is the
sewing. The merit of this viewpoint is that it convinces us to consider the semi-group Ann
of annuli as the complexification of Diff`pS1q. The multiplication A1A2 of A1, A2 P Ann is
the sewing of A1, A2 defined by gluing the inside of A1 with the outside of A2 using their
parametrizations.

As an example, consider P1 with marked points 0,8 and local coordinates η0pzq “

z, η8pzq “ e´iτ {z, which gives a thin annulus corresponding to the rotation z ÞÑ eiτz
when τ is real. Now consider τ as a complex variable τ “ s` it. Then the outgoing circle
is the one with radius et. This gives a genuine annulus whenever t ą 0.

The Ansatz in 1.13 should be expanded to include the following point: for each annu-
lus A P Ann, the comformal block decomposition of the interaction TA : H Ñ H (with
one income and one outcome) with respect to Hfin “

À

iWi b xWi is of the form

TA “
ÿ

i

πipAq b pπipAq (2.1)

where πipAq is a bounded linear operator on the Hilbert space completion Hi of Wi, and
pπipAq is one on the completion pHi of xWi. (A is the complex conjugate of A; see Def.
1.2. We assume the conjugate of the incomming string of A is the incoming of A, and
similarly for the outcoming strings.) The choice of πipAq and pπipAq are unique up to
scalar multiplications, and if A vary holomorphically over some complex variable τ‚,
then locally πipAq and pπipAq can be chosen to vary holomorphically with respect to τ‚

and τ‚ respectively. Finally, if A1, A2 P Ann, then πipA1A2q equals πipA1qπipA2q up to
scalar multiplication, and a similar thing can be said about pπi.

Namely, each πi is a projective representation of Ann on Hi, and so is pπi on pHi. They
should be the analytic extensions of projective unitary representations of Diff`pS1q.

We emphasize that πipAq and pπipAq are conformal blocks associated to A and A re-
spectively. Roughly speaking, πi describes the conformal symmetries of chiral halves and
pπi the anti-chiral halves. A and A have to act jointly on the full space H.

2.3

Thus, the study of CFT interactions for annuli reduces to that of the projective repre-
sentations of Ann. Our goal is to describe such representations in terms of Lie algebras.

17



Let VecpS1q be the Lie algebra of smooth real vector fields of S1, whose elements are
of the form fBθ where Bθ is the pushforward of the standard unit vector of the real line
under the map θ ÞÑ eiθ, and f P C8pS1,Rq. The action of fBθ on h P C8pS1,Rq is the
negative of the usual one, ´fpeiθq ¨ B

Bθhpeiθq. This is because the action of g P Diff`pS1q on
h should be h ˝ g´1 in order to respect the order of group multiplication. Therefore, the
Lie bracket in VecpS1q is the negative of the usual one:

rf1Bθ, f2BθsVecpS1q “ p´f1Bθf2 ` f2Bθf1qBθ. (2.2)

2.4

A projective unitary representation π of VecpS1q and the corresponding one π of
Diff`pS1q (if exists) are related as follows. (Here unitary means that for each vector field
fBθ, we have πpfBθq: “ ´πpfBθq, where : is the adjoint, or “formal adjoint” when the
underlying inner product space is not Cauchy-complete.)

Let t P p´ϵ, ϵq ÞÑ gt P Diff`pS1q be a smooth family of diffeomorphisms satisfying
g0 “ 1. Then up to addition by a number of iR,

d

dt
πpgtq

ˇ

ˇ

ˇ

t“0
“ πpBtg0q (2.3)

where Btg0 P VecpS1q, the derivative of g at t0, is the vector field determined by

pBtg0qphq “
d

dt
ph ˝ gtq

ˇ

ˇ

ˇ

t“0
(2.4)

for all smooth function h on S1.
Let now t P R ÞÑ expptfBθq P Diff`pS1q be the flow generated by fBθ P VecpS1q. So

its derivative at t “ 0 is fBθ, and expppt1 ` t2qfBθq “ exppt1fBθq ˝ exppt2fBθq. Then (2.4)
implies that up to S1-multiplication,

πpexpptfBθqq “ etπpfBθq, (2.5)

since the derivative of πpexpptfBθqqe´tπpfBθq is πpexpptfBθqqpπpfBθq´πpfBθqqe´tπpfBθq “ 0.

2.5

The Witt algebra SpanC “ tln : n P Zu is a complex dense Lie subalgebra of the
complexification VecpS1q bR C. Here,

ln “ zn`1Bz “ ´ieinθBθ (2.6)

where z “ eiθ and Bz “ 1
ieiθ

Bθ. (We use the chain rule to “define” Bz .) One checks

rlm, lns “ pm´ nqlm`n (2.7)

where the bracket is the negative of the usual one for vector fields.
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Let us assume for simplicity that the CFT is unitary. In the decomposition Hfin “
À

iWi b xWi, each Wi is a projective unitary representation πi of tlnu , and similarly xWi is
one pπi of tlnu. We know that the choice of πiplnq is unique up to iR-scalar addition. Here
is a well-known fact about projective representations of Witt algebra (cf. for instance
[Was10, Sec. IV.1]): one can make a particular choice of πiplnq (for each n), denoted by Ln,
such that the Virasoro relation

rLm, Lns “ pm´ nqLm`n `
c

12
pm` 1qmpm´ 1qδm,´n (2.8)

holds and c P C is called the central charge. In the case that πi is projectively unitary, Ln

can be chosen such that L:
n “ L´n also holds.

We have abused the notation by writing the actions of ln on all V-modules Wi (as
chiral halves of the CFT) as Ln. We are justified to do so because, as we will see later, the
actions of ln come from those of V. Technically: Virasoro algebra is inside the VOA. So
the action of tlnu on Wi is the restriction of that of V. In particular, all chiral halves Wi

share the same central charge c.
Similarly, we write the actions of ln on all xWi as Ln. (The bar over Ln reflects the fact

that Ln describes the conformal symmetries of the anti-chiral halves of the CFT. Ln is not
related with Ln by the CPT operator Θ.) The central charge pc for tLnu is independent of
xWi and in general could be different from the one c of tLnu, although in most important
cases they are equal. (E.g., when the CFT contains both closed and open strings.)

2.6

We shall generalize (2.5) to complex vector fields. First of all, we consider an element

fpzqBz “
ÿ

nPZ
anz

n`1Bz

where the sum could be infinite. We treat fpzq “
ř

n anz
n`1 as a Laurent series. Let us

now assume that fpzq is a holomorphic function on a neighborhood U Ă C of S1.
fBz is a complex holomorphic vector field of U , which (after shrinking U ) gives a

holomorphic flow τ P ∆ ÞÑ exppτfBzq P OpUq where ∆ Ă C is a neighborhood of 0.
(Recall from the notation section that OpUq is the space of holomorphic functions on U .)
This means:

(1) pτ, zq P ∆ ˆ U ÞÑ exppτfBzqpzq is holomorphic whose restriction to each slice τ ˆ U
is injective (and hence, a biholomorphism onto its image).

(2) expp0fBzqpzq “ z.

(3) expppτ1 ` τ2qfBzq “ exppτ1fBzq ˝ exppτ2fBzq on an open subset of U containing S1.

(4) For any holomorphic function h defined on an open set inside U ,

fBzh “
B

Bτ
h ˝ exppτfBzq

ˇ

ˇ

ˇ

τ“0
. (2.9)
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(Compare (2.4).) This condition is equivalent to

B

Bτ
exppτfBzq

ˇ

ˇ

ˇ

τ“0
“ f. (2.10)

(To see the equivalence, set hpzq “ z for one direction, and use chain rule for the other
one.)

Remark 2.2. A caveat: The notations fBz and exppτfBzq are not compatible with those in
the real case. Indeed, if we assume that τ only takes real values τ “ t, then by taking the
real and the imaginary parts of (2.10), we see that σt is a real flow on the real surfaces U
generated by the real vector field Ref ¨ Bx ` Imf ¨ By. Writing Bx “ Bz ` Bz, By “ ipBz ´ Bzq,
we see that this vector field fBz should more precisely be written as fBz ` fBz where
fpxq “ fpxq.

This point is also justified by the fact that if k is antiholomorphic, then

fBzk “
B

Bτ
k ˝ exppτfBzq

ˇ

ˇ

ˇ

τ“0
. (2.11)

(Proof: take k “ h in (2.10).) Thus, a more precise notation for exppτfBzq should be
exppτfBz ` τfBzq. But we prefer to suppress the term τfBz to keep the notations shorter.

2.7

One way to find the expression of στ “ exppτfBzq is to solve the holomorphic nonlin-
ear differential equation with initial condition:

B

Bτ
στ pzq “ fpστ pzqq,

σ0pzq “ z.
(2.12)

This is due to (2.10) and στ1`τ2 “ στ1 ˝ στ2 . (Indeed, the existence of holomorphic flows is
due to that of the solutions of such equations.)

Alternatively, one may calculate the flow by brutal force using the formula

exppfBzqpzq “
ÿ

kPN

1

k!
pfpzqBzqkz

“
ÿ

kPN

1

k!
fpzqBz

´

fpzqBz
`

¨ ¨ ¨ fpzqBz
looooooooooooooomooooooooooooooon

k times

zq ¨ ¨ ¨
˘

¯

.
(2.13)

(One may treat this formula as a formal sum if one worries about the convergence issue.)
To see why this formula is valid, check that such defined exppτfBzqpzq “: στ pzq satisfies
that στ1`τ2 “ στ1 ˝ στ2 , that Bτστ |τ“0 “ f , and that σ0pzq “ z. This is easy.
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2.8

Example 2.3. στ pzq “ eτz is the holomorphic flow generated by the vector field l0 “ zBz

since B
Bτ e

τz|τ“0 “ z. Namely,

exppτzBzqpzq “ eτz.

Set λ “ eτ . In view of the Ag
1,1 in 2.1, we consider the 2-pointed sphere X “

pP1; 0,8; ζ, λ´1ζ´1q where ζ : z ÞÑ z is the standard coordinate of C. Then, when |λ| ď 1,
X defines an annulus A, either genuine or thin, whose incoming circle has radius 1 and
outcoming 1{|λ|. Thus, the conformal block πipAq associated to this annulus, which is a
linear operator on the Hilbert space completion Hi, should be eτL0 “ λL0 (by replacing
zBz with L0).

It is easy to check that A is isomorphic to the annulus defined by pP1; 0,8; ζ, λ´1ζ´1q.

So the corresponding conformal block should be pπipAq “ λ
L0 . Therefore, the interaction

map TA : H Ñ H is determined by

TA
ˇ

ˇ

Hib pHi
“ λL0 b λ

L0
. (2.14)

In a unitary CFT,L0 andL0 (or more precisely, their closures) are self-adjoint operators

so that λL0 and λ
L0 can be defined and are unitary when |λ| “ 1. Moreover, in a unitary

CFT:

Assumption 2.4 (Positive energy). The spectra of L0 and L0 are both positive (i.e. ě 0). In
these notes, we are mainly interested in the case that the spectra are discrete. We identify
L0 with L0 b1 and L0 with 1bL0 so that L0, L0 are commuting diagonalizable operators
on Hfin with ě 0 eigenvalues.

Now we can explain what we meant by finite energy: A vector ξ of H has finite energy
if ξ is a finite sum of eigenvectors of both L0 and L0. (In general, a vector of H is an l2-
convergent sum, either finite or infinite, of eigenvectors.)

2.9

Example 2.5. Let n ‰ 0. To understand the geometric meanings of eτL´n and eτL´n , we
find the expression of στ “ exppτz´n`1Bzq by solving the differential equation Bτστ “

pστ q´n`1 with initial condition σ0pzq “ z (cf. (2.12)). The solution is

exppτz´n`1Bzqpzq “ pzn ` nτq
1
n . (2.15)

2

Unfortunately, this flow does not give us any annulus in the usual sense. Take n “ 1
for instance. Then the flow is just the translation by τ . However, the circle after a small
translation will intersect the original one. So there is no annulus whose outgoing circle is
the translation of the incoming one. In fact, in most cases, exppfBzq is not the action of an
annulus. We have to pursue another way of understanding this operator.
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2.10

There are two ways to look at a group action G ñ X : (1) The action of g P G on X
is a transformation. So gx ‰ x in general. (2) gx and x are different expressions (under
different coordinates) of the same element. The rule for change of coordinate is given by
the action of G. We shall take the second viewpoint.

Let X “ pC;x1, . . . , xN ; η1, . . . , ηN q be an N -pointed compact Riemann surface with
local coordinates satisfying Assumption 1.1. Assume the setting of 2.6. Write στ “

exppτfBzq and fpzq “
ř

nPZ anz
n`1 be defined on U Ą S1. Let τ P ∆ be close to 0.

Remark 2.6. In case you want to know the precise meaning of “close”: for the local coor-
dinate ηi we are to discuss in the following, we choose ϵ ą 0 such that στ pU X Rngpηiqq

contains S1 for all τ P Dϵ, where the open set Rngpηiq is the range of ηi.

Principle 2.7 (Change of boundary parametrizations). Suppose that the local coordinate
ηi at xi is changed to the boundary parametrization στ ˝ ηi and the boundary string η´1

i ˝

pS1q is gradually changed (with respect to the change of τ ) to η´1
i

`

σ´1
τ pS1q

˘

. Then, in
the expressions of conformal blocks and correlation functions (without outputs), each
wi P Wi is replaced by eτ

ř

n anLnwi, and each pwi P xWi by eτ
ř

anLn
pwi.

To be more precise, let TΣ : HbN Ñ C be the correlation function where Σ is obtained
from X. Assume i “ 1 for simplicity. Changing the local coordinate η1 to στ ˝ η1 gives a
new surface with parametrized boundary Σ1. Then up to scalar multiplication, TΣ1 and
TΣ are related by

TΣpξ1 b ξ2 b ¨ ¨ ¨ b ξN q “ TΣ1

´

`

eτ
ř

n anLn b eτ
ř

n anLn
˘

ξ1 b ξ2 b ¨ ¨ ¨ b ξN

¯

(2.16)

for all ξ1, . . . , ξN . Similarly, if ΦΣ : Wi1 b ¨ ¨ ¨ b WiN Ñ C is a conformal block for Σ, then
ΦΣ1 defined by

ΦΣpw1 b w2 b ¨ ¨ ¨ b wN q “ ΦΣ1

`

eτ
ř

n anLnw1 b w2 b ¨ ¨ ¨ b wN

˘

(2.17)

is one for Σ1.

2.11

The geometric intuition in the above subsection is the following: ξ1 in the η1-
parametrization is the same (up to scalar multiplication) vector as peτ

ř

n anLn b

eτ
ř

n an¨Lnqξ1 in the στ ˝ η1-parametrization. We call this same “abstract” vector rξ1, which
is unique up to scalar multiplication. We write ξ1 “ pUpη1q b Upη˚

1 qqrξ1, understanding
Upη1q b Upη˚

1 q as the map sending an abstract vector to its concrete expression under the
boundary parametrization η1. Namely, Upη1q b Upη˚

1 q is a vector bundle trivialization.
The transition function from the η1-parametrization to the στ ˝ η1-parametrization is

`

Upστ ˝ η1q b Uppστ ˝ η1q˚q
˘`

Upη1q b Upη˚
1 q
˘´1

“ eτ
ř

n anLn b eτ
ř

n an¨Ln . (2.18)
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We have a parametrization independent T (more precisely, independent of a small change
of parametrizations) whose expressions under the concrete boundary parametrizations
are (up to scalar multiplications)

T prξ1 b ¨ ¨ ¨ q “ TΣ

´

`

Upη1q b Upη˚
1 q
˘´1

rξ1 b ¨ ¨ ¨

¯

“TΣ1

´

`

Upστ ˝ η1q b Uppστ ˝ η1q˚q
˘´1

rξ1 b ¨ ¨ ¨

¯

.

2.12

Let us do an example to see how the change of parametrization formula works.

Example 2.8. Let X “ pP1; 1{3,8; 2pζ ´ 1{3q, ζ´1q where ζ : z ÞÑ z is the standard coordi-
nate of C. We choose 1{3 to be the input point, and 8 the outgoing one. The associated
boundary parametrized surface Σ is an annulus whose incoming circle tz : |2pz ´ 1{3q| “

1u has center 1{3 and radius 1{2, and whose outgoing circle is S1. Let us find an expression
for TΣ : H Ñ H.

We know that the map for the standard thin annulus A1,1 is TA1,1 “ 1H. Let X1 “

pP1; 0,8; 2ζ, ζ´1q, which gives an annlus Σ1 with incoming string 1
2S

1 and outgoing one
S1. A1,1 is changed to Σ1 by changing the incoming boundary parametrization ζ to 2ζ. By
Ex. 2.3, 2ζ “ expplog 2 ¨ zBzq. So, as elog 2L0 “ 2L0 and similarly elog 2L0 “ 2L0 , by (2.16),
TΣ1 could be p1{2qL0 b p1{2qL0 .

Σ1 is changed to Σ by adding 2ζ by ´2{3. According to Ex. 2.5, expp´2{3Bzqpzq “

z ´ 2{3. Therefore, up to a scalar multiplication, TΣ1pξq “ TΣppe´ 2
3
L´1 b e´ 2

3
L´1qξq. Thus,

the answer is

TΣ “
`

p1{2qL0 b p1{2qL0
˘

¨
`

pe
2
3
L´1 b e

2
3
L´1q

˘

“
`

p1{2qL0e
2
3
L´1

˘

b
`

p1{2qL0e
2
3
L´1

˘

.

p1{2qL0e
2
3
L´1 is a conformal block for Σ.

2.13

What is the change of parametrization formula for TΣ (and hence ΦΣ) when some
output strings are involved? Recall from Subsec. 1.15 that the correlation function TA1,1 :
Hb2 Ñ C is a symmetric bilinear form xξ, νy “ xν, ξy “ xΘν|ξy. With respect to this form,
we actually have

pLn b 1qt “ L´n b 1, p1 b Lnqt “ 1 b L´n. (2.19)

More precisely, for each ξ, ν P Hfin, we have

xpLn b 1qξ, νy “ xξ, pL´n b 1qνy

and a similar relation for Ln. Rewrite the above relation in terms of x¨|¨y, we have
xΘpLn b 1qξ|νy “ xΘξ|pL´n b 1qνy, and noticing the unitarity property L:

n “ L´n, we
get

ΘpLn b 1q “ pLn b 1qΘ, Θp1 b Lnq “ p1 b LnqΘ. (2.20)
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These relations truly hold, not just up to scalar addition or multiply.
From this, we see that for the maps TΣ, TΣ1 : HbpN´1q Ñ H with N ´ 1 inputs and 1

output,

TΣ “

´

eτ
ř

n anL´n b eτ
ř

n anL´n

¯

˝ TΣ1 . (2.21)

You can easily generalize this formula to the case of more than one outputs.

Proof. Let ξ‚ P HbpN´1q and ν P H. By (1.8), the correlation function (with N -inputs and
no outputs) for Σ and Σ1 are xΘ ¨ |TΣ¨y and xΘ ¨ |TΣ1 ¨y respectively. So by (2.16),

xΘν|TΣpξ‚qy “ xΘpeτ
ř

n anLn b eτ
ř

n anLnqν|TΣ1pξ‚qy

(2.20)
ùùùùùxpeτ

ř

n anLn b eτ
ř

n anLnqΘν|TΣ1pξ‚qy

unitarity
ùùùùùùùxΘν|peτ

ř

n anL´n b eτ
ř

n anL´nqTΣ1pξ‚qy.

Exercise 2.9. Show that the formula (2.14) in Example 2.3 follows from (2.21).

2.14

In case you want to know why pL´n b 1q “ pLn b 1qt, we give a geometric expla-
nation below, in which we pretend to ignore the issue of the uniqueness up to scalar
additions/multiplications.

Proof. Let X “ pP1; 0,8; z, z´1q where z is the standard coordinate of C, which gives
the standard thin annulus A1,1. Assume the two strings are incoming. We know the
correlation function is xξ, νy, where we assume ξ is associated to the string around 0 and
ν the one around 8.

Change the local coordinate z at 0 to στ , and keep the other data of X. This changes
A1,1 to a new weird annulus A. By (2.16), the correlation function for A is

TApξ b νq “ xpe´τ
ř

n anLn b e´τ
ř

n an¨Lnqξ, νy.

Note that if we set ζ “ στ pzq, then z´1 “ 1{σ´1
τ pζq, which equals 1{σ´τ pζq by the defini-

tion of flows. Namely, A is equivalent to the weird annulus whose incoming boundary
parametrization is z and outcoming 1{σ´τ pzq. To compute the correlation function for
this choice of boundary parametrization, we note that the original 1{z at 8 is changed to
1{σ´τ pzq. Therefore, if we let γτ pzq “ 1{σ´τ p1{zq which is a holomorphic flow generated
by some

ř

n bnz
n`1, then the expression for TA is

TApξ b νq “ xξ, pe´τ
ř

n bnLn b e´τ
ř

n bn¨Lnqνy.

For the two expressions of TA, we take the holomorphic derivative ´Bτ at τ “ 0 to get
ÿ

anxpLn b 1qξ, νy “
ÿ

bnxξ, pLn b 1qνy.
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To finish the proof, it suffices to prove bn “ a´n.
Recall

ř

anz
n`1 “ Bτστ |τ“0. Similarly,

ř

bnz
n`1 “ Bτγτ |τ“0, which is

Bτ p1{σ´τ p1{zqq
ˇ

ˇ

τ“0
“ ´

1

σ0p1{zq2
¨ Bτ pσ´τ p1{zqq

ˇ

ˇ

τ“0

“z2 ¨
ÿ

anp1{zqn`1 “
ÿ

anz
´n`1 “

ÿ

a´nz
n`1.

2.15

As an easy application of our change of parametrization formula, we are able to
describe the map TA : H Ñ H for an analytic annulus A P Ann obtained from
pP1; 0,8; η0, η8q where η0 and η8 are local coordinates at 0,8 respectively. Set ϖ “ 1{z.
One can write

η0pzq “ exp
´

ÿ

nPN
anz

n`1Bz

¯

pzq, η8pϖq “ exp
´

ÿ

nPN
bnϖ

n`1Bϖ

¯

pϖq,

where the coefficients an, bn can be determined using (2.13). (We will say more about
determining the coefficients in the future.) When A is the standard thin annulus (i.e.,
when η0 : z ÞÑ z, η8 : z ÞÑ z´1), we know TA “ 1. Thus, in general, by (2.16) and (2.19),
the map TA is (up to scalar multiplications)

TA “

´

e
ř

nPN ´bnL´n b e
ř

nPN ´bn¨L´n

¯

¨

´

e
ř

nPN ´anLn b e
ř

nPN ´an¨Ln

¯

.

The reason that only n P N are involved is because η0 and η8 can be defined near 0
and send 0 to 0. Indeed, for fpzq “

ř

nPZ anz
n`1, assume that exppτfBzqpzq is defined

near 0 and sends 0 to 0 for all small τ . Then its derivative over τ at z “ 0, which is
fpexppτfBzqp0qq “ fp0q by (2.14), should also be 0. So f must be of the form

ř

ně0 anz
n`1.

2.16

We call those in 2.10 and 2.11 change of (boundary) parametrizations in general, and
those in 2.15 change of (local) coordinates. The former contains the latter.

When changing the boundary parametrizations, the standard coordinate z could be
changed to στ not necessarily defined at 0, or more generally, a local coordinate (say)
η1 of an N -pointed X “ pC;x‚; η‚q is changed to στ ˝ η1. This changes the boundary-
parametrized Riemann surface Σ to Σ1. Note that this process does not violate our defini-
tion of analytic boundary parametrizations in 1.2: The new surface Σ1 is obtained from a
new N -pointed one X1 “ pC 1;x‚;στ ˝ η1, η1, . . . , ηN q where C 1 is a new compact Riemann
surface, which is defined by gluing Σ with N pieces of unit disks D1 using the maps
στ ˝ η1, η2, . . . , ηN . (If you use the maps η1, . . . , ηN instead, you simply get C.) Thus, for
the change of boundary parametrizations in general, the underlying compact Riemann surfaces C
could be changed. More details will be given in Examples 13.6 and 13.7.
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By change of coordinates, we mean X is changed to X1 “ pC;x‚; η
1
‚q with the same

underlying compact Riemann surface C and the same marked points x‚ as the original
ones but different local coordiates at these marked points. As mentioned in 2.15, in this
process, only L0, L1, L2, . . . (and also L0, L1, L2, . . . ) are involved, while in the change of
boundary parametrizations, all Ln are involved.

In the previous discussions, almost all formulas hold only up to scalar multiplications
or additions. However, when only L´1, L0, L1, L2, . . . are involved, the interaction maps
TΣ can indeed be chosen such that all the formulas truly hold, not just up to scalar multi-
plications or additions. This is because the conformal anomaly is due to the central term
c ¨ pm3 ´mqδm,´n{12 in the Virasoro relation (2.8), which vanishes when m,n ě ´1. Note
that L´1 is responsible for translation. Thus:

Principle 2.10. TΣ can be chosen to have no ambiguity when changing the local coordi-
nates, or when translating a marked point xi with respect to its local coordinate ηi.

To be more precise: We fix a compact Riemann surface C. Then for each choice of N
marked points x‚ and local coordinates η‚, we can choose the correlation function TX :
HbN Ñ C associated to the boundary parametrized surface associated to X “ pC;x‚; η‚q

such that

• For another choice of N -pointed X1 “ pC;x‚; η
1
‚q with the same marked points and

different local coordinates η1
‚, TX and TX1 are related by (2.16).

• If X1 “ pC;x1
1, x2, . . . , xN ; η1

1, η2, . . . , ηN q where η1
1 “ η1´η1px1

1q, and if x1
1 is inside an

open disk U1 centered at x1 on which η1 is holomorphically defined (more precisely,
this means η1pU1q is an open disk centered at η1px1q “ 0), then TX and TX1 are related
by (2.16), namely, (noticing (2.15) for n “ 1)

TXpξ1 b ¨ ¨ ¨ b ξN q “ TX1

´

`

e´η1px1
1qL´1 b e´η1px1

1q¨L´1
˘

ξ1 b ξ2 b ¨ ¨ ¨ b ξN

¯

. (2.22)

A similar principle holds when TX has output strings.

Recall the geometric picture described in 2.11. We see that when changing local coor-
dinates, everything in 2.11 truly holds, not just up to scalar multiplications. In particular,
the abstract vector rξ1 is uniquely determined when only the change of local coordinates
are allowed.

2.17

Assumption 2.11. We drop Assumption 1.1 for the incoming strings when we associate
only finite energy vectors (i.e., vectors of Wi bxWi, Vb pV, etc.) to the incoming strings. In-
stead, we only assume that the (distinct) incoming points are outside the outgoing strings.

In this course, we will be mainly interested in finite energy vectors. Therefore, we do
not assume that that each ηipUiq contains Dcl

1 , or that Ui and Uj are disjoint for different i
and j. In the latter case, the two boundary strings η´1

i pS1q and η´1
j pS1q possibly overlap.

What does this picture actually mean?
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Note that multiplying ηi by ληi amounts to shrinking the size of the string η´1
i pS1q

by |λ| and then rotating the string. If λ ą 0 then there is only shrinking but not rotat-
ing. Thus, for an local coordinated N -pointed X “ pC;x‚; η‚q, we can find λ1, . . . , λN P Cˆ

with large enough absolute values such that the new data X1 “ pC;x‚;λ1η1, . . . , λNηN q sat-
isfies Assumption 1.1. Then for finite energy vectors ξ1, . . . , ξN P Hfin “

À

iWi b xWi,
TXpξ1 b ¨ ¨ ¨ b ξN q is understood as

TXpξ1 b ¨ ¨ ¨ b ξN q :“ TX1

´

`

λL0
1 b λ1

L0
˘

ξ1 b ¨ ¨ ¨ b
`

λL0
N b λN

L0
˘

ξN

¯

. (2.23)

This definition is independent of the choice of sufficiently large λ1, . . . , λN . And each

λL0
j b λj

L0 acts diagonally on Hfin since L0 b L0 does. (Recall Assumption 2.4.)

In the spirit of the previous subsection, you should view the finite energy vectors

ξj and
`

λL0
j b λj

L0
˘

ξj not as different vectors, but as two coordinate representations of
the same vector rξj . When |λj | becomes infinitely large, the string for ξj shrinks to an
infinitesimal one around xj , i.e., it shrinks to xj as a puncture. It is very useful to view
the abstract finite energy vector rξj not associated to any particular string, but associated
to that puncture xj . Thus, the marked points x‚ of X are also called punctures.

Remark 2.12. A side note: When we do local coordinate changes, finite energy vectors
are changed to finite energy ones.

Therefore, in the above discussion, we don’t have to stick to change of coordinates of
the form ηj ÞÑ λjηj : any local coordinate change is valid. We will prove the above claim
in later sections.

2.18

Let us choose Wi b xWi inside Hfin. According to Assumption 2.4, the eigenvalues of
the diagonalizable operators L0 (on Wi) andL0 (on xWi) are ě 0. Now choose eigenvectors
w P Wi and pw P xWi with L0w “ ∆w,L0 pw “ p∆ pw where ∆, p∆ ě 0.

Here is an important point about the two eigenvalues. They are not necessarily inte-

gers, which means that λL0w and λL0
pw might be multivalued with respect to λ, i.e., they may

also depend on the choice of argument arg λ. However, according to the No-Ambiguity
Principle 2.10, the expression

`

λL0 b λL0
˘

pw b pwq “ λ∆λ
p∆

¨ w b pw
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must be single-valued with respect to λ, namely, it does not rely on the choice of arg λ. As

λ “ |λ|ei arg λ and hence λ∆λ
p∆

“ |λ|∆`p∆eip∆´p∆q arg λ, we conclude that

∆ ´ p∆ P Z. (2.24)

This gives a constraint on the possible V b pV-submodules of Hfin.
That λL0w could be multivalued is a crucial property in CFT, and it is not related to

conformal anomaly. Indeed, it is related to the non-uniqueness of decomposing TΣ into
conformal blocks. Thus, the No-Ambiguity Principle 2.10 does not hold for conformal blocks.

3 Definition of VOAs, I

3.1

We first give the rigorous definition of vertex operators algebras and a slightly weaker
version, graded vertex algebras. Then we explain the meanings of the axioms.

Definition 3.1. A graded vertex algebra is a (complex) vector space V together with a
diagonalizable operator L0 acting on V whose eigenvalues are inside N. We write the
L0-grading of V as V “

À

nPNVpnq. (Note: Starting from Sec. 11, we will assume that
all Vpnq are finite-dimensional.) Any eigenvector v of L0 (including 0) is called (L0)-
homogeneous, and if v P Vpnq (i.e. L0v “ nv), we write wtv “ n and call wtv the weight
of v. Moreover, we have a linear map

V Ñ
`

EndpVq
˘

rrz˘1ss

u ÞÑ Y pu, zq ”
ÿ

nPZ
Y puqnz

´n´1 (3.1)

where each Y puqn P EndpVq is called a (Fourier) mode. Here, z is treated as a formal
variable. Thus Y pu, zqv P Vrrz˘1ss for each v P V. The reason for associating z´n´1 to
Y puqn is because we could have (recalling (0.2))

Resz“0 Y pu, zqzndz “ Y puqn. (3.2)

Y pu, zq is called a vertex operator.
Moreover, the following axioms are satisfied:

• There is a distinguished vector 1 P Vp0q called vacuum vector such that

Y p1, zq “ 1V.

Namely Y p1q´1 “ 1V and Y p1qn “ 0 if n ‰ ´1.

• Creation property: For each v P V, Y pv, zq1 “ v ` ‚z ` ‚z2 ` ¨ ¨ ¨ where each ‚ is in
V. Namely,

Y pvq´11 “ v, (3.3)

and Y pvqn1 “ 0 for all n ą ´1. This property is abbreviated to

lim
zÑ0

Y pv, zq1 “ v.
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• Grading property: For each v P V,

rL0, Y pv, zqs “ Y pL0v, zq ` z
d

dz
Y pv, zq. (3.4)

• Translation property: There is a distinguished linear operator L´1 on V such that

L´11 “ 0, (3.5)

and that for each v P V,

rL´1, Y pv, zqs “
d

dz
Y pv, zq. (3.6)

• Jacobi identity: This is the most crucial yet complicated axiom. We postpone its
definition to the next section. (See Def. 4.5.)

We say that V is a vertex operator algebra (VOA) if L0, L´1 can be extended to a
sequence of linear operators pLnqnPZ on V satisfying the Virasoro relation (2.8) for some
central charge c P C, and if there is a distinguished vector c P V, called the conformal
vector, such that

Y pcqn “ Ln´1, (3.7)

or equivalently,

Y pc, zq “
ÿ

nPZ
Lnz

´n´2. (3.8)

You may wonder why the right hand side of (3.7) is not Ln or Ln´a for some constant
a ‰ 1. Indeed, if it were not Ln´1, then the Virasoro relation would be not compatible
with the Jacobi identity. We will explain this in more details after defining the Jacobi
identity. (See Exercise 5.4.)

We warn the readers that our definitions of graded vertex algebras and VOAs are
slightly stronger than the usual ones in the VOA literature, which do not require L0 to
have non-negative eigenvalues. This positivity conditionL0 ě 0 is very mild and satisfied
by most interesting examples including all unitary ones. Since assuming this condition
will simply proofs, we keep it in our definition.

Also, in most interesting cases, each Vpnq is finite-dimensional. We do not include this
in our definition of VOA here, but we will assume this fact from Sec. 11.

Most VOA textbooks and articles use either ω or ν to denote the conformal vector c.
In our notes, ω and ν are reserved for other meanings and hence do not denote conformal
vectors in order to avoid conflicts of notations.

The reason why we should assume that
ř

Lnz
´n´2 can be written as Y pc, zq for some

c P V will not be explained in this section. We will explain it in Subsec. 5.4.
There is a notion of unitary VOA which we do not define in this course (although our

motivations are mainly from unitary CFTs). We refer the readers to [CKLW18, DL14] for
details.
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3.2

Before we give the motivations for these axioms, let us first derive some useful facts.
Expand the series (3.4) and take the coefficients before each z´n´1. This gives us the

following equivalent form of grading property:

rL0, Y pvqns “ Y pL0vqn ´ pn` 1qY pvqn. (3.9)

To be more concrete, assuming that v is homogeneous, then

rL0, Y pvqns “ pwtv ´ n´ 1qY pvqn. (3.10)

Namely: Y pvqn raises the weights by wtv´n´1. It is useful to keep in mind that in the VOA
theory, Y pvqn raises weights when n is sufficiently negative, and lowers weights when n
is sufficiently positive. As a related fact, as

rL0, Lns “ ´nLn (3.11)

by the Virasoro relation (2.8), L´n raises (resp. Ln lowers) the weights by n.

Remark 3.2. As an application of (3.11), we compute Lnc when n ě 0. Since

c “ Y pcq´11 “ L´21, (3.12)

and since L´2 raises the weights by 2, we see that

L0c “ 2c. (3.13)

By rL1, L´2s “ 3L´1, rL2, L´2s “ 4L0 ` 1
2c, and that Ln1 “ 0 whenever n ą 0 (since its

weight is ă 0), we have

L1c “ 0, L2c “
c

2
1. (3.14)

3.3

By (3.10), for each u, v P V, we know that Y puqnv vanishes when n is sufficiently large.
Equivalently, we have

Y pu, zqv P Cppzqq. (3.15)

This important fact is called the lower truncation property. It allows us to use meromor-
phic functions to study VOAs.

In the definition of graded vertex algebras, if the grading property is replaced by the
lower truncation property, and if in particular the diagonalizable L0 is not introduced,
then V is called a vertex algebra. We will not address this most general notion in our
notes.
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3.4

We let

V1 “
à

nPN
Vpnq˚

where Vpnq˚ is the dual space of V. V1 is called the graded dual space of V. We let
L0 act on V1 such that L0v

1 “ nv1 whenever v1 P Vpnq˚. Then Lt
0 “ L0. As before, a

homogeneous vector of V1 is either 0 or an eigenvector of L0. From our definition, it is
clear that the evaluation between V1pmq “ Vpmq˚ and Vpnq vanishes if m ‰ n.

Proposition 3.3. For each u, v P V, v1 P V1, xv1, Y pu, zqvy :“
ř

nPZxv1, Y puqnvyz´n´1 is a
Laurent polynomial of z, i.e.,

xv1, Y pu, zqvy P Crz˘1s.

Thus, when evaluating between finite energy vectors (i.e., vectors of V and V1),
Y pu, zq is not only a formal series, but a meromorphic function of P1 with poles at 0,8.

Proof. We must show that
ř

nPZxv1, Y puqnvyz´n´1 is a finite sum. By linearity, it suffices to
assume that u, v, v1 are homogeneous. Then Y puqnv is homogeneous with weight wtu `

wtv ´ n´ 1. So xv1, Y puqnvy is non-zero only if wtv1 “ wtu` wtv ´ n´ 1. Thus

xv1, Y pu, zqvy “ xv1, Y puqwtu`wtv´wtv1´1 ¨ vy ¨ zwtv1´wtu´wtv.

Remark 3.4. The formula limzÑ0 Y pu, zq1 can now be understood in an analytic sense:
By the creation property, for each v1 P V, xv1, Y pu, zq1y is a polynomial of z since it has no
negative powers of z. So

lim
zÑ0

xv1, Y pu, zq1y “ xv1, uy (3.16)

where the left hand side is the limit of a polynomial function.

3.5

The grading and the translation properties were presented in the “derivative form”.
We shall present them in the integral form. To prepare for this task, we introduce

Vcl :“
ź

nPN
Vpnq “

␣

pv0, v1, v2, . . . q : vn P Vpnq
(

, (3.17)

called the algebraic completion of V. Vcl is a naturally a subspace of the dual space pV1q˚

of V1. (Indeed, we are mostly interested in the case that each Vpnq is finite dimensional.
In such case, one checks easily that Vcl “ pV1q˚.) We let

Pn : Vcl Ñ Vpnq, pv0, v1, v2, . . . q ÞÑ vn (3.18)
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be the canonical projection onto the n-th component. Then for each z P Cˆ “ Czt0u, we
have

Y pu, zqv P Vcl

whose projection onto Vpwtu` wtv ´ n´ 1q is Y puqnv ¨ z´n´1.
Note that L0 and λL0 act on Vcl in an obvious way:

L0pvnqnPN “ pnvnqnPN, λL0pvnqnPN “ pλnvnqnPN.

3.6

Proposition 3.5 (Scale covariance). For each λ P Cˆ, we have

λL0Y pu, zqλ´L0v “ Y pλL0u, λzqv (3.19)

on the level of Vcl. We drop the symbol v and simply write the above relation as

λL0Y pu, zqλ´L0 “ Y pλL0u, λzq.

The method in the following proof will appear repeatedly in our notes.

Proof. Recall Lt
0 “ L0. Fix z P Cˆ. We prove that for each homogeneous u, v, v1,

xλL0v1, Y pu, zqλ´L0vy “ xv1, Y pλL0u, λzqvy. (3.20)

The left hand side f is a scalar times λwtv1´wtv, and the right hand side g is a Laurent
polynomial of λ. So both are holomorphic functions on Cˆ. Clearly these two expressions
are equal when λ “ 1. Let us prove that they are equal for all λ ‰ 0 by showing that they
satisfy the same differential equation.

From the form of f , it is clear that Bλfpλq “ pwtv1 ´ wtvqλ´1fpλq. To compute Bλg, we
first compute an easier derivative Bλxv1, Y pu, λzqvy. By the chain rule, we have

B

Bλ
xv1, Y pu, λzqvy “ z

d

dζ
xv1, Y pu, ζqvy

ˇ

ˇ

ˇ

ζ“λz
,

which, due to the grading property, equals

λ´1
A

v1,
`

rL0, Y pu, λzqs ´ Y pL0u, λzq
˘

v
E

“pwtv1 ´ wtv ´ wtuqλ´1
@

v1, Y pu, λzqv
D

.

So

Bλgpλq “ Bλ
@

v1, Y pλL0u, λzqv
D

“ Bλ
`

λwtu
@

v1, Y pu, λzqv
D˘

“ pwtv1 ´ wtvqλ´1gpλq.
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Informally, the integral form (3.19) (i.e., the scale covariance) also implies the deriva-
tive form (3.9) by taking partial derivative over λ. Thus, on a non-rigorous level, these
two forms are equivalent. But the integral form has a clearer geometric meaning, which
we shall give later.

In the above proof, we have done our first serious VOA calculation. You should be so
familiar with these computations that you can “immediately see” the equivalence of the
two forms.

The integral form of rL´1, Y pu, zqs “ BzY pu, zq is

eτL´1Y pu, zqe´τL´1 “ Y pu, z ` τq,

called the translation covariance. You may give an informal proof yourself by checking
that both sides satisfy the same “linear differential equation”. A rigorous treatment is
more difficult than the scale covariance. So we leave it to the end of this section.

3.7

We now explain the motivations behind the definition of VOAs. Namely, we shall
explain how the axioms are natural assumptions from the point of view of the previous
two sections. The following explanations are heuristic and non-rigorous.

Recall the non-rigorous “definition” of V in (1.11). We know that V and pV are sub-
spaces of Hfin, and the decomposition of Hfin into V b pV-submodules contains a piece
V b pV, which furthermore contains V » V b 1 and pV » 1 b pV. The vacuum vector is
1 » 1 b 1.

We have said in Subsection 1.8 that the standard unit closed disk Dcl
1 with no input

and whose boundary S1 is parametrized by z ÞÑ z´1 produces from nothing the vacuum
vector 1 b 1. Namely, the vacuum vector comes from the data pP1;8; ζ´1q where ζ is the
standard coordinate. This data is equivalent to pP1;8;λ´1ζ´1q (where λ P Cˆ) via the
biholomorphism z P P1 ÞÑ λz P P1. By the change of local coordinate formula (Principle

2.10), the later geometric data produces uniquely the vector pλL0 b λ
L0

q1, which is equal

to 1 by the equivalence of the two geometric data. Apply Bλ and Bλ to pλL0 b λ
L0

q1 “ 1,
we see that L01 “ L01 “ 0. This explain 1 P Vp0q in Def. 3.1.

Consequently, by (2.24), the eigenvalues of L0 are integers, and hence ě 0 integers by the
positive energy Assumption 2.4. This explains SpecpL0q Ă N.

Similarly, the standard disk Dcl
1 is equivalent to its translation by some τ P C. So we

must have peτL´1 b eτL´1q1 “ 1 and hence, similarly, L´11 “ L´11 “ 0. This explains
part of the translation property.

33



3.8

Recall

rL0, Lns “ ´nLn, rL0, Lns “ ´nLn. (3.21)

As the L0 and L0 spectral are ě 0, and since 1 is a zero eigenvectors of them, we must
have

Ln1 “ Ln1 “ 0 pn ě ´1q. (3.22)

From (3.22), we see that for each v P V, if the change of boundary parametrization
does not involve L´2, L´3, . . . and L´2, L´3, . . . , then all Ln can be ignored:

`

e
ř

ně´1 anLn b e
ř

ně´1 anLn
˘

v “ e
ř

ně´1 anLnv. (3.23)

To see this, identify v with v b 1 P V b pV Ă H and note that 1 is fixed by e
ř

ně´1 anLn .
Thus, we conclude: The translation of the change of local coordinates formula for vectors

of V does not involve Ln. In particular, note that the right hand side of (3.23) is almost a
vector of V. It is a genuine vector of V when it has finite energy. Thus, the change of local
coordinates and the translation almost preserve V. Indeed, the change of local coordinates
truly preserve V, as we will see in later sections.

A general change of boundary parametrization does not necessarily preserve V in any
weak sense.

3.9

Let us describe the meaning of Y pu, zqv. For each z P Cˆ, we define a local-
coordinated 3-pointed sphere

Pz “ tP1; 0, z,8; ζ, ζ ´ z, ζ´1u (3.24)

where ζ is the standard coordinate of C.
Let us regard 0, z as incoming punctures and 8 outgoing. Roughly speaking, Y pu, zqv

is just TPzpv b uq where v is associate to 0 and u to z, understood in a suitable way by
change of coordinates. Assume first of all that 0 ă |z| ă 1. After scaling ζ and ζ ´ z to
λ1ζ, λ2pζ ´ zq and hence shrinking the two incoming strings, Assumption 1.1 is satisfied.
Let the new N -pointed sphere by denoted by Pλ1,λ2

z . Note that v in the ζ coordinate

becomes pλL0
1 b λ1

L0
qv “ λL0

1 v in the λ1ζ coordinate. Similarly, u becomes λL0
2 u in the

new coordinate. Then Y pu, zqv is (physically) defined as T
P

λ1,λ2
z

pλL0
1 v b λL0

2 uq.
As in Subsec. 2.17, we can use the puncture picture to view u and v as the states as-

sociated to the punctures 0, z with respect to the local coordinates ζ, ζ ´ z. Or moreover,
formulated in a coordinate independent way as in Subsec. 2.11, we associate the abstract
vector Upζq´1v (the one whose explicit expression under the coordinate ζ is v) to the
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puncture 0 and Upζ ´ zq´1v to z. Then:

(3.25)

According to the notation in Subsec. 2.11, the abstract vectors should be written as
`

Upζqb

Upζ˚q
˘´1

v and
`

Upζ´zqbUppζ´zq˚q
˘´1

u. Here we suppress the second tensor component
because, by (3.23), the change of local coordinates for vectors of V does not involve Ln.

3.10

In the string picture of (3.25), setting u to be 1 means filling the hole around z using
the solid disc. The result we get is an annulus Aλ1,1 with inside parametrization λ1ζ and
outside one ζ´1.1 According to the change of coordinate formula, the interaction map
H Ñ H for this annulus satisfies TAλ1,1

pλL0
1 vq “ TA1,1v “ v. This explains Y p1, zqv “ v.

If we set v “ 1 instead, then we fill the hold around 0 with the solid disc. The result
we get is an eccentric annulus Az,λ2,1 with inside boundary parametrization λ2pζ ´ zq

and outside one ζ´1. Let TAz,λ2,1
: H Ñ H be the interaction map. Then, by (3.25),

Y pu, zq1 “ TAz,λ2,1
pλL0

2 uq. Let z Ñ 0. Then Az,λ2,1 converges to A0,λ2,1, which is just the
concentric annulus Aλ2,1. We have TAλ2,1

pλL0
2 uq “ u. This explains limzÑ0 Y pu, zq1 “ u.

3.11

For a general z P Cˆ, in the string picture, we must also shrink the outgoing string in
order to get a true surface Σ. We thus choose λ P Cˆ with |λ| ą 1. Let

Pλ1,λ2,λ
z “ tP1; 0, z,8;λ1ζ, λ2pζ ´ zq;λζ´1u.

Then Y pu, zqv is physically “defined” to be

Y pu, zqv “ λL0T
P

λ1,λ2,λ
z

pλL0
1 v b λL0

2 uq. (3.26)

1We have previously defined an annulus Ar,R with incoming string |z| “ r and outgoing |z| “ R. Ac-
cording to that definition, Ar´1,1 “ Ar,1.
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In the puncture picture, it is

The meaning of Y puqn is clear:

xv1, Y puqnvy “

¿

0

xv1, Y pu, zqvyzn ¨
dz

2iπ
“ Resz“0 xv1, Y pu, zqvyzndz.

where the subscript under
ű

means that the integral is over any loop around 0.

3.12

If we prefer not to scale ζ´1, we can make the output point 8 input. To do this, note
that from Subsec. 1.14 and 1.15, we know that each ΘpWi bxWiq is equivalent to W1

i bxW1
i,

the space of finite energy dual vectors on Wi bxWi. In the case of V, we get an equivalence

ΘV »
ÝÑ V1, Θw ÞÑ xΘw, ¨y

ˇ

ˇ

V “ xw|¨y
ˇ

ˇ

V

where x¨, ¨y is the correlation function associated to A1,1. (From xw|¨y
ˇ

ˇ

V you can see
why this linear map is an isomorphism. Here, you may assume each Vpnq is finite-
dimensional, or even pretend that V is finite dimensional.) Then in the puncture picture,
the vertex operator and the correlation function of Pz (restricted to a linear functional on
V b V b ΘV » V b V b V1) are related by

xΘw, Y pu, zqvy “ xw|Y pu, zqvy
(1.8)

ùùùù

for all u, v, w P V and hence Θw P ΘV » V1.

3.13

We actually have

ΘV “ V (3.27)

and similarly ΘpV “ pV. An explanation is as follows:
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Proof. First of all, Θ maps finite energy vectors to finite energy ones since Θ commutes
with the energy operators L0 b 1,1 b L0. (See Subsec. 2.13.) By the physical definition of
V in (1.11), for each u P V, the correlation function Tz associated to Pz,r,R “ pP1; z,8; pζ´

zq{r,R{ζq varies holomorphically if u is associated to the puncture z. Namely, Tzpu b νq

is holomorphic for all ν P H. It is easy to see that the conjugate of Pz,r,R is equivalent
(via the standard conjugation of the complex plane) to Pz,r,R “ pP1; z,8; pζ ´ zq{r,R{ζq,
whose correlation function is Tz . Thus, by (1.9)

TzpΘub νq “ Tzpub Θνq,

which is also holomorphic over z. This proves Θu P V if u P V.

Consequently, V “ ΘV » V1. The equivalence is given by

V »
ÝÑ V1, u ÞÑ xu, ¨y (3.28)

Due to this equivalence, we call the VOA V to be self-dual.
So, in all unitary CFTs (and indeed, also in many non-unitary CFTs), the VOAs are self-

dual. We remark that there is a mathematically rigorous definition of self-dualness, which
plays an important role in the tensor categories of V-modules. However, the definition of
a general VOA does not require self-dualness, because many properties can be derived
without assuming self-dualness.

3.14

Let ζ be the standard coordinate of C as usual. For each λ ‰ 0, we have an equivalence

pP1; 0, z,8; ζ, ζ ´ z, ζ´1q » pP1; 0, λz,8;λ´1ζ, λ´1ζ ´ z, λζ´1q (3.29)

realized by the biholomorphism γ ÞÑ λγ of P1. (You should check that the pullback of the
local coordinates on the right hand side equal those on the left.) The correlation function
for the left hand side, evaluating on vb ubw P Vb3, is xw, Y pu, zqvy. The right hand side
of (3.29) is obtained by scaling the local coordinates of pP1; 0, λz,8; ζ, ζ ´ λz, ζ´1q (whose
correlation function on Vb3 takes the form xw, Y pu, λzqvy) by λ´1, λ´1, λ respectively. By
the change of coordinate formula, the correlation function for the right hand side of (3.29),
denoted temporarily by ω, must satisfy

xw, Y pu, λzqvy “ ωpλ´L0v b λ´L0ub λL0wq,

namely, ω should be xλ´L0w, Y pλL0u, λzqλL0vy. This last equation must equal
xw, Y pu, zqvy due to the equivalence (3.29). This explains the scale covariance.

3.15

Similarly, for each τ P C, consider the equivalence

pP1; 0, z,8; ζ, ζ ´ z, ζ´1q »
`

P1; τ, z ` τ,8; ζ ´ τ, ζ ´ z ´ τ,
1

ζ ´ τ

˘

(3.30)
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induced by the biholomorphism γ ÞÑ γ ` τ of P1. The right hand side is a change of
parametrization from pP1; 0, z ` τ,8; ζ, ζ ´ z ´ τ, ζ´1q (whose correlation function is
xw, Y pu, z ` τqvy), where ζ is changed to ζ ´ τ (which is a translation), and η :“ ζ´1

is changed to 1{pη´1 ´ τq. The translation corresponds to e´τL´1 . The second change of
coordinate is exppτz2Bzq due to Ex. 2.5, which gives eτL1 .

Let ω now be the correlation function (restricted to Vb3) of the right hand side. Then
we have

xw, Y pu, z ` τqvy “ ωpe´τL´1v b ub eτL1wq.

So ω is xe´τL1w, Y pu, z ` τqeτL1vy “ xw, e´τL´1Y pu, z ` τqeτL1vy, which must equal
xw, Y pu, zqvy due to the equivalence (3.30). This explains the translation covariance.

Exercise 3.6. Find a geometric explanation of Y pu, z ` τq “ Y peτL´1u, zq.

There is a another shorter geometric explanation of translation covariance:
eτL´1Y pu, zqv amounts to moving the outgoing large string in the string picture in (3.25)
by ´τ . This is the same as fixing the outgoing string and translating the two incoming
strings by τ . Translating the one around 0 changes v to eτL´1v, and translating the one
around z just changes z to z ` τ .

This second explanation is however less rigorous than the first one. But the first one
is not rigorous anyway. So why should we care about the issue of rigor here? Well,
our first geometric explanation for translation covariance, as well as the one in Subsec.
3.14 for rotation covariance, is much more rigorous in the sense that you can easily get
the correct formulas using this method. You may try and give a short explanation for
rotation covariance using our second method. Then you will realize that it is not easy to
get the correct formula since the change of local coordinates is not so easy to visualize.

