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Preface

1

This monograph is the lecture notes of a course I gave in 2022 spring at Tsinghua
University, Yau Mathematical Sciences Center. It is an introduction to the basic theory
of vertex operator algebras (VOAs) and conformal blocks. The audience of that course is
assumed to be familiar with complex analysis, differential manifolds, and the relationship
between (the representations of) Lie groups and Lie algebras.

A key feature of this monograph is the emphasis on the complex analytic aspects of
VOAs and conformal blocks: We prove many well-known results by first proving the
convergence (more precisely: absolute and locally uniform (a.l.u.) convergence) of cor-
relation functions which are defined a priori as formal power/Laurent series of some
formal variables. These results include Dong’s Lemma and Goddard uniqueness (and
hence the reconstruction theorem), construction of contragredient modules, local freeness
of sheaves of conformal blocks for Cs-cofinite VOAs (and families of compact Riemann
surfaces).

The algebraic construction of these correlation functions as formal series corresponds
geometrically to deformations of pointed compact Riemann surfaces or pointed nodal
curves. The usual algebraic approaches to VOAs (e.g. [Kac, LL]) avoid showing the con-
vergence of such series. In geometry, this means not considering analytic sewing, but only
formal and infinitesimal sewing. As a compensation, formal calculus and delta functions
are heavily used in these approaches. An advantage of our complex analytic approach
is that by showing that these formal series are convergent, one can view the correlation
functions as genuine functions but not just formal series, so one can understand the na-
ture of VOAs and conformal blocks in a similar way as physicists do.

2

Another feature of this monograph is that we give motivations for many definitions
and results from the perspective of Segal’s picture of conformal field theory. These in-
clude: the definitions of VOA and in particular Jacobi identity; the definitions of con-
formal blocks and sheaves of VOAs; translation covariance, scale covariance, and more
generally Huang’s change of coordinate theorem for vertex operators; the formula for
the vertex operators of contragredient modules; the definition of connections for sheaves
of conformal blocks. These motivational explanations are known to experts, but are not
easily accessible in existing textbooks and articles. We hope that by incorporating these
motivations into a monograph, we can make it easier for beginners to get started on these
topics.

3

The theory of conformal blocks is not only very beautiful, but also crucial to a geo-
metric understanding of the representation theory of VOAs and conformal field theory.
In recent years, there has been an increasing interplay between different approaches to



conformal field theory. These approaches include VOAs, conformal nets and operator
algebras, tensor categories, low-dimensional topology, probability, etc. We believe that
conformal blocks are a key to understanding the relationships between these approaches.
Unfortunately, most of the literature on conformal blocks is written in the language of
algebraic geometry, which makes it more difficult for people from different fields to un-
derstand this subject. In our monograph, many central ideas about conformal blocks are
explained in the language of (complex) differential manifolds and basic sheaf theory, so
that they can (hopefully) be understood by a much wider audience. Of course, such ele-
mentary language is not sufficient for proving profound results. So we leave the technical
proofs to my monograph [Gui]. Indeed, the present monograph can also be viewed as an
introduction to [Gui].

4

There is some confusion in the proof of local freeness of sheaves of coinvariants and
conformal blocks. This result has two versions: the algebraic one for algebraic families of
smooth curves, and the analytic one for complex analytic families of compact Riemann
surfaces. However, we believe that the following point is not sufficiently recognized in
the literature: the proof for the algebraic version is not directly applicable to the analytic
version.

The algebraic local freeness is proved in the following steps: 1. Prove that the sheaf
of coinvariants over a base scheme B is a coherent &z-module. 2. Prove that the sheaf
of coinvariants admits a connection. 3. By a standard result, coherence and connections
imply local freeness. When adapting this proof to the analytic setting, the difficulties arise
in step 1: one can only show that the sheaf of coinvariants for a complex analytic family
(over base manifold B) is a finite-type &z-module, but not that it is coherent (i.e., that
moreover the sheaves of relations are of finite-type). The proof of algebraic coherence
relies essentially on the Noetherian property of the structure sheaf 0 (as well as the quasi-
coherence of the sheaves of coinvariants), which does not hold in the complex-analytic
setting.

In [Gui], we have given an analytic proof, first proving a finiteness result slightly
stronger than the finite-type condition, and then using some sheaf-theoretic arguments.
In this monograph, a different proof was given (cf. Sec. 15). Though this proof relies
on the same finiteness result, the subsequent argument is more analytic and has a clearer
physical meaning: the crucial step is to prove the convergence of a formal series ¢, of
7 using differential equations, where ¢ is constructed from a given conformal block ¢
of a fixed fiber X of the analytic family X; ¢, is expected to be a conformal block for
the nearby fiber X; if the convergence were proved. Therefore, this proof is very similar
to that of convergence of sewing conformal blocks in [Gui] or [Gui20]. Note that X; is
the deformation of a compact Riemann surface Xy (with marked points), while sewing is
the deformation of a nodal curve. Thus, by presenting such a proof, we want to convey
the idea that both types of deformations can be treated in the same way in the (complex
analytic) theory of conformal blocks.
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Subsections marked with x can be skipped on first reading.

Notations

N=1{0,1,2,...},Z, ={1,2,...}.

i = +/—1,S! =unit circle, C* = C\{0}.
D,={2eC:|z|<r},DX={2zeC:0<|z| <7},DId ={zeC:|z| <7}

O(X) (resp. Ox) is the space (resp. sheaf) of holomorphic functions on a complex
manifold X. Ox , is the stalk of Oy at x.

Configuration space Conf"(X) = {(x1,...,2,) € X" 1 ; # xjif i # j}.

z and (¢ could mean either points, or the standard coordinate of C, or formal vari-
ables. We will give their meanings when the context is unclear.

All vector spaces are over C, unless otherwise stated. If W is a vector space
equipped with a Hermitian form {:|-), we let |-) be the linear variable and (:| be
the antilinear (i.e. conjugate linear) one, following physicists” convention.

If W, W’ are vector spaces, then Hom (W, W'’) denote the space of linear operators
from W to W’. We let End(W) = Hom(W, W).

We use symbols (-, -) or (-, -) to denote bilinear forms (i.e., linear on both variables).

Given a vector space W and a formal variable z,

W z] = {polynomials of = whose coefficients are elements of W}
W([z]] = { Z wpz" wy € W}
neN

W((z)) = { Z wp 2" 1wy € W, and w,, = 0 when n is sufficiently negative}
W([z*]] = { Z wp 2" wy, € W}
neEL

Each line is a subspace of the subsequent line. In case there are several formal vari-
ables, the spaces are defined in a similar way, expect W((- - - )). For instance,

WLz, ¢ == WD = WIS =]

consists of >, ez Wmnz"(" where each wy,, € W. However, note that
W((2))((¢)) and W((¢))((2)) are not equal. (For instance, >, - _, >, - _;2™"(" be-
longs to C((2))((¢)) but not C((¢))((2)).)

Elements in W[[z%!]] are called formal Laurent series of z.



We let

W((z1,-.-,2n)) = { Z Wny,..;an 21" - 25" for some L € Z}.

ni,...,nNy=L

Then W ((z1, 22)) is a proper subspace of both W ((21))((22)) and W ((22))((z1)).

We set

Res,—g Z wp2dz = w_1. (0.2)

neZ

This is in line with the complex analytic residue.

A vector of W ®- - -@Wy writen as w, means that it is of the form w1 ®- - -@wy where
each w; € W;. Depending on the context, w, will also mean a tuple (wy,...,wn).
Similarly, W, may mean W1 ® - -- ® Wy or (W1, ..., Wy) depending on the context.

Unless otherwise stated, by a manifold, we mean one without boundaries. Also,
"with boundaries” means ”possibly with boundaries”.



1 Segal’s picture of 2d CFT; motivations of VOAs and conformal
blocks

1.1

Vertex operator algebras (VOAs) are mathematical objects defined to understand and
construct 2-dimensional conformal field theory (CFT for short). A CFT describes propa-
gations and interactions of strings. The are two types of strings: closed strings ~ S! and
open strings ~ [0, 1]. In this course, we will mainly focus on closed strings.

Let me explain how mathematicians understand CFT. Just like any quantum field the-
ory (QFT), in CFT we must have a Hilbert space /. The vectors in # are called “states”,
but unlike ordinary QFT, a vector { € H is not a state of a particle, but a state of a closed
string S'.

The most important and non-trivial part in CFT is to define/understand string inter-
actions. According to Segal’s picture [Seg88], an interaction is uniquely determined by
a compact Riemann surface ¥ with boundaries 03, where 0¥ is a disjoint union of some
circles (strings). Each string is called either an incoming string or an outcomming one.
Suppose 0% has N incoming strings and M outgoing ones, then this picture describes an
interaction where N strings are going inside, and M strings are going outside.

Moreover, the boundary 0% must be parametrized. This means that to each connected
component 0%; a diffeomorphism n; : 0%; => S! is associated. The orientation on 0%;
defined by pulling back the one of S! along 7; is assumed to be the opposite of the one
defined in Stokes’ theorem, shown as follows

D
o (1.1)

1.2

Unless otherwise stated, we assume that the boundary parametrization is also ana-
lytic. Roughly speaking, this means that > can be obtained by removing some open disks
from a compact Riemann surface C' (without boundary) such that the parametrizations of
0¥ are given by local holomorphic functions of C.

Here is a more rigorous explanation. By a local coordinate n of C' at x € C, we mean 7
is a holomorphic injective function on a neighborhood U of = such that n(xz) = 0. Sonis a
biholomorphism between U and a neighborhood 7(U) of 0. Now, suppose we have local
coordinates 7, ..., 7y at distinct points 1, ...,xy € C. The data

X :=(Cizeine) = (Cix1,. .., TN ML, -2, IN) (1.2)

is called an N-pointed compact Riemann surface with local coordinates.
Let each 7; be defined on a neighborhood U; 5 z;. We assume moreover the following



Assumption 1.1. U; nU; = & if i # j (indeed, n; ' (DS!) n 7];1(]1)‘131) = () is sufficient), and
n:(U;) > DY for each i. Here DY is the closed unit disk.

By removing all ; (1), we get & with boundary strings 7; *(dD{') = n; *(S') whose
parametrizations are 7);.

1.3

Any ¥ as above determines uniquely an interaction of strings. Suppose it has N in-
coming strings and M outgoing ones. Then mathematically, such an interaction is de-
scribed by a bounded linear map 7 = T%; : H®Y — H®M_ (The boundedness is automatic
thanks to the uniform boundedness principle. But this is not an important point in this
course.) Given &, =6, ® - @&v e HON and e = 171 @ - - @ iy € HOM, the value

(ne|T&) (1.3)

describes the probability amplitude that the N incoming closed strings with states
&1,...,&ENn become 11, . .., mas after interaction.

The word “conformal” in conformal field theory reflects the fact that 7' depends only
on the complex structure of ¥ and its parametrization, but not on the metric for instance.
Thus, a CFT is more rigid than a topological quantum field theory (TQFT): in the latter
case, T' depends only on the topological structures of the manifolds.

1.4

Suppose we have another interaction S : H®M — HOL corresponding to the
parametrized surface Y, then the composition of them S o T : H® — H®L corresponds
to the sewing X#X' of ¥ and ¥/, where the j-th outgoing string 0, %; of ¥ is sewn with
the j-th incoming one 0_%’ of ¥'.

It is important to specify how 0, 3; (with parametrization 7)) is identified with 0_ E;
(with parametrization 7). Pick = € 0;%; and y € 0_¥%. Then

=y <= o)y =1 (1.4)



It is clear from the picture that the orientations of 0,3 ; and 0_3; are opposite to each
other. This is related to the fact that our rule for sewing is n;(z) = 1/7}(y) but not (say)
ni(x) = n;(y).

Recall we assume that the parametrizations are analytic. We leave it to the readers
to check that the sewing of ¥ and ¥, a priori only a topological surface, has a natural
complex analytic structure.

1.5

Suppose T : HON1 — HOM1 corresponds to ¥1 and Ty : HON2 — HOM2 to ¥y, then
Ty @ Ty : HOW1HN2) _, 4@(Mi+M2) corresponds to the disjoint union ¥ 1 Xo.

D=8

1.6

Consider an annulus A, p = {z € C : r < |2| < R} obtained by removing two open
disks from the compact Riemann sphere P! via the local coordinate 7;(2) = z/r at 0 and
n2(z) = R/z at co. We call such A, r (with the given boundary parametrization) a stan-
dard annlus. Let » 1, R \, 1. The limit of this annulus is a “degenerate” Riemann
surface with 1 incoming boundary circle and 1 outing one. Both circles are S!. The in-
coming one has parametrization z — z and the outgoing one z — z~!. We call this
annulus the standard thin annulus and denote it by A; ;. The map T : H — H associated
to Ay is the identity map. This reflects the fact that sewing any > with a disjoint union of
A1,1 gives 3.

Aul

()

We give a fancy way to summarize what we have so far: Let ¢ be the monoidal cat-
egory of compact 1-dimensional smooth manifolds such that a morphism from an object
S1 to another Sy is a compact Riemann surface with incomming parametrized boundary
~ S and outgoing one ~ Sy, that the identity morphism for a union of N circles is a
disjoint union of N pieces of A; 1, that the unit object is the empty set, and that the ten-
sor product of objects and morphisms are respectively the disjoint unions of strings and
Riemann surfaces. Then a CFT is a monoidal functor from % to the monoidal category of
Hilbert spaces. So, roughly speaking, a CFT is a representation of €.

Since we choose Hilbert spaces as our underlying spaces, we should expect that the
representation of ¢ is unitary. Technically, the functor mentioned above should be a *-
functor: this means that for each morphism X from N strings to M strings, we should

1.7

9



define its adjoint morphism ¥* from M strings to N ones whose corresponding map is
the adjoint 7% : HOM — HON of T. ©3* is defined simply to be the complex conjugate >
of X:

Definition 1.2. ¥ consists of points z where z € 3; the local holomorphic functions on b))
are n* where 7 is a locally defined holomorphic function on ¥ and

n*(z) = n(x) (L5)

whenever 7 is defined on x € ¥; similarly, boundary parametrizations are given by 7.
Note ihat if ¥ is obtained by removing open disks from an N pointed X = (C;z4;7.),
then ¥ is obtained by removing disks from

n* should not be confused with 77 defined on ¥ by

(@) = n(x).

In the present context, we should assume that an incoming (resp. outgoing) string of >
becomes an outgoing (resp. incoming) one of 3 via the conjugate mapC: z € X +— T € X.
In the future, we will often consider all strings as incoming ones if necessary (cf. 1.9). In
that case, we shall also assume all the boundary strings of ¥ as incoming.

We should point out that although unitarity is a very important condition, there are
important non-unitary CFTs, for instance, the logarithmic CFTs. (In such cases, H is a vec-
tor space without inner products.) Also, many VOA results and techniques do not rely on
the unitarity. Nevertheless, assuming unitarity will often reasonably simply discussions
or give motivations.

Example 1.3. Let X = (P!;0; \() where ( is the standard coordinate of C and A € C*. We
can identify the conjugate of P! with P! by letting x € P! > 7 be the standard conjugate
of C: 2z — z. Then (\()*(2) = M\((2) = A-Z = A((Z). So the conjugate of X is isomorphic
to X = (P';0; X0).

1.8

An interaction process could have no incoming or outgoing strings. The Hilbert space
for the empty string & is C. The most elementary and important example with no incoming
boundary is the closed unit disk D! with 1 outgoing boundary parametrized by z — 2.
The corresponding map C — H can be identified with its value at 1. This element in # is

denoted by 1 and called the vacuum vector.

Val kum
1 (D (1.7)

Assume as before that out theory is unitary. Then conjugate of the above disk is the same
disk and boundary parametrization, but the original outgoing string is now the incoming
one. The corresponding map H — C is, according to 1.7, the linear functional (1|-).

10



1.9

In general, one may wonder what the interaction 7' : H®Y — C means physically for
a surface ¥ with N incoming strings but no outgoing ones. Choose 0 < M < N, and
make M of the NV strings of 0% be outgoing strings. Then the corresponding interaction
isamap T : HOW-M) _, 4®M n unitary CFT, T can be related to T’ by a anti-unitary
(i.e. conjugate-unitary) map © on H, called the CPT operator, such that for £;,...,{nv € H
(where the last M vectors are associated to the outgoing strings), we have

TE® - ®EN) = (ON_141® - @ONT(EL @ - R En_n)), (1.8)

interpreted pictorially as

The operator © is an involution, i.e., 02 = 14.

Such a linear functional 7" corresponding to an interaction with no outgoing strings
is called a correlation function (or an N-point function). These functions are the central
objects in CFT (and indeed, in any quantum field theory). Relation (1.8) teaches us that:
(1) correlation functions can be interpreted as probability amplitudes in string interactions
with the help of O, and (2) to study arbitrary interactions, it suffices to study those with
no outgoing strings.

Let me close this subsection by mentioning an important fact: suppose the complex
structure of ¥ and the (assumed analtytic) boundary parametrizations are parametrized
holomorphically by some complex variables 7, = (71,...,7), then the value of T'(&,) is
now a real analytic function of 7., i.e., it is locally a power series of 7,...,7; and their
conjugates. Actually, the word “function” in “correlation function” means a function of
Te, but not of &,.

1.10

You must be curious what CPT means. Indeed, © is responsible for the simultaneous
symmetry of charge conjugation (C), parity transformation (P), and time reversal (T). P+T
together means an anti-biholomorphism ¥ — %’. Now we have arrived at a point that
we missed previously: since anti-holomorphic maps are also conformal maps, should
we expect that the interaction maps (or the correlation functions) for anti-biholomorphic
surfaces are equal? The answer is no. (Namely, P+T are not preserved.) Indeed, if we let
¥ have N incomes and no outcomes, let ¥ be its complex conjugate (cf. 1.7) but still with
N incomes, and let T¥;, T; be the correlation functions associated to them. Then from 1.7
and relation (1.8), we have

T5(6 @ ®&N) =T5(061 @+ - ®OEN). (1.9)

11



Proof. By the description in Subsec. 1.7, the interaction map fi associated ¥ with no input
and N outputsis 73 : C — HON  the adjoint of .. By 0?2 = 1, we have

Ts(E® - -én) =ATs(61Q - ®EN)) = (TH16 ® - @ En)

—(61® - ®EN|TED) 08 Ts(06H ® - ® O&nN).

Note that mathematically, the point of formula (1.9) is to translate (using (1.8)) the relation
T = T (regarding all the strings of X as outgoing) to the case that all the strings of ¥ are
incoming. O

Formula (1.9) explains CPT symmetry: the symmetries of charge (taking complex
conjugate of the values of correlation functions) and parity+time (the conjugate biholo-
mophism C : ¥ — ¥) are preserved, and the operator realizing this simultaneous symme-
try is ©.

Note that mathematically, charge conjugation C'is related to taking complex conjugate
of numbers (but not of ). Physically, it means making a string into its “antistring”, or (in
general QFT) making a particle (e.g. an election with negative charge) to its anti-particle
(e.g. an antielectron with positive charge).

1.11

The CFT we have described so far is actually very special: it has no conformal
anomaly. There are indeed no nontrivial CFTs which are both unitary and without
anomaly. In this course, we will be mainly interested in CFTs with conformal anomaly.
Technically, the conformal anomaly is determined by a complex number ¢ (positive for
unitary CFT), called central charge. To describe such CFT, we modify the previous de-
scriptions as follows: The map (or the correlation function) 7% for X is only up to a pos-
itive scalar multiplication depending on . T%, o Ts, = Ay, 4y, where A > 0. (The
constants are not necessarily positive in non-unitary CFT.) If ¥ is parametrized holomor-
phically by some complex variables 7,, then by shrinking the domain of 7,, we can choose
Ty, depending real analytically on 7,.

There are many important cases where a real analytic (or even a holomorphic) 7% can
be chosen globally for 7,. This will be studied later in details.

Unless otherwise stated, a CFT always means one with (possible) conformal anomaly.
Using the fancy language of 1.7, one can say that a unitary CFT is a projective monoidal
#-functor from the category ¢ in 1.7 to the category of Hilbert spaces. Namely, it is a
projective unitary representation of &.

1.12

To study the representations of a topological group G, one must first understand very
well the topological and the algebraic structures of G. Similarly, the study of CFTs relies
heavily on the geometric and analytic structures of compact Riemann surfaces. However,
from what we have discussed, there is a huge obstacle for studying CFTs: the correlation
functions are real analytic, but not complex analytic (i.e. holomorphic) functions of the

12



parameters 7,. Thus, in order to study CFTs using the powerful tools of complex analysis
(residue theorem, for instance), we make the following Ansatz: A correlation function 7’
isasum: Tx = >, j @JE . \I/%, where each ®/ and U/ relies holomorphically on ¥ and b))

respectively (so \I/Ji relies anti-holomorphically on ¥).

This Ansatz is very vague. Let me explain it in more details. Consider the annulus
A, g with boundary parametrization as in 1.6. We move the inside circle to another one
centered at z (Where z € A, R is reasonably small), still with radius r. The new eccentric
annulus A, ,  has larger outgoing string parametrized by R/¢ and the smaller incoming
one parametrized by (( — z)/r, where ( is the standard coordinate of P!. Namely, it is
determined by the data

(P 2,003 (C — 2)/r, R/C). (1.10)
Let T, : H — H be the corresponding map. As we have said, for general vectors {,n € H,
the expression (n|1.¢) = (On, T,£) can be chosen to be real analytic with respect to z. We
now let
V = {¢ € H : Forall r, R, the map T can be chosen such that

z — (v|T,¢) is holomorphic for all v € H, and (1.11)

¢ has “finite energy”}
“Finite energy” is a minor condition to be explained later. (See 2.8.)

We can sew A, r with any ¥, and the motion of the smaller string inside the annulus
becomes, after sewing, the motion of a boundary string of :

Y, €N

(1.12)

Therefore, if a vector £ € V is assigned to an incoming string of ¥ with (analytic) boundary
parametrization 7;, then, when translating this parametrized string with respect to 7;,
the correlation function 7% (£ ® - - - ) should be holomorphic with respect to the motion,
whatever states we assign to the other strings. We can therefore study V with the help of
complex analysis. V is called a vertex operator algebra (VOA).

We have only described V as a vector space. But in which sense is V an algebra? An
obvious candidate is as follows: consider P! with three marked points 0, z, 00 and usual
coordinates, e.g. no = (/r1,1m, = (( — 2)/r2, e = R/ at 0, z, 0 where 1,72 > 0 are small
and R > 0 is large, and ( is again the standard coordinate of C. We assume the strings
around 0 and z are ingoing and that around o outgoing. If we assign &;,&2 € V to the
incoming strings, then the outcome can be viewed as a product of £; and &.

e

Q
O‘;\%\ ¢

13



Although this product does not have finite energy, it does satisfy the statement before the
last line in (1.11). Thus, this product is almost a vector in V. By modifying this product
suitably, we can ensure that the products of vectors in V are always in V. Details will be
give in later sections.

Similarly to (1.11), we define V < H to be the set of finite energy vectors { such that
(v|T,§) is anti-holomorphic over z. The vacuum vector 1 belongs to V n V: The result of
gluing the unit disk into the inside of A, , r is just the disk with radius R and parametriza-
tion R/(, which is independent of z. So 7,1 and hence (v|T,1) are constant over z, and
hence both holomorphic and anti-holomorphic over z.

1.13

Now we can give a more detailed presentation of our Ansatz. We let Hi" be the
(indeed dense) subspace of vectors in H with “finite energy”, which is acted on by V® V.
Ansatz:

1. A" as a V® V-module has decomposition

H" - PW, W, o>VeV (1.13)

i€J
where each W;, W; are respectively irreducible V-modules and V-modules. V and
V are (according to their definition cf. (1.11)) subspaces of " by identifying them

with V@1 and 1@V respectively. The vacuum vector 1 of # is identified with 1®1
(which belongs to V® V).

2. For some X without outgoing boundaries, let T+ : HON — C be the corresponding
map. Then, corresponding to the above direct sum decomposition, we have

TE (Hﬁn)@N = ) Z (bzvi' ® \Iliﬂ'. (114)
21, NET

where

Py W, @ @W;,, — C,

Vs, W, @ @W;, —C
are linear. Moreover, when the complex structure and boundary parametrization
are parametrized analytically by complex variables 7,, then locally (with respect to

the domain of 7,), Tt:, ¥y ;,, 55 ;, can be chosen such that Uy, ;, is holomorphic over
7o (for all input vectors), and Vs, holomorphic over 7.. @5 ;, and U5 ; are called

conformal blocks associated to X (resp. ¥) and V (resp. XA’).

In part one, P could be finite (our main focus in this course), infinite but discrete, or
continuous.

14



The second part can be summarized by saying that the CFT is separated into the
chiral halves (those ® or W;) and the anti-chiral halves (those ¥ or Wi). Here, “chi-
ral”="holomorphic”.

When physicists say a CFT is rational, they usually mean that the above direct sum is
finite, and each W;, , Wzk are semi-simple (hence, by further decomposition, can be irre-
ducible). So far, the mathematical theory of conformal blocks is complete almost only for
rational CFTs. These will be the main examples of this course. For non-rational logarith-
mic CFTs, even the above Ansatz needs to be modified. (So far, it is not even clear how to
doit.)

Physicists more or less consider the above description as the definition of conformal
blocks. We mathematicians should do the opposite: define conformal blocks in a different
way, and use them to construct CFTs following the above Ansatz.

1.14

You may notice that to make this Ansatz compatible with 1.4 and 1.5, it is necessarily
to assume that

1. The tensor product of conformal blocks ®y;,, @5, associated to £, Xy respectively
should be a conformal block associated to Y1 L1 Y.

2. The composition of @y, , @y, (or more precisely, their contractions) should be con-
formal blocks associated to the sewings of ¥; and X9, where the pair of V-modules
to be contracted must be dual to each other.

{, 8. N
@21(@@@@&3): \*@ @f (V.8V.8)) = %2”
f—i‘ﬁ 2)7:?\_0/-
— G

(A side note on linear algebra: If V'V is the dual space (or a suitable dense subspace
of the dual space) of a vetor space V, we choose a basis {v, }aeco labeled by elements of
2(, and choose a dual basis {v) }aeq of V'V (i.e. the one determined by (v,,v3) = 04.8),
then taking contraction means substituting >, .o va ® v inside the linear functional on a
tensor product of vector spaces such that V, V'V are tensor components.)

After we define conformal blocks rigorously, we will see that the first point is obvious,
while the second one is a non-trivial theorem.