3.16

Now we return to rigorous mathematics. We are going to prove translation covariance
rigorously. For that purpose, we need to generalize the differential equation method in
the proof of scale covariance to the following vector-valued form:

Lemma 3.7. Let W be a (non-necessarily finite dimensional) vector space, and f P W rrzss.
Suppose that d

dzfpzq “ Afpzq for some A P EndpW q. Suppose also that fp0q “ 0, namely, the
constant term in the power series fpzq is 0. Then f “ 0.

Proof. Write fpzq “
ř

nPN fnz
n where each fn P W . The assumptions say that f0 “ 0 and

ÿ

nPN
nfnz

n´1 “
ÿ

nPN
Afnz

n.

So nfn “ Afn´1 where n ą 0. This proves that all fn are 0.
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3.17

We have said that the integral form of rL´1, Y pu, zqs “ BzY pu, zq is
@

v1, eτL´1Y pu, zqe´τL´1v
D

“
@

v1, Y pu, z ` τqv
D

. (3.31)

This relation is more difficult to address than the scale covariance since both sides actually
involve infinite sums of powers of τ . Our goal is to understand: on which domain does
this relation hold? Certainly we need τ ‰ ´z. But this condition is far from enough.

Let us first understand the two sides as infinite series of τ and z. Assume without loss
of generality that u, v, v1 are homogeneous. The right hand side is of the form apz ` τqm

for some a P C,m P Z. Certainly this expression makes sense as a rational function, but
we shall first regard it as a formal series of τ, z by expanding pz ` τqm on the domain
|τ | ă |z|, namely pz ` τqm “

ř

kPN
`

m
k

˘

zm´kτk. Thus, the right hand side of (3.31), as an
element of Crz˘1srrτ ss, is understood as

@

v1, Y pu, z ` τqv
D

“
ÿ

nPZ

ÿ

kPN

ˆ

´n´ 1

k

˙

@

v1, Y puqnv
D

¨ z´n´1´kτk.

Here, the sum over n P Z is finite, and when the vectors are homogeneous, there is only
one possibly non-zero summand.

But why do we expand pz ` τqm on |τ | ă |z|? Why not |z| ă |τ |? Well, this will give
us

ř

kPN
`

m
k

˘

zkτm´k which contains negative powers of τ . But the left hand side of (3.31)
actually has only non-negative powers of τ .

So let us turn to the left hand side of (3.31). It would be easier to first understand why
@

v1, eλL´1Y pu, zqe´µL´1v
D

(3.32)

is an element of Crz˘1srrλ, µss. We first want to move eλL´1 to the left hand side of the
bracket. In general, if Ln is defined on V, we define L´n on V1 to be the transpose of Ln:
L´n “ Lt

n, or more precisely,

xL´nv
1, vy :“ xv1, Lnvy. (3.33)

In case you doubt why this transpose exists, we can write the definition even more pre-
cisely: Assume v1 P V1pmq. Then L´nv

1 is a linear functional on Vpm ` nq (so L´n raises
the weights by n) whose value at any v P Vpm` nq is xv1, Lnvy. (Recall that Ln lowers the
weights by n so Lnv P Vpmq.) And L´nv

1 vanishes on Vpaq if a ‰ m` n.
Now, (3.32) equals

fpz, λ, µq :“
@

eλL1v1, Y pu, zqe´µL´1v
D

“
ÿ

n,lPN

λnp´µql

n!l!

@

Ln
1v

1, Y pu, zqLl
´1v

D

. (3.34)

This is in Crz˘1srrλ, µss. Indeed, it is in Crz˘1srrµssrλs since Ln
1v

1 lowers the weight by n,
and hence vanishes when n ą wtv1. But we will not need this fact here.

Now, the left hand side of (3.31) can be understood as fpz, τ, τq, noting the following
fact:
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Lemma 3.8. Let W be a vector space. If φpz1, . . . , zN q P W rrz1, . . . , zN ss, then φpz, . . . , zq

naturally makes sense as an element of W rrzss.

Proof. Write φpz‚q “
ř

an1,...,nN z
n1
1 ¨ ¨ ¨ znN

N . Then

φpz, . . . , zq “
ÿ

nPN

ÿ

n1`¨¨¨`nN“n

an1,...,nN z
n

where the inside sum is clearly finite.

3.18

Proposition 3.9 (Translation covariance). For each u, v P V, v1 P V1, the following equation
holds on the level of Crz˘1srrτ ss:

@

v1, eτL´1Y pu, zqe´τL´1v
D

“
@

v1, Y pu, z ` τqv
D

. (3.35)

Here, the right hand side, which is a priori a Laurent polynomial of z`τ , is expanded as if |τ | ă |z|.

Proof. Let fzpτq and gzpτq be the left and the right hand sides of (3.35), considered as
formal power series of τ whose coefficients are elements of Crz˘1s. Then clearly fzp0q “

gzp0q as polynomials of z˘1. So, it suffices to prove that fz and gz satisfy the same linear
differential equation. The left hand side is fzpτ, τq where

fzpλ, µq “
@

eλL1v1, Y pu, zqe´µL´1v
D

P Crz˘1srrλ, µss.

As a general result about multivariable formal power series, we have chain rule

Bτfzpτ, τq “ pBλ ` Bµqfzpλ, µq
ˇ

ˇ

λ“µ“τ
.

(It is reasonable to believe that this is true. But you can also give a rigorous proof by
expanding the two series and check that their coefficients agree!) So, as

Bλfzpλ, µq “
@

eλL1L1v
1, Y pu, zqe´µL´1v

D

,

Bµfzpλ, µq “ ´
@

eλL1v1, Y pu, zqe´µL´1L´1v
D

,

we have

Bτfzpτq “
@

eτL1L1v
1, Y pu, zqe´τL´1v

D

´
@

eτL1v1, Y pu, zqe´τL´1L´1v
D

.

This expression is not a differential equation of the Crz˘1s-coefficients power series
fz . But we can make it an ODE by fixing u, varying v, v1, and view fz as a V :“ HompV b

V1,Crz˘1sq-valued power series of τ . Then Bτfz “ Afz where A P EndV is defined by
sending each Φ : V b V1 Ñ Crz˘1s to

AΦ “ Φ ˝ p1 b L1 ´ L´1 b 1q.
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Now, we compute (noting that the following sum is finite for each fixed u, v)

Bτgzpτq “ Bτ
@

v1, Y pu, z ` τqv
D

“ Bτ

´

ÿ

n

anpz ` τqn
¯

“
ÿ

n

nanpz ` τqn´1 “ Bζ

´

ÿ

n

anζ
n
¯ˇ

ˇ

ˇ

ζ“z`τ
“ Bζ

@

v1, Y pu, ζqv
D
ˇ

ˇ

ζ“z`τ
.

By the translation property, the above equals

Bτgzpτq “
@

v1, rL´1, Y pu, ζqsv
D
ˇ

ˇ

ζ“z`τ
,

which also equals Agzpτq if we now vary v, v1 and regard g as V-valued. Therefore,
fzpτq “ gzpτq due to Lemma 3.7.

3.19

Let us consider a useful variant of Prop. 3.9. Notice that (3.35) holds if v1 is replaced by
Ln
1 and also both sides are multiplied by τn. Thus, (3.35) holds on the level of Crz˘1srrτ ss

if v1 is replaced by e´τL1v1. Namely:
@

v1, Y pu, zqe´τL´1v
D

“
@

e´τL1v1, Y pu, z ` τqv
D

. (3.36)

Remark 3.10. The left hand sides of (3.35) and (3.36) converges absolutely when |τ | ă |z|

since the right hand side does. These right hand sides are linear combinations of pz` τqm

for some m P Z, whose expansion
ř

j,kPZ aj,kz
jτk :“

ř

nPN
`

m
n

˘

zm´nτn clearly satisfies

sup
pz,τqPK

ÿ

j,kPZ
|aj,kz

jτk| ă `8 (3.37)

on every compact subset K of tpz, τq : |τ | ă |z|u. Thus, the same convergence property
holds for the left hand sides of (3.35) and (3.36). We call this property the absolute and
locally uniform convergence, which will be the focus of our study in this course.

Thus, we have actually proved our first convergence result in this course. The method
used here is standard in the VOA theory: we show that a formal power series converges
by identifying it with the power series expansion of a holomorphic function, which can
be achieved with the help of linear differential equations.

3.20

Let us choose v “ 1 in the formula (3.35). Then, as L´11 “ 0, we obtain
@

v1, eτL´1Y pu, zq1
D

“
@

v1, Y pu, z ` τq1
D

(3.38)

on the level of Crz, τ s, since, by Rem. 3.4, the right hand side is a polynomial of z ` τ .
As z Ñ 0, the left hand side converges to

@

eτL1v1, u
D

“
@

v1, eτL´1u
D

by (3.16). So we
conclude:
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Corollary 3.11. For each u P V, v P V1, the equation
@

v1, eτL´1u
D

“
@

v1, Y pu, τq1
D

holds as polynomials of τ . Equivalently, the equation

eτL´1u “ Y pu, τq1

holds on the level of Vrrτ ss, which is equivalent to that for each n P N,

Y puq´n´11 “
1

n!
Ln

´1u. (3.39)

We leave it to the reader to find a geometric explanation of eτL´1u “ Y pu, τq1.

4 Definition of VOAs, II: Jacobi Identity

4.1

Principle 4.1. When gluing Riemann spheres to get new spheres, the formula TΣ1 ˝TΣ2 “

TΣ1#Σ2 truely holds if the local coordinates at the points for sewing are Möbius transfor-
mations, i.e. of the form z ÞÑ az`b

cz`d where ad´ bc ‰ 0.

A rough reason for this No-Ambiguity Principle is that only L0, L˘1 are involved in
the change of coordinate formulas between Möbius transformations, and the Lie bracket
relations between them do not involve the central charge.

4.2

We shall give motivations for the Jacobi identity.
We first remark on the sewing of compact Riemann surfaces in Subsec. 1.4. Suppose

we have data X “ pC;x‚; η‚q and X1 “ pC 1; y‚; η
1
‚q and we sew them along x1 and x1

1. For
simplicity, we set ξ “ η1, ϖ “ η1

1. From (1.4), we know that the gluing law is that any
x P ξ´1pS1q (recall that ξ´1pS1q is a boundary string of the corresponding surface Σ for X)
and any y P ϖ´1pS1q are identified following the rule

x “ y ðñ ξpxqϖpyq “ 1. (4.1)

This definition of gluing is topological, but not complex analytic. Analytically, we are
actually gluing a neighborhood of ξ´1pS1q and one of ϖ´1pS1q using the rule (4.1) for all
x in the first neighborhood and y in the second one. It is clear that a (locally defined)
function on the first neighborhood is holomorphic if and only if it is so on the second one.
This defines the complex analytic structure on C#C 1.

Remark 4.2. Let us be more precise on the shape of the neighborhoods. Let ξ and ϖ
be defined (and injective) on U,U 1 respectively. Choose r ą 1, ρ ą 1 such that ξpUq Ą
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Dr, ϖpU 1q Ą Dρ. Then the following neighborhoods of ξ´1pS1q and ϖ´1pS1q are glued via
the relation (4.1):

ξ´1pAρ´1,rq “ tx P U : ρ´1 ă |ξpxq| ă ru
İ

§

đ
identified via (4.1)

ϖ´1pAr´1,ρq “ ty P U 1 : r´1 ă |ϖpyq| ă ρu

(4.2)

The parts tx P U : |ξpxq| ď ρ´1u and ty P U 1 : |ϖpyq| ď r´1u are discarded when gluing.

(4.3)

4.3

As pointed out before, when we associate finite energy vectors to the incoming
strings/points, we may scale their local coordiates. However, for the local coordinates
at the output points and the points to be sewn, an arbitrary scaling is not allowed. We
thus assume that Assumption 1.1 holds after scaling (by some λ with arbitrarily large |λ|)
the local coordinates at the incoming points. This amounts to the following

Assumption 4.3. If xi is either an outgoing point or a point to be sewn with another
point, then the local coordinate ηi at xi defined on a neighborhood Ui Q xi satisfies that
ηipUiq Ą Dcl

1 , that η´1
i pDcl

1 q X η´1
j pDcl

1 q “ H if xj is either outgoing or a point to be sewn,
and that xj P η´1

i pDcl
1 q if xj is incoming and not to be sewn.

Remark 4.4. There is indeed one way we can slightly loosen the above assumption. Using
the notation of (4.1). Then we may assume that Assumption 4.3 after scaling ξ by some λ P

Cˆ and ϖ by λ´1. Then the rule for gluing (4.1) is not changed. On the side of interaction
maps TΣ, the change ξ ù λξ adds a factor λ´L0 b pλq´L0 to one tensor component in TΣ,

and ξ ù λ´1ξ adds a factor λL0 b λ
L0 . These two are canceled after taking contraction

or composition.

4.4

We want to understand the product xw1, Y pu, z2qY pv, z1qwy. Let ζ be the standard
coordinate of C. By the sewing property in Segal’s picture, this expression should corre-
spond to the sewing of

Pz1 “ pP1
1; 0, z1,8; ζ, ζ ´ z1, ζ

´1q, Pz2 “ pP1
2; 0, z2,8; ζ, ζ ´ z2, ζ

´1q

along the points 8 of Pz1 and 0 of Pz2 . (Here, both P1
1 and P1

2 are P1. We assume the
two 8 are outgoing before sewing.) Assumption 4.3 is satisfied when 0 ă |z1| ă 1 ă

|z2| ă `8 if we consider all the points not for sewing as incoming. The sewing rule is
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that γ1 P P1
1, 0 ă |γ´1

1 | ă `8 is identified with γ2 P P1
2, 0 ă |γ2| ă `8 if and only if

γ´1
1 ¨ γ2 “ 1, namely γ1 “ γ2. (Here, we set r “ ρ “ 8 in order to apply Rem. 4.2. The

discarded points are the 8 of P1
1 and the 0 of P1

2.) Thus, the sewing is just placing the first
sphere onto the second one.

The result of sewing is

Pz1,z2 “ pP1; 0, z1, z2,8, ζ ´ z1, ζ ´ z2, ζ
´1q (4.4)

Assuming all the points of Pz1,z2 as incoming, for each u, v, w,w1 P V,

TPz1,z2
pw, v, u, w1q “ xw1, Y pu, z2qY pv, z1qwy pif 0 ă |z1| ă |z2| ă `8q. (4.5)

The reason why the conditions |z1| ă 1 and 1 ă |z2| can be dropped is explained below.

4.5

We explain why (4.5) holds provided 0 ă |z1| ă |z2| ă `8.
Pick λ P C such that |z1| ă |λ| ă |z2|. Following the guide of Rem. 4.4, we replace the

local coordinate ζ´1 of Pz1 by λζ´1 and the one ζ of Pz2 by ζ{λ. Then Assumption 4.3 is
again satisfied. In particular, the outgoing string of P1

1 around 8 and the incoming one of
P1
2 around 0 are both |λ|S1.

The interaction map TPz1
: Hb2 Ñ H acting on w b v is λ´L0Y pv, z1qw. TPz2

sends
ub P VbV to Y pu, z2qλL0 . The composition of these two expressions, evaluated with
w1 P V, is again the right hand side of (4.5). And the result of sewing is again Pz1,z2 . So
(4.5) holds in general.

4.6

According to the physical definition of V in Subsec. 1.12 as well as the No-Ambiguity
Principle 2.10, we know that when the vectors of V are inserted, the correlation func-
tions change holomorphically with respect to the translation of the marked points and
their local coordinates. Thus TPz1,z2

pw, v, u, v1q is a holomorphic function on Conf2pCˆq “

tpz1, z2q P Cˆ : z1 ‰ z2u. Since, similar to (4.5), we also have

TPz1,z2
pw, v, u, w1q “ xw1, Y pv, z1qY pu, z2qwy pif 0 ă |z2| ă |z1| ă `8q, (4.6)
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we conclude that xw1, Y pu, z2qY pv, z1qwy defined on 0 ă |z1| ă |z2| and
xw1, Y pv, z1qY pu, z2qwy defined on 0 ă |z2| ă |z1| can be continued to the same holo-
morphic function on Conf2pCˆq. That this fact is true for all w,w1 P V (or more generally,
all w P V, w1 P V1 if V » V1 is not assumed) is simply written as

Y pu, z2qY pv, z1q „ Y pv, z1qY pu, z2q. (4.7)

This property is called commutativity.

4.7

We now consider the sewing of

Pz1 “ pP1
1; 0, z1,8; ζ, ζ ´ z1, ζ

´1q, Pz2´z1 “ pP1
21; 0, z2 ´ z1,8; ζ, ζ ´ z2 ` z1, ζ

´1q

(where P1
21 “ P1) along the points z1 P P1

1 and 8 P P1
21. We assume 0 ă |z2 ´ z1| ă

|z1| ă `8. Choose λ P C satisfying |z2 ´ z1| ă |λ| ă |z1|. Replace the local coordinate
ζ ´ z1 of Pz1 by λ´1pζ ´ z1q and the one ζ´1 of Pz2´z1 by λζ´1. Then Assumption 4.3
is satisfied. The rule for sewing is identifying γ1 P P1

1, 0 ă |λ´1pγ1 ´ z1q| ă `8 with
γ21 P P1

21, 0 ă |λγ´1
21 | ă `8 if and only if pγ1 ´ z1q “ γ21. Thus, gluing Pz1´z1 to Pz1

amounts to translating Pz2´z1 to Pz2 . After sewing, the points 0 and z2 ´ z1 of Pz2´z1

become z1 and z2. (The points z1 of Pz1 and 8 of Pz2´z1 are discarded.)

This sewing picture gives

TPz1,z2
pw, v, u, w1q “ xw1, Y pY pu, z2 ´ z1qv, z1qwy pif 0 ă |z2 ´ z1| ă |z1| ă `8q. (4.8)

We therefore have the associativity property

xw1, Y pu, z2qY pv, z1qwy “ xw1, Y pY pu, z2 ´ z1qv, z1qwy

if 0 ă |z2 ´ z1| ă |z1| ă |z2|.
(4.9)

Geometrically, it means the equivalence of sewing spheres in the following way:
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4.8

The fact that for all u, v, w P V, w1 P V1, (4.5), (4.6), and (4.8) can be defined as holomor-
phic functions of z1, z2 on the given domain (the precise meaning will be given later), and
that these three expressions can be extended to the same holomorphic function (namely
TPz1,z2

pwb vbubw1q) on Conf2pCˆq is called the Jacobi identity in the complex analytic
form. (See Def. 7.16 for the precise statement.) Roughly speaking,

Jacobi identity “ Commutativity ` Associativity. (4.10)

For the moment, we will derive an algebraic version, and use it as the formal definition
of Jacobi identity in Def. 3.1.

Write fpz1, z2q “ TPz1,z2
pwbvbubw1q. Fix z1 P Cˆ, and consider f as a holomorphic

function of z2 on Cˆztz1u. (Moreover, from (4.5), (4.6), (4.8), and by the lower truncation
property (3.15), it is easy to see that f has finite poles at z1 “ 0, z2,8. So f is a mero-
morphic function.) By the residue theorem, for each meromorphic 1-form µ on P1 with
possible poles only at 0, z1,8, we must have pResz2“0 ` Resz2“z1 ` Resz2“8qfµ “ 0. It is
easy to see that such µ are linear combinations of those of the form zm2 pz2 ´ z1qndz2.

Equivalently, choose C` to be a circle around 0 whose radius is ą |z1|, C´ is one
around 0 whose radius is ă |z1|, and C0 a small circle around z1 between C` and C´.

Let f`, f´, f0 be respectively the right hand sides of (4.5), (4.6), (4.8). Then, when z2 is on
C`, C´, C0 respectively, f equals f`, f´, f0. Then the fact that f`, f´, f0 defined on their
domains extend to the same meromophic function on P1 with poles 0, z1,8 implies for
any m,n P Z and µ “ zm2 pz2 ´ z1qndz2 that

¿

C`

f`µ

2iπ
´

¿

C´

f´µ

2iπ
“

¿

C0

f0µ

2iπ
. (4.11)

Indeed, the latter one also implies the previous one. This is guaranteed by the so called
strong residue theorem, which will be discussed in Subsec. 11.11. The strong residue theo-
rem will imply that the analytic form and the algebraic form of Jacobi identity are equiv-
alent.

Recall the general formula
ű

C Y pu, zqzk dz
2iπ “ Y puqk if C is a circle around the origin.

When z2 P C`, µ has absolutely convergent expansion µ “
ř

lPN
`

n
l

˘

p´z1qlzm`n´l
2 dz2. So

¿

C`

f`µ

2iπ
“

ÿ

lPN

¿

C`

ˆ

n

l

˙

p´z1qlzm`n´l
2 xw1, Y pu, z2qY pv, z1qwy

dz2
2iπ

“
ÿ

lPN

ˆ

n

l

˙

p´z1qlxw1, Y puqm`n´lY pv, z1qwy “: apz1q
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When z2 P C´,
¿

C´

f´µ

2iπ
“

ÿ

lPN

¿

C`

ˆ

n

l

˙

p´z1qn´lzm`l
2 xw1, Y pv, z1qY pu, z2qwy

dz2
2iπ

“
ÿ

lPN

ˆ

n

l

˙

p´z1qn´lxw1, Y pv, z1qY puqm`lwy “: bpz1q

When z2 P C0, since 0 ă |z2 ´ z1| ă |z1|, we have the absolutely convergent expansion
µ “ pz1 ` pz2 ´ z1qqmpz2 ´ z1qndz2 “

ř

lPN
`

m
l

˘

zm´l
1 pz2 ´ z1qn`ldz2. So

¿

C0

f0µ

2iπ
“

ÿ

lPN

¿

C0

ˆ

m

l

˙

zm´l
1 pz2 ´ z1qn`lxw1, Y pY pu, z2 ´ z1qv, z1qwy

dz2
2iπ

“
ÿ

lPN

ˆ

m

l

˙

zm´l
1 xw1, Y pY puqn`lv, z1qwy :“ cpz1q

Now we have cpz1q “ apz1q ´ bpz1q. We vary z1. For each k P Z, multiply both sides
by zk1

dz1
2iπ and apply the residue at z1 “ 0. We then get (by suppressing w1 and w)

Definition 4.5 (Jacobi identity (algebraic version)). For each u, v, w P V, and each
m,n, k P Z, we have

ÿ

lPN

ˆ

m

l

˙

Y
`

Y puqn`lv
˘

m`k´l

“
ÿ

lPN
p´1ql

ˆ

n

l

˙

Y puqm`n´lY pvqk`l ´
ÿ

lPN
p´1qn`l

ˆ

n

l

˙

Y pvqn`k´lY puqm`l.

(4.12)

This completes Definition 3.1.

In the above three terms, when acting on every w P V, each sum over l P N is finite
thanks to the lower truncation property.

5 Consequences of Jacobi identity; reconstruction theorem

5.1

The algebraic form of Jacobi identity is very complicated. Very few people can write
down exactly the right formula without checking the references or reproving this formula
using the long argument in Subsec. 4.8. But we shall try our best to explain how to use
this formula and what this formula implies.

First of all, if (4.12) holds whenever m “ 0 or n “ 0, then it holds in general. We will
not give a rigorous proof for this statement. But, since (4.12) is derived from (4.11) for
all µ “ zm2 pz2 ´ z1qndz2, the readers can be convinced of this statement by the following
elementary fact:
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Exercise 5.1. Show that zm2 pz2 ´ z1qn is a Crz˘1
1 s-linear combination of zk2 and pz2 ´ z1ql

where k, l P Z and l ă 0. (Hint: Assume without loss of generality that m,n ă 0. Prove
the statement by induction on |m| and |n|.)

Thus, we may understand (4.12) by restricting to the special cases m “ 0, n ă 0 or
n “ 0.

5.2

We now return to rigorous mathematics. Consider the case that n “ 0, i.e., µ “ zm2 dz2.
Then (4.12) reads

“

Y puqm, Y pvqk
‰

“
ÿ

lPN

ˆ

m

l

˙

Y
`

Y puqlv
˘

m`k´l
. (5.1)

This is a Lie bracket relation. Interestingly, this general formula does not come from Lie
groups, but from the residue theorem. However, in many concrete examples, such Lie
bracket relations do have Lie-theoretic origins.

Let me take this chance to say a few words about the similarity and the difference
between the VOA theory and the Lie theory. In the VOA theory, the residue theorem is
the standard way of passing from the complex analytic world to the algebraic world. The
opposite direction is through the strong residue theorem. This is strikingly different from
the Lie theory, in which one passes from the differential geometric formulation (i.e. Lie
groups) to the algebraic one (i.e. Lie algebras) by taking derivatives, and vice versa by
taking exponentiation/integral. Thus, although Lie brackets do appear in VOAs, it is not
always fruitful to think of VOAs as generalizations of Lie algebras. These two mathe-
matical objects have very different geometric intuitions. Also, if we view VOAs in the
complex analytic way, then by (4.10), VOAs are more like commutative algebras. Thus,
VOAs can be viewed as a quantum version of both the Lie algebras and the commutative
algebras.

5.3

Take u to be the conformal vector c in (5.1) and recall that Y pcqm`1 “ Lm. We obtain

rLm, Y pvqks “
ÿ

lPN

ˆ

m` 1

l

˙

Y pLl´1vqm`k`1´l

“Y pL´1vqm`k`1 `
ÿ

lPN

ˆ

m` 1

l ` 1

˙

Y pLlvqm`k´l. (5.2)

Multiply z´k´1 to both sides and take the sum over all k P Z, we obtain

rLm, Y pv, zqs “ zm`1Y pL´1v, zq `
ÿ

lPN

ˆ

m` 1

l ` 1

˙

zm´lY pLlv, zq (5.3)
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either on the level of EndpVqrrz˘1ss, or as Laurent polynomials of z when evaluating
between any w P V and w1 P V1. Then the cases m “ ´1 and m “ 0 imply

rL´1, Y pv, zqs “ Y pL´1v, zq (5.4a)
rL0, Y pv, zqs “ zY pL´1v, zq ` Y pL0v, zq. (5.4b)

Note that these two equations follow solely from the Jacobi identity. By the translation
property, we have

Y pL´1v, zq “
d

dz
Y pv, zq. (5.5)

Equivalently, by applying Resz“0p¨qzndz, we get a crucial relation

Y pL´1vqn “ ´nY pvqn´1. (5.6)

(The quickest way to get the formula on the right hand side is integration by parts.)

Exercise 5.2. Show that (3.39) follows from (5.6) and the creation property.

Exercise 5.3. Assume that V satisfies the lower truncation property (3.15) and all the ax-
ioms of VOAs in Def. 3.1 except the grading and the translation property. Use (5.4) to
prove that the following conditions are equivalent.

1. The grading property.

2. Y pL´1v, zq “ BzY pv, zq for all v P V.

3. The translation property.

4. The translation property without assuming L´11 “ 0.

Thus, we may use the lower truncation property and any of these four conditions to
replace the grading and the translation properties in the definition of VOAs.

Exercise 5.4. In (5.2), set v “ c, and show that this formula is compatible with the Virasoro
relation.

5.4

We see that (5.3) form “ 0,´1 (together with (5.5)) means the grading and the transla-
tion properties, which integrate to the rotation and the translation covariance. For general
m, (5.3) also has a geometric explanation. To simplify discussions, we give such an expla-
nation by assuming that v is primary.

Definition 5.5. A vector v P V is called a primay vector if it is homogeneous and Lnv “ 0
for all n ą 0.

Some important VOAs (affine VOAs for instance) are generated by primary vectors.
And many important formulas in CFT were first proved by physics who assumed that
their theories are generated by primary vectors in the following sense:
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Definition 5.6. We say that a VOA V is generated by a subset E Ă V if V is spanned by
vectors of the form Y pv1qn1 ¨ ¨ ¨Y pvkqnk

1 where k P N, n1, . . . , nk P Z, and v1, . . . , vk P E.

Indeed, formula (5.3) for any primary vector v is one such example, which (combined
with (5.5)) reads

rLm, Y pv, zqs “ zm`1BzY pv, zq ` pm` 1qwtv ¨ zmY pv, zq. (5.7)

This is called by physicists (or more precisely, is equivalent to what physicists call) the
conformal Ward identity.

Choose a holomorphic vector field fpzqBz “
ř

nPZ anz
n`1Bz on a neighborhood of

S1. Let στ “ exppτfBzq be the holomorphic flow. Then (5.7) (with Lm, z
m replaced by

ř

m amLm,
ř

m amzm) integrates to

eτ
ř

nPZ anLnY pv, zqe´τ
ř

nPZ anLn “
`

Bzστ pzq
˘wtv

Y
`

v, στ pzq
˘

, (5.8)

called conformal covariance. For now, we do not treat this formula in a rigorous way. But
the readers can convince themselves by checking that both sides satisfy the same linear
differental equation over τ .

The right hand side of (5.8) looks familiar to us. Set τ “ 1, σ “ σ1, and ∆ “ wtv. Then
formula (5.8) resembles the change of variable formula

`

Bpφ˝σq
˘∆

“
`

Bφ˝σ
˘∆

¨pBzσq∆ for
a function φ “ φpzq and B is the standard holomorphic derivative. Indeed, the primary
field Y pv, zq can be viewed as the quantization of pBφq∆, or more generally, of Bφ1 ¨ ¨ ¨ Bφ∆.
It is also interesting to write (5.8) in the form

e
ř

anLn
`

Y pv, zqdz∆
˘

e´
ř

anLn “ Y pv, σqdσ∆. (5.9)

Conformal covariance (5.8) can be interpreted in a similar geometric way as we did for
rotation and translation covariance in Subsec. 3.14 and 3.15. (We will give this explanation
in the future assuming f “

ř

ně0 anz
n`1Bz .) So, from the CFT point of view, this formula

follows naturally from our change of parametrization formula in Sec. 2 and the physical
definition of the vertex operator Y pv, zq in Sec. 3 (if we ignore the issue of uniqueness up
to scalar multiplications). In particular, the geometric intuition we are using for formula
(5.7) is Lie theoretic, because the relationship between Virasoro algebras and change of
parametrization formula is the one between the representations of Lie algebras and Lie
groups. But we have also derived (5.7) from the Jacobi identity, whose geometric intuition
relies on the residue theorem. How should we view this coincidence of the two geometric
pictures?

My answer is that we should regard the Lie theoretic explanation as the fundamental
one for conformal covariance/Ward identity. In fact, to use the Jacobi identity to obtain
(5.7), we have assumed that

ř

Lnz
´n´2 is the vertex operator of a vector of V, namely

the conformal vector c. But the reason that this assumption should be included in the
definition of VOA was not explained in Sec. 3. Here we give a short explanation: we will
see later (cf. the reconstruction Thm. 5.12 and Rem. 5.13) that if the Fourier modes Am P

EndpVq of a field Apzq satisfy the correct Jacobi identity (such as (5.1) or (5.7)) with the
modes Y pvqk for v inside a generating subset E Ă V, then Apzq must be Y pu, zq for some
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u P V. Thus, (in my opinion) the better point of view is that we use the conformal Ward
identity (whose geometric intuition relies on the change of parametrization formula and
the physical meaning of Y pu, zq) and the Jacobi identity to explain the fact that

ř

Lnz
´n´2

is represented by a vector c in V, but not that we explain the Ward identity using the VOA
Jacobi identity.

5.5

We say that V is of CFT-type if dimVpnq ă `8 for each n, and Vp0q “ C1. The CFT-
type condition is a very natural and mild one satisfied by all the examples in our notes. It
says that the only quantum states with zero energy are the vacuum.

In this subsection, we assume V is CFT-type, and study (5.1) for vectors in Vp1q. For
each u P Vp1q, we write Y puqm as um for short. By (3.10), ul lowers the weights by l. Then
(5.1) says rum, vns “ pu0vqm`n ` mpu1vqm`n´1, where ulv vanishes when l ą 1 since its
weight is 1 ´ l. Since u1v P Vp0q P C, we may write

u1v “ pu, vq1 (5.10)

where p¨, ¨q is a bilinear form on Vp1q. Thus pu1vqm`n´1 “ pu, vqδm,´n since Y p1, zq “ 1.
Set

ru, vs :“ u0v. (5.11)

Then

rum, vns “ ru, vsm`n `mpu, vqδm,´n. (5.12)

Proposition 5.7. r¨, ¨s defines a Lie algebra structure on Vp1q, and p¨, ¨q is an invariant symmetric
bilinear form, namely, pu, vq “ pv, uq and prw, us, vq “ ´pu, rw, vsq.

Proof. w P Vp1q ÞÑ w´1 is injective since w´11 “ w by the creation property. By (5.12),
ru, vs´1 “ ru0, v´1s “ ´rv´1, u0s “ ´rv, us´1. This proves ru, vs “ ´rv, us. By calculating
ru1, v´1s and rv´1, u1s using (5.12), we obtain pu, vq “ pv, uq. (5.12) implies

rwk, rum, vnss “ rw, ru, vssk`m`n ` kpw, ru, vsqδk`m`n,0.

Apply the Jacobi identity for the Lie bracket of linear operators, we obtain the Jacobi
identity for r¨, ¨s on Vp1q if we set k “ ´1,m “ n “ 0, and we obtain the invariance of p¨, ¨q
if we set k “ 0,m “ 1, n “ ´1.

The vector space SpanCtvn,1V : n P Zu is a Lie algebra whose bracket is the standard
one for linear operators. Since it satisfies (5.12), we call it an affine Lie algebra associated
to the finite-dimensional complex Lie algebra Vp1q. When V is generated by Vp1q, we say
V is an affine VOA.

We are mostly interested in the case that p¨, ¨q is non-degenerate. This is always true
when the CFT (or the VOA) is unitary, since p¨, ¨q is indeed the negative of the correlation
function x¨, ¨y “ xΘ ¨ |¨y of A1,1 restricted to Vb2. Moreover, a unitary affine VOA V is
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indeed uniquely determined by its Lie subalgebra Vp1q, where Vp1q is a direct sum of an
abelian Lie algebra and a semisimple one. (We refer the readers to [Gui19, Sec. 1 and 2]
for a detailed account of the relationship between unitary VOAs and their “unitary” Lie
subalgebras Vp1q.) Affine Lie algebras and affine VOAs in the strict sense are those such
that Vp1q are simple Lie algebras. If on the other hand Vp1q is abelian, then V is called a
free boson VOA or a Heisenberg VOA.

If V is generated by c, we call V a Virasoro VOA.

5.6

We now turn to the case m “ 0, n ă 0 in the VOA Jacobi identity (4.12). First consider
n “ ´1. Then (4.12) reads

Y
`

Y puq´1v
˘

k
“

ÿ

lPN
Y puq´1´lY pvqk`l `

ÿ

lPN
Y pvqk´1´lY puql. (5.13)

This formula can be written in a compact way. For a general series fpzq “
ř

lPZ alz
´l´1 P

W rrz˘1ss where W is a vector space, we let

fpzq` “
ÿ

lPN
alz

´1´l, fpzq´ “
ÿ

lPN
a´l´1z

l (5.14)

(so we have fpzq “ fpzq` ` fpzq´). Define the normal-ordered product

:Y pu, zqY pv, zq: “ Y pu, zq´Y pv, zq ` Y pv, zqY pu, zq` (5.15)

which is non-commutative in general. Then (5.13) can be abbreviated to

Y
`

Y puq´1v, z
˘

“ :Y pu, zqY pv, zq: (5.16)

By (5.6) we have

Y puq´j´1 “
1

j!
Y pLj

´1uq´1 (5.17)

when j ě 0. Combine this with Y pLj
´1u, zq “ B

j
zY pu, zq, we obtain

Y
`

Y puq´j´1v, z
˘

“
1

j!
:
`

Bj
zY pu, zq

˘

Y pv, zq: (5.18)

where the normal-ordered product is defined in a similar way using the positive and the
negative parts of B

j
zY pu, zq. We leave it to the readers to check that this formula agrees

with the Jacobi identity (4.12) when m “ 0, n ă 0.
Thus, once we know how Y pu, zq looks like for all u in a small generating subset E of

V, we can write down the formula of Y pw, zq for any w P V using the formula

Y
`

Y pu1q´j1´1 ¨ ¨ ¨Y pukq´jk´1v, z
˘

“
1

j1! ¨ ¨ ¨ jk!
:Bj1

z Y pu1, zq ¨ ¨ ¨ Bjk
z Y puk, zq ¨ Y pv, zq: (5.19)

where the normal-ordered product for several operators is defined inductively by

:A1A2 ¨ ¨ ¨An: “ :A1p:A2 ¨ ¨ ¨An:q: (5.20)
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5.7

One can also write down the explicit formula of Y pY puqnv, zq for n ě 0 using (4.12)
where m “ 0, n ě 0. But as I said, (4.12) is determined by the special cases m “ 0, n ă 0
and n “ 0. So we hope that Y pY puqnv, zq, n ě 0 can be calculated using (5.1). This is true.

Write (5.1) in the equivalent form

“

Y puqm, Y pv, zq
‰

“
ÿ

lPN

ˆ

m

l

˙

zm´lY
`

Y puqlv, z
˘

. (5.21)

Thus, for m ě 0, Y pY puqmv, zq can be computed inductively by

Y
`

Y puq0v, z
˘

“
“

Y puq0, Y pv, zq
‰

Y
`

Y puqmv, z
˘

“
“

Y puqm, Y pv, zq
‰

´

m´1
ÿ

l“0

ˆ

m

l

˙

zm´lY
`

Y puqlv, z
˘

.
(5.22)

We now see the close relation between the Lie brackets of vertex operators and the
data Y

`

Y puqmv, z
˘

,m ě 0. The latter plays a very different role from Y
`

Y puqmv, z
˘

,m ă

0. To understand this relation better, we write the associativity relation (4.9) as

Y pu, z2qY pv, z1q “
ÿ

mPZ
pz2 ´ z1q´m´1Y pY puqmv, z1q (5.23)

when 0 ă |z2 ´ z1| ă |z1|. Here, we understand Y pu, z2qY pv, z1q as Y pv, z1qY pu, z2q when
0 ă |z1| ă |z2| or more generally, as a linear functional on Vb2 sendingwbw1 to TPz1,z2

pwb

v b ub w1q (the correlation function associated to (4.4)) for all pz1, z2q P Conf2pCˆq. Then
the part m ě 0 in (5.23) accounts for the poles of TPz1,z2

pw b v b ub w1q at z2 “ z1.
The summand in (5.23) vanishes for sufficiently positivem. In physics, a series expan-

sion of the form

Apz2qBpz1q “
ÿ

mě´N

pz2 ´ z1qmCmpz1q

is called the operator product expansion (OPE) of the fields Apz2q, Bpz1q. Thus, in the
VOA context, OPEs are just the associativity property (4.9). OPE is useful to physicists be-
cause it allows them to reduce the calculation of 4-point correlations functions to that of
3-point ones, or in general, N -point to pN ´ 1q-point.

We split the right hand side of (5.23) into two parts: m ě 0, which is called the regular
terms since it has no poles at z2 “ z1, and m ă 0 called the singular terms. Thus

Y pu, z2qY pv, z1q “
Y pY puqN´1v, z1q

pz2 ´ z1qN
` ¨ ¨ ¨ `

Y pY puq0v, z1q

pz2 ´ z1q
` regular terms,

or, written in physics language,

Y pu, z2qY pv, z1q „
Y pY puqN´1v, z1q

pz2 ´ z1qN
` ¨ ¨ ¨ `

Y pY puq0v, z1q

pz2 ´ z1q
. (5.24)
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Thus, to summarize, (5.1) establishes a close relationship between the Lie brackets of vertex
operators, the finite poles of the correlation function TPz1,z2

at z1 “ z2, and the finitely may
singular terms in the OPE of vertex operators. As a special case, from (5.21) and (5.22) one
sees that two vertex operators Y pu, z2q, Y pv, z1q commute (namely, their Fourier modes
Y puqm, Y pvqk commute) iff there are no singular terms in the OPE of Y pu, z2qY pv, z1q, iff
TPz1,z2

p¨ b v b ub ¨q is holomorphic on a neighborhood of z2 “ z1.

5.8

In the previous subsection, we derived the relationship from the definition of VOAs
(in particular, from the VOA Jacobi identity). So one may ask this natural question: does
this relationship rely on the full Jacobi identity? For instance, does it rely on (5.18)?

The answer is no. In a very vague sense, any of the following three implies the others
without assuming the full Jacobi identity.

1. Suitable Lie bracket relations hold for a pair of field operators Apz2q, Bpz1q.

2. The finite poles of (the analytic continuation of) xw1, Apz2qBpz1qwy at z2 “ z1.

3. The finitely many singular terms in the OPE of Apz2qBpz1q and, in particular, the
existence of such OPE.

Clearly, the third one a priori implies the second one, since the second does not assume the
existence of OPE. Thus, as we have said that OPEs are roughly the same as associativity,
we see that the associativity (and indeed, the full Jacobi identity) can be derived from the
first or the second statement above. This is called the reconstruction theorem because it
allows us to build examples of VOAs by checking only a small part of the Jacobi identity,
namely the Lie bracket relations. This theorem is the most important one for constructing
examples of VOAs.

A rigorous and detailed discussion of the equivalence of the above three statements
will be given in Sec. 7. The first and the second statements correspond to three seeming
different but indeed equivalent definitions of the locality of Apz2q, Bpz1q. (There are two
ways to describe the second one, a formal variable way and a complex analytic way.)
Here, we first state the rigorous definition of the first one.

5.9

We let V “
À

nPNVpnq be an N-graded vector space, graded by a diagonalizable oper-
ator L0. We do not assume that V and L0 are from any graded vertex algebra.

Definition 5.8. An (L0-)homogeneous field (operator) on V is an element

Apzq “
ÿ

nPZ
Anz

´n´1 P EndpVqrrz˘1ss

(where each An is in EndpVq) satisfying

rL0, Apzqs “ ∆A ¨Apzq ` zBzApzq (5.25)
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or equivalently,

rL0, Ans “ p∆A ´ n´ 1qAn p@n P Zq. (5.26)

∆A is called the weight of Apzq.

Clearly, a homogeneous field Apzq satisfies the lower truncation property Apzqw P

Cppzqq (for all w P V).

Definition 5.9 (Local fields (Lie algebraic version)). Given homogeneous fields Apzq and
Bpzq, we say Apzq is local to Bpzq if there exist Cjpzq “

ř

nPZC
j
nz´n´1 P EndpVqrrz˘1ss

(where j “ 0, 1, . . . , N ´ 1 for some N P N) satisfying

rAm, Bks “

N´1
ÿ

l“0

ˆ

m

l

˙

C l
m`k´l (5.27)

for all m, k P Z. We consider the right hand side of (5.27) as 0 if N “ 0.

Remark 5.10. Apzq is local to Bpzq if and only if there exist D0pzq, . . . , DN´1pzq P

EndpVqrrz˘1ss satisfying for all m, k P Z that

rAm, Bks “

N´1
ÿ

l“0

mlDl
m`k. (5.28)

This is because rC l
j :“ C l

j´l and Dl
j are related by rC l

j `
řN´1

p“l`1 ap,l ¨ rCp
j “ Dl

j where each
ap,l P R is determined by

`

m
p

˘

“ mp `
řp´1

l“1 ap,l ¨ml.

Exercise 5.11. Use (5.28) to show that if Apzq is local to Bpzq then Bpzq is local to Apzq.

5.10

Roughly speaking, reconstruction theorem says that if we have a small set E of op-
erators Apzq P EndpVq that generates V and satisfies all the axioms in the definition of
graded vertex algebras/VOAs, except that the Jacobi identity is replaced by the weaker
condition that the operators in E are mutually local and self local, then the Jacobi identity
is automatically satisfies, and hence V is a graded vertex algebra/VOA. This theorem will
be proved in Sec. 8.

Theorem 5.12 (Reconstruction theorem). Let E be a set of L0-homogeneous fields on V. As-
sume that the following conditions are satisfied. Then V has a unique graded vertex algebra struc-
ture such that each Apzq P E is a vertex operator (namely, is of the form Y pu, zq for some u P V),
and that the vacuum vector 1 and the operator L´1 are those described in the following.

• Creation property: There is a distinguished vector 1 P Vp0q such thatApzq1 has no negative
powers of z for all Apzq P E .

• Translation property: There is a distinguished L´1 P EndpVq such that L´11 “ 0, and that
for each Apzq P E we have rL´1, Apzqs “ BzApzq.
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• Generating property: Vectors of the form A1
n1

¨ ¨ ¨Ak
nk
1 (where k P N, A1pzq, . . . , Akpzq P

E , and n1, . . . , nk P Z) span V.

• Locality: Any two fields of E are local.

Moreover, if L0, L´1 can be extended to a sequence of operators pLnqnPZ on V such that
ř

nPZ Lnz
´n´2 belongs to E , and that the Virasoro relation (2.8) is satisfied for some c P C,

then V is a VOA whose conformal vector c satisfies Y pc, zq “
ř

nPZ Lnz
´n´2.

Note that the uniqueness of the graded vertex algebra/VOA structure follows directly
from (5.19). The non-trivial part of this theorem is of course the existence of such struc-
ture.

Remark 5.13. The end of the reconstruction Thm. 5.12 means that in order to show that
a graded vertex algebra V is a VOA, it suffices to show that L0, L´1 can be extended
to pLnqnPZ satisfying the Virasoro relation, that T pzq “

ř

Lnz
´n´2 satisfies the creation

property (namely, Ln1 “ 0 for all n ě ´1), and that T pzq is local with any field in E (by
showing for instance the conformal Ward identity rLm, Apzqs “ zm`1BzApzq`∆A ¨zmApzq

for all Apzq P E if one expects that all Apzq are “primary”). The translation property is
automatically satisfied due to the Virasoro relation rL´1, Lns “ ´pn` 1qLn´1.

6 Constructing examples of VOAs

6.1

In the previous section, we have mentioned some important examples of VOAs: affine
VOAs and Virasoro VOAs. But we didn’t explain why they exist. This is the task of this
section. The standard references for this section are [LL, Chapter 6] and [Was10] (with
emphasis on the unitarity aspect).

The style of this section is different from the previous ones: it has a strong flavor of
Lie theory. The methods in this section will not be used in the future (except when we
discuss examples of VOA modules). So the readers can safely skip this section if they do
not want to bother with the existence issue. (But they should at least read Subsec. 6.17 on
tensor product VOAs.)

Our first class of examples are Virasoro VOAs, namely, those generated by the confor-
mal vector c. To begin with, the Virasoro algebra is a Lie algebra Vir “ SpanCtLn,K :
n P Zu satisfying the bracket relation

rLm, Lns “ pm´ nqLm`n `
K

12
pm` 1qmpm´ 1qδm,´n,

rK,Lns “ 0.

We know that any VOA must satisfy Ln1 “ 0 for all n ě ´1. Motivated by this fact,
we have:

Proposition 6.1. Let V be a representation of Vir such that L0 is diagonalizable and has N-
spectrum. Assume that V has a distinguished vector 1 killed by Ln for all n ě ´1, that vectors of
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the form Ln1 ¨ ¨ ¨Lnk
1 (where k P N, n1, . . . , nk P Z) span V, and thatK acts as a constant c P C.

Then V has a unique natural structure of a Virasoro VOA. Its central charge is c.

Proof. This follows immediately from the reconstruction Thm. 5.12. Note that by (5.28),
ř

nPZ Lnz
´n´2 is local to itself due to the Virasoro relation.

6.2

Thus, it remains to construct Vir-modules satisfying the conditions in Prop. 6.1. Let
us first find a “largest” such module. We expect that this module should have basis
L´n1 ¨ ¨ ¨L´nk

1 where n1 ě ¨ ¨ ¨ ě nk ě 2, because:

Exercise 6.2. Let V be as in Prop. 6.1. Prove by induction on k that Ln1 ¨ ¨ ¨Lnk
1

(for any n1, . . . , nk) can be written as a linear combination of L´m1 ¨ ¨ ¨L´ml
1 where

l P N,m1, . . . ,ml ě 2. (Hint: if nj ď ´2, move Lnj to the rightmost by using the Vi-
rasoro relation.)

Now let us construct this largest module VVirpc, 0q for each c P C. Its basis consists
of p´n1, . . . ,´nkq where k P N and n1 ě ¨ ¨ ¨ ě nk ě 2. The one with k “ 0 is de-
noted by 1. If n ě n1, we simply define the action of L´n on each p´n1, . . . ,´nkq to
be p´n,´n1, . . . ,´nkq. But we also want to define the action of Ln on p´n1, . . . ,´nkq “

L´n1 ¨ ¨ ¨L´nk
1 for all n P Z. In practice, we can write down the formula explicitly using

the Virasoro relation. For instance: L0L´n1 ¨ ¨ ¨L´nk
1 “ pn1 ` ¨ ¨ ¨ `nkqL´n1 ¨ ¨ ¨L´nk

1, and

L3L´4L´31 “ rL3, L´4sL´31 ` L´4rL3, L´3s1

“7L´1L´31 ` 6L´4L01 ` 2cL´41 “ p14 ` 2cqL´41. (6.2)

There is a natural question about this approach: how do we verify that such defined
action of Vir on VVirpc, 0q preserves the Lie bracket relations of Vir?

6.3

The standard way to deal with is issue is to use the Poincaré–Birkhoff–Witt (PBW)
theorem, which says the following: Let g be a Lie algebra (over any field). Let Upgq be
its universal enveloping algebra, i.e., the largest unital associative algebra containing and
generated by the vector space g such that xy ´ yx “ rx, ys for all x, y P g. If E is a basis of
Upgq with a total order ď, then vectors of the form

x1x2 ¨ ¨ ¨xk pk P N, x1 ě x2 ě ¨ ¨ ¨ ě xk P Eq (6.3)

(when k “ 0, we understand this expression as 1) form a basis of Upgq.
The remarkable point about the PBW theorem is that if we define a vector space V to

have a basis of vectors as in (6.3), and if we define the action of x P g using the Lie bracket
relations of g (similar to the argument in (6.2)), then this gives a well defined action of g
on V preserving the bracket relations of g, i.e., this gives a well defined representation of
g.

To apply the PBW theorem to our construction of VOAs, we need the following result:
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Exercise 6.3. Suppose g “ g1 ‘ g2 where g1, g2 are Lie subalgebras of g. Use the PBW
theorem to show that there is an isomorphism of vector spaces Upg1q b Upg2q Ñ Upgq

sending each x1 ¨ ¨ ¨xk b y1 ¨ ¨ ¨ yl to x1 ¨ ¨ ¨xky1 ¨ ¨ ¨ yk where x‚ P g1, y‚ P g2.

The proof is an easy application of the PBW theorem, which we leave to the readers.

6.4

Consider the following Lie subalgebras of Vir:

V´ “ SpantLn : n ď ´2u, V` “ SpantK,Ln;n ě ´1u.

Cc “ C is a representation of V` if we let Ln act as 0 and K as c. So Cc is also a UpV`q-
module. Now UpVirq is clearly a right UpV`q-module. So

Ind
UpV q

UpV`q
Cc :“ UpVirq bUpV`q Cc

is a (left) UpVirq-module, called the induced representation of Cc. This is a Vir-module,
and by Exercise 6.3, this vector space is isomorphic to UpV´q bC UpV`q bpUpV`qq Cc »

UpV´q, which by the PBW theorem has a basis of vectors the form L´n1 ¨ ¨ ¨L´nk
1 where 1

is the unit 1 and n1 ě ¨ ¨ ¨ ě nk ě 2. So we can view VVirpc, 0q as IndUpV q

UpV`q
Cc. In particular,

this proves that VVirpc, 0q carries a ntural structure of representation of Vir. Hence, by
Prop. 6.1, VVirpc, 0q is a Virasoro VOA with central charge c.

Exercise 6.4. Find an explicit expression of Y pL´4c, zq on VVirpc, 0q in terms of the Vira-
soro operators Ln.

6.5

VVirpc, 0q is not always an irreducible Vir-module. But the irreducible cases are the
most interesting one. For instance, every CFT-type unitary VOA is irreducible. (See
[CKLW18].)

The method of getting irreducible examples is quite standard in Lie theory: We shall
take the largest quotient of VVirpc, hq. To be more precise, note that for any proper Vir-
invariant subspace W of VVirpc, hq, note that L0 is diagonalizable on W ,2 i.e., W has a
L0-grading, whose lowest weight must not be 0 since otherwise it contains 1 and hence
must be VVirpc, 0q. Let I be the span of all suchW , then I is the largest proper Vir-subspace
since I has no non-zero weight-0 vectors. Then

LVirpc, 0q :“ VVirpc, 0q{I

is an irreducible Vir-module, which is also a Virasoro VOA of CFT type by Prop. 6.1.

2In general, if D is a diagonalizable linear operator on a vector space M and W is an D-invariant subspace
of M , then D|W is diagonalizable. To see this, choose any w P M which is a finite sum w1 ` ¨ ¨ ¨ ` wk where
each summand is an eigenvector of D in M , and they have distinct eigenvalues λ1, . . . , λk. Use polynomial
interpolation to find a polynomial p such that ppλjq “ δ1,jλ1. So w1 “ ppDqw P M .
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6.6

One may wonder when LVirpc, 0q equals VVirpc, 0q, i.e., when I is trivial. Indeed, I is
non-trivial if and only if

c “ cp,q “ 1 ´
6pp´ qq2

pq
(6.4)

where p, q P t2, 3, 4, . . . u are relatively prime. (Cf. [LL, Rem. 6.1.13] and the reference
therein.) In this case, LVirpc, 0q is called a minimal model. It has finitely many irreducible
modules. Minimal models are an important class of “rational” VOAs. More precisely:
rational and C2-cofinite VOAs. We will give precise meanings of these terms in later
sections. The theory of conformal blocks for such VOAs is well-established.

It is a deep result thatLVirpc, 0q is a unitary Vir-module if and only if c ě 1 or c satisfies
(6.4) with |p´ q| “ 1, namely,

c “ 1 ´
6

mpm` 1q
(6.5)

for some integer m ě 2. We refer the readers to [FMS, Chapter 8] and [Was10, Chapter
IV] for details.

6.7

We now turn to affine VOAs. We fix a finite dimensional complex Lie algebra g to-
gether with a non-degenerate symmetric invariant bilinear form p¨, ¨q. (Indeed, we will
not use the non-degeneracy until we define the Virasoro operators.) Recall that invari-
ance means

prX,Y s, Zq “ ´pY, rX,Zsq. (6.6)

An affine Lie algebra is pg with basis Xn,K (where X P g, n P Z) satisfying the Lie bracket
relation

rXm, Yns “ rX,Y sm`n `mpX,Y qδm,´nK,

rK,Xms “ 0.

It is more convenient to add a basis element D (which will be the L0 of our VOA) to pg to
get a slightly larger Lie algebra rg “ pg ¸ CD such that

rD,Xms “ ´mXm, rD,Ks “ 0.

rg is also called an affine Lie algebra.
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6.8

rg decomposes into Lie subalgebras rg “ rg´ ‘ rg` where

rg´ “ SpantXn : X P g, n ă 0u, rg` “ SpantXn,K,D : X P g, n ě 0u.

Then Uprgq » Uprg´q bUprg`q by Exercise 6.3. For each l P C called the level, we let Cl “ C
be an rg`-module such that K acts as l and Xn, D act trivially. We are interested in two
types of associated VOAs:

Vgpl, 0q :“ Ind
Uprgq

Uprg`q
Cl “ UprgqbUprg`qCl (6.7)

which as a vector space is naturally equivalent toUprg´q. Let 1 be the 1b1 inUprgqbUprg`qCl.
Then Vgpl, 0q has a basis of vectors

Xi1
´n1

¨ ¨ ¨Xik
´nk

1

(which has D-weight n1 ` ¨ ¨ ¨ ` nk) written in the lexicon order where tX1, X2, . . . u is
a basis of g and n1, . . . , nk ą 0. Thus, D is diagonaizable on Vgpl, 0q with non-negative
spectrum, and each eigenspace is finite dimensional. Similar to the argument in Subsec.
6.5, we can take a simple quotient

Lgpl, 0q “ Vgpl, 0q{I (6.8)

where I is the largest proper rg-submodule.
Vgp0, 0q and Lgp0, 0q are never equal, because:

Exercise 6.5. Show that Lgp0, 0q is spanned by 1. Equivalently, show that if l “ 0, then I
contains all D-eigenvectors with eigenvalues ą 0.

In the following, we discuss how to make Lgpl, 0q a VOA since Lgpl, 0q is our main
interest. The same method applies to Vgpl, 0q.

For each X P g, Xn acts on Lgpl, 0q in an obvious way. We define Xpzq P

EndpLgpl, 0qqrrz˘1ss to be

Xpzq “
ÿ

nPZ
Xnz

´n´1.

It is a homogeneous field (with respect to D) with weight 1 since rD,Xns “ ´nXn. One
checks easily that these fields satisfy the creation property and locality, and that they
generate Lgpl, 0q. So it remains to construct L´1 and verify the translation property. We
shall actually construct all Ln in a uniform way.

6.9

Choose a basis E of g, which gives a dual basis tqe : e P Eu, namely, for each e, f P E,
pe, qfq “ δe,f with respect to the given non-degenerate symmetric bilinear form p¨, ¨q. By
linear algebra,

ÿ

ePE

eb qe P g b g (6.9)
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is independent of the choice of basis E. As an immediate consequence, we have
ÿ

ePE

qeb e “
ÿ

ePE

eb qe. (6.10)

With the help of g b g Ñ g, X b Y ÞÑ rX,Y s, this shows
ř

rqe, es “
ř

re, qes “ ´
ř

rqe, es, i.e.,
ÿ

ePE

rqe, es “ 0. (6.11)

Lemma 6.6. For each X P g, we have
ÿ

ePE

qeb re,Xs “ ´
ÿ

ePE

rqe,Xs b e. (6.12)

Proof. Evaluate both sides by Y b Z using p¨, ¨q, and use the invariance condition (6.6) to
show that both sides equal pY, rX,Zsq.

Thus, on each g-module V , we have
ř

qere,Xs `
ř

rqe,Xse “ 0, namely,
ÿ

e

rqee, gs “ 0. (6.13)

So when V is finite dimensional and is either irreducible or trivial, Ω “
ř

qee P EndpV q

is a constant by Schur’s lemma, called Casimir element. The operator Ω in general gives
the nagative Laplactian of the Lie group action.

Assumption 6.7. We assume that for the adjoint representation g ñ g, X ÞÑ rX, ¨s, the
Casimir element is a constant 2h_ P C, i.e.,

ÿ

ePE

rqe, re, ¨ss “ 2h_1g. (6.14)

This is always true when g is abelian (in which case h_ “ 0) or simple. We assume

l ` h_ ‰ 0.

6.10

We define the Virasoro operator “as if” the conformal vector is

c “ γ´1
ÿ

e

qe´1e´11
`

where γ “ 2pl ` h_q
˘

. (6.15)

Thus, using (5.13) and Lm “ Y pcqm`1, and noting that qeiej “ eiqej by (6.10), we write
down the definition

Lm “ γ´1
ÿ

e

´

ÿ

kď´1

qekem´k `
ÿ

kě0

qem´kek

¯

(6.16)

acting on Lgpl, 0q. This is called Sugawara construction. One checks that this sum is finite
when acting on any vector.

To use the reconstruction theorem, we need the following crucial fact:
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Proposition 6.8. For each m,n P Z and X P g,

rLm, Xns “ ´nXm`n. (6.17)

(Note that if we assume the existence of the VOA structure, then (6.17) can be derived
from the conformal Ward identity (5.7) and the fact that X´11 is indeed primary.)

Convention 6.9. In the remaining part of this section, we suppress
ř

e if possible.

From this proposition, we know that T pzq “
ř

m Lmz
´m´2 and Xpzq are local, and

Xpzq satisfies the translation property. To use the reconstruction theorem, we need to
check the following facts:

Lemma 6.10. The following are true.

(a) T pzq satisfies the creation property, namely, Ln1 “ 0 if n ě ´1.

(b) L0 agrees with D.

(c) tLnu satisfy the Virasoro relation.

Proof. (a) Assume m ě ´1.
ř

kě0 qem´kek1 is 0 since all X01 are zero by our construction.
ř

kď´1 qekem´k1 is 0 because m´ k ě m` 1 ě 0.
(b) Since L01 “ 0 and rL0, Xns “ ´nXn “ rD,Xns, L0 and D act the same on any

X1
n1

¨ ¨ ¨Xk
nk
1. So L0 “ D.

(c) By the reconstruction theorem, Lgpl, 0q is a graded vertex algebra. Clearly Lm “

Y pcqm`1 by our definition of Lm and c. We can use (5.1) or (5.2) to show

rLm, Lns “ Y pL´1cqm`n`2 `
ÿ

lě0

ˆ

m` 1

l ` 1

˙

Y pLlcqm`n`1´l. (6.18)

By the expression c, clearly L0c “ Dc “ 2c. Also, from the Sugawara construction, we
clearly have rD,Lms “ ´mLm, i.e., rL0, Lms “ ´mLm. So Llc “ 0 if l ą 2. To find
rLm, Lns, we need to find L1c and L2c.

Using (6.17), we calculate that γL1c equals

L1qe´1e´11 “ rL1, qe´1se´11 ` qe´1rL1, e´1s1 “ qe0e´11 ` qe´1e01 “ qe0e´11.

And qe0e´11 “ rqe0, e´1s1 “ rqe, es´11 equals 0 by (6.11). Recall K acts as l on Lgpl, 0q. Then
γL2c equals

L2qe´1e´11 “ rL2, qe´1se´11 ` qe´1rL2, e´1s1 “ qe1e´11 ` qe´1e11

“qe1e´11 “ rqe1, e´1s1 “ rqe, es01 ` lpqe, eq1,

which equals l ¨ dim g ¨ 1. Therefore, using (5.6), we find that (6.18) becomes the Virasoro
relation where c

2 “ γ´1l ¨ dim g.

Thus, by the reconstruction Thm. 5.12, we conclude:

Theorem 6.11. For l ‰ ´h_, Vgpl, 0q and Lgpl, 0q are VOAs satisfying Y pX´11, zq “
ř

nPZXnz
´n´1 (for all X P g) if we define the conformal vector c as in (6.15). The central

charge is l dim g
l`h_ .
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6.11 ‹

It remains to prove Prop. 6.8. Recall Convention 6.9 that we are suppressing
ř

e. The
following discussions focus on Lgpl, 0q, though the same argument works for Vgpl, 0q.

Lemma 6.12. For all i, j, n P Z, on Lgpl, 0q we have rqeiej , Xns “ Ai,j,n `Bi,j,n where

Ai,j,n “ qeire,Xsj`n ´ qei`nre,Xsj (6.19a)
Bi,j,n “ ´nlpδj,´nXi ` δi,´nXjq. (6.19b)

In particular, Bi,j,n “ Bj,i,n.

Proof. We compute

rqeiej , Xns “ qeirej , Xns ` rqei, Xnsej “ Ai,j,n `Bi,j,n

where

Ai,j,n “ qeire,Xsj`n ` rqe,Xsi`nej

Bi,j,n “ ´nlδj,´n ¨ qeipe,Xq ´ nlδi,´npqe,Xqej .

Bi,j,n clearly equals (6.19b) by the basic property of (dual) basis. Note that in general, for
all i, j P Z, by Lemma 6.6 and the map g b g Ñ EndpLgpl, 0qq sending Y b Z to YiZj , we
have

rqe,Xsiej “ ´qeire,Xsj . (6.20)

This proves that Ai,j,n equals (6.19a).

Proof of Prop. 6.8. We compute

rγLm, Xns “
ÿ

kď´1

rqekem´k, Xns `
ÿ

kě0

rqem´kek, Xns

“
ÿ

kď´1

pAk,m´k,n `Bk,m´k,nq `
ÿ

kě0

pAm´k,k,n `Bm´k,k,nq.

By Lemma 6.12, the sum of the two B is
ÿ

kPZ
Bk,m´k,n “ ´nl

ÿ

kPZ
pδm´k,´nXk ` δk,´nXm´kq “ ´2nlXm`n.

Also,
ÿ

kě0

Am´k,k,n “
ÿ

kě0

qem´kre,Xsk`n ´
ÿ

kě0

qem`n´kre,Xsk

where the two sums are both finite when acting on any vector. But the first summand is
just (setting j “ k ` n)

ř

jěn qem`n´jre,Xsj . So
ÿ

kě0

Am´k,k,n “ ´
`

qem`nre,Xs0 ` qem`n´1re,Xs1 ` ¨ ¨ ¨ ` qem`1re,Xsn´1

˘

. (6.21)
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Simiarly, setting i “ m´ k,
ÿ

kď´1

Ak,m´k,n “
ÿ

iěm`1

qem´ire,Xsi`n ´
ÿ

iěm`1

qem`n´ire,Xsi

“ ´
`

qen´1re,Xsm`1 ` ¨ ¨ ¨ ` qe0re,Xsm`n

˘

. (6.22)

By Lemma 6.13, the sum of (6.21) and (6.22) is ´2nh_Xm`n. This finishes the proof.

Lemma 6.13. For each i, j P Z and X P g,

qeire,Xsj ` qejre,Xsi “ 2h_Xi`j . (6.23)

This is the only place we use the definition of h_ (cf. Assumption 6.7).

Proof. By (6.20),

qeire,Xsj ` qejre,Xsi “ qeire,Xsj ´ rqe,Xsjei,

which, according to (6.10) and the map g b g Ñ EndpLgpl, 0qq, Y b Z ÞÑ rY,XsjZi, is

qeire,Xsj ´ re,Xsjqei “ rqei, re,Xsjs “ rqe, re,Xssi`j ` ilδi,´jpqe, re,Xsq.

Now, by the invariance of p¨, ¨q, pqe, re,Xsq “ prqe, es, Xq, which equals 0 by (6.11). By the
definition of h_, rqe, re,Xss “ 2h_X . We are done with the proof.

6.12

We now discuss the unitarity problem for affine VOAs. We first look at Heisenberg
VOAs, namely, we assume g is abelian. We assume that g is equipped with an inner
product p¨|¨q (antilinear on the first variable) and an anti-unitary involution X P g ÞÑ

X˚ P g. Recall that “anti-unitary” means that ˚ is conjugate linear, bijective, and satisfies

pX˚|Y ˚q “ pY |Xq.

Involution means X˚˚ “ X . By considering g as an (abelian) unitary Lie algebra, we
regard ˚ and p¨|¨q as part of the data of g.

Exercise 6.14. Show that g is unitarily isomorphic to Cn with the standard inner product,
where the involution is pz1, . . . , znq ÞÑ pz1, . . . , znq, the unique one fixing Rn. (Hint: First
find an real isomorphism from tX P g : X˚ “ Xu to Rn preserving the inner products.)

It is easy to check that the bilinear form p¨, ¨q on g defined by

pX,Y q “ pX˚|Y q (6.24)

is symmetric. (It is obviously invariant.) We define Vgpl, 0q using this bilinear form.
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Proposition 6.15. l ą 0 if and only if there exists an inner product x¨|¨y on Vgpl, 0q satisfying
x1|1y “ 1 such that the representation of rg on Vgpl, 0q is unitary, namely, for each X P g, u, v P

Vgpl, 0q, n P Z,

xu|Xnvy “ xpX˚q´nu|vy, xu|Kvy “ xKu|vy, xu|Dvy “ xDv|uy,

or simply pXnq: “ X˚
´n, K: “ K, D: “ D for short. Such x¨|¨y is unique if it exists.

The if part is easy to explain: We compute that xX´11|X´11y “ x1|X˚
1X´11y “

x1|rX˚, Xs01y ` lpX˚, Xq “ lpX|Xq. So if x¨|¨y is an inner product, then for each X ‰ 0,
lpX|Xq is ą 0. So l ą 0. We now explain the only if part. To simplify discussions, by
scaling p¨|¨q and hence p¨, ¨q by l and K by l´1, it suffices to assume l “ 1. (Indeed, people
usually just assume l “ 1 when discussing Heisenberg VOAs.)

6.13 ‹

Assume l “ 1. The uniqueness of x¨|¨y is easy to prove:

xX1
n1

¨ ¨ ¨Xk
nk
1|Y 1

m1
¨ ¨ ¨Y l

ml
1y “ x1|pXkq˚

´nk
¨ ¨ ¨ pX1q˚

´n1
Y 1
m1

¨ ¨ ¨Y l
ml
1y “: x1|wy.

If n1 ` ¨ ¨ ¨ ` nk “ m1 ` ¨ ¨ ¨ ` ml, then w has D-weight 0. But the weight-0 homogeneous
vectors are C1. So w “ λ1, and λ uniquely determined by the Lie bracket relations. If
n1`¨ ¨ ¨`nk ‰ m1`¨ ¨ ¨`ml, then the weight ofw is not 0. Sow “ 0 since xD1|wy “ x1|Dwy.

The existence part follows from the general construction of symmetric Fock spaces.
Let W be a (complex) inner product space together with an antiunitary involution ˚.
Note that for each N P N, WbN is naturally an inner product space. We assume W
has an orthonormal basis tei : i P Iu (which spans W algebraically). Let SN be the set of
permutations on t1, . . . , Nu. For each v1, . . . , vN P W , we define

v1 ¨ ¨ ¨ vN :“
1

?
N !

ÿ

σPSN

vσp1q b ¨ ¨ ¨ b vσpNq,

and let SN pW q Ă WbN be spanned by all such vectors. We understand S0pW q to be
the standard one dimensional inner product space C. In particular, it has a unit vector 1.
SN pW q has an orthonormal basis consisting of vectors

pei1qm1 ¨ ¨ ¨ peikqmk

?
m1! ¨ ¨ ¨mk!

pwhere i1, . . . , ik P I are distinct and
k
ÿ

j“1

mj “ Nq. (6.25)

Define an inner product space

S‚pW q “
à

NPN
SN pW q, (6.26)

called the symmetric Fock space associated to W . For each v P W , define linear maps
a`pvq, a´pvq on S‚pW q determined by

a`pvq1 “ v, a`pvqv1 ¨ ¨ ¨ vN “ vv1 ¨ ¨ ¨ vN . (6.27a)
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a´pvq1 “ 0, a´pvqv1 ¨ ¨ ¨ vN “

N
ÿ

j“1

xv˚|vjy ¨ v1 ¨ ¨ ¨ vj´1vj`1 ¨ ¨ ¨ vN . (6.27b)

The maps a˘pvq are well-defined, thanks to the basis (6.25).

Exercise 6.16. Prove the following relations.

1. a`pvq: “ a´pv˚q, namely, xξ|a`pvqνy “ xa´pv˚qξ|νy for all ξ, ν P S‚pW q. (Hint: write
ξ, ν, v in terms of the previously mentioned orthonormal basis vectors.)

2. ra´puq, a`pvqs “ xu˚|vy1S‚pW q. This is called the canonical commutation relation
(CCR).

Now let W “ t´1 ¨ grt´1s with inner product

xXt´m|Y t´ny “ mpX|Y qδm,n

for all m,n P Z`. The involution is defined to be pXt´mq˚ “ X˚t´m. According to the
description of the basis of S‚pW q, Vgp1, 0q is linearly equivalent to S‚pW q by identifying
1 with 1 and

X1
´n1

¨ ¨ ¨Xk
´nk

1 with X1t´n1 ¨ ¨ ¨Xkt´nk . (6.28)

We use the inner product on S‚pW q to define the one on Vgp1, 0q. Using CCR, it is not
hard to check that the action of Xn on Vgp1, 0q » S‚pW q is

Xn “

$

&

%

a`pXt´|n|q if n ă 0,
0 if n “ 0,

a´pXt´nq if n ą 0.

(6.29)

Thus, the representation of rg on Vgp1, 0q is unitary.

6.14

When l ą 0, Lgpl, 0q and Vgpl, 0q share the same unitarity property, because:

Proposition 6.17. If l P Cˆ, then Vgpl, 0q is an irreducible rg-module, i.e., Vgpl, 0q “ Lgpl, 0q.

Proof. We assume l ą 0 and prove the irreducibility using the unitarity. Choose any non-
zero rg-submodule W of Vgpl, 0q. We shall show W “ Vgpl, 0q.

Since W is a D-invariant subspace, D is diagonalizable on W . So W has D-grading
W “

À

něaW pnq where a is the smallest eigenvalue of D on W . We claim that a “ 0.
Then, as theD-weight 0 subspace of Vgpl, 0q is clearly spanned by 1, we must have 1 P W .
From this one sees that W “ Vgpl, 0q.

Suppose a ą 0. We choose a non-zero w P W paq, which must be a sum of vectors of
the form X1

´n1
¨ ¨ ¨Xk

´nk
1 where the sum of the positive integers n1, . . . , nk is a. Then by

the unitarity, xw|wy (which is non-zero) is a sum of x1|pXkq˚
nk

¨ ¨ ¨ pX1q˚
n1
wy. So for some
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X1
n1

, the vector v “ pX1q˚
n1
w must be nonzero. But v has D-weight a´n1 ă a, and clearly

v P W . This is a contradiction.
Now, for a general l “ |l|eiθ P Cˆ, we may replace p¨, ¨q by eiθp¨, ¨q and K by e´iθK.

Then p¨|¨q and the new p¨, ¨q are related by pX|Y q “ peiθX˚, Y q, and X ÞÑ eiθX˚ is clearly
an antiunitary involution. So Vgpl, 0q becomes Vgp|l|, 0q under the new involution and
bilinear form, and the latter has been proved irreducible.

6.15

In general, we say a finite-dimensional (complex) Lie algebra g is unitary if it is
equipped with an inner product p¨|¨q and an antiunitary involution ˚ satisfying the fol-
lowing conditions:

1. rX,Y s˚ “ rY ˚, X˚s.

2. The inner product is invariant, namely, the adjoint representation of g on g is uni-
tary:

prX,Y s|Zq “ pY |rX˚, Zsq.

Then pX,Y q :“ pX˚|Y q defines a symmetric invariant bilinear form on g.

Exercise 6.18. Let k be an g-invariant and ˚-invariant (i.e. rg, ks Ă k, k˚ “ k) subspace of g.
Let kK be the orthogonal complement of k in g.

1. Show that kK is also g-invariant and ˚-invariant.

2. Show that rk, kKs “ 0 and hence rg, ks “ rk, ks. Consequently, if k is an irreducible
g-submodule, then k is an irreducible k-module, which is (by definition) a simple
Lie algebra if moreover rk, ks ‰ 0.

Let z be the center of g, which is clearly g- and ˚-invariant. Let gss “ zK so that g “

z ‘K gss. Then the adjoint representation g ñ gss (equivalently, gss ñ gss) has orthogonal
irreducible ˚-invariant decomposition gss “ g1 ‘K ¨ ¨ ¨ ‘K gN . Each gj is a simple unitary
Lie algebra, which is classified by the type A-G Dynkin diagrams.

Conversely, suppose g is a complex simple Lie algebra, which is the complexification
of gR which is the real Lie algebra of a finite dimensional compact real Lie group G. It
is well known in Lie theory that the real vector space gR has a unique up to Rą0-scalar
multiplication G-invariant (equivalently, gR-invariant) inner product, which extends to a
complex invariant inner product p¨|¨q on g thanks to the real direct sum g “ gR ‘ igR. The
antiunitary involution on g is defined to be the unique one fixing igR. Thus g is unitary.

Therefore, in general, if z is abelian and g1, . . . , gN are simple, then g “ z‘g1‘¨ ¨ ¨‘gN
is naturally a unitary Lie algebra. So the study of unitary affine VOAs for unitary Lie
algebras reduces to that of the abelian case (which we have finished) and the simple case.
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6.16

When g is simple, the unitarity properties of Vgpl, 0q andLgpl, 0q are very different from
the abelian case. Indeed, in the abelian case, scaling the inner product does not change
the unitary equivalence class of abelian unitary Lie algebras. (This is because scaling the
vectors by a non-zero constant is an isomorphism of abelian Lie algebras.) But this is no
longer true for non-abelian Lie algebras. Also, it turns out that for a simple g, Vgpl, 0q is
never a unitary rg-module, and Lgpl, 0q is unitary for a discrete set of levels l if one fixes
the invariant inner product, or for a discrete set of invariant inner product if one fixes the
level l.

Assume g is a simple Lie algebra with compact form decomposition g “ gR ‘ igR. Let
˚ be the unique involution fixing igR. As we have said, the invariant bilinear forms on gR
(and hence on g) are unique up to scalar multiplication. So it would be better to fix one.
The one that people usually choose is:

Convention 6.19. We choose the invariant inner product on g (under which ˚ is antiuni-
tary) to be the unique one such that the longest roots of g have length

?
2.

It follows from the invariance of p¨|¨q that h_ (defined in Assumption 6.7) is a positive
number. (To see this, one may choose E to be an orthonormal basis of g, and check that
its dual basis tqe : e P Eu satisfies qe “ e˚.) The h_ corresponding to the inner product in
Convention 6.19 is called the dual Coxeter number. We have said that Lgpl, 0q and Vgpl, 0q

are VOAs if l ‰ ´h_. So this is true when l ě 0.

Theorem 6.20. Lgpl, 0q is unitary if and only if l P N. For such l, Lgpl, 0q is called a Weiss-
Zumino-Witten (WZW) model.

This is a highly non-trivial result whose proof relies on deep Lie theory. We refer the
readers to [Was10, Chapter III, Sec. 2 and 10] for a proof. Moreover, just like minimal
models, WZW models are C2-cofinite and rational. So their representation categories are
extremely nice. Due to these properties, WZW models are central objects in the study of
CFT and VOAs. (However, Heisenberg VOAs are neither C2-cofinite nor rational.)

6.17

We have shown the existence of affine VOAs when the unitary Lie algebra g is abelian
or simple. The general case can be addressed by tensor product VOAs.

Let V1,V2 be VOAs. We use the diagonalizable operator L0 b1V2 `1V1 bL0 to define
the grading on V1 b V2. The vacuum vector is 1 b 1. V1 b V2 is clearly generated by
Y pv1qm b 1V2 and 1V1 b Y pv2qn where vj P Vj , and Y pv1, zq b 1V2 is clearly local to
Y pu1, zq b1V2 (where u1 P V1) and 1V1 bY pv2, zq. One checks that L´1 b1V2 `1V1 bL´1

satisfies the translation property. So V b V is naturally a graded vertex algebra by the
reconstruction theorem. Its vertex operator satisfies

Y pv1 b 1, zq “ Y pv1, zq b 1V2 , Y p1 b v2, zq “ 1V1 b Y pv2, zq. (6.30)
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Exercise 6.21. Use (5.13) or (5.16) to show

Y pv1 b v2, zq “ Y pv1, zq b Y pv2, zq. (6.31)

Equivalently,

Y pv1 b v2qn “
ÿ

nPZ

ÿ

n1`n2“n´1

Y pv1qn1Y pv2qn2 . (6.32)

When V1,V2 are VOAs with conformal vectors c1, c2 and central charges c1, c2, it is
easy to check that V1 b V2 is a VOA with conformal vector c1 b 1 ` 1 b c2. In particular,
its Virasoro operators are Y pc1 b 1 ` 1 b cqn`1 “ Ln b 1V2 ` 1V1 b Ln. We call V1 b V2

the tensor product VOA of V1 and V2.

Exercise 6.22. Show that V1 b V2 has central charge c1 ` c2.

We remark that if V1 and V2 are unitary, then their tensor product is also unitary (cf.
[DL14, CKLW18]).

Exercise 6.23. Let g1, . . . , gN be either abelian or simple. Let V “ Lg1pl1, 0q b ¨ ¨ ¨ b

LgN plN , 0q. Show that the weight-1 subspace Vp1q, as a Lie algebra (cf. Subsec. 5.5), is
naturally isomorphic to g :“ g1 ‘ ¨ ¨ ¨ ‘ gN . Show that Vp1q generates V.

Exercise 6.24. Show that LCnp1, 0q » LCp1, 0q b ¨ ¨ ¨ b LCp1, 0q
looooooooooooooomooooooooooooooon

n times

.

7 Local fields

7.1

Having explored some important examples, we now return to the general theory. The
goal of this section is to understand the close relationship between the three statements
in Subsec. 5.8. The precise formulation of statement 1 is the Lie bracket version of local
fields, as defined in Def. 5.9 or Rem. 5.10. For statement 2 we give two rigorous descrip-
tions: the complex analytic version and the formal variable version of local fields. We first
give the complex analytic version, which is more intuitive.

We first need to define:

Definition 7.1. Let Ω be a locally compact Hausdorff space. A series of functions
ř

n fn is
said to converge absolutely and locally uniformly (a.l.u.) on Ω if each x0 P Ω is contained
in a neighborhood U such that

sup
xPU

ÿ

n

|fnpxq| ă `8.

Equivalently, for each compact subset K Ă Ω, we have supxPK

ř

n |fnpxq| ă `8

Clearly, if each
ř

fn converges a.l.u. and each fn is continuous (resp. holomorphic),
then so is the limit

ř

fn.
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7.2

Now let V “
À

nPNVpnq be graded by a diagonalizable L0. Recall the projection
Pn : Vcl “

ś

mPNVpmq Ñ Vpnq (cf. (3.18)). Let Apzq “
ř

Anz
´n´1, Bpzq “

ř

Bnz
´n´1 be

homogeneous fields with weights ∆A,∆B (cf. Def. 5.8). For each n P N and v, v1 P V, we
have

xv1, Apz1qPnBpz2qvy P OpCˆ ˆ Cˆq (7.1)

since, when v, v1 are homogeneous, this expression equals

xv1, An1Bn2vyz´n1´1
1 z´n2´1

2

where n2, n1 are determined by ∆B ` wtv ´ n2 ´ 1 “ n and ∆A ` n´ n1 ´ 1 “ wtv1.

Definition 7.2 (Local fields (complex analytic version)). We say Apzq and Bpzq are local
to each other if for each v P V, v1 P V1 the following hold.

1. The series

xv1, Apz1qBpz2qvy :“
ÿ

nPN
xv1, Apz1qPnBpz2qvy (7.2a)

xv1, Bpz2qApz1qvy :“
ÿ

nPN
xv1, Bpz2qPnApz1qvy (7.2b)

converge a.l.u. respectively on the open sets Ω1 “ tpz1, z2q P C2 : 0 ă |z2| ă |z1|u

and Ω2 “ tpz1, z2q P C2 : 0 ă |z1| ă |z2|u. So (7.2a) and (7.2b) are automatically
holomorphic functions on Ω1 and Ω2.

2. (7.2a) and (7.2b) can be analytically continued to the same holomorphic function
fv,v1 on Conf2pCˆq. Moreover, there exists N P N depending only on A,B but not
on v, v1 such that the function

pz1 ´ z2qNfv,v1pz1, z2q (7.3)

is holomorphic on Cˆ ˆ Cˆ.

Roughly speaking, this definition says that (7.2a) and (7.2b) converge a.l.u on Ω1,Ω2

and extend to the same holomorphic function on Conf2pCˆq which has poles of order at
most N at z1 “ z2, where N is independent of v, v1.

7.3

The readers will immediately notice that there is another natural convergence condi-
tion on Apz1qBpz2q: that xv1, Apz1qBpz2qvy as a formal Laurent series of z1, z2 converges
a.l.u. on Ω1. Or more precisely, the joint series

ÿ

m,nPZ
xv1, AmBnvyz´m´1

1 z´n´1
2 (7.4)
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converges a.l.u. on Ω. Is this equivalent to the convergence statement in Def. 7.2? The
answer is yes. But people will easily overlook the need to justify this equivalence. And
we need both versions of convergence since they are useful in different situations. For
instance, to prove that formal variable implies complex analytic, it is easier to prove the
a.l.u. convergence of the formal Laurent series; to prove the other direction, it is better to
use the a.l.u. convergence of the RHS of (7.2a) and (7.2b).

There is (unfortunately) one more way to understand the convergence (7.2a): we re-
gard the RHS as a series of formal Laurent series of z1, z2, which converges formally to
the LHS also as a formal Laurent series in the following sense:

Definition 7.3. We say that a sequence (indexed by k)

fkpz1, . . . , zM q “
ÿ

n1,...,nMPZ
fk,n‚

zn1
1 ¨ ¨ ¨ znM

M

of elements of W rrz˘1
1 , . . . , z˘1

M ss converges formally to

fpz1, . . . , zM q “
ÿ

n1,...,nMPZ
fn‚z

n1
1 ¨ ¨ ¨ znM

M

if for each n‚, the coefficient fk,n‚
equals fn‚ except for finitely many k.

Note that in applications, k can be in any countable set: N,Z,Z2, etc.
We will show the equivalence of the two a.l.u. convergences with the help of the

following obvious lemma.

Lemma 7.4. Let X be a complex manifold. Let fkpx, z‚q be a series of OpXq -coefficients mono-
mials of z˘1

1 , . . . , z˘1
M , i.e., fkpx, z‚q “ gkpxqz

nk,1

1 ¨ ¨ ¨ z
nk,M

M where each gk P OpXq and nk,j P Z.
Assume that if k ‰ k1 then nk,j ‰ nk1,j for some 1 ď j ď M . Then

ř

k fkpx, z‚q clearly converges
formally to some f P OpXqrrz˘1

1 , . . . , z˘1
M ss. Namely, the following holds formally:

fpx, z‚q “
ÿ

k

fkpx, z‚q. (7.5)

Moreover, let Ω be an open subset of CM . Then fpx, z‚q as an OpXq-coefficients formal Laurent
series of z‚ (indexed by the powers of z‚) converges a.l.u. on X ˆ Ω if and only if the series
ř

k fkpx, z‚q (indexed by k) converges a.l.u. on X ˆ Ω. If so, then the two limits are equal, i.e.,
(7.5) holds as holomorphic functions on X ˆ Ω.

7.4

We now show that (7.2a) as an infinite sum over n converges a.l.u. on Ω1 iff the LHS
of (7.2a) as a formal Laurent series of z1, z2 converges a.l.u. on Ω1. Note that both con-
vergences are preserved by taking linear combinations. So it suffices to assume that v, v1

are homogeneous.3 Let us prove our claim by checking that the sum (7.2a) satisfies the
assumption in Lemma 7.4:

3We cannot directly apply Lemma 7.4 if v, v1 are not homogeneous.
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Since Bpz2q is homogeneous, similar to the proof of Prop. 3.5, we have the translation
covariance

Bpλz2q “ λ´∆B ¨ λL0Bpz2qλ´L0 . (7.6)

This shows

Bpz2q “ z´∆B
2 ¨ zL0

2 Bp1qz´L0
2 . (7.7)

A similar relation holds for Apz1q. So for each n P N, we have (in the sense of Crz˘1
1 , z˘1

2 s)

xv1, Apz1qPnBpz2qvy “ xv1, zL0´∆A
1 Ap1qz´L0

1 Pnz
´∆B`L0
2 Bp1qz´L0

2 vy

“zwtv1´∆A
1 z´∆B´wtv

2 ¨
`z2
z1

˘n@
v1, Ap1qPnBp1qv

D

, (7.8)

noting that z´L0
1 Pn “ z´n

1 Pn and Pnz
L0
2 “ Pnz

n
2 .

Exercise 7.5. Let V be a graded vertex algebra. Choose u, v P V and v1 P V1. Use (3.36)
and Lemma 7.4 to show that

ÿ

nPN

@

v1, Y pu, zqPne
´τL´1v

D

“
ÿ

nPN

@

v1, e´τL´1PnY pu, z ` τqv
D

, (7.9)

where both sides converge a.l.u. on tz ‰ 0, |τ | ă |z|u to the same function. (Note that the
RHS is a finite sum.)

7.5

Definition 7.6 (Local fields (formal variable version)). There exists N P N depending
only on A and B such that the equation

pz1 ´ z2qN rApz1q, Bpz2qs “ 0 (7.10)

holds on the level of EndpVqrrz˘1
1 , z˘1

2 ss.

This version of local fields is the most common in the literature, partly because it is
the most concise. Indeed, since locality implies Jacobi identity, many people use locality
instead of Jacobi identity in the definition of VOAs. We do not take this approach because
locality has its own limitation: in the definition of VOA modules and conformal blocks,
we need the full Jacobi identity, but not just locality.

7.6

Almost everyone will have the following question when they first see this definition:
doesn’t (7.10) imply rApz1q, Bpz2qs “ 0? The answer is no: for a vector spaceW in general,
it is possible that fg “ 0 for some fpz1, z2q, gpz1, z2q P W rrz˘1

1 , z˘1
2 ss although f ‰ 0, g ‰ 0.

In other words, assuming W “ C for simplicity, then Crrz˘1
1 , z˘1

2 ss (unlike Crrz1, z2ss) has
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“zero divisors”. (We put quotation marks here because Crrz˘1
1 , z˘1

2 ss is actually not a
ring.)

Indeed, choose N ą 0. Then pz1 ´ z2q´N can be expanded in two ways: f “
ř

jě0

`

´N
j

˘

zj1p´z2q´N´j as if |z1| ă |z2|, and g “
ř

jě0

`

´N
j

˘

z´N´j
1 p´z2qj as if |z1| ą |z2|.

Then f ‰ g, but pz1 ´ z2qNf “ pz1 ´ z2qNg “ 1. So pz1 ´ z2qN is a zero divisor. Simi-
larly, one shows that p1 ` zqN (where N ą 0) is a zero divisor in Crrz˘1ss by expanding
p1 ` zq´N as if |z| ă 1 and as if |z| ą 1.

This phenomenon is closely related to the fact that Crrz˘1
1 , z˘1

2 ss (and similarly
Crrz˘1ss) is not a ring: the product of two arbitrary elements cannot be defined. This
is in contrast to the following basic fact:

Lemma 7.7. If F is a field, then Fppzqq is naturally a field. In particular, Fppzqq is closed under
taking product and inverse (for non-zero elements).

Exercise 7.8. Suppose fpzq P Fppzqq is not zero. Find an algorithm of determining the
inverse 1{fpzq.

Thus, by taking F “ Cppz1qq, we see that Cppz1qqppz2qq is also a field. This implies that
pz1 ´ z2qN is not a zero divisor in Cppz1qqppz2qq: Suppose that pz1 ´ z2qNfpz1, z2q “ 0, and
that f P Cppz1qqppz2qq, i.e.,

fpz1, z2q “
ÿ

n2ěL
n1ěKn2

fn1,n2z
n1
1 zn2

2

for some L P Z and Kn2 P Z for each n2. Then f “ 0 because f “ pz1 ´ z2q´N pz1 ´

z2qNf “ 0 where pz1 ´ z2q´N is the inverse of pz1 ´ z2qN in Cppz1qqppz2qq, which is
ř

jě0

`

´N
j

˘

z´N´j
1 p´z2qj . (If we expand pz1 ´ z2q´N as if |z1| ă |z2|, we get the inverse

of pz1 ´ z2qN in Cppz2qqppz1qq.)
If, however, f P Crrz˘1

1 , z˘1
2 ss is neither in Cppz2qqppz1qq nor in Cppz1qqppz2qq, then pz1 ´

z2qNf “ 0 does not imply f “ 0 since we cannot multiply both sides by either inverse of
pz1 ´ z2qN . (There is no associativity law pfgqh “ fpghq in Crrz˘1

1 , z˘1
2 ss even if both sides

can be defined.)

7.7

Each of the three versions has its own advantage, and it is the goal of this section
to prove the equivalence of them. This is a crucial step for proving the reconstruction
theorem. Moreover, note that in each of these three versions there is a number N . We can
prove the equivalence of the three versions for the same N .

The Lie algebraic version is the easiest to verify in concrete examples: we have already
seen this in the previous section. In contrast, the complex analytic one is the most difficult
to verify. But the complex analytic version is closest to how physicists understand local
fields. So it allows us to prove results in a similar fashion as in physics literature. For
instance: we will prove the existence of OPE using the complex analytic version of local
fields. And with the help of OPE, we can prove that complex analytic implies Lie bracket
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version in the same way as deriving the algebraic Jacobi identity from the complex ana-
lytic one using residue theorem. Finally, to prove the complex analytic version from the
Lie algebraic one, we need the help of the formal variable version. Also, using the formal
variable version, we can generalize the statements in Def. 7.2 to more than two fields.
This generalization is crucial for proving the reconstruction theorem.

Lie algebraic Formal variable Complex analytic

OPE

7.8

7.9

7.10

7.117.12

From the above chart, we see that a direct proof from complex analytic to formal vari-
able is not necessary for proving the equivalence of the three versions. We will still give
such a proof because: In the VOA theory, many definitions and properties can be stated
in both algebraic (i.e., formal variable) and complex analytic language. It is important to
learn how to translate between these two.

7.8

The proof that Lie algebraic implies formal variable is by brutal force. Assume the
homogeneous fieldsApzq, Bpzq satisfies (5.27). Let us prove that pz1´z2qN rApz1q, Bpz2qs “

0.

Proof. Showing pz1 ´ z2qN rApz1q, Bpz2qs “ 0 amounts to showing that for all m,n P Z, the
following expression vanishes:

Resz1“0Resz2“0 z
m
1 z

n
2 ¨ pz1 ´ z2qN rApz1q, Bpz2qsdz1dz2

“

N
ÿ

j“0

Resz1“0Resz2“0

ˆ

N

j

˙

zm`j
1 zn`N´j

2 p´1qN´jrApz1q, Bpz2qsdz1dz2

“

N
ÿ

j“0

ˆ

N

j

˙

p´1qN´jrAm`j , Bn`N´js

“

N
ÿ

j“0

ˆ

N

j

˙

p´1qN´j
N´1
ÿ

l“0

ˆ

m` j

l

˙

C l
m`n`N´l.

(7.11)

This expression vanishes because of the next lemma.

Lemma 7.9. For each N P Z`, m P Z, and l “ 0, 1, . . . , N ´ 1, we have

N
ÿ

j“0

ˆ

N

j

˙

p´1qN´j

ˆ

m` j

l

˙

“ 0.
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Proof. The function fpzq “ p1 ` zqmzN is holomorphic on D1, and its power series ex-
pansion contains no less-than-N powers of z. But we can expand fpzq in the following
way:

fpzq “ p1 ` zqmp´1 ` 1 ` zqN “

N
ÿ

j“0

p1 ` zqm ¨

ˆ

N

j

˙

p´1qN´jp1 ` zqj

“

N
ÿ

j“0

¨

ˆ

N

j

˙

p´1qN´jp1 ` zqm`j “

N
ÿ

j“0

ÿ

lPN

ˆ

N

j

˙

p´1qN´j

ˆ

m` j

l

˙

zl.

The coefficient before zl vanishes when l ă N . This proves our formula.

7.9

Let us prove that formal variable implies complex analytic. The method is due to
[FHL93].

Proof. Assume pz1 ´ z2qN rApz1q, Bpz2qs “ 0. Choose homogeneous v P V, v1 P V1. Let

fpz1, z2q “ xv1, Apz1qBpz2qvy, gpz1, z2q “ xv1, Bpz2qApz1qvy

which are both in Crrz˘1
1 , z˘1

2 ss. So is

ϕpz1, z2q “ pz1 ´ z2qNfpz1, z2q “ pz1 ´ z2qNgpz1, z2q.

Step 1. We claim that ϕ is actually in Crz˘1
1 , z˘1

2 s. Note that

fpz1, z2q “
ÿ

m,nPZ
xAt

mv
1, Bnvyz´m´1

1 z´n´1
2 . (7.12)

Since Bn increases the weights by ∆B ´ n ´ 1, we have Bnv “ 0 for sufficiently positive
n. At

m is the transpose of A sending each u1 P V1pkq to u1 ˝ Am. One checks easily that
At

m lowers the weights by ∆A ´ m ´ 1. So At
mv

1 vanishes for sufficiently negative m.
Therefore, the coefficients of f vanish the if powers of z2 are sufficiently negative or the
powers of z1 are sufficiently positive. The same can be said about ϕ “ pz1 ´ z2qNf .
Similarly, the coefficients of g vanishes when the powers of z1 (resp. z2) are sufficiently
negative (resp. positive), and the same can be said about ϕ. Therefore ϕ has finitely many
terms: ϕpz1, z2q P Crz˘1

1 , z˘1
2 s. In particular, ϕ P OpCˆ ˆ Cˆq.

Step 2. From (7.12), it is clear that fpz1, z2q is in Crz˘1
1 sppz2qq Ă Cppz1qqppz2qq. So

fpz1, z2q “ pz1´z2q´Nϕpz1, z2q where pz1´z2q´N P Cppz1qqppz2qq is the inverse of pz1´z2qN

expanded in |z2| ă |z1| (cf. Subsec. 7.6). So the formal Laurent series fpz1, z2q converges
a.l.u. to the rational function pz1 ´ z2q´Nϕpz1, z2q on 0 ă |z2| ă |z1| since the series
expansion of pz1 ´ z2q´Nϕpz1, z2q does. Similarly, gpz1, z2q converges a.l.u. on 0 ă |z1| ă

|z2| to pz1 ´ z2q´Nϕpz1, z2q. This finishes the proof.
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7.10

We now prove that complex analytic implies formal variable. To prepare for the proof,
note that for any k P N, any m,n P Z, and any R1, R2 ą 0,

¿

|z1|“R1

¿

|z2|“R2

zm1 z
n
2 xv1, Apz1qPkBpz2qvy

dz1dz2
p2iπq2

“ xv1, AmPkBnvy. (7.13)

Indeed, this is obvious when Vpkq is finite dimensional, in which case
xv1, Apz1qPkBpz2qvy “

ř

exv1, Apz1qeyxqe,Bpz2qvy where teu is a basis of Vpkq and tqeu
is its dual basis. In the general case, we may first fix z2 and integrate z1 by considering
PkBpz2qv as a fixed vector in Vpkq, and then integrate z2 by considering xv1, AmPk¨y as an
element of V1pkq “ Vpkq˚.

Proof. Assume the statements in Def. 7.2 hold. Let fv,v1 P OpConf2pCˆqq be as in Def. 7.2.
Since ϕ :“ pz1 ´ z2qNfv,v1 belongs to OpCˆ ˆ Cˆq, by complex analysis, for each m,n P Z
the value of

Γ :“

¿

|z1|“R1

¿

|z2|“R2

zm1 z
n
2ϕpz1, z2q

dz1dz2
p2iπq2

is independent of the specific values of R1, R2. (This is where we use the fact that ϕ has
no poles at z1 “ z2.)

We compute Γ in two ways. Assume R1 ą R2. Then since 0 ă |z2| ă |z1|, we have

ϕpz1, z2q “
ÿ

kPN
pz1 ´ z2qNxv1, Apz1qPkBpz2qvy.

Thus, using (7.13), we can compute

Γ “

¿

|z1|“R1

¿

|z2|“R2

ÿ

kPN
zm1 z

n
2 pz1 ´ z2qNxv1, Apz1qPkBpz2qvy

dz1dz2
p2iπq2

“
ÿ

kPN

¿

|z1|“R1

¿

|z2|“R2

N
ÿ

j“0

ˆ

N

j

˙

zm`j
1 zn`N´j

2 p´1qN´jxv1, Apz1qPkBpz2qvy
dz1dz2
p2iπq2

“
ÿ

kPN

N
ÿ

j“0

ˆ

N

j

˙

p´1qN´jxv1, Am`jPkBn`N´jvy “

N
ÿ

j“0

ˆ

N

j

˙

p´1qN´jxv1, Am`jBn`N´jvy

where
ř

kPN commutes with the two contour integrals thanks to the a.l.u. convergence.
Similarly, if we assume R1 ă R2, then ϕpz1, z2q “

ř

kPNpz1 ´ z2qNxv1, Bpz2qPkApz1qvy, and
hence

Γ “

N
ÿ

j“0

ˆ

N

j

˙

p´1qN´jxv1, Bn`N´jAm`jvy.

This shows
řN

j“0

`

N
j

˘

p´1qN´jrAm`j , Bn`N´js “ 0. If we compare this with the first
several lines of (7.11), we see that this is equivalent to pz1 ´ z2qN rApz1q, Bpz2qs “ 0 in
EndVrrz˘1

1 , z˘1
2 ss.
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7.11

In this subsection, we assume the statements in Def. 7.2, and derive the OPE
Apz1qBpz2q “

ř

kPZpz1 ´ z2q´k´1pAkBqpz2q similar to Y pu, z1qY pv, z2q “
ř

kPZpz1 ´

z2q´k´1Y pY puqkv, z2q for some fields pAkBqpzq. This is simply done by taking Laurent
series expansions of z1 ´ z2 of the function fv,v1 in Def. 7.2. Thus, the existence of OPE
simply follows from complex analysis. Since we are treating multivariable holomorphic
functions, to be serious about the domain of a.l.u. convergence, we provide some details
below.

Definition 7.10. For each k P Z and z P Cˆ, let fv,v1 P OpConf2pCˆqq be as in Def. 7.2. We
define the linear map

pAkBqpzq : V1 b V Ñ C, v1 b v ÞÑ xv1, pAkBqpzqvy

to be

xv1, pAkBqpz2qvy “

¿

Cpz2q

pz1 ´ z2qkfv,v1pz1, z2q
dz1
2iπ

(7.14)

where Cpz2q is any circle in Cˆ surrounding z2. Note that pAkBqpzqv is naturally an
element of pV1q˚ “

ś

nPNVpnq˚˚, the (algebraic) dual space of V1. Also,
@

v1, pAkBqpz2qv
D

is clearly a holomorphic function of z2 on Cˆ.

Lemma 7.11. AkB “ 0 whenever k ě N .

Proof. When k ě N , pz1 ´ z2qkfv,v1 has no poles at z1 “ z2. So the RHS of (7.14) vanishes.

Proposition 7.12. For each v P V, v1 P V1, we have

fv,v1pz1, z2q “
ÿ

kPZ
pz1 ´ z2q´k´1

@

v1, pAkBqpz2qv
D

(7.15)

where the series on the RHS converges a.l.u. on Ω0 “ tpz1, z2q : 0 ă |z1 ´z2| ă |z2|u to the LHS.

Proof. It suffices to prove the claim on tpz1, z2q : 0 ă |z1 ´ z2| ă r, r ă |z2|u for all r ą 0.
Then this follows easily from the following basic lemma.

Lemma 7.13. Let U be an open subset of Cm and let f “ fpz1, . . . , zm, q1, . . . , qnq be a
holomorphic function on U ˆ Ar1,R1 ˆ ¨ ¨ ¨ ˆ Arn,Rn where each 0 ď ri ă Ri ď `8 and
Ari,Ri “ tqi P C : ri ă |qi| ă Riu. Then f has Laurent series expansion

fpz‚, q‚q “
ÿ

k1,...,knPZ
fk‚

pz‚qq´k1´1
1 ¨ ¨ ¨ q´kn´1

n (7.16)

converging a.l.u. on U ˆAr1,R1 ˆ ¨ ¨ ¨ ˆArn,Rn , where each

fk‚
pz‚q “

¿

Cn

¨ ¨ ¨

¿

C1

fpz‚, q‚qqk11 ¨ ¨ ¨ qknn
dq1 ¨ ¨ ¨ dqn

p2iπqn
(7.17)

(where Cj is an anticlockwise circle around 0) is clearly holomorphic on U .
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Proof. For simplicity, we assume n “ 1 and write q1 “ q, r1 “ r,R1 “ R. We shall prove
the a.l.u. convergence on pz‚, qq P U ˆ A

rr, rR
for all rr, rR such that r ă rr ă rR ă R. Let

C´ “ tq P C : |q| “ pr ` rrq{2u and C` “ tq P C : |q| “ pR ` rRq{2u. Then on U ˆA
rr, rR

,

fpz‚, qq “ Resp“q
fpz‚, pq

p´ q
dp “

ˆ
¿

C`

´

¿

C´

˙

fpz‚, pq

p´ q

dp

2iπ
.

We have fpz‚,pq

p´q “
ř

kď´1 q
´k´1pkfpz‚, pq where the RHS converges on pz‚, q, pq P

pU ˆ A
rr, rR

ˆ C`q to the LHS by basic analysis. The same can be said about fpz‚,pq

p´q “

´
ř

kě0 q
´k´1pkfpz‚, pq if C` is replaced by C´. So in view of (7.17), and noting that in-

tegrals commute with infinite sums due to a.l.u. convergence, the RHS of
ű

C`

fpz‚,pq

p´q
dp
2iπ “

ř

kď´1 fkpz‚qq´k´1 (resp.
ű

C´

fpz‚,pq

p´q
dp
2iπ “ ´

ř

kě0 fkpz‚qq´k´1) converges a.l.u. on
U ˆA

rr, rR
to the RHS. This completes the proof.

7.12

We continue our discussion in the previous section. Let pAnBqk : V1 b V Ñ C such
that

xv1, pAnBqkvy “ Resz“0xv1, pAnBqpzqvyzkdz.

In other words, pAnBqk is a linear map V Ñ pV1q˚ “
ś

nPNVpnq˚˚.

Proposition 7.14. Assume that Apzq, Bpzq satisfy Def. 7.2. Then the following Jacobi identity
holds:

ÿ

lPN

ˆ

m

l

˙

pAn`lBqm`k´l

“
ÿ

lPN
p´1ql

ˆ

n

l

˙

Am`n´lBk`l ´
ÿ

lPN
p´1qn`l

ˆ

n

l

˙

Bn`k´lAm`l.

(7.18)

Remark 7.15. There are two immediate consequences of this proposition. First, by setting
m “ 0, we get a formula to express pAnBqk in terms of the modes of Apzq and Bpzq.
From that expression, one easily checks that pAnBqk sends each Vpaq to Vpbq where b “

a ` ∆A ` ∆B ´ n ´ k ´ 2. This shows that pAnBqk is a linear operator on V, and that
pAnBqpzq is a homogeneous field with weight ∆A `∆B ´n´ 1. Second, by setting n “ 0,
we see that Apzq is local to Bpzq in the Lie algebraic sense.