We briefly explain the meaning of “dual”, and why the dual modules appear in H.
For instance, in the above picture, the unitary V-module containing &, is dual to the one
containing 7;. As vector spaces, they are “graded” dual spaces of each other. (It is a dense
subspace of the full dual space, the subspace of “finite energy” linear functionals. We will
talk about this in future sections.) In unitary CFTs, all V and ¥ modules are unitary, and
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O(W; ® W,) is equivalent to W, ® @\\V; where W/ is a V-module dual to W;, and Wg aV-
module dual to W;. The formal name for dual module is contragredient module, to be
defined rigorously in Sec. 9.

1.15

Let us describe the equivalence ©(W; ® W;) ~ W/ ® W/ in more details.

For each w; ® w; € W; ®Wi, the vector ©(w; ® ;) is regarded as a linear functional on
W; @ W, in the following way. Let the (clearly symmetric) bilinear form (-, : H®? — C
be the correlation function T4, , for the standard thin annulus A; ; (with two inputs and
no outputs). Note that by (1.8), for each &, v € H, we have

(O, v) = ). (1.15)
Then ©(w; ® w;) is equivalent to the linear functional
O(w; ® W;), ) = (w; @ Wy (1.16)

restricted onto W; ® W,

A conformal block with M + N inputs &y : W; @ - - QW; , @W;, ®---Q@W,,, — Ccan
be regarded as one with N inputs and M outputs &y : Wy, ®--- QW — H] ®---QH;
where ] _is the Hilbert space completion of Wi and W is the contragredient V-module
of W;, . Using (1.15), it is not hard to show that taking compositions of conformal blocks
with outputs is equivalent to taking contractions for conformal blocks without outputs.

2 Virasoro relations; change of boundary parametrizations;
strings vs. punctures

21

The goal of this section is to understand conformal blocks associated to 2-pointed
Riemann spheres, equivalently, genus-0 surfaces with two boundary strings. We simply
call them annuli, although their complex structures and boundary parametrizations are
not necessarily the standard ones as in 1.6.

Let us first consider some degenerate examples whose boundary parametrizations are
not necessarily analyic. Let Diff " (S!) be the topological group of orientation preserving
diffeomorphisms of S'. For each g € Diff " (S'), we let A{, be the thin annulus whose
incoming and outgoing strings are both S' with parametrizations

Incoming : z — z, Outgoing : z — 1/g(2).

Lemma 2.1. If h € Diff " (St), then Aihl is obtained by gluing the incoming circle of A{ | with
the outgoing one of A’il.
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Proof. By (1.4), a point z € A’f’l is glued with ¢ € A{ | iff (- 1/h(2) = 1,ie., ( = h(2). Now,
a point z of A’il becomes the point h(z) of A , after gluing, which is sent by the outgoing
parametrization of A{, to 1/g(h(2)). O

This proof is not rigorous since we are considering degenerate annuli. A rigorous one
would be approximating A{, and Afl by genuine annuli, identifying the sewn annuli,
and then taking the limit. This proof is not easy, unless when g and h are real-analytic (e.g.,
rotations). Nevertheless, we only need this lemma to motivate our following discussions.

2.2

Thus, we may consider Diff *(S!) as the group of thin annuli whose product is the
sewing. The merit of this viewpoint is that it convinces us to consider the semi-group Ann
of annuli as the complexification of Diff ¥ (S'). The multiplication A; A5 of A;, A € Ann is
the sewing of A1, A defined by gluing the inside of A; with the outside of A3 using their
parametrizations.

As an example, consider P! with marked points 0,00 and local coordinates 79(z) =
2,M0(2) = e717/z, which gives a thin annulus corresponding to the rotation z — ei72
when 7 is real. Now consider 7 as a complex variable 7 = s + it. Then the outgoing circle
is the one with radius e’. This gives a genuine annulus whenever ¢ > 0.

The Ansatz in 1.13 should be expanded to include the following point: for each annu-
lus A € Ann, the comformal block decomposition of the interaction 74 : H — H (with

one income and one outcome) with respect to Hfin — P, W; ® Wl is of the form

Ty = Em ) @7i(A) (2.1)

where 7;(A) is a bounded linear operator on the Hilbert space completion #; of W;, and
7i(A) is one on the completion 7—71 of \/’\\\/Z (A is the complex conjugate of A; see Def.
1.2. We assume the conjugate of the incomming string of A is the incoming of 4, and
similarly for the outcoming strings.) The choice of 7;(A) and 7;(A) are unique up to
scalar multiplications, and if A vary holomorphically over some complex variable 7,,
then locally 7;(A) and 7;(A4) can be chosen to vary holomorphically with respect to 7.
and 7, respectively. Finally, if A;, Ay € Ann, then 7;(A;As) equals 7;(A;)7m;(A2) up to
scalar multiplication, and a similar thing can be said about 7;.

Namely, each 7; is a projective representation of Ann on #;, and so is 7; on ’}-A[Z They
should be the analytic extensions of projective unitary representations of Diff ¥ (S!).

We emphasize that 7;(A) and 7;(A4) are conformal blocks associated to A and A re-
spectively. Roughly speaking, ; describes the conformal symmetries of chiral halves and
7i; the anti-chiral halves. A and A have to act jointly on the full space H.

2.3

Thus, the study of CFT interactions for annuli reduces to that of the projective repre-
sentations of Ann. Our goal is to describe such representations in terms of Lie algebras.
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Let Vec(S!) be the Lie algebra of smooth real vector fields of S!, whose elements are
of the form fdy where 0y is the pushforward of the standard unit vector of the real line
under the map 6 — €%, and f € C*(S',R). The action of fdy on h € C¥(S',R) is the
negative of the usual one, — f(elf) - a%h(eie). This is because the action of g € Diff " (S!) on
h should be h o g~! in order to respect the order of group multiplication. Therefore, the
Lie bracket in Vec(S!) is the negative of the usual one:

[f190, f200]vec(st) = (—f10of2 + f200.f1)00. (2.2)

24

A projective unitary representation 7 of Vec(S') and the corresponding one 7 of
Diff * (S1) (if exists) are related as follows. (Here unitary means that for each vector field
f0s, we have 7(fdy)T = —n(f0y), where f is the adjoint, or “formal adjoint” when the
underlying inner product space is not Cauchy-complete.)

Let t € (—¢,€) — g; € Diff *(S!) be a smooth family of diffeomorphisms satisfying
go = 1. Then up to addition by a number of iR,

d

S| = o) 23)

where d;go € Vec(S?), the derivative of g at to, is the vector field determined by

© (hog) .4

(Orgo)(h) = T o

for all smooth function h on S!.

Let now t € R +— exp(tfdy) € Diff "(S!) be the flow generated by fdp € Vec(S!). So
its derivative at ¢t = 0 is fdp, and exp((t1 + t2)f0p) = exp(t1f0p) o exp(t2fdp). Then (2.4)
implies that up to S'-multiplication,

m(exp(tfdp)) = %), (2.5)
since the derivative of 7 (exp(tfdy))e /%) is 7(exp(t fdg)) (w(fOp) —m(fp))e 17(f%) = 0,

2.5

The Witt algebra Spanc = {l,, : n € Z} is a complex dense Lie subalgebra of the
complexification Vec(S!) ®g C. Here,

l, = 2"1o, = —ie"?9y (2.6)
where z = ¢’ and 0, = ie%&g. (We use the chain rule to “define” @,.) One checks

[y ln] = (M — n)lmsn 2.7)

where the bracket is the negative of the usual one for vector fields.
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Let us assume for simplicity that the CFT is unitary. In the decomposition H* =
P, W; ® Wi, each W; is a projective unitary representation m; of {/,,} , and similarly WZ is
one 7; of {l,}. We know that the choice of 7;(,,) is unique up to iR-scalar addition. Here
is a well-known fact about projective representations of Witt algebra (cf. for instance
[Was10, Sec. IV.1]): one can make a particular choice of ;(l,,) (for each n), denoted by L,,
such that the Virasoro relation

[Lins Lu) = (m = 1) Lo + 75 (m + Dm(m = 1) (2.8)

holds and c € C is called the central charge. In the case that ; is projectively unitary, L,
can be chosen such that LIL = L_,, also holds.

We have abused the notation by writing the actions of /,, on all V-modules W; (as
chiral halves of the CFT) as L,,. We are justified to do so because, as we will see later, the
actions of /,, come from those of V. Technically: Virasoro algebra is inside the VOA. So
the action of {l/,,} on W; is the restriction of that of V. In particular, all chiral halves W;
share the same central charge c.

Similarly, we write the actions of /,, on all WZ as L. (The bar over L, reflects the fact
that L,, describes the conformal symmetries of the anti-chiral halves of the CFT. L,, is not
related with L, by the CPT operator ©.) The central charge ¢ for {L,} is independent of
W; and in general could be different from the one c of {L,}, although in most important
cases they are equal. (E.g., when the CFT contains both closed and open strings.)

2.6

We shall generalize (2.5) to complex vector fields. First of all, we consider an element
f(z)o0, = Z anz" o,
nez

where the sum could be infinite. We treat f(z) = Y, a,2""! as a Laurent series. Let us
now assume that f(z) is a holomorphic function on a neighborhood U < C of S'.

f0. is a complex holomorphic vector field of U, which (after shrinking U) gives a
holomorphic flow 7 € A — exp(7fd,) € 0(U) where A < C is a neighborhood of 0.
(Recall from the notation section that &'(U) is the space of holomorphic functions on U.)
This means:

(1) (1,2) € A x U — exp(7f0,)(#) is holomorphic whose restriction to each slice 7 x U
is injective (and hence, a biholomorphism onto its image).

(2) exp(0f0,)(2) = =.
(3) exp((11 + 72) f0,) = exp(11f05) 0 exp(72f7.) on an open subset of U containing S'.

(4) For any holomorphic function & defined on an open set inside U,

fo.h = ih oexp(7fd,)| . (2.9)
orT 7=0
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(Compare (2.4).) This condition is equivalent to

;Texp(Tfﬁz) 0 f (2.10)

T=

(To see the equivalence, set h(z) = z for one direction, and use chain rule for the other
one.)

10 4

-
P (1)@
%

Remark 2.2. A caveat: The notations f0, and exp(7f0d,) are not compatible with those in
the real case. Indeed, if we assume that 7 only takes real values 7 = ¢, then by taking the
real and the imaginary parts of (2.10), we see that o; is a real flow on the real surfaces U
generated by the real vector field Ref - 0, + Imf - 0. Writing 0, = 0, + 0z, 0, = (0, — %),
we see that this vector field fd, should more precisely be written as fo, + fdz where

f@) = f(x).
This point is also justified by the fact that if & is antiholomorphic, then

fosk = ik oexp(7f0,) o (2.11)

(Proof: take k = h in (2.10).) Thus, a more precise notation for exp(7fd.) should be
exp(7f0. + T f0z). But we prefer to suppress the term 7 f 05 to keep the notations shorter.

2.7

One way to find the expression of o, = exp(7f0,) is to solve the holomorphic nonlin-
ear differential equation with initial condition:

0
= 02(2) = f(o(2))

oo(z) = z.

(2.12)

This is due to (2.10) and o+, 47, = 07, © 0,. (Indeed, the existence of holomorphic flows is
due to that of the solutions of such equations.)
Alternatively, one may calculate the flow by brutal force using the formula

exp(72:)(z) = 3 1 (f(2)0)"
keN "
2.13
:Z%f(z)az(f(z)az(’"f(Z)azz)"‘)>. (2.13)

keN

k times

(One may treat this formula as a formal sum if one worries about the convergence issue.)
To see why this formula is valid, check that such defined exp(7f0.)(z) =: o,(z) satisfies
that o, 7, = 07, 00y, that 0;0-|;—0 = f, and that o¢(z) = z. This is easy.
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2.8

Example 2.3. 0,(z) = €7z is the holomorphic flow generated by the vector field iy = 20,
since %67,’47—:0 = z. Namely,

exp(720;)(z) = € 2.

Set A = e7. In view of the A{, in 2.1, we consider the 2-pointed sphere X =
(P1;0,00; ¢, A\"1¢1) where ( : 2z — z is the standard coordinate of C. Then, when |\| < 1,
X defines an annulus A, either genuine or thin, whose incoming circle has radius 1 and
outcoming 1/|\|. Thus, the conformal block 7;(A) associated to this annulus, which is a
linear operator on the Hilbert space completion #;, should be e = A0 (by replacing
z&z with Lo)

It is easy to check that A is isomorphic to the annulus defined by (P'; 0, o0; ¢, A1¢ -1,

So the corresponding conformal block should be 7;(A4) = X"°_ Therefore, the interaction
map T4 : H — H is determined by

Ty _ Ao g, (2.14)

H@H;
In a unitary CFT, Lj and L (or more precisely, their closures) are self-adjoint operators

so that A0 and X" can be defined and are unitary when |\| = 1. Moreover, in a unitary
CFT:

Assumption 2.4 (Positive energy). The spectra of Ly and L are both positive (i.e. = 0). In
these notes, we are mainly interested in the case that the spectra are discrete. We identify
Lo with Ly®1 and Ly with 1® L so that Lo, Ly are commuting diagonalizable operators
on H™ with > 0 eigenvalues.

Now we can explain what we meant by finite energy: A vector £ of H has finite energy
if ¢ is a finite sum of eigenvectors of both Ly and L. (In general, a vector of # is an [2-
convergent sum, either finite or infinite, of eigenvectors.)

2.9
Example 2.5. Let n # 0. To understand the geometric meanings of e”*~" and eln, we
find the expression of o, = exp(72~""19,) by solving the differential equation 0,0, =

(o)~ with initial condition og(2) = z (cf. (2.12)). The solution is

TL_

exp(T27"10,)(2) = (2" + m’)% (2.15)
O

Unfortunately, this flow does not give us any annulus in the usual sense. Take n = 1
for instance. Then the flow is just the translation by 7. However, the circle after a small
translation will intersect the original one. So there is no annulus whose outgoing circle is
the translation of the incoming one. In fact, in most cases, exp(f0,) is not the action of an
annulus. We have to pursue another way of understanding this operator.
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2.10

There are two ways to look at a group action G —~ X: (1) The action of g € G on X
is a transformation. So gz # x in general. (2) gx and «x are different expressions (under
different coordinates) of the same element. The rule for change of coordinate is given by
the action of GG. We shall take the second viewpoint.

Let X = (C;z1,...,2N;m,...,nN) be an N-pointed compact Riemann surface with
local coordinates satisfying Assumption 1.1. Assume the setting of 2.6. Write o, =
exp(7f0;) and f(z) = Y),; anz""! be defined on U > S'. Let 7 € A be close to 0.

Remark 2.6. In case you want to know the precise meaning of “close”: for the local coor-
dinate n; we are to discuss in the following, we choose ¢ > 0 such that o-(U n Rng(n;))
contains S! for all 7 € D, where the open set Rng(7;) is the range of ;.

Principle 2.7 (Change of boundary parametrizations). Suppose that the local coordinate
n; at x; is changed to the boundary parametrization o, o 7; and the boundary string n; ' o
(S') is gradually changed (with respect to the change of 7) to 7; ' (o71(S')). Then, in
the expressions of conformal blocks and correlation functions (without outputs), each
w; € W, is replaced by e 2n * Ly, and each ; € W, by e” 2L,

To be more precise, let T : HON — C be the correlation function where ¥ is obtained
from X. Assume ¢ = 1 for simplicity. Changing the local coordinate 7; to o o 1 gives a
new surface with parametrized boundary ¥’. Then up to scalar multiplication, 75y and
Ty, are related by

T5(51 06 Q- ®&n) = Ty ((eTZ" anln & e?ZnﬁZ”)& L ® fN) (2.16)

forall &, ..., &N. Similarly, if &5 : W;, ® --- ® W;,, — C is a conformal block for ¥, then
5y defined by

@g(wl RQuos & - - ®w]v) = (132/ (eTZn ananl RQuos & - - ®UJN) (217)

is one for X'.
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The geometric intuition in the above subsection is the following: &; in the 7-
parametrization is the same (up to scalar multiplication) vector as (e”Zn%ln
7 Zin @n-Ln )&1 in the o o ny-parametrization. We call this same “abstract” vector 51, which
is unique up to scalar multiplication. We write & = (U(m1) ® U(n?))€1, understanding
U(m) ®U(nT) as the map sending an abstract vector to its concrete expression under the
boundary parametrization 7;. Namely, U(n1) ® U(n}) is a vector bundle trivialization.
The transition function from the 7;-parametrization to the o, o 7;-parametrization is

(U(or om) @U((o7 0m)™)) Ulm) @U(E)) ! = ™ Znankn @ T 2n@rLn, (2.18)
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We have a parametrization independent 7" (more precisely, independent of a small change
of parametrizations) whose expressions under the concrete boundary parametrizations
are (up to scalar multiplications)

TE @) =Ts(Um) oum) 'ae-)
=Ty ((Z/{(UT om)®U((or o 771)*))_151 ®-- )

2.12

Let us do an example to see how the change of parametrization formula works.

Example 2.8. Let X = (P';1/3,00;2(¢ — 1/3),(~!) where ( : z — z is the standard coordi-
nate of C. We choose 1/3 to be the input point, and oo the outgoing one. The associated
boundary parametrized surface ¥ is an annulus whose incoming circle {z : |2(z —1/3)| =
1} has center 1/3 and radius 1/2, and whose outgoing circle is S'. Let us find an expression
forTs : H — H.

We know that the map for the standard thin annulus Ay is T4, , = 1y. Let X1 =
(P1;0,00;2¢, (1), which gives an annlus 1 with incoming string 2S! and outgoing one
St Ay 1 is changed to 3 by changing the incoming boundary parametrization ¢ to 2¢. By
Ex. 2.3, 2¢ = exp(log?2 - 20). So, as e'°82Lo = 2L0 and similarly elog2Llo — glo, by (2.16),
Ty, could be (1/2)%0 @ (1/2)%o.

¥, is changed to ¥ by adding 2¢ by —2/3. According to Ex. 2.5, exp(—2/30.)(z) =
z — 2/3. Therefore, up to a scalar multiplication, T, (§) = Tg((@‘ghl ® e—%L,1>£)_ Thus,
the answer is

T = ((1/2) @ (1/2)7) - (€3t @ i) = ((1/2)0ei 1) @ ((1/2)F0eit).

(1/2)Loe3 L1 is a conformal block for ¥. O

2.13

What is the change of parametrization formula for 7%, (and hence ®yx) when some
output strings are involved? Recall from Subsec. 1.15 that the correlation function Ty, , :
H®? — C is a symmetric bilinear form (£, v) = (v, &) = (Ov|¢). With respect to this form,
we actually have

(Ln®1)'=L,®1, (1®L,)"'=1®Lp. (2.19)
More precisely, for each &, v € HI", we have
<(Ln ® 1)67 V> = <€7 (L—n ® 1)l/>

and a similar relation for L,. Rewrite the above relation in terms of (-|-), we have
(O(L, ®1)¢|v) = (O¢|(L_, ® 1)1), and noticing the unitarity property L}, = L_,, we
get

@(Ln®1) = (Ln®1)@7 @(1®Ln) = (1®Ln)@' (220)

23



These relations truly hold, not just up to scalar addition or multiply.
From this, we see that for the maps T, Tsy : H®WV =1 — 4 with N — 1 inputs and 1
output,

Ty, = <eTZn anL_n @e?Znﬁf,n> o T (2.21)

You can easily generalize this formula to the case of more than one outputs.

Proof. Let&, € HEWN-1) and v € H. By (1.8), the correlation function (with N-inputs and
no outputs) for ¥ and X’ are (O - [Tx-) and (O - [Ty -) respectively. So by (2.16),

(OV|T5(€)) = (B(e™Xn Wnln @ ™ X Tnln)y| Ty (€,))

(2.20) T an, T anL
——((e 2in wln @ e in nLn)@V‘TE/(E.)>

unitarity

——(Ov|(eT b @ T T Ty (&),

Exercise 2.9. Show that the formula (2.14) in Example 2.3 follows from (2.21).

2.14

In case you want to know why (L_, ® 1) = (L, ® 1), we give a geometric expla-
nation below, in which we pretend to ignore the issue of the uniqueness up to scalar
additions/multiplications.

Proof. Let X = (P';0,00;2,2!) where z is the standard coordinate of C, which gives
the standard thin annulus A4;;. Assume the two strings are incoming. We know the
correlation function is (£, v), where we assume ¢ is associated to the string around 0 and
v the one around co.

Change the local coordinate z at 0 to o, and keep the other data of X. This changes
Ay 1 to anew weird annulus A. By (2.16), the correlation function for A is

TA(E@v) = (e ™ Znnln @ e T X @nlnye 1y

Note that if we set ( = o,(z), then 27! = 1/071(¢), which equals 1/o_,(¢) by the defini-
tion of flows. Namely, A is equivalent to the weird annulus whose incoming boundary
parametrization is z and outcoming 1/0_-(z). To compute the correlation function for
this choice of boundary parametrization, we note that the original 1/z at oo is changed to
1/o_(2). Therefore, if we let v, (z) = 1/0_(1/2z) which is a holomorphic flow generated
by some b,z"t1, then the expression for T4 is

TA(E®v) = (€, (e ™ Znbln @ =T Znbulnyyy

For the two expressions of T4, we take the holomorphic derivative —0; at 7 = 0 to get
D anl(Ln @ 1)E,v) = ¥ bulé, (Ln @ 1)),

24



To finish the proof, it suffices to prove b, = a_,.
Recall Y a,2" "t = 0,0,|,—0. Similarly, >} b,2"" = 0,7,|,—o, which is

2r(1Jo_+(1/2)]_ = —00(11/2)2 or(oe (1),

=Z2 . Ean(l/z)n-&-l _ Zanz—n-i-l _ Za_nzn-i-l_

2.15

As an easy application of our change of parametrization formula, we are able to
describe the map T4 : H — H for an analytic annulus A € Ann obtained from
(P; 0, 00; 10, Non) Where 19 and 7, are local coordinates at 0, co respectively. Set @ = 1/z.
One can write

no(z) = exp ( Z anz"Hé’z) (2), N () = exp < Z bnw”+lé’w> (w),
neN

neN

where the coefficients a,, b, can be determined using (2.13). (We will say more about
determining the coefficients in the future.) When A is the standard thin annulus (i.e.,
when g : 2 — 2,15 : 2 — 27 1), we know T4 = 1. Thus, in general, by (2.16) and (2.19),
the map T4 is (up to scalar multiplications)

TA = (eZnEN —bnL—n ® eZnEN 75'1*”) . (eZnEN —anLn ® eZnEN 7E'Z”> .

The reason that only n € N are involved is because 7y and 7., can be defined near 0
and send 0 to 0. Indeed, for f(z) = Y. ., a,z""!, assume that exp(7f0,)(z) is defined
near 0 and sends 0 to 0 for all small 7. Then its derivative over 7 at z = 0, which is
f(exp(Tf0:)(0)) = f(0) by (2.14), should also be 0. So f must be of the form >}, _ anz""'.

2.16

We call those in 2.10 and 2.11 change of (boundary) parametrizations in general, and
those in 2.15 change of (local) coordinates. The former contains the latter.

When changing the boundary parametrizations, the standard coordinate z could be
changed to o, not necessarily defined at 0, or more generally, a local coordinate (say)
n of an N-pointed X = (C;z.;7.) is changed to o, o n;. This changes the boundary-
parametrized Riemann surface ¥ to ¥’. Note that this process does not violate our defini-
tion of analytic boundary parametrizations in 1.2: The new surface ¥’ is obtained from a
new N-pointed one X' = (C'; z4;0, 001, M1, ..., nn) where C’ is a new compact Riemann
surface, which is defined by gluing > with N pieces of unit disks ID; using the maps
or 0N, M2, ...,nn. (If you use the maps 71, ...,ny instead, you simply get C.) Thus, for
the change of boundary parametrizations in general, the underlying compact Riemann surfaces C
could be changed. More details will be given in Examples 13.6 and 13.7.
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By change of coordinates, we mean X is changed to X' = (C;z.;7,) with the same
underlying compact Riemann surface C and the same marked points z, as the original
ones but different local coordiates at these marked points. As mentioned in 2.15, in this
process, only Lo, Ly, Lo, ... (and also Lo, L1, Lo, . . .) are involved, while in the change of
boundary parametrizations, all L,, are involved.

In the previous discussions, almost all formulas hold only up to scalar multiplications
or additions. However, when only L_1, Lo, L1, Lo, . .. are involved, the interaction maps
Ty, can indeed be chosen such that all the formulas truly hold, not just up to scalar multi-
plications or additions. This is because the conformal anomaly is due to the central term
¢+ (m3 —m)8y,,—n/12 in the Virasoro relation (2.8), which vanishes when m,n > —1. Note
that L_; is responsible for translation. Thus:

Principle 2.10. 7% can be chosen to have no ambiguity when changing the local coordi-
nates, or when translating a marked point z; with respect to its local coordinate ;.

To be more precise: We fix a compact Riemann surface C. Then for each choice of N
marked points x, and local coordinates 7., we can choose the correlation function 7% :
HEN — C associated to the boundary parametrized surface associated to X = (C;x4;7s)
such that

e For another choice of N-pointed X’ = (C'; z.;7,) with the same marked points and
different local coordinates 7,, Tx and T are related by (2.16).

o IfX' = (C;ay,xe,...,xN; 1], M2, - .., ) Where ] = m —m1(2)), and if 2 is inside an
open disk U; centered at 21 on which 7, is holomorphically defined (more precisely,
this means 7, (U ) is an open disk centered at 7; (1) = 0), then Tk and T are related
by (2.16), namely, (noticing (2.15) for n = 1)

Tx(61® - Q&n) = T ((efm(m’l)Lfl ® efm(ac’l)-ll)& R ® - ®§N>' (2.22)

A similar principle holds when T has output strings. O

Recall the geometric picture described in 2.11. We see that when changing local coor-
dinates, everything in 2.11 truly holds, not just up to scalar multiplications. In particular,

the abstract vector &; is uniquely determined when only the change of local coordinates
are allowed.

217

Assumption 2.11. We drop Assumption 1.1 for the incoming strings when we associate

only finite energy vectors (i.e., vectors of W; QW;, V@V, etc.) to the incoming strings. In-
stead, we only assume that the (distinct) incoming points are outside the outgoing strings.