Proof of Prop. 7.14. The idea is the same as the proof of VOA Jacobi identity in Subsec. 4.8.
(Note that roles of z1, z2 in Subsec. 4.8 are switched here.) For each z2 P Cˆ, we choose
a large circle C` and a small one C´ centered at 0, and a small one C0 centered at z2.
Choose µ “ zm1 pz1 ´ z2qndz1. Set f “ fv,v1 . Then

¿

C`

fµ

2iπ
´

¿

C´

fµ

2iπ
“

¿

C0

fµ

2iπ
. (7.19)

78



When z1 is on C`, f takes the form (7.2a). Moreover, the RHS of

zm1 pz1 ´ z2qndz1fpz1, z2q “
ÿ

l,sPN

ˆ

n

l

˙

p´z2qlzm`n´l
1 xv1, Apz1qPsBpz2qvy

converges a.l.u. on 0 ă |z2| ă |z1| to the LHS. So
¿

C`

fµ

2iπ
“

¿

C`

ÿ

l,sPN

ˆ

n

l

˙

p´z2qlzm`n´l
1 xv1, Apz1qPsBpz2qvy

dz1
2iπ

“
ÿ

l,sPN

ˆ

n

l

˙
¿

C`

p´z2qlzm`n´l
1 xv1, Apz1qPsBpz2qvy

dz1
2iπ

“
ÿ

l,sPN

ˆ

n

l

˙

p´z2qlxpAm`n´lq
tv1, PsBpz2qvy

dz1
2iπ

where the contour integral commutes with the infinite sum due to the a.l.u. convergence;
pAm`n´lq

t is the transpose of Am`n´l, sending v1 to a vector of Vpsq where s “ wtv1 ´

∆A ` m ` n ´ l ` 1. So when s is not this weight, the above summand vanishes. We can
thus write the above expression as

ÿ

lPN

ˆ

n

l

˙

p´z2qlxpAm`n´lq
tv1, Bpz2qvy

dz1
2iπ

.

The integral on C´ can be treated in a similar way. And by Prop. 7.12,
¿

C0

fµ

2iπ
“

¿

C0

ÿ

l,sPN

ˆ

m

l

˙

zm´l
2 pz1 ´ z2qn`l ¨ pz1 ´ z2q´s´1xv1, pAsBqpz2qvy

dz1
2iπ

where series inside the integrand converge a.l.u. on 0 ă |z1 ´ z2| ă |z2|. So we can
exchange the integral and the sum to compute the result

ÿ

lPN

ˆ

m

l

˙

zm´l
2 xv1, pAn`lBqpz2qvy.

This computes (7.19). Now all three terms are clearly holomorphic functions of z2 on Cˆ.
Multiply them by zk2dz2 and evaluate the residue at z2 “ 0, we get (7.18).

7.13

We are now ready to prove the equivalence of the complex analytic version and the
algebraic version of Jacobi identity.

Definition 7.16 (Jacobi identity (complex-analytic version)). For each u, v, w P V and
w1 P V, the following series

@

w1, Y pu, z1qY pv, z2qw
D

:“
ÿ

nPN

@

w1, Y pu, z1qPnY pv, z2qw
D

, (7.20a)

79



@

w1, Y pv, z2qY pu, z1qw
D

:“
ÿ

nPN

@

w1, Y pv, z2qPnY pu, z1qw
D

, (7.20b)

@

w1, Y
`

Y pu, z1 ´ z2qv, z2
˘

w
D

:“
ÿ

nPN

@

w1, Y
`

PnY pu, z1 ´ z2qv, z2
˘D

(7.20c)

converge a.l.u. respectively on

tpz1, z2q P C2 : 0 ă |z2| ă |z1|u, (7.21a)

tpz1, z2q P C2 : 0 ă |z2| ă |z2|u, (7.21b)

tpz1, z2q P C2 : 0 ă |z1 ´ z2| ă |z2|u (7.21c)

and can be extended to the same holomorphic function fw,u,v,w1 on Conf2pCˆq.

Theorem 7.17. The complex analytic and the algebraic versions of Jacobi identity are equivalent.

Proof. Complex analytic implies algebraic: This follows from the argument in Subsec. 4.8
or the proof of Prop. 7.14.

Algebraic implies complex analytic: Assume that u, v, w,w1 are homogeneous. Let
Apzq “ Y pu, zq and Bpzq “ Y pv, zq. Then A and B are local. Moreover, the VOA Jacobi
identity expresses Y pY puqnv, zq in terms of Y pu, zq, Y pv, zq, and (7.18) expresses pAnBqpzq

in terms of Apzq, Bpzq. From these two expressions, it is clear that

Y pY puqnv, zq “ pAnBqpzq. (7.22)

Thus, the complex analytic locality ofA andB proves the complex analytic Jacobi identity.
Note that the a.l.u. convergence of (7.20c) “

ř

mPZ
@

w1, Y pY puqmvqw
D

pz1 ´ z2q´m´1 (note
that PnY pu, z1 ´ z2qv “ Y puqmpz1 ´ z2q´m´1v where n “ wtu`wtv´m´ 1) follows from
that of (7.15).

8 n-point functions for vertex operators; proof of reconstruction
theorem

8.1

The goals of this section are twofold. We first prove two analytic properties for n-point
functions generalizing Def. 7.2. Then we use these results to prove the reconstruction
theorem.

We say that a collection pAipzqqiPI of homogeneous fields are mutually local ifAipzq is
local to Ajpzq when i, j P I and i ‰ j. We say that Ai is self local if Aipzq is local to Aipzq.

Theorem 8.1. Assume that the homogeneous fields A1pzq, . . . , AM pzq P pEndVqrrz˘1ss are
mutually local. Then for each v P V, v1 P V1 and each permutation σ of t1, . . . ,Mu, the series

@

v1, Aσp1qpzσp1qq ¨ ¨ ¨AσpMqpzσpMqqv
D

P pEndVqrrz˘1
1 , . . . , z˘1

M ss (8.1)

converges a.l.u. on

Ωσ “ tz‚ P CM : 0 ă |zσpMq| ă ¨ ¨ ¨ ă |zσp1q|u (8.2)
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and can be extended to some fv,v1 P OpConfM pCˆqq independent of σ. Moreover, there exists
N P N for all v, v1 such that

fv,v1pz‚q ¨
ź

1ďiăjďM

pzi ´ zjq
N (8.3)

is holomorphic on pCˆqM . (Indeed, it is an element of Crz˘1
1 , . . . , z˘1

M s.)

fv,v1 is called the pM ` 2q-point (genus 0 correlation) function associated to the fields
A‚pzq. In case each Aipzq is a vertex operator Y pui, zq, fv,v1 is the correlation function
associated to (setting ζ to be the standard coordinate of C)

pP1; 0, z1, . . . , zM ,8; ζ, ζ ´ z1, . . . , ζ ´ zM , ζ
´1q, (8.4)

where v, u1, . . . , uM , v1 are going into the punctures 0, z1, . . . , zM ,8 respectively.

Remark 8.2. The a.l.u. convergence on Ωσ of the formal Laurent series (8.1) is equivalent
to that of the series of functions

@

v1, Aσp1qpzσp1qq ¨ ¨ ¨AσpMqpzσpMqqv
D

:“
ÿ

n2,...,nMPN

@

v1, Aσp1qpzσp1qqPn2A
σp2qpzσp2qqPn3 ¨ ¨ ¨PnMA

σpMqpzσpMqqv
D

. (8.5)

Indeed, assume for simplicity that σ “ 1 and v, v1 are homogeneous. Then by scale co-
variance (7.7), the RHS of the above formula equals

ÿ

n2,...,nMPN

@

v1, A1p1qPn2A
2p1qPn3 ¨ ¨ ¨PnMA

M p1qv
D

¨

´z2
z1

¯n2
´z3
z2

¯n3

¨ ¨ ¨

´ zM
zM´1

¯nM

¨ zwtv1

1 z´wtv
M ¨

M
ź

i“1

z
´∆Ai

i ,

(8.6)

which together with Lemma 7.4 proves the claim.

8.2

Proof of Thm. 8.1. (Cf. [FHL93].) The method is the same as in Subsec. 7.9. ChooseN such
that pzi ´ zjq

N rAipziq, A
jpzjqs “ 0 for all i, j. Set

fσpz‚q “
@

v1, Aσp1qpzσp1qq ¨ ¨ ¨AσpMqpzσpMqqv
D

P Crrz˘1
‚ ss “ Crrz˘1

1 , . . . , z˘1
M ss. (8.7)

Then the formal Laurent series

ϕpz‚q “ fσpz‚q ¨
ź

1ďiăjďM

pzi ´ zjq
N (8.8)

is independent of the permutation σ. From

f1pz‚q “
ÿ

m,nPZ
xpA1

mqtv1, A2pz2q ¨ ¨ ¨AM´1pzm´1qAM
n vy ¨ z´m´1

1 z´n´1
M
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and the lower truncation property, we see that the coefficients of f1pz‚q and hence of
ϕpz‚q vanish if the powers of zM (resp. z1) is sufficiently negative (resp. positive). Since
we can replace M with σpMq and 1 with σp1q, we see that the coefficients of ϕ vanish
except when the powers z1, . . . , zM are all bounded from below and from above by some
fixed constants. Namely, ϕpz‚q P Crz˘1

1 , . . . , z˘1
M s. In particular, ϕ can be regarded as a

holomorphic function on pCˆqM .
By expanding f1pz‚q as a formal Laurent series of z1, . . . , zM , it is not hard to see (e.g.

by induction on M or by (8.6)) that

f1pz‚q P F :“ Cppz1qqppz2qq ¨ ¨ ¨ ppzM qq. (8.9)

So, for σ “ 1, (8.8) holds in the field F. So

f1pz‚q “ ϕpz‚q ¨
ź

1ďiăjďM

pzi ´ zjq
´N (8.10)

where gpz‚q “
ś

1ďiăjďM pzi ´ zjq
´N P F is expanded in the region Ω1 (defined by (8.2)),

cf. Subsec. 7.6. Namely,

gpz‚q “
ź

1ďiăjďM

z´N
i ¨

ÿ

kPN

ˆ

´N

k

˙

´

´
zj
zi

¯k
P F

We claim that the series gpz‚q converges a.l.u. on Ω1. Then ϕpz‚qgpz‚q as a formal se-
ries converges a.l.u. on Ω1 to ϕpz‚qgpz‚q as a rational function (which is holomorphic on
Ω1). We denote this rational function by fv,v1 . Then, this statement also holds when the
permutation 1 is replaced by any σ, our proof is therefore completed.

To prove the claim, it suffices to show that gpq1, q1q2, . . . , q1q2 ¨ ¨ ¨ qM q, as a formal Lau-
rent series of q1 “ z1, q2 “ z2{z1, q3 “ z3{z2, . . . , qM “ zM{zM´1, converges a.l.u. on
Ω1 “ tpq1, . . . , qM q P CM : 0 ă |q1|, 0 ă |qj | ă 1 if 2 ď j ď Mu. But this is clearly true
because

g “
ź

1ďiăjďM

pq1q2 ¨ ¨ ¨ qiq
´N ¨

ÿ

kPN

ˆ

´N

k

˙

p´qi`1qi`2 ¨ ¨ ¨ qjq
k P Cppq1, . . . , qM qq

is the Laurent series expansion on the polyannulus Ω1 of the holomorphic function
ź

1ďiăjďM

pq1q2 ¨ ¨ ¨ qi ´ q1q2 ¨ ¨ ¨ qjq
´N P OpΩ1q

8.3

Definition 8.3. Let A1, . . . , AM be mutually local. For each z‚ P ConfM pCˆq,

A1pz1q ¨ ¨ ¨AM pzM q : V1 b V Ñ C (8.11)

is defined to be the linear map sending v1 b v to fv,v1 in Thm. 8.1. Equivalently,
A1pz1q ¨ ¨ ¨AM pzM q is a linear map from V to pV1q˚ “

ś

nPNVpnq˚˚.
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According to this notation, for local A,B we have

Apz1qBpz2q “ Bpz2qApz1q, pAnBqpz2q “ Resz1“z2Apz1qBpz2qpz1 ´ z2qndz1. (8.12)

The following is our second analytic property for n-point functions.

Theorem 8.4. Assume A1, ¨ ¨ ¨ , Am, B1, . . . , Bn are mutually local. Then on

Ω “ tpz1, . . . , zm, ζ1, . . . , ζnq P Confm`npCˆq : |zi| ą |ζj | for all i, ju,

for each v P V, v1 P V1 the RHS of

xv1, A1pz1q ¨ ¨ ¨AmpzmqB1pζ1q ¨ ¨ ¨Bnpζnqvy

“
ÿ

kPN
xv1, A1pz1q ¨ ¨ ¨AmpzmqPkB

1pζ1q ¨ ¨ ¨Bnpζnqvy (8.13)

converges a.l.u. to the LHS.

The meaning of the product of A1pz1q ¨ ¨ ¨Ampzmq and B1pζ1q ¨ ¨ ¨Bnpζnq is clear: it cor-
responds to the sewing of (setting ζ to be the standard coordinate of C)

X1 “ pP1; 0, z1, . . . , zm,8; ζ, ζ ´ z1, . . . , ζ ´ zm, ζ
´1q,

X2 “ pP1; 0, ζ1, . . . , ζn,8; ζ, ζ ´ ζ1, . . . , ζ ´ ζn, ζ
´1q

along 0 P X1 and 8 P X2, in case all these fields are vertex operators. Moreover, this
picture, as well as the theorem, can be easily generalized to the products of several strings
of mutually local fields.

Remark 8.5. Note that each summand on the RHS of (8.13) is holomorphic on pz‚, ζ‚q P

ConfmpCˆq ˆ ConfnpCˆq. When Vpkq is finite-dimensional, this is due to Thm. 8.1 and
that Pk can be written as

ř

e eyxqe for a basis teu of Vpkq and dual basis tqeu.
In the general case that Vpkq is not necessarily finite dimensional, Pk is the projection

from pV1q˚ onto Vpkq˚˚. In each series Aipziq “
ř

nPNA
i
nz

´n´1
i in (8.13), Ai

n is understood
as pAi

nqtt sending each Vpaq˚˚ to Vpbq˚˚ where b “ a ` ∆A ´ n ´ 1. Then, in this sense
A1, . . . , Am are mutually local. Each summand on the RHS of (8.13) is continuous over
pz‚, ζ‚q P ConfmpCˆq ˆ ConfnpCˆq; for fixed z‚, it is holomorphic over ζ‚ by treating
xv1, A1pz1q ¨ ¨ ¨AmpzmqPk¨y as an element of Vpkq˚; similarly, it is holomorphic over z‚. So,
again, it is holomorphic on ConfmpCˆq ˆ ConfnpCˆq.

8.4

The idea of the proof of Thm. 8.4 is the following. To show that a series of functions
ř

n fnpz‚q converges a.l.u. on a domain U : We try to find r ą 1 and a smaller U 1 such
that

ř

n fnpz‚qqn converges a.l.u. on z‚ P U 1 and q P Dˆ
r to a function f holomorphic

on U ˆ Dˆ
r . Then by Lemma 7.13,

ř

n fnpz‚qqn is the series expansion of f , which must
converge a.l.u. on U ˆ Dˆ

r .
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Proof of Thm. 8.4. It suffices to prove the proposition when Ω is replaced by all possible

Ωr “ tpz1, . . . , zm, ζ1, . . . , ζnq P Confm`npCˆq : |zi| ą r|ζj | for all i, ju

where r ą 1. To clarify the subtlety, we let rAi
n : Vpaq˚˚ Ñ Vpbq˚˚ denote the double

transpose of Ai
n : Vpaq Ñ Vpbq. To simplify discussions we assume m “ n “ 2. Consider

the following element of OpConf2pCˆq2qrrqss:
ÿ

kPN
xv1, rA1pz1q rA2pz2qPkB

1pζ1qB2pζ2qvyqk. (8.14)

Note that Pkq
k “ Pkq

L0 . By scale covariance, as elements of HompV1 b V,Cq,

qL0B1pζ1qB2pζ1q “ q∆B1`∆B2B1pqζ1qB2pqζ2qqL0 (8.15)

whenever 0 ă |ζ2| ă |ζ1|. So it holds for all ζ‚ P Conf2pCˆq by holomorphicity. Thus,
there is d P Z such that (8.14), as a series of functions of pz‚, ζ‚, qq, equals

ÿ

kPN
qdxv1, rA1pz1q rA2pz2qPkB

1pqζ1qB2pqζ2qvy. (8.16)

On Ω1
r “ tpz‚, ζ‚q : 0 ă r|ζ2| ă r|ζ1| ă |z2| ă |z1|u and q P Dˆ

r , (8.16) equals
ÿ

kPN

ÿ

sPN
qdxv1, rA1pz1qPs

rA2pz2qPkB
1pqζ1qB2pqζ2qvy

Rem. 8.6
ùùùùùùù

ÿ

kPN

ÿ

sPN

ÿ

tPN
qdxv1, rA1pz1qPs

rA2pz2qPkB
1pqζ1qPtB

2pqζ2qvy

“
ÿ

kPN

ÿ

sPN

ÿ

tPN
qdxv1, A1pz1qPsA

2pz2qPkB
1pqζ1qPtB

2pqζ2qvy

(8.17)

By Thm. 8.1, this series (and hence series (8.14)) converges a.l.u. on Ωr ˆ Dˆ
r to the

holomorphic function

gpz‚, ζ‚, qq “ qdxv1, A1pz1qA2pz2qB1pqζ1qB2pqζ2qvy.

Therefore, (8.14) is the Laurent series expansion of g when pz‚, ζ‚q P Ω1
r. Namely: the

coefficients of (8.14) equal those in the expansion of g when pz‚, ζ‚q P Ω1
r. By Lemma 7.13

applied to the holomorphic function gpz‚, ζ‚, qq on Ωr ˆ Dˆ
r , this statement is true when

pz‚, ζ‚q P Ωr (since the coefficients are holomorphic on Ωr), and the series expansion of g
converges a.l.u. on Ωr ˆ Dˆ

r to g. So (8.14) converges a.l.u. on Ωr ˆ Dˆ
r to g. This finishes

the proof if we set q “ 1.

Remark 8.6. Note that in (8.17), we have used the obvious fact that
ř

t PkB
1pqζ1qPtB

2pqζ2qv converges ˚-weakly in Vpkq˚˚, in the sense that its evalua-
tion with every element of Vpkq˚ converges. We have also used the fact that, assuming
v1 P Vpmq˚, the linear opeartor Pm

rA1pz1qPs
rA2pz2qPk : Vpkq˚˚ Ñ Vpmq˚˚, which is the

double transpose of PmA
1pz1qPsA

2pz2qPk : Vpkq Ñ Vpmq, is continuous with respect to
the weak-˚ topology. This is justified by the following easy lemma.
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Lemma 8.7. Let T : U Ñ V be a linear map of vector spaces. Then T t : V ˚ Ñ U˚ is ˚-weakly
continuous, which means if v˚

n is a sequence (or more generally, a net) in V ˚ which converges
weakly-˚ to v˚ P V ˚ in the sense that limnxv˚

n, vy “ xv˚, vy for all v P V , then T tv˚
n converges

˚-weakly to T tv˚.

8.5

We now discuss the proof of the reconstruction Thm. 5.12. Assume that the assump-
tions for graded vertex algebras in Thm. 5.12 hold. We may extend E to also include
the identity field 1pzq “ 1V. Namely, 1n “ δn,´11V. Motivated by (7.22), for each
A1, . . . , Ak P E and n1, . . . , nk P Z, we define

Y
`

A1
n1

¨ ¨ ¨Ak
nk
1, z

˘

“
`

A1
n1

¨ ¨ ¨Ak
nk
1
˘

pzq (8.18)

where the right hand side is defined inductively by
`

A1
n1

¨ ¨ ¨Ak
nk
1
˘

pzq “
`

A1
n1

pA2
n2

¨ ¨ ¨Ak
nk
1q
˘

pzq.

By the generating property, we can define Y pu, zq for every u P V using (8.18) and linear-
ity.

There are two immediate problems with this approach: First, to define the RHS of
(8.18) inductively, we need the fact that A1

n1
pzq is local to pA2

n2
¨ ¨ ¨Ak

nk
1qpzq (“Dong’s

lemma”). Second, we need to show that the above definition of Y pu, zq is unique, i.e., in-
dependent of how u is written as a linear combination of A1

n1
¨ ¨ ¨Ak

nk
1 (“Goddard unique-

ness”). Besides these two, we also need to check that such defined Y pu, zq satisfies the
translation property. Let us first check the translation property.

8.6

Lemma 8.8. Assume that homogeneous fields Apzq, Bpzq are local and satisfy the translation
property rL´1, Aks “ ´kAk´1, rL´1, Bks “ ´kBk´1. Then so does each AnB:

rL´1, pAnBqks “ ´kpAnBqk´1. (8.19)

Proof. By the Jacobi identity (7.18),

pAnBqk “
ÿ

lPN
p´1ql

ˆ

n

l

˙

An´lBk`l ´
ÿ

lPN
p´1qn`l

ˆ

n

l

˙

Bn`k´lAl, (8.20)

and hence

´kpAnBqk´1 “
ÿ

lPN
p´1ql

ˆ

n

l

˙

p´kqAn´lBk`l´1 `
ÿ

lPN
p´1qn`l

ˆ

n

l

˙

kBn`k´l´1Al.

So by the translation property of A,B,

rL´1, pAnBqks “
ÿ

lPN
p´1ql

ˆ

n

l

˙

p´n` lqAn´l´1Bk`l `
ÿ

lPN
p´1ql

ˆ

n

l

˙

p´k ´ lqAn´lBk`l´1
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`
ÿ

lPN
p´1qn`l

ˆ

n

l

˙

pn` k ´ lqBn`k´l´1Al `
ÿ

lě1

p´1qn`l

ˆ

n

l

˙

lBn`k´lAl´1.

Look at the RHS. In the first sum, notice p´1ql
`

n
l

˘

p´n`lq “ p´1ql`1
`

n
l`1

˘

pl`1q and replace
l by l ´ 1; in the fourth sum, notice p´1qn`l

`

n
l

˘

l “ p´1qn`l´1
`

n
l´1

˘

pl ´ 1 ´ nq and replace l
by l ` 1. Then we see why (8.19) is true.

8.7

Proposition 8.9 (Dong’s lemma). Let Apzq, Bpzq, Cpzq be mutually local homogeneous fields.
Then for each n P Z, Cpzq is local to pAnBqpzq.

We prove that Cpzq is complex-analytically local to pAnBqpzq.

Proof. Step 1. Choose v P V, v1 P V1. Then we have series
ÿ

kPN
xv1, pAnBqpz2qPkCpz3qvy “

ÿ

kPN
Resz1“z2pz1 ´ z2qnxv1, Apz1qBpz2qPkCpz3qvydz1. (8.21)

On the region Ω1 “ Conf3pCˆq X t|z1| ą |z3|, |z2| ą |z3|u, the RHS of

fpz1, z2, z3q :“ xv1, Apz1qBpz2qCpz3qvy “
ÿ

kPN
xv1, Apz1qBpz2qPkCpz3qvy

converges a.l.u. to the LHS by Thm. 8.4. Therefore, on Ω1, the sum and the residue (i.e.
contour integral) on the RHS of (8.21) commute, and (8.21) converges a.l.u. on |z2| ą

|z3| ą 0 to

gpz2, z3q “ Resz1“z2pz1 ´ z2qnfpz1, z2, z3qdz1

which is holomorphic on Conf2pCˆq since f is holomorphic on Conf3pCˆq by Thm. 8.1.
Similarly,

ř

kPNxv1, Cpz3qPkpAnBqpz2qy converges a.l.u. on |z3| ą |z2| ą 0 to gpz2, z3q.

Step 2. To complete the proof, we need to show that pz2 ´ z3qkg is holomorphic near
z2 “ z3 for some k. By Thm. 8.1, pz1 ´ z2qnf is a linear combination of

za1z
b
2z

c
3pz1 ´ z2qn´N pz1 ´ z3q´N pz2 ´ z3q´N

for some N P N and a, b, c P Z. To prove the claim, we may assume that pz1 ´ z2qnf is just
of this form. Then near z1 “ z2, pz1 ´ z2qnf has a.l.u. convergent series expansion

pz1 ´ z2qnf “
ÿ

i,jě0

ˆ

a

i

˙

pz1 ´ z2qn´N`iza´i`b
2 zc3

ˆ

´N

j

˙

pz1 ´ z2qjpz2 ´ z3q´2N´j .

Apply Repz1“z2 ¨dz1. This means taking the coefficient of pz1 ´z2qn´N`i`j where n´N `

i` j “ ´1. So we set i “ N ´ n´ j ´ 1. Since i ě 0, we take 0 ď j ď N ´ n´ 1. So

gpz2, z3q “

N´n´1
ÿ

j“0

ˆ

a

N ´ n´ j ´ 1

˙

z
a´pN´n´j´1q`b
2 zc3

ˆ

´N

j

˙

pz2 ´ z3q´2N´j ,

which clearly has finite poles at z2 “ z3.
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8.8

Proposition 8.10 (Goddard uniqueness). Let E be a set of homogeneous fields satisfying the
assumptions for graded vertex algebras in the reconstruction Thm. 5.12. If A1pzq, A2pzq P E
satisfy A1

´11 “ A2
´11, then A1pzq “ A2pzq.

Proof. Set A “ A1 ´ A2, and assume without loss of generality that A P E . Then A´11 “

0. By the generating property, we can show Apzq “ 0 by show that for any v1 P V1,
B1, . . . , Bk P E , and n, n1, . . . , nk P Z,

xv1, AnB
1
n1

¨ ¨ ¨Bk
nk
1y “ 0. (8.22)

Suppose we can show that

xv1, ApzqB1pz1q ¨ ¨ ¨Bkpzkq1y “ 0 (8.23)

as functions on Confk`1pCˆq. Then multiplying it by any Laurent polynomial of
z, z1, . . . , zN and taking contour integrals over |z| “ R, |z1| “ r1, . . . , |zk| “ rk where
0 ă rk ă ¨ ¨ ¨ ă r1 ă R, we will get (8.22).

Since the LHS of (8.23) is holomorphic, it suffices to prove (8.23) when 0 ă |z| ă |z1| ă

¨ ¨ ¨ ă |zk|, i.e., to prove in this domain that
ÿ

sPN
xv1, B1pz1q ¨ ¨ ¨BkpzkqPsApzq1y “ 0.

Therefore, it suffices to prove Apzq1 “ 0. Since Apzq satisfies the translation property and
the creation property limzÑ0Apzq1 “ A´11, similar to the proof of Cor. 3.11 we have
Apzq1 “ ezL´1A´11. So Apzq1 must be 0.

8.9

Proof of the reconstruction Thm. 5.12. Assume that E contains the identity field 1pzq “ 1V.
If Apzq, Bpzq P E , then using (8.20), one checks easily that AnB satisfies the creation prop-
erty with

pAnBq´11 “ AnB´11. (8.24)

So by Lemma 8.8 and Dong’s lemma, if we include AnB in E , then the new E still sat-
isfies the assumptions for graded vertex algebras in Thm. 5.12. By induction, when
A1, . . . , Ak P E we have

pA1
n1

¨ ¨ ¨Ak
nk
1q´11 “ A1

n1
¨ ¨ ¨Ak

nk
1. (8.25)

Therefore, by including any linear combination of vectors of the form A1
n1

¨ ¨ ¨Ak
nk
1 in

E , we may assume that for each homogeneous u P V there exists Apzq P E such that
A´11 “ u. By Goddard uniqueness, such Apzq is unique and hence can be written as
Y pu, zq.
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We now prove the Jacobi identity for Y since the other axioms of graded vertex alge-
bras are obvious. Choose Apzq “ Y pu, zq and Bpzq “ Y pv, zq in E . Note that v “ B´11.
By extending E , we may assume that each AnB is in E . To show the VOA Jacobi identity
(4.12), by (7.18), it suffices to show Y pY puqnv, zq “ pAnBqpzq. This follows from Goddard
uniqueness and

pAnBq´11 “ AnB´11 “ Anv “ Y puqnv.

So V is a graded vertex algebra. The last paragraph of Thm. 5.12 about VOA is obvious.

9 VOA modules; contragredient modules

9.1

Let V be a VOA.

Definition 9.1. A vector space W equipped with a linear map

YW : V Ñ pEndWqrrz˘1ss,

v ÞÑ YWpv, zq “
ÿ

nPZ
YWpvqnz

´n´1

(where each YWpvqn P EndW) is called a weak V-module if the following hold:

• (Lower truncation) YWpv, zqw P Wppzqq for each v P V, w P V.

• YWp1, zq “ 1W.

• (Jacobi identity) For each u, v P V,

ÿ

lPN

ˆ

m

l

˙

YW
`

Y puqn`lv
˘

m`k´l

“
ÿ

lPN
p´1ql

ˆ

n

l

˙

YWpuqm`n´lYWpvqk`l ´
ÿ

lPN
p´1qn`l

ˆ

n

l

˙

YWpvqn`k´lYWpuqm`l.

(9.1)

Definition 9.2. An admissible V-module W (or simply a V-module) is a weak V-module
such that W “

À

nPNWpnq is graded by a diagonalizable operator rL0 satisfying the grad-
ing property

rrL0, YWpv, zqs “ YWpL0v, zq ` zBzYWpv, zq (9.2)

for each v. Equivalently, for homogeneous v,

rrL0, YWpvqns “ pwtv ´ n´ 1qYWpvqn, (9.3)

i.e., YWpv, zq is rL0-homogeneous with weight wtv. Zero and eigenvectors of rL0 are called
(rL0)-homogeneous vectors. If w P Wpnq, then Ăwtw :“ n is called the (rL0)-weight of w. If
each Wpnq is finite-dimensional, we say W is finitely-admissible.
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The lower-truncation property is redundant in the definition of admissible modules
since it follows from the grading property.

Convention 9.3. V itself is an admissible V-module, called the vacuum module. (It is
analogous to the adjoint representations of Lie algebras.) We always choose the operator
rL0 on V to be L0.

9.2

Proposition 9.4. Let W be a weak V-module. Then for each u P V, the following translation
property holds:

rL´1, YWpv, zqs “ YWpL´1v, zq “ BzYWpv, zq. (9.4)

Proof. Applying the Jacobi identity to rYWpcq0, YWpuqks gives rL´1, Y puqks “ Y pL´1uqk.
By (3.39), L´1u “ Y puq´21. Applying the Jacobi identity to YWpY puq´21qk shows that it
equals ´kYWpuqk´1.

Proposition 9.5. Let W be a weak V-module. Define the action of Ln on W to be

Ln “ YWpcqn`1 (9.5)

Then pLnqnPZ satisfy the Viarsoro relation with the same central charge c as that of V.

Proof. Use the Jacobi identity, the translation property, and Rem. 3.2 to compute
rYWpcqm`1, YWpcqk`1s.

Exercise 9.6. Show that rL0, YWpv, zqs “ YWpL0v, zq ` zBzYWpv, zq.

Remark 9.7. The above exercise shows that if W is admissible, then A :“ rL0 ´ L0 com-
mutes with the action of V on W, i.e., A P EndVpWq. In particular, it commutes with
L0 “ YWpcq1 and hence with rL0. Therefore, rL0 ´ L0 is an endomorphism of the admissi-
ble V-module W commuting with rL0. Note also that by (9.3), Ln lowers the rL0-weights
by n:

rrL0, Lns “ ´nLn. (9.6)

Convention 9.8. The grading of an admissible V-module always means the rL0-grading,
even when L0 is diagonalizable.

9.3

We discuss some basic properties of irreducible modules.

Convention 9.9. A homomorphism of weak/admissible/finitely admissible modules A :
W1 Ñ W2 always means a linear map intertwining the actions of V.

Definition 9.10. An irreducible V-module is a finitely admissible V-module with no
proper graded V-invariant subspaces (i.e., no proper V- and rL0-invariant subspaces).
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Lemma 9.11 (Schur’s lemma). Let W be an irreducible V-module. LetA P EndVpWq satisfying
rrL0, As “ 0. Then A P C1W.

Proof. By rrL0, As “ 0, A restricts to a linear operator on each Wpnq. Choose n such that
Wpnq ‰ 0. Since Wpnq is finite-dimensional, A|Wpnq has an eigenvalue λ. So the (clearly
V-invariant) subspace KerpA´λq is non-zero. It is also rL0 invariant since rrL0, A´λs “ 0.
So KerpA´ λq “ W.

Corollary 9.12. Let W be an irreducible V-module. Then L0 “ rL0 ` λ for some λ P C. In
particular, L0 is diagonalizable on W.

Proof. This follows immediately from Rem. 9.7 and Schur’s lemma 9.11.

From this corollary, we see that the rL0-gradings of an irreducible module are unique
up to scalar addition.

Corollary 9.13. Any irreducible V-module W has no proper V-invariant subspace.

Proof. Let M be a V-invariant subspace of W. Then M is L0-invariant since L0 “ YWpcq1.
So M is rL0-invariant, i.e., a graded subspace. So M is not proper.

By the same reasoning, we have:

Corollary 9.14 (Schur’s lemma). Let W be an irreducible V-module. Then EndVpWq “ C1W.

Definition 9.15. We say that V is rational if any admissible V-module W is completely
reducible, i.e., W is a direct sum of irreducible V-modules.

9.4

By replacing L0 with rL0, all the results in Sec. 7 and Subsec. 8.1-8.7 hold for admissible
modules.

Exercise 9.16. Give a complex analytic definition of Jacobi identity (cf. Def. 7.16) for
admissible V-modules that is equivalent to the algebraic Jacobi identity (9.1).

However, due to the lack of vacuum vector 1, the Goddard uniqueness and hence
the reconstruction theorem do not hold for modules. Therefore, checking locality is not
enough to prove the existence of V-module structures. To construct examples of modules,
new methods are needed.

Here is one easy method to construct VOA modules. Suppose V is a subalgebra of a
VOA U such that the L0 on U restricts to that of V. (We do not assume V and U have the
same conformal vector.) If we have constructed an admissible U-module M (for instance,
M “ U), then by regarding M as a V-module, any V-invariant graded subspace of M is
clearly a V-module. In particular, if we already know that M is a unitary U-module, then
such constructed V-modules are unitary.

90



9.5

Here we state some results on the irreducible modules associated to affine and Vira-
soro VOAs without providing proofs. The readers are referred to [LL, Chapter 6], [Was10],
and [FZ92, Wang93] for details.

Let g be either abelian or a simple Lie algebras. Let W be a finite dimensional irre-
ducible representation of g. Fix a level l P C such that l`h_ ‰ 0. Recall the decomposition
g “ g´ ‘ g` into Lie subalgebras defined in Subsec. 6.8:

rg´ “ SpantXn : X P g, n ă 0u, rg` “ SpantXn,K,D : X P g, n ě 0u. (9.7)

Then the g-module W extends to a rg`-module structure such that Xn acts trivially on W
if n ą 0, X0 acts as X , and D “ 0,K “ l on W . Let

Vgpl,W q “ Ind
rg
rg`

pW q “ Uprgq bUprg`q W, Lgpl,W q “ Vgpl,W q{I

where I is the largest proper D- and rg-invariant subspace. Then Vgpl,W q and Lgpl,W q

have unique finitely admissible Vgpl, 0q-module structures such that D “ rL0 and that,
letting W be either of them, YWpX´11qn equals the action ofXn on W for eachX P g, n P Z.
Lgpl,W q is irreducible. When g is abelian, W is unitary, and l ą 0, then Vgpl,W q “

Lgpl,W q are unitary modules.
Assume that g is simple and l P N. Then W is naturally a unitary g-module. Then all

irreducible modules of the WZW model Lgpl, 0q are unitary, and are given by all Lgpl,W q

where W is an irreducible g-module satisfying the following property: (Skip this part if
you are not familiar with Lie algebra representations.) Let λ be the highest weight of W .
Let θ be the highest root (which is also a longest root) of g, namely, the highest weight
of the adjoint representation of g. Recall the inner product p¨|¨q on g satisfying pθ|θq “ 2,
which restricts an inner product on the Cartan subalgebra h. It gives canonically an inner
product on the dual space h˚ (i.e. the weight space). Then pθ|λq (which is always ě 0)
should be ď l. There are only finitely many equivalence classes of such W .

Similarly, Vir “ Vir` ‘ Vir´ where

Vir´ “ SpantLn : n ď ´1u, Vir` “ SpantK,Ln : n ě 0u.

For each c, h P C, let Cc,h be the one dimensional Vir`-module such on whichK “ c, L0 “

h and Ln “ 0 for all n ą 0. Let

MVirpc, hq “ IndVir
Vir`Cc,h “ UpVirq bUpVir`q Cc,h, LVirpc, hq “ MVirpc, hq{I

where I is again the largest proper submodule. Then there exist unique finitely admissible
VVirpl, 0q-module structure on W “ MVirpl, hq or W “ LVirpl, hq with rL “ L0 ´h such that
YWpcqn is the action of Ln´1 on W.

When c satisfies (6.4), the irreducible modules of the minimal model LVirpc, 0q are
classified by all LVirpc, hm,nq where m,n are integers with 0 ă m ă p, 0 ă n ă q and

hm,n “
pnp´mqq2 ´ pp´ qq2

4pq
. (9.8)

When c satisfies (6.5), LVirpc, 0q and all its irreducible modules are unitary.
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9.6

The remaining part of this section is devoted to the study of contragredient modules
(i.e., dual modules). Let W “

À

nPNWpnq be an admissible V-module. As usual, for each
n we define the projection of algebraic completion to Wpnq in the canonical way:

Pn : Wcl “
ź

nPN
Wpnq Ñ Wpnq. (9.9)

Define the graded dual space

W1 “
à

nPN
W1pnq :“

à

nPN
Wpnq˚

as usual. Then Pn : W1 Ñ Wpnq˚ is defined in an obvious way.

9.7

Our goal is to define an admissible V-module structure YW1 on W1. To find the formula
of YW1 , consider the data

X “ pP1; 0, z,8; ζ, ζ ´ z, ζ´1q

where ζ is the standard coordinate of C. If Hfin contains W b xW where xW is a pV-module,
and if w b pw P W b xW, v b pv P V b pV, w1 b pw1 P W1 b xW1 are going into the punctures
0, z,8 respectively, then the correlation function is given by

xw1 b pw1, YWpv, zqw bW
xWppv, zq pwy “ xw1, YWpv, zqwyx pw1, Y

xWppv, zq pwy. (9.10)

To simplify discussions, we focus on the chiral halves. The standard conformal block
for W,V,W1 associated to 0, z,8 is given by xw1, YWpv, zqwy. Indeed, if we choose pv “ 1,
choose pw, pw1 such that x pw1, pwy “ 1, and identify W with Wb pw by identifyingw withwb pw,
and similarly identify W1 with W1b pw1, then the correlation function (9.10) becomes exactly
the conformal block xw1, YWpv, zqwy. So we can also view xw1, YWpv, zqwy as a (restricted)
correlation function.

We wish that the correlation function/standard conformal block associated to

Z “ pP1; 0, z´1,8; ζ, ζ ´ z´1, ζ´1q

is

ψpw1 b v b wq “ xYW1pv, z´1qw1, wy

where W1,V,W are associated to 0, z´1,8. Now, the biholomorphism γ P P1 ÞÑ γ´1 P P1

gives almost an equivalence of X and Y: the only exception is that the local coordinate
ζ ´ z, pulled back along this map, is ζ´1 ´ z but not ζ ´ z´1. So let us consider

Y “ pP1; 0, z´1,8; ζ, ζ´1 ´ z, ζ´1q
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equivalent to X via γ ÞÑ γ´1. Again, we associate W1,V,W to 0, z´1,8 as for Z. Then the
standard conformal block for Y is still

ϕpw1 b v b wq “ xw1, YWpv, zqwy.

Now we relate ϕ and ψ using the change of coordinate formula, noting that ζ ´ z´1 “

ϑz ˝ pζ´1 ´ zq where (for each t P P1)

ϑzptq “
1

z ` t
´

1

z
. (9.11)

Therefore

ϕpw1 b v b wq “ ψpw1 b Upϑzqv b wq (9.12)

where Upϑzq is the operator on (the Hilbert space completion of) W associated to V.

9.8

It remains to find Upϑzq. To avoid conflict of notations, we write zn`1Bz in Sec. 2 as
ζn`1Bζ . Then by (2.15), exppzζ2Bζq sends γ to p1{γ ´ zq´1 and hence ´z´2γ to ϑzpγq. This
means

ϑz “ exppzζ2Bζq ˝ expplogp´z´2qζBζq “ exppzζ2Bζq ˝ p´z´2qζBζ . (9.13)

Thus, on V,

Upϑzq “ ezL1p´z´2qL0 . (9.14)

Expanding (9.12), we get
@

w1, YWpv, zqw
D

“
@

YW1

`

ezL1p´z´2qL0v, z´1
˘

w1, w
D

Exchange the role of W and W1, and we get our definition:

Definition 9.17. Let W be an admissible V-module. Then YW1 : V Ñ pEndW1qrrz˘1ss is
defined by

@

YW1pv, zqw1, w
D

“
@

w1, YW
`

ezL1p´z´2qL0v, z´1
˘

w
D

(9.15)

for each v P V, w P W, w1 P W1. Assuming v to be homogeneous, this means

YW1pv, zq “
ÿ

kPN

zk

k!
¨ p´z´2qwtv ¨ YW

`

Lk
1v, z

´1
˘t
. (9.16)

Expanding both sides, we see that for each n P Z,

YW1pvqn “
ÿ

kPN

p´1qwtv

k!

`

YWpLk
1vq´n´k´2`2wtv

˘t
. (9.17)

Exercise 9.18. Let Ln be YW1pcqn`1 on W1. Use (9.17) to show that for each w P W, w1 P W1,

xLnw
1, wy “ xw1, L´nwy. (9.18)

93



9.9

The purpose of this subsection is to prove Cor. 9.20.

Exercise 9.19. Use rrL0, L1s “ ´L1 to show that when acting w P W,

L1λ
rL0 “ λ

rL0`1L1, (9.19a)

eτL1λ
rL0 “ λ

rL0eτλL1 (9.19b)

in Wrλs and Wrλ, τ s respectively.
(Hint. Method 1: Compute Bλ for the first equation, Bτ for the second one, and apply

Lemma 3.7. Method 2: Use the fact that L1 lowers the weights by 1 to verify the equations
when v is homogeneous.)

By taking Bλ of (9.19b) at λ “ 1, we get

eτL1
rL0 “ rL0e

τL1 ` τL1e
τL1 . (9.20)

Corollary 9.20. we have

YWpv, zq “ YW1

`

ezL1p´z´2qL0v, z´1
˘t
. (9.21)

Thus, if W is finitely admissible, then W2 “ W and YW2 “ YW.

Proof. By (9.15),

YW1

`

ezL1p´z´2qL0v, z´1
˘t

“ YW
`

ez
´1L1p´z2qL0ezL1p´z´2qL0v, z´1

˘t
,

which equals YWpv, zq since p´z2qL0ezL1 “ e´z´1L1p´z2qL0 due to (9.19b).

9.10

In the rest of this section, we prove the following main result of this section.

Theorem 9.21. Let pW, YWq be an admissible V-module. Then pW1, YW1q is an admissible V-
module, called the contragredint V-module of W. If W is finitely-admissible, then so is W1, and
under the canonical identification W “ W2 we have YW “ YW2 .

The very last sentence of this theorem is proved. To verify that W1 is an admissible
module, we begin with the following simple observation.

Lemma 9.22. If v P V is homogeneous, then YW1pv, zq is rL0-homogeneous with weight wtv.

Proof. Using (9.6) and (9.17), one easily computes rrL0, YW1pvqns “ pwtv´n´1qYW1pvqn.

It is clear that YW1p1, zq “ 1W1 . To prove that YW1 satisfies the axioms of an admissible
module, it remains to check the Jacobi identity. We first prove the locality:

Lemma 9.23. Let u, v P V be homogeneous. Then YW1pu, zq and YW1pv, zq are local.
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Proof. We prove the complex analytic locality. For each w P W, w1 P W1,
ÿ

nPN

@

YW1pu, z1qPnYW1pv, z2qw1, w
D

(9.22)

“
ÿ

nPN

@

w1, YW
`

ez2L1p´z´2
2 qL0v, z´1

2

˘

PnYW
`

ez1L1p´z´2
1 qL0u, z´1

1

˘

w
D

(9.23)

which converges a.l.u. on 0 ă |z´1
1 | ă |z´1

2 | by the locality of YWpu, zq and YWpv, zq.
Moreover, this locality shows that the above expression and

ÿ

nPN

@

YW1pv, z2qPnYW1pu, z1qw1, w
D

(9.24)

“
ÿ

nPN

@

w1, YW
`

ez1L1p´z´2
1 qL0u, z´1

1

˘

PnYW
`

ez2L1p´z´2
2 qL0v, z´1

2

˘

w
D

(9.25)

(which converges a.l.u. on 0 ă |z´1
2 | ă |z´1

1 |) can be extended to the same holomorphic
function f on Conf2pCˆq. This function is a Crz˘1

1 , z˘1
2 s-linear combination of 4-point

correlations functions of the form xw1, YWp¨, z1qYWp¨, z2qwy which is holomorphic on Cˆ ˆ

Cˆ when multiplied by pz1 ´ z2qN for some N . So f shares the same property.

9.11

Write Apzq “ YW1pu, zq and Bpzq “ YW1pv, zq. Since A and B are local, we have the
Jacobi identity (7.18) for Apzq, Bpzq, pA‚Bqpzq, which implies the Jacobi identity for YW1 if
we can show that for all k P Z and homogeneous w P W, w1 P W1, as elements of Crz˘1

2 s

we have
@

pAkBqpz2qw1, w
D

“
@

YW1pY puqkv, z2qw1, w
D

. (9.26)

By (7.14), the LHS of (9.26) is Resz1“z2pz1 ´z2qkfpz1, z2qdz1 where f was defined in the
proof of Lemma 9.23. By (9.25) and the complex analytic Jacobi identity for YW, the RHS
of

fpz1, z2q “
ÿ

nPN

@

w1, YW
`

PnY
`

ez1L1p´z´2
1 qL0u, z´1

1 ´ z´1
2

˘

¨ ez2L1p´z´2
2 qL0v, z´1

2

˘

w
D

(9.27)

converges a.l.u. on 0 ă |z´1
1 ´ z´1

2 | ă |z´1
2 | to the LHS.

The RHS of (9.26) is the application of Resz1´z2“0 ¨ pz1 ´ z2qkdpz1 ´ z2q to the following
elements of Crz˘1

2 srrpz1 ´ z2q˘1ss:
ÿ

nPZ
pz1 ´ z2q´n´1

@

YW1

`

Y puqnv, z2
˘

w1, w
D

“
@

YW1

`

Y pu, z1 ´ z2qv, z2
˘

w1, w
D

“
@

w1, YW
`

ez2L1p´z´2
2 qL0Y pu, z1 ´ z2qv, z2

˘

w
D

“
@

w1, YW
`

ez2L1Y
`

p´z´2
2 qL0qu, z´2

2 pz2 ´ z1q
˘

p´z´2
2 qL0v, z2

˘

w
D

. (9.28)

where the scale covariance is used in the last equality.
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Exercise 9.24. Set the following element of Crz˘1
2 srrpz1 ´ z2q˘1ss:

gnpz2, z1 ´ z2q “
@

w1, YW
`

Pne
z2L1Y

`

p´z´2
2 qL0qu, z´2

2 pz2 ´ z1q
˘

p´z´2
2 qL0v, z2

˘

w
D

.

Show that for each k P Z,

Resz1´z2“0 pz1 ´ z2qkgnpz2, z1 ´ z2qdpz1 ´ z2q (9.29)

is a monomial of z˘1
2 that vanishes when n ą wtu ` wtv ´ k ´ 1. Conclude that the

application of Resz1´z2“0 ¨ pz1 ´z2qkdpz1 ´z2q to (9.28) equals the (automtically finite) sum
over all n of (9.29).

It follows that (9.26) holds if we can show: For any v1 P V1pnq “ Vpnq˚ (e.g., xv1, ¨y “

xw1, YWpPn¨, z2qwy), as holomorphic functions of z2 on Cˆ,

Resz1“z2pz1 ´ z2qk
@

v1, Y
`

ez1L1p´z´2
1 qL0u, z´1

1 ´ z´1
2

˘

¨ ez2L1p´z´2
2 qL0v

D

dz1

“Resz1´z2“0pz1 ´ z2qk
@

v1, ez2L1Y
`

p´z´2
2 qL0u, z´2

2 pz2 ´ z1q
˘

p´z´2
2 qL0v

D

dpz1 ´ z2q (9.30)

where the LHS is the residue of a holomorphic function and the RHS is that of a formal
Laurent series. This follows if we can show that

@

v1, Y
`

ez1L1p´z´2
1 qL0u, z´1

1 ´ z´1
2

˘

¨ ez2L1p´z´2
2 qL0v

D

“
@

v1, ez2L1Y
`

p´z´2
2 qL0u, z´2

2 pz2 ´ z1q
˘

p´z´2
2 qL0v

D

(9.31)

where the RHS as a formal Laurent series of z2, z1 ´ z2 converges a.l.u. on 0 ă |z1 ´ z2| ă

|z2| to the LHS as a holomorphic function of z1, z2.
Clearly, as elements of Crrz˘1

2 , pz1 ´ z2q˘1ss the sum
@

v1, ez2L1Y
`

p´z´2
2 qL0u, z´2

2 pz2 ´ z1q
˘

p´z´2
2 qL0v

D

“
ÿ

nPN

@

v1, ez2L1PnY
`

p´z´2
2 qL0u, z´2

2 pz2 ´ z1q
˘

p´z´2
2 qL0v

D

(9.32)

satisfies the conditions in Lemma 7.4. If we can prove the claim that the RHS converges
a.l.u. on 0 ă |z1 ´ z2| ă |z2| to the LHS of (9.31), then by Lemma 7.4, we are done with
the proof. The claim follows from the following “eτL1-covariance” (where τ “ z2, z “

z´2
2 pz2 ´ z1q), which we prove for YW though we actually just need it for Y “ YV.

Proposition 9.25. Let W be admissible. Then for each v P V, w P W, w1 P W1, the LHS of
ÿ

nPN

@

w1, eτL1PnYWpv, zqw
D

“
@

w1, YW
`

eτp1´τzqL1p1 ´ τzq´2L0v, z{p1 ´ τzq
˘

eτL1w
D

(9.33)

converges a.l.u. on tpz, τq P Cˆ ˆ C : |τ | ă |z´1|u to the RHS.

This theorem is a special case of the conformal covariance Thm. 10.7 which will be
explained later. However, the proof of Thm. 10.7 is quite involved. So in the following
we give an elementary proof of Prop. 9.25.
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9.12

We view the eτL1-covariance of YW as the transpose of the translation covariance of
YW1 . So we first need to prove the latter.

Lemma 9.26. We have rL´1, YW1pv, zqs “ BzYW1pv, zq.

Proof. Assume v is homogeneous. It suffices prove
“

L1, YW
`

ezL1z´2L0v, z´1
˘‰

“ ´BzYW
`

ezL1z´2L0v, z´1
˘

. (9.34)

which is the transpose of the formula we want to prove multiplied by p´1qwtv. The Jacobi
identity for YW implies (5.3) where Y is replaced by YW. By (5.3),

rL1, YWpv, zqs “ z2YWpL´1v, zq ` 2zYWpL0v, zq ` YWpL1v, zq. (9.35)

Using this relation, one checks that the LHS of (9.34) equals

YWpL1e
zL1z´2L0v, z´1q ` 2z´1YWpL0e

zL1z´2L0v, z´1q ` z´2YWpL´1e
zL1z´2L0v, z´1q.

(9.36)

It is easy to guess by chain rule and verify rigorously by series expansions that

´BzYWpv, z´1q “ z´2YWpL´1v, z
´1q.

Thus, the RHS of (9.34) is

´YWpL1e
zL1z´2L0v, z´1q ` 2z´1YWpezL1L0z

´2L0v, z´1q ` z´2YWpL´1e
zL1z´2L0v, z´1q

which equals (9.36) due to (9.20).

9.13

Now that we have the translation property for YW1 , we have the translation covariance
in the form of (3.36) or (equivalently) Exercise 7.5. We need the latter form: the LHS of

ÿ

nPN

@

YW1pu, zqPne
τL´1w1, w

D

“
@

YW1pu, z ´ τqw1, eτL1w
D

, (9.37)

converges a.l.u. on |τ | ă |z| to the RHS.

Proof of Prop. 9.25. By Cor. 9.20, as sums of holomorphic functions we have
ÿ

nPN

@

w1, eτL1PnYWpv, zqw
D

“
ÿ

nPN

@

Pne
τL´1w1, YWpv, zqw

D

“
ÿ

nPN

@

YW1pezL1p´z´2qL0v, z´1qPne
τL´1w1, w

D

,

which by (9.37) converges a.l.u. on |τ | ă |z´1| to
@

YW1

`

ezL1p´z´2qL0v, z´1 ´ τ
˘

w1, eτL1w
D

.
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We move YW1 to the right using (9.15). Then the above becomes

@

w1, YW
`

epz´1´τqL1p´pz´1 ´ τq´2qL0ezL1p´z´2qL0v, pz´1 ´ τq´1
˘

eτL1w
D

.

This equals the RHS of (9.33) since, by (9.19b), when acting on V,

p´pz´1 ´ τq´2qL0ezL1 “ e´zpz´1´τq2L1p´pz´1 ´ τq´2qL0 .

The proof of Thm. 9.21 is complete.

9.14

Definition 9.27. We say that V is self-dual if the vacuum module V (with grading rL0 “

L0) is isomorphic to its contragredient module V1.

The construction of tensor product modules is much easier:

Proposition 9.28. Let V1,V2 be VOAs and Wi be an admissible Vi-module. Then the vector
space W1 b W2 has a unique admissible V1 b V2-module structure with grading rL0 b 1W2 `

1W1 b rL0 such that for each vi P Vi,

YW1bW2pv1 b v2, zq “ YW1pv1, zq b YW2pv2, zq. (9.38)

Equivalently, for each wi P Wi, w
1
i P W1

i,
@

w1
1 b w1

2, YW1bW2pv1 b v2, zqpw1 b w2q
D

“ xw1
1, YW1pv1, zqw1y ¨ xw1

2, YW2pv2, zqw2y.
(9.39)

Proof. Using (9.39), it is easy to verify that YW1bW2 satisfies the complex analytic Jacobi
identity.

10 Change of coordinate theorems

10.1

The goal of this section is to study the change of local coordinates in a rigorous way.
Due to some convergence issues, it is very difficult to show that a given local coordinate
of C at 0 can be written as exppfBzq for a holomorphic vector field fBz . So we first discuss
formal coordinates and find the formal vector fields generating them.

Define the following two subspaces of z ¨ Crrzss

G “

!

ÿ

nPZ`

anz
n : a1 ‰ 0

)

, G` “

!

z `
ÿ

ně2

anz
n P G

)

. (10.1)
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Elements of G are viewed as formal local coordinates of C at 0. Likewise, set

G “

!

αpzq P G :
ÿ

n

|an|rn ă `8 for some r ą 0
)

, G` “ G X G`. (10.2)

Then elements of G are local coordinates of C at 0, or equivalently, transformations of
local coordinates.

There is an obvious right action of G on Cppzqq defined by composition f ÞÑ f ˝ α if
f P Cppzqq and α P G. We leave it to the readers to check that it is well-defined. So G is a
group whose product is the composition and whose identity is z.

10.2

According to Sec. 2, to find the change of coordinate operator Upαq for each α P G, we
need to write it as α “ expp

ř

ně0 cnz
n`1Bzq. This task is easy if α P G`. Indeed, write

αpzq “ z `
ÿ

ně2

anz
n. (10.3)

Then we can indeed choose c0 “ 0, and

αpzq “
ÿ

kPN

1

k!

´

ÿ

ně1

cnz
n`1Bz

¯k
pzq

“z `
ÿ

n1ě1

cn1z
n1`1 `

1

2!

ÿ

n1,n2ě1

pn1 ` 1qcn1cn2z
n1`n2`1

`
1

3!

ÿ

n1,n2,n3ě1

pn1 ` 1qpn1 ` n2 ` 1qcn1cn2cn3z
n1`n2`n3`1 ` ¨ ¨ ¨ .

(10.4)

This means that for each m ě 1,

am`1 “ cm `
ÿ

2ďlďm
n1,...,nlPZ`

n1`¨¨¨`nl“m

1

l!
pn1 ` 1q ¨ ¨ ¨ pn1 ` n2 ` ¨ ¨ ¨ ` nl´1 ` 1qcn1 ¨ ¨ ¨ cnl

. (10.5)

This shows that one can solve c1, c2, . . . given the coefficients a2, a3, . . . .
For a general α P G, instead of solving α “ expp

ř

ně0 cnz
n`1Bzq, it is easier to solve

αpzq “ α1p0q ¨ exp
´

ÿ

ně1

cnz
n`1Bz

¯

pzq. (10.6)

since αpzq{α1p0q P G`. The first several terms are

c1 “
1

2

α2p0q

α1p0q
, (10.7a)

c2 “
1

6

α3p0q

α1p0q
´

1

4

´α2p0q

α1p0q

¯2
. (10.7b)
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The corresponding linear operator on an admissible V-module W is given by

Upαq “ α1p0q
rL0 exp

´

ÿ

ně1

cnLn

¯

“ α1p0q
rL0

ÿ

kPN

1

k!

´

ÿ

ně1

cnLn

¯k
. (10.8)

Its inverse is Upαq´1 “ expp´
ř

ně1 cnLnqα1p0q´rL0 .
The point of replacing L0 with rL0 is to avoid the ambiguity caused by the non-integral

eigenvalues of L0. Since (by Cor. 9.12) rL0 ´ L0 is a constant if W is irreducible, it is not a
big deal to make such a replacement.

Remark 10.1. By the fact that Ln lowers the weights by n, the above double sum is finite
when Upαq (and similarly Upαq´1) is acting on any vector. Moreover, they preserve Wďn

for each n P N where

Wďn “
à

0ďjďn

Wpjq. (10.9)

So Upαq restricts to a linear isomorphism on each Wďn. Note that Upαq does not preserve
Wpnq.

10.3

In applications, we need to consider a holomorphic family of (analytic) transforma-
tions ρ : X Ñ G, which means that ρ “ ρxpzq is a holomorphic function on a neigh-
borhood of X ˆ t0u in X ˆ C where X is a complex manifold (here px, zq P X ˆ C), and
ρxp0q “ 0 and ρ1

xp0q ” Bzρxp0q ‰ 0 for all x P X .
We now restrict to the case that X is an open subset U of C and let ζ be the standard

variable of U , but consider a slightly more general situation that ρ “ OpUqrrzss with
ρζp0q “ 0 and ρ1

ζp0q ‰ 0 for all ζ P U . Equivalently,

ρζpzq “
ÿ

ně1

1

n!
ρ

pnq

ζ p0qzn (10.10)

where each ζ ÞÑ ρ
pnq

ζ p0q is an element of OpUq and ρ1
ζp0q ‰ 0. Note that when z ‰ 0, ρζpzq

does not make sense as a value. We call ρ : U Ñ G a family of formal coordinates.

Remark 10.2. We can take limits and derivatives for elements of OpUqrrz˘1ss by treating
each OpUq-coefficient. So, for instance, the derivative Bzρζpzq at ζ0 P U makes sense

analytically as the value of the limit limζÑζ0
ρζpzq´ρζ0 pzq

ζ´ζ0
.

By (10.5),

ρζ “ ρ1
ζp0q exp

´

ÿ

ně1

cnpζqzn`1Bz

¯

(10.11)

where c1, c2, ¨ ¨ ¨ P OpUq. So

Upρζq “ ρ1
ζp0q

rL0 exp
´

ÿ

ně1

cnpζqLn

¯

, (10.12)
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which shows that

Upρζq
ˇ

ˇ

Wďk P EndpWďkq b OpUq (10.13)

for each k P N.

10.4

Let ρ : U Ñ G be a family of formal coordinates.

Proposition 10.3. Suppose 0 P U and ρ0pzq “ z. Then, when acting on each vector of W, or
equivalently, when restricted to each Wďk,

BζUpρζq

ˇ

ˇ

ˇ

ζ“0
“

ÿ

ně1

1

n!

´

Bζρ
pnq

ζ p0q

ˇ

ˇ

ˇ

ζ“0

¯

rLn´1 (10.14)

where rLn “ Ln when n ě 1, and Bζρ
pnq

ζ pzq “ BζBn
z ρζpzq.

Remark 10.4. The geometric meaning of Prop. 10.3 is the following. Assume that ρ : U Ñ

G is a holomorphic family with ρ0pzq “ z. Then for each z0 near 0, ζ ÞÑ ρζpz0q is a path
in C whose initial value is z0. So Bζρζpz0qBz

ˇ

ˇ

ζ“0
is the tangent vector at z0 describing the

velocity of the path. By assembling these tangent vectors, we get a holomorphic tangent
vector field BζρζpzqBz

ˇ

ˇ

ζ“0
, which equals

BζρζpzqBz

ˇ

ˇ

ˇ

ζ“0
“

ÿ

ně1

1

n!
Bζρ

pnq

ζ p0qznBz

ˇ

ˇ

ˇ

ζ“0
. (10.15)

In view of the correspondence znBz Ø Ln´1, Prop. 10.3 says that BζUpρζq
ˇ

ˇ

ζ“0
is exactly

the linear operator corresponding to the tangent vector field.

Proof of Prop. 10.3. From (10.12), BζUpρζq is expressed in terms of cn. So we need to express
cn in terms of Bζρ

pnq

ζ p0q. By (10.11) and (10.4),

ρζpzq “ ρ1
ζp0q

´

z `
ÿ

ně1

cnpζqzn`1
¯

`Rζpzq

where Rζpzq is a sum of polynomials of z multiplied by at least two terms of
c1pζq, c2pζq, . . . . Since ρ0pzq “ z, equivalently, ρ1

0p0q “ 1 and c1p0q “ c2p0q “ ¨ ¨ ¨ “ 0,
we have BζRpzq|ζ“0 “ 0. So

Bζρζpzq

ˇ

ˇ

ˇ

ζ“0
“ Bζρ

1
ζp0qz `

ÿ

ně1

Bζcnp0qzn`1. (10.16)

A similar argument applied to the derivative of (10.12) shows

BζUpρζq

ˇ

ˇ

ˇ

ζ“0
“ Bζρ

1
ζp0qrL0 `

ÿ

ně1

Bζcnp0qLn. (10.17)

By (10.16), for all n ě 2,

1

n!
Bζρ

pnq

ζ p0q

ˇ

ˇ

ˇ

ζ“0
“ Bζcn´1p0q.

Substituting this relation into (10.17) proves (10.14).
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10.5

Theorem 10.5 ([Hua97, Sec. 4.2]). U : G Ñ EndpWq is a group representation. Namely,
Upα ˝ βq “ UpαqUpβq for all α, β P G.

With the help of this theorem, we can calculate BζUpρζq at ζ “ 0 without assuming
ρ0pzq “ z by computing BζUpρζ ˝ ρ´1

0 q using Prop. 10.3.

Proof. It suffices to consider the following two cases: (a) α, β P G` (b) α P G` and β is a
scaling. Let ln “ zn`1Bz .

Case (a). We write αpzq “ expp
ř

ně1 anlnqpzq “ exppXqpzq and βpzq “

expp
ř

ně1 bnlnqpzq “ exppY qpzq. By the Campbell-Hausdorff theorem [Jac, Sec. V.5],
α ˝ β “ exppZq where

Z “X ` Y `
1

2
rX,Y s `

1

12

`

rX, rX,Y ss ` rY, rY,Xss
˘

´
1

24
rX, rY, rX,Y sss

`H5 `H6 ` ¨ ¨ ¨

where each Hn is a finite sum of n´ 1 iterated brackets of X and Y , and hence an infinite
linear combination of ln, ln`1, . . . . So Hn increases the powers of z by at least n. From this
we see that Z is also of the form

ř

ně1 cnln for some c1, c2, ¨ ¨ ¨ P C.
The representation ln ÞÑ πplnq “ Ln is a representation of the Lie subalgebra

SpanCtl1, l2, . . . u of the Witt algebra. (There is no central term!) Write πpXq “
ř

ně1 anLn

and πpY q, πpZq, πpHnq in a similar way. Note that each πpHnq “ ‚Ln ` ‚Ln`1 ` ¨ ¨ ¨ low-
ers the rL0-weights by at least n. So

ř

ně1 πpHnq is well defined. By Campbell-Hausdorff
theorem (applied to πpXq and πpY q), we have

UpαqUpβq “ exppπpXqq exppπpY qq “ exp
´

ÿ

ně1

πpHnq

¯

“ exppπpZqq “ Upα ˝ βq.

Case (b). Write αpzq “ expp
ř

ně1 anlnqpzq and βpzq “ λz where λ ‰ 0. One checks
easily that

α ˝ βpzq “ λ ¨ exp
´

ÿ

ně1

anλ
nln

¯

pzq.

Similar to the argument in Exercise 9.19, rrL0, Lns “ ´Ln implies

exp
´

ÿ

ně1

anLn

¯

λ
rL0 “ λ

rL0 exp
´

ÿ

ně1

anλ
nLn

¯

This finishes the proof.

10.6

Our goal is to find the covariance formula for YW under the change of local coordinate
of 0 P C from the standard one ζ to any α P G defined on Dr. Choose z P Dˆ

r , and consider

A “ pP1; 0,8;α´1, 1{ζq, P “ pP1; 0, z,8; ζ, ζ ´ z, 1{ζq. (10.18)
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where α´1 is the inverse function of α, not to be confused with 1{α.
We associate W,W1,W,V,W1 to the five marked points in the order listed above. By

the change of coordinates formula in Sec. 2, the standard conformal blocks associated to
these two are

xw1,Upαqwy, xw1, YWpv, zqwy. (10.19)

We sew A and P along 0 P A and 8 P P. We follow Rem. 4.4 to change the α´1 of A
to α´1{r and the 1{ζ of P to r{ζ. Replace r by a slightly smaller number ą |z|. Then
the range of α´1{r contains Dcl

1 (which is pulled back to αpDcl
r q in A), and the pullback

of the unit disk under r{ζ is P1zDr, which is disjoint from z and 0. So Assumption 4.3 is
satisfied.

This sewing identifies the following parts of A,P respectively

A1 “ tγ : 0 ă |α´1pγq| ă ru

A2 “ tγ : 1{r ă |1{γ| ă `8u “ tγ : 0 ă |γ| ă ru

(cf. (4.2)) via the rule α´1pγ1q ¨ 1{γ2 “ 1, or more precisely,

γ1 P A1 is glued to γ2 P A2 ðñ γ1 “ αpγ2q. (10.20)

The point 0 of A and the part tγ : |1{γ| ď 1{ru “ tγ : r ď |γ| ď `8u of P are discarded.
We thus have an isomorphism

A#P
»

ÝÝÑ X “
`

P1; 0, αpzq,8;α´1, α´1 ´ z, 1{ζ
˘

(10.21)

where any γ1 P P1zt0u of A is identified with γ1 P X, and any γ2 P Dr of P is identified
with αpγ2q of P.

10.7

On the one hand, the standard conformal block for A#P is the contraction of the two
in (4.2), which is

xw1,UpαqYWpv, zqwy. (10.22)

On the other hand, since xw1, YWpv, αpzqqwy is the standard conformal block for
pP1; 0, αpzq,8; ζ, ζ´αpzq, 1{ζq, by the change or coordinate formula in Sec. 2, the standard
conformal block of P should be

@

w1, YW
`

Upϱpα|1qzqv, αpzq
˘

Upαqw
D

(10.23)

where ϱpα|1qz P G is the change from α´1 ´ z to ζ ´ αpzq, namely,

ϱpα|1qzptq “ αpz ` tq ´ αpzq. (10.24)

(The meaning of the notation ϱpα|1q will be explained in (11.9).) So (10.22) and (10.23)
should be equal. That this result is a rigorous mathematical theorem is due to Huang.
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Theorem 10.6 ([Hua97]). Let W be an admissible V-module. Then for each w P W, w1 P W1, v P

V and α P G, the following equation holds in Cppzqq

xw1,UpαqYWpv, zqwy “
@

w1, YW
`

Upϱpα|1qzqv, αpzq
˘

Upαqw
D

. (10.25)

Equivalently, in Cppzqq,

xw1,UpαqYWpv, zqUpαq´1wy “
@

w1, YW
`

Upϱpα|1qzqv, αpzq
˘

w
D

. (10.26)

10.8

We explain the meanings of both sides of (10.25); (10.26) is understood in the similar
way.

The meaning of the LHS of (10.25) is clear. Suppose α P OpDrq. Then xw1, Y pv, αpzqqwy

is a Laurent polynomial of αpzq, which is clearly holomorphic on Dˆ
r with finite poles at

0. z ÞÑ ϱpα|1qz is a holomorphic family of transformations. So Upϱpα|1qqv is in V b OpDrq

by (10.13). By linearity, the holomorphicity of xw1, Y pv, αpzqqwy P Crz˘1s implies that the
RHS of (10.25) is also holomrophic on Dˆ

r with finite poles at 0. So, the RHS of (10.25)
is understood as an element of Cppzqq by taking Laurent series expansion of the holomorphic
function.

More generally, let α : X Ñ G be a holomorphic family of transformations over a
Riemann surface X . If α is holomorphic on X ˆ Dr, then the RHS of (10.25) is naturally
a holomorphic function on X ˆ Dˆ

r with finite poles at z “ 0. Thus, as an element of
OpXqppzqq obtained by taking Laurent series expansion, it converges a.l.u. on X ˆ Dˆ

r by
Lemma 7.13. So is the LHS. We conclude:

Theorem 10.7. Suppose α : X Ñ G is a holomorphic family of transformations that is holomor-
phic on X ˆ Dr. Then both sides of (10.25) and (10.26) are elements of OpXqppzqq and converge
a.l.u. on X ˆ Dˆ

r to the same function. Moreover, the following series
ÿ

nPN
xw1,UpαqPnYWpv, zqwy (10.27)

of elements of OpX ˆ Cˆq converges a.l.u. on X ˆ Dˆ
r to (10.25).

Proof. The last statement is due to Lemma 7.4 when v, w,w1 are homogeneous.

10.9 ‹

We present the proof of (10.26) below. The idea is the same as in the proofs of scale
and translation covariance. Also, it is not hard to see that the following proof works for
all α in G.

Proof of Thm. 10.6. Step 1. Let us first assume α P G` so that α1p0q “ 1. Choose c1, c2, ¨ ¨ ¨ P

C such that

αpzq “ exp
´

ÿ

ně1

cnz
n`1Bz

¯

pzq, (10.28)
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and set

ατ pzq “ exp
´

ÿ

ně1

τcnz
n`1Bz

¯

pzq P Crτ srrzss

so that α1pzq “ αpzq. Note that we can write

ατ pzq “ z `
ÿ

ně2

pnpτqzn (10.29)

where pnpτq P Crτ s. So we can view ατ pzq as a Crrzss-valued holomorphic function. The
limit Bτατ pzq “ limγÑτ

αγpzq´ατ pzq

γ´τ makes sense analytically as in Rem. 10.2.
(10.29) shows that

1{ατ pzq P z´1Crτ srrzss.

Therefore, xw1, YWpv, ατ pzqqwy, which is a Laurent polynomial of ατ pzq, must also be in
Crτ sppzqq. It is not hard to verify that Bτατ pzq|τ“0 “

ř

cnz
n`1 and that αγ ˝ ατ pzq “

αγ`τ pzq for each γ, τ P C. By taking derivative in the sense of Rem. 10.2, we obtain

Bτατ pzq “
ÿ

ně1

cnατ pzqn`1.

From this and the translation property, we obtain in Crτ sppzqq that

Bτ xw1, YWpv, ατ pzqqwy “
ÿ

ně1

cnατ pzqn`1 ¨ xw1, YWpL´1v, ατ pzqqwy (10.30)

as Cppzqq-valued holomorphic functions of τ P C.

Step 2. Let us calculate BτUpϱpατ |1qzqv. Note that any formal power series composed
with z ` t is an element of Crrz, tss. So, even though ατ is a formal coordinate, ατ pz ` tq
still makes sense, and we can use (10.24) again to define ϱpατ |1qz . Namely, in view of
(10.29),

ϱpατ |1qzptq “ t`
ÿ

ně2

pnpτq

n
ÿ

j“1

ˆ

n

j

˙

zn´jtj P Crτ srrzssrrtss.

Similarly,

ϱpαζ |1qατ pzqptq :“ αζpατ pzq ` tq ´ αζpατ pzqq

“t`
ÿ

ně2

pnpζq

n
ÿ

j“1

ˆ

n

j

˙

ατ pzqn´jtj
(10.31)

makes sense as an element of Crζ, τ srrzssrrtss. Using αζpατ pzqq “ αζ`τ pzq, one checks
easily that

ϱpαζ |1qατ pzq ˝ ϱpατ |1qzptq “ ϱpαζ`τ |1qzptq.
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Apply Thm. 10.5 to the above relation and take Bζ at ζ “ 0, we obtain

BτUpϱpατ |1qzqv “ BζUpϱpαζ |1qατ pzqq
ˇ

ˇ

ζ“0
¨ Upϱpατ |1zqqv. (10.32)

Clearly ϱpα0|1qατ pzqptq “ t. By going through the proof of Prop. 10.3, we see that Prop.
10.3 also applies to the present situation: acting on V we have

BζUpϱpαζ |1qατ pzqq

ˇ

ˇ

ˇ

ζ“0
“

ÿ

kě1

1

k!

´

Bζϱpαζ |1q
pkq

ατ pzq
p0q

ˇ

ˇ

ˇ

ζ“0

¯

Lk´1. (10.33)

By (10.31), it is clear that

Bζϱpαζ |1q
pkq

ατ pzq
p0q “ Bζα

pkq

ζ pατ pzqq.

Since, by (10.28), we have Bζαζpzq
ˇ

ˇ

ζ“0
“
ř

ně1 cnz
n`1 and hence

1

k!
Bζα

pkq

ζ pzq
ˇ

ˇ

ζ“0
“

ÿ

ně1

ˆ

n` 1

k

˙

cnz
n´k`1,

we obtain

BζUpϱpαζ |1qατ pzqq

ˇ

ˇ

ˇ

ζ“0
“

ÿ

k,ně1

ˆ

n` 1

k

˙

cnατ pzqn´k`1Lk´1

“
ÿ

ně1

cn
ÿ

lě0

ˆ

n` 1

l ` 1

˙

ατ pzqn´lLl. (10.34)

To sum up, we get

Bτ
@

w1, YWpUpϱpατ |1qzqv, zqw
D

“
ÿ

ně1

cn
ÿ

lě0

ˆ

n` 1

l ` 1

˙

ατ pzqn´l
@

w1, YWpLlUpϱpατ |1qzqv, zqw
D

. (10.35)

Combining this relation with (10.30) and (5.3) yields

Bτ
@

w1, YWpUpϱpατ |1qzqv, ατ pzqqw
D

“
ÿ

ně1

cn
@

w1, rLn, YWpUpϱpατ |1qzqv, ατ pzqqsw
D

.

(10.36)

(We leave it to the readers to check that this infinite sum is well-defined.) A similar calcu-
lation shows

Bτ
@

w1,Upατ qYWpv, zqUpατ q´1w
D

“
ÿ

ně1

cn
@

w1, rLn,Upατ qYWpv, zqUpατ q´1sw
D

. (10.37)

Thus, by Lemma 3.7, we get (10.26) for all α P G`. We have also proved (10.26) when α
is a scaling. The general case follows from the combination of these two cases. We leave
the details the readers.
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11 Definitions of conformal blocks and sheaves of VOAs

11.1

The goal of this section is to give two equivalent definitions of conformal blocks, both
due to [FB04].

Assumption 11.1. Starting from this section, we assume dimVpnq ă `8 for each n, and
write YW as Y when possible. By “V-modules”, we mean admissible V-modules.

Let

X “ pC;x1, . . . , xN ; η1, . . . , ηN q (11.1)

be an N -pointed compact Riemann surface with local coordinates. Assume that ηj is
holomorphic (and injective) on an neighborhood Uj of xj . Assume that xj R Ui if i ‰ j.

Assumption 11.2. Unless otherwise stated, by an N -pointed compact Riemann surface,
we assume that each connected component contains at least one marked point.

Recall that in Segal’s picture, we have decomposition Hfin “
À

Wi b xWi, and the
correlation function decomposes to V- and pV-conformal blocks TX “

ř

i1,...,iNPIϕX,i‚
b

ψX,i‚
as in (1.14), where each ϕX,i‚

is a linear functional on Wi‚ :“ Wi1 b ¨ ¨ ¨ b WiN .

In the following discussions, we fix a vector pwi in each xWi, and identify each Wi with
Wi b pwi so that we can restrict the correlation function TX onto Wi‚ to get a conformal
block. Thus, we shall not distinguish between conformal blocks and (restrictions of) cor-
relation functions.

11.2

We write Wik “ Wk and ϕXi‚
“ ϕ for simplicity. So the V-modules W1, . . . ,WN are

associated to x1, . . . , xN . Recall the notation W‚ “ W1 b ¨ ¨ ¨ b WN .
We add a point x to X different from x1, . . . , xN . Then we get a new pN ` 1q-pointed

compact Riemann surface ≀Xx. We insert vectors of V » V b 1 to x. Then we get a new
conformal block ≀ϕx : V b W‚ Ñ C, which is the restriction of the correlation function
T≀Xx to V b W‚. ≀ϕx has the following two features. (Let ζ be the standard coordinate of
C.)

First, assume ηjpUjq Ą Drj . Let x P η´1
j pDrj q. We assign local coordinate ηj ´ ηjpxq to

x so that every marked point of ≀Xx has an associated local coordinate. Let

Pηjpxq “ pP1; 0, ηjpxq,8; ζ, ζ ´ ηjpxq, 1{ζq. (11.2)

Consider the sewing Pηjpxq#X along 8 P Pηjpxq and xj P X. We have an equivalence

Pηjpxq#X » ≀Xx (11.3)

where the parts P1zDrj and xj of Pηjpxq and X are discarded; any γ P Drj is equivalent
to η´1

j pγq of ≀Xx, and is glued with η´1
j pγq of X when γ P Dˆ

rj ; in particular, the marked
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points 0, ηjpxq of Pηjpxq (which are not discarded) are identified respectively with xj , x of
≀Xx.

»

(11.4)

Therefore, by the sewing-contraction correspondence, the conformal block ≀ϕx associated
to ≀Xx (where the local coordinate at x is ηj ´ ηjpxq) is

≀ϕxpv b w‚q “ ϕ
`

w1 b ¨ ¨ ¨ b Y pv, ηjpxqqwj b ¨ ¨ ¨ b wN

˘

(11.5)

where the RHS is short for the following two equivalent series (cf. Lemma 7.4) and is
converging a.l.u. to the LHS of (11.5):

RHS of (11.5) “
ÿ

nPZ
ϕ
`

w1 b ¨ ¨ ¨ b Y pvqnwj b ¨ ¨ ¨ b wN

˘

z´n´1
ˇ

ˇ

z“ηjpxq

“
ÿ

nPN
ϕ
`

w1 b ¨ ¨ ¨ b PnY pv, ηjpxqqwj b ¨ ¨ ¨ b wN

˘

.
(11.6)

11.3

The second feature is: according to (1.12), for any x on C not necessarily close to
any of x‚, ≀ϕxpv b w‚q is holomorphic with respect to the motion of x. A downside of
this description is that it depends on a particular choice of local coordinates at x: if in
one local coordinate v is a constant, then in another one v will vary. So let us give an
coordinate-independent descrption:

Besides the translation of x, we also allow v to vary holomorphically with respect to
x. Namely, let U Ă C be open, choose a sufficiently large n P N, and assume v is a Vďn-
valued holomorphic function on U . (Recall that Vďn is finite dimensional by Convention
11.1.) Namely,

v P Vďn bC OpUq. (11.7)

Assume that there is a univalent (i.e., holomorphic+injective) function µ : U Ñ C.4 (It is
helpful to think of µ vanishing at some point y P U , i.e., µ is a local coordinate at y. But
technically this is not necessary.) Then at each x P U there is a natural local coordinate

4Indeed, one only needs to assume that dµ is nowhere zero on U . Then µ must be locally univalent, which
is sufficient for applications.
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µ ´ µpxq. If we let ≀ϕx act on abstract vectors instead of concrete ones, then for each v as
above (so that each Upµ´ µpxqq´1vpxq is an abstract vector)

x P U ÞÑ ≀ϕx

`

Upµ´ µpxqq´1vpxq b w‚

˘

(11.8)

is a holomorphic function. The choice of local coordinate µ ´ µpxq is in accordance with
pζ ´ zq{r in (1.10) if we assume r “ 1 and identify µ with the standard coordinate ζ of C.

11.4

We explain why this description is independent of the choice of µ. Let η P OpUq be
also univalent. Let ϱpη|µqx P G be the change of coordinate from µ ´ µpxq to η ´ ηpxq.
Namely

ϱpη|µqx
`

µpyq ´ µpxq
˘

“ ηpyq ´ ηpxq (11.9)

for any y P C close to x. Equivalently,

ϱpη|µqxpzq “ η ˝ µ´1pz ` µpxqq ´ ηpxq, (11.10)

from which we see that ϱpη|µq : U Ñ G, x ÞÑ ϱpη|µqx is a holomorphic family of transfor-
mations. Thus, by (10.13), Upϱpη|µqq

ˇ

ˇ

Vďn is in EndVďn b OpUq. Thus, by OpUq-linearity,
Upϱpη|µqq sends each section of Vďn b OpUq to Vďn b OpUq such that its valued at each x
is an automorphism of Vďn.

This property can be summarized in the following way: Let OU be the trivial holo-
morphic line (i.e. 1-dimensional vector bundle) over U . So Vďn bC OU is the trivial
(holomorphic) vector bundle5 with fiber Vďn. Then we have an automorphism of vector
bundle (equivalently, an automorphism of OU -module)

Upϱpη|µqq : Vďn bC OU
»
ÝÑ Vďn bC OU .

By Subsec. 2.11,

≀ϕx

`

Upµ´ µpxqq´1vpxq b w‚

˘

“ ≀ϕx

`

Upη ´ ηpxqq´1upxq b w‚

˘

where upxq “ Upϱpη|µqxqvpxq. Thus, the function v on U is holomorphic iff u is so. This
implies that the holomorphicity of (11.8) is independent of the choice of µ.

Example 11.3. Let ζ be the standard coordinate of Cˆ. Then for each γ P Cˆ,

ϱ
`

1{ζ
ˇ

ˇζ
˘

γ
“ ϱ

`

ζ
ˇ

ˇ1{ζ
˘

1{γ
“ ϑγ (11.11)

where ϑγpzq “ 1
γ`z ´ 1

γ (cf. (9.11)). Therefore, by (9.14),

U
`

ϱ
`

1{ζ
ˇ

ˇζ
˘

γ

˘

“ U
`

ϱ
`

ζ
ˇ

ˇ1{ζ
˘

1{γ

˘

“ eγL1p´γ´2qL0 . (11.12)
5In our notes, all vector bundles are holomorphic with finite ranks unless otherwise stated.
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11.5

The combination of these two features gives the definition of conformal blocks. To
simplify the definition and make it more precise, let us introduce some new notions.

We define a vector bundle V ďn
C over C whose fibers are equivalent to Vďn as follows.

Recall that holomorphic vector bundles can be constructed once we have holomorphic
transation functions. By (7.7), for univalent ηi P OpUq, i “ 1, 2, 3, we have

ϱpη1|η2qx ˝ ϱpη2|η3qx “ ϱpη1|η3qx (11.13)

and hence the cocycle condition

Upϱpη1|η2qqUpϱpη2|η3qq “ Upϱpη1|η3qq (11.14)

due to Thm. 10.5. Thus, we have a unique (up to equivalence) vector bundle V ďn
C whose

transition functions are of the form Upϱpη|µqq. More precisely, for any open U Ă C with
a univalent η P OpUq is associated with a trivialization (i.e., an equivalence of vector
bundles/OU -modules)

Uϱpηq : V ďn
C

ˇ

ˇ

U

»
ÝÑ Vďn bC OU (11.15)

compatible with the restriction of η to open subsets (i.e., if V Ă U is open then Uϱpη|V q “

Uϱpηq|V ) such that if µ P OpUq is also univalent, then

UϱpηqUϱpµq´1 “ Upϱpη|µqq : Vďn bC OU
»
ÝÑ Vďn bC OU . (11.16)

Remark 11.4. Intuitively, the fiber of V ďn
C at each x P C is the vector space W pVďnq

of abstract VOA vectors whose energies are ď n. The trivialization Uϱpηq sends each
fiber V ďn

C |x at x to Vďn via the isomorphism Upη ´ ηpxqq, and sends each abstract VOA
vector to its pη ´ ηpxqq-coordinate representation. If v P Vďn b OpUq, then the map x ÞÑ

Upη´ηpxqq´1vpxq is just the section Uϱpηq´1v of V ďn
C on U , and any section on U is of this

form. V ďn
C pUq, the space of all sections of V ďn

C on U , is the space of all VOA vectors with
energies ď n varying and moving holomorphically on U .

Remark 11.5. The vacuum vector 1 is fixed by any change of coordinate operator
Upϱpη|µqq since it is killed by Lě0. So we let 1 denote also the element of V ďn

C pCq whose
trivialization under any local univalent map η is the vacuum vector 1. We call 1 the vac-
uum section.

11.6

Now, the property that ≀ϕ is holomorphic with respect to the motion and variation of
the inserted VOA vectors can be expressed in the following form:

1. For each open subset U of Cztx‚u,

≀ϕp¨ b w‚q : V ďn
C pUq Ñ OpUq, v ÞÑ ≀ϕpv b w‚q (11.17)

is an OpUq-module (homo)morphism. (The reason that it intertwines the actions of
OpUq is clear.)
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2. ≀ϕp¨ b w‚q is compatible with the restriction to open subsets. Namely, if V Ă U is
open, then ≀ϕpv|V b w‚q “ ≀ϕpv b w‚q|V .

The above two points can be summarized using the sheaf theoretic language: ≀ϕp¨ b

w‚q is a morphism of OCztx‚u-modules V ďn
Cztx‚u

Ñ OCztx‚u. Equivalently,

≀ϕp¨ b w‚q P H0
`

Cztx‚u, pV ďn
C q_

˘

.

11.7

To simplify the formulation of definitions and theorems, we consider the direct limit
sheaf

VC “ lim
ÝÑ
nPN

V ďn
C

whose space of sections on any connected open U Ă C (or more generally, any open U
with finitely many connected component) is

VCpUq “ lim
ÝÑ
nPN

V ďn
C pUq.

This is possible since for each n1 ď n2 we have an obvious injective OC-module morphism
(i.e., morphism of vector bundles) V ďn1

C Ñ V ďn2
C which under any trivialization as in

(11.15) is the obvious inclusion Vďn1 b OU ãÑ Vďn2 b OU . Both VC and V ďn
C are called

sheaves of VOAs associated to C and V.
Equivalently, VC is an infinite-rank vector bundle such that for each connected open

U Ă C with a univalent η, we have a trivialization

Uϱpηq : VC |U
»
ÝÑ V b OU

compatible with the restriction of η to connected open subsets, such that for any another
univalent µ P OpUq we also have UϱpηqUϱpµq´1 “ Upϱpη|µqq as an automorphism of the
OU -module V b OU .

Thus, roughly speaking, VCpUq is the set of all sections v belonging to V ďn
C pUq for

some n P N.
In the rest of these notes, the readers may replace VC by V ďn

C for all possible n if they
are not comfortable with locally free sheaves of infinite ranks.

11.8

We are now ready to state the definition of conformal blocks. Recall the data X in
(11.1) and that each ηi is defined on Ui Q xi. Let V be a VOA, and let W1, . . . ,WN be
admissible V-modules associated respectively to the marked points x1, . . . , xN .

Definition 11.6 (Complex analytic version). A linear functional ϕ : W‚ “ W1 b ¨ ¨ ¨ b

WN Ñ C is called a conformal block associated to X and W‚ if the following holds: For
each w‚ P W‚, there exists a (necessarily unique) OCztx‚u-module morphism

≀ϕp¨, w‚q : VCztx‚u Ñ OCztx‚u
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(equivalently, ≀ϕp¨, w‚q P H0pCztx‚u,V _
C q) such that for each 1 ď i ď N , by identifying

VC |Ui “ V b OUi via Uϱpηiq (11.18)

and identifying

Ui “ ηipUiq via ηi (11.19)

so that ηi becomes the standard coordinate z, for each v P VCpUiq “ V b OpUiq (restricted
to Uiztxiu “ ηipUiqzt0u), the equality

≀ϕpv, w‚qz “ ϕ
`

w1 b ¨ ¨ ¨ b Y pvpzq, zqwi b ¨ ¨ ¨ b wN

˘

(11.20)

holds in Crrz˘1ss.

Note that the LHS of (11.20) is an element of OpηipUiqzt0uq, regarded as one in Crrz˘1ss

by taking Laurent series expansions. The RHS is understood as
ÿ

mPN,nPZ
ϕp¨ ¨ ¨ b Y pvmqnwi b ¨ ¨ ¨ qzm´n´1

if v has expansion vpzq “
ř

mě0 vmz
m where each vm P V. In particular, (11.20) is in

Cppzqq.

11.9

Let us make some comments on this definition.

Remark 11.7. By Lemma 7.13, we see that if ηipUiq Ą Dri , then the formal Laurent series
of z on the RHS of (11.20), and equivalently (cf. (11.6)), the series of functions

ÿ

nPN
ϕ
`

w1 ¨ ¨ ¨ b PnY pvpzq, zqwi b ¨ ¨ ¨ b wN

˘

converge a.l.u. on z P Dˆ
ri to the LHS of (11.20). This explains why Def. 11.6 is viewed as

a complex analytic definition.

Remark 11.8. The uniqueness of ≀ϕp¨, w‚q is due to the following reason. It suffices to
restrict ω “ ≀ϕp¨, w‚q to V ďn

C for each n ě 0. Suppose ω1 “ ≀1ϕp¨, w‚q is another morphism
satisfying the descriptions in Def. 11.6. Then ω and ω1 are sections of the vector bundle
pV ďn

C q_ over Cztx‚u. Moreover, by (11.20), ω ´ ω1 vanishes on each Uiztxiu. Thus, if we
let Ω Ă Cztx‚u be the set of all points y such that ω ´ ω1 vanishes on a neighborhood of
y, then by Assumption 11.2, Ω intersects each connected component of C. By complex
analysis, Ω is both open and closed. So Ω “ Cztx‚u.

Remark 11.9. By this uniqueness, we may define ≀ϕp¨, wq for all w P W‚ such that ≀ϕp¨, wq

is linear over w.

Remark 11.10. By complex analysis, it is clear that the definition of conformal blocks is
independent of the sizes and shapes of the neighborhoods U1, U2, . . . of x‚.

Remark 11.11. By OpUiq-linearity, to verify (11.20) for all v P VbOpUiq, it suffices to verify
it for all constant v P V » V b 1.
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11.10

Example 11.12. Fix γ P Cˆ, and let P “ pP1; 0, γ,8; ζ, ζ ´ γ, 1{ζq where ζ is the standard
coordinate of C. Let W be an admissible V-module, and associate W,V,W1 to 0, γ,8.
Then the following linear functional is a conformal block, called the conformal block
associated to the vertex operation YW.

ω : W b V b W1 Ñ C, w‚ “ w b v b w1 ÞÑ xw1, Y pv, γqwy (11.21)

Proof. We construct the OCˆztγu-module morphism ≀ωp¨, w‚q : VCˆztγu Ñ OCˆztγu as fol-
lows. For every open U Ă Cˆztγu, set

≀ωp¨, w‚q : VCˆztγupUq Ñ OpUq,

Uϱpζq´1u ÞÑ xw1, Y pupzq, zqY pv, γqwy

where u P V b OpUq, and we have used the convention in Def. 8.3 so that the above
termed is defined and holomorphic when z ‰ 0, γ,8 and u is holomorphic.

Assume without loss of generality that u is a constant section, i.e. u P V. By the
complex analytic Jacobi identity for YW, (11.20) holds for ω when γ is close to 0 or γ.
When z is close to 8, ≀ωp¨, w‚q sends Uϱpζq´1u to xw1, Y pu, zqY pv, γqwy. Thus, it sends

Uϱp1{ζq´1u “ Uϱpζq´1Upϱpζ|1{ζqqu

to

@

w1, Y
`

Upϱpζ|1{ζqzqu, z
˘

Y pv, γqw
D (11.12)

ùùùùù
@

w1, Y
`

ez
´1L1p´z2qL0u, z

˘

Y pv, γqw
D

,

which by (9.15) equals
@

Y
`

u, z´1
˘

w1, Y pv, γqw
D

“
@

Y
`

u, η8pzq
˘

w1, Y pv, γqw
D

where η8 “ 1{ζ is the local coordinate at 8. This proves (11.20) when z is near 8.

Exercise 11.13. Let W1,W2 be admissible V-modules, and let T : W1 Ñ W2 be a V-module
homomorphism, i.e., a linear map intertwines the V-actions. Let P “ pP1; 0,8; ζ, 1{ζq,
and associate W1,W1

2 to 0,8 respectively. Show that the following linear functional is a
conformal block associated to P and W1,W1

2.

W1 b W1
2 Ñ C w1 b w1

2 ÞÑ xTw1, w
1
2y (11.22)

11.11

Due to the fact that (11.20) belongs to Cppzqq, we may regard ≀ϕp¨, w‚q as a section of
pV ďn

C q_ that has finite poles at x‚:

≀ϕp¨, w‚q P H0pC, pV ďn
C q_p‹x‚qq. (11.23)
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The meaning of the notation is the following. Let E be a vector bundle over C. Then for
each k1, . . . , kN P Z,

E pk1x1 ` ¨ ¨ ¨ ` kNxN q

denotes the OC-module whose space of sections on each openU Ă C are all s P E pUztx‚uq

such that for each 1 ď i ď N the function ηkii ¨ s : x ÞÑ ηipxqkispxq is holomorphic on a
neighborhood of xi (equivalently, on Ui). Thus, when k1, . . . , kN ě 0, it is the sheaf of
sections of ECztx‚u that have poles of order at most ki at xi. Then

E p‹x‚q “ lim
ÝÑ

k1,...,kNPN
E pk1x1 ` ¨ ¨ ¨ ` kNxN q (11.24)

is the sheaf of sections of ECztx‚u that have finite poles at x1, . . . , xN .
This viewpoint allows us to use the strong residue theorem to obtain the algebraic

definition of conformal blocks. Let ωC be holomorphic cotangent line bundle ofC, i.e., the
sheaf of holomorphic 1-forms on the open subsets of C. The by residue theorem/Stokes’
theorem,

N
ÿ

i“1

Resxiλ “ 0 (11.25)

for all λ P H0pCztx‚u, ωCq, and hence for all λ P H0pC,ωCp‹x‚qq.

Theorem 11.14 (Strong residue theorem). Let E be a vector bundle onC. For each 1 ď i ď N ,
use a trivialization of E and the corresponding dual trivialization for the dual vector bundle E _

to fix an identification

E |Ui “ Ei b OUi , E _|Ui “ E˚
i b OUi (11.26)

where Ei is a finite dimensional vector space and E˚
i is its dual space. Choose

si “
ÿ

nPZ
ei,nη

n
i P Eippηiqq. (11.27)

Then the following are equivalent.

(a) There exists s P H0pC,E p‹x‚qq whose Laurent series expansion at each xi is si.

(b) For each σ P H0pC,E _ b ωCp‹x‚qq,

N
ÿ

i“1

Resxixsi, σy “ 0. (11.28)

Here, E _ b ωC is the tensor product of the two vector bundles. Recall that in general,
if E and F are vector bundles over a complex manifoldX , then E bF (or more precisely,
E bOX

F ) is the one whose transition functions are given by the tensor products of those of
E and F . Equivalently, E bF is the sheafification of the presheaf whose space of sections
over any open U Ă X is E pUqbOpUq F pUq. pE bF qpUq equals E pUqbOpUq F pUq when EU

and FU are trivializable (i.e. equivalent to free OU -modules). (To see this, simply assume
EU “ O‘m

U and FU “ O‘n
U .)
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11.12

The LHS of (11.28) is understood in the following way. In view of (11.26), at
each xi, σ has expansion σ “

ř

nPZ εi,nη
n
i dηi where εi,n P E˚

i . Then xsi, σy “
ř

m,nPZxei,m, εi,nyηm`n
i dηi. So (11.28) reads

N
ÿ

i“1

ÿ

m`n“´1

xei,m, εi,ny “ 0

where the sum over all m,n P Z satisfying m` n “ ´1 is finite.

Remark 11.15. Suppose ηipUiq Ą Dri . Then it is clear that if (a) or (b) holds, then the
series si “

ř

nPZ ei,nη
n
i converges a.l.u. on ηi P Dˆ

ri . It is remarkable that this analytic
property follows from the algebraic condition (11.28). This is analogous to that the formal
variable version of local fields implies the complex analytic one, and that the algebraic
Jacobi identity for VOAs implies the complex analytic one.

That paq ñ pbq follows from the residue theorem, since xs, σy is an element of
H0pC,ωCp‹x‚qq. The other direction is more difficult. To prove it one needs more ad-
vance tools such as sheaf cohomology and Serre duality, which we are not able to present
here due to page limitations. We refer the readers to [Muk10, Sec. 1.2.2]6, [Gui, Sec. 1.4],
or [Gui21, Sec. 7] for details.

11.13

We now apply the strong residue theorem to the case that E “ pV ďn
C q_. The trivial-

ization (11.26) is given by Uϱpηiq (cf. (11.27)) and its dual. In particular, Ei “ pVďnq˚. The
series si we choose is the RHS of (11.20), namely,

si “
ÿ

nPZ
si,nη

n
i P pVďnq˚ppηiqq

where si,n P pVďnq˚ sends each v P Vďn to

si,npvq “ ϕ
`

w1 b ¨ ¨ ¨ b Y pvq´n´1wi b ¨ ¨ ¨ b wN

˘

.

Now, Def. 11.6 says simply that (for all n) all s1, . . . , sN are series expansions at
x1, . . . , xN of the same section of H0pC,E p‹x‚qq, namely ≀ϕp¨, w‚q. Thus, by the strong
residue Thm. 11.14, the statements in Def. 11.6 (when restricted to V ďn

C ) are equivalent to
řN

i“1Resxixsi, σy “ 0 for all σ P H0pC,V ďn
C b ωCp‹x‚qq. Namely, ϕ vanishes on

σ ¨ w‚ “

N
ÿ

i“1

w1 b ¨ ¨ ¨ b σ ¨ wi b ¨ ¨ ¨ b wN (11.29)

6Though [Muk10] only discusses the case that E “ OC , its proof applies to all vector bundles.
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where for each i,

σ ¨ wi “ Resz“0 Y pvipzq, zqwidz P Wi (11.30)

and σ|Ui “ vipzqdz under the identifications (11.18) and (11.19).
For instance, if σ|Ui “ uzkdz where u P V, then

puzkdzq ¨ wi “ Y puqkwi. (11.31)

Definition 11.16. We define a linear action of H0
`

C,VC b ωCp‹x‚q
˘

on W‚ such that for
each σ,w‚ in the two vector spaces respectively, σ ¨ w‚ is defined by (11.29) and (11.30).
We call it the residue action.

Thus, taking all n P N into account, we see that the complex analytic Def. 11.6 of
conformal blocks is equivalent to the following algebraic one:

Definition 11.17 (Algebraic version). A linear functional ϕ : W‚ Ñ C is called a confor-
mal block associated to X and W‚ if it vanishes on the following subspace

H0
`

C,VC b ωCp‹x‚q
˘

¨ W‚ (11.32)

of W‚, where we have suppressed SpanC in (11.32).

Definition 11.18. The vector space

TXpW‚q “
W‚

H0
`

C,VC b ωCp‹x‚q
˘

¨ W‚

(11.33)

is called the space of coinvariants (also called space of covacua) associated to X and W‚.
Its dual space is denoted by T ˚

X pW‚q and called the space of conformal blocks (or space
of vacua, space of invariants).

12 Pushforward and Lie derivatives in sheaves of VOAs

12.1

We continue our discussions in the previous section. The residue action of σ on wi is
crucial in the theory conformal blocks. Let us present its definition in a form that indicates
the choice of local coordinate ηi.

We now only assume that σ is a section of VC b ωCp‹x‚q defined on a neighborhood
of xi, say on Ui. (Namely, σ is a section of VC b ωC on Uiztxiu with finite poles at xi.) Let
Vϱpηiqσ be vipzqdz in (11.30). Then (11.30) reads

σ ¨ wi “ Resz“0 Y pVϱpηiqσ, zqwi. (12.1)

Let us describe Vϱpηiq in a more geometric way. Notice that we have an obvious equiv-
alence

pηiq˚ : OUi

»
ÝÑ OηipUiq
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sending f to f˝η´1
i . Then 1Vbpηiq˚ : VbCOUi

»
ÝÑ VbCOηipUiq

. We define the pushforward

Vϱpηiq : VUi

»
ÝÑ V b OηipUiq

Vϱpηiq “ p1V b pηiq˚qUϱpηiq
(12.2)

Its tensor product with pηiq˚ “ pη´1
i q˚ : ωUi

»
ÝÑ ωηipUiq

is also denoted by Vϱpηiq:

Vϱpηiq ” Vϱpηiq b pηiq˚ : VUi b ωUip‹xiq
»
ÝÑ V b ωηipUiq

p‹0q. (12.3)

12.2

The above geometric description is convenient when treating simultaneously more
than one local coordinate at xi and the corresponding trivializations. As an application,
let us show that the action of σ on Wi can be formulated in a coordinate-independent
way.

From now on, we do not fix the local coordinates of X “ pC;x1, . . . , xN q. Let W pWiq

be an abstract vector space isomorphic to Wi. To be more precise, we consider W pWiq as
a (infinite rank) vector bundle over a single point with trivialization

Upηiq : W pWiq
»
ÝÑ Wi (12.4)

for any local coordinate ηi of C at xi, such that if µi is also a local coodinate at xi, then the
transition function is

UpηiqUpµiq
´1 “ Upηi ˝ µ´1

i q : Wi
»
ÝÑ Wi. (12.5)

Note that ηi ˝ µ´1
i P G is the change of coordinate from µi to ηi, and Upηi ˝ µ´1

i q is the
corresponding invertible operator on Wi defined by (10.8).

For each σ P H0pUi,VUi b ωUip‹xiqq and w P W pWiq, define

σ ¨ w “ Upηiq
´1 ¨ σ ¨ Upηiqw (12.6)

where the action of σ on Upηiqw is defined by (12.1).

12.3

Proposition 12.1. The definition of residue action σ ¨ w is independent of the choice of local
coordinates ηi at xi.

The proof of this proposition is a good exercise of computing Vϱpηqσ when
η,VUi ,W pWiq are not identified with the standard ones using the trivializations.

Proof. Write xi “ x, Ui “ U,Wi “ W for simplicity. Let µ, η P OpUq be coordinates of U
at x. (So ηpxq “ µpxq “ 0.) Identify U with µpUq via µ so that µ is identified with the
standard coordinate 1C of C. We have η P G. Identify W pWq with W via Upµq. So Upµq “
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1, and Upηq : W pWq Ñ W agrees with the operator associated with the transformation η.
We write w P W pWq as w P W.

Due to the above identifications, we have µ˚ “ 1 and hence Vϱpµq “ Uϱpµq. Write

Vϱpµqσ “ Uϱpµqσ “ upzqdz

where u “ upzq belongs to H0pU,V b OU p‹0qq. So the action σ ¨ w defined by µ is simply
Resz“0Y pupzq, zqwdz.

Let us compute σ ¨ w using η. In view of (12.1) and (12.6), we compute Vϱpηqσ. First,

Uϱpηqσ “ UϱpηqUϱpµq´1upzqdz “ Upϱpη|µqqupzqdz “ Upϱpη|1Cqzqupzqdz.

Here z is the standard variable of C. Applying η˚ “ pη´1q˚, we get

Vϱpηqσ “ Upϱpη|1Cqη´1pzqqupη´1pzqqdη´1pzq

defined on ηpUq Ă C. Thus, when evaluated with any vector w1 P W1, we have

Upηq´1 ¨ σ ¨ Upηqw “
ÿ

nPN
Upηq´1Pn ¨ σ ¨ Upηqw

“
ÿ

nPN
Resz“0 Upηq´1PnY

`

Vϱpηqσ, z
˘

Upηqw

“
ÿ

nPN
Resz“0 Upηq´1PnY

`

Upϱpη|1Cqη´1pzqqupη´1pzqq, z
˘

Upηqw
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

An

¨dη´1pzq.

By the change of coordiante Thm. 10.7,
ř

nxw1, Any converges a.l.u. when z ‰ 0 is small.
Thus we can move the infinite sum into the residue, and by Thm. 10.7 again, the above
equals

Resz“0 Y pupη´1pzqq, η´1pzqqw ¨ dη´1pzq
ζ“η´1pzq

ùùùùùùù Resζ“0 Y pupζq, ζqw ¨ dζ.