In this course, we will be mainly interested in finite energy vectors. Therefore, we do
not assume that that each 7;(U;) contains Dfl, or that U; and Uj are disjoint for different :
and j. In the latter case, the two boundary strings n; ' (S') and nj_l(Sl) possibly overlap.
What does this picture actually mean?
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Note that multiplying 7; by An; amounts to shrinking the size of the string n; ' (S!)
by |A| and then rotating the string. If A > 0 then there is only shrinking but not rotat-
ing. Thus, for an local coordinated N-pointed X = (C;x4;n.), we can find Ay,..., Ay € C*
with large enough absolute values such that the new data X' = (C;xze; \im1, ..., ANNN) sat-

isfies Assumption 1.1. Then for finite energy vectors £1,...,&y € HI® = P, W; ® W,
Tx (&1 ® -+ - ®&n) is understood as

Te@® @6y =To (PN )ae - © (o))  @2)

This definition is independent of the choice of sufficiently large A;,...,Ay. And each

A @ )TJ-LO acts diagonally on H since Lo ® Lo does. (Recall Assumption 2.4.)

_ 0‘“)
o ,O'“A = 2

In the spirit of the previous subsection, you should view the finite energy vectors

~L . . .

& and (AJLO ® A; )& not as different vectors, but as two coordinate representations of
the same vector EJ When |);| becomes infinitely large, the string for &; shrinks to an
infinitesimal one around z;, i.e., it shrinks to z; as a puncture. It is very useful to view

the abstract finite energy vector &; not associated to any particular string, but associated
to that puncture x;. Thus, the marked points x, of X are also called punctures.

Remark 2.12. A side note: When we do local coordinate changes, finite energy vectors
are changed to finite energy ones.

Therefore, in the above discussion, we don’t have to stick to change of coordinates of
the form n; — \;n;: any local coordinate change is valid. We will prove the above claim
in later sections.

2.18

Let us choose W; ® W; inside H1in. According to Assumption 2.4, the eigenvalues of
the dlagonahzable operators Lg (on W;) and LO (on W; ;) are > 0. Now choose eigenvectors
w e W; andweW with Low = Aw, Lo = AwwhereA A>0.

Here is an important point about the two eigenvalues. They are not necessarily inte-

gers, which means that A0w and o might be multivalued with respect to ), i.e., they may
also depend on the choice of argument arg \. However, according to the No-Ambiguity
Principle 2.10, the expression

(Ao @A) (w@ D) = A2X  wRd
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must be single-valued with respect to A, namely, it does not rely on the choice of arg A\. As
A = |\|el@8* and hence AR = |/\|A+Aei(A_ﬁ) arg A we conclude that
A—AeZ. (2.24)
This gives a constraint on the possible V ® V-submodules of #fin,
That Aow could be multivalued is a crucial property in CFT, and it is not related to

conformal anomaly. Indeed, it is related to the non-uniqueness of decomposing T, into
conformal blocks. Thus, the No-Ambiguity Principle 2.10 does not hold for conformal blocks.

3 Definition of VOAs, 1

3.1

We first give the rigorous definition of vertex operators algebras and a slightly weaker
version, graded vertex algebras. Then we explain the meanings of the axioms.

Definition 3.1. A graded vertex algebra is a (complex) vector space V together with a
diagonalizable operator L, acting on V whose eigenvalues are inside N. We write the
Lo-grading of Vas V = @, . V(n). (Note: Starting from Sec. 11, we will assume that
all V(n) are finite-dimensional.) Any eigenvector v of Ly (including 0) is called (Lg)-
homogeneous, and if v € V(n) (i.e. Lov = nv), we write wtv = n and call wtv the weight
of v. Moreover, we have a linear map

V- (End(V))[[zﬂ]]
u—Y(u,z) = Z Y(u)nz_"_l (3.1)

neZ

where each Y (u), € End(V) is called a (Fourier) mode. Here, 2 is treated as a formal
variable. Thus Y (u, z)v € V[[2%!]] for each v € V. The reason for associating 2! to
Y (u)y, is because we could have (recalling (0.2))

Res,—o Y (u, z)z"dz = Y (u)p. (3.2)

Y (u, z) is called a vertex operator.
Moreover, the following axioms are satisfied:

e There is a distinguished vector 1 € V(0) called vacuum vector such that
Y(1,2) = 1y.
Namely Y (1)1 = lyand Y (1), = 0if n # —1.

* Creation property: Foreachv €V, Y (v,2)1 = v + ez + ¢2? + - .. where each e is in
V. Namely,

Y(v)-11 = v, (3.3)
and Y (v),1 = 0 for all n > —1. This property is abbreviated to

lim Y (v, 2)1 = v.
z—0
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¢ Grading property: For eachv eV,

d
[Lo,Y (v,2)] =Y (Lov, z) + zd—
z

Y (v, z). (3.4)
¢ Translation property: There is a distinguished linear operator L_; on V such that
L_11 =0, (3-5)

and that for each v € V,

[L_1,Y(v,2)] = di;Y(v, z). (3.6)

¢ Jacobi identity: This is the most crucial yet complicated axiom. We postpone its
definition to the next section. (See Def. 4.5.)

We say that V is a vertex operator algebra (VOA) if Lo, L_; can be extended to a
sequence of linear operators (Ly,)nez on V satisfying the Virasoro relation (2.8) for some
central charge c € C, and if there is a distinguished vector ¢ € V, called the conformal
vector, such that

Y(c)n = Ln-1, (3.7)
or equivalently,
Y(c,z) = Y Loz "2 (3.8)
neL
O

You may wonder why the right hand side of (3.7) is not L,, or L,_, for some constant
a # 1. Indeed, if it were not L,,_;, then the Virasoro relation would be not compatible
with the Jacobi identity. We will explain this in more details after defining the Jacobi
identity. (See Exercise 5.4.)

We warn the readers that our definitions of graded vertex algebras and VOAs are
slightly stronger than the usual ones in the VOA literature, which do not require L to
have non-negative eigenvalues. This positivity condition Ly > 0 is very mild and satisfied
by most interesting examples including all unitary ones. Since assuming this condition
will simply proofs, we keep it in our definition.

Also, in most interesting cases, each V(n) is finite-dimensional. We do not include this
in our definition of VOA here, but we will assume this fact from Sec. 11.

Most VOA textbooks and articles use either w or v to denote the conformal vector c.
In our notes, w and v are reserved for other meanings and hence do not denote conformal
vectors in order to avoid conflicts of notations.

The reason why we should assume that 3" L,,2~"~2 can be written as Y (c, z) for some
c € V will not be explained in this section. We will explain it in Subsec. 5.4.

There is a notion of unitary VOA which we do not define in this course (although our
motivations are mainly from unitary CFTs). We refer the readers to [CKLW18, DL14] for
details.
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3.2

Before we give the motivations for these axioms, let us first derive some useful facts.
Expand the series (3.4) and take the coefficients before each ~"~!. This gives us the
following equivalent form of grading property:

[Lo, Y (0)n] = Y (Lov)n — (n+ 1)Y (u),. (3.9)
To be more concrete, assuming that v is homogeneous, then
[Lo, Y (v)n] = (wtv —n —1)Y (v)p. (3.10)

Namely: Y (v),, raises the weights by wtv—n—1. Itis useful to keep in mind that in the VOA
theory, Y (v),, raises weights when n is sufficiently negative, and lowers weights when n
is sufficiently positive. As a related fact, as

[Lo, Ln] = —nLy, (3.11)
by the Virasoro relation (2.8), L_,, raises (resp. L,, lowers) the weights by n.
Remark 3.2. As an application of (3.11), we compute L,,c when n > 0. Since
c=Y(c)_11=L_»1, (3.12)
and since L_» raises the weights by 2, we see that
Loc = 2c. (3.13)

By [Li,L_2] = 3L, [La,L_2] = 4Ly + %c, and that L, 1 = 0 whenever n > 0 (since its
weight is < 0), we have

Lic=0, ILgc= 51. (3.14)

3.3

By (3.10), for each u, v € V, we know that Y (u),v vanishes when n is sufficiently large.
Equivalently, we have

Y (u,z)v e C((2)). (3.15)

This important fact is called the lower truncation property. It allows us to use meromor-
phic functions to study VOAs.

In the definition of graded vertex algebras, if the grading property is replaced by the
lower truncation property, and if in particular the diagonalizable L is not introduced,
then V is called a vertex algebra. We will not address this most general notion in our
notes.
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3.4
We let

V= @V(n)*

neN

where V(n)* is the dual space of V. V' is called the graded dual space of V. We let
Lo act on V' such that Lov' = nv' whenever v' € V(n)*. Then L = Lo. As before, a
homogeneous vector of V' is either 0 or an eigenvector of Lj. From our definition, it is
clear that the evaluation between V/(m) = V(m)* and V(n) vanishes if m # n.

Proposition 3.3. For each u,v € V,v' € V/, (W'Y (u,2)v) 1= Y, ", Y (u)0)yz"""isa
Laurent polynomial of z, i.e.,

@'Y (u, z)v) € C[zH].

Thus, when evaluating between finite energy vectors (i.e., vectors of V and V'),
Y (u, z) is not only a formal series, but a meromorphic function of P! with poles at 0, co.

Proof. We must show that Y, (v’ Y (u),v)2"""! is a finite sum. By linearity, it suffices to
assume that u, v, v’ are homogeneous. Then Y (u),v is homogeneous with weight wtu +
wtv —n — 1. So (v/, Y (u),v) is non-zero only if wtv' = wtu + wtv — n — 1. Thus

<U’, Y(ua Z)U> = <vl’ Y(u)wtu+wtvfwtv’71 ) U> : Zth,_Wtu_th-
L]

Remark 3.4. The formula lim,_,o Y (u, 2)1 can now be understood in an analytic sense:
By the creation property, for each v' € V, (v, Y (u, z)1) is a polynomial of z since it has no
negative powers of z. So

li_r%@', Y (u,2)1) = ' u) (3.16)

where the left hand side is the limit of a polynomial function.

3.5

The grading and the translation properties were presented in the “derivative form”.
We shall present them in the integral form. To prepare for this task, we introduce

NARES HV(n) = {(vo,v1,v2,...) 1 vy € V(n)}, (3.17)

neN

called the algebraic completion of V. V¢ is a naturally a subspace of the dual space (V)*
of V. (Indeed, we are mostly interested in the case that each V(n) is finite dimensional.
In such case, one checks easily that V! = (V)*.) We let

P, vl V(n), (vg, v1,V2,...) — Up (3.18)
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be the canonical projection onto the n-th component. Then for each z € C* = C\{0}, we
have

Y (u, z)v e VI

whose projection onto V(wtu + wtv —n — 1) is Y (u),v - 2771
Note that Ly and \%0 act on V< in an obvious way:

LO(Un)neN = (nvn)neNa ALO (Un)neN = ()\nvn>neN-

3.6
Proposition 3.5 (Scale covariance). For each A\ € C*, we have
Moy (u, 2)AEoy = Y(AEou, Az)w (3.19)
on the level of VE'. We drop the symbol v and simply write the above relation as
MOY (u, 2)A 70 = Y (AFouy, Az2).
The method in the following proof will appear repeatedly in our notes.

Proof. Recall L = Lg. Fix z € C*. We prove that for each homogeneous u, v, v/,
Y Y (u, )N TEow)y = (O Y (AEou, Az)v). (3.20)

The left hand side f is a scalar times AV =Wt and the right hand side g is a Laurent
polynomial of A. So both are holomorphic functions on C*. Clearly these two expressions
are equal when A = 1. Let us prove that they are equal for all A # 0 by showing that they
satisfy the same differential equation.

From the form of f, it is clear that 0y f(\) = (wtv’ — wtv)A™1 f(\). To compute dyg, we
first compute an easier derivative 0\(v', Y (u, Az)v). By the chain rule, we have

ST X)) = 2 Y (O

which, due to the grading property, equals
)\_1<v’, (LLo, Y (1, A2)] — Y (Lou, )\z))v>
=(wtv' — wtv — Wtu))\71<v/, Y (u, Az)v).
So

oAg(\) = é’>\<v/,Y()\L°u, )\z)v> = 0) ()\Wt“<v’, Y (u, )\z)v>) = (wtv' — wtv) A" tg(N).
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Informally, the integral form (3.19) (i.e., the scale covariance) also implies the deriva-
tive form (3.9) by taking partial derivative over A\. Thus, on a non-rigorous level, these
two forms are equivalent. But the integral form has a clearer geometric meaning, which
we shall give later.

In the above proof, we have done our first serious VOA calculation. You should be so
familiar with these computations that you can “immediately see” the equivalence of the
two forms.

The integral form of [L_;,Y (u, z)] = 0,Y (u, 2) is

™Y (u, 2)e T = Y (u, 2 + 1),

called the translation covariance. You may give an informal proof yourself by checking
that both sides satisfy the same “linear differential equation”. A rigorous treatment is
more difficult than the scale covariance. So we leave it to the end of this section.

3.7

We now explain the motivations behind the definition of VOAs. Namely, we shall
explain how the axioms are natural assumptions from the point of view of the previous
two sections. The following explanations are heuristic and non-rigorous.

Recall the non-rigorous “definition” of V in (1.11). We know that V and V are sub-
spaces of 1™, and the decomposition of # into V ® V-submodules contains a piece
V® %A’, which furthermore contains V ~ V® 1 and Vi ® V. The vacuum vector is
1~1®1.

We have said in Subsection 1.8 that the standard unit closed disk D$! with no input
and whose boundary S! is parametrized by 2 — z~! produces from nothing the vacuum
vector 1 ® 1. Namely, the vacuum vector comes from the data (P!; o0; () where ( is the
standard coordinate. This data is equivalent to (P';00; A=1¢™1) (where A € C*) via the
biholomorphism z € P! — Xz € PL. By the change of local coordinate formula (Principle

2.10), the later geometric data produces uniquely the vector (A" ® XLO)L which is equal

to 1 by the equivalence of the two geometric data. Apply d) and J5 to (A\L* @ XLO)l =1,
we see that Lol = Lol = 0. This explain 1 € V(0) in Def. 3.1.

- @ - ¢

Consequently, by (2.24), the eigenvalues of L are integers, and hence > 0 integers by the
positive energy Assumption 2.4. This explains Spec(Ly) < N.
Similarly, the standard disk D! is equivalent to its translation by some 7 € C. So we

must have (e7-1 ® e?ffl)l = 1 and hence, similarly, L_11 = L_;1 = 0. This explains

part of the translation property.
0
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3.8
Recall

[Lo,Ln] = —=nL,,  [Lo,Lyn] = —nLy. (3.21)

As the Lo and L spectral are > 0, and since 1 is a zero eigenvectors of them, we must
have

L,1=L,1=0 (n>—1). (3.22)

From (3.22), we see that for each v € V, if the change of boundary parametrization
does not involve L_o,L_3,... and L_3, L_3, ..., then all L,, can be ignored:

(eZn>—1 anln X 62"9_1 Hf")/p = 62"9_1 a‘nL"U, (323)

To see this, identify v withv®1 e V® V © H and note that 1 is fixed by eXnz—1@nln,

Thus, we conclude: The translation of the change of local coordinates formula for vectors
of V does not involve L,. In particular, note that the right hand side of (3.23) is almost a
vector of V. It is a genuine vector of V when it has finite energy. Thus, the change of local
coordinates and the translation almost preserve V. Indeed, the change of local coordinates
truly preserve V, as we will see in later sections.

A general change of boundary parametrization does not necessarily preserve V in any
weak sense.

3.9

Let us describe the meaning of Y (u,z)v. For each z € C*, we define a local-
coordinated 3-pointed sphere

P = {PH0,2,00;¢, ¢ — 2,1} (3.24)

where ( is the standard coordinate of C.

Let us regard 0, z as incoming punctures and oo outgoing. Roughly speaking, Y (u, z)v
is just Tip, (v ® u) where v is associate to 0 and u to z, understood in a suitable way by
change of coordinates. Assume first of all that 0 < |z| < 1. After scaling ¢ and ¢ — z to
A1¢, A2(¢ — z) and hence shrinking the two incoming strings, Assumption 1.1 is satisfied.

Let the new N-pointed sphere by denoted by P22 Note that v in the ¢ coordinate

becomes (A\[° ® )\TLO)U = M9y in the ;¢ coordinate. Similarly, u becomes A% in the
new coordinate. Then Y (u, z)v is (physically) defined as T@MQ ()\fov ® )\gou).

As in Subsec. 2.17, we can use the puncture picture to view u and v as the states as-
sociated to the punctures 0, z with respect to the local coordinates ¢, — z. Or moreover,
formulated in a coordinate independent way as in Subsec. 2.11, we associate the abstract
vector U(¢)"!v (the one whose explicit expression under the coordinate ¢ is v) to the
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puncture 0 and (¢ — z)~!v to z. Then:

N7
N A
AR RVARES =
Y (w2 & ~ (3.25)
Ly Y
Pun cture Prcture Gtrfn;, Picture

According to the notation in Subsec. 2.11, the abstract vectors should be written as (¢ ({)®

UC*)) vand (UC—2)RU((C—2)*)) ~u. Here we suppress the second tensor component
because, by (3.23), the change of local coordinates for vectors of V does not involve L.

3.10

In the string picture of (3.25), setting u to be 1 means filling the hole around z using
the solid disc. The result we get is an annulus A, ; with inside parametrization \{¢ and
outside one ¢(~1.! According to the change of coordinate formula, the interaction map
‘H — H for this annulus satisfies TAMJ()‘{J%) = T4, ,v = v. This explains Y (1, z)v = v.

If we set v = 1 instead, then we fill the hold around 0 with the solid disc. The result
we get is an eccentric annulus A, ), ; with inside boundary parametrization \y(¢ — z)
and outside one (~'. Let T4 : H — H be the interaction map. Then, by (3.25),

Y(u,2)1 =Ty AJou). Let 2 — 0. Then A, y, ; converges to Ay y, 1, which is just the
concentric annulus Ay, 1. We have Ty, , (Ako4) = w. This explains lim, o Y (u, 2)1 = u.

z,A9,1

z,>\2,1(

3.11

For a general z € C*, in the string picture, we must also shrink the outgoing string in
order to get a true surface 3. We thus choose A € C* with |\| > 1. Let

PRt = (P10, 2,00 MG, da(C = 2): AT
Then Y (u, z)v is physically “defined” to be

Y(u,z)v = )\LOTmil,)\Q,)\ (Aoy @ Aboy). (3.26)

'We have previously defined an annulus A,z with incoming string |2| = r and outgoing |z| = R. Ac-
cording to that definition, A,—1 ; = A, 1.
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In the puncture picture, it is

\{(u,?-j\/ = A

The meaning of Y (u), is clear:

WY (u)pv) = fﬁ<v’,Y(u, z2)vyz" - 26sz = Res,—o (v, Y (u, 2)v)z"dz.
T
0

where the subscript under § means that the integral is over any loop around 0.

3.12

If we prefer not to scale (7!, we can make the output point o input. To do this, note
that from Subsec. 1.14 and 1.15, we know that each O(W; ® W,) is equivalent to W, @ W/,
the space of finite energy dual vectors on W; @ W;. In the case of V, we get an equivalence

OV SV,  Quww (Buw,)|, = (wl,

where (-,-) is the correlation function associated to A;;. (From <w|->|V you can see
why this linear map is an isomorphism. Here, you may assume each V(n) is finite-
dimensional, or even pretend that V is finite dimensional.) Then in the puncture picture,
the vertex operator and the correlation function of 3, (restricted to a linear functional on
VRV OV ~VE®VEYV)are related by

w8 . B(f‘)"@w
<@wa Y(”) Z)U> = <w|Y(u, Z)U> - wnETe &

. ,
0 '\QL(§~£)'|L

for all u, v, w € V and hence Ow € OV ~ V',

3.13
We actually have

oV =V (3.27)

and similarly OV = V. An explanation is as follows:
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Proof. First of all, © maps finite energy vectors to finite energy ones since © commutes
with the energy operators Lo ® 1,1 ® Lo. (See Subsec. 2.13.) By the physical definition of
Vin (1.11), for each u € V, the correlation function T, associated to B , p = (PY; 2,005 (C —
z)/r, R/() varies holomorphically if u is associated to the puncture z. Namely, T’ (u ® v)
is holomorphic for all v € H. It is easy to see that the conjugate of ‘B, , r is equivalent
(via the standard conjugation of the complex plane) to Pz, r = (P};z, 0; (¢ — 2)/r, R/C),
whose correlation function is 7%. Thus, by (1.9)

T.(Ou®v) = T3 (u® Ov),
which is also holomorphic over z. This proves Ou e Vifu € V. O

Consequently, V = OV ~ V’. The equivalence is given by
VSV, u— (u, ) (3.28)

Due to this equivalence, we call the VOA V to be self-dual.

So, in all unitary CFTs (and indeed, also in many non-unitary CFTs), the VOAs are self-
dual. We remark that there is a mathematically rigorous definition of self-dualness, which
plays an important role in the tensor categories of V-modules. However, the definition of
a general VOA does not require self-dualness, because many properties can be derived
without assuming self-dualness.

3.14

Let ¢ be the standard coordinate of C as usual. For each A # 0, we have an equivalence
(P'50,2,00;¢, ¢ — 2,71 =~ (P10,A2,00: AT AT — 2,0¢TH) (3.29)

realized by the biholomorphism v — Ay of PL. (You should check that the pullback of the
local coordinates on the right hand side equal those on the left.) The correlation function
for the left hand side, evaluating on v @ u ®@w € V&3, is (w, Y (u, z)v). The right hand side
of (3.29) is obtained by scaling the local coordinates of (P!;0, Az, 00; ¢, ¢ — Az, (™) (whose
correlation function on V®3 takes the form (w, Y (u, Az)v)) by A™1, A=1) X respectively. By
the change of coordinate formula, the correlation function for the right hand side of (3.29),
denoted temporarily by w, must satisfy

(w,Y (u, \2)v) = w Ao @ ALow @ Aow),

namely, w should be (\~fow, Y (AFoy, A\2)Alov).  This last equation must equal
(w,Y (u, z)v) due to the equivalence (3.29). This explains the scale covariance.

3.15

Similarly, for each 7 € C, consider the equivalence

1
(]P)l;O,Z,OO;C7C—Z,C71)2 (P1;772+T700;C_77<_Z_T7 T) (330)

C_
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induced by the biholomorphism v +— + + 7 of P!. The right hand side is a change of
parametrization from (P';0,z + 7,00;¢,( — 2 — 7,{"!) (whose correlation function is
(w,Y (u, z + T)v)), where ( is changed to ¢ — 7 (which is a translation), and n := (!
is changed to 1/(n~! — 7). The translation corresponds to e~72~1. The second change of
coordinate is exp(7220,) due to Ex. 2.5, which gives e7/1.

Let w now be the correlation function (restricted to V®3) of the right hand side. Then
we have

(w,Y (u,z + 7)v) = w(e ™o @ue e w).

So w is (e ™hw, Y (u,z + 7)e™v) = (w,e 1Y (u, 2z + 7)e"1v), which must equal
(w,Y (u, z)v) due to the equivalence (3.30). This explains the translation covariance.

Exercise 3.6. Find a geometric explanation of Y (u, z + 7) = Y (e"F-1u, 2).

There is a another shorter geometric explanation of translation covariance:
e™E-1Y (u, z)v amounts to moving the outgoing large string in the string picture in (3.25)
by —7. This is the same as fixing the outgoing string and translating the two incoming
strings by 7. Translating the one around 0 changes v to e”2~1v, and translating the one
around z just changes z to z + 7.

This second explanation is however less rigorous than the first one. But the first one
is not rigorous anyway. So why should we care about the issue of rigor here? Well,
our first geometric explanation for translation covariance, as well as the one in Subsec.
3.14 for rotation covariance, is much more rigorous in the sense that you can easily get
the correct formulas using this method. You may try and give a short explanation for
rotation covariance using our second method. Then you will realize that it is not easy to
get the correct formula since the change of local coordinates is not so easy to visualize.

3.16

Now we return to rigorous mathematics. We are going to prove translation covariance
rigorously. For that purpose, we need to generalize the differential equation method in
the proof of scale covariance to the following vector-valued form:

Lemma 3.7. Let W be a (non-necessarily finite dimensional) vector space, and f € W{[z]].
Suppose that d%f(z) = Af(z) for some A € End(W). Suppose also that f(0) = 0, namely, the
constant term in the power series f(z) is 0. Then f = 0.

Proof. Write f(z) = >, oy fn2" where each f,, € W. The assumptions say that fy = 0 and

Z nfpz" "t = Z Afpz".

neN neN

Sonf, = Af,—1 where n > 0. This proves that all f,, are 0. O
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3.17
We have said that the integral form of [L_1,Y (u, 2)] = 0,Y (u, z) is

<v', ey (u, z)e_TL*1v> = <v', Y(u,z + T)U>. (3.31)

This relation is more difficult to address than the scale covariance since both sides actually
involve infinite sums of powers of 7. Our goal is to understand: on which domain does
this relation hold? Certainly we need 7 # —z. But this condition is far from enough.

Let us first understand the two sides as infinite series of 7 and z. Assume without loss
of generality that u,v,v" are homogeneous. The right hand side is of the form a(z + 7)™
for some a € C,m € Z. Certainly this expression makes sense as a rational function, but
we shall first regard it as a formal series of 7,z by expanding (z + 7)™ on the domain
7| < |2|, namely (z + 7)™ = ¥, oy (%) 2™ %", Thus, the right hand side of (3.31), as an
element of C[2*!][[7]], is understood as

Y (0,2 + 7Y = ZZ( ><v Y (@) - 21Kk,

neZ keN

Here, the sum over n € Z is finite, and when the vectors are homogeneous, there is only
one possibly non-zero summand.

But why do we expand (z + 7)™ on |7| < |2|? Why not |z| < |7|? Well, this will give
us Y ey () 2¥7™ % which contains negative powers of 7. But the left hand side of (3.31)
actually has only non-negative powers of 7.

So let us turn to the left hand side of (3.31). It would be easier to first understand why

< M1y (u, z)ej‘L*lv> (3.32)

is an element of C[zF!][[\, 11]]. We first want to move e**~1 to the left hand side of the
bracket. In general, if L,, is defined on V, we define L_,, on V' to be the transpose of L,:
L_, = L}, or more precisely,

(L_pv' vy =, Lyv). (3.33)

In case you doubt why this transpose exists, we can write the definition even more pre-
cisely: Assume v’ € V/(m). Then L_,v’ is a linear functional on V(m + n) (so L_,, raises
the weights by n) whose value at any v € V(m + n) is (v, L,,v). (Recall that L,, lowers the
weights by n so L,v € V(m).) And L_,v" vanishes on V(a) if a # m + n.