This finishes the proof.

12.4

We are now ready to give a coordinate independent definition of conformal blocks.
Let X “ pC;x‚q be an N -pointed compact Riemann surface, for which we do not fix local
coordinates. Again, we associate admissible V-modules W‚ to the markd points x‚. Let

WXpW‚q “ W pW1q b ¨ ¨ ¨ b W pWN q. (12.7)

Then for each choice of local coordinates η‚, we have trivialization

Upη‚q :“ Upη1q b ¨ ¨ ¨ b UpηN q : WXpW‚q
»
ÝÑ W‚. (12.8)

If µ‚ is another set of local coordinates, then we have transition function

Upη‚qUpµ‚q´1 “ Upη‚ ˝ µ´1
‚ q :“ Upη1 ˝ µ´1

1 q b ¨ ¨ ¨ b UpηN ˝ µ´1
N q. (12.9)
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For each w‚ “ w1b¨ ¨ ¨wN P WXpW‚q and σ P H0pC;VC bωCp‹x‚qq, define the residue
action

σ ¨ w‚ “

N
ÿ

i“1

w1 b ¨ ¨ ¨ b σ ¨ wi b ¨ ¨ ¨ b wN (12.10)

(where each σ ¨ wi is defined by (12.6)). This gives a linear action of H0pC;VC b ωCp‹x‚qq

on WXpW‚q.

Definition 12.2. The vector space

TXpW‚q “
WXpW‚q

H0
`

C,VC b ωCp‹x‚q
˘

¨ WXpW‚q
(12.11)

and its dual space T ˚
X pW‚q are called respectively the space of coinvariants and the space

of conformal blocks associated to X and W‚.

12.5

Let us generalize the pushforward in Subsec. 12.1 to a more general geometric setting.
Let X and Y be (non-necessarily compact) Riemann surfaces, and let φ : X

»
ÝÑ Y be a bi-

holomorphism. Let

φ˚ : OX Ñ OY , f ÞÑ f ˝ φ´1 (12.12)

be the pushforward of the structure sheaves. We let φ˚ also denote

φ˚ ” 1V b φ˚ : V b OX
»
ÝÑ V b OY . (12.13)

Let U Ă X and V Ă Y be open and connected such that V “ φpUq. Suppose there is a
univalent η P OpY q. Recall that we have an equivalence

Vϱpηq “ η˚ ¨ Uϱpηq : VV
»
ÝÑ V b OηpV q (12.14)

where the pushforward η˚ : V b OV Ñ V b OηpV q is similar to (12.13). We define

Vϱpφq : VU
»
ÝÑ VV , VϱpηqVϱpφq “ Vϱpη ˝ φq. (12.15)

Equivalently,

UϱpηqVϱpφq “ φ˚ ¨ Uϱpη ˝ φq. (12.16)

Proof. Note that Vϱpηq “ η˚ ¨Uϱpηq, Vϱpη˝φq “ pη˝φq˚ ¨Uϱpη˝φq, and pη˝φq˚ “ η˚ ¨φ˚.

Lemma 12.3. The definition of Vϱpφq is independent of the choice of univalent map η.
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Proof. Let µ P OpV q be univalent. Using (11.9), one checks easily that

Upϱpη ˝ φ|µ ˝ φqq “ φ´1
˚ ¨ Upϱpη|µqq ¨ φ˚

as morphisms V b OU Ñ V b OU . This means

Uϱpη ˝ φqUϱpµ ˝ φq´1 “ φ´1
˚ ¨ UϱpηqUϱpµq´1 ¨ φ˚. (12.17)

The independence follows immediately from the above formula and (12.16).

By this lemma, we have a global equivalence

Vϱpφq : VX
»
ÝÑ VY (12.18)

defined locally by (12.15) or (12.16). We call Vϱpφq the pushforward associated to φ. We
also use Vϱpφq to denote

Vϱpφq ” Vϱpφq b φ˚ : VX b ωX
»
ÝÑ VY b ωY (12.19)

where φ˚ is pφ˚q´1 “ pφ´1q˚ : ωX Ñ ωY .

12.6

Remark 12.4. From (12.15), it is clear that Vϱpψ ˝ φq “ VϱpψqVϱpφq if ψ : Y Ñ Z is a
bi-holomorphism of complex manifolds.

Remark 12.5. The geometric meanings of Vϱpφq : VX Ñ VY and the formula (12.16) are
as follows. Let x P X . Choose a vector u in the fiber VX |x, considered an abstract VOA
vector. Let v “ Vϱpφqu. Then by (12.16) and the geometric meanings of Uϱpηq and Uϱpµq

(cf. Rem. 11.4), u and v are related by the property that for any univalent η holomorphic
on a neighborhood y, if we set µ “ η ˝ φ, then the coordinate representation of u under
µ´ µpxq is the same as that of v under η ´ ηpyq.

We will simply say that the µ-trivialization of u and the η-trvialization of v are equal.

Remark 12.6. Now Vϱpηq has two meanings: as an equivalence VV Ñ VbOηpV q defined by
(12.14), and as an equivalence VV Ñ VηpV q defined similar to Vϱpφq. These two meanings
agree if we identify VηpV q with VbOηpV q via the trivialization Uϱpζq where ζ is the standard
coordinate of C.

12.7

That one can define pushforward for (co)tangent bundles as well as for sheaves of
VOAs implies that these two classes of objects are closely related. Indeed, one can view
VC as a twisted direct sum of tensor products of the holomorphic tangent line bundle ΘC

of C. (Note that ωC is the dual of ΘC .)
To see this, let us look at the transition function Upϱpη|µqq : Vďn b OU

»
ÝÑ Vďn b

OU where µ, η P OpUq are univalent. By (10.8), Upϱpη|µqqx “ ϱpη|µq1
xp0qL0p1 `
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products of Lą0q on V. From (11.9), ϱpη|µq1
xp0q “

Bη
Bµpxq. Thus, as Lą0 lowers weights,

we conclude that for each v “ vpxq P Vďn b OU ,

UϱpηqUϱpµq´1v “ Upϱpη|µqqv “ pBη{Bµqnv mod Vďn´1 b OU . (12.20)

Thus, the transition function Upϱpη|µqq from the µ-coordinate to the η-coordinate for the
quotient bundle V ďn

C {V ďn´1
C is pBη{Bµqn, which agrees that of VpnqbCΘ

bn
C . We conclude:

Proposition 12.7. There is an equivalence of OC-modules

V ďn
C {V ďn´1

C » Vpnq bC Θbn
C (12.21)

such that if U Ă C is open and η P OpUq is univalent, then for each v P Vpnq, v b Bn
η (which is

an element in the RHS of (12.21)) is equivalent to the equivalence class of Uϱpηq´1v in the LHS
of (12.21).

Thus, in general, an element of Vpnq b Θbn
C pUq is a sum of those of the form v b fBn

η

where v P Vpnq and f P OpUq. It is identified with f ¨ Uϱpηq´1v in the LHS of (12.21).

12.8

If we focus on only primary vectors, we can get subbundles of VC naturally equiv-
alent to direct sums of tensor products of ΘC without taking quotient. Recall that a
primary vector v in Vpnq is one killed by Lą0. So the change of coordinate formula
for v is Upϱpη|µqqv “ pBη{Bµqnv. Thus, if we let Ppnq be the subspace of weight n
primary vectors of V, then VC has a vector subbundle Pn

C with local trivialization
Uϱpηq : Pn

C |U
»
ÝÑ Ppnq bC OU for any univalent η P OpUq. Moreover, Pn

C has the same
transition functions as Θbn

C . So Pn
C » Ppnq bC Θbn

C .
Since the basic properties of line bundles Θbn

C are well known, in the early devel-
opment of the mathematical theory of conformal blocks, sheaves of VOAs were not yet
defined, and the sheaves Pn

C were sometimes used instead to define and study conformal
blocks. Specifically, in the landmark paper [TUY89], conformal blocks for a WZW model
V “ Llpg, 0q (where g is simple and l P N) was defined using

P1
C b ωCp‹x‚q » Pp1q bC ΘC b ωCp‹x‚q “ g bC OCp‹x‚q.

(Note that ΘC b ωC » OC since ω is dual to ΘC .) Thus, for WZW models, the space of
coinvariants was defined (for X with local coordinates) in [TUY89] to be

W‚

H0
`

C, g bC OCp‹x‚q
˘

¨ W‚

Fortunately, this definition agrees with the one defined using H0pC,VC b ωCp‹x‚qq. See
[FB04, Sec. 9.3].
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12.9

In differential geometry, the Lie derivatives of sections of (tensor products of) tangent
and cotangent bundles are defined using the pushforward or the pullback maps associ-
ated to flows. Likewise, we can define Lie derivatives for sections of VC .

Let W Ă C be an open subset, and choose x P ΘCpW q, namely, x is a holomorphic
tangent field on W . Note that for any precompact open subset V Ă W (i.e., the closure
of V in W is compact), there is a neighborhood T Ă C of 0 (with variable ζ) such that the
holomorphic flow exppζxq is holomorphic on T ˆ V and is injective as a function on V for
each ζ P T . (Cf. Subsec. 2.6.)

In the following, we write exppζxqpxq as expζxpxq.

Definition 12.8. For any v P V ďn
C pW q and x P ΘCpW q, define the Lie derivative Lxv to

be an element of V ďn
C pW q (if the limit exists) as follows . Choose any precompact open

subset V in W . Then

Lxv
ˇ

ˇ

V
“ lim

ζÑ0

Vϱpexpζxq
´1
`

v
ˇ

ˇ

expζxpV q

˘

´ v
ˇ

ˇ

V

ζ
(12.22)

Intuition: For each p P V , vppq P V ďn
C |p is an abstract VOA vector at p. Let q “

expζxppq. Then vpqq P V ďn
C |q is an abstract VOA vector at vpqq, which is pulled back to the

vector Vϱpexpζxq
´1vpqq P V ďn

C |p via the map expζx.

(12.23)

Then for small ζ,

pLxvqppq «
Vϱpexpζxq

´1vpqq ´ vppq

ζ
(12.24)

12.10

Proposition 12.9. Assume that η P OpW q is univalent, and set

u “ Uϱpηqv P Vďn bC OpW q.

Write x “ hBη where h P OpW q. Then Lxv exists (i.e. the limit on the RHS of (12.22) exists) as
an element of V ďnpW q, and its η-trivialization is

UϱpηqLxv “ hBηu´
ÿ

kě1

1

k!
Bk
ηh ¨ Lk´1u. (12.25)

Proof. We need to find the η-trivialization of Vϱpexpζxq
´1
`

v
ˇ

ˇ

expζxpV q

˘

at any p P V , namely,
the η-trivialization of the red vector in (12.23). Since the η-trivialization of vpqq is upqq,
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by (12.16) or Rem. 12.5, the η ˝ expζx-trivialization of the red vector is also upqq. So the
η-trivialization of the red vector (which is at p) is

Upϱpη|η ˝ expζxqpqupexpζxppqq. (12.26)

Its derivative over ζ at ζ “ 0 gives Lxvppq under the η-trivialization. (The readers can
check [Gui, Sec. 2.6] if they are not satisfied with the rigorousness of the proof here.)

The derivative at ζ “ 0 of upexpζxppqq is just the action of the vector field x on u, namely
hBηu at p. (Notice (2.9).) The derivative of Upϱpη|η ˝ expζxqpq at 0 can be calculated using
Prop. 10.3: if we identify η with the standard coordinate of C, then

BζUpϱpη|η ˝ expζxqpqptq
ˇ

ˇ

ζ“0

(11.10)
ùùùùù Bζ

`

exp´ζxpt` expζxppqq ´ p
˘ˇ

ˇ

ζ“0

“ ´ hpt` pq ` hppq.

Its k-th derivative over t at t “ 0 is then ´Bk
ηhppq. Thus, by Prop. 10.3,

BζUpϱpη|η ˝ expζxqpq
ˇ

ˇ

ζ“0
“ ´

ÿ

kě1

1

k!
Bk
ηh ¨ Lk´1.

12.11

In Prop. 12.9, if we assume that u P Ppnq bC OpW q, i.e., the values of u are primary
with weights n, then the Lie derivative formula is hBηu ´ nBηh ¨ u. Not surprisingly, this
result agrees with the formula of Lie derivatives in Θbn

C , including the case n “ ´m ă 0

where we understand Θ
bp´mq

C “ ωbm
C .

Since we have pushforward for sections of V ďn
C b ωC (cf. (12.19)), we can also define

Lie derivatives in this bundle using the same formula (12.22). The result is easy to guess
by Leibniz rule and prove rigorously:

Corollary 12.10. Let σ P V ďn
C b ωCpW q, and set

u ¨ dη “ Uϱpηqσ P Vďn bC ωCpW q

where u P Vďn P OpW q. Write x “ hBη where h P OpW q. Then

UϱpηqLxσ “ hBηu ¨ dη ´
ÿ

kě1

1

k!
Bk
ηh ¨ Lk´1u ¨ dη ` Bηh ¨ u ¨ dη. (12.27)

13 Families of compact Riemann surfaces and parallel sections
of conformal blocks

13.1

Definition 13.1. A family of compact Riemann surfaces is the data π : C Ñ B where B, C
are Riemann surfaces, the surjective holomorphic map π is proper (i.e. π´1pcompactq is
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compact) and a submersion (i.e. the linear map dπ between holomorphic tangent spaces
is everywhere surjective), and for each b P B the fiber Cb “ π´1pbq is a compact Riemann
surface. Clearly, π is an open map.

By Ehresmann’s fibration theorem, if B is connected, then all fibers of the family are
diffeomorphic; moreover, as a family of differential manifolds, π : C Ñ B is locally trivial,
i.e. as a projection of C ˆ V Ñ V when V Ă B is open and C is a surface. However, it is
not locally trivial as a family of complex manifolds.

Definition 13.2. A family of N -pointed compact Riemann surfaces is the data X “ pπ :
C Ñ B; ς1, . . . , ςN q where π : C Ñ B is a family of compact Riemann surfaces, and the
following conditions hold:

(a) Each ςi : B Ñ C is a section, i.e., a holomorphic map such that π ˝ ςi “ 1B. (So ςipbq
is are points on the fiber Cb.)

(b) ς1pbq, . . . , ςN pbq are distinct, considered as marked points of each fiber Cb.

(c) Each connected component of each fiber Cb contains at least one of ς1pbq, . . . , ςN pbq.

The following is a hypersurface in C.

SX “

N
ď

j“1

ςjpBq (13.1)

A local coordinate ηi of the family at ςi is a holomorphic function on a neighborhood
Ui of ςipBq that restricts to a local coordinate ηi|CbXUi of Cb at ςipbq for each b P B, i.e.,
ηipςipbqq “ 0 and ηi is injective on the fiber

Ui,b “ Cb X Ui.

We call the data X “ pπ : C Ñ B; ς1, . . . , ςN ; η1, . . . , ηN q a family of N -pointed compact
Riemann surfaces with local coordinates. We define the fiber

Xb “ pCb; ςipbq, . . . , ςN pbq; η1|Cb , . . . , ηN |Cbq (13.2)

which is an N -pointed compact Riemann surface with local coordinates.

13.2

Since π is a submersion, on a neighborhood of p P ςipBq, π is equivalent to the projec-
tion D ˆ V Ñ V where D Ă C, V P Cm are open. So ςi restricted to V Ă B is written as
ςipbq “ pσipbq, bq where σi : V Ñ D is holomorphic. Namely, ςi|V is the graph of σi.

(13.3)
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By the fact that ηi is injective on each fiber, Bz1ηi is nowhere zero where z1 is the coor-
dinate for D. So the Jacobian of pηi, πq is nowhere zero. Thus, by the inverse mapping
theorem, together with the easy fact that pηi, πq is injective on Ui, we see that pηi, πq is a
biholomorphism from Ui to a neighborhood of t0u ˆ B in C ˆ B. (13.3) shows a picture in the
case that V is identified with an open subset of Cm.

Thus, by identifying Ui with its image W (which is a neighborhood of t0u ˆ B) under
pηi, πq, we may assume that π is the projection of W onto B, ςi is the canonical map B Ñ

t0u ˆ B, and ηi is the projection of W Ă C ˆ B onto the C-axis.

13.3

Example 13.3. Let C be a connected compact Riemann surface. Then

X “ pπ : C ˆ ConfN pCq Ñ ConfN pCq; ς1, . . . , ςN q

is a family of N -pointed compact Riemann surface, where π is the projection onto the
second component, and ςi : ConfN pCq Ñ C ˆ ConfN pCq sends each px1, . . . , xN q to
pxi, x1, . . . , xN q. The fibers are Xx‚ “ pC;x1, . . . , xN q.

Example 13.4. Let PN “ pπ : P1 ˆConfN pCˆq Ñ ConfN pCˆq; 0, ς1, . . . , ςN ,8q where 0,8
as sections sending x‚ to p0, x‚q and p8, x‚q respectively, and ςi is as in the previous exam-
ple. Then PN is pN ` 2q-pointed. Moreover, PN can be equipped with local coordinates
ζ, η1, . . . , ηN , 1{ζ at 0, ς1, . . . , ςN ,8 respectively, where ζ sends pz, z‚q to z, 1{ζ sends pz, z‚q

to 1{z, and each ηi sends pz, z‚q to z ´ zi. The fibers are

PN
z‚

“ pP1; 0, z1, . . . , zN ,8; ζ, ζ ´ z1, . . . , ζ ´ zN , 1{ζq

where ζ is now the standard coordinate of C.

13.4

Example 13.5. Let

rX “ p rC;x1, . . . , xN , x
1, x2; η1, . . . , ηN ; ξ,ϖq

be an pN ` 2q-pointed compact Riemann surface with local coordinates such that each
connected component contains one of x1, . . . , xN . Let U 1, U2 be respectively open disks
centered at x1, x2 with radii r, ρ. More precisely, we assume ξ,ϖ are defined on U 1, U2,
and we have biholomorphisms

ξ : U 1 »
ÝÑ Dr, ϖ : U2 »

ÝÑ Dρ.

We assume moreover that U 1, U2, x1, . . . , xN are mutually disjoint.
For each q P Dˆ

rρ we can define an N -pointed Xq by the sewing operation as follows.
We glue the following annuli

ξ´1pA|q|{ρ,rq “ tx P U 1 : |q|{ρ ă |ξpxq| ă ru
İ

§

đ
identify

ϖ´1pA|q|{r,ρq “ ty P U2 : |q|{r ă |ϖpyq| ă ρu

(13.4)
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where the rule for identification is

x “ y iff ξpxqϖpyq “ q. (13.5)

The parts Z 1
q “ tx P U 1 : |ξpxq| ď |q|{ρu and Z2

q “ ty P U2 : |ϖpyq| ď |q|{ru are discarded.
By this gluing procedure we obtain the sewn Riemann surface Cq with marked points
x1, . . . , xN (the same as the first N marked points of rX). The local coordinate at xi is also
chosen to be ηi. This defines Xq “ pCq;x1, . . . , xN ; η1, . . . , ηN q.

One can assemble all Xq to form a family

X “ pπ : C Ñ Dˆ
rρ;x1, . . . , xN ; η1, . . . , ηN q

whose fiber at each q P Dˆ
rρ is Xq. (We have abused notations here to let xi denote a section

and ηi a local coordinate at the section xi.) It could be obtained in the following way:

• We have closed subsets E1 “
Ť

qPDˆ
rρ
Z 1
q ˆ tqu and E2 “

Ť

qPDˆ
rρ
Z2
q ˆ tqu of rC ˆ Dˆ

rρ.
Consider the projection

π : p rC ˆ Dˆ
rρqzpE1 Y E2q Ñ Dˆ

rρ.

Each xi is the section sending q P Dˆ
ρ to pxi, qq, and ηi sends px, qq to ηipxq when x is

close to xi. Modding this data by a suitable holomorphic relation gives the family
X.

In the above example, we can in fact extend X to a family over Drρ where X0 “

pC0;x‚; η‚q is the “limit” of Xq as q Ñ 0. As a topological space, C0 is obtained by gluing x1

and x2 of rC. C0 is not a smooth manifold, and hence cannot be a Riemann surface. How-
ever, one can make C0 a singular complex manifold (more precisely: a complex space)
by defining a suitable structure sheaf OC0 . C0 is called a nodal curve. Nodal curves are
crucial to the proof of sewing and factorization of conformal blocks. However, this topic
is out of the scope of our notes. We refer the readers to [Gui] for a detailed discussion of
this topic.

13.5

Example 13.6. Let X0 “ pC;x1, . . . , xN ; η1, . . . , ηN q be an N -pointed compact Riemann
surface with local coordinates. Write x1 “ x and η1 “ η for simplicity. Let η be defined on
a neighborhood U “ U1 Q x1 disjoint from x2, . . . , xN . Assume that ηpUq is an open disk
centered at 0 with radius ą 1.

Let h be a holomorphic function on a neighborhood of S1. Then x “ hBz is a holomor-
phic tangent field near S1. We choose 0 ă r ă 1 ă R such that h is defined on an open set
containing the closure of Ar,R “ tz P C : r ă |z| ă Ru. Moreover, we choose a connected
neighborhood ∆ Ă C of 0 such that the following hold.
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1. There is a neighborhood ∆ Ă C of 0 such that the holomorphic flow τ P ∆ ÞÑ

exppτxq “ expτx is defined on pz, τq P Ar,R ˆ ∆ and is injective on z P Ar,R for any
fixed τ . (Cf. Subsec. 2.6.)

2. For each τ P ∆, we have 0 R expτxpS1q.

Let Γτ be the simple closed curve expτx : S1 Ñ C. Then by the Jordan curve theorem,
for each τ P ∆, P1zΓτ has two connected components

P1zΓτ “ Ωτ \ Ω1
τ

where Ω1
τ is the one containing 8. In the following, we give some technical remarks

which can be skipped on first reading:

• By Stokes’ theorem, for each z P P1, z P Ωτ (resp. z P Ω1
τ ) iff

ű

Γτ

dζ
ζ´z equals 2iπ (resp.

0). This implies that

O “ tpz, τq P P1 ˆ ∆ : z P Ωτu O1 “ tpz, τq P P1 ˆ ∆ : z P Ω1
τu

are both closed and open inside P1 ˆ ∆. In summary: the property that z is inside
(resp. outside) Γτ is continuous with respect to the variation of τ and z.

• Consequently, for each z P Ar,RzS1, the subset of all τ P ∆ such that expτxpzq belongs
to Ωτ (resp. Ω1

τ ) is an open subset of ∆, and hence also closed, and hence must be H

or ∆. This shows that for each z P Ar,R,

|z| ă 1 ðñ expτxpzq P Ωτ for all τ P ∆

|z| ą 1 ðñ expτxpzq P Ω1
τ for all τ P ∆

(13.6)

A similar argument shows that if z P P1 and z R expτxpS1q for all τ P ∆, then

|z| ă 1 ðñ z P Ωτ for all τ P ∆

|z| ą 1 ðñ z P Ω1
τ for all τ P ∆

(13.7)

In particular, 0 P Ωτ for all τ P ∆.

The family X we shall construct has base manifold ∆. For each τ P ∆, let

Rτ “ expτxpAr,Rq Y Ωτ .

Then the fiber Cτ is obtained by gluing Czη´1pDcl
r q with Rτ by identifying the subsets

η´1pAr,Rq and expτxpAr,Rq via the biholomorphism expτx ˝η. (We leave it to the readers to
check that Cτ is a compact Riemann surface. (13.6) is needed when checking the sequential
compactness.)

(13.8)
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The marked points of Cτ , together with local coordinates, are chosen to be 0 P Rτ

with the standard coordinate ζ of Rτ Ă C, and x2, . . . , xN P Czη´1pDcl
r q together with

η2, . . . , ηN . This gives an N -pointed compact Riemann surface with local coordinates Xτ .
We leave it to the readers to construct a family X over ∆ whose fibers are Xτ .

13.6

In the previous example, suppose we associate V-modules W1, . . . ,WN to 0 P

Rτ , x2, . . . , xN respectively, and let ϕτ denote a conformal block associated to Xτ . Let
x “

ř

nPZ cnz
n`1Bz . X0 is changed to Xτ by changing the local coordinate η of C at x1 to

the first one of Xτ , which is expτx ˝η when restricted to Czη´1pDcl
r q. Thus, intuitively, for

each given ϕ0, one can construct ϕτ using the formal expression

ϕτ pw‚q “ ϕ0pe´τ
ř

n cnLnw1 b w2 b ¨ ¨ ¨ b wN q (13.9)

thanks to the change of boundary parametrization formula. This expression actually con-
verges in certain good cases, e.g. when cn “ 0 for sufficiently negative n. (See Example
15.18.) In the case where the expression converges, the mapϕ0 ÞÑ ϕτ defines a linear map
between the spaces of conformal blocks T ˚

X0
pW‚q Ñ T ˚

Xτ
pW‚q, which is an isomorphism

since the operator e´τ
ř

n cnLn is invertible. In particular, the dimensions of T ˚
X0

pW‚q and
T ˚

Xτ
pW‚q are equal. As we will see in Sec. 15, for an arbitrary family, we will prove the

equidimensionality of spaces of conformal blocks for fibers as well as the local freeness of
sheaves of conformal blocks by this method, and a crucial step is to prove the convergence
of ϕτ .

ϕτ satisfies the differential equation Bτϕτ `
ř

cnϕτ ˝ pLn b1W2 b ¨ ¨ ¨ b1WN
q “ 0. This

fact can be rephrased by saying that

∇Bτ :“ Bτ `
ÿ

n

cnpLn b 1W2 b ¨ ¨ ¨ b 1WN
qt (13.10)

defines a natural connection ∇ on the sheaf of conformal blocks (associated to X) over ∆,
and τ ÞÑ ϕτ is a parallel section under this connection.

13.7

Example 13.6 can be easily generalized to the case that on each neighborhood of S1
around xi a holomorphic vector field xi is associated. The flows generated by these fields
define a family.

We now consider another important generalization of Example 13.6:

Example 13.7. Let X0, U be as in Example 13.6. Let ∆ be a connected neighborhood of
0 P C. We choose a neighborhood ∆ Ă C of 0 and an annulus Ar,R where 0 ă r ă 1 ă R,
and choose a holomophic function β “ βζpzq on pz, ζq P Ar,R ˆ ∆ such that the following
hold:

1. β0pzq “ z.

128



2. For each ζ P ∆, βζ is injective on Ar,R.

3. For each ζ P ∆, we have 0 R βζpS1q.

As in Example 13.6, we let Γζ “ βζpS1q, which divides P1 into two connected compo-
nents Ωζ Q 0 and Ω1

ζ Q 8. Let

Rζ “ βζpAr,Rq Y Ωζ .

Then one can construct a family X with base manifold ∆ such that each fiber Cζ is obtained
by gluing Czη´1pDcl

r q with Rζ by identifying η´1pAr,Rq and βζpAr,Rq via the biholomor-
phism βζ ˝ η. The marked points and the local coordinates of Cζ are chosen in the same
way as at the end of Example 13.6.

As in Example 13.6, O “ tpz, ζq P P1 ˆ ∆ : z P Ωζu is an open set. Let

A “ tpβζpzq, ζq P C ˆ ∆ : z P Ar,Ru.

Then, as a family, C is obtained by gluing ∆ ˆ pCzη´1pDcl
r qq and A Y O such that on each

fiber the gluing is as in the previous paragraph.

In the above example, the standard local coordinate at 0 P Rζ is the boundary
parametrization βζ ˝ η on C. So X0 is changed to Xζ by changing η to βζ ˝ η. Thus,
we make the following definition:

Definition 13.8. We say that Xζ is the N -pointed compact Riemann surface with local
coordinates obtained by changing the local coordinate η “ η1 of X0 at x “ x1 to the
boundary parametrization βζ ˝ η.

13.8

Let ϕζ be a conformal block associated to Xζ and W‚ where X is constructed in Exam-
ple 13.7. As in Subsec. 13.6, let us find the differential equation that ϕζ satisfies.

Let Upβζq be the (not yet rigorously defined) operator associated to the change of
parametrization βζ . Then according to the change of boundary parametrization formula
in Sec. 2,

ϕζ

`

Upβζqw1 b w2 b ¨ ¨ ¨ b wN

˘

“ ϕ0pw‚q. (13.11)

Let us find the formula for BζUpβζq. Choose a holomorphic function h “ hpz, ζq on a
neighborhood of S1 ˆ ∆ in Ar,R ˆ ∆ such that

Bζβζpzq “ h
`

βζpzq, ζ
˘

. (13.12)

Since β is not necessarily the flow generated by a vector field, h depends on ζ. One may
view βζ as the path generated by the time-dependent vector field hBz .

We first consider BζUpβζq at ζ “ 0. Recall β0pzq “ z. Similar to the explanation in
Rem. 10.4, the velocity of βζ at ζ “ 0 is the vector field BζβζpzqBz

ˇ

ˇ

ζ“0
, which according to

(13.12) is hpz, 0qBz . Writing h as

hpz, ζq “
ÿ

nPZ
hnpζqzn (13.13)
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(where hn P Op∆q). Then hpz, 0qBz “
ř

nPZ hnp0qznBz , which corresponds to
ř

n hnp0qLn´1. This should be the formula for BζUpβζq at ζ “ 0.
For an arbitrary ζ P ∆, we find the formula of BζUpβζq “ BλUpβλ`ζq

ˇ

ˇ

λ“0
using the

same method. Write Upβλ`ζq “ Upβλ`ζ ˝ β´1
ζ q ˝ Upβζq. Then the Bλ of βλ`ζ ˝ β´1

ζ at λ “ 0

is pBζβq ˝ β´1
ζ , which by (13.12) equals hpz, ζq. Thus

BζUpβζq “
ÿ

nPZ
hnpζqLn´1Upβζq. (13.14)

Thus, since the derivative of the LHS of (13.11) is zero, we conclude that ϕζ is killed by
Bζ `

ř

n hnpζqpLn´1 b1W2 b ¨ ¨ ¨ b1WN
qt. Equivalently, ϕζ is parallel under the connection

∇ defined by

∇Bζ “ Bζ `
ÿ

nPZ
hnpζq

`

Ln´1 b 1W2 b ¨ ¨ ¨ b 1WN

˘t
. (13.15)

13.9

The importance of Example 13.7 (or its generalization to the case that around each xi
there is a β) is that any family with 1-dimensional base manifold is locally of this form.
Let us explain this fact in more details.

Let X “ pπ : C Ñ B; ς‚; η‚q be a family of N -pointed compact Riemann surfaces with
local coordinates. Recall that by our convention, ΘC and ΘB are respectively holomorphic
tangent bundle of C and B. Let U Ă C be open, and x P ΘCpUq. Note that W “ πpUq is
open. Choose y P ΘBpW q. We say that x is a lift of y if for each x P C, the differential map
dπ : ΘC |x Ñ ΘB|πpxq between tangent spaces sends xpxq to ypπpxqq.

If we have η P OpUq univalent on each fiber Ub “ U X Cb (where b P B) of U , then the
relationship between x and y can be written in an explicit way.

Assumption 13.9. Assume W is biholomorphic to an open subset of Cm via a map τ‚ “

pτ1, . . . , τmq :W Ñ Cm. Identify W with τ‚pW q so that τ‚ are identified with the standard
coordinates of Cm. Note that pη, πq is a biholomorphism between U and an open subset
of CˆCm`1. We identify U with pη, πqpUq so that η becomes the standard coordinate z of
C, and π becomes the standard coordinates τ‚ of Cm.

Then we can write x and y as

y “

m
ÿ

j“1

gjpτ‚qBτj x “ hpz, τ‚qBz `

m
ÿ

j“1

gjpτ‚qBτj (13.16a)

where gj P OpW q, h P OpUq. From this formula, it is clear that if expζy sends b to b1, then
expζx sends points of Wb “ W X Cb to those of Wb1 provided that the flows can be defined
on the points. Namely, expζx preserves fibers.

Recall SX “
Ť

i ςipBq. For each vector bundle E on C and each k P Z, we let E pkSXq be
the sheaf whose sections on any open U Ă C are all s P EpUzSXq such that for each i, ηki ¨ s
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can be extended to a section of E on a neighborhood of ςipBq. Then E pkSXq is a locally
free OC-module. We let

E p‹SXq “ lim
ÝÑ
kPN

E pkSXq.

So for k ě 0, E pkSXq is the sheaf of sections of E with poles of order at most k at SX, and
E p‹SXq is the sheaf of sections of E with finite poles at SX.

Proposition 13.10. Assume that B is a Stein manifold. Then each y P H0pB,ΘBq has a lift x in
H0pC,ΘCp‹SXqq.

We do not explain the meaning of Stein manifolds in our notes, but refer the interested
readers to [GR-a, Sec. I.4] or [GR-b, Sec. III.3] for details. Here, we only give some
examples, which are sufficient for applications. Stein manifolds are complex manifolds
including the following examples:

• Every non-compact connected Riemann surface.

• A finite product of Stein manifolds.

• A finite intersection of Stein open subsets of a complex manifold.

• A closed complex submanifold of a Stein manifold.

• If X is Stein and f P OpXq then Xztx P X : fpxq “ 0u is Stein.

From these examples, it is clear that the Stein open subsets of a complex manifoldX form
a basis of the topology of X .

Stein manifolds are those that many local problems related to vector bundles have
global solutions. In Prop. 13.10, if B is not necessarily Stein, then a lift of x always exists
locally (i.e., after shrinking B). The global existence is due to the Stein property. We refer
the readers to [Gui][Sec. 3.6] for a detailed explanation of Prop. 13.10.

13.10

We now assume that B is a connected Stein open subset of Cm containing 0, and let τ‚

be the standard coordinates of Cm. Choose

y “
ÿ

j

gjpτ‚qBτj P H0pB,ΘBq (13.17)

where gj P OpBq, and let x P H0pC,ΘCp‹SXqq be a lift.
For each 1 ď i ď N , let Ui Ă C be a neighborhood of ςipBq on which ηi is defined, and

assume Ui intersects only ςipBq among ς1pBq, . . . ςN pBq. Then, after identifying Ui with its
image under pηi, πq as in Assumption 13.9 (which is a neighborhood of t0u ˆ B), we can
write

x|Ui “ hipz, τ‚qBz `
ÿ

j

gjpτ‚qBτj (13.18)
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where hi is holomorphic on UizςipBq “ pηi, πqpUiqzpt0u ˆ Bq and has finite poles on t0u ˆ

B, i.e., znhipz, τ‚q is holomorphic on Ui for some n P N. We then have Laurent series
expansion

hipz, τ‚q “
ÿ

nPZ
hi,npτ‚qzn (13.19)

converging a.l.u. on UizςipBq, where hi,n is a zero function for sufficiently negative n.

13.11

We continue our discussion from the previous subsection. We claim that if we restrict
B to the complex curve ζ ÞÑ expζyp0q so that the base manifold of X is 1-dimensional,
then X can be described by Example 13.7.

To see this, let us assume for simplicity that ηipUi X C0q Ą Dcl
1 for all i, and choose

0 ă r ă 1. Let

C`
0 “ C0z

ď

i

η´1
i pDcl

r q,

which plays the same role as Czη´1pDcl
r q in Example 13.7. Consider the flow expζx on

CzSX generated by x. We choose a neighborhood ∆ of 0 P C such that expζx is defined and
injective on C`

0 for all ζ P ∆. Let

bζ “ expζyp0q P Cm.

Then expζxpC`
0 q is inside Cbζ . So Cbζ has an open submanifold expζxpC`

0 q equivalent to C`
0 .

Note that b0 “ 0.

(13.20)

Cbζ can be viewed as gluing expζxpC`
0 q with U1 X Cbζ , . . . , UN X Cbζ , and clearly the

function ηi on Ui X Cbζ becomes ηi on an annulus in expζxpC`
0 q. Equivalently, Cbζ is the

gluing of Cbζ with all UiXCbζ such that the ηi on UiXCbζ becomes the function ηi
ˇ

ˇ

Cbζ
˝expζx

on an annulus inside C`
0 . It is not hard to see that on that annulus,

ηi
ˇ

ˇ

Cbζ
˝ expζx “ βiζ ˝ ηi

ˇ

ˇ

C0 (13.21)

where βiζpzq “ αi
ζpz, 0q and pηi, πq ˝ expζx ˝pηi, πq´1pz, τ‚q equals pαi

ζpz, τ‚q, expζypτ‚qq.
Namely, αi is determined by the fact that under the identification of Ui with pηi, πqpUiq

via pηi, πq,

expζxpz, τ‚q “ pαi
ζpz, τ‚q, expζypτ‚qq. (13.22)

Conclusion 13.11. Xbζ is obtained by changing the local coordinates η1
ˇ

ˇ

C0 , . . . , ηN
ˇ

ˇ

C0 of Xb0 “

X0 to the boundary parametrizations β1ζ ˝ η1
ˇ

ˇ

C0 , . . . , β
N
ζ ˝ ηN

ˇ

ˇ

C0 . (Cf. Def. 13.8.)
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13.12

That expζx is the flow generated by x means that Bζ
`

f ˝ expζx
˘

equals pxfq ˝ expζx. Take
f “ ηi, and identify U with its image under pηi, πq to simplify the situation. Then by
(13.18),

Bζα
i
ζpz, τ‚q “ hi

`

αi
ζpz, τ‚q, expζypτ‚q

˘

, (13.23)

and hence

Bζβ
i
ζpzq “ hi

`

βiζpzq, bζ
˘

. (13.24)

Let ϕτ‚ be a conformal block associated to Xτ‚ for each τ‚ P B. Recall the Laurent
series expansion (13.19). Similar to the reasoning in Subsec. 13.8, we have

Bζϕbζ pw‚q `

N
ÿ

i“1

ÿ

nPZ
hi,npbζqpw1 b ¨ ¨ ¨ b Ln´1wi b ¨ ¨ ¨ b wN q “ 0. (13.25)

By (13.17), we have Bζbζ “ pg1pbζq, . . . , gmpbζqq. Thus

Bζϕbζ pw‚q “

m
ÿ

j“1

gjpτ‚qBτjϕτ‚pw‚q
ˇ

ˇ

τ‚“bζ
“ yϕτ‚pw‚q

ˇ

ˇ

τ‚“bζ
.

We conclude that on the complex path ζ P ∆ ÞÑ bζ “ expζyp0q,

m
ÿ

j“1

gjpτ‚qBτjϕτ‚pw‚q `

N
ÿ

i“1

ÿ

nPZ
hi,npτ‚qϕτ‚pw1 b ¨ ¨ ¨ b Ln´1wi b ¨ ¨ ¨ b wN q “ 0. (13.26)

This fact can be rephrased as follows: on the complex path ζ ÞÑ bζ , ϕτ‚ is parallel under
the connection ∇y defined by

∇y “

m
ÿ

j“1

gjBτj
looomooon

y

`

N
ÿ

i“1

ÿ

nPZ
hi,n ¨

`

1W1 b ¨ ¨ ¨ b Ln´1

ˇ

ˇ

Wi
b ¨ ¨ ¨ b 1WN

˘t
. (13.27)

13.13

We close this section by giving some examples of lifts.

Example 13.12. Let X the family in Example 13.7. Let hpz, τq be defined by (13.12) whose
Laurent series expansion with respect to z (cf. (13.13)) has only finitely many negative
powers of z.

Let y P H0p∆,Θ∆q be Bτ where τ is the standard coordinate of C. Recall (cf. the
end of Example 13.7) that C is the gluing of ∆ ˆ pCzη´1pDcl

r qq and A Y O, where the
latter is an open subset of C ˆ C. We define the lift x to be the canonical one Bτ on
∆ ˆ pCzη´1pDcl

r qq, i.e., the one parallel to the ∆-component and hence orthogonal to the
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pCzη´1pDcl
r qq-component. Then on A YO, using the standard coordinates pz, τq of C ˆ C,

x is hpz, τqBz ` Bτ , which has finite poles at z “ 0. This shows that x P H0pC,ΘCp‹SXqq,
and that (not surprisingly) the ∇y defined as in Subsec. 13.12 agrees with that in Subsec.
13.8.

Example 13.13. In Example 13.4, let pτ1, . . . , τN q be the standard coordinates of the base
manifold ConfN pCˆq inherited from CN . Let y “ Bτk where 1 ď k ď N . Then the lift x
can be chosen to the standard one Bτk , i.e., the one orthogonal to the P1-component in the
Cartesian product C “ P1 ˆ ConfN pCˆq. Then x P H0pC,ΘCq.

Using the notations and the identification in (13.18), we have x|Ui “ Bτk if i ‰ k, and

x|Uk
“ ´Bz ` Bτk . (13.28)

Associate W0,W1, . . . ,WN ,W8 to the marked points 0, ς1, . . . , ςN ,8 of PN . Then by
(13.27), the conformal blocks are parallel under

∇Bτk
“ Bτk ´

`

1W0 b 1W1 b ¨ ¨ ¨ b L´1

ˇ

ˇ

Wk
b ¨ ¨ ¨ b 1WN

b 1W8

˘t
. (13.29)

14 Sheaves of coinvariants and conformal blocks, and their con-
nections

14.1

We study conformal blocks for families of compact Riemann surfaces in a rigorous
way. In this section and the next one, we let

X “ pπ : C Ñ B; ς1, . . . , ςN q

be a family of N -pointed compact Riemann surface. Associate admissible V-modules
W1 . . . ,WN to ς1, . . . , ςN respectively. Choose a neighborhood Ui Ă C of ςipBq disjoint
from ςjpBq if i ‰ j. If we choose local coordinate ηi at ςi, we assume ηi is defined on Ui.

14.2

For each n P N, let us define a vector bundle V ďn
X on C whose restriction to each fiber

Cb is the bundle V ďn
Cb defined in Subsec. 11.5. Let U Ă C be open, and choose η, µ P OpUq

univalent on each fiber Ub “ U X Cb of U . For each p P U , we define ϱpη|µqp P G to be

ϱpη|µqp “ ϱ
´

η|Cπppq

ˇ

ˇ

ˇ
µ|Cπppq

¯

. (14.1)

Namely, for each x P Uπppq,

ηpxq ´ ηppq “ ϱpη|µqp
`

µpxq ´ µppq
˘

. (14.2)

The map ϱpη|µq : p P U Ñ ϱpη|µqp P G is clearly a holomorphic family of transformations.
Thus, by Rem. 10.2, we have an equivalence of OU -modules

Upϱpη|µqq : Vďn b OU
»
ÝÑ Vďn b OU . (14.3)

134



Similar to the case of a single compact Riemann surface, we define V ďn
X to be the

locally free OC-module such that each open U Ă C with η P OpUq univalent on each fiber
is associated with a trivialization

Uϱpηq : V ďn
X |U

»
ÝÑ Vďn b OU (14.4)

such that Uϱpη|V q “ Uϱpηq|V for any open V Ă U , and that for any µ P OpUq univalent on
each fiber of U , the transition function is given by

UϱpηqUϱpµq´1 “ Upϱpη|µqq. (14.5)

We let VX “ lim
ÝÑnPN V ďn

X . Both VX and V ďn
X are called sheaves of VOAs associated to X

and V.

14.3

ΘC and ωC have ranks dimB ` 1. So their restrictions to each fiber Cb are not ΘCb and
ωCb . We consider instead the line bundle ΘC{B of sections of ΘC killed by dπ (i.e., tangent
to each fiber), called the relative tangent sheaf. It’s dual bundle is denoted by ωC{B and
called the relative dualizing sheaf. Then we have natural equivalences

ΘC{B|Cb » ΘCb , ωC{B|Cb » ωCb . (14.6)

Sections of ωC{BpUq are of the form fdη where f P OpUq and η P OpUq is univalent on
each fiber. For another µ P OpUq univalent on each fiber, we have transformation rule

fdη “ f ¨
Bη

Bµ
dµ (14.7)

where the tangent field B
Bµ of C is perpendicular to dπ, i.e. tangent to the fibers. Similar to

Prop. 12.7, we have a natural equivalence

V ďn
X {V ďn´1

X » Vpnq bC Θbn
C{B. (14.8)

For each b P B, let

SXb
“ tς‚pbqu “ tς1pbq, . . . , ςN pbqu. (14.9)

Then for each k P Z, we have an obvious equivalence of vector bundles.

V ďn
X b ωC{BpkSXq

ˇ

ˇCb » V ďn
Xb

b ωCbpkSXb
q. (14.10)

(If the readers know how to define the restrictions of sheaves that are not necessarily
(finite rank) vector bundles, they can easily check that the above equation holds if the
superscript ď n is removed and k is replaced by ‹.)
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14.4

Given η P OpUq univalent on each fiber, we have an obvious equivalence

pη, πq˚ : OU
»
ÝÑ Opη,πqpUq (14.11)

defined by pulling back functions using pη, πq´1. We define the pushforward7

Vϱpηq : VX|U
»
ÝÑ V b Opη,πqpUq

Vϱpηq “ p1V b pη, πq˚qUϱpηq.
(14.12)

Its restriction to each fiberUb “ UXCb equals the pushforward Vϱpη|Cbq : VUb

»
ÝÑ VbOηpUbq

defined by (12.2).
We have an equivalence pη, πq˚ “ ppη, πq´1q˚ : ωC{B|U Ñ ωpη,πqpUq{πpUq. Note that

pη, πqpUq Ă C ˆ B. ωpη,πqpUq{πpUq is the relative dualizing sheaf associated to the family
pη, πqpUq Ñ πpUq inherited from the projection C ˆ B Ñ B. If we let z be the standard
coordinate of C, then for each section fdη P ωC{B|U where f P OC ,

pη, πq˚fdη “
`

f ˝ pη, πq´1
˘

dz.

We let Vϱpηq also denote

Vϱpηq ” Vϱpηq b pη, πq˚ : VX b ωC{B
ˇ

ˇ

U

»
ÝÑ V bC ωpη,πqpUq{πpUq. (14.13)

14.5

To define sheaves of coinvariants and conformal blocks, we first consider the case that
local coordinates η1, . . . , ηN at ς1, . . . , ςN are chosen and defined on U1, . . . , UN .

For each open V Ă B, let

CV “ π´1pV q, (14.14)

and we have an OpV q-linear action of H0pCV ,VX b ωC{Bp‹SXqq on W‚ b OpV q whose
restriction to each fiber is the residue action of H0pCb,VXb

b ωCbp‹SXb
qq on W‚ defined by

Def. 11.16. So this action is compatible with the restriction to open subsets of V .
Let us describe this action in more details. Suppose σ P H0pUi X CV ,VX b ωC{Bp‹SXqq.

Note that by (14.13) we have (noting πpUiq “ B)

Vϱpηiq : VX b ωC{Bp‹SXq
ˇ

ˇ

Ui

»
ÝÑ V bC ωpηi,πqpUiq{Bp‹t0u ˆ Bq (14.15)

since ςipBq is the only one of ς‚pBq intersecting (and also inside) Ui, and pηi, πq sends ςipBq

to t0u ˆB (cf. (13.3)). Then for each wi P Wi bOpV q (we regard wi “ wipbq as a Wi-valued
holomorphic functions on V ), we define residue action

σ ¨ wi “ Resz“0 Y
`

Vϱpηiqσ, z
˘

wi. (14.16)

7A better notation would be Vϱpη, πq. However, we use Vϱpηq to make the notation shorter.
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More precisely, write

Vϱpηiqσ “ vpz, bqdz “
ÿ

nPZ
vnpbqzndz (14.17)

where v “ vpz, bq is a V-valued holomorphic function on pηi, πqpUi X CV q (which is a
neighborhood of t0u ˆ V in C ˆ V ), vn “ vnpbq is in V b OpV q, and vn “ 0 for sufficiently
negative n. (So σ equals vdz if we identify Ui X CV with its image under pηi, πq, and
identify VX|UiXCV with V b OUiXCV via Uϱpηiq.) Then

pσ ¨ wiqpbq “ Resz“0 Y pvpz, bq, zqwipbqdz “
ÿ

nPZ
Y
`

vnpbq
˘

n
wipbq. (14.18)

Now, any element of W‚ bC OpV q is a (C-)linear combination of W‚-valued holomor-
phic functions w‚ where (for each b P V )

w‚pbq “ w1pbq bC ¨ ¨ ¨ bC wN pbq P W‚ (14.19)

and each wi is an Wi-valued holomorphic function on V . Alternatively,

w‚ “ w1 bOpV q ¨ ¨ ¨ bOpV q wN (14.20)

is in

pW1 bC OpV qq bOpV q ¨ ¨ ¨ bOpV q pWN bC OpV qq » W‚ bC OpV q.

So the expression w‚ “ w1 b ¨ ¨ ¨ b wN can be understood in an unambiguous way. The
residue action of any σ P H0pCV ,VX b ωC{Bp‹SXqq on w‚ is given by

σ ¨ w‚ “

N
ÿ

i“1

w1 b ¨ ¨ ¨ b σ ¨ wi b ¨ ¨ ¨ b wN . (14.21)

(It is sufficient to understand this action when w‚ is a constant function, i.e., w‚ P W‚.)

14.6

Define an infinite-rank vector bundle over B:

WXpW‚q “ W‚ bC OB. (14.22)

Define an OpV q-module

JXpW‚qpV q “ H0
`

CV ,VX b ωC{Bp‹SXq
˘

¨H0
`

V,WXpW‚q
˘

. (14.23)

where we have suppressed SpanC. Then we have a presheaf of OB-modules whose space
of sections on any open V Ă B is JXpW‚qpV q. This is a sub-presheaf of WXpW‚q.

Definition 14.1. The OB-module

TXpW‚q “
WXpW‚q

JXpW‚q
(14.24)

(defined by sheafifying the presheaf V ÞÑ
WXpW‚qpV q

JXpW‚qpV q
) and its dual OB-module T ˚

X pW‚q

are called respectively the sheaf of coinvariants and the sheaf of conformal blocks asso-
ciated to X and W‚. Sections of T ˚

X pW‚qpBq are called conformal blocks associated to X
and W‚.
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14.7

Let us give an explicit description of T ˚
X pW‚q. The following is easy to see:

Remark 14.2. Sections of T ˚
X pW‚q over V are all morphisms ϕ : WXpW‚q|V Ñ OV

that vanish when evaluated with any section of JXpW‚q|V , i.e., ϕpsq “ 0 for all s P

JXpW‚qpV1q where V1 Ă V is open.

Remark 14.3. A morphismϕ : WXpW‚q|V “ W‚ bCOV Ñ OV is equivalently a linear map
Φ : W‚ Ñ OpV q. Indeed, given ϕ, we define Φ to be Φpwq “ ϕpwq P OpV q where each
w P W‚ is identified with the constant section w b 1 P W‚ bC OpV q. Conversely, given Φ,
we define ϕ sending each w b f P W‚ b OpV1q (where V1 Ă V is open) to f ¨ Φpwq|V1 .

Thus, for each b P V , the fiber map ϕ|b : WXpW‚q|b » W‚ Ñ OV |b » C is given by
w P W‚ » W‚ b 1 ÞÑ ϕpwqpbq where ϕpwqpbq is the value of ϕpwq P OpV q at b.

14.8

We can now relate conformal blocks for families and for single complex Riemann sur-
faces. For simplicity, we assume V “ B; otherwise we just need to restrict X to the sub-
family XV with base manifold V .

Proposition 14.4. Choose an OB-module morphismϕ : WXpW‚q Ñ OB. If B is a Stein manifold,
thenϕ vanishes on JXpW‚qpBq if and only if the restrictionϕ|b to the fiber Cb is a conformal block
for each b P B, i.e., ϕ|b vanishes on

JXb
pW‚q “ H0

`

Cb,VCb b ωCbp‹SXb
q
˘

¨ W‚ (14.25)

Proof. This follows from the fact that any element of JXb
pW‚q is the restriction of an

element of JXpW‚qpBq due to the next proposition.

Proposition 14.5. Let V be a Stein open subset of B. Then every element of H0
`

Cb,VCb b

ωCbp‹SXb
q
˘

is the restriction of some σ P H0
`

CV ,VX b ωC{Bp‹SXq
˘

to the fiber Cb.

In this proposition, we do not assume that X has local coordinates η‚. To prove this
proposition one needs the base change theorem of Grauert [GR-b, Sec. III.4.2]. See [Gui,
Sec. 2.5] for a detailed explanation. It is in general true that if E is a vector bundle on C,
then for any precompact Stein open subset V Ă B, there exists k0 P N such that for all
k ě k0, every element of H0pC,E pkSXqq is the restriction of some σ P H0pCV ,E pkSXq|V q

to the fiber Cb.
From Prop. 14.4 we immediately get:

Theorem 14.6. Choose an OB-module morphism ϕ : WXpW‚q Ñ OB. Then ϕ is a conformal
block iff ϕ|b is a conformal block for each b P B. If B is Stein, then these two conditions are also
equivalent to that ϕ vanishes on JXpW‚qpBq.

We give an application of Thm. 14.6. We remark that Thm. 14.6 and Cor. 14.7 hold
without assuming that X has local coordinates (after we define sheaves of conformal
blocks in this general case, cf. Subsec. 14.10), since Prop. 14.5 does.

138



Corollary 14.7. Assume that B is connected. Let ϕ : WXpW‚q Ñ OB be an OB-module mor-
phism. Assume that B contains a non-empty open subset V such that the restriction ϕ|V is a
conformal block associated to XV (i.e., ϕ|V P H0pV,T ˚

X pW‚qq). Then ϕ is a conformal block
associated to X.

Proof. First, assume B is Stein. Then the evaluation of ϕ with any element of
H0pB,JXpW‚qq (which is an element of OpBq) vanishes on V , and hence vanishes on
B by complex analysis. So, by Cor. 14.7, ϕ is a conformal block.

Now, in the general case, we let B0 be the (obviously open) subset of B consisting all
b P B such that ϕ restricts to a conformal block on a neighborhood of b. If b P BzB0,
then every connected Stein neighborhood W of b is disjoint from B0: Otherwise, since
ϕ|WXB0 is a conformal block, by the first paragraph, ϕ|B0 is a conformal block, which
implies b P B0 and gives a contradiction. So B0 is a non-empty open and closed subset of
B, which must be B.

14.9

There are two advantages of working with sheaves of coinvariants instead of sheaves
of conformal blocks. First, it is easier to relate the fibers of TXpW‚q and spaces of coin-
variants than to do so for sheaves and spaces of conformal blocks. Second, though our
ultimate interest lies in the local freeness of T ˚

X pW‚q, it is easier to first study the local
freeness of TXpW‚q.

For each b P B, note that

TXpW‚qb “
WXpW‚qb

JXpW‚qb
.

Let mb “ mB,b “ tg P OB,b : gpbq “ 0u. Then we have an obvious equivalence

TXpW‚q
ˇ

ˇ

b
“

TXpW‚qb

mb ¨ TXpW‚qb
»

WXpW‚qb

mb ¨ WXpW‚qb ` JXpW‚qb
. (14.26)

Recall also that

TXb
pW‚q “

W‚

JXb
pW‚q

. (14.27)

Proposition 14.8. The linear map

WXpW‚qb “ W‚ bC OB,b Ñ W‚

w ÞÑ wpbq
(14.28)

descends to an isomorphism of vector spaces

TXpW‚q
ˇ

ˇ

b

»
ÝÝÑ TXb

pW‚q. (14.29)

Proof. The map (14.28) sends mb ¨ WXpW‚qb “ W‚ b mb to 0 and sends JXpW‚qb into
JXb

pW‚q (indeed onto by Prop. 14.5). So (14.28) descends to a linear map (14.29) which
is clearly surjective. If wpbq P JXb

pW‚q, then by Prop. 14.5, wpbq equals spbq for some
s P JXpW‚qb. So w ´ s P W‚ b OB,b vanishes at b. So clearly w ´ s P W‚ b mb. Therefore
(14.29) is injective.
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14.10

Now we do not assume that the local coordinates of X are chosen. We shall define
sheaves of coinvariants and conformal blocks associated to X and W‚.

Let WXpW‚q be an infinite rank locally free OB-module determined by the following
conditions. For any open subset V Ă B together with local coordinates η1, . . . , ηN of the
restricted family

XV “ pπ : CV “ π´1pV q Ñ V ; ς1|V , . . . , ςN |V q (14.30)

defined near ς1pV q, . . . , ςN pV q respectively, we have a trivialization

Upη‚q ” Upη1q b ¨ ¨ ¨UpηN q : WXpW‚q|V
»
ÝÑ W‚ bC OV (14.31)

compatible with the restriction of η‚ and XV to open subsets of V , such that if µ‚ is another
set of local coordinates, then

Upη‚qUpµ‚q´1 : W‚ b OV
»
ÝÑ W‚ b OV

is defined by the transition function

Upη‚qUpµ‚q´1 ” Upη‚|µ‚q “ Uppη1|µ1qq b ¨ ¨ ¨ b UppηN |µN qq. (14.32)

Here, each pηi|µiq : V Ñ G is a holomorphic family of transformations such that for each
b P V , pηi|µiqb changes µi|Cb to ηi|Cb , i.e.,

ηi|Cb “ pηi|µiqb ˝ µi|Cb

holds on a neighborhood of ςipbq in Cb. So we have an isomorphism

Uppηi|µiqq : W‚ b OV
»
ÝÑ W‚ b OV .

The restriction of Uppηi|µiqq to each fiber at b is clearly the transition function for
WXb

pW‚q (cf. (12.9)). Thus, we have an obvious equivalence

WXpW‚q
ˇ

ˇ

b
» WXb

pW‚q. (14.33)

We define the (obviously OpV q-linear) residue action of σ P H0pCV ,VX b ωC{Bp‹SXqq

on w “ H0pV,WXpW‚qq to be

σ ¨ w “ Upη‚q ¨ σ ¨ Upη‚q´1w (14.34)

where the action of σ on Upη‚q´1w is defined by (14.16). When restricted to each fiber,
(14.34) is equivalent to the residue action of H0pCb,VCb b ωCbp‹SXb

qq on WXb
pW‚q defined

as in (12.6). Since the later is coordinate-independent (cf. Prop. 12.1), so is (14.34).
Thus, using the residue action, we can define the presheaf JXpW‚q, the sheaf of coin-

variants TXpW‚q, and the sheaf of conformal blocks T ˚
X pW‚q in the exact same way as in

Subsec. 14.6.
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14.11

Our next goal is to define connections on TXpW‚q and T ˚
X pW‚q. We begin with the

following general definition:

Definition 14.9. Let E be an OX -module where X is a complex manifold with holomor-
phic tangent line bundle ΘX . A connection ∇ on E associates to each open U Ă X a
bilinear map

∇ : ΘXpUq ˆ E pUq Ñ E pUq, py, sq ÞÑ ∇ys

satisfying the following conditions.

(a) If V is an open subset of U then ∇y|V
s|V “ p∇ysq|V .

(b) If f P OpUq then

∇fys “ f∇ys

∇ypfsq “ ypfqs` f∇ys

If a connection ∇ on E is chosen, the corresponding dual connection ∇ on the dual sheaf
E _ is defined by

x∇yφ, sy “ yxφ, sy ´ xφ,∇ysy (14.36)

for each φ P E _pUq “ HomOU
pEU ,OU q, each y P ΘpUq, and each s P EU .

Note that xxφ, sy is the action of the vector field x on the holomorphic function xφ, sy.

14.12

We now suppose that the local coordinates η‚ are chosen for X, and identify

WXpW‚q “ W‚ bC OB via Upη‚q.

We assume that B is a Stein manifold. Choose y P ΘBpBq, together with a lift x P

H0pC,ΘCp‹SXqq. (Cf. Prop. 13.10). We first define the differential operator ∇y on
WXpW‚q.

Assume the setting of Subsec. 13.10. Then for each open V P B, ∇y is the linear operator
on W‚ bCOpV q such that for eachwi P WibCOpV q andw‚ “ w1b¨ ¨ ¨bwN in W‚ bCOpV q

(cf. (14.19) or (14.20)),

∇yw‚ “

m
ÿ

j“1

gjpτ‚qBτjw‚ ´

N
ÿ

i“1

ÿ

nPZ
hi,npτ‚qw1 b ¨ ¨ ¨ b Ln´1wi b ¨ ¨ ¨ b wN . (14.37)

Using this formula and (14.36), we can define ∇y on the dual sheaf of WXpW‚q, i.e., define
∇yϕ for each OV -module morphism ϕ : WXpW‚q|V Ñ OV . This definition of ∇yϕ clearly
agrees with (13.27) when w1, . . . , wN are constant sections.

Warning: we are using L0 instead of rL0 to define ∇y.
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Remark 14.10. In Subsec. 13.10 we assumed that B is inside Cm. In other words, when
defining ∇y using (14.37), we have fixed an embedding of the abstract complex manifold
B into Cm as an open subset. However, it is easy to check that this definition is inde-
pendent of the embedding. Thus, to define ∇y, we assume only that B is Stein, but not
necessarily that B can be embedded into Cm.

14.13

(14.37) can be written in a more compact way. Recall the neighborhood Ui of ςipBq on
which ηi is defined (cf. Subsec. 14.1). Define

νpxq P H0
`

U1 Y ¨ ¨ ¨ Y UN ,VX b ωC{Bp‹SXq
˘

Vϱpηiqνpxq|Ui “ hipz, τ‚qcdz.
(14.38)

Namely, under the given trivialization, ν kills Bτj and sends Bz to cdz. (Note that c P Vp2q

and V ď2
X {V ď1

X » Θb2
C{B.) Then it is easy to verify that

∇yw‚ “

m
ÿ

j“1

gjpτ‚qBτjw‚ ´ νpxq ¨ w‚. (14.39)

where νpxq ¨ w‚ is the residue action.

14.14

Theorem 14.11. ∇y preserves JXpW‚qpV q for each open V Ă B. So ∇y is a linear operator on
TXpW‚q and (via the formula (14.36)) on T ˚

X pW‚q.
More precisely, for each σ P H0pCV ,VX b ωC{Bp‹SXqq and w “ H0pV,WXpW‚qq, we have

r∇y, σsw “ pLxσq ¨ w (14.40)

where Lxσ P H0pCV ,VX b ωC{Bp‹SXqq is the Lie derivative of σ under x.

Thus, when B is a Stein open subset of Cm, we may define a connection ∇ on TXpW‚q

and T ˚
X pW‚q by choosing lifts of Bτ1 , . . . , Bτm , defining ∇τ1 , . . . ,∇τm , and then extending

∇ to a connection using OB-linearity.
We refer the readers to [Gui, Sec. 3.6] for the proof of this theorem. Here, we explain

the meaning of Lie derivative.

14.15

Let U,W Ă C be open, and let φ : U Ñ W be a biholomorphism from U onto W . We
assume that φ preserves fibers, i.e. φpUπppqq “ Wπ˝φppq for each p P U . (recall our notation
that Wb “ U X Cb,Wb “ W X Cb for each b P B). For instance, if U Ă CzSX is open and
precompact, then for sufficiently small ζ, expζx from U to its image preserves fibers. (See
(13.20) for the figure.)
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The pushforward

Vϱpφq : VX|U
»
ÝÑ VX|W

is defined such that for each η P OpW q univalent on fibers, noting the pushforward Vϱpηq :

VX|W
»
ÝÑ V bC Opη,πqpW q defined by (14.12), we have

VϱpηqVϱpφq “ Vϱpη ˝ φq. (14.41)

Then for each b P B, the restriction of Vϱpφq to VX|Ub

»
ÝÑ VX|Vφpbq

is equivalent to the
pushforward Vϱpφq : VUb

»
ÝÑ VVφpbq

defined in Subsec. 12.5.
By tensoring Vϱpφq with φ˚ “ pφ´1q˚ : ωC{B|U

»
ÝÑ ωC{B|W sending pf ˝ φqdpη ˝ φq to

fdη where f P OW , we get a pushforward which we also denote by Vϱpφq:

Vϱpφq ” Vϱpφq b φ˚ : VX b ωC{B
ˇ

ˇ

U

»
ÝÑ VX b ωC{B

ˇ

ˇ

W
. (14.42)

We can define the Lie derivative in the same way as Def. 12.8. Let x be as in Subsec.
13.10. Suppose U Ă CzSX is open and precompact, and σ P H0pU,VX b ωC{Bq. Define

Lxσ
ˇ

ˇ

U
“ lim

ζÑ0

Vϱpexpζxq
´1
`

σ
ˇ

ˇ

expζxpUq

˘

´ σ
ˇ

ˇ

U

ζ
(14.43)

Of course, if we can show that the limit exists for all precompact U , then Lxσ exists for all
open U Ă CzSX.

The following Proposition can be proved in the same way as Cor. 12.10. (Or see [Gui,
Sec. 2.6] for details.) Formula (14.44) is necessary for the proof of Theorem 14.11.

Proposition 14.12. Let η P OpUq be univalent on fibers. Choose u P H0pU,V bC OCq such that

u ¨ dη “ Uϱpηqσ P H0pU,V bC ωC{Bq.

Choose h P OpUq such that if U is identified with pη, πqpUq Ă C ˆ Cm via pη, πq, then

x|U “ hBz `

m
ÿ

j“1

gjpτ‚qBτj .

Then Lxσ exists as an element of H0pU,VX b ωC{Bq, and

UϱpηqLxσ “ hBηu ¨ dη `

m
ÿ

j“1

gjBτju ¨ dη ´
ÿ

kě1

1

k!
Bk
ηh ¨ Lk´1u ¨ dη ` Bηh ¨ u ¨ dη. (14.44)

Remark 14.13. If we set U “ UizSX “ UizςipBq, choose σ P H0pCV ,VX b ωC{Bp‹SXqq,
and let η be the local coordinate ηi, then the u in Prop. 14.12 has finite poles at SX, i.e.,
u P H0pUi,VbC ωC{Bp‹SXqq. The h in Prop. 14.12 should be the hi in Subsec. 13.10, which
has finite poles at SX. Therefore, by (14.44), the Lie derivative Lxσ, as a section of VXbωC{B
defined on CV zSX, has finite poles at SX. So Lxσ P H0pCV ,VX b ωC{Bp‹SXqq, as claimed at
the end of Thm. 14.11.

143



14.16

Recall that we are assuming B is Stein (but not necessarily open inside Cm) and local
coordinates η‚ are given to X. As we have seen, the definition of ∇y depends not only on
η‚ but also on the lift x of y P ΘBpBq.

Proposition 14.14. Let ∇y and ∇1
y be defined by η‚ and two lifts x, x1 P H0pC,ΘCp‹SXqq of y.

Then there exists f P OpBq depending only on X, the local coordinates η‚, x and x1, and the central
charge c of V, such that

∇1
y “ ∇y ` f1 on TXpW‚q. (14.45)

See the end of Sec. 3.6 (and also Sec. 4.2) of [Gui] for the formula of f .
In the next subsection, we shall discuss an important case where the projective term f

in Prop. 14.14 equals 0.

Proposition 14.15 (Projective flatness). Suppose y1, y2 P ΘBpBq, and ∇y1 and ∇y2 are defined
using a set of local coordinates η‚ and the lifts x1, x2 of y1, y2 respectively. Then there exists
f P OpBq depending only on X, η‚, x1 and x2, and c, such that the curvature

r∇y1 ,∇y2s ´ ∇ry1,y2s “ f1 on TXpW‚q.

Proposition 14.16. Suppose that on each Wi, L0 ´ rL0 is a constant ∆i (for instance, when Wi

is irreducible). Suppose also that ∇y,∇1
y are defined by a lift x and two sets of local coordinates

η‚, η
1
‚. Then there exists f P OpBq depending only on X, η‚ and η1

‚, x, c, and ∆1, . . . ,∆N such
that

∇1
y “ ∇y ` f1 on TXpW‚q. (14.46)

Clearly, similar results hold on T ˚
X pW‚q.

We refer the readers to Sections 5.1 and 5.2 of [Gui] for details of these two proposi-
tions.

14.17

Definition 14.17. Let C be a Riemann surface, and let pUα, ηαqαPA be a chart, i.e., pUαqαPA

is an open covering of C and ηα P OpUαq is univalent. We say that pUα, ηαqαPA is a pro-
jective chart if for each α, β P A, the function ηα ˝ η´1

β on ηβpUα X Uβq Ă C is a Möbius
transformation z ÞÑ az`b

cz`d .

Definition 14.18. For the family X, let pUα, ηαqαPA where pUαqαPA is an open cover of C
and each ηα P OpUαq is univalent. We say that pUα, ηαqαPA is a projective chart of X if
its restriction to each fiber Cb is a projective chart. A maximal projective chart is called a
projective structure.

Example 14.19. P1 has an obvious projective structure consisting of all Möbius transfor-
mations. It is the unique projective structure containing the standard coordinate ζ of C.
Indeed, it is the unique projective structure of P1 [FB04, 8.2.12].
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Theorem 14.20. For any family X of N -pointed compact Riemann surfaces, if B is Stein then X
has a projective structure.

This theorem is due to [Hub80]. See also [Gui, Sec. 4.1] or [Gui, Sec. B]. According to
this theorem, for any N -pointed family X, by shrinking the base manifold B, we may find
local coordinates η‚ of X that are contained in a projective structure of X.

Proposition 14.21. Suppose that pU1, η1q, . . . , pUN , ηN q belong to a projective structure of X.
Then the operator ∇y on TXpW‚q defined by η‚ is independent of the lift x of y.

Remark 14.22. The rough reason for this Proposition is the following: Let x and x1 be two
lifts of y. Then dπ sends z “ x ´ x1 to 0. This means that z P H0pC,ΘC{Bp‹SXqq. In view of
(14.39), we need to show that the residue action of νpzq “ νpxq ´ νpx1q is 0 on TXpW‚q, or
equivalently, νpzqw‚ P JXpW‚qpBq for each w‚ P W‚. The map z ÞÑ νpzq sends a section of
ΘC{Bp‹SXq on U1Y¨ ¨ ¨YUN to one of V ď2

X bωC{Bp‹SXq whose trivialization is described by
cdz. Locally and under reasonable trivializations, this map sends hpz, τ‚qBz to hpz, τ‚qcdz.
Since c has weight 2, the coordinate transformation formula for Bz in ΘC{B equals that of
cdz mod a section of V ď1

X b ωC{Bp‹SXq (cf. Subsec. 12.7). The expression of section is
determined by L2c “ c

21.
Here comes the crucial point: Since all pUi, ηiq are contained in a projective structure

pUα, ηαqαPA, and since in the change of coordinate formula for Möbius transformations
only L0, L˘1 are involved but L2 is not, the change of coordinate formulas for cdz and for
Bz are equal. Therefore, as z is a global section of ΘC{Bp‹SXq, νpzq can be extended to a
global section of V ď2

X b ωC{Bp‹SXq. So νpzqw‚ P JXpW‚qpBq.

Due to Prop. 14.21, if B is Stein and η‚ belong to a projective structure of X, then we
can define a connection ∇ on TXpW‚q and hence on T ˚

X pW‚q such that for each y P ΘB,
∇y is the one defined by (14.39) using any lift x of y.

Example 14.23. For each τ P H “ tz P C : Imz ą 0u, the torus Tτ defined by C mod
the rank 2 lattice Z ` τZ has a standard projective structure: the one inherited from the
standard projective structure of C. This projective structure is modular invariant: Let
g P PSLp2,Zq be gpτq “ aτ`b

cτ`d where a, b, c, d P Z and ad´bc “ 1. Then the biholomorphism

Tτ Ñ Tgpτq, z ÞÑ
z

cτ ` d

sends the standard projective structure of Tτ to that of Tgpτq.
Thus, for sheaves of conformal blocks associated to a family of N -pointed tori, stan-

dard connections are those defined by the local coordinates inside this modular invariant
projective structure.

15 Local freeness of sheaves of coinvariants and conformal
blocks

15.1

As in Subsec. 14.1, we associate admissible V-modules W1, . . . ,WN to the marked
points ς1, . . . , ςN of X “ pπ : C Ñ B; ς‚q. We do not assume that B can be embedded as an
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open subset of Cm or the local coordinates are chosen.

Definition 15.1. We say that V is C2-cofinite if V{C2pVq is finite-dimensional where
C2pVq “ SpanCtY puq´2v : u, v P Vu.

The C2-cofinite condition was introduced by Zhu [Zhu96] in the study of genus-1
conformal blocks.

Definition 15.2. We say that the weak V-module W is generated by a subset S if the
smallest V-invariant subspace of W containing S is W. We say that W is finitely gen-
erated if it is generated by finitely many vectors. When W is admissible, this is clearly
equivalent to saying that W is generated by finitely many homogeneous vectors.

Remark 15.3. Note that in the case S Ă V, that S generates the vacuum module V is not
the same as that S generates the VOA V (cf. Def. 5.6). For instance, the vacuum vector 1
generates the V-module V, but not the VOA V.

The following important result is due to [Miy04, Lemma 2.4]. Some weaker versions
of this result are due to [GN03, Buhl02].

Theorem 15.4. Assume that V is C2-cofinite. Let E Ă V be a finite subset such that V “

SpanpEq ` C2pVq. If W is a weak V-module generated by a finite set S of vectors, then W is
spanned by vectors of the form

Y pvkq´nk
¨ ¨ ¨Y pv1q´n1w (15.1)

where k P N, w P S, v1, . . . , vk P E, and n1, . . . , nk P Z satisfy n1 ă n2 ă ¨ ¨ ¨ ă nk.

Exercise 15.5. Use Thm. 15.4 to show that if V is C2-cofinite, then every finitely-generated
admissible V-module is finitely-admissible.

15.2

Assumption 15.6. In this section, we assume that V is C2-cofinite and W1, . . . ,WN are
finitely-generated (finitely-)admissible modules.

In our notes, we do not use Thm. 15.4 directly. Instead, we use the following conse-
quence of Thm. 15.4. See [Gui20, Sec. 7] or [Gui, Sec. 3.7] for the proof.

Theorem 15.7. For each Stein open subset V Ă B, the OpV q-module

WXpW‚qpV q

JXpW‚qpV q
(15.2)

is generated by finitely many elements.

Corollary 15.8. TXpW‚q is a finite type OB-module.
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Proof. Assume without loss of generality that B is a Stein open subset of Cm. Then
WXpW‚q “ W‚ b OB is generated by constant sections, i.e., elements of W‚ » W‚ b 1.
So TXpW‚q is generated by W‚. Choose w1, . . . , wn P WXpW‚qpBq generating the OpBq-
module (15.2) (setting V “ B). So each element of W‚ is an OpBq-linear combination of
w1, . . . , wN in the quotient (15.2). So TXpW‚q is generated by w1, . . . , wN .

By the basic properties of finite type sheaves (cf. Thm. A.22), each fiber TXpW‚q|b

(which is equivalent to TXb
pW‚q » T ˚

Xb
pW‚q by Prop. 14.8) is finite-dimensional; the

following rank function R : B Ñ N,

Rpbq “ dimTXpW‚q|b “ dimTXb
pW‚q “ dimT ˚

Xb
pW‚q (15.3)

is upper semicontinuous; if R is also lower semicontinuous and hence locally constant,
then TXpW‚q is locally free and so is its dual sheaf T ˚

X pW‚q. Then we will have a natural
equivalence T ˚

X pW‚q|b » T ˚
Xb

pW‚q. Namely, if we can show that R is locally constant,
then the spaces of conformal blocks for all fibers Xb of X form a vector bundle over B.

15.3

Theorem 15.9. TXpW‚q and hence T ˚
X pW‚q are locally free OB-modules. In particular, the rank

function R defined by (15.3) is locally constant.

As discussed above, to prove Thm. 15.9, it suffices to prove that R is locally constant.
Suppose we can show that R|B0 is lower semicontinuous for any one-dimensional com-
plex submanifold B0 of B biholomorphic to an open disc, then R|B0 is constant since it is
also upper semicontinuous. It then follows that R is locally constant

Therefore, we may just assume that B is a simply-connected open subset of C contain-
ing 0, and X admits a set of local coordinates η‚. Then either B “ C or B is not closed. So,
as any connected non-compact Riemann surface is Stein, B is Stein. Identify

WXpW‚q “ W‚ bC OB via Upη‚q.

It suffices to show:

Lemma 15.10. R is lower semicontinuous at 0.

15.4

Let τ be the standard coordinate of B Ă C. By Sec. 14, we can define a differential
operator ∇Bτ on W‚ bC OB which preserves JXpW‚qpBq due to Thm. 14.11. We shall
prove Lemma 15.10 using this fact and Thm. 15.7.

We fix an elementϕ0 P WX0pW‚q, i.e. a linear functional on W‚ vanishing on JX0pW‚q.
Let us prove Lemma 15.10 by constructing a conformal blockϕτ P WXτ pW‚q for each τ P B
such that the map ϕ0 ÞÑ ϕτ is linear and injective.

Convention 15.11. Let Wďk
‚ be the subspace of W‚ spanned by homogeneousw1b¨ ¨ ¨bwN

satisfying Ăwtpw1q ` ¨ ¨ ¨ ` ĂwtpwN q ď k. Note that Wďk
‚ is finite-dimensional since each Wi

is finitely-admissible.
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In view of (14.37), for each w‚ P W‚ b OB, we can write

∇Bτw‚ “ Bτw‚ `Apτqw‚ (15.4)

where

Apτqw‚ “ ´

N
ÿ

i“1

ÿ

kPZ
hi,kpτqw1 ¨ ¨ ¨ b Lk´1wi b ¨ ¨ ¨ b wN (15.5)

We take power series expansion

Apτq “
ÿ

nPN
Anτ

n

where An P EndpW‚q is given by

An “ ´

N
ÿ

i“1

ÿ

kPZ
hi,k,n ¨ 1W1 b ¨ ¨ ¨ b Lk´1|Wk

b ¨ ¨ ¨ b 1WN

where hi,k,n P C is determined by hi,kpτq “
ř

nPN hi,k,nτ
n and vanishes for all i, n and

k ď K for some K P Z. So Apτq P EndpW‚qrrτ ss.

Definition 15.12. Define a linear map

ϕ : W‚ Ñ Crrτ ss, w ÞÑ ϕτ pwq

such that for each w P W‚, ϕτ pwq is determined by the formal differential equation

Bτϕτ pwq “ ϕτ pApτqwq (15.6)

whose initial value ϕτ |τ“0 is the conformal block ϕ0 chosen at the beginning.

More precisely, if we write ϕτ pwq “
ř

nPNϕnpwqτn where each ϕn : W‚ Ñ C is linear
and ϕ0 is just the previously chosen conformal block, then

ÿ

nPN
nϕnpwqτn´1 “

ÿ

m,nPN
ϕnpAmwqτm`n.

So for each n P Z`,

nϕn “

n´1
ÿ

l“0

ϕl ˝An´l´1. (15.7)

This determines all ϕn inductively. Our goal is to show that ϕτ pwq is the series expansion
of an analytic function on B.
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15.5

By Crrτ ss-linearity, we can extend ϕ to a linear map from W‚ b Crrτ ss to Crrτ ss. (Note
that the RHS of (15.6) is understood in this way.) Then W b OpBq is an OpBq-submodule
of W‚ b rrτ ss by taking power series expansions. We are interested in the restriction

ϕ : W‚ b OpBq Ñ Crrτ ss, w ÞÑ ϕτ pwq.

It clearly satisfies the differential equation Bτϕτ pwq “ ϕτ pBτw`Apτqwq, namely (cf. (15.4))

Bτϕτ pwq “ ϕτ p∇Bτwq. (15.8)

Lemma 15.13. ϕτ vanishes on JXpW‚qpBq.

Proof. Choose any w P JXpW‚qpBq, which by power series expansion is an element of
W‚ b Crrτ ss. Then by (15.8), ϕτ pwq has series expansion

ϕτ pwq “
ÿ

nPN

τn

n!
Bn
τϕτ pwq

ˇ

ˇ

τ“0
“

ÿ

nPN

τn

n!
ϕτ p∇n

Bτ
wq

ˇ

ˇ

τ“0

where ϕτ p∇n
Bτ
wq

ˇ

ˇ

τ“0
denotes the constant term of the series ϕτ p∇n

Bτ
wq P Crrτ ss. By Thm.

14.11, sn “ ∇n
Bτ
w belongs to JXpW‚qpBq. In particular, snpτq|τ“0 P JX0pW‚q. Clearly

ϕτ psnq|τ“0 “ ϕ0psnp0qq, which equals 0 because ϕ0 is a conformal block associated to X0.
This proves the lemma.

15.6

To prove that ϕτ is analytic, we need a basic fact about differential equations:

Lemma 15.14. LetW be a finite dimensional vector space. Suppose fpτq “
ř

nPN fnτ
n P W rrτ ss

satisfies a formal differential equation

Bτfpτq “ Apτqfpτq (15.9)

for some A P EndpW q bC OpBq, then fpτq is the power series expansion of an element of W b

OpBq which we also denote by fpτq.

Proof. It is clear that any formal solution fpτq of (15.9) is uniquely determined by its con-
stant term f0 P W . (Cf. the argument for (15.7).) By the basic theory of differential
equations (e.g. [Kna, Thm. B.1]), (15.9) must have a solution in W b OpBq with initial
value f0. So this solution must equal f because their constant terms are equal.

Lemma 15.15. ϕ is an OpBq-module morphism from W‚ b OpBq to OpBq. Thus, it is automati-
cally an OB-module morphism W‚ b OB Ñ OB.

Proof. By OpBq-linearity, it suffices to prove that ϕ sends each constant section w P W‚ to
ϕτ pwq P W‚ b OpBq.

By Thm. 15.7, we can find finitely many elements s1, s2, ¨ ¨ ¨ P W‚ b OpBq generating
W‚ b OpBq mod JXpW‚qpBq. We fix k0 P N such that s1, s2, ¨ ¨ ¨ P Wďk0

‚ b OpBq. Consider
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the restriction of ϕ to Wďk
‚ Ñ Crrτ ss for all k ě k0, which we denote by ϕďk. Recall that

Wďk
‚ is finite-dimensional. So ϕďk is an element of pWďk

‚ q˚ b Crrτ ss.
Let tejujPJ be a basis of Wďk

‚ . By (15.6) or (15.8), Bτϕτ pejq “ ϕτ p∇Bτ ejq where ∇Bτ ej P

W‚ b OpBq. Since ∇Bτ ej is an OpBq-linear combination of s1, s2, . . . mod JXpW‚qpBq, we
can findΩi,jpτq P OpBq for all i, j P J such that

∇Bτ ei “
ÿ

jPJ

Ωi,jpτqej mod JXpW‚qpBq.

Thus, by (15.8) and Lemma 15.13, we have

Bτϕ
ďk
τ peiq “

ÿ

jPJ

Ωi,jpτqϕďk
τ pejq. (15.10)

Therefore, ϕďk
τ as an element of ppW‚qďkq˚ b Crrτ ss satisfies a linear holomorphic dif-

ferential equation similar to (15.9). So by Lemma 15.14, this series is an element of
pWďk

‚ q˚ b OpBq. This finishes the proof.

Remark 15.16. The differential equation (15.10) has a significant role in conformal field
theory. Take V to be a WZW model Llpg, 0q and let W1, . . . ,WN be irreducible, and as-
sume that the lowest rL0-eigenvalue for each Wi is 0. Take X to be the genus-0 family
in Example 13.12. Then we can choose the k0 in the proof of Lemma 15.15 to be 0. By
restricting the base manifold ConfN pCˆq of X to any complex line parallel to the zj-axis,
then (15.10) shows that ϕď0 satisfies a linear holomorphic Bzj -differential equation. This
is the celebrated Knizhnik–Zamolodchikov (KZ) equation.

15.7

To summarize the results proved so far, we have:

Theorem 15.17. Let B be a simply-connected open subset of C containing 0, and choose local
coordinates η‚ for X. Define ∇Bτ using a lift of Bτ . Then for each ϕ0 P T ˚

X0
pW‚q, the ϕτ defined

by Def. 15.12 is an element of T ˚
X pW‚qpBq whose value at τ “ 0 is ϕ0, and which is annihilated

by ∇Bτ .

Proof. By Lemma 15.15, we can define ϕ to be an OB-module morphism W‚ b OB Ñ OB.
It is a conformal block by Lemma 15.13 and Thm. 14.6. It is annihilated by ∇Bτ due to
(15.8) and (14.36).

Proof of Lemma 15.10. For each τ0 P B, the map ϕ0 ÞÑ ϕτ0 is linear. Moreover, for suf-
ficiently large k, ϕďk

τ satisfies a linear holomorphic differential equation (15.10) whose
solutions are determined by their values at any fixed point of B, say τ0. So the function
ϕďk
τ of τ is uniquely determined by ϕďk

τ0 . So ϕďk
0 is determined by ϕďk

τ0 for all large k. So
the linear map ϕ0 ÞÑ ϕτ0 is injective.

The proof of Thm. 15.9 is complete.
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Example 15.18. Assume the setting of Example 13.6. Assume moreover that ∆ Ă C is
an open disk centered at 0, and that the holomorphic function h defined near S1 is holo-
morphic on Dˆ

r for some r ą 1 with finite poles at 0. So hpzq “
ř

nPZ cnz
n`1 where

cn “ 0 for sufficiently negative n. Using Example 13.12, it is easy to see that for each
ϕ0 P T ˚

X0
pW‚q, the ϕτ defined by (13.9) as a formal power series of τ satisfies Def. 15.12.

So ϕτ P T ˚
X pW‚qp∆q. In particular, for each w P W‚, ϕτ pwq converges a.l.u. on τ P ∆.

15.8

Corollary 15.19. Assume the setting of Thm. 15.17. Then for each τ P B, the linear map

T ˚
X0

pW‚q Ñ T ˚
Xτ

pW‚q, ϕ0 ÞÑ ϕτ

is bijective.

Proof. The injectivity follows from the proof of Lemma 15.9. The bijectivity follows from
the fact that the two vector spaces have the same dimension (due to Thm. 15.9). Alter-
natively, it follows from that by switching the role of τ and 0, we have a similar injective
linear map T ˚

Xτ
pW‚q Ñ T ˚

X0
pW‚q.

Corollary 15.20. Assume the setting of Thm. 15.17. Then T ˚
X pW‚q and hence TXpW‚q are

trivial vector bundles on B.

Proof. The OB-module morphism

T ˚
X0

pW‚q bC OB Ñ T ˚
X pW‚q

sending each constant section ϕ0 to ϕτ (and hence each ϕ0 b f to fϕτ where f P OB) is
an isomorphism due to Cor. 15.19.

Corollary 15.21. Let Y “ pC;x1, . . . , xN q be an N -pointed compact Riemann surface where C
is connected with genus g, and associate Wi to xi. Then the dimension of space of conformal blocks
dimT ˚

Y pW‚q depends only on g, N , and the (finitely-)admissible V-modules W1, . . . ,WN .

So, dimT ˚
Y pW‚q does not depend on the complex structure of C, the position of x‚, or

the choice of local coordinates.

Proof. There is a family Tg,N of N -pointed compact connected genus-g Riemann surfaces
whose base manifold is the Teichmüller space Tg,N (which is connected), and any Y is
equivalent to some fiber of Tg,N . (See for instance [ACG, Chapter XV].) Thus, the corollary
follows immediately from Thm. 15.9.

16 Sewing, propagation, and factorization of conformal blocks

16.1

Let X “ pπ : C Ñ Dˆ
rρ;x‚; η‚q be the family obtained by sewing an N -pointed compact

Riemann surface with local coordinates rX “ p rC;x‚, x
1, x2; η‚, ξ,ϖq as in Example 13.5.

Recall that we assume, unless otherwise stated, that:
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Assumption 16.1. Each connected component of rC contains one of x1, . . . , xN .

It follows that each connected component of Cb also contains one of x1, . . . , xN .

Convention 16.2. In this section, by “V-modules” we mean finitely admissible V-
modules.

Let W1, . . . ,WN ,M be V-modules. We associate W1, . . . ,WN ,M,M1 to the marked
points x‚, x

1, x2 of rX and W1, . . . ,WN to x1, . . . , xN of X. Recall that M1 is the contragre-
dient of M. Identify

W
rX

pW‚ b M b M1q “ W‚ b M b M1 via Upη‚, ξ,ϖq,

WXpW‚q “ W‚ via Upη‚q.

16.2

Let ϕ : W‚ b M b M1 Ñ C be a conformal block associated to rX and W‚,M,M. Let

’n“
ÿ

a

mpn, aq b qmpn, aq P Mpnq b Mpnq˚ (16.1)

be the contraction where tmpn, aq : a P Anu is a basis of Mpnq with dual basis tqmpn, aq : a P

Anu. Equivalently, ’n is the identity operator when viewed as an element of EndpWpnqq.
Recall that Mpnq and Mpnq˚ are respectively the rL0-weight n subspaces of M and M1

respectively. We define a linear map

rSϕ : W‚ Ñ Crrqss

rSϕpw‚q “ rSqϕpw‚q “
ÿ

nPN
ϕpw‚b ’nqqn “

ÿ

nPN
ϕ
`

w‚ b W pnq b W
looomooon

contraction

pnq˚
˘

qn (16.2)

called the (normalized) sewing of ϕ.
The meaning of rSϕpw‚q is easy to understand: Informally,

rSqϕpw‚q “ ϕ
`

w‚ b q
rL0 ¨ b ¨

loomoon

contraction

˘

“ ϕ
`

w‚ b ¨ b q
rL0 ¨

loooomoooon

contraction

˘

(16.3)

since we can place the projection Pn on the right of qrL0 and take the sum over all n, noting
that qrL0Pn “ qnPn. Suppose that the series rSqϕpw‚q of q converges a.l.u. on Dˆ

rρ. Note
that for each q, Xq is obtained by scaling either ξ or ϖ by q´1 (or more generally, scaling ξ
andϖ by q´1

1 , q´1
2 such that q1q2 “ q) and then perform the sewing as in Subsec. 4.2 along

x1 and x2 using their local coordinates. Then rSqϕpw‚q is the contraction with respect to
this sewing.

We can also use L0 instead of rL0 for scaling. For simplicity, we assume that M is irre-
ducible (or more generally, that L0 ´ rL0 is a constant on M), then we define the (standard)
sewing of ϕ to be

Sϕ “ qd ¨ rSϕ : W‚ Ñ Ctqu (16.4)
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where d ¨ 1M “ L0|M ´ rL0|M. Here, we have used the notation that for any vector space
W ,

W tqu “

!

ÿ

nPC
wnq

n : wn P W
)

.

By linearity, we can extend the definition of Sϕ to the case that M is a semi-simple V-
module, i.e. a direct sum of irreducible V-modules.

16.3

A proof of the following theorem can be found in [Gui, Sec. 3.3] or [Gui20, Sec. 10,
11].

Theorem 16.3. Instead of Assumption 16.1, we assume a weaker condition that for each q P Dˆ
rρ,

each connected component of Cq contains one of x1, . . . , xN . Let ϕ P T ˚
rX

pW‚ b M b M1q. Then
rSϕ is a conformal block associated to X, provided that rSϕpw‚q converges a.l.u. on q P Dˆ

rρ

(equivalently, converges absolutely on Drρ or on Dˆ
rρ) for each w‚ P W‚.

For instance, suppose thatN ą 0, and rC is a disjoint union of two connected Riemann
surfaces rC1, rC2 such that x1 P rC1 and x1, . . . , xN , x

2 P rC2. Then the condition in this
theorem is satisfied but Assumption 16.1 is not.

By Thm. 14.6, that rSϕ is a conformal block means the following equivalent conditions:

• ĂSqϕ P T ˚
Xq

pW‚q for each q P Dˆ
rρ.

• By extending rSϕ to an ODˆ
rρ

-module morphism

rSϕ : W‚ bC ODˆ
rρ

Ñ ODˆ
rρ
, (16.5)

rSϕ vanishes on JXpW‚qpDˆ
rρq.

• As an Oˆ
Drρ

-module morphism, rSϕ is an element of H0pDˆ
rρ,T

˚
X pW‚qq.

16.4

We give an application of Thm. 16.3. Assume only in this subsection and the next one
that X “ pC;x‚; η‚q is anN -pointed compact Riemann surface. Recall that by Assumption
11.2, each connected component of C contains one of x1, . . . , xN . Identify

WXpW‚q “ W‚ via Upη‚q. (16.6)

Let ϕ : W‚ Ñ C be a conformal block associated to X. We use the notations in Subsec.
11.2. Recall that (11.5) gives an explicit formula for ≀ϕx when x is close to xj , and the RHS
of (11.5) converges a.l.u.. for such x. It is clear that the RHS of (11.5) is the sewing of a
conformal block associated to Pηjpxq \ X. Therefore, by Thm. 16.3, ≀ϕx is a conformal
block associated to ≀Xx » Pηjpxq#X and V,W‚ when x is close to xj .
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Let us be more precise. Recall

≀Xx “ pC;x, x‚q (16.7)

where x ‰ x1, . . . , xN . By Def. 11.6 and Rem. 11.9, we have an OCzx‚
-module morphism

≀ϕ : VCzx‚
bC W‚ Ñ OCzx‚

, v b w‚ ÞÑ ≀ϕpv, w‚q. (16.8)

For each x P Czx‚, we have a linear map

≀ϕ|x : VC |xbC W‚ Ñ C. (16.9)

For every neighborhoodU of x and a univalent µ P OpUq, the equivalence Uϱpµq : VC |U
»
ÝÑ

V bC OU restricts to Uϱpµq : VC |x
»
ÝÑ V. Note that µ´ µpxq, η‚ are local coordinates of ≀Xx

at x, x‚. We then have an equivalence

W≀XxpV b W‚q
Upµ´µpxq,η‚q
ÝÝÝÝÝÝÝÝÑ

»
V b W‚

Uϱpµq´1b1
ÝÝÝÝÝÝÝÑ

»
VC |xb W‚. (16.10)

Exercise 16.4. Show that the equivalence (16.10) is independent of the choice of µ.

Thus, by identifying W≀XxpV b W‚q with VC |x b W‚ via (16.10), we see that ≀ϕ|x is a
linear functional

≀ϕ|x : W≀XxpV b W‚q Ñ C. (16.11)

(Indeed, one can check that this definition is also independent of the local coordinates η‚

of X).
By the discussion at the beginning of this subsection, ≀ϕ|x is a conformal block when

x is near any marked point xi. Thus, by Cor. 14.7 and the fact that each connected com-
ponent of Czx‚ intersects a neighborhood of xj for some j, we conclude that ≀ϕ|x is a
conformal block for every x P Czx‚. Note that in order to apply Cor. 14.7, we should
organize all ≀Xx to a family

≀X “ pC ˆ pCzx‚q Ñ Czx‚; ς, x1, . . . , xN q (16.12)

where ς sends each x P Czx‚ to px, xq and xj sends x to pxj , xq. Clearly the fiber of ≀X at
each x P Czx‚ is ≀Xx. Thus, we can view ≀ϕ as an OCzx‚

-morphism W≀XpVbW‚q Ñ OCzx‚
.

It is a global conformal block since it is so near x1, . . . , xN . We conclude:

Theorem 16.5. Let ϕ P T ˚
X pW‚q. Then the OCzx‚

-module morphism ≀ϕ : W≀XpV b W‚q Ñ

OCzx‚
is a conformal block associated to ≀X and V,W‚, called the propagation of ϕ.

We can consider multi-propagations of conformal blocks. Namely, we let sev-
eral distinct points y1, . . . , yn (instead of a single point x) vary on Czx‚, which gives a
family ≀nX with base manifold ConfnpCzx‚q and fibers pC; y1, . . . , yn, x1, . . . , xN q. Then
one has the n-propagation ≀nϕ defined inductively by ≀p≀n´1ϕq, which is a conformal
block associated to ≀nX and V, . . . ,V,W1, . . . ,WN . For instance, the pN ` 2q-point func-
tion xw1, Y pv1, z1q ¨ ¨ ¨Y pvN , zN qwy is the n-propagation of the conformal block w b w1 P

W b W1 ÞÑ xw,w1y associated to pP1; 0,8; ζ, 1{ζq. See [Gui, Sec. 3.4] or [Gui21] for details.
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16.5

As in the previous subsection, let X “ pC;x‚; η‚q be N -pointed, and assume the iden-
tification (16.6). We give two applications of propagation of conformal blocks. The first
one uses only the fact that ≀ϕp¨, w‚q is an OCzx‚

-module, but not really Thm. 16.5. Recall
the meaning of generating subsets of V-modules in Def. 15.2.

Proposition 16.6. Assume that C is connected and N ě 2. For each j “ 2, . . . , N , chose a
subset Ej Ă Wj generating Wj . Let ϕ : W‚ Ñ C be a conformal block associated to X and W‚.
Then ϕ “ 0 if ϕpw1 b w2 b ¨ ¨ ¨ b wN q “ 0 for all w1 P W1 and w2 P E2, . . . , wN P EN .

The proof of this Proposition is similar to that of Goddard uniqueness (Prop. 8.10).

Proof. Let w‚ P W‚ such that wj P Ej for all j ě 2. Clearly ϕpY pu, zqw1 b w2 ¨ ¨ ¨ b bwN q

(which converges a.l.u. when z ‰ 0 is small) is 0. So ≀ϕp¨, w‚q, as a section of pV ďk
C q_

on Czx‚, vanishes near x1 for all k. So it vanishes globally on Czx‚, and in particular
vanishes near x2. This shows that ϕpw1 bY pu, zqw2 b ¨ ¨ ¨ bwN q vanishes when z is small.
By taking residue at z “ 0, we see that ϕpw1 b Y puqnw2 b ¨ ¨ ¨ b wN q “ 0 for all u P V and
n P Z. Repeating this argument, we see that ϕpw1 bY pu1qn1 ¨ ¨ ¨Y pukqnk

w2 b¨ ¨ ¨bwN q “ 0
for all u1, . . . , uk P V and n1, . . . , nk P Z. Therefore, as E2 generates W2, we conclude that
ϕpw‚q “ 0 for all w1 P W1, w2 P W2 and wj P Ej (where 3 ď j ď N ). Repeating this
procedure shows ϕ “ 0.

The second application is the following one. Recall ≀Xx “ pC;x, x‚q if x P Czx‚. Recall
that 1 P H0pC,VCq is the vacuum section which locally equals the constant vacuum vector
under any trivialization.

Theorem 16.7. Choose any x P Czx‚ and identify

W≀XxpV b W‚q “ VC |xb W‚ via (16.10).

Then we have an isomorphism of vector spaces

T ˚
≀Xx

pV b W‚q
»
ÝÑ T ˚

X pW‚q

v b w‚ P VC |xb W‚ ÞÑ ψpv b w‚q ÞÑ w‚ P W‚ ÞÑ ψp1 b w‚q
(16.13)

Note first of all the easy fact:

Lemma 16.8. For each ϕ P T ˚
X pW‚q, the following holds in OpCzx‚q.

≀ϕp1, w‚q “ ϕpw‚q (16.14)

Proof. (16.14) clearly holds near x1, . . . , xN by (11.5). So (16.14) holds on Czx‚ by complex
analysis.

Proof of Thm. 16.7. We leave it to the readers to check that for each conformal block ψ
associated to ≀Xx, the linear functional ϕ : W‚ Ñ C defined by the RHS of (16.13) satisfies
the definition of conformal blocks (Def. 11.6). The linear map (16.13) is injective by Prop.
16.6 and the fact that 1 generates the vacuum module V. It is surjective due to Lemma
16.8, which says that ≀ϕ is a preimage of ϕ P T ˚

X pW‚q under the map (16.13).
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16.6

We give some applications of propagation.

Example 16.9. Let (finitely-admissible) W1,W1
2 be associated to the marked points 0,8 of

P “ pP1; 0,8; ζ, 1{ζq where ζ is the standard coordinate of C. Then it is not hard to check
(cf. Example 17.2) that there is an isomorphism

HomVpW1,Wcl
2 q

»
ÝÑ T ˚

P pW1 b W1
2q

T ÞÑ w1 b w1
2 ÞÑ xTw1, w

1
2y

(16.15)

(Note that each Y puqn acts on Wcl
2 in an obvious way.) Therefore, by Thm. 16.7, for

any N -pointed (N ě 2) sphere such that W1,W1
2 are associated to two marked points

and V is associated to the remaining one, the corresponding space of conformal blocks is
isomorphic to HomVpW1,Wcl

2 q.

Remark 16.10. In many important cases, we have

HomVpW1,W2q “ HomVpW1,Wcl
2 q. (16.16)

For instance, this is true when L0 is diagonalizable on W1,W2, and each L0-weight space
of W2 is finite-dimensional. (E.g. when W1,W2 are semisimple.)

To see this, choose any L0-eigenvector w1 P W1 with L0w1 “ λw1. Choose linear T :
W1 Ñ Wcl

2 intertwining the actions of V. Then as L0T “ TL0, we see that Tw1 P Wcl
2 is an

L0-eigenvector with eigenvalue λ. Recall that rrL0, L0s “ 0 (cf. Rem. 9.7). So L0 preserves
each (rL0-)weight space W2pnq of W2. But L0|W2pnq has eigenvalue λ for only finitely many
different n, otherwise the λ-eigenspace of L0 on W2 would be infinite dimensional. This
proves Tw1 P W2.

Example 16.11. In Example 16.9, we let W1 “ V and W “ W2. Then we have

HomVpV,Wclq » T ˚
pP1;0,8;ζ,1{ζqpV b W1q » T ˚

pP1;8;1{ζqpW
1q (16.17)

where the corresponding element of T P HomVpV,Wclq in T ˚
pP1;8;1{ζq

pW1q is T1 P Wcl as a
linear functional on W1. In particular, taking W “ V1, we have

HomVpV,V1q “ HomVpV, pV1qclq » T ˚
pP1;8;1{ζqpVq. (16.18)

So T ˚
pP1;8;1{ζq

pVq is trivial if V is not self-dual.

16.7

We return to the setting of Subsec. 16.1.

Theorem 16.12. Assume that V is C2-cofinite, W1, . . . ,WN ,M are finitely-generated, and
rL0|M ´ L0|M is a constant (e.g. when M is irreducible). Let ϕ P T ˚

rX
pW‚ b M b M1q. Then

156



rSϕ and Sϕ converge a.l.u. on q P Dˆ
rρ. Moreover, if we define the connection ∇ on T ˚

X pW‚q

using η‚ and a lift of Bq, then

∇BqSqϕ “ f ¨ Sqϕ (16.19)

for some f P OpDˆ
rρq depending only on rX (including the local coordinates η‚, ξ,ϖ) and r, ρ, the

lift of Bq, and the central charge c. Moreover, f “ 0 if η‚, ξ,ϖ belong to a projective structure of
rX.

The proof of Thm. 16.12 has some similarities to the proof in Sec. 15 that ϕτ is analytic
and the sheaves of coinvariants/conformal blocks are locally free. We refer the readers
to [Gui, Sec. 4.3] or [Gui20, Sec. 11] for details of the proof. In the following, we explain
some key ideas.

Suppose we add the nodal curve C0 “ limqÑ0 Cq to the family X (see the end of Subsec.
13.4). One can also define sheaves of coinvariants and conformal blocks for X. Due to the
fact that dπ : ΘC |p Ñ ΘDrρ |πppq is not surjective if p P C is the node of C0, we cannot lift Bq

to a section of ΘC near p, let alone to H0pC,ΘCp‹SXqq. (Near the node p, π is equivalent to
pξ,ϖq P C2 ÞÑ ξϖ near ξ “ ϖ “ 0.) But we can lift qBq to an element x P H0pC,ΘCp‹SXqq,
and one can check that x is actually in H0pC,ΘCp´ log C0 ` ‹SXqq, which means that x has
finite poles at SX and that x|C0 is tangent to C0 and vanishes at the node. (See [Gui, Sec.
3.6] or [Gui20, Sec. 11]).

(16.20)

Using the lift x, one can define a differential operator ∇qBq (or more generally, ∇gBq

where g P ΘDrρ vanishes on 0) on TXpW‚q and T ˚
X pW‚q. We say that the connection ∇ has

logarithmic singularity (or is a logarithmic connection with singularity) at 0. Then one
can show that

∇qBqSqϕ “ f ¨ Sqϕ (16.21)

where the dependence of f P OpDrρq on the given data is as in Thm. 16.12. (Note that un-
like in Thm. 16.12, here f is also holomorphic at 0.) Thm. 15.7 indeed holds in the present
case as well. So, similar to the proof of Lemma 15.15, one shows that for sufficiently large
k,

qBq rSqϕ
ďkpeiq “

ÿ

jPJ

Ωi,jpqq rSqϕ
ďkpejq. (16.22)

where Ωi,j P OpDrρq. Namely, as an EndpWďk
‚ q-valued formal power series of q, rSqϕ

ďk

satisfies a linear holomorphic differential equation with simple pole at q “ 0. It is
well known that Lemma 15.14 can be generalized to this case, which asserts that a formal
power series satisfying a linear holomorphic differential equation with simple pole must
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converge a.l.u. on Dˆ
rρ (cf. e.g. [Gui, Sec. 1.7]). The a.l.u. convergences of rSϕ and Sϕ

follow.
Finally, we remark that Thm. 16.12 can be generalized to the simultaneous sewing

along several pairs of points py1
1, y

2
1q, . . . , py1

M , y
2
M q of rC, or even more generally, the case

that rX is a family with base manifold rB. In this most general case, X is a family over
rB ˆ Dˆ

r1ρ1 ˆ ¨ ¨ ¨ ˆ Dˆ
rMρM

, and the sewing is a.l.u. convergent on this domain. See the
references mentioned above.