Now, (3.32) equals

flz, A\ ) = <6)‘L1 'Y (u, z)e M vy = ;N 'l' LY (u, 2) 1v> (3.34)
n,le

This is in C[zX!][[\, ¢]]. Indeed, it is in C[zE1][[12]][\] since L}v' lowers the weight by n,
and hence vanishes when n > wtv’. But we will not need this fact here.

Now, the left hand side of (3.31) can be understood as f(z, 7, 7), noting the following
fact:
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Lemma 3.8. Let W be a vector space. If p(z1,...,2n) € W([z1,...,2n]], then ¢(z,...,2)
naturally makes sense as an element of W[|[z]].

Proof. Write ¢(ze) = > an,,..ny21" - 25 . Then

90(27"'72) = Z Z any,..., nNZn

neNni+--+ny=n

where the inside sum is clearly finite. O

3.18

Proposition 3.9 (Translation covariance). For each u,v € V,v' € V', the following equation
holds on the level of C[2*1][[7]]:

< ety (u, z)e_TL*1v> =Y (u,z + 7)v). (3.35)
Here, the right hand side, which is a priori a Laurent polynomial of z+7, is expanded as if || < |z|.

Proof. Let f.(7) and g¢.(7) be the left and the right hand sides of (3.35), considered as
formal power series of 7 whose coefficients are elements of C[z*!]. Then clearly f,(0) =
g-(0) as polynomials of z*!. So, it suffices to prove that f, and g, satisfy the same linear
differential equation. The left hand side is f.(7,7) where

FOu) = (A0 Y (u, 2)e Py e CLE A ).
As a general result about multivariable formal power series, we have chain rule
anz(T’ T) = (ak + a,u)fz(Av :u) |)\:H:T'

(It is reasonable to believe that this is true. But you can also give a rigorous proof by
expanding the two series and check that their coefficients agree!) So, as

Onf( A ) = <e)‘L1L1v',Y(u, z)ef"L*1U>,
Ouf(A, 1) = —<e/\L1v’,Y(u, z)e_“L*1L71v>,

we have
Orf2(T) = <eTL1L11/, Y (u, z)e_TL—lv> - <eTL17/, Y (u, z)e_TL—lL_1v>.

This expression is not a differential equation of the C[z*1]-coefficients power series
/. But we can make it an ODE by fixing u, varying v, v/, and view f, asaV := Hom(V®
V', C[2*!])-valued power series of 7. Then 0, f, = Af. where A € EndV is defined by
sending each ® : V® V' — C[z*!] to

AP =00 (1®QL —L_1®1).
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Now, we compute (noting that the following sum is finite for each fixed u, v)
0rg. (T —(9<v Yuz+7‘v>—0<2anz+7)>
:;nan z+T)" = 54(%}(1”( )‘szw = (9<<v Y (u, C)v>‘<:Z+T.

By the translation property, the above equals

a7'gZ <’U L 1, (uv C)]U>‘C=Z+77

which also equals Ag.(7) if we now vary v,v’ and regard g as V-valued. Therefore,
f=(7) = g.(7) due to Lemma 3.7. O

3.19

Let us consider a useful variant of Prop. 3.9. Notice that (3.35) holds if v is replaced by
L7} and also both sides are multiplied by 7. Thus, (3.35) holds on the level of C[z%!][[7]]
if v is replaced by e~ 7111'. Namely:

<v',Y(u 2)e - 1v> <e Tl v, Y (u,z 4+ 1)v > (3.36)

Remark 3.10. The left hand sides of (3.35) and (3.36) converges absolutely when || < |z|
since the right hand side does. These right hand sides are linear combinations of (z + 7)™
for some m € Z, whose expansion Y, ;. a;x 2/ 7" := 3 (1) 2™ ™" clearly satisfies

sup Z |aj 20 TF < 400 (3.37)
(Z ‘I')€I<‘7 ke7Z,

on every compact subset K of {(z,7) : |7| < |z]}. Thus, the same convergence property
holds for the left hand sides of (3.35) and (3.36). We call this property the absolute and
locally uniform convergence, which will be the focus of our study in this course.

Thus, we have actually proved our first convergence result in this course. The method
used here is standard in the VOA theory: we show that a formal power series converges
by identifying it with the power series expansion of a holomorphic function, which can
be achieved with the help of linear differential equations.

3.20

Let us choose v = 1 in the formula (3.35). Then, as L_11 = 0, we obtain
', ety (u, 2)1) =V, Y (u,z+7)1) (3.38)

on the level of C[z, 7], since, by Rem. 3.4, the right hand side is a polynomial of z + 7.
As z — 0, the left hand side converges to {e™“1v/,u)y = (v/,e™"~1u) by (3.16). So we
conclude:
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Corollary 3.11. For each uw € V,v € V', the equation
<v'7 eTL*1u> = <v', Y(u,T)1>
holds as polynomials of . Equivalently, the equation
ety =Y (u, 7)1
holds on the level of V[[7]], which is equivalent to that for each n € N,

1
Y(U)_n_ll = jLilu (339)
.

We leave it to the reader to find a geometric explanation of e™ -1y = Y (u, 7)1.

4 Definition of VOAs, II: Jacobi Identity

4.1

Principle 4.1. When gluing Riemann spheres to get new spheres, the formula 7%, o T%, =

T, 45, truely holds if the local coordinates at the points for sewing are Mobius transfor-

mations, i.e. of the form z — ‘gjj:g where ad — be # 0.

A rough reason for this No-Ambiguity Principle is that only Ly, L+; are involved in
the change of coordinate formulas between Mdobius transformations, and the Lie bracket
relations between them do not involve the central charge.

4.2

We shall give motivations for the Jacobi identity.

We first remark on the sewing of compact Riemann surfaces in Subsec. 1.4. Suppose
we have data X = (C; z.;7) and X' = (C'; y; 7,) and we sew them along z; and ). For
simplicity, we set £ = n,w = 7). From (1.4), we know that the gluing law is that any
z € £71(S!) (recall that £ ~1(S!) is a boundary string of the corresponding surface ¥ for X)
and any y € @ !(S!) are identified following the rule

r=y =  @)wly) =1L (4.1)

This definition of gluing is topological, but not complex analytic. Analytically, we are
actually gluing a neighborhood of £~1(S!) and one of w~*(S!) using the rule (4.1) for all
x in the first neighborhood and y in the second one. It is clear that a (locally defined)
function on the first neighborhood is holomorphic if and only if it is so on the second one.
This defines the complex analytic structure on C#C".

Remark 4.2. Let us be more precise on the shape of the neighborhoods. Let £ and w
be defined (and injective) on U, U’ respectively. Choose r > 1,p > 1 such that {(U) o
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D,,w(U’) o D,. Then the following neighborhoods of {1 (S!) and w1 (S!) are glued via
the relation (4.1):
€ (Ay,) = e U p < [e(e)] < 1)

Iidentiﬁed via (4.1) 4.2)

p

@ (A ,) = {ye U ! <|w(y)| < p}

The parts {r € U : |£(z)| < p~t} and {y € U’ : |w(y)| < r~'} are discarded when gluing.

SEE oG

As pointed out before, when we associate finite energy vectors to the incoming
strings/points, we may scale their local coordiates. However, for the local coordinates
at the output points and the points to be sewn, an arbitrary scaling is not allowed. We
thus assume that Assumption 1.1 holds after scaling (by some A with arbitrarily large |A|)
the local coordinates at the incoming points. This amounts to the following

4.3

Assumption 4.3. If z; is either an outgoing point or a point to be sewn with another
point, then the local coordinate 7; at x; defined on a neighborhood U; 5 x; satisfies that
ni(Ui) > DY, that n; (D) A n; ' (DS') = & if x; is either outgoing or a point to be sewn,
and that z; € n; (D) if x; is incoming and not to be sewn.

Remark 4.4. There is indeed one way we can slightly loosen the above assumption. Using
the notation of (4.1). Then we may assume that Assumption 4.3 after scaling { by some A €
C* and @ by A~!. Then the rule for gluing (4.1) is not changed. On the side of interaction
maps 7%, the change ¢ v \¢ adds a factor A=20 ® (A) ~L0 to one tensor component in T%;,

and ¢ v~ A71¢ adds a factor A0 ® 3. These two are canceled after taking contraction
or composition.
4.4

We want to understand the product (w',Y (u, 22)Y (v, z1)w). Let ¢ be the standard
coordinate of C. By the sewing property in Segal’s picture, this expression should corre-
spond to the sewing of

mzl = (]P)%;O,Zl, o0; CvC - Z17<_1)7 mzz = (]P%;O,Zz, ooanC - Z?)C_l)

along the points o of B, and 0 of B,,. (Here, both P} and P} are P!. We assume the
two oo are outgoing before sewing.) Assumption 4.3 is satisfied when 0 < |z;| < 1 <
|z2| < +o0 if we consider all the points not for sewing as incoming. The sewing rule is
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that 71 € P},0 < |7, !| < +o0 is identified with 72 € P},0 < |y2| < +oo if and only if
v Loy =1, namely v; = 2. (Here, we set r = p = o0 in order to apply Rem. 4.2. The
discarded points are the oo of P} and the 0 of P3.) Thus, the sewing is just placing the first
sphere onto the second one.

v u v
N 4 \ Ve

The result of sewing is
By o = (P10, 21,20,00,¢ — 21, — 22, ) (4.4)
Assuming all the points of 3, ., as incoming, for each u, v, w,w' €V,
Ty., ., (w,v,u,w") =W, Y (u, 20)Y (v, 21)w) (if 0 < |z1]| < |22| < +0). (4.5)

The reason why the conditions |z1| < 1 and 1 < |z2| can be dropped is explained below.

4.5

We explain why (4.5) holds provided 0 < |z1| < |z2| < +0.

Pick A € C such that |z;| < |A| < |22|. Following the guide of Rem. 4.4, we replace the
local coordinate (! of 3., by A(™! and the one ¢ of B., by (/. Then Assumption 4.3 is
again satisfied. In particular, the outgoing string of P} around oo and the incoming one of
P} around 0 are both |A[S'.

The interaction map Ty, : H®? — H acting on w ® v is ALY (v, 21 )w. Tip., sends
u®_ e VRVtoY(u,z) 0 . The composition of these two expressions, evaluated with
w’ € V, is again the right hand side of (4.5). And the result of sewing is again ‘B, .,. So
(4.5) holds in general.

— '

4.6

According to the physical definition of V in Subsec. 1.12 as well as the No-Ambiguity
Principle 2.10, we know that when the vectors of V are inserted, the correlation func-
tions change holomorphically with respect to the translation of the marked points and
their local coordinates. Thus Ty, ., (w,v, u,v’) is a holomorphic function on Conf?(C*) =
{(21,22) € C* : 21 # 29}. Since, similar to (4.5), we also have

Ty., ., (w,v,u,w") =W, Y (v, 21)Y (u, 22)w) (if 0 < |z2| < |21| < +00), (4.6)
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we conclude that (w',Y(u,z2)Y(v,2z1)w) defined on 0 < |z1] < |z2] and
W', Y (v,21)Y (u, 22)w) defined on 0 < |z2| < |21] can be continued to the same holo-
morphic function on Conf?(C*). That this fact is true for all w,w’ € V (or more generally,
allw e V,w' € V' if V ~ V' is not assumed) is simply written as

Y(u,22)Y (v, 21) ~ Y (v, 21)Y (u, 22). (4.7)

This property is called commutativity.

4.7

We now consider the sewing of

fp21 = (P%,O, 21, 90; CvC - Zl;C_l)a mZQ—Zl = (P%1;0722 — 21, 03 C,C — 22 + Zly(.._l)

(where P, = P!) along the points z; € P{ and 0 € P};. We assume 0 < |23 — 21| <
|z1] < +00. Choose A € C satisfying |22 — 21| < |A| < |21]. Replace the local coordinate
¢ — 2z of P, by A7H(¢ — 21) and the one (! of PB,,_., by A\(!. Then Assumption 4.3
is satisfied. The rule for sewing is identifying 71 € P1,0 < [A7Y(y1 — 21)| < +oo with
Y91 € P30 < |)\72_11] < 400 if and only if (y; — z1) = 721. Thus, gluing B, ., to P,
amounts to translating B.,_., to P.,. After sewing, the points 0 and z» — 21 of P, .,
become z; and z>. (The points z; of B, and oo of P, ., are discarded.)

v i
2,2, -
“«u Ll
# e - v
T il
w w

This sewing picture gives
Ty, ., (w,v,u,w") = (W', Y (Y (u, 22 — 21)v, 21)w)y (i 0 <[22 — 21| < [21] < +0). (4.8)
We therefore have the associativity property

W'Y (u, 20)Y (v, 21)w) = (W', Y (Y (u, 22 — 21)v, 21)w)

4.9
if0<|22—21|<|21‘<|22|. ( )

Geometrically, it means the equivalence of sewing spheres in the following way:

v u
\ 4 N 4
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4.8

The fact that for all u, v, w € V,w’' € V/, (4.5), (4.6), and (4.8) can be defined as holomor-
phic functions of z;, 22 on the given domain (the precise meaning will be given later), and
that these three expressions can be extended to the same holomorphic function (namely
Ty, ., (w®v@u®uw')) on Conf 2(C*) is called the Jacobi identity in the complex analytic
form. (See Def. 7.16 for the precise statement.) Roughly speaking,

Jacobi identity = Commutativity + Associativity. (4.10)

For the moment, we will derive an algebraic version, and use it as the formal definition
of Jacobi identity in Def. 3.1.

Write f(21,22) = Tp, ., (w®@v®u®u'). Fix z; € C*, and consider f as a holomorphic
function of 2z on C*\{21}. (Moreover, from (4.5), (4.6), (4.8), and by the lower truncation
property (3.15), it is easy to see that f has finite poles at z; = 0, 22,%0. So f is a mero-
morphic function.) By the residue theorem, for each meromorphic 1-form x on P! with
possible poles only at 0, 21, o0, we must have (Res;,—o + Res,,—,, + Res,,—o) fre = 0. Itis
easy to see that such p are linear combinations of those of the form 25"(zo — z1)"dzs.

Equivalently, choose C, to be a circle around 0 whose radius is > |z1|, C_ is one
around 0 whose radius is < |z1|, and Cj a small circle around z; between C'; and C_.

Let f1, f—, fo be respectively the right hand sides of (4.5), (4.6), (4.8). Then, when z; is on
C4,C_, Cy respectively, f equals f4, f—, fo. Then the fact that f,, f_, fo defined on their
domains extend to the same meromophic function on P! with poles 0, 21, oo implies for
any m,n € Zand p = 25" (22 — z1)"dz that

Lo fLom_ Jon @11)
2im 2im 2im
Cy c- Co
Indeed, the latter one also implies the previous one. This is guaranteed by the so called
strong residue theorem, which will be discussed in Subsec. 11.11. The strong residue theo-
rem will imply that the analytic form and the algebraic form of Jacobi identity are equiv-
alent.
Recall the general formula §, Y (u, z)2" ;llfr = Y (u)g if C is a circle around the origin.

When z; € C'y, 1« has absolutely convergent expansion p = >}, (7) (—21)'25" " !dzs. So

2177

—Z( ) )WY @Y (0, 20)0) = a1)

leN
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When 29 € C_,

§ & = § <n)(—Z1)"lzgl+l<w',Y(v,zl)Y(u L dzs
G leN ! 2

= 2 <?Z> (—21)" ', Y (0, 21)Y () w) =: b(21)

When z; € Cp, since 0 < |22 — 21| < |21], we have the absolutely convergent expansion
= (z1+ (22 — 21))™ (22 — 21)"d2z2 = > ( )zl l(zz — 21)"*dzy. So

Jor _ ZZJ < ) (20 — 20)" ! Y (Y (1, 29 — 21)0, 20 )w) 22

21w 2im
Co

-y ( ) A, Y (Y ()i, 210 = e(21)

leN

Now we have c(z1) = a(z1) — b(21). We vary z;. For each k € Z, multiply both sides
by 2§ 4 le and apply the residue at z; = 0. We then get (by suppressing v’ and w)

Definition 4.5 (Jacobi identity (algebraic version)). For each u,v,w € V, and each
m,n, k € Z, we have

Z (7) Y (Y (u)ntiv) m+k—l

g:: ( > (Wman—1Y (V)g+1 — %PU”H <7> Y (0)ntk—1Y (W) met1- o

This completes Definition 3.1.

In the above three terms, when acting on every w € V, each sum over [ € N is finite
thanks to the lower truncation property.

5 Consequences of Jacobi identity; reconstruction theorem

5.1

The algebraic form of Jacobi identity is very complicated. Very few people can write
down exactly the right formula without checking the references or reproving this formula
using the long argument in Subsec. 4.8. But we shall try our best to explain how to use
this formula and what this formula implies.

First of all, if (4.12) holds whenever m = 0 or n = 0, then it holds in general. We will
not give a rigorous proof for this statement. But, since (4.12) is derived from (4.11) for
all 1 = 25" (29 — 21)"dz2, the readers can be convinced of this statement by the following
elementary fact:
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Exercise 5.1. Show that 23*(22 — 21)" is a C[z{"']-linear combination of z& and (23 — 1)’

where k,l € Z and | < 0. (Hint: Assume without loss of generality that m,n < 0. Prove
the statement by induction on |m| and |n|.)

Thus, we may understand (4.12) by restricting to the special cases m = 0,n < 0 or
n = 0.

5.2

We now return to rigorous mathematics. Consider the case thatn = 0, i.e., u = z5"dzs.
Then (4.12) reads

[Y (@, Y(0)] = Y (T)Y(Y(u)lv)mk_l. (.1)

leN

This is a Lie bracket relation. Interestingly, this general formula does not come from Lie
groups, but from the residue theorem. However, in many concrete examples, such Lie
bracket relations do have Lie-theoretic origins.

Let me take this chance to say a few words about the similarity and the difference
between the VOA theory and the Lie theory. In the VOA theory, the residue theorem is
the standard way of passing from the complex analytic world to the algebraic world. The
opposite direction is through the strong residue theorem. This is strikingly different from
the Lie theory, in which one passes from the differential geometric formulation (i.e. Lie
groups) to the algebraic one (i.e. Lie algebras) by taking derivatives, and vice versa by
taking exponentiation/integral. Thus, although Lie brackets do appear in VOAs, it is not
always fruitful to think of VOAs as generalizations of Lie algebras. These two mathe-
matical objects have very different geometric intuitions. Also, if we view VOAs in the
complex analytic way, then by (4.10), VOAs are more like commutative algebras. Thus,
VOAs can be viewed as a quantum version of both the Lie algebras and the commutative
algebras.

5.3

Take u to be the conformal vector c in (5.1) and recall that Y (¢),;,+1 = Ly, We obtain

[LTTHY(U)/C] = Z <m ;_ 1>Y(Ll—lv)m+k'+1—l

leN

m+ 1
=Y (L-10)mik+1 + Z < 41 )Y(sz)m+k—l- (5.2)
leN T

Multiply z=*~1 to both sides and take the sum over all k € Z, we obtain

m+1

(L, Y (v,2)] = 2" Y (Loqw,2) + ) ( 41

)zm_lY(le, 2) (5.3)
leN
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either on the level of End(V)[[2*!]], or as Laurent polynomials of z when evaluating

between any w € V and w’ € V'. Then the cases m = —1 and m = 0 imply
[L_1,Y(v,2)] =Y (L_1v, 2) (5.4a)
[Lo,Y (v,2)] = 2Y(L_yv, 2) + Y (Lov, 2). (5.4b)

Note that these two equations follow solely from the Jacobi identity. By the translation
property, we have

d
Y(L_yv,z2) = %Y(v,z). (5.5)
Equivalently, by applying Res.—q(-)2"dz, we get a crucial relation
Y(Lo10)n = =nY (0)n1. (5.6)
(The quickest way to get the formula on the right hand side is integration by parts.)

Exercise 5.2. Show that (3.39) follows from (5.6) and the creation property.

Exercise 5.3. Assume that V satisfies the lower truncation property (3.15) and all the ax-
ioms of VOAs in Def. 3.1 except the grading and the translation property. Use (5.4) to
prove that the following conditions are equivalent.

1. The grading property.

2. Y(L_jv,2z) = 0,Y (v,2) forallv e V.

3. The translation property.

4. The translation property without assuming L_;1 = 0.

Thus, we may use the lower truncation property and any of these four conditions to
replace the grading and the translation properties in the definition of VOAs.

Exercise 5.4. In (5.2), set v = ¢, and show that this formula is compatible with the Virasoro
relation.

5.4

We see that (5.3) for m = 0, —1 (together with (5.5)) means the grading and the transla-
tion properties, which integrate to the rotation and the translation covariance. For general
m, (5.3) also has a geometric explanation. To simplify discussions, we give such an expla-
nation by assuming that v is primary.

Definition 5.5. A vector v € V is called a primay vector if it is homogeneous and L,v = 0
foralln > 0.

Some important VOAs (affine VOAs for instance) are generated by primary vectors.
And many important formulas in CFT were first proved by physics who assumed that
their theories are generated by primary vectors in the following sense:

49



Definition 5.6. We say that a VOA V is generated by a subset I — V if V is spanned by
vectors of the form Y (v1)p, -+ Y (vg)n,1 where k e N, ny,...,ng € Z,and vy, ..., v; € E.

Indeed, formula (5.3) for any primary vector v is one such example, which (combined
with (5.5)) reads

[Ln, Y (v,2)] = 2™10.Y (v, 2) + (m + 1)wtv - 2™Y (v, 2). (5.7)

This is called by physicists (or more precisely, is equivalent to what physicists call) the
conformal Ward identity.

Choose a holomorphic vector field f(2)d, = >,.; an,2""10, on a neighborhood of
St. Let o, = exp(rfd,) be the holomorphic flow. Then (5.7) (with L,,, 2™ replaced by
Do @mLm, X0, amzm) integrates to

erznezanLny(%Z)e*TznezanLn = (&ZUT(Z))thY(U,o'T(z)), (5.8)

called conformal covariance. For now, we do not treat this formula in a rigorous way. But
the readers can convince themselves by checking that both sides satisfy the same linear
differental equation over 7.

The right hand side of (5.8) looks familiar to us. Set 7 = 1, 0 = 01, and A = wtv. Then

formula (5.8) resembles the change of variable formula (9(po0)) A (Opo0) 2. (0,0)2 for
a function ¢ = ¢(z) and 0 is the standard holomorphic derivative. Indeed, the primary
field Y (v, z) can be viewed as the quantization of (aap)A, or more generally, of ¢y - - - OpAa.
It is also interesting to write (5.8) in the form

eZanLn (Y(Q}, Z)dzA)e—ZanLn _ Y(U, U)dUA- (59)

Conformal covariance (5.8) can be interpreted in a similar geometric way as we did for
rotation and translation covariance in Subsec. 3.14 and 3.15. (We will give this explanation
in the future assuming f = Zn>0 a,z2"*10,.) So, from the CFT point of view, this formula
follows naturally from our change of parametrization formula in Sec. 2 and the physical
definition of the vertex operator Y (v, z) in Sec. 3 (if we ignore the issue of uniqueness up
to scalar multiplications). In particular, the geometric intuition we are using for formula
(5.7) is Lie theoretic, because the relationship between Virasoro algebras and change of
parametrization formula is the one between the representations of Lie algebras and Lie
groups. But we have also derived (5.7) from the Jacobi identity, whose geometric intuition
relies on the residue theorem. How should we view this coincidence of the two geometric
pictures?

My answer is that we should regard the Lie theoretic explanation as the fundamental
one for conformal covariance/Ward identity. In fact, to use the Jacobi identity to obtain
(5.7), we have assumed that ) L,27"2 is the vertex operator of a vector of V, namely
the conformal vector c. But the reason that this assumption should be included in the
definition of VOA was not explained in Sec. 3. Here we give a short explanation: we will
see later (cf. the reconstruction Thm. 5.12 and Rem. 5.13) that if the Fourier modes A,,, €
End(V) of a field A(z) satisfy the correct Jacobi identity (such as (5.1) or (5.7)) with the
modes Y (v), for v inside a generating subset £ — V, then A(z) must be Y (u, z) for some
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u € V. Thus, (in my opinion) the better point of view is that we use the conformal Ward
identity (whose geometric intuition relies on the change of parametrization formula and
the physical meaning of Y (u, z)) and the Jacobi identity to explain the fact that >} L,z 2
is represented by a vector c in V, but not that we explain the Ward identity using the VOA
Jacobi identity.

5.5

We say that V is of CFT-type if dim V(n) < 4o for each n, and V(0) = C1. The CFT-
type condition is a very natural and mild one satisfied by all the examples in our notes. It
says that the only quantum states with zero energy are the vacuum.

In this subsection, we assume V is CFT-type, and study (5.1) for vectors in V(1). For
each u € V(1), we write Y (u),, as uy, for short. By (3.10), u; lowers the weights by [. Then
(5.1) says [tum, vn] = (Uo¥)mtn + M(U1V)m+n—1, Where w;v vanishes when | > 1 since its
weightis 1 — [. Since ujv € V(0) € C, we may write

uv = (u,v)1 (5.10)

where (-, -) is a bilinear form on V(1). Thus (u1v)m4n—1 = (%, v)dm, —n since Y (1,z) = 1.
Set

[u, v] := ugv. (5.11)
Then
[, Un] = [U, V]man + m(u, V)0, —n. (5.12)

Proposition 5.7. [-, -] defines a Lie algebra structure on V(1), and (-, -) is an invariant symmetric
bilinear form, namely, (u,v) = (v, u) and ([w, u],v) = —(u, [w, v]).

Proof. w € V(1) — w_; is injective since w_;1 = w by the creation property. By (5.12),
[u,v]-1 = [ug,v—1] = —[v_1,u0] = —[v,u]-1. This proves [u,v] = —[v, u]. By calculating
[u1,v_1] and [v_1,u;] using (5.12), we obtain (u, v) = (v, u). (5.12) implies

[wk’ [um’ Un]] = [wa [u’ U]]k+m+n + k(w’ [u’ U])5k+m+n,0~

Apply the Jacobi identity for the Lie bracket of linear operators, we obtain the Jacobi
identity for [-,-] on V(1) if we set k = —1,m = n = 0, and we obtain the invariance of (-, -)
ifwesetk=0,m=1,n=—1. O

The vector space Spang{v,, 1y : n € Z} is a Lie algebra whose bracket is the standard
one for linear operators. Since it satisfies (5.12), we call it an affine Lie algebra associated
to the finite-dimensional complex Lie algebra V(1). When V is generated by V(1), we say
V is an affine VOA.

We are mostly interested in the case that (-, -) is non-degenerate. This is always true
when the CFT (or the VOA) is unitary, since (-, -) is indeed the negative of the correlation
function (-,-) = (O - |-) of Ay restricted to V&2, Moreover, a unitary affine VOA V is
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indeed uniquely determined by its Lie subalgebra V(1), where V(1) is a direct sum of an
abelian Lie algebra and a semisimple one. (We refer the readers to [Guil9, Sec. 1 and 2]
for a detailed account of the relationship between unitary VOAs and their “unitary” Lie
subalgebras V(1).) Affine Lie algebras and affine VOAs in the strict sense are those such
that V(1) are simple Lie algebras. If on the other hand V(1) is abelian, then V is called a
free boson VOA or a Heisenberg VOA.

If V is generated by c, we call V a Virasoro VOA.

5.6

We now turn to the case m = 0,n < 0 in the VOA Jacobi identity (4.12). First consider
n = —1. Then (4.12) reads

Y(Y ZY 1Y (v k+l+ZY v)p—1-1Y (u);. (5.13)
leN leN
This formula can be written in a compact way. For a general series f(z) = Y., a2 7"l €
W [[2*!]] where W is a vector space, we let
2= Yaz 7 f2)- =D la 7 (5.14)
leN leN
(so we have f(z) = f(2)+ + f(2)-). Define the normal-ordered product
Y (u,2)Y(v,2): =Y (u,2)-Y(v,2) + Y(v,2)Y (u, 2) + (5.15)
which is non-commutative in general. Then (5.13) can be abbreviated to
Y (Y (u)-1v,2) =Y (u,2)Y (v, 2): (5.16)
By (5.6) we have
1 .
Y(u)_j_l = ﬁY(Lj_lu)—l (517)
when j > 0. Combine this with Y (L’ ,u, z) = 8]Y (u, z), we obtain
1
Y (Y (u)—j_1v,2) = ﬁ:(agY(u,z))Y(v,z): (5.18)

where the normal-ordered product is defined in a similar way using the positive and the
negative parts of &1Y (u, z). We leave it to the readers to check that this formula agrees
with the Jacobi identity (4.12) when m = 0,n < 0.

Thus, once we know how Y (u, z) looks like for all u in a small generating subset E of
V, we can write down the formula of Y (w, z) for any w € V using the formula

V(Y (u1)-ji—1-- Y (up)—j—10,2) = M‘S%IY(UL 2) - 0FY (up, 2) - Y (v, 2): (5.19)
where the normal-ordered product for several operators is defined inductively by
A Ay Ay = A1 (GAy - Ay (5.20)
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5.7

One can also write down the explicit formula of Y (Y (u),v, z) for n > 0 using (4.12)
where m = 0,n > 0. But as I said, (4.12) is determined by the special cases m = 0,n < 0
and n = 0. So we hope that Y (Y (u),v, 2),n > 0 can be calculated using (5.1). This is true.

Write (5.1) in the equivalent form

[Y (W)m, Y (v,2)] = Z (?) zm_lY(Y(u)lv, z). (5.21)

leN

Thus, for m > 0, Y (Y (u)mv, 2) can be computed inductively by

Y (Y (u)ov, z) = [V (w)o,Y (v, 2)]

Y (Y (wWmv,z) = [Y(u)m, Y (v,2)] — 2 (7) Y (Y (u)w, 2).

=0

(5.22)

We now see the close relation between the Lie brackets of vertex operators and the
data Y (Y (u)mv, 2), m = 0. The latter plays a very different role from Y (Y (u)mv, z),m <
0. To understand this relation better, we write the associativity relation (4.9) as

Y (u,22)Y (v, 21) = 2 (22 — 21) "™ W (Y (u) v, 21) (5.23)

meZ

when 0 < |z2 — 21| < |21|. Here, we understand Y (u, 22)Y (v, 21) as Y (v, 21)Y (u, 22) when
0 < |21| < |22| or more generally, as a linear functional on V®? sending w®uw’ to Tp., ., (w®
v ®u®w') (the correlation function associated to (4.4)) for all (21, z) € Conf?(C*). Then
the part m > 0 in (5.23) accounts for the poles of Tp.. ., (wW®vRuw') at 2o = 27.

The summand in (5.23) vanishes for sufficiently positive m. In physics, a series expan-
sion of the form

A(z)B(z1) = Y| (22— 21)"C™(21)

m=—N

is called the operator product expansion (OPE) of the fields A(z2), B(z1). Thus, in the
VOA context, OPEs are just the associativity property (4.9). OPE is useful to physicists be-
cause it allows them to reduce the calculation of 4-point correlations functions to that of
3-point ones, or in general, N-point to (/N — 1)-point.

We split the right hand side of (5.23) into two parts: m > 0, which is called the regular
terms since it has no poles at z3 = 21, and m < 0 called the singular terms. Thus

Y(Y(u)nN_1v,21) . Y (Y (u)ov, 21)

Y(u, ZQ)Y(U, 2’1) = (22 — 21>N (zg — Zl)

+ regular terms,

or, written in physics language,

Y(Y(u)y_1v,21) N Y(Y(u)ov,zl).

Y(u’ zQ)Y(U, 21) ~ (Z2 — Zl)N (22 - Zl)

(5.24)
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Thus, to summarize, (5.1) establishes a close relationship between the Lie brackets of vertex
operators, the finite poles of the correlation function Ty, _ at 21 = z2, and the finitely may
singular terms in the OPE of vertex operators. As a special case, from (5.21) and (5.22) one
sees that two vertex operators Y (u, 22), Y (v, z1) commute (namely, their Fourier modes
Y (4)m, Y (v)r commute) iff there are no singular terms in the OPE of Y (u, 22)Y (v, 21), iff
Ty, ., (-®v®u® -) is holomorphic on a neighborhood of z; = z;.

5.8

In the previous subsection, we derived the relationship from the definition of VOAs
(in particular, from the VOA Jacobi identity). So one may ask this natural question: does
this relationship rely on the full Jacobi identity? For instance, does it rely on (5.18)?

The answer is no. In a very vague sense, any of the following three implies the others
without assuming the full Jacobi identity.

1. Suitable Lie bracket relations hold for a pair of field operators A(z2), B(z1).
2. The finite poles of (the analytic continuation of) (w’, A(z2)B(z1)w) at zp = 2;.

3. The finitely many singular terms in the OPE of A(22)B(z1) and, in particular, the
existence of such OPE.

Clearly, the third one a priori implies the second one, since the second does not assume the
existence of OPE. Thus, as we have said that OPEs are roughly the same as associativity,
we see that the associativity (and indeed, the full Jacobi identity) can be derived from the
first or the second statement above. This is called the reconstruction theorem because it
allows us to build examples of VOAs by checking only a small part of the Jacobi identity,
namely the Lie bracket relations. This theorem is the most important one for constructing
examples of VOAs.

A rigorous and detailed discussion of the equivalence of the above three statements
will be given in Sec. 7. The first and the second statements correspond to three seeming
different but indeed equivalent definitions of the locality of A(z2), B(z1). (There are two
ways to describe the second one, a formal variable way and a complex analytic way.)
Here, we first state the rigorous definition of the first one.

5.9

WeletV = @, .y V(n) be an N-graded vector space, graded by a diagonalizable oper-
ator Lg. We do not assume that V and L are from any graded vertex algebra.

Definition 5.8. An (Lo-)homogeneous field (operator) on V is an element

A(z) = ), Apz " e End(V)[[2%]]

neZ

(where each A,, is in End(V)) satisfying
[Lo, A(2)] = Ay - A(z) + 20, A(2) (5.25)
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or equivalently,
[Lo, An] = (Aa—n—1)A, (VneZ). (5.26)
A 4 is called the weight of A(z).

Clearly, a homogeneous field A(z) satisfies the lower truncation property A(z)w €
C((2)) (for all w € V).

Definition 5.9 (Local fields (Lie algebraic version)). Given homogeneous fields A(z) and
B(z), we say A(z) is local to B(z) if there exist C7(z) = Y _, Chz"""1 € End(V)[[2*!]]
(where j = 0,1,...,N — 1 for some N € N) satisfying

N—-1
[Am, Be] = ) (l)cl b (5.27)

1=0
for all m, k € Z. We consider the right hand side of (5.27) as 0 if N = 0.

Remark 5.10. A(z) is local to B(z) if and only if there exist D%(z),...,DN71(2) €
End(V)[[2*1]] satisfying for all m, k € Z that

[Am, Bi] = Z m!DL . (5.28)

This is because Cl = Cl _;and Dl are related by Cl + Zp 141 Qpl C’ = Dl where each
ap) € Ris determlned by (p) = mp + Zl:l ap - ml.

Exercise 5.11. Use (5.28) to show that if A(z) is local to B(z) then B(z) is local to A(z).

5.10

Roughly speaking, reconstruction theorem says that if we have a small set £ of op-
erators A(z) € End(V) that generates V and satisfies all the axioms in the definition of
graded vertex algebras/VOAs, except that the Jacobi identity is replaced by the weaker
condition that the operators in £ are mutually local and self local, then the Jacobi identity
is automatically satisfies, and hence V is a graded vertex algebra/VOA. This theorem will
be proved in Sec. 8.

Theorem 5.12 (Reconstruction theorem). Let &£ be a set of Ly-homogeneous fields on V. As-
sume that the following conditions are satisfied. Then V has a unique graded vertex algebra struc-
ture such that each A(z) € € is a vertex operator (namely, is of the form Y (u, z) for some u € V),
and that the vacuum vector 1 and the operator L_, are those described in the following.

* Creation property: There is a distinguished vector 1 € V(0) such that A(z)1 has no negative
powers of z for all A(z) € E.

e Translation property: There is a distinguished L_; € End(V) such that L_11 = 0, and that
for each A(z) € € we have [L_1, A(2)] = 0,A(z).
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o Generating property: Vectors of the form AL --- A% 1 (where k € N, Al(2),..., A%(z) €
E,andny,...,ng € Z)span'V.

® Locality: Any two fields of € are local.

Moreover, if Ly, L_1 can be extended to a sequence of operators (Ly)nez on V such that
ez Lnz""72 belongs to €, and that the Virasoro relation (2.8) is satisfied for some ¢ € C,
then V is a VOA whose conformal vector c satisfies Y (c,2) = Y. 5 Lpz7 "2

Note that the uniqueness of the graded vertex algebra/VOA structure follows directly
from (5.19). The non-trivial part of this theorem is of course the existence of such struc-
ture.

Remark 5.13. The end of the reconstruction Thm. 5.12 means that in order to show that
a graded vertex algebra V is a VOA, it suffices to show that Lo, L_; can be extended
to (Ly )nez satisfying the Virasoro relation, that 7'(z) = | L,z "2 satisfies the creation
property (namely, L, 1 = 0 for all n > —1), and that T'(z) is local with any field in £ (by
showing for instance the conformal Ward identity [L,,, A(2)] = 210, A(2) + A4 2™ A(2)
for all A(z) € £ if one expects that all A(z) are “primary”). The translation property is
automatically satisfied due to the Virasoro relation [L_;, L] = —(n + 1)L,,_1.

6 Constructing examples of VOAs

6.1

In the previous section, we have mentioned some important examples of VOAs: affine
VOAs and Virasoro VOAs. But we didn’t explain why they exist. This is the task of this
section. The standard references for this section are [LL, Chapter 6] and [Was10] (with
emphasis on the unitarity aspect).

The style of this section is different from the previous ones: it has a strong flavor of
Lie theory. The methods in this section will not be used in the future (except when we
discuss examples of VOA modules). So the readers can safely skip this section if they do
not want to bother with the existence issue. (But they should at least read Subsec. 6.17 on
tensor product VOAs.)

Our first class of examples are Virasoro VOAs, namely, those generated by the confor-
mal vector c. To begin with, the Virasoro algebra is a Lie algebra Vir = Spanc{L,,, K :
n € 7} satisfying the bracket relation

[Lm, Ln] = (m —n)Lpyyn + %(m + 1)m(m — 1)6m,—n,

[K, L] = 0.

We know that any VOA must satisfy L,1 = 0 for all n > —1. Motivated by this fact,
we have:

Proposition 6.1. Let V be a representation of Vir such that Ly is diagonalizable and has N-
spectrum. Assume that V has a distinguished vector 1 killed by L,, for all n > —1, that vectors of
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the form Ly, - -- Ly, 1 (where k € N,ny, ... ,n, € Z) span V, and that K acts as a constant c € C.
Then V has a unique natural structure of a Virasoro VOA. Its central charge is c.

Proof. This follows immediately from the reconstruction Thm. 5.12. Note that by (5.28),
> oz Lnz"""? is local to itself due to the Virasoro relation. O

6.2

Thus, it remains to construct Vir-modules satisfying the conditions in Prop. 6.1. Let
us first find a “largest” such module. We expect that this module should have basis
L_, ---L_, 1wheren; >--- > nj > 2, because:

Exercise 6.2. Let V be as in Prop. 6.1. Prove by induction on k that L,, ---L,,1
(for any ni,...,n) can be written as a linear combination of L_,,, --- L_;,, 1 where
l e Nymy,...,m > 2. (Hint: if n; < —2, move Ly, to the rightmost by using the Vi-
rasoro relation.)

Now let us construct this largest module Vs, (c, 0) for each ¢ € C. Its basis consists

of (—nq,...,—ny) where k € Nand ny > --- = n; > 2. The one with £ = 0 is de-
noted by 1. If n > ny, we simply define the action of L_,, on each (—n,...,—n;) to
be (—n, —nq,...,—ny). But we also want to define the action of L, on (—nq,...,—ng) =

L_,, ---L_y1forallneZ. In practice, we can write down the formula explicitly using
the Virasoro relation. For instance: LoL_, ---L_p, 1 = (n1+---+ng)L_p, --- L_p,1,and

L3L 4L 31 =[L3, L_4]L 31+ L_4[L3,L_3]1
=7L_1L_31 4+ 6L_4Lol + 2cL_41 = (14 + QC)L_41. (6.2)

There is a natural question about this approach: how do we verify that such defined
action of Vir on Wy (¢, 0) preserves the Lie bracket relations of Vir?

6.3

The standard way to deal with is issue is to use the Poincaré-Birkhoff-Witt (PBW)
theorem, which says the following: Let g be a Lie algebra (over any field). Let U(g) be
its universal enveloping algebra, i.e., the largest unital associative algebra containing and
generated by the vector space g such that zy — yz = [z, y| for all z,y € g. If E is a basis of
U (g) with a total order <, then vectors of the form

12X Tk (k)EN,IL’lZl’QZ"'ZIkEE) (63)

(when k = 0, we understand this expression as 1) form a basis of U(g).

The remarkable point about the PBW theorem is that if we define a vector space V' to
have a basis of vectors as in (6.3), and if we define the action of x € g using the Lie bracket
relations of g (similar to the argument in (6.2)), then this gives a well defined action of g
on V preserving the bracket relations of g, i.e., this gives a well defined representation of
g.

To apply the PBW theorem to our construction of VOAs, we need the following result:
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Exercise 6.3. Suppose g = g1 @ g2 where g1, g2 are Lie subalgebras of g. Use the PBW
theorem to show that there is an isomorphism of vector spaces U(g1) ® U(g2) — U(g)
sending each x1 -+ -, @ y1 - - -y to x1 - - - XxY1 - - - Yy Where x4 € g1, Yo € go2.

The proof is an easy application of the PBW theorem, which we leave to the readers.

6.4

Consider the following Lie subalgebras of Vir:
V_ = Span{L,, : n < —2}, Vi = Span{K, L,;n > —1}.

C. = C is a representation of V, if we let L,, actas 0 and K as c. So C. is also a U(V} )-
module. Now U (Vir) is clearly a right U (V. )-module. So

uWwv .
Indy,(y) Ce := U(Vir) ®@u(v,) Ce

is a (left) U(Vir)-module, called the induced representation of C.. This is a Vir-module,
and by Exercise 6.3, this vector space is isomorphic to U(V-) ®&c U(V+) ®w(v,)) Ce =~
U(V_), which by the PBW theorem has a basis of vectors the form L_,,, --- L_,,, 1 where 1
isthe unit 1 and n; > - -+ = ng > 2. So we can view Vy;.(c, 0) as Indgga)(@c. In particular,
this proves that Visi.(c,0) carries a ntural structure of representation of Vir. Hence, by

Prop. 6.1, Vyix(c, 0) is a Virasoro VOA with central charge c.

Exercise 6.4. Find an explicit expression of Y (L_4c, z) on Vyix(c,0) in terms of the Vira-
soro operators L.

6.5

Wir(c, 0) is not always an irreducible Vir-module. But the irreducible cases are the
most interesting one. For instance, every CFI-type unitary VOA is irreducible. (See
[CKLW18].)

The method of getting irreducible examples is quite standard in Lie theory: We shall
take the largest quotient of Vysi:(c, k). To be more precise, note that for any proper Vir-
invariant subspace W of Wy;.(c, h), note that L is diagonalizable on W2 ie., W has a
Ly-grading, whose lowest weight must not be 0 since otherwise it contains 1 and hence
must be Vyi; (¢, 0). Let I be the span of all such W, then I is the largest proper Vir-subspace
since I has no non-zero weight-0 vectors. Then

LVir(C, 0) = VVir(C7 0)/[

is an irreducible Vir-module, which is also a Virasoro VOA of CFT type by Prop. 6.1.

*In general, if D is a diagonalizable linear operator on a vector space M and W is an D-invariant subspace
of M, then D|w is diagonalizable. To see this, choose any w € M which is a finite sum w; + - - - + wy where
each summand is an eigenvector of D in M, and they have distinct eigenvalues A1, ..., Ax. Use polynomial
interpolation to find a polynomial p such that p(A;) = d1,;A1. So w1 = p(D)w € M.
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6.6

One may wonder when Ly, (¢, 0) equals Vysix(c, 0), i.e.,, when [ is trivial. Indeed, I is
non-trivial if and only if
6(p — q)®
c=Cpg=1— (6.4)
e P
where p,q € {2,3,4,...} are relatively prime. (Cf. [LL, Rem. 6.1.13] and the reference
therein.) In this case, Lyi (¢, 0) is called a minimal model. It has finitely many irreducible
modules. Minimal models are an important class of “rational” VOAs. More precisely:
rational and C5-cofinite VOAs. We will give precise meanings of these terms in later
sections. The theory of conformal blocks for such VOAs is well-established.
Itis a deep result that Ly, (c, 0) is a unitary Vir-module if and only if ¢ > 1 or ¢ satisfies
(6.4) with [p — ¢| = 1, namely,
6
=1—- — 6.5
¢ m(m + 1) (65)
for some integer m > 2. We refer the readers to [FMS, Chapter 8] and [Was10, Chapter
IV] for details.

6.7

We now turn to affine VOAs. We fix a finite dimensional complex Lie algebra g to-
gether with a non-degenerate symmetric invariant bilinear form (-,-). (Indeed, we will
not use the non-degeneracy until we define the Virasoro operators.) Recall that invari-
ance means

([X,Y],Z2) = —-(Y,[X, Z)). (6.6)

An affine Lie algebra is g with basis X,,, K (where X € g, n € Z) satisfying the Lie bracket
relation

[va Yn] = [Xa Y]m+n + m(Xv Y)(Sm,ana
[K, Xn] = 0.

It is more convenient to add a basis element D (which will be the Ly of our VOA) to g to
get a slightly larger Lie algebra g = g x CD such that

[D, Xp] = —mX,,, [D,K] = 0.

g is also called an affine Lie algebra.
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6.8
g decomposes into Lie subalgebras g = g— @ g+ where
g— = Span{X,, : X € g,n < 0}, g+ = Span{X,,, K,D : X € g,n > 0}.

Then U(g) ~ U(g—) ®U(g+ ) by Exercise 6.3. For each [ € C called the level, we let C; = C
be an gy-module such that K acts as [ and X,,, D act trivially. We are interested in two
types of associated VOAs:
U(g ~

Va(1,0) i= Indy (Y '€, = U@)gu.)Ci 6.7)
which as a vector space is naturally equivalent to U(g- ). Let 1 be the 1®1in U(g)gu g, )Ci-
Then V4(l, 0) has a basis of vectors

Xh X" g

—n1 —ng

(which has D-weight ny + --- + n) written in the lexicon order where {X!, X2 ...} is
a basis of g and ny,...,n; > 0. Thus, D is diagonaizable on V;(I,0) with non-negative
spectrum, and each eigenspace is finite dimensional. Similar to the argument in Subsec.
6.5, we can take a simple quotient

Lg(1,0) = V4(1,0)/1 (6.8)

where [ is the largest proper g-submodule.
V4(0,0) and Lg4(0,0) are never equal, because:

Exercise 6.5. Show that L4(0, 0) is spanned by 1. Equivalently, show that if [ = 0, then I
contains all D-eigenvectors with eigenvalues > 0.

In the following, we discuss how to make Ly(l,0) a VOA since L4(l,0) is our main
interest. The same method applies to V4(Z,0).

For each X € g, X, acts on Ly(l,0) in an obvious way. We define X(z) €
End(Lg(1,0))[[2*1]] to be

X(z) = Z Xpz7 L
neL

It is a homogeneous field (with respect to D) with weight 1 since [D, X,,] = —nX,,. One
checks easily that these fields satisfy the creation property and locality, and that they
generate Ly(l,0). So it remains to construct L_; and verify the translation property. We
shall actually construct all L,, in a uniform way.

6.9

Choose a basis E of g, which gives a dual basis {¢ : e € E}, namely, for each e, f € E,
(e, f) = 6c,r with respect to the given non-degenerate symmetric bilinear form (-,-). By
linear algebra,

de®icg®g (6.9)

eeFE
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is independent of the choice of basis . As an immediate consequence, we have

dYE®e= > e®E (6.10)
ecll ecll
With the helpof g® g — g, X ® Y — [X, Y], this shows > [¢,e] = D[e, €] = —D][€,¢], e,
Y[E el =0. (6.11)
ecE

Lemma 6.6. For each X € g, we have

Yl X]=- ) [6X]®e. (6.12)

eeFE eeE

Proof. Evaluate both sides by Y ® Z using (-, -), and use the invariance condition (6.6) to
show that both sides equal (Y, [ X, Z]). O

Thus, on each g-module V, we have > ¢é[e, X] + > [€, X]e = 0, namely,
> [ee,g] = 0. (6.13)

€

So when V is finite dimensional and is either irreducible or trivial, 2 = > ée € End(V)
is a constant by Schur’s lemma, called Casimir element. The operator (2 in general gives
the nagative Laplactian of the Lie group action.

Assumption 6.7. We assume that for the adjoint representation g —~ g, X — [X,-], the
Casimir element is a constant 2hY € C, i.e.,

DUE [e,-]] = 2hV 14 (6.14)

ecE

This is always true when g is abelian (in which case h¥ = 0) or simple. We assume

I+ hY #0.

6.10

We define the Virasoro operator “as if” the conformal vector is

c=n~"1 Zé,le,ll (where v = 2(1 + hY)). (6.15)

Thus, using (5.13) and L,, = Y (c)m+1, and noting that é;e; = e;€; by (6.10), we write

down the definition
L =722 @emn+ Y Emoer) (6.16)
e k<—1 k=0

acting on Lg4(l, 0). This is called Sugawara construction. One checks that this sum is finite
when acting on any vector.
To use the reconstruction theorem, we need the following crucial fact:
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Proposition 6.8. For each m,n € Z and X € g,
[Lon, Xn] = —1Xmin. (6.17)

(Note that if we assume the existence of the VOA structure, then (6.17) can be derived
from the conformal Ward identity (5.7) and the fact that X_;1 is indeed primary.)

Convention 6.9. In the remaining part of this section, we suppress >, if possible.

From this proposition, we know that T(z) = Y. L;,z~™ 2 and X(z) are local, and
X (z) satisfies the translation property. To use the reconstruction theorem, we need to
check the following facts:

Lemma 6.10. The following are true.
(a) T(z) satisfies the creation property, namely, L,1 = 0if n > —1.
(b) Lo agrees with D.
(c) {Ly} satisfy the Virasoro relation.

Proof. (a) Assume m > —1. >’ k>0 Em—kex1 is 0 since all X1 are zero by our construction.
Dk<—1 Ckem—k1is Obecausem —k =>m +1 = 0.

(b) Since Lyl = 0 and [Lo, X,] = —nX,, = [D,X,], Lo and D act the same on any
X} Xk 1.S0Ly=D.

(c) By the reconstruction theorem, Lg(l,0) is a graded vertex algebra. Clearly L,, =
Y (¢)m+1 by our definition of L,, and c. We can use (5.1) or (5.2) to show

m+ 1
(L L] = V(L@ + Y ( - )Y<L1c>m+n+u. (618)
=0 +

By the expression c, clearly Loc = Dc = 2c. Also, from the Sugawara construction, we
clearly have [D, L,,] = —mL,,, i.e., [Lo, L] = —mLy,. So Lic = 0if [ > 2. To find
[Lmm, L], we need to find Lic and Loc.

Using (6.17), we calculate that vL;c equals

Llé_le_ll = [Ll, \6/_1]6_11 + \é_l[Ll, 6_1]1 = \6/06_11 + 5_1601 = 506_11.
And €pe_11 = [€y,e_1]1 = [€,e]_11 equals 0 by (6.11). Recall K acts as l on Lg4(l,0). Then
vLoc equals
Lo€e_1e_11 = [LQ, \6/71]6711 + \6/71[[42, 6’,1]1 =ce_11+¢é_1e1
=¢ie_11 = [\él,efl]]_ = [\6/, 8]01 + l(é, 6)1,
which equals ! - dim g - 1. Therefore, using (5.6), we find that (6.18) becomes the Virasoro
relation where £ = 47!l - dim g. O
Thus, by the reconstruction Thm. 5.12, we conclude:

Theorem 6.11. For I # —hY, V4(1,0) and Ly(l,0) are VOAs satisfying Y (X_11,z) =
>z Xnz "L (for all X € g) if we define the conformal vector ¢ as in (6.15). The central

- ldimg
charge is Ry -
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6.11 ~

It remains to prove Prop. 6.8. Recall Convention 6.9 that we are suppressing » .. The
following discussions focus on Lg(l,0), though the same argument works for V;(1,0).

Lemma 6.12. Forall i,j,n € Z, on Ly(l,0) we have [€;e;, X, = Aijn + Bi jn where
Ajjn = &ile, X]jin — Eirnle, X]; (6.19a)

’

Bijn = —nl(0j,—nX; + 0i,—nXj). (6.19b)
In particular, B; j, = Bjin.
Proof. We compute
[€iej, Xn]| = €ilej, Xn]| + [€i, Xnlej = Aijm + Bijn
where
Aijn = €ile, X]jin + [€, X]itne;
Bijn = —nldj _n - (e, X) —nld; _n(€, X)e;.

B; jn clearly equals (6.19b) by the basic property of (dual) basis. Note that in general, for
all i, j € Z, by Lemma 6.6 and the map g ® g — End(L4(/,0)) sending Y ® Z to Y;Z;, we
have

[\é, X]iej = —Ei[e,X]j. (620)
This proves that A; ; , equals (6.19a). O
Proof of Prop. 6.8. We compute

(YL, Xl = Y [Ekem—is Xn] + ) [Em ke, Xn]
k<1 k>0

= Z (Ak,mfk,n + Bk,mfk,n) + 2 (Amfk,k,n + Bmfk,k,n)-
k<—1 k=0

By Lemma 6.12, the sum of the two B is

Z Bk,m—k,n = —nl Z(ém—k,—nXk + 5k,—nXm—k) = _27711Xm+n‘
keZ keZ

Also,
Z Amfk,k,n Z €m— k €, X kJrn Z Em+n— k[e X]

k=0 k=0 k=0

where the two sums are both finite when acting on any vector. But the first summand is
just (setting j = k +n) X.;-,, €m+n—jle, X];. So

Z Anm—tien = — (Emenles XJo + Empn-tle, X1 + -+ + Emyrle, X]n1). (6.21)
k>0

63



Simiarly, setting ¢ = m — &,

D Akmekn = Y, Emile, Xlign — Y, Eminile, X
k<—1 izm+1 i>m+1

= — (En-1le, XJims1 + -+ + Gole, X)) (6.22)
By Lemma 6.13, the sum of (6.21) and (6.22) is —2nh" X, 4. This finishes the proof. [
Lemma 6.13. Foreachi,j € Z and X € g,

ile, X]; + €;le, X]i = 2hY X, 4. (6.23)
This is the only place we use the definition of A" (cf. Assumption 6.7).
Proof. By (6.20),
éile, X1; + €jle, X]i = &e, X]; — [€, X]jes,
which, according to (6.10) and the map g ® g — End(L4(1,0)),Y ® Z — [Y, X];Z;, is
éile, X1j — e, X];¢; = [, [e, X];] = [€, [e, X]li+j + il0i (€, [e, XT).

Now, by the invariance of (-,-), (¢, [e, X]) = ([¢, ], X), which equals 0 by (6.11). By the
definition of 1Y, [€, [e, X ]| = 2h¥ X. We are done with the proof. O

6.12

We now discuss the unitarity problem for affine VOAs. We first look at Heisenberg
VOAs, namely, we assume g is abelian. We assume that g is equipped with an inner
product (-|-) (antilinear on the first variable) and an anti-unitary involution X € g —
X* € g. Recall that “anti-unitary” means that * is conjugate linear, bijective, and satisfies

(X*YF) = (Y]X).

Involution means X** = X. By considering g as an (abelian) unitary Lie algebra, we
regard = and (+|-) as part of the data of g.

Exercise 6.14. Show that g is unitarily isomorphic to C" with the standard inner product,
where the involution is (21, ..., 2,) — (Z1,. .., %), the unique one fixing R". (Hint: First
find an real isomorphism from {X € g : X* = X} to R" preserving the inner products.)

It is easy to check that the bilinear form (-, -) on g defined by
(X,Y) = (X*[Y) (624)

is symmetric. (It is obviously invariant.) We define V4(/, 0) using this bilinear form.
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Proposition 6.15. [ > 0 if and only if there exists an inner product {-|-) on Vg(l,0) satisfying
(1|1) = 1 such that the representation of g on Vy(1,0) is unitary, namely, for each X € g,u,v €
V5(1,0),n € Z,

| Xpv) = {(X7)pulv),  CulKv) = (Kulv),  {ulDv) = (Dvlw),
or simply (X,,)" = X*,,, K = K, D' = D for short. Such {-|-) is unique if it exists.

The if part is easy to explain: We compute that (X_;1|X_;1) = (1|X{X 1) =
A[X*, X]ol) + I(X*, X) = I(X|X). So if {-|-) is an inner product, then for each X # 0,
[(X]X)is > 0. Sol > 0. We now explain the only if part. To simplify discussions, by
scaling (+|-) and hence (-, -) by [ and K by [~1, it suffices to assume [ = 1. (Indeed, people
usually just assume [ = 1 when discussing Heisenberg VOAs.)

6.13 x
Assume [ = 1. The uniqueness of {:|-) is easy to prove:

(X o X Y, Y, 1) = QUXM)E, o (X5, Y, o Y 1) =2 (L),

—ni+my

If ny +---+ng = mq + - + my, then w has D-weight 0. But the weight-0 homogeneous
vectors are C1. So w = A1, and A uniquely determined by the Lie bracket relations. If
ni+---+ng # my+- - -+my, then the weight of wisnot 0. Sow = 0 since (D1|w) = (1|Dw).

The existence part follows from the general construction of symmetric Fock spaces.
Let W be a (complex) inner product space together with an antiunitary involution .
Note that for each N € N, W® is naturally an inner product space. We assume W
has an orthonormal basis {e; : i € J} (which spans W algebraically). Let S be the set of
permutations on {1,..., N}. For each vy, ...,vy € W, we define

1
V] UN = W Z UU(1)®-.-®UU(N)7

O’GGN

and let SN (W) < W®" be spanned by all such vectors. We understand S°(W) to be
the standard one dimensional inner product space C. In particular, it has a unit vector 1.
SN (W) has an orthonormal basis consisting of vectors

k

. \yma o, . . \Mg
(ei1) (¢ir) (where iy, . .., i € J are distinct and Z mj = N). (6.25)
Define an inner product space
ST (W) =P sNw), (6.26)

NeN

called the symmetric Fock space associated to W. For each v € W, define linear maps
a®(v),a”(v) on S*(W) determined by

at(v)l =, at(v)vy - -vn = vy op. (6.27a)
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N
a (v)1 =0, a” (v)vy---un = Z<U*\vj>-vl---vj_1vj+1 - UN. (6.27b)
j=1

The maps a* (v) are well-defined, thanks to the basis (6.25).
Exercise 6.16. Prove the following relations.

1. a*(v)! = a=(v*), namely, (£|at (v)v) = (a~ (v¥)E|v) forall €, v € S*(W). (Hint: write
&, v, v in terms of the previously mentioned orthonormal basis vectors.)

2. [a™(u),a™ (v)] = (u*|v)lge(w). This is called the canonical commutation relation
(CCR).

Now let W =t~ . g[t~1] with inner product
(XEMYE™ = m(X[V)5pn

for all m,n € Z,. The involution is defined to be (X¢t™™)* = X*t~"™. According to the
description of the basis of S*(W), V4(1,0) is linearly equivalent to S*(WW) by identifying
1 with 1 and

X, o XE, 1 with X X (6.28)

—nq

We use the inner product on S*(W) to define the one on V4(1,0). Using CCR, it is not
hard to check that the action of X,, on V4(1,0) ~ S*(W) is

Xn =

at(Xt=I") ifn <0,
0 ifn =0, (6.29)
a” (Xt™™) ifn>0.

Thus, the representation of g on V4(1,0) is unitary.

6.14
When [ > 0, Ly(1,0) and Vg(l,0) share the same unitarity property, because:

Proposition 6.17. If | € C*, then Vy(l,0) is an irreducible g-module, i.e., Vg(1,0) = Lq(l,0).

Proof. We assume [ > 0 and prove the irreducibility using the unitarity. Choose any non-
zero g-submodule W of Vi(1,0). We shall show W = V(l,0).

Since W is a D-invariant subspace, D is diagonalizable on W. So W has D-grading
W = @®,,>, W(n) where a is the smallest eigenvalue of D on W. We claim that a = 0.
Then, as the D-weight 0 subspace of V;(l,0) is clearly spanned by 1, we must have 1 € W.
From this one sees that W = V;(l,0).

Suppose a > 0. We choose a non-zero w € W (a), which must be a sum of vectors of
the form X!, --- X* 1 where the sum of the positive integers n1,...,ny is a. Then by
the unitarity, (w|w) (which is non-zero) is a sum of (1|(X k);’;k -+ (X1 w). So for some
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X}, the vector v = (X')* w must be nonzero. But v has D-weight a —n1 < a, and clearly
v € W. This is a contradiction.

Now, for a general [ = |I|el? e C*, we may replace (-,-) by €(-,-) and K by e VK.
Then (-|-) and the new (-, -) are related by (X|Y) = (e’ X* V), and X > €l X* is clearly
an antiunitary involution. So V4(l,0) becomes V4(|!|,0) under the new involution and
bilinear form, and the latter has been proved irreducible. O

6.15

In general, we say a finite-dimensional (complex) Lie algebra g is unitary if it is
equipped with an inner product (:|-) and an antiunitary involution = satisfying the fol-
lowing conditions:

1 [X,Y]* = [Y* X*].

2. The inner product is invariant, namely, the adjoint representation of g on g is uni-
tary:

([X,Y][2) = (Y][X*, Z]).

Then (X,Y) := (X*|Y') defines a symmetric invariant bilinear form on g.

Exercise 6.18. Let ¢ be an g-invariant and #-invariant (i.e. [g, t] < ¢, £* = €) subspace of g.
Let £ be the orthogonal complement of € in g.

1. Show that £+ is also g-invariant and #-invariant.

2. Show that [¢, €] = 0 and hence [g, €] = [£ €]. Consequently, if £ is an irreducible
g-submodule, then ¢t is an irreducible ¢-module, which is (by definition) a simple
Lie algebra if moreover [¢, £] # 0.

Let 3 be the center of g, which is clearly g- and #-invariant. Let gss = 3* so that g =
5 ®" gss. Then the adjoint representation g —~ gs (equivalently, gss — gss) has orthogonal
irreducible #-invariant decomposition gss = g1 ®* - - ®* gn. Each g; is a simple unitary
Lie algebra, which is classified by the type A-G Dynkin diagrams.

Conversely, suppose g is a complex simple Lie algebra, which is the complexification
of gr which is the real Lie algebra of a finite dimensional compact real Lie group G. It
is well known in Lie theory that the real vector space gr has a unique up to R -scalar
multiplication G-invariant (equivalently, gr-invariant) inner product, which extends to a
complex invariant inner product (-|-) on g thanks to the real direct sum g = gr ® igr. The
antiunitary involution on g is defined to be the unique one fixing igr. Thus g is unitary.

Therefore, in general, if 3 is abelian and gy, . . ., g are simple, then g = ;g1 ®- - -Dgn
is naturally a unitary Lie algebra. So the study of unitary affine VOAs for unitary Lie
algebras reduces to that of the abelian case (which we have finished) and the simple case.
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6.16

When g is simple, the unitarity properties of V;(1,0) and Ly(l, 0) are very different from
the abelian case. Indeed, in the abelian case, scaling the inner product does not change
the unitary equivalence class of abelian unitary Lie algebras. (This is because scaling the
vectors by a non-zero constant is an isomorphism of abelian Lie algebras.) But this is no
longer true for non-abelian Lie algebras. Also, it turns out that for a simple g, V4(l,0) is
never a unitary g-module, and Ly(l, 0) is unitary for a discrete set of levels [ if one fixes
the invariant inner product, or for a discrete set of invariant inner product if one fixes the
level [.

Assume g is a simple Lie algebra with compact form decomposition g = gr @ igr. Let
* be the unique involution fixing igr. As we have said, the invariant bilinear forms on gg
(and hence on g) are unique up to scalar multiplication. So it would be better to fix one.
The one that people usually choose is:

Convention 6.19. We choose the invariant inner product on g (under which * is antiuni-
tary) to be the unique one such that the longest roots of g have length /2.

It follows from the invariance of (-|-) that ¥ (defined in Assumption 6.7) is a positive
number. (To see this, one may choose E to be an orthonormal basis of g, and check that
its dual basis {¢ : e € E} satisfies € = e*.) The h¥ corresponding to the inner product in
Convention 6.19 is called the dual Coxeter number. We have said that L4(Z, 0) and V{((, 0)
are VOAs if [ # —hY. So this is true when ! > 0.

Theorem 6.20. L4(l,0) is unitary if and only if | € N. For such I, Ly4(l,0) is called a Weiss-
Zumino-Witten (WZW) model.

This is a highly non-trivial result whose proof relies on deep Lie theory. We refer the
readers to [Was10, Chapter III, Sec. 2 and 10] for a proof. Moreover, just like minimal
models, WZW models are C>-cofinite and rational. So their representation categories are
extremely nice. Due to these properties, WZW models are central objects in the study of
CFT and VOAs. (However, Heisenberg VOAs are neither Cy-cofinite nor rational.)

6.17

We have shown the existence of affine VOAs when the unitary Lie algebra g is abelian
or simple. The general case can be addressed by tensor product VOAs.

Let Vi, Vy be VOAs. We use the diagonalizable operator Lo ® 1y, + 1y, ® Lg to define
the grading on V| ® V,. The vacuum vector is 1 ® 1. V; ® V3 is clearly generated by
Y (v1)m ® 1y, and 1y, ® Y (v2), where v; € V;, and Y (v, 2) ® 1y, is clearly local to
Y (u1, 2) ® 1y, (where u; € Vi) and 1y, ® Y (v2, 2). One checks that L_1 ® 1y, + 1y, ® L_;
satisfies the translation property. So V ® V is naturally a graded vertex algebra by the
reconstruction theorem. Its vertex operator satisfies

Y(vi®1,2) =Y (v1,2) ® ly,, Y(1®wvg,2) =1y, ®Y (v, 2). (6.30)
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Exercise 6.21. Use (5.13) or (5.16) to show
Y(v1 ®vg,2) =Y (v1,2) ®Y (ve, 2). (6.31)

Equivalently,
Ul ® U2 Z Z Y(Ul)nly(UQ)’ru' (632)

neZ nit+nz2=n—1

When V1, V; are VOAs with conformal vectors ¢, cy and central charges ¢, ¢y, it is
easy to check that V; ® V3 is a VOA with conformal vector c; ® 1 + 1 ® co. In particular,
its Virasoro operators are Y (¢; ® 1 + 1 ® ¢)p41 = L, ® 1y, + 1y, ® L,,. We call V] ® Vo
the tensor product VOA of V; and V5.

Exercise 6.22. Show that V; ® V5 has central charge c¢; + co.

We remark that if V; and V; are unitary, then their tensor product is also unitary (cf.
[DL14, CKLW18]).

Exercise 6.23. Let gi,...,gn be either abelian or simple. Let V = L4 (1,0) ® --- ®
Lgy (In,0). Show that the weight-1 subspace V(1), as a Lie algebra (cf. Subsec. 5.5), is
naturally isomorphic to g := g1 @ - - - @ gn. Show that V(1) generates V.

Exercise 6.24. Show that L¢n(1,0) ~ Le(1,0) ® - - - ® Le(1,0).

~
n times

7 Local fields

7.1

Having explored some important examples, we now return to the general theory. The
goal of this section is to understand the close relationship between the three statements
in Subsec. 5.8. The precise formulation of statement 1 is the Lie bracket version of local
fields, as defined in Def. 5.9 or Rem. 5.10. For statement 2 we give two rigorous descrip-
tions: the complex analytic version and the formal variable version of local fields. We first
give the complex analytic version, which is more intuitive.

We first need to define:

Definition 7.1. Let €2 be a locally compact Hausdorff space. A series of functions }, f, is
said to converge absolutely and locally uniformly (a.l.u.) on Q2 if each 2 € 2 is contained
in a neighborhood U such that

supZ\fn )| < +o0.

xzeU
Equivalently, for each compact subset K < 2, we have sup e >, | fn(2)] < +00

Clearly, if each ) f,, converges a.l.u. and each f,, is continuous (resp. holomorphic),
then so is the limit }’ f,,.
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7.2

Now let V = @, V(n) be graded by a diagonalizable Lj. Recall the projection
P, : Ve =TT V(m) — V(n) (cf. (3.18)). Let A(z) = X Apz™"71, B(2) = Y, Bpz"" ! be
homogeneous fields with weights A 4, Ap (cf. Def. 5.8). For each n € Nand v,v' € V, we
have

W' A(21)PyB(22)v) € O(C* x CX) (7.1)
since, when v, v" are homogeneous, this expression equals
'y Apy Bpyvyzy ™ g
where ny,n; are determined by Ap + wtv —ng — 1 =nand Ay +n—n; — 1 = wtv'.

Definition 7.2 (Local fields (complex analytic version)). We say A(z) and B(z) are local
to each other if for each v € V,v" € V' the following hold.

1. The series

W', A(21)B(z2)vy = Y (0, A(21) P, B(22)v) (7.2a)
neN

W', B(z2)A(z1)v) = Y (0, B(22) Py A(21)0) (7.2b)
neN

converge a.l.u. respectively on the open sets ; = {(z1,22) € C? : 0 < |29| < |21]}
and Qy = {(21,22) € C? : 0 < |21] < |22/} So (7.2a) and (7.2b) are automatically
holomorphic functions on €2; and Q.

2. (7.2a) and (7.2b) can be analytically continued to the same holomorphic function
fu.r on Conf?(C*). Moreover, there exists N € N depending only on A, B but not
on v, v’ such that the function

(21 — Z2>va,v’(zla 22) (7.3)
is holomorphic on C* x C*.

Roughly speaking, this definition says that (7.2a) and (7.2b) converge a.l.u on 4, Q5
and extend to the same holomorphic function on Conf?(C*) which has poles of order at
most NV at z; = z9, where N is independent of v, v'.

7.3

The readers will immediately notice that there is another natural convergence condi-
tion on A(z1)B(22): that (v, A(z1)B(z2)v) as a formal Laurent series of z1, za converges
a.l.u. on . Or more precisely, the joint series

Z W' A Bz ™ ey (7.4)

m,nez
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converges a.l.u. on €). Is this equivalent to the convergence statement in Def. 7.2? The
answer is yes. But people will easily overlook the need to justify this equivalence. And
we need both versions of convergence since they are useful in different situations. For
instance, to prove that formal variable implies complex analytic, it is easier to prove the
a.l.u. convergence of the formal Laurent series; to prove the other direction, it is better to
use the a.l.u. convergence of the RHS of (7.2a) and (7.2b).

There is (unfortunately) one more way to understand the convergence (7.2a): we re-
gard the RHS as a series of formal Laurent series of z1, 2o, which converges formally to
the LHS also as a formal Laurent series in the following sense:

Definition 7.3. We say that a sequence (indexed by k)
felz o) = Y fenaat e
nl,...,nMEZ

of elements of W[[2{, ..., 27}]] converges formally to

[z, 0y 2m) = Z Jno2it 2yt

nl,...,nMeZ
if for each n,, the coefficient fj, ,,, equals f,, except for finitely many k.

Note that in applications, k can be in any countable set: N, Z, Z?, etc.
We will show the equivalence of the two a.l.u. convergences with the help of the
following obvious lemma.

Lemma 7.4. Let X be a complex manifold. Let fk(x z.) be a series of O'(X) -coefficients mono-

mials of 2%, ..., 23} ie., fr(z, ze) = gr(w)z ™ oM where each gy € O(X) and ny, j € Z.
Assume that sz # k' thenny, j # ny, for somel < j < M. Then} . fr(z, z.) clearly converges
formally to some f € O(X)[[21,. .., 2i;]]. Namely, the following holds formally:

[, za) Z fr(x, ze) (7.5)

Moreover, let Q be an open subset of CM. Then f(x, z.) as an 0(X)-coefficients formal Laurent
series of ze (indexed by the powers of z.) converges a.l.u. on X x Q if and only if the series
Do fr(x, z) (indexed by k) converges a.l.u. on X x Q. If so, then the two limits are equal, i.e.,
(7.5) holds as holomorphic functions on X x €.

7.4

We now show that (7.2a) as an infinite sum over n converges a.l.u. on € iff the LHS
of (7.2a) as a formal Laurent series of z;, 2o converges a.l.u. on ;. Note that both con-
vergences are preserved by taking linear combinations. So it suffices to assume that v, v’
are homogeneous.® Let us prove our claim by checking that the sum (7.2a) satisfies the
assumption in Lemma 7.4:

*We cannot directly apply Lemma 7.4 if v, v’ are not homogeneous.
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Since B(z) is homogeneous, similar to the proof of Prop. 3.5, we have the translation
covariance

B(Az) = A28 . Ao B(z) A" Fo, (7.6)

This shows
B(zg) = 2, %% - 25°B(1)z, ™. (7.7)
A similar relation holds for A(z1). So for each n € N, we have (in the sense of C[2;"!, 251))

', A(21) PaB(z2)v) = (W', 20724 A1) a7 Lo P2y BB B(1) 2510w
e P L (jﬁ)"@', A(1)P,B(1)v), (7.8)
1

noting that 2, X P, = 2" P, and P,25° = P,23.

Exercise 7.5. Let V be a graded vertex algebra. Choose u,v € V and v € V. Use (3.36)
and Lemma 7.4 to show that

Z <v’, Y (u, z)Pne_TL—1v> = Z <v’, e TP Y (u, 2 + T)U>, (7.9)

neN neN

where both sides converge a.l.u. on {z # 0, |7| < |z|} to the same function. (Note that the
RHS is a finite sum.)

7.5

Definition 7.6 (Local fields (formal variable version)). There exists N € N depending
only on A and B such that the equation

(21 - ZQ)N[A(Zl), B(ZQ)] =0 (710)
holds on the level of End(V)[[2{}, 251]].

This version of local fields is the most common in the literature, partly because it is
the most concise. Indeed, since locality implies Jacobi identity, many people use locality
instead of Jacobi identity in the definition of VOAs. We do not take this approach because
locality has its own limitation: in the definition of VOA modules and conformal blocks,
we need the full Jacobi identity, but not just locality.

7.6

Almost everyone will have the following question when they first see this definition:
doesn’t (7.10) imply [A(z1), B(z22)] = 0? The answer is no: for a vector space W in general,
itis possible that fg = 0 for some f(z1, 22), g(21, 22) € W[[z1 ,22 1] although f # 0, # 0.
In other words, assuming W = C for simplicity, then C[[2{", 23 ']] (unlike C[[21, 22]]) has
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“zero divisors”. (We put quotation marks here because C[[2{"!, 25']] is actually not a

ring.)
Indeed, choose N > 0. Then (z; — 22)_N can be expanded in two ways: f =

Sizo ()2 (=22) N7 asiif |21] < |z2], and g = 3,2 ( JN)le I(—29)7 asif |z1] > |2l
Then f # g, but (21 — 22)Vf = (21 — 20)N¥g = 1. So (21 — 22)" is a zero divisor. Simi-
larly, one shows that (1 + 2)"V (where N > 0) is a zero divisor in C[[2%!]] by expanding
(1+2) N asif |2| < 1and asiif |z| > 1.

This phenomenon is closely related to the fact that C[[2{!,25']] (and similarly
C[[z%'])) is not a ring: the product of two arbitrary elements cannot be defined. This

is in contrast to the following basic fact:

Lemma 7.7. If F is a field, then F((2)) is naturally a field. In particular, F((z)) is closed under
taking product and inverse (for non-zero elements).

Exercise 7.8. Suppose f(z) € F((z)) is not zero. Find an algorithm of determining the
inverse 1/f(z).

Thus, by taking F = C((z1)), we see that C((21))((22)) is also a field. This implies that
(21 — z2)" is not a zero divisor in C((21))((22)): Suppose that (21 — 22)" f(21, z2) = 0, and
that f € C((z1))((22)), i.e.,

ny  n2

f(z1, 22) Z Jrina 2y 25
no=L
IZKnZ

for some L € Z and K, € 7Z for each ny. Then f = 0 because f = (21 — 29) V(21 —
22)Vf = 0 where (21 — 22)7% is the inverse of (21 — 22)" in C((21))((22)), which is
P (‘JN)zl_N_j(—ZQ)j. (If we expand (21 — 20) "V as if |21] < |22|, we get the inverse
of (21 — 22)" in C((22))((21)).)

If, however, f € C[[2{", 25°!]] is neither in C((22))((21)) nor in C((21))((22)), then (21 —
22)V f = 0 does not imply f = 0 since we cannot multiply both 51des by either inverse of
(21 — 22)N. (There is no associativity law (fg)h = f(gh) in C[[27", 25!]] even if both sides
can be defined.)

7.7

Each of the three versions has its own advantage, and it is the goal of this section
to prove the equivalence of them. This is a crucial step for proving the reconstruction
theorem. Moreover, note that in each of these three versions there is a number N. We can
prove the equivalence of the three versions for the same N.

The Lie algebraic version is the easiest to verify in concrete examples: we have already
seen this in the previous section. In contrast, the complex analytic one is the most difficult
to verify. But the complex analytic version is closest to how physicists understand local
fields. So it allows us to prove results in a similar fashion as in physics literature. For
instance: we will prove the existence of OPE using the complex analytic version of local
tields. And with the help of OPE, we can prove that complex analytic implies Lie bracket
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version in the same way as deriving the algebraic Jacobi identity from the complex ana-
lytic one using residue theorem. Finally, to prove the complex analytic version from the
Lie algebraic one, we need the help of the formal variable version. Also, using the formal
variable version, we can generalize the statements in Def. 7.2 to more than two fields.
This generalization is crucial for proving the reconstruction theorem.

7.9

Lie algebraic —T%, Formal variable Complex analytic
7.10
7.12 711

OPE

From the above chart, we see that a direct proof from complex analytic to formal vari-
able is not necessary for proving the equivalence of the three versions. We will still give
such a proof because: In the VOA theory, many definitions and properties can be stated
in both algebraic (i.e., formal variable) and complex analytic language. It is important to
learn how to translate between these two.

7.8

The proof that Lie algebraic implies formal variable is by brutal force. Assume the
homogeneous fields A(z), B(z) satisfies (5.27). Let us prove that (z1—22)V [A(21), B(22)] =
0.

Proof. Showing (z1 — 2z2)V[A(z1), B(22)] = 0 amounts to showing that for all m, n € Z, the
following expression vanishes:

Res.,—oRes.,—0 2725 - (21 — 20)V[A(21), B(22)]dz1d 20

N
N . . .
= Z ReszlzoResto <‘7 >Z£n+jzg+N J (—1)N_] [A(Zl), B(ZQ)]ledZQ

|
D= T

N » (7.11)
(V) 0¥ s B
j=o \J
N N-1 ,
N s m+j
= Z ( . > (—1)N Z ( I >C7ln+n+N—l'
j=0 \J 1=0
This expression vanishes because of the next lemma. O

Lemma 7.9. Foreach N € Z,, me Z,andl =0,1,..., N — 1, we have
N )
N _i(m+]
—1)N = 0.
% ()= (")

j=0
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Proof. The function f(z) = (1 + 2)™2" is holomorphic on Dy, and its power series ex-
pansion contains no less-than-N powers of z. But we can expand f(z) in the following
way:

f(2)=Q+2)"(-14+1+2)N =]Zjl+z <Jj>(—1)N_j(1—l-z)j
o= (o)

=0 7=01eN

The coefficient before 2! vanishes when | < N. This proves our formula. O

7.9

Let us prove that formal variable implies complex analytic. The method is due to
[FHL93].

Proof. Assume (21 — 22)V[A(21), B(22)] = 0. Choose homogeneous v € V,v' € V. Let
flz1,22) = W A(21)B(z2)v),  g(21,22) = V', B(22) A(21)v)
which are both in C[[z{, 23 ']]. So is
d(21,22) = (21 — 22)V f(21,22) = (21 — 22) Vg (21, 22).

Step 1. We claim that ¢ is actually in C[2]", z5']. Note that

f(z1,29) Z (AL, Bpoyzy™ n=l (7.12)

m,neZ

Since B,, increases the weights by Agp —n — 1, we have B,,v = 0 for sufficiently positive
n. At is the transpose of A sending each v’ € V'(k) to v/ o A,,. One checks easily that
AY, lowers the weights by Ay — m — 1. So A% o' vanishes for sufficiently negative m.
Therefore, the coefficients of f vanish the if powers of z; are sufficiently negative or the
powers of z; are sufficiently positive. The same can be said about ¢ = (21 — 22)" f.
Similarly, the coefficients of g vanishes when the powers of z; (resp. z2) are sufficiently
negative (resp. pos1t1ve) and the same can be said about ¢. Therefore ¢ has finitely many
terms: ¢(z1, 29) € C[z]", 23°']. In particular, ¢ € 6(C* x (CX)

Step 2. From (7.12), it is clear that f(z1,22) is in C[2{']((22)) = C((21))((22)). So
f(21,20) = (21—22) "N (21, 22) where (21—22) N € (C((zl))((zg)) is the inverse of (21 —z2)"V
expanded in |z3| < |21] (cf. Subsec. 7.6). So the formal Laurent series f(z1, 22) converges
alu. to the rational function (z; — 29) " V¢(21,22) on 0 < |23 < |z1| since the series
expansion of (z; — 22) "V ¢(21, 22) does. Similarly, g(z1, 22) converges a.lL.u. on 0 < |z;] <
|22| to (21 — 22) "N ¢(z1, 22). This finishes the proof. O
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7.10

We now prove that complex analytic implies formal variable. To prepare for the proof,
note that for any k£ € N, any m,n € Z, and any Ry, Rs > 0,

dz1d22

27028 A(21) Py B(29)v >(217r)2

= ', Ay Py Bpv). (7.13)

|z1|=R1 |22|=Ro
Indeed, this is obvious when V(k) is finite dimensional, in which case
W' A(z1)PeB(z2)v) = > .(V', A(21)e)€, B(z2)v) where {e} is a basis of V(k) and {€&}
is its dual basis. In the general case, we may first fix 2o and integrate z; by considering

Py B(z2)v as a fixed vector in V(k), and then integrate z; by considering (v, A,,, P;-) as an
element of V/(k) = V(k)*.

Proof. Assume the statements in Def. 7.2 hold. Let £, ,» € ¢(Conf?(C*)) be as in Def. 7.2.
Since ¢ := (21 — z2)V fvw belongs to O(C* x C*), by complex analysis, for each m,n € Z
the value of

mon dz1dz
I':= § § 21 R9 (21722)W

|z1|=Ra |z2|=R2
is independent of the specific values of R, Ry. (This is where we use the fact that ¢ has
no poles at z; = 23.)
We compute I' in two ways. Assume R; > Ry. Then since 0 < |z2| < |21|, we have

B(21,22) = Y (21 — 22) V', A(21) P B(22)0).
keN
Thus, using (7.13), we can compute

dzl dZQ

= j@ Z 220 (21 — 20) NV, A(21) P B(22)v)

(2im)?
|z1|=R1 |22|=Rz ReN

-3 S (D)t e A B

2
: im)
k€N|z1|*R1 |20|=Ro 7=0

=D, Z ( > DN Ay j Py Bron—jv) = i (N>(—1)N_j<U'»Am+jBn+N—jv>

keN j=0 j=o \J

where },  commutes with the two contour integrals thanks to the a.l.u. convergence.
Similarly, if we assume Ry < Ry, then ¢(z1, 22) = Y on(21 — 22) NV, B(22) Py A(21)v), and
hence

:i( ) DN, By A 0.

This shows Z;VZO (]]\.])(—l)N_J [Artj, Bpan—j] = 0. If we compare this with the first
several lines of (7.11), we see that this is equivalent to (21 — 22)V[A(21), B(z2)] = 0 in
EndV[[2F, 25 O
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7.11

In this subsection, we assume the statements in Def. 7.2, and derive the OPE
A(21)B(22) = Yyep(z1 — 22) ¥ 71 (ArB)(22) similar to Y (u,21)Y (v,22) = Y,p(21 —
22) F 1Y (Y (u)v, 29) for some fields (A B)(z). This is simply done by taking Laurent
series expansions of z; — 22 of the function f, ,» in Def. 7.2. Thus, the existence of OPE
simply follows from complex analysis. Since we are treating multivariable holomorphic
functions, to be serious about the domain of a.l.u. convergence, we provide some details
below.

Definition 7.10. For each k € Z and z € C*, let f,,» € 0(Conf?(C*)) be as in Def. 7.2. We
define the linear map

(AgB)(2) : V®V — C, vV @v i (AR B)(2)v)

to be

dzy

WAB) )0 = 1= ) forlar, )

C(z2)

(7.14)

where C(z2) is any circle in C* surrounding z3. Note that (A;B)(z)v is naturally an
element of (V')* =[],y V(n)**, the (algebraic) dual space of V. Also, (v/, (4;B)(22)v)
is clearly a holomorphic function of z; on C*.

Lemma 7.11. A, B = 0 whenever k > N

Proof. Whenk > N, (21 — 29)k fva has no poles at z; = z3. So the RHS of (7.14) vanishes.
UJ

Proposition 7.12. For each v € V,v' € V', we have

Jour(21,22) = 2(21 — 29) FN (Ap B) (22)0) (7.15)

keZ

where the series on the RHS converges a.l.u. on Qo = {(z1, 22) : 0 < |21 — 22| < |22|} to the LHS.

Proof. It suffices to prove the claim on {(z1,22) : 0 < |21 — 22| < r,r < |22|} forall » > 0.
Then this follows easily from the following basic lemma. O

Lemma 7.13. Let U be an open subset of C™ and let f = f(z1,...,2m:q1,---,qn) be a

holomorphic function on U x A, g, X -+ X A, g, where each 0 < r; < R; < +o0 and
A g =1{¢ € C:r; <|q| < R;}. Then f has Laurent series expansion
flreg) = > frlz)gr™ gt (7.16)
ke kn€Z

converging a.lu. on U x A, g, X -+ x A, R,, where each

dqi - - dg,,
fk. Zo = § #f zo,Q- q1 e ﬁn% (717)

n

(where C is an anticlockwise circle around 0) is clearly holomorphic on U.
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Proof. For simplicity, we assume n = 1 and write ¢; = ¢,r; = r, Ry = R. We shall prove
the a.lu. convergence on (z.,q) € U x A, 5 for all 7, R such that r < 7 < R < R. Let

C_={qeC:|g = (r+7)/2}and C; = {qe C: |¢| = (R+ R)/2}. Thenon U x A, j,

z.,p (2e:p) dp
f(ZoaQ):ReSpq <§ §> p—gq 2in

We have {22 _ ka1 a0 "'p"f(2e,p) where the RHS converges on (z.,q,p) €

P—q
(U x A 5 x Cy) to the LHS by basic analysis. The same can be said about ;Z"qp) =
— D k>0 g 1pk f (2., p) if C; is replaced by C_. So in view of (7.17), and noting that in-

tegrals commute with infinite sums due to a.l.u. convergence, the RHS of <§C ;7‘;“) 2dlfr =

Shet fr(za)g F 1 (resp. §, pz'g’) s = — Y20 fr(ze)g ") converges alu. on
U x A, j to the RHS. This completes the proof. O

7.12

We continue our discussion in the previous section. Let (4,B); : VV® V — C such
that

(' (A B)pv) = Res,—ov', (A, B) (2)v)2"dz.
In other words, (A, B)y is a linear map V — (V')* =[], .y V(n)**

Proposition 7.14. Assume that A(z), B(z) satisfy Def. 7.2. Then the following Jacobi identity
holds:

> <T> (An+1B)m-+k—1

leN

= Z < ) Amtn—1Bri — 2(—1)n+l <T;> Bryk—1Ami-

leN leN

(7.18)

Remark 7.15. There are two immediate consequences of this proposition. First, by setting
m = 0, we get a formula to express (A, B); in terms of the modes of A(z) and B(z).
From that expression, one easily checks that (A, B); sends each V(a) to V(b) where b =
a+ Ay + Ap —n — k — 2. This shows that (A, B); is a linear operator on V, and that
(A, B)(z) is a homogeneous field with weight A 4 + A —n — 1. Second, by setting n = 0,
we see that A(z) is local to B(z) in the Lie algebraic sense.

Proof of Prop. 7.14. The idea is the same as the proof of VOA Jacobi identity in Subsec. 4.8.
(Note that roles of z1, zo in Subsec. 4.8 are switched here.) For each z5 € C*, we choose

a large circle C'; and a small one C_ centered at 0, and a small one Cy centered at 2.
Choose p1 = 27"(21 — 22)"dz1. Set f = f,,,v. Then

fle_§i_gin 7.19)

21w 2im 21w
Cy Cc_ Co
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When z; is on C, f takes the form (7.2a). Moreover, the RHS of

Do - adafGn) = 3 (7)) AP B

l,seN

converges a.l.u. on 0 < 23] < |21| to the LHS. So

() ) K, A1) P B2y ek
l,seN

217r \Cﬁ

Ct Ci
l,seN < > §
+

le

= % () ) PG

Vo, Al PuB (o) gt

where the contour integral commutes with the infinite sum due to the a.l.u. convergence;
(Apin—1)" is the transpose of A, ,—;, sending v’ to a vector of V(s) where s = wtv' —
Aq+m+n—1+ 1. Sowhen s is not this weight, the above summand vanishes. We can
thus write the above expression as

5 (7)o e B

leN

The integral on C_ can be treated in a similar way. And by Prop. 7.12,

217T § Z

l,seN

( ) —22)" (21— 2) T (A B)@)@ﬁ

Co

where series inside the integrand converge alu. on 0 < |z; — 22| < |22|. So we can
exchange the integral and the sum to compute the result

m _
5 (7)1 i) ez
leN

This computes (7.19). Now all three terms are clearly holomorphic functions of z; on C*.
Multiply them by 25dz> and evaluate the residue at z = 0, we get (7.18). O
7.13

We are now ready to prove the equivalence of the complex analytic version and the
algebraic version of Jacobi identity.

Definition 7.16 (Jacobi identity (complex-analytic version)). For each u,v,w € V and
w’ € V, the following series

W'Y (u, 21)Y (v, 2)w) := Z (W', Y (u,21) PY (v, z2)w), (7.20a)

neN
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(W'Y (v, 22)Y (u, z1)w) := Z (W', Y (v, 22) P,Y (u, z1)w), (7.20b)

neN

<w’,Y(Y(u, 21 — 22)v, 22)w> = Z <w’, Y(PnY(u, 21 — 22)V, 22)> (7.20c)

neN

converge a.l.u. respectively on

{(21,2’2) € (C2 0 < |2’2’ < |21‘}, (721a)
{(z1,22) € C? : 0 < | 2| < |22}, (7.21b)
{(21,22) € C*: 0 < |21 — 29| < |22} (7.21¢)

and can be extended to the same holomorphic function f, 4 ../ on Conf? (Cx).
Theorem 7.17. The complex analytic and the algebraic versions of Jacobi identity are equivalent.

Proof. Complex analytic implies algebraic: This follows from the argument in Subsec. 4.8
or the proof of Prop. 7.14.

Algebraic implies complex analytic: Assume that u,v,w,w’ are homogeneous. Let
A(z) = Y(u,z) and B(z) = Y (v,z). Then A and B are local. Moreover, the VOA Jacobi
identity expresses Y (Y (u),v, z) in terms of Y (u, 2), Y (v, z), and (7.18) expresses (A, B)(z)
in terms of A(z), B(z). From these two expressions, it is clear that

Y(Y(u)pv,2) = (AnB)(2). (7.22)

Thus, the complex analytic locality of A and B proves the complex analytic Jacobi identity.
Note that the a.l.u. convergence of (7.20c) = Y, .., (W', Y (Y (w)mv)w (21 — 22) "™ ! (note
that P,Y (u, 21 — 22)v = Y (u)m (21 — 22) "™ v where n = wtu + wtv — m — 1) follows from
that of (7.15). O

8 n-point functions for vertex operators; proof of reconstruction
theorem

8.1

The goals of this section are twofold. We first prove two analytic properties for n-point
functions generalizing Def. 7.2. Then we use these results to prove the reconstruction
theorem.

We say that a collection (A%(2));c; of homogeneous fields are mutually local if A*(z) is
local to A7(z) when i, j € I and i # j. We say that A is self local if A’(z) is local to A*(z).

Theorem 8.1. Assume that the homogeneous fields A'(2),..., AM(2) e (EndV)[[z%!]] are

mutually local. Then for each v € V,v" € V' and each permutation o of {1, ..., M}, the series
WA (z0)) - AT (2o ap)vy e (BudV)[[E, .. 2] 8.1)

converges a.l.u. on

QGZ{Z.E(CM:O< |Zo(M)| << |ZU(1)|} (82)
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and can be extended to some f, ,» € O(Conf™(C*)) independent of o. Moreover, there exists
N e N for all v, v such that

fv,v’(zo) : H (Zi - Zj)N (83)
1<i<j<M
is holomorphic on (C*)M. (Indeed, it is an element of C[21, ..., 23'].)

fv is called the (M + 2)-point (genus 0 correlation) function associated to the fields
A*(z). In case each A'(z) is a vertex operator Y (u;,z), f,. is the correlation function
associated to (setting ¢ to be the standard coordinate of C)

(Pl;o,zl,...,ZM,OO;C,C—Zl,...,C—ZM,C_l), (84)
where v, uy,...,up, v are going into the punctures 0, z1, . . ., zas,  respectively.

Remark 8.2. The a.l.u. convergence on €, of the formal Laurent series (8.1) is equivalent
to that of the series of functions

(o, AT (1))... A7OD (200
= >, LAt PnzA”(2)( o) Pas ++ Payy A7 (200, 8D

na,...,np N

Indeed, assume for simplicity that o = 1 and v, v’ are homogeneous. Then by scale co-
variance (7.7), the RHS of the above formula equals

Y W AN )P, A (1) Py - - Pay AM (1)0)

n2,...,nprEN

M
22\ "2 (Z3\™3 M \"™M ! —wtw —A i
. —_— —_— e . Zl ZM . H ZZ s
Z1 z2

M -1 i=1

(8.6)

which together with Lemma 7.4 proves the claim.

8.2

Proof of Thm. 8.1. (Cf. [FHL93].) The method is the same as in Subsec. 7.9. Choose IV such
that (2; — 2;)N[A%(2;), A7 (2;)] = 0 for all 4, j. Set

f7(za) = (VAT () - AT M )0y e ClIF] = ClIET - 237 )] (87)

Then the formal Laurent series

dz) = 17(z) - || -2V (8.8)

is independent of the permutation o. From

Z (AL A (20) - - AM T (2 ) AN Y - 2 ey

m,nez
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and the lower truncation property, we see that the coefficients of f!(z,) and hence of
¢(z.) vanish if the powers of z)s (resp. z1) is sufficiently negative (resp. positive). Since
we can replace M with o(M) and 1 with o(1), we see that the coefficients of ¢ vanish

except when the powers z1, ..., z)s are all bounded from below and from above by some
fixed constants. Namely, ¢(z.) € C[z{",...,27}]. In particular, ¢ can be regarded as a
holomorphic function on (C*)M.
By expanding f!(z,) as a formal Laurent series of z1, . .., 2y, it is not hard to see (e.g.

by induction on M or by (8.6)) that

Fl(ze) € F:= C((21)((22)) -+~ ((2m))- (8.9)
So, for o = 1, (8.8) holds in the field F. So

fla) =0z ] G-z (8.10)

1<i<j<M

where g(z.) = [ [1<;cjcnr(2i — zj)~Y € F is expanded in the region (2; (defined by (8.2)),
cf. Subsec. 7.6. Namely,

@ IR G)EEN e
g ( ) 1<11<_]LM i 1%:\1 k 2
We claim that the series g(z,) converges a.L.u. on €;. Then ¢(z,)g(z.) as a formal se-
ries converges a.l.u. on O to ¢(z.)g(z.) as a rational function (which is holomorphic on
21). We denote this rational function by f, ,». Then, this statement also holds when the
permutation 1 is replaced by any o, our proof is therefore completed.

To prove the claim, it suffices to show that ¢(q1, ¢i1g2, ..., q1¢92 - - - qur), as a formal Lau-
rent series of q1 = 21,42 = 22/721,q3 = 23/%2,...,qm = ZMm/Zyv—1, converges a.l.u. on
Q = {(q1,--.,qu) € CM : 0 < |¢1],0 < |g;| < 1if2 < j < M}. But this is clearly true
because

9= J] (@we-aw)™ )] (_kf\f)(_Qi-&-lCIi-i-Q"'Qj)k e C((q1,.--,qm))

1<i<j<M keN

is the Laurent series expansion on the polyannulus 2’ of the holomorphic function

H (g2 ¢ — g2+ Qj)_N e 0()

1<i<j<M
O
8.3
Definition 8.3. Let A', ..., AM be mutually local. For each z, € Conf™ (C*),
Al(z) - AM(zp): VQV - C (8.11)

is defined to be the linear map sending v ® v to f,,s in Thm. 8.1. Equivalently,
Al(z1) - AM(zp) is a linear map from V to (V/)* = [,y V(n)**.
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According to this notation, for local A, B we have
A(21)B(22) = B(z2)A(21),  (AnB)(23) = Reseymry A(21)B(22) (1 — 22)"dz1.  (812)
The following is our second analytic property for n-point functions.

Theorem 8.4. Assume A',--- , A™ B' ... B"aremutually local. Then on
Q={(21,--+,2m;C1y- -, Cn) € Conf™ ™ (C*) : |2;] > || for all 4, 5},
for each v e V,v' € V' the RHS of

W' Al(z1) - A™(z) BH(G1) - - B™(Ga)v)

= > Al (1) A (zn) PeBY(G1) - B (G )v) (8.13)
keN

converges a.l.u. to the LHS.

The meaning of the product of A(z1) - -+ A™(2,,) and BY((1) - - - B%(¢y) is clear: it cor-
responds to the sewing of (setting ¢ to be the standard coordinate of C)

X, = (P1;07Z17'-')vaoo;<7c_zl7---aC_ZTmCil)v
%2:(P1;07<17"'7Cnaoo;<7c_Cb"'ac_gn?g_l)

along 0 € X; and 0 € X, in case all these fields are vertex operators. Moreover, this
picture, as well as the theorem, can be easily generalized to the products of several strings
of mutually local fields.

Remark 8.5. Note that each summand on the RHS of (8.13) is holomorphic on (z.,(.) €
Conf™(C*) x Conf™(C*). When V(k) is finite-dimensional, this is due to Thm. 8.1 and
that P, can be written as ) e){€ for a basis {e} of V(k) and dual basis {€}.

In the general case that V(k) is not necessarily finite dimensional, P is the projection
from (V’)* onto V(k)**. In each series A%(z;) = 3,y A%z " ! in (8.13), A%, is understood
as (A%)" sending each V(a)** to V(b)** where b = a + A4 — n — 1. Then, in this sense
Al .. A™ are mutually local. Each summand on the RHS of (8.13) is continuous over
(2e,Ce) € Conf™(C*) x Conf"(C*); for fixed z,, it is holomorphic over (, by treating
W' AY(z1) - - A™(2m) Py-) as an element of V(k)*; similarly, it is holomorphic over z,. So,
again, it is holomorphic on Conf™(C*) x Cont™(C*).

8.4

The idea of the proof of Thm. 8.4 is the following. To show that a series of functions
> fn(zs) converges al.u. on a domain U: We try to find » > 1 and a smaller U’ such
that >}, fn(z.)q" converges alu. on z, € U' and ¢ € D) to a function f holomorphic
on U x D). Then by Lemma 7.13, 3. fn(2.)q" is the series expansion of f, which must
converge alu. onU x DX.
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Proof of Thm. 8.4. It suffices to prove the proposition when (2 is replaced by all possible
Q ={(z1,---y2m,C1,-.-,Cn) € Confer”(Cx) : 2| > r|¢j| for all 4, j}

where » > 1. To clarify the subtlety, we let Al . V(a)** — V(b)** denote the double
transpose of A, : V(a) — V(b). To simplify discussions we assume m = n = 2. Consider
the following element of &(Conf?(C*)?)[[q]]:

Y, AN (21) A2 (22) P B (G1) B (Ga)v)d*. (8.14)
keN

Note that P,q¢* = Pyq"o. By scale covariance, as elements of Hom (V' ® V, C),
g™ BN (G)B*(¢1) = ¢85 BY(¢G1) B (g62) g™ (8.15)

whenever 0 < |(a| < |¢1]. So it holds for all ¢, € Conf?(C*) by holomorphicity. Thus,
there is d € Z such that (8.14), as a series of functions of (z., (., q), equals

g™, A (21) A% (22) P B (061) B2 (g6 )). (8.16)
keN

On Q) = {(2e,Ce) : 0 < 7|C2| < 7|C1] < |22 < |21]} and g € D), (8.16) equals

2 a% A (21) Py A% (20) P B (061 B2 (aGo)v)
keN seN

22D 0%, Al (1) Po AP (2) P B (961) P B (qa)v) (8.17)

keN seN teN

=227 > g, Al (21) Py A® (22) P B (9C1) P B? (9Co)v)

keN seN teN

Rem. 8.6

By Thm. 8.1, this series (and hence series (8.14)) converges a.l.u. on 2, x D) to the
holomorphic function

9(%e,Ca,q) = qv', A1 (21) A% (22) B (q$1) B (qC2)v)-

Therefore, (8.14) is the Laurent series expansion of g when (z.,(.) € €. Namely: the
coefficients of (8.14) equal those in the expansion of g when (z,,(,) € €. By Lemma 7.13
applied to the holomorphic function g(z., (., q) on £, x D), this statement is true when
(ze,Ce) € Q, (since the coefficients are holomorphic on (2,), and the series expansion of g
converges a.l.u. on 2, x D) to g. So (8.14) converges a.l.u. on Q, x D to g. This finishes
the proof if we set ¢ = 1. O

Remark 8.6. Note that in (8.17), we have wused the obvious fact that
> PeBY(q¢1) P:B?(q¢2)v converges #-weakly in V(k)**, in the sense that its evalua-
tion with every element of V(k)* converges. We have also used the fact that, assuming
v' € V(m)*, the linear opeartor P,, A'(z1)P,A%(2) Py, : V(k)** — V(m)**, which is the
double transpose of P, A'(21)PsA?(22) Py, : V(k) — V(m), is continuous with respect to
the weak-x topology. This is justified by the following easy lemma.
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Lemma 8.7. Let T : U — V be a linear map of vector spaces. Then T* : V* — U* is =-weakly
continuous, which means if v;; is a sequence (or more generally, a net) in V* which converges
weakly-x to v* € V* in the sense that lim, (v, v) = (v*,v) for all v € V, then T v} converges
x-weakly to T v*.

8.5

We now discuss the proof of the reconstruction Thm. 5.12. Assume that the assump-
tions for graded vertex algebras in Thm. 5.12 hold. We may extend £ to also include
the identity field 1(z) = 1y. Namely, 1,, = J, —11ly. Motivated by (7.22), for each
Al ... A¥ e Eand ny,...,n; € Z, we define

Y (Ap, - And2) = (A, - A1) (2) (8.18)
where the right hand side is defined inductively by
(ATlll e Aﬁk 1) (Z) = (A}“Ll (Aglz e Aﬁkl)) (Z)

By the generating property, we can define Y (u, z) for every u € V using (8.18) and linear-
ity.

There are two immediate problems with this approach: First, to define the RHS of
(8.18) inductively, we need the fact that A} (z) is local to (A2, --- AF 1)(z) (“Dong’s
lemma”). Second, we need to show that the above definition of Y (u, z) is unique, i.e., in-
dependent of how u is written as a linear combination of A}, --- A¥ 1 (“Goddard unique-
ness”). Besides these two, we also need to check that such defined Y (u, z) satisfies the
translation property. Let us first check the translation property.

8.6

Lemma 8.8. Assume that homogeneous fields A(z), B(z) are local and satisfy the translation
property [L_y, Ay| = —kAj_1, [L—1, Bx] = —kBj—_1. Then so does each A, B:

[L-1, (AnB)i] = —k(AnB)i-1. (8.19)

Proof. By the Jacobi identity (7.18),

n n
(AnB) = Y (-1) < l)An_lBkH = (=t ( Z)Bn+k_lAz, (8.20)
leN leN
and hence
n n
—k(ApB)j_1 = le%(-ﬂ (z> (—k)Ap_iBii—1 + %}(—1)"“ <l>an+kllAl.

So by the translation property of A, B,

[L1,(4.B)i] = Y (~1)! (’Z) (=1 + ) Ay By + Y (—1)! (?) (—k — 1) Ap—y Brs11

leN leN
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+ (-1 (’Z) (n+k = 1)Bupsi1 A+ > (=1)" <”> IBk A1,

leN =1 !

Look at the RHS. In the first sum, notice (1) (}) (—n+1) = (=1)"**(,}",) (I+1) and replace

I by | — 1; in the fourth sum, notice (—1)"*! ()l = (=1)"*'=1(,",) (I — 1 — n) and replace [
by [ + 1. Then we see why (8.19) is true. O
8.7

Proposition 8.9 (Dong’s lemma). Let A(z), B(z),C(z) be mutually local homogeneous fields.
Then for each n € Z, C(z) is local to (A, B)(z).

We prove that C'(z) is complex-analytically local to (A4, B)(z).

Proof. Step 1. Choose v € V,v" € V'. Then we have series

D, (AnB)(22) PrC(23)v) = D Resyy—zy (21 — 22)™, A(21) B(22) PuC(23)v)dz1. (8.21)
keN keN

On the region Q; = Conf?(C*) N {|z1| > |23], |22| > |23]}, the RHS of
f(21,20,23) := V', A(21) B(22)C(23)v) = Z<’U/,A(21)B(22)Pk0(23)’l)>
keN

converges a.l.u. to the LHS by Thm. 8.4. Therefore, on 2, the sum and the residue (i.e.
contour integral) on the RHS of (8.21) commute, and (8.21) converges a.l.u. on |z| >
|23| > 0to

g(z2,23) = Resz, =z, (21 — 22)" f(21, 22, 23)d21

which is holomorphic on Conf?(C*) since f is holomorphic on Conf?(C*) by Thm. 8.1.
Similarly, >, (v', C(z3)Pi(A,B)(2z2)) converges a.l.u. on |z3| > |22| > 0 to g(z2, 23).

Step 2. To complete the proof, we need to show that (22 — 23)*g is holomorphic near
z9 = zg for some k. By Thm. 8.1, (21 — 22)" f is a linear combination of

)n—N( )—N

2 2525(z — 2 21— 23) V(22 — 23

for some N € N and a, b, ¢ € Z. To prove the claim, we may assume that (z; — 2z2)" f is just
of this form. Then near z; = 23, (21 — 22)" f has a.l.u. convergent series expansion

a _ o -N . o
(21_22)11]0: Z <i>(zl_z2)n N+zz§ z+bz§< J >(2’1—22)j(22—23) 2N J
i,j=0

Apply Rep,, _., - dz1. This means taking the coefficient of (21 — z2)" V"7 where n — N +

i+j=—-1.Soweseti=N—-n—j—1.Sincei >0, wetake0 <j<N—-n—1.50
ME! a (N—n—j—1)+b N
a—(N—n—j—1)+ - —2N—j
9(22,23) = j;) (Nn~j*1>22 ’ Z§<j >(22—23) 7,
which clearly has finite poles at z; = 23. O
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8.8

Proposition 8.10 (Goddard uniqueness). Let £ be a set of homogeneous fields satisfying the
assumptions for graded vertex algebras in the reconstruction Thm. 5.12. If Al(z), A%(z) € &
satisfy AL1 = A2 |1, then A'(z) = A%(2).

Proof. Set A = A' — A2, and assume without loss of generality that A € £. Then A_;1 =
0. By the generating property, we can show A(z) = 0 by show that for any v/ € V’,
B',....BFe& andn,ni,...,n €7,

W', AnB), - B 1) =0. (8.22)
Suppose we can show that
W', A(z)BY(z1) -+ B¥(z:)1) = 0 (8.23)

as functions on Conf**'(C*). Then multiplying it by any Laurent polynomial of
z,z1,...,zn and taking contour integrals over |z| = R,|z1| = r1,...,|2k| = 7 Where
0<rp<---<r; <R, wewill get (8.22).

Since the LHS of (8.23) is holomorphic, it suffices to prove (8.23) when 0 < |z| < || <
.-+ < |21, i-e., to prove in this domain that

D B (1) - BF(2) PA(2)1) = 0.
seN

Therefore, it suffices to prove A(z)1 = 0. Since A(z) satisfies the translation property and
the creation property lim, .o A(2)1 = A_;1, similar to the proof of Cor. 3.11 we have
A(2)1 = e*L-1A_11. So A(2)1 must be 0. O

8.9

Proof of the reconstruction Thm. 5.12. Assume that £ contains the identity field 1(z) = 1y.
If A(z), B(z) € &, then using (8.20), one checks easily that A,, B satisfies the creation prop-
erty with

(Ap,B)_11 = A,B_11. (8.24)

So by Lemma 8.8 and Dong’s lemma, if we include A, B in £, then the new & still sat-
isfies the assumptions for graded vertex algebras in Thm. 5.12. By induction, when
Al ... AF e £ we have

(A, - AF 1)1 =A) - AF 1. (8.25)

Therefore, by including any linear combination of vectors of the form A} ---A¥ 1 in
£, we may assume that for each homogeneous u € V there exists A(z) € £ such that
A_11 = u. By Goddard uniqueness, such A(z) is unique and hence can be written as
Y (u, 2).
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We now prove the Jacobi identity for Y since the other axioms of graded vertex alge-
bras are obvious. Choose A(z) = Y (u,z) and B(z) = Y (v, z) in €. Note that v = B_1.
By extending £, we may assume that each A, B is in £. To show the VOA Jacobi identity
(4.12), by (7.18), it suffices to show Y (Y (u),v, z) = (A, B)(z). This follows from Goddard
uniqueness and

(A,B)-11 = A, B_11 = Ayv =Y (u)pv.

So V is a graded vertex algebra. The last paragraph of Thm. 5.12 about VOA is obvious.
O

9 VOA modules; contragredient modules

9.1
Let V be a VOA.
Definition 9.1. A vector space W equipped with a linear map
Yy : V — (EndW)[[*']],
v Yyw(v, z) = Z Yy (v)nz "1

nez

(where each Yyy(v),, € EndW) is called a weak V-module if the following hold:
e (Lower truncation) Yy (v, z)w € W((z)) for eachv € V,w € V.
e Yw(1,2) = 1lw.
* (Jacobi identity) For each u,v € V,

5 (7 )1 hsrt)

leN

=31 (7 ) B ¥ineheen = 20 () oo Bin(w

leN leN

(9.1)

Definition 9.2. An admissible V-module W (or simply a V-module) is a weak V-module
such that W = @,,.y W(n) is graded by a diagonalizable operator L satisfying the grad-
ing property

[Lo, Yiw(v, 2)] = Yag(Lov, 2) + 20:Yaw(v, 2) 9.2)
for each v. Equivalently, for homogeneous v,
[Lo, Yiw(v)n] = (wtv —n — 1) Yy (v)n, (9.3)

i.e., Yyy(v, z) is Lo-homogeneous with weight wtv. Zero and eigenvectors of Ly are called
(Log)-homogeneous vectors. If w € W(n), then wtw := n is called the (Lo)-weight of w. If
each W(n) is finite-dimensional, we say W is finitely-admissible.
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The lower-truncation property is redundant in the definition of admissible modules
since it follows from the grading property.

Convention 9.3. V itself is an admissible V-module, called the vacuum module. (It is
analogous to the adjoint representations of Lie algebras.) We always choose the operator

EO onV to be L.

9.2

Proposition 9.4. Let W be a weak V-module. Then for each u € V, the following translation
property holds:

[L_1,Yw(v,2)] = Yw(L_1v,2) = 0, Yw(v, 2). (9.4)

Proof. Applying the Jacobi identity to [Yyy(c)o, Yw(u)x] gives [L_1,Y (u)r] = Y (L_1u)g.
By (3.39), L_1u = Y (u)_21. Applying the Jacobi identity to Yyy (Y (u)_21); shows that it
equals —kYyy(u)g—1. d

Proposition 9.5. Let W be a weak V-module. Define the action of L,, on W to be
L, = YW(C)nJrl (95)
Then (Ly)nez satisfy the Viarsoro relation with the same central charge c as that of V.

Proof. Use the Jacobi identity, the translation property, and Rem. 3.2 to compute
[Yiw (C)m1, Yow (C)s1]- -

Exercise 9.6. Show that [Lo, Yw (v, 2)] = Yw(Lov, 2) + 20, Yw(v, 2).

Remark 9.7. The above exercise shows that if W is admissible, then A := l~}0 — Lo com-
mutes with the action of V. on W, i.e,, A € Endy(W). In particular, it commutes with
Lo = Yyw(c); and hence with Lo. Therefore, Ly — Lo is an endomorphism of the admissi-
ble V-module W commuting with Lo. Note also that by (9.3), L, lowers the Eo-weights
by n:

[Lo, Ly] = —nLy. (9.6)

Convention 9.8. The grading of an admissible V-module always means the zo-grading,
even when L is diagonalizable.
9.3

We discuss some basic properties of irreducible modules.

Convention 9.9. A homomorphism of weak/admissible/finitely admissible modules A :
W; — W, always means a linear map intertwining the actions of V.

Definition 9.10. An irreducible V-module is a finitely admissible V-module with no
proper graded V-invariant subspaces (i.e., no proper V- and Lo-invariant subspaces).
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Lemma 9.11 (Schur’s lemma). Let W be an irreducible V-module. Let A € Endy (W) satisfying
[Lo, A] =0.Then A e Clw.

Proof. By [Lo, A] = 0, A restricts to a linear operator on each W(n). Choose n such that
W(n) # 0. Since W(n) is finite-dimensional, A|y,) has an eigenvalue A. So the (clearly
V-invariant) subspace Ker(A — A) is non-zero. It is also Lo invariant since [Lg, A — A] = 0.
So Ker(A —\) =W. O

Corollary 9.12. Let W be an irreducible V-module. Then Lo = Zo + A for some A\ € C. In
particular, Lg is diagonalizable on W.

Proof. This follows immediately from Rem. 9.7 and Schur’s lemma 9.11. O

From this corollary, we see that the Ly-gradings of an irreducible module are unique
up to scalar addition.

Corollary 9.13. Any irreducible V-module W has no proper V-invariant subspace.

Proof. Let M be a V-invariant subspace of W. Then M is Ly-invariant since Ly = Yiy(c);.
So M is Lg-invariant, i.e., a graded subspace. So M is not proper. ]

By the same reasoning, we have:
Corollary 9.14 (Schur’s lemma). Let W be an irreducible V-module. Then Endy(W) = Clyy.

Definition 9.15. We say that V is rational if any admissible V-module W is completely
reducible, i.e., W is a direct sum of irreducible V-modules.

9.4

By replacing Lo with Lo, all the results in Sec. 7 and Subsec. 8.1-8.7 hold for admissible
modules.

Exercise 9.16. Give a complex analytic definition of Jacobi identity (cf. Def. 7.16) for
admissible V-modules that is equivalent to the algebraic Jacobi identity (9.1).

However, due to the lack of vacuum vector 1, the Goddard uniqueness and hence
the reconstruction theorem do not hold for modules. Therefore, checking locality is not
enough to prove the existence of V-module structures. To construct examples of modules,
new methods are needed.

Here is one easy method to construct VOA modules. Suppose V is a subalgebra of a
VOA U such that the Ly on U restricts to that of V. (We do not assume V and U have the
same conformal vector.) If we have constructed an admissible U-module M (for instance,
M = U), then by regarding M as a V-module, any V-invariant graded subspace of M is
clearly a V-module. In particular, if we already know that M is a unitary U-module, then
such constructed V-modules are unitary.
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9.5

Here we state some results on the irreducible modules associated to affine and Vira-
soro VOAs without providing proofs. The readers are referred to [LL, Chapter 6], [Was10],
and [FZ92, Wang93] for details.

Let g be either abelian or a simple Lie algebras. Let W be a finite dimensional irre-
ducible representation of g. Fixalevel [ € Csuch that+h" # 0. Recall the decomposition
g = g— @ g+ into Lie subalgebras defined in Subsec. 6.8:

g— = Span{X,, : X e g,n < 0}, g+ = Span{X,,,K,D: X € g,n > 0}. 9.7)

Then the g-module W extends to a g, -module structure such that X, acts trivially on W
ifn>0 Xpactsas X,and D =0, K =lon W. Let

Vo[, W) =TndS (W) = U®) Qu,y Ws  Lo(l,W) = Vo, W)/I

where [ is the largest proper D- and g-invariant subspace. Then V,(I, W) and Lq(l, W)
have unique finitely admissible V4 (l,0)-module structures such that D = Ly and that,
letting W be either of them, Yy (X _11),, equals the action of X,, on W foreach X € g,n € Z.
Lq(1,W) is irreducible. When g is abelian, W is unitary, and [ > 0, then V4(I,W) =
Lq(1, W) are unitary modules.

Assume that g is simple and I € N. Then W is naturally a unitary g-module. Then all
irreducible modules of the WZW model L4(l,0) are unitary, and are given by all Ly(I, W)
where W is an irreducible g-module satisfying the following property: (Skip this part if
you are not familiar with Lie algebra representations.) Let A be the highest weight of W.
Let 0 be the highest root (which is also a longest root) of g, namely, the highest weight
of the adjoint representation of g. Recall the inner product (-|-) on g satisfying (0]0) = 2,
which restricts an inner product on the Cartan subalgebra b. It gives canonically an inner
product on the dual space h* (i.e. the weight space). Then (6|\) (which is always > 0)
should be < [. There are only finitely many equivalence classes of such W'.

Similarly, Vir = Vir* @ Vir~ where

Vir™ = Span{L,, : n < —1}, Virt = Span{K, L,, : n > 0}.

Foreach ¢, h € C, let C.., be the one dimensional Vir"-module such on which K = ¢, Ly =
hand L,, = 0 forall n > 0. Let

Myic(¢, h) = Indyt. Cejy = U(Vir) ®pyirt) Cens Lvie(e, h) = Myir(c, h) /1

where [ is again the largest proper submodule. Then there exist unique finitely admissible
Wir (1, 0)-module structure on W = My, (I, h) or W = Ly, (1, h) with L= Ly — h such that
Yy (c),, is the action of L,,_; on W.

When c satisfies (6.4), the irreducible modules of the minimal model Ly (c,0) are
classified by all Ly (¢, hm,n) where m, n are integers with 0 < m < p,0 <n < g and

o (p=mq)® = (p—q)’
m,n 4pq

When c satisfies (6.5), Lvi: (¢, 0) and all its irreducible modules are unitary.

9.8)
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9.6

The remaining part of this section is devoted to the study of contragredient modules
(i.e., dual modules). Let W = @, .y W(n) be an admissible V-module. As usual, for each
n we define the projection of algebraic completion to W(n) in the canonical way:

Py W =T [W(n) > W(n). (9.9)

neN

Define the graded dual space

W =P W(n) =P W(n)*

neN neN

as usual. Then P,, : W — W(n)* is defined in an obvious way.

9.7

Our goal is to define an admissible V-module structure Yy on W’. To find the formula
of Yyy, consider the data

X = (Pla O) Z, 0; C?C -2, g—l)

where ( is the standard coordinate of C. If ’Hﬁn Contams W® W where W is a V-module,
andif wD e WOW,1Q0e VeV, w ®@d ¢ W ®W are going into the punctures
0, z, o0 respectively, then the correlation function is given by

W' W', Yw (v, 2)w ® Weg(0,2)w) = (w', Yyy(v, 2)wXw’, Yo3(0, 2) D). (9.10)

To simplify discussions, we focus on the chiral halves. The standard conformal block
for W, V, W associated to 0, z, o0 is given by (w’, Yyy (v, z)w). Indeed, if we choose v = 1,
choose w, @' such that (&', @) = 1, and identify W with W®w by identifying w with w®w,
and similarly identify W’ with W' ®’, then the correlation function (9.10) becomes exactly
the conformal block (w’, Yyy (v, z)w). So we can also view (w’, Yyy (v, z)w) as a (restricted)
correlation function.

We wish that the correlation function/standard conformal block associated to

3=(P50,27"0;¢, ¢ -2 ¢
is
¢(wl®v®w) = <YW/(U,Z_1)’LU/,’IU>

where W/, V, W are associated to 0, 2!, co. Now, the biholomorphism y € P! — v~ ¢ P!
gives almost an equivalence of X and ): the only exception is that the local coordinate
¢ — z, pulled back along this map, is (~! — z but not ¢ — 27L. So let us consider

Y = (P40,2700;¢, ¢ —2,¢7h)
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equivalent to X via y — L. Again, we associate W', V, W to 0, 271 oo as for 3. Then the
standard conformal block for 9) is still

d(w @v@w) = (W, Y (v, z)w).

Now we relate ¢ and 9 using the change of coordinate formula, noting that ( — 2! =

¥, 0 ("1 — z) where (for each t € P!)

9:(1) = - it _ % 9.11)
Therefore
d(w ®vRw) =YW UMW, )v®w) (9.12)

where /(1)) is the operator on (the Hilbert space completion of) W associated to V.

9.8
It remains to find U (4),). To avoid conflict of notations, we write 2”10, in Sec. 2 as
¢"*10¢. Then by (2.15), exp(2¢%0¢) sends v to (1/y — z)~! and hence —z~2v to ¥, (7). This
means
9, = exp(2¢?0;) o exp(log(—22)(d;) = exp(2¢?0¢) o (—272)%, (9.13)
Thus, on 'V,
UW,) = el (—z2)ko, (9.14)
Expanding (9.12), we get
<w', Yy (v, z)w> = <YW/ (eZLl(—zﬂ)L%, zfl)w',w>
Exchange the role of W and W’, and we get our definition:

Definition 9.17. Let W be an admissible V-module. Then Yy : V — (EndW’)[[2%!]] is
defined by

<wa(v,z)w/,w>=<w/,Yw(ezL1( 2= Hloy, 2~ )w> (9.15)

foreachv e V,w e W, w € W'. Assuming v to be homogeneous, this means
M )

Sk

Yo (v,2) = 0 (=272 . Yoy (Lhv, 271" (9.16)
keN

Expanding both sides, we see that for each n € Z,

_1\wtov
V(o) = 3 0 (Y (L) cimso) 9.17)
keN ’

Exercise 9.18. Let L,, be Yy (c),+1 on W’. Use (9.17) to show that for each w € W, w’ € W/,
(Lpyw',wy = (w', L_pw). (9.18)
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9.9

The purpose of this subsection is to prove Cor. 9.20.
Exercise 9.19. Use [lNLO, L] = —L; to show that when acting w € W,
LyaLo = ALotip, (9.19a)
erbipko — \Lograla (9.19b)

in W[A] and W[\, 7] respectively.

(Hint. Method 1: Compute 0, for the first equation, ¢, for the second one, and apply
Lemma 3.7. Method 2: Use the fact that L; lowers the weights by 1 to verify the equations
when v is homogeneous.)

By taking 0y of (9.19b) at A = 1, we get
eTLlf/o = zoeTLl + 7Ly, (9.20)
Corollary 9.20. we have
Yw(v, z) = Yyyr (eZLl(—z_Q)Lov, z_l)t. (9.21)
Thus, if W is finitely admissible, then W” = W and Yyy» = Yyy.
Proof. By (9.15),
Yoy (ele (_272)L0U’ 271)1; _ Yw(ez_lLl (_22)L062L1 (—Z*Q)Lov, Zfl)ty

which equals Yyy (v, 2) since (—2z2)foel1 = e~ 'L1(—22)Lo due to (9.19b). O

9.10
In the rest of this section, we prove the following main result of this section.

Theorem 9.21. Let (W, Yyy) be an admissible V-module. Then (W', Yyy) is an admissible V-
module, called the contragredint V-module of W. If W is finitely-admissible, then so is W', and
under the canonical identification W = W” we have Yy = Yyyn.

The very last sentence of this theorem is proved. To verify that W’ is an admissible
module, we begin with the following simple observation.

Lemma 9.22. If v € V is homogeneous, then Yy (v, 2) is Lo-homogeneous with weight wto.
Proof. Using (9.6) and (9.17), one easily computes Lo, Yiy (v)n] = (wtv—n—1)Yyp (v),. O

It is clear that Yy (1, z) = 1y . To prove that Yy satisfies the axioms of an admissible
module, it remains to check the Jacobi identity. We first prove the locality:

Lemma 9.23. Let u,v € V be homogeneous. Then Yy (u, z) and Yyy (v, z) are local.
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Proof. We prove the complex analytic locality. For each w € W, w' € W/,

D e (w, 21) P Yo (v, 20)w”, w) (9.22)
neN

= Z (', Y (e211 (—252) 0w, 25 1) Py Y (e 11 (=277 2) Fou, 27 w) (9.23)
neN

which converges alu. on 0 < |27} < |z;!| by the locality of Yoy (u,2) and Yyy(v, 2).
Moreover, this locality shows that the above expression and

Z <YW'(U7 ZQ)PnYW’(ua Zl)w/7 w> (924)
neN

= Z (W', Yoy (e zlLl —zy Hyloy, zl_l)PnYW(eZQLl(—zz_Q)LOU 25 1)w> (9.25)
neN

(which converges a.l.u. on 0 < |2, | < |2!]) can be extended to the same holomorphic
function f on Conf?(C*). This function is a C[z;™}, z5!]-linear combination of 4-point
correlations functions of the form (w’, Yyy(-, z1)Yw(-, z2)w) which is holomorphic on C* x

C* when multiplied by (21 — 22)” for some N. So f shares the same property. O

9.11

Write A(z) = Yy (u,2) and B(z) = Yy (v, 2). Since A and B are local, we have the
Jacobi identity (7.18) for A(z), B(z), (A«B)(2), which implies the Jacobi identity for Yy if
we can show that for all k € Z and homogeneous w € W,w’ € W/, as elements of C[z5']
we have

{(ApB)(z2)w',w) = Y (Y (u) v, 22)w’, w). (9.26)

By (7.14), the LHS of (9.26) is Res;, —., (21 — 29)* f(21, z2)dz, where f was defined in the
proof of Lemma 9.23. By (9.25) and the complex analytic Jacobi identity for Yy, the RHS
of

f(Zl,ZQ) _ Z <w/,YW(PnY(621L1 (—Z;Z)LOU, Z;l o 251) '622L1(—Z;2)L0U7251)w>
neN

(9.27)

converges alu. on 0 < |27 — 2,7 !| < |2, ! to the LHS.
The RHS of (9.26) is the application of Res., —.,—o - (21 — 22)*d(z1 — 22) to the following
elements of C[23 '[[(21 — z2)*']]:

Z (z1 — zg)_”_1<wa (Y (u)pv, z2)w', w)

nez
=<YW/ (Y(u, z1 — 22), zz)w', w>
=(w', Yy (251 (=25 2) 10V (u, 21 — 22)v, 20)w)
=(w', Yw(622L1Y((*2272)L0)U, 2y 2 (2 — 21))(72272)]:%, z)w). (9.28)

where the scale covariance is used in the last equality.
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Exercise 9.24. Set the following element of C[z3 '][[(21 — 22)*']]:
gn(22,21 — 22) = (W', Y (P, 622L1Y(( 5 )0V, 252 (29 — z1)) (—2zy3)koy, z2)w).
Show that for each k € Z,
Resz —z=0 (21 — zQ)kgn(22, 21 — 2z9)d(z1 — 22) (9.29)

is a monomial of 23! that vanishes when n > wtu + wtv — k — 1. Conclude that the
application of Res,, _,,—0- (21 — 22)¥d(21 — 22) to (9.28) equals the (automtically finite) sum
over all n of (9.29).

It follows that (9.26) holds if we can show: For any v’ € V/(n) = V(n)* (e.g., (V/,-) =
(W', Yay (P, z2)w)), as holomorphic functions of z3 on C*,
Ress, s, (21 — 20)" (0 Y (€5 (=27 ) Fou, 27 — 251) - €201 (=25 2)P00)dz
=Res;,—z,—0(z1 — 22)k<v', eZ2L1Y((—252)L°u, 25 2 (29 — zl))(—zgz)L°v>d(zl —22) (9.30)
where the LHS is the residue of a holomorphic function and the RHS is that of a formal
Laurent series. This follows if we can show that
<U/ Y( Z1L1(_Zl—2)L0u 21—1 _ zQ—l) . eZ2L1(—22_2>LOU>
=V, 2 1Y (=25 2)0u, 252 (20 — 21)) (=25 %) o0 (9.31)
where the RHS as a formal Laurent series of z3, 21 — 22 converges a.l.u. on 0 < |z; — 22| <

|22| to the LHS as a holomorphic function of z1, zs.
Clearly, as elements of C[[25, (21 — 22)*!]] the sum

', eZQLlY(( 5> ) ou, 252 (20 — 21) ))(— L°v>
= Z < ,eZ2L1PnY((—22 2P0y, 252 (29 — ;7,'1))(—7:2 L%> (9.32)
neN

satisfies the conditions in Lemma 7.4. If we can prove the claim that the RHS converges
alu. on 0 < |21 — 22| < |22] to the LHS of (9.31), then by Lemma 7.4, we are done with
the proof. The claim follows from the following “e7l1-covariance” (where 7 = 29,z =
2y 2 (22 — 21)), which we prove for Yy though we actually just need it for Y = Yy.

Proposition 9.25. Let W be admissible. Then for each v € V,w € W,w' € W', the LHS of

Z <w', eTLanYW(v, z)w> = <w’, Yw(eT(l_Tz)Ll(l — Tz)_zLOU, z/(1— Tz))eTL1w> (9.33)

neN
converges a.l.u. on {(z,7) € C* x C: |7| < |z~Y|} to the RHS.

This theorem is a special case of the conformal covariance Thm. 10.7 which will be
explained later. However, the proof of Thm. 10.7 is quite involved. So in the following
we give an elementary proof of Prop. 9.25.

96



9.12

We view the e™F1-covariance of Yy as the transpose of the translation covariance of

Yyy,. So we first need to prove the latter.
Lemma 9.26. We have [L_1, Yyy (v, z)] = 0, Yy (v, 2).
Proof. Assume v is homogeneous. It suffices prove
[Ll, Y (eZLl z2koy, 2_1)] = —0,Yw (eZLl 2 2Loy, z_l) . (9.34)

which is the transpose of the formula we want to prove multiplied by (—1)¥**. The Jacobi
identity for Yy implies (5.3) where Y is replaced by Y. By (5.3),

[L1, Yiw(v,2)] = 22Vaw(L_1v, 2) + 22Yiw(Lov, 2) + Yay(L1v, 2). (9.35)
Using this relation, one checks that the LHS of (9.34) equals

Yy (Lt 27200y 271 4 227 oy (Loe*t1 272500, 271 + 272V (L_qe*t1 27200y, 27 1),
(9.36)

It is easy to guess by chain rule and verify rigorously by series expansions that
—0.Yw(v, 27 = 2 2Yaw(L_1v, 27 ).
Thus, the RHS of (9.34) is
—Yyy (L1272 oy, 271 4 227 Wy (e*F Loz 720y, 271 + 27 2Vay (L_1e*P1 27 2Loy, 27 1)

which equals (9.36) due to (9.20). O

9.13

Now that we have the translation property for Yy, we have the translation covariance
in the form of (3.36) or (equivalently) Exercise 7.5. We need the latter form: the LHS of

Z <er (u, z)PneTLflw',w> = <