16.8

Let E be a finite set of mutually inequivalent irreducible V-modules. Then for each
q P Dˆ

rρ with a choice of argument arg q, we have a linear map

Sq :
à

MPE
T ˚

rX
pW‚ b M b M1q Ñ T ˚

Xq
pW‚q

à

M
ϕM ÞÑ

ÿ

M
SqϕM

(16.23)

Note that
ř

M SϕMpw‚q is a multivalued holomorphic function on Dˆ
rρ (i.e., a single-

valued holomorphic function of log q on the universal cover of Dˆ
rρ)

Theorem 16.13. Assume that V is C2-cofinite and W1, . . . ,WN are finitely generated. Then for
each q P Dˆ

rρ with chosen arg q, the linear map Sq is injective.

See [Gui, Sec. 4.4] or [Gui20, Sec. 12] for a proof. The last part of that proof can be
simplified thanks to the propagation of conformal blocks. In the following, we present
this simplified proof.

Proof. Suppose ψq “
ř

M SqϕM is 0 for one q. Then it vanishes for all q P Dˆ
rρ (and all

choices of arg q) since the restriction ofψ to Wďk
‚ satisfies a linear holomorphic differential

equation (16.22) whose solutions are determined by their (initial) values at any fixed q and
arg q. Write ψqpw‚q “

ř

nPCψnpw‚qqn, then ψnpw‚q “ 0 for all n P C.8

Let F be the set of all M P E such that ϕM ‰ 0. Let us prove that F “ H. Note that

ψqpw‚q “
ÿ

nPC

ÿ

MPF
qn ¨ ϕMpw‚ b χM,nq

where χM,n P Mpnq b M˚
pnq

(where Mpnq is the L0-weight n subspace of M) is the vector
for contraction, i.e., χM,n “ 1Mpnq

P EndpMpnqq. Let X “
À

MPF M b M1 as a (semisimple)
V b V-module. Then for each n P C, ψnpw‚q “ 0 means

A

à

MPF
ϕM, w‚ b

` à

MPF
χM,n

˘

E

“ 0.

8Suppose fpqq “
ř

nPC anq
n

P Ctqu converges absolutely and equals 0 when q ‰ 0 is small. If fpqq P

Crrq˘1
ss, then by taking contour integrals one concludes an “ 0 for all n. In the general case, one has to be

more careful. See the discussions in [Gui, Sec. 4.4].
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where
À

MPF ϕM : W‚ b X Ñ C is a linear map defined by sending each w‚ b m b m1

(where m P M,m1 P M1) to ϕMpw‚ bmbm1q.
Let

A “
␣

ν P X :
@
à

MPF
ϕM, w‚ b ν

D

“ 0 for all w‚ P W‚

(

.

We claim that A is a V b V-invariant subspace of X. It follows that if F ‰ H, then
A (which contains all χM,n) must be a non-trivial V b V-submodule of the semisimple
module X. Since the irreducible summands M b M1 of X are mutually non-isomorphic, A
must contain some MbM1 where M P F . Then ϕM “ 0, contradicting the definition of F .

That A is V b V-invariant can be argued in the same way as Prop. 16.6. Choose any
ν P A. Then when z ‰ 0 is small, for each u P V,

@à

MPF
ϕM, Y pu, zqw1 b w2 b ¨ ¨ ¨ b wN b ν

D

(16.24)

converges a.l.u. and equals 0. This shows that
À

MPF ≀ϕMp¨, w‚ b νq vanishes near x1, and
hence near x1. Therefore, for all u P V,

@à

MPF
ϕM, w‚ b pY pu, zq b 1qν

D

equals 0. So pY puqn b 1qv P A for all u P V, n P Z, which proves that A is V b 1-invariant.
Similarly, A is 1 b V-invariant.

Remark 16.14. If we define rSq using the normalized sewing rSq, then using the fact that
for each M, SqϕM “ qd rSqϕM for some d P C, one shows easily that rSq is also injective.

16.9

Corollary 16.15. Assume that V is C2-cofinite. Then there are only finitely many equivalence
classes of irreducible V-modules.

Proof. For each finite set E as in the previous subsection, we give an upper bound for its
cardinality |E |. For each M P E , the vertex operator YM defines a conformal block ωM :
MbVbM1 Ñ C for P “ pP1; 0, 1,8; ζ, ζ´1, 1{ζq as in Example 11.12. Sewing P along 0,8

with a fixed parameter q P Dˆ
1 gives a 1-pointed torus T. By Thm. 16.13, t rSqωM : M P Eu

is a linearly independent subset of T ˚
T pVq. Therefore |E | ď dimT ˚

T pVq.

Recall that V is called rational if every admissible V-module is a direct sum of irre-
ducible V-module.

Theorem 16.16 (Factorization). Assume that V is C2-cofinite and rational. Assume that E is
a maximal set of mutually inequivalent irreducible V-modules. (“Maximal” means that every
irreducible V-module is isomorphic to one element of E .) Then the linear map Sq defined by
(16.23) is an isomorphism.
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Factorization is equivalent to that for maximal E ,

dimT ˚
Xq

pW‚q “
ÿ

MPE
dimT ˚

rX
pW‚ b M b M1q. (16.25)

This formula gives an algorithm of calculating the dimensions of spaces of conformal
blocks of higher genera or more marked points from those of lower genera or less marked
points. Factorization in this form was first proved by [DGT19] using Zhu’s algebras. In
[Gui, Sec. 4.6, 4.7], a different but more analytic and geometric proof was given using
(a slight generalization of) double-propagations. The proof of factorization has a long
history. In particular, the factorization of WZW conformal blocks was first proved in the
landmark paper [TUY89]. See the Introduction of [DGT19] for a discussion of the history.

Corollary 16.17. Assume that V is C2-cofinite and rational. Then the number of equivalence
classes of irreducible V-modules equals the dimension of the space of conformal blocks associated
to any 1-pointed torus T and the vacuum module V.

Proof. This follows immediately from factorization and the proof of Cor. 16.15.

17 Genus 0 conformal blocks and tensor categories of VOA mod-
ules

17.1

In this section, we still follow Convention 16.2: V-modules mean finitely-admissible
V-modules. For each z‚ P ConfN pCq, let

Xz‚ “ pP1; z1, . . . , zN ,8; ζ ´ z1, . . . , ζ ´ zN , 1{ζq

where ζ is the standard coordiante of C. Choose V-modules W1, . . . ,WN ,W1
N`1 associ-

ated to z1, . . . , zN ,8. Write

W‚ “ W1 b ¨ ¨ ¨ b WN ,

namely, N ` 1 are not included in the ‚. Note that a linear functional on W‚ b W1
N`1 is

equivalently a linear map W‚ Ñ Wcl
N`1.

17.2

We give a criterion to decide whether a linear functional on W‚ bW1
N`1 is a conformal

block.

Proposition 17.1. A linear map Y : W‚ Ñ Wcl
N`1 belongs to T ˚

Xz‚
pW‚ b W1

N`1q if and only if
the following condition holds: For each w‚ P W‚, w

1
N`1 P W1

N`1 and u P V, the following formal
Laurent series

@

w1
N`1,Ypw1 b ¨ ¨ ¨ b Y pu, z ´ ziqwi b ¨ ¨ ¨ b wN q

D

P Cppz ´ ziqq
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(for all i “ 1, . . . , N ) and the series
@

Y pu, zqtw1
N`1,Ypw‚q

D

P Cppz´1qq

are expansions at z1, . . . , zN`1,8 of the same function f P H0pP1,OP1p‹z‚ ` ‹8qq.

According to our notation (11.24), f P H0pP1,OP1p‹z‚ ` ‹8qq means simply that f is
a meromorphic function on P1 (i.e. a rational function) with possible (finite) poles only at
z‚,8.

Proof. “If”: Denote the function f in the Proposition by fu,w‚bw1
N`1

. Then we can define
an OCzx‚

-module morphism

≀Yp¨, w‚ b w1
N`1q : VCzx‚

Ñ OCzx‚

Uϱpζq´1pub gq ÞÑ g ¨ fu,w‚bw1
N`1

where ub g P VbC OCzx‚
. Using the same argument as in Example 11.12, one checks that

≀Y satisfies the conditions in the complex analytic definition of conformal blocks.
“Only if”: Let v P H0pP1,VP1p‹8qq be v “ Uϱpζq´1u. Let f “ ≀Ypv, w‚ b w1

N`1q by
viewing Y as a linear functional on W‚ b W1

N`1. One checks that f satisfies the claim in
Prop. 17.1.

17.3

Example 17.2. Consider the case that N “ 1 and z1 “ 0. Then Y : W1 Ñ Wcl
2 is a con-

formal block iff f1pzq “ xw2,YY pu, zqw1y (which is in Cppzqq) and f2 “ xY pu, zqtw2,Yw1y

(in Cppz´1qq) are expansions at 0,8 of some f P H0pP1,OP1p‹0 ` ‹8qq “ Crz˘1s. This is
equivalent to that Resz“0f1pzqzkdz ` Resz“8f2pzqzkdz “ 0, and hence equivalent to that
xw‚, rY puqk,Ysw1y “ 0, namely Y P HomVpW1,Wcl

2 q. We conclude

HomVpW1,Wcl
2 q » T ˚

pP1;0,8;ζ,1{ζqpW1,W1
2q. (17.1)

Example 17.3. Consider the case that N “ 0 and W1 “ V, which is associated to the only
marked point 8. In this case, ξ :“ Y belongs to Vcl. According to Prop. 17.1, Y is a
conformal block iff for each w1 P W1, u P V, xw1, Y pu, zqξy belongs to H0pP1,OP1p‹8qq “

Crzs. Equivalently, Y puqnξ “ 0 whenever u P V, n P N. In particular, L0ξ “ Y pcq1ξ “ 0.
We conclude

T ˚
pP1;8;1{ζqpV

1q “ tv P Vp0q : Y puqnv “ 0 for all u P V, n P Nu. (17.2)

Note also that by Subsec. 5.7, Y puqnv “ 0 for all n P N iff rY pu, z1q, Y pv, z2qs “ 0 in
Crrz˘1

1 , z˘1
2 ss.

It follows that if V » V1 (self-dual) and Vp0q “ C1 (CFT-type), then

T ˚
pP1;8;1{ζqpVq » T ˚

pP1;8;1{ζqpV
1q “ C1. (17.3)
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Therefore, by Example 16.11, EndVpVq “ C1V. This implies that if V is completely re-
ducible, i.e. a sum of irreducible V-modules, then V must be simple (i.e. an irreducible
V-module). We remark that without assuming completely reducibility, one can also de-
duce that V is simple from self-dualness and CFT-type. See for instance [CKLW18, Prop.
4.6].

Now consider the case N “ 2 and z2 “ 0. Set ξ “ z1 which is non-zero. In this case,
we write a conformal block Ypw1 b w2q as Ypw1, ξqw2.

Proposition 17.4. A linear map Yp¨, ξq : W1 b W2 Ñ Wcl
3 is an element of

T ˚
pP1;0,ξ,8;ζ,ζ´ξ,1{ζq

pW1 b W2 b W1
3q if and only if for each w1 P W1 and u P V

ÿ

lPN

ˆ

m

l

˙

ξm´l ¨ YpY puqn`lw1, ξq

“
ÿ

lPN

ˆ

n

l

˙

p´ξql ¨ Y puqm`n´lYpw1, ξq ´
ÿ

lPN

ˆ

n

l

˙

p´ξqn´l ¨ Ypw1, ξqY puqm`l

(17.4)

Proof. With the help of Prop. 17.1, we can prove the only if part by taking residues as in
Prop. 4.8, and prove the if part using strong residue Thm. 11.14.

17.4

Assume that V is C2-cofinite and W1, . . . ,W2 are finitely generated. We assemble Xz‚

to a family

X “ pP1 ˆ ConfN pCq Ñ ConfN pCq; ς1, . . . , ςN ,8; η1, . . . , ηN , 1{ζq (17.5)

as in Example 13.4. Namely, ςi sends z‚ P ConfN pCq to pzi, z‚q, 8 sends z‚ to p8, z‚q, ηi
sends pz, z‚q to z ´ zi, and 1{ζ sends pz, z‚q to 1{z. Identify

WXpW‚q “ W‚ b OConfN pCq
via Upη‚, 1{ζq.

By Example 13.13, over the vector bundle T ˚
X pW‚q one has a (clearly flat) connection ∇

defined by

∇Bτk
“ Bτk ´

`

1W1 b ¨ ¨ ¨ b L´1

ˇ

ˇ

Wk
b ¨ ¨ ¨ b 1WN

b 1W8

˘t (17.6)

for all 1 ď k ď N .
Thus, if we fix γ‚ P ConfN pCq, then each element Yp¨, γ‚q P T ˚

X pW‚q|γ‚ is extended to a
parallel section Yp¨, z‚q : w‚ P W‚ ÞÑ Ypw‚, z‚q P C on any simply-connected open subset
of ConfN pCq containing γ‚, and furthermore to a multivalued parallel section Yp¨, z‚q on
ConfN pCq (namely, single-valued on the universal cover of ConfN pCq).
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17.5

As a variant of the above family, we can consider the family

PN “ pπ : P1 ˆ ConfN pCˆq Ñ ConfN pCˆq; 0, ς1, . . . , ςN ,8; ζ, η1, . . . , ηN , 1{ζq

in Example 13.4. Then similar properties hold for conformal blocks associated to PN .

Definition 17.5. A parallel section Y “ Ypw1, ξqw2 of T ˚
P1pW2 b W1 b W1

3q multivalued
on ξ P Cˆ (and hence single-valued on the universal cover of log ξ P Cˆ) is called a type
` W3

W1W2

˘

intertwining operator. The space of these intertwining operators is denoted by
I
` W3

W1W2

˘

. Its dimension is called the fusion rule between W1,W2,W3.

Note that W2,W1,W8 are associated to the sections 0, ς “ ς1,8 respectively. Also, Y
being parallel means that Y satisfies the translation property

BξYpw1, ξq “ YpL´1w1, ξq. (17.7)

17.6

We now address a problem overlooked previously: is the vector space W1 independent
of the operator rL0 that makes W finitely-admissible?

Let us prove that this is true when L0 is diagonalizable and each L0-eigenspace is
finite-dimensional (e.g. when W is semi-simple). Let W “

À

nPCWpnq be the L0-grading
of W. We can define the graded dual W_ “

À

nPCW˚
pnq

using the L0-grading. Then the

independence of W1 on rL0 follows from:

Proposition 17.6. Suppose that W has L0-grading W “
À

nPCWpnq where each Wpnq is finite-
dimensional. Suppose also that W has an rL0-grading W “

À

nPNWpnq making W finitely-
admissible. Then W1 “ W_.

Proof. Consider the linear operators rLt
0, L

t
0 defined on W˚, namely,

xrLt
0w

1, wy “ xw1, rL0wy, xLt
0w

1, wy “ xw1, L0wy

for all w P W, w1 P W˚. Notice the following facts which are stated for L0,W
_ and also

hold for rL0,W
1 in a similar way:

• From W˚ “
ś

nPCW˚
pnq

, we see that a vector w1 P W˚ belongs to W_ iff w1 is a finite
sum of eigenvectors of Lt

0.

• Any generalized eigenvector w1 P W˚ of Lt
0 is an eigenvector of Lt

0. Namely, if pLt
0 ´

λqkw1 “ 0 for some k P N, then pLt
0 ´ λqw1 “ 0. In particular, Lt

0 is diagonalizable
on each finite-dimensional Lt

0-invariant subspace of W˚.

By Rem. 9.7, L0 and rL0 commute on W. So Lt
0 and rLt

0 commute on W˚. Therefore,
since Wpnq˚ is the n-eigenspace of rLt

0 on W˚, we see that Wpnq˚ is Lt
0-invariant, and

hence Lt
0|Wpnq˚ is diagonalizable. This proves that any rLt

0-eigenvector is a finite sum of
Lt
0-eigenvectors. Therefore W1 Ă W_. A similar argument shows W_ Ă W1.
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17.7

We now assume for simplicity that W1,W2,W3 are semisimple, and show that our def-
inition of intertwining operators agrees with the usual ones in the literature (for instance
[FHL93]).

In (17.4), set n “ 0, u “ c,m “ 1, we get

rL0,Ypw1, ξqs “ ξYpL´1w1, ξq ` YpL0w1, ξq

“ξBξYpw1, ξq ` YpL0w1, ξq.

It follows that we have scale covariance (assuming z ‰ 0)

zL0Ypw1, ξqz´L0 “ YpzL0w1, zξq. (17.8)

Here, and in the rest of this section, we adhere to the following convention, which is
necessary since both zL0 and Yp¨, ξq depends on the arguments of the variables z, ξ.

Convention 17.7. We assume argpzξq “ arg z ` arg ξ and arg z´1 “ ´ arg z. If a P R, we
assume arg za “ a arg z. By a positive variable r ą 0, we assume unless otherwise stated
that arg r “ 0. We assume arg 1 “ 0, arg eiθ “ θ (where θ P R).

Set ξ “ 1. Then (17.8) shows

xYpw1, zqw2, w
1
3y “ xYpz´L0w1, 1qz´L0w2, z

L0w3y (17.9)

which must be a (finite) linear combination of (non-necessarily integral) powers of z since
it is so when w1, w2, w

1
3 are L0-homogeneous. Thus we can write

Ypw1, zq “
ÿ

nPC
Ypw1qnz

´n´1

where each Ypw1qn : W2 Ñ Wcl
3 satisfies

rL0,Ypw1qns “ YpL0w1qn ´ pn` 1qYpw1qn. (17.10)

This shows that if w1 is L0-homogeneous with weight wtw1, then Ypw1qn raises the L0-
weights by wtw1 ´ n´ 1. In particular, Ypw1qn is a linear map

Ypw1qn : W2 Ñ W3.

Thus, by checking the coefficients before each powers of ξ in (17.4), we obtain:

Proposition 17.8. Let V be C2-cofinite and W1,W2,W3 be semisimple. Then a type
` W3

W1W2

˘

intertwining operator is equivalently a linear map

Y : W1 Ñ HompW2,W3qtzu

w1 ÞÑ Ypw1, zq “
ÿ

nPC
Ypw1qnz

´n´1

satisfying the following conditions
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• Jacobi identity: For each u P V, w1 P W1, m,n P Z, and k P C,

ÿ

lPN

ˆ

m

l

˙

Y
`

Y puqn`lw1

˘

m`k´l

“
ÿ

lPN
p´1ql

ˆ

n

l

˙

Y puqm`n´lYpw1qk`l ´
ÿ

lPN
p´1qn`l

ˆ

n

l

˙

Ypw1qn`k´lY puqm`l.

(17.11)

• Translation property: For each w1 P W1, we have rL´1,Ypw1, zqs “ YpL´1w1, zq.

Note also that by setting n “ 0, u “ c,m “ 0 in (17.4), we get

rL´1,Ypw1, zqs “ YpL´1w1, zq. (17.12)

17.8

Assumption 17.9. In the remaning part of this section, we assume V is C2-cofinite and
rational.

We shall construct the braided tensor category ReppVq of semisimple V-modules, due
to Huang and Lepowsky. See [BK, EGNO] for the definition of braided tensor categories.

The objects of ReppVq are semisimple V-modules, and the morphism space between
two objects W1,W2 is HomVpW1,W2q. This makes ReppVq a semisimple abelian category.

Fix E to be a maximal set of mutually-inequivalent irreducible V-modules as in the
factorization Thm. 16.16. Recall that E is finite by Cor. 16.15. For each semisimple W1,W2,
define the tensor product (more precisely, fusion product)

W1 b W2 “
à

WsPE
Ws b I

ˆ

Ws

W1W2

˙˚

(17.13)

where I
` Ws

W1W2

˘˚
is the dual space of the (finite-dimensional) space I

` Ws

W1W2

˘

. If F P

HomVpW1,W3q and G P HomVpW2,W4q, then the transpose of the linear map

pF bGqt : I
ˆ

Ws

W3W4

˙

Ñ I
ˆ

Ws

W1W2

˙

Yp¨, zq ÞÑ YpF ¨, zqG

(17.14)

gives a linear map I
` Ws

W1W2

˘˚
Ñ I

` Ws

W3W4

˘˚
, whose tensor product with 1Ws , added up

over all Ws P E , gives the definition of fusion product of morphisms

F bG : W1 b W2 Ñ W3 b W4. (17.15)

17.9

We have an obvious equivalence

HomVpW1 b W2,W3q »
à

WsPE
HomVpWs,W3q b I

ˆ

Ws

W1W2

˙

.

165



Through the isomorphism

à

WsPE
HomVpWs,W3q b I

ˆ

Ws

W1W2

˙

»
ÝÑ I

ˆ

W3

W1W2

˙

T b Yp¨, zq ÞÑ T ˝ Yp¨, zq

(17.16)

we get an isomorphism

HomVpW1 b W2,W3q » I
ˆ

W3

W1W2

˙

(17.17)

which is functorial in the sense that if F : M1 Ñ W1, G : M2 Ñ W2, H : W3 Ñ M3

are morphisms, and if Y P I
` W3
W1W2

˘

corresponds to T P HomVpW1 b W2,W3q, then H ˝

YpF ¨, zqG corresponds to HT pF bGq in HomVpM1 b M2,M3q.
As a special case, we have

HomVpV b W,Wq » I
ˆ

W
VW

˙

. (17.18)

By Thm. 16.7 (propagation of conformal blocks) and Subsec. 16.6, we have an isomor-
phism

I
ˆ

W
VW

˙

»
ÝÑ EndVpWq Y ÞÑ Yp1, zq

This shows that dimHomVpV b W,Wq “ 1 of W is irreducible. Therefore, we have a
standard homomorphism (the left unitor)

µL : V b W »
ÝÑ W (17.19)

which corresponds to 1W in EndVpWq. Clearly, µL corresponds to the vertex operator YW
in I

` W
V W

˘

.
µL is indeed an isomorphism. This is easy to see when W P E . The general case

follows by taking direct sums and applying the functoriality of the isomorphism (17.17).
The right unitor µR : W b V »

ÝÑ W is defined using the braiding ßYW P I
` W
WV

˘

of the
vertex operator YW, where ß is defined in Subsec. 17.12.

17.10

To define the associativity isomorphism

A : pW1 b W2q b W3
»
ÝÑ W1 b pW2 b W3q,

we write

W1 b pW2 b W3q “
à

WtPE
Wt b I

ˆ

Wt

W1,W2 b W3

˙˚
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“
à

WtPE
Wt b I

ˆ

Wt

W1,
À

WpPE Wp b I
` Wp

W2W3

˘˚

˙˚

.

Note that in general, for any finite-dimensional vector space J we have an equivalence

I
ˆ

Wt

W1,Wp

˙

b J˚ »
ÝÑ I

ˆ

Wt

W1,Wp b J

˙

Y b ω ÞÑ ΨYbω

where ΨYbωpw1, zqpwp b ξq (where wp P Wp and ξ P J) equals Ypw1, zqwp ¨ xω, ξy. So we
have a canonical equivalence

W1 b pW2 b W3q »
à

WtPE

à

WpPE
Wt b I

ˆ

Wt

W1Wp

˙˚

b I
ˆ

Wp

W2W3

˙˚

(17.20)

Similarly, we have a canonical equivalence

pW1 b W2q b W3 »
à

WtPE

à

WsPE
Wt b I

ˆ

Wt

WsW3

˙˚

b I
ˆ

Ws

W1W2

˙˚

. (17.21)

Thus, the associativity map can be defined such that on each component it is 1Wt tensor-
ing the transpose of an isomorphism

F :
à

WpPE
I
ˆ

Wt

W1Wp

˙

b I
ˆ

Wp

W2W3

˙

»
ÝÝÑ

à

WsPE
I
ˆ

Wt

WsW3

˙

b I
ˆ

Ws

W1W2

˙

. (17.22)

Let us define F .

17.11

Choose any 0 ă r ă ρ. Recall that by Convention 17.7, arg r “ arg ρ “ 0. Recall that
by the notations in Example 13.4, P2

r,ρ “ pP1; 0, r, ρ,8; ζ, ζ ´ r, ζ ´ ρ, 1{ζq. By Thm. 16.16,
we have an isomorphism

F1,23 :
à

WpPE
I
ˆ

Wt

W1Wp

˙

b I
ˆ

Wp

W2W3

˙

»
ÝÑ T ˚

P2
r,R

pW3 b W2 b W1 b W1
tq

sending each Yα b Yβ to the linear functional on W3 b W2 b W1 b W1
t defined by

@

w1
t,Yαpw1, ρqYβpw2, rqw3

D

:“
ÿ

nPN

@

w1
t,Yαpw1, ρqPnYβpw2, rqw3

D

. (17.23)

(17.23) corresponds to the sewing as in Subsec. 4.5. Therefore, the RHS of (17.23) con-
verges absolutely on the region 0 ă r ă ρ thanks to Thm. 16.12. Now assume without
loss of generalities that all the vectors are L0-homogeneous. Then by scale covariance
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(17.8) and that rL0 ´L0 is a scalar on the irreducible Wp, the RHS of (17.23) can be written
as ρarb (where a, b P C) times

ÿ

nPN

@

w1
t,Yαpw1, 1qPnYβpw2, 1qw3

D

¨

ˆ

r

ρ

˙n

.

(Cf. the argument in Subsec. 7.4.) This shows that the absolute convergence of (17.23)
implies the a.l.u. convergence on 0 ă r ă ρ.

Similarly, when 0 ă ρ´ r ă r we have an isomorphism

F12,3 :
à

WsPE
I
ˆ

Wt

WsW3

˙

b I
ˆ

Ws

W1W2

˙

»
ÝÑ T ˚

P2
r,R

pW3 b W2 b W1 b W1
tq

sending each Yγ b Yδ to the linear functional defined by
@

w1
t,Yγ

`

Yδpw1, ρ´ rqw2, r
˘

w3

D

:“
ÿ

nPN

@

w1
t,Yγ

`

PnYδpw1, ρ´ rqw2, r
˘

w3

D

(17.24)

which converges a.l.u. on 0 ă ρ´ r ă r and correspond to the sewing in Subsec. 4.7.
We define (17.22) to be

F “ F´1
12,3 ˝ F1,23 (17.25)

for any r, ρ satisfying 0 ă ρ ´ r ă r ă ρ. Using Thm. 16.12, one checks easily that
both (17.23) and (17.24) are parallel sections. Therefore F is independent of the particular
choice of r, ρ.

17.12

It remains to define the braiding isomorphisms. We define an isomorphism

ß : I
ˆ

W3

W1W2

˙

»
ÝÑ I

ˆ

W3

W2W1

˙

(17.26)

as follows. For each Y P I
` W3

W1W2

˘

, note that Yp¨, 1q P T ˚
pP1;0,1,8;ζ,ζ´1,1{ζq

pW2 b W1 b W1
3q.

Let γ : r0, 1s Ñ Conf2pCq be the path which is the anticlockwise rotation around 0.5 from
p0, 1q to p1, 0q by π, namely γptq “ p0.5´0.5eiπt, 0.5`0.5eiπtq. Along this path we parallel-
transport Yp¨, 1q to an element of T ˚

pP1;1,0,8;ζ,ζ´1,1{ζq
pW2 b W1 b W1

3q. We then define ßY
such that xw1

3, ßYpw2, 1qw1y is this element.
Now we can define the braiding

σ : W1 b W2 “
à

WsPE
Ws b I

ˆ

Ws

W1W2

˙˚
»
ÝÑ W2 b W1 “

à

WsPE
Ws b I

ˆ

Ws

W2W1

˙˚

σ “
à

WsPE
1Ws b ßt

(17.27)

where ßt is the transpose of ß : I
` Ws

W2W1

˘ »
ÝÑ I

` Ws

W1W2

˘

.
One can check that with the unitors, associators, and braiding operators defined

above, ReppVq is a braided tensor category. Moreover, Huang showed in [Hua08b] that
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Theorem 17.10. Suppose that V is C2-cofinite, rational, CFT type (i.e. Vp1q “ C1), and self
dual (i.e. V » V1). Then ReppVq is a rigid modular tensor category.

Huang’s proof relies on the convergence of genus-1 sewing and factorization [Zhu96,
Hua05] and (generalized) Verlinde formula [Hua08a].

17.13

We give an explicit formula of ßY for any Y P I
` W3

W1W2

˘

. First assume z is positive
and z ą 1; in particular arg z “ 0. Recall the path γ in Subsec. 17.12. Note that Yp¨, 1q is
parallel-transported to Yp¨, zq along the rightward path α1ptq “ p0, 1´ t` ztq in Conf2pCq

from p0, 1q to p0, zq, and ßY similarly along the rightward path α2ptq “ p1 ´ t ` zt, 0q

from p1, 0q to pz, 0q. Therefore, Yp¨, zq is parallel-transported to ßYp¨, zq along the path
α´1
1 ˚ γ ˚ α2 from p0, zq to pz, 0q, which is homotopic to γ1 ˚ γ2 where

• γ1ptq “ p0, eiπtzq is from p0, zq to p0,´zq where the first component is fixed and the
second one is the anticlockwise rotation by π around 0 from 1 to ´1.

• γ2ptq “ ptz, tz ´ zq is the rightward translation from p0,´zq to pz, 0q.

Thus, along γ1, Yp¨, zq is parallel-transported to Yp¨, eiπzq. Let ϕ0 : W1 b W2 b W1
3 Ñ C

be the conformal block xw1
3,Ypw1, e

iπzqw2y associated to pP1;´1, 0,8; ζ ` 1, ζ, 1{ζq and
W1,W2,W1

3. Parallel-transporting ϕ0 along the γ2 gives ϕ “ ϕtpw1 b w2 b w1
3q : W1 b

W2 b W1
3 Ñ OpCq, considered as an HompW1 b W2 b W1

3,Cq-valued power series of τ .
Then according to the definition of ∇, we have

Btϕtpw1 b w2 b w1
3q “ zϕtpL´1w1 b w2 b w1

3q ` zϕtpw1 b L´1w2 b w1
3q.

Let ψtpw1 b w2 b w3q “ xetzL1w1
3,Ypw1, e

iπzqw2y. Then ψ0 “ ϕ0, and by (17.12),

Btψtpw1 b w2 b w1
3q “ zxL1e

tzL1w1
3,Ypw1, e

iπzqw2y

“zψtpL´1w1 b w2 b w1
3q ` zψtpw1 b L´1w2 b w1

3q.

So by Lemma 3.7, we must have ϕt “ ψt. Since ϕ1 is given by ßYp¨, zq, we obtain

xw1
3, ßYpw2, zqw1y “ xezL1w1

3,Ypw1, e
iπzqw2y (17.28)

when z ą 1, and hence for all z P Cˆ and arg z by the uniqueness of analytic continuation.
We write (17.28) for short as

ßYpw2, zqw1 “ ezL´1Ypw1, e
iπzqw2. (17.29)

Remark 17.11. Consider the vertex operator Y “ YV for V. Using (17.28), one checks
easily that for all v1 P V1, xv1, Y p1, zq1y “ xv1, ßY p1, zq1y. Thus, by Prop. 16.6, we see that
for all u, v P V,

xv1, Y pu, zqvy “ xv1, ezL´1Y pv,´zquy. (17.30)

Namely,

YV “ ßYV. (17.31)

This fact is called skew-symmetry.
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A Appendix: basic sheaf theory

The language of sheaves of modules is inevitable in the theory of conformal blocks
for the following reason. The spaces of conformal blocks are expected to form a vector
bundle (equivalently, locally free sheaves). This result is highly nontrivial. Moreover, we
need to formulate the notion of “forming a vector bundle” in a precise way. To accomplish
this goal, we need to expand the concept of vector bundles to that of sheaves of modules.

The goal of this appendix section is to get familiar with the basic language of sheaves.
The key points are the following: The equivalence of holomorphic vector bundles and
locally free sheaves, the description of dual vector bundles in terms of OX -module mor-
phisms, the fibers of OX -modules and their relationship to the fibers of vector bundles.

A.1 (Pre)sheaves and stalks

By definition, a presheaf of (complex) vector spaces F associated to a topological
space X consists of the following data: for each open U Ă X there is a vector space
F pUq, and for each open V Ă U , there is a linear map F pUq Ñ F pV q, s ÞÑ s|V called the
restriction map such that s|U “ s, and ps|V q|W “ s|W for all s P F pUq if W Ă V is open.
Elements in F pUq are called sections.

A presheaf F is called a sheaf if it satisfies:

• (Locality) If U Ă X is a union U “
Ť

αPA Uα of open subsets, and if s P F pUq

satisfies that s|Uα “ 0 for each α P A, then s “ 0.

• (Gluing) If U Ă X is a union U “
Ť

αPA Uα of open subsets, and if for each α there
is an element sα P F pUαq such that sα|UαXUβ

“ sβ|UαXUβ
for all α, β P A, then there

exists s P F pUq whose restriction to each Uα is sα.

We also write

H0pX,F q “ F pXq, (A.1)

regarding the space of global sections of F as the 0-th cohomology group of F .
If Y is an open subset of X , then the set of all F pUq (where U Ă Y ) form naturally a

presheaf, which we denote by FY or F |Y .
Let F be a presheaf. For each x P X , we let Fx be the set of all sections s P F defined

on a neighborhood of x, mod the equivalence relation that two elements s, t of Fx are
regarded as equal iff s equals t on a possibly smaller neighborhood of x inside the open
sets on which s, t are defined. Fx is called the stalk of F at x, and elements in Fx are
called germs. For each s P F defined near x, the corresponding germ at x is denoted by
sx.

Remark A.1. It is easy to see that the presheaf F satisfies locality iff the following holds:
for every open U Ă X and section s P F pUq, s “ 0 iff sx “ 0 for all x P U .
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A.2 Sheafification

We are not interested in presheaves that are not sheaves. And each presheaf F0 can
be made a sheaf F through the following procedure called sheafification:

For each open U Ă X , let F1pUq be the set of all s :“ psαqαPA where pUαqαPA is an
open cover of U , and sα1,x “ sα2,x for all α1, α2 P A and x P Uα1 X Uα2 . F pUq is F1pUq

mod the following relation: let pVβqβPB be another open cover. Then s :“ psαqαPA and
t :“ ptβqβPB are regarded equal iff sα,x “ tβ,x for all α P A, β P B, and x P Uα X Vβ . The
linear combinations of s and t can be defined easily by replacing pUαqαPA and pVβqβPB by
a common finer open cover, e.g. pUα X VβqαPA,βPB.

Note that the stalk pF0qx can be naturally identified with that of the sheafification Fx.

A.3 (Pre)sheaves of modules and morphisms

We now let X be a complex manifold. Then all OpUq (where U Ă X is open) form the
sheaf OX of holomorphic functions on X , called the structure sheaf of X .

Example A.2. Let U Ă Cm be open. Then the stalk OU,0 “ OCm,0 can be identified with
the C-subalgebra of elements of Crrz1, . . . , zmss converging absolutely on an open ball
centered at 0.

A (pre)sheaf of OX -modules F is a (pre)sheaf such that each F pUq is an OpUq-
module, and that for each open V Ă U , the restriction map s P F pUq ÞÑ s|V P F pV q

intertwines the actions of OpUq, i.e., pfsq|V “ f |V ¨ s|V for all f P OpUq. A sheaf of
OX -modules is simply called an OX -module.

A morphism of (resp. presheaves of) OX -modules φ : E Ñ F gives each open
U Ă X an OpUq-module morphism φU : E pUq Ñ F pUq that is compatible with the
restriction to open subsets: if V Ă U is open and s P E pUq then φU psq|V “ φV ps|V q.

Convention A.3. We abbreviate each φU psq to φpsq. So φps|V q “ φpsq|V .

Remark A.4. Note that the stalk OX,x of OX at x is a C-algebra. A morphism φ : E Ñ F
naturally gives an OX,x-module morphism φx : Ex Ñ Fx.

Also, there is a natural OX -module morphism E s Ñ F s where E s and F s are the
sheafifications of E and F . The corresponding stalk morphism φx : E s

x Ñ F s
x agrees

with φx : Ex Ñ Fx.

Example A.5. Any (holomorphic) vector bundle F 9 over X is an OX -module.

Example A.6. If W is a finite dimensional vector space, let W bC OX be the presheaf
whose space of sections on each open U Ă X is W bC OpUq. Then W bC OX is naturally a
sheaf, and hence an OX -module. It is regarded as the trivial vector bundle with fiber W .
We often suppress the subscript C in W bC OX .

When W is infinite-dimensional, the above defined presheaf is not a sheaf since the
gluing property does not hold when considering an open subset U Ă X that has infinitely
many connected components. We let W bC OX denote the sheafification of this presheaf.

9Unless otherwise stated, all vector bundles are holomorphic with finite ranks.
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Then pWbCOXqpUq equalsWbOpUq ifU is connected, or more generally, iffU has finitely
many connected components. Thus, we have a natural isomorphism of OX,x-modules

pW b OXqx » W b OX,x.

Note that when U is connected, elements of W b OpUq can be viewed as holomorphic
functions from U to a finite-dimensional subspace of W . We shall call such sections W -
valued holomorphic functions.

Convention A.7. The space of OX -module morphisms φ : E Ñ F form a vector space,
which is clearly an OpXq-module such that f P OpXq timesφ is fφ, sending each s P E pUq

(where U Ă X is open) to f |U ¨ φpsq. We denote this OpXq-module by HomOX
pE ,F q.

Example A.8. Let V,W be finite dimensional vector spaces. A morphism

φ : V b OX Ñ W b OX

is equivalently a HompV,W q-valued holomorphic function Φ on X . Indeed, choose basis
teiu of V and tfju of W ˚. Identify each vector of W as a constant section of W b OpXq.
Then φpeiq P W b OpXq, and Φ is a matrix-valued holomorphic function whose pj, iq-
component is the function x ÞÑ xfj , φpeiqpxqy.

To summarize, we have a canonical isomorphism of OpXq-modules

HomOX
pV b OX ,W b OXq » HomCpV,W q b OpXq.

A.4 Injectivity, surjectivity, isomorphisms

An OX -module morphism φ : E Ñ F is called injective resp. surjective if for each
x P X the corresponding stalk morphism φx : Ex Ñ Fx is injective resp. surjective.

Exercise A.9. Show that φ is injective iff φ : E pUq Ñ F pUq is injective for all open U Ă X .
Show that φ is surjective iff for each x P X and each section t P F on a neighborhood U
of X , by shrinking U to a smaller neighborhood V Q x, we can find s P E pV q such that
φpsq “ t when restricted to V .

(Warning: surjectivity does not mean that each x is contained in a neighborhood U
such that φ : E pUq Ñ F pUq is surjective. Thus, surjectivity of sheaves is defined both
locally and sectionwisely!)

Remark A.10. Let E ,F be presheaves of OX -modules. Suppose that each E pUq is an
OpUq-submodule of F pUq, and the inclusion maps E pUq ãÑ F pUq are compatible with
the restriction maps of sheaves. Then there is a natural morphism ι : E Ñ F such that ιU
is the inclusion E pUq ãÑ F pUq. We say that E is a sub-presheaf of OX -modules of F . If
both E ,F are sheaves, we say E is an OX -submodule of F .

Now suppose F is an OX -modules and E is a sub-presheaf of OX -modules of F .
Then the sheafification of E can be viewed as an OX -submodule of F . Its spaces of
sections are all s P F pUq such that sx P Ex for every x P U .
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We say that an OX -module morphism φ : E Ñ F is an isomorphism of OX -modules
if it is bijective (i.e. injective+surjective).

Exercise A.11. Show that φ is an isomorphism if and only if for each open subset U Ă X ,
φU : E pUq Ñ F pUq is an isomorphism of OpUq-modules. (Indeed, the only nontrivial
part is to show that φ being an isomorphism implies the surjectivity of φU . Surprisingly,
to prove this part we need the injectivity!)

A.5 Kernals, cokernels, images

Let φ : E Ñ F be an OX -module morphism. The kernel Kerpφq is the presheaf whose
space of sections on any open subset U is the kernel of φ : E pUq Ñ F . It is clear that
Kerpφq is a sheaf and is an OX -module. Clearly Kerpφqx is the kernel of the stalk map
φ : Ex Ñ Fx.

The image φpE q “ Impφq is the sheafification of the presheaf whose space of sections
on each U is φpE pUqq.

The cokeral Cokerpφq is the sheafification of the presheaf whose space of sections on
each U is F pUq{φpE pUqq. Equivalently, Cokerpφq is the sheafification of the presheaf
whose space of sections on each U is F pUq{φpE qpUq. Thus, we also say that Cokerpφq is
the quotient of the sheaves F and φpE q, and write

F {φpE q “ cokerpφq. (A.2)

Exercise A.12. Show that we have natural equivalences

φpE qx » φpExq, (A.3)
Cokerpφqx » Fx{φpExq. (A.4)

A.6 Locally free sheaves

Let I be an index set. Let CI be the direct sum of |I| copies of C indexed by elements
of I . Then CI has basis teiuiPI where ei is the vector whose only non-zero component is
the i-th one, which is 1.

Let E be an OX -module. A collection of sections psiqiPI Ă E pXq is said to generate
(resp. generate freely) E if the natural OX -module ψ : CI b OX Ñ E sending each ei
(regarded as a constant section ei b 1) to si is surjective (resp. bijective).

Equivalently, psiqiPI generates (resp. generates freely) E iff for each x P X , each t P Ex

can be written as a (resp. unique) OX,x-linear combination of the germs psi,xqiPI .
If U Ă X is open, we say psiqiPI generates (resp. freely) EU if psi|U qiPI does.
We say that E is locally free if each x P X is contained in a neighborhood U such that

the following equivalent conditions hold:

• EU is generated freely by finitely many sections s1, . . . , sn P E pUq. (s‚ play the role
of basis of a vector space.)

• EU is isomorphic to Cn b OU for some n P N.
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Remark A.13. It is an important fact that locally free OX -modules are the same as holo-
morphic vector bundles. Indeed, the sections of vector bundles clearly form a locally
free module. Conversely, suppose E is locally free, then we can get a vector bundle
whose transition functions are ψ ˝ φ´1 : W b OU

»
ÝÑ W b OU (considered as EndW -

valued holomorphic functions) where φ,ψ : E
»
ÝÑ W b OU are trivializations. Equiva-

lently, if s1, . . . , sn and t1, . . . , tn both generate freely EU , then there is a unique invertible
MnˆnpCq-valued holomorphic function A such that tipxq “

ř

j Ai,jpxqsjpxq. Then A gives
a transition function.

A.7 Sheaves of morphisms, dual modules

If E ,F are OX -modules, we have a presheaf G whose space of sections on each open
U Ă X is HomOU

pEU ,FU q. There is an obvious restriction map from HomOU
pEU ,FU q to

HomOV
pEV ,FV q if V Ă U is open. G is clearly a presheaf of OX -modules. It is a routine

check that G is a sheaf. We denote this sheaf of OX -modules by

Hom OX
pE ,F q.

Exercise A.14. Find a natural equivalence F
»
ÝÑ Hom OX

pOX ,F q.

Example A.15. In the setting of Example A.8, we have a natural OX -module isomorphism

Hom OX
pV b OX ,W b OXq » HomCpV,W q b OX . (A.5)

We define

E _ :“ Hom OX
pE ,OXq,

called the dual OX -module of E . Then by (A.5), if E is locally free (i.e., a vector bundle),
then so is E _, and they have the same rank. We regard E as the dual vector bundle of E .

Exercise A.16. Let E be an OX -submodule of F . Show that pF {E q_ is the sheaf whose
sections over any open U Ă X are the OU -module morphisms FU Ñ OU vanishing on
the stalks of EU .

Convention A.17. If U, V Ă X are open, φ P HomOV
pEV ,OV q and s P E pUq, we set

xφ, sy “ φps|UXV q pP OpU X V qq.

Remark A.18. If E is a vector bundle, then the transition functions of E _ are the inverses
of those of E . To see this, choose s1, . . . , sn P E pUq generating freely EU . Then by EU »

Cn b OU , we can easily find qs1, . . . , qsn P E _pUq generating freely E _
U such that xsj , siy is

the constant section δi,j . qs1, . . . , qsn are regarded as the dual basis of s1, . . . , sn.
Now, if t1, . . . , tn P E pUq also generates freely EU , then by Rem. A.13, the matrix

valued holomorphic function A P Mnˆn b OpUq such that ti “
ř

j Ai,jsj is a transition
function of E . Let A´1 P Mnˆn b OpUq be the function sending x P U to Apxq´1. Then
qti “

ř

jpA
´1qi,jqsj .
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A.8 Fibers

One can recover the fibers from a locally free sheaf in the following way. Let us con-
sider a general OX -module E . For each x P X , let mX,x (or simply mx) be the ideal of OX,x

consisting of all s P OX,x whose values at x vanish. Then mxEx is an OX,x-submodule of
Ex, and so is the fiber

E |x ” E |x “
Ex

mxEx
. (A.6)

where the SpanC is suppressed in the notation mxEx. The equivalence class of s P Ex in
E |x is denoted by spxq, called the value of s on the fiber E |x.

If φ : E Ñ F is an OX -module morphism and x P X , then φ : Ex Ñ Fx descends to a
linear map

φ : E |x Ñ F |x (A.7)

since φpmxExq “ mxφpExq Ă mxFx.

Example A.19. Let U Q 0 be an open subset of Cm. Then mU,0 is the set of all series
ř

n1,...,nmPN an1,...,nmz
n1
1 ¨ ¨ ¨ znm

m converging absolutely near 0 such that a0,...,0 “ 0. Equiva-
lently,

mCm,0 “ z1OCm,0 ` ¨ ¨ ¨ ` zmOCm,0.

Exercise A.20. Let W be a vector space, and let E “ W b OU where U Ă Cm. Let x P U .
Show that the evaluation map

pW b OU qx Ñ W, w b f ÞÑ fpxqw. (A.8)

descends to an isomorphism of vector spaces pW b OXq
ˇ

ˇx » W .

A.9 A criterion on local freeness

This subsection is needed only in the Sec. 15.
Let X be a complex manifold and E an OX -module. We say that E is of finite type

(also called finitely generated) if each x P X is contained in a neighborhood U Ă X such
that there exist finitely many sections s1, . . . , sn P E pUq generating EU . Equivalently, each
x is contained in a neighborhood U such that there is a surjective OU -module morphism
Cn b OU Ñ EU .

Warning: knowing that E pUq is a finitely generated OpUq-module is not enough to
show that EU is generated by finitely many elements of E pUq.

If x P U and s1, . . . , sn P E pUq generate EU , then they clearly generate Ex, and hence
s1pxq, . . . , snpxq span the fiber E |x. In particular, E |x is finite-dimensional. Conversely,
we have:

Proposition A.21 (Nakayama’s lemma). Suppose E is of finite type. Choose x P X and a
neighborhood U Q x. Let s1, . . . , sn P E pUq such that s1pxq, . . . , sN pxq span the fiber E |x. Then
there exists a neighborhood V Ă U of x such that s1|V , . . . , sn|V generate E |V .
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Proof. By shrinking U , we may extend the list s1, . . . , sn to s1, . . . , sN P E pUq (where N ě

n) such that they generate EU . If N “ n then there is nothing to prove.
Suppose N ą n. Since s1pxq, . . . , snpxq span E |x “ Ex{mxEx, every element of Ex, and

in particular sN , can be written as

sN “ a1s1 ` ¨ ¨ ¨ ` ansn ` σ P Ex

where a1, . . . , an P C and σ P mxEx. Since s1, . . . , sN generate the OX,x-module Ex, we
have σ “ f1s1 ` ¨ ¨ ¨ ` fNsN in Ex where f1, . . . , fN P mx. So

sN “ g1s1 ` ¨ ¨ ¨ ` gNsN

in Ex where g1, . . . , gN P OX,x and gn`1pxq “ ¨ ¨ ¨ “ gN pxq “ 0. Since gN pxq “ 0, 1 ´ gN is
invertible in OX,x. So

sN “ p1 ´ gN q´1
N´1
ÿ

i“1

gisi

in Ex. So, after shrinking U to a smaller neighborhood of x on which g1, . . . , gN , p1´gN q´1

are holomorphic, the above equation holds in E pUq. This shows that sN is an OpUq-linear
combination of s1, . . . , sN´1. So s1, . . . , sN´1 generate EU . By repeating this argument, we
see that s1, . . . , sn generated EU for a smaller U .

Theorem A.22. Assume that E is of finite type. Then the rank function

r : X Ñ N, x ÞÑ rpxq “ dimE |x (A.9)

is upper semicontinuous. (So rpxq ě rpyq for all y in a neighborhood of x.) Moreover, if the rank
function is locally constant, then E is locally free.

Proof. Let n “ rpxq. Choose s1, . . . , sn P E pUq (where U Q x) such that s1pxq, . . . , snpxq

form a basis of E |x. Then by Nakayama’s Lemma, after shrinking U , s1, . . . , sn generate
E |U , and hence span E |y for all y P U . This proves the upper semicontinuity.

Now suppose r is constantly n on U . Then, as s1pyq, . . . , snpyq span E |y, and since
dimE |y “ n, s1pyq, . . . , snpyq are linearly independent. Let us show that s1, . . . , sn gener-
ate freely EU by showing that they are OU -linearly independent. Choose any open V Ă U
and f1, . . . , fn P OpV q such that f1s1 ` ¨ ¨ ¨ `fnsn “ 0. Then for each y P V ,

řn
i“1 fpyqsnpyq

equals 0 in E |y. So f1pyq “ ¨ ¨ ¨ “ fnpyq “ 0 by the linear independence of s1pyq, . . . , snpyq.
So f1 “ ¨ ¨ ¨ “ fn “ 0.
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C2-cofinite VOAs, 146
N -pointed compact Riemann surfaces, 107
W -valued holomorphic functions, 172
A lift x of y P H0pB,ΘBq, 130
Absolute and locally uniform (a.l.u.) con-

vergence, 69
Dong’s Lemma, 86
Families of N -pointed compact Riemann

surfaces, 124
Finitely generated weak V-modules, 146
Formal convergence, 71
Generatig subsets of the VOA V, 50
Generating sets of homogeneous fields, 56
Generating subsets of W, 146
Goddard uniqueness, 87
Holomorphic families of transformations,

100
Irreducible VOA modules, 89
Jacobi identity, algebraic version, 47, 88
Jacobi identity, complex-analytic version,

79
Mutually local fields, 80
Projective charts/structures, 144
Rational VOAs, 90
Self local fields, 80
Self-dual VOAs, 98
Semisimple VOA modules, 153
Stein manifolds , 131
The action of H0

`

C,VC b ωCp‹x‚q
˘

on W‚,
116

Univalent functions, 108
Weak V-modules and (finitely) admissible

V-modules, 88
1, the vacuum section, 110
1, the vacuum vector, 10

Ar,R and the standard thin annulus A1,1, 9
pAkBqpzq, 77

Cb “ π´1pbq, the fiber of C at b, 124
C,Σ, the complex conjugate of C and Σ, 10
CV “ π´1pV q, 136

Diff`pS1q, 16

E p‹x‚q, 114
E pkSXq,E p‹SXq, 130
E |x “ E |x, spxq, 175

Fx, sx, stalks and germs., 170
f˚, η˚, . . . and f, η, . . . , where f˚pxq “ fpxq

and fpxq “ fpxq., 10

G,G`, 99
G ,G`, 98

H0pX,F q “ F pXq, 170
HomOX

pE ,F q, 172

JXpW‚q,JXb
pW‚q, 137, 138, 140

Lx, the Lie derivative, 122, 143
rL0, 88

mX,x ” mx, 175

Pn, 31, 92

Sϕ, the standard sewing, 152
rSϕ, the normalized sewing, 152
SX “

ŤN
j“1 ςjpBq, 124

SXb
“ tς1pbq, . . . , ςN pbqu, 135

TΣ, TX: The interaction map/correlation
function, 8, 26

TXpW‚q,T ˚
X pW‚q, 116, 119, 137, 140

Upαq,Upηq,Upη‚q, 100, 117, 118, 140
Uϱpηq, 110, 135
Ub “ Cb X U , 130

Vϱpηiq,Vϱpφq, 117, 119, 136, 143
V ďn
C ,VC , 110, 111

V1,W1, the graded dual spaces, 31, 92
Vcl,Wcl, the algebraic completions, 31, 92
wtv,Ăwtw, 28, 88
V ďn
X ,VX, 135

W1, the contragredient V-module of W, 94
Wďn, 100
Wďk

‚ , 147
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W pWiq, WXpW‚q, 117, 118, 137, 140
w‚ “ w1 b ¨ ¨ ¨ b wN as an element W‚ bC

OpV q, 137
W tzu, 153

Xb, 124
XV , 140

Y puqn, 28

Θ, the CPT operator, 11
ΘC , 120
ΘC{B, 135
x¨, ¨y : Hb2 Ñ C, the correlation function

TA1,1 for A1,1, 16
’, 152
ωC , 114
ωC{B, 135
ϱpα|1q, ϱpη|µq, 103, 109, 134
ϑz , 93
≀ϕ, propagation of conformal blocs, 154
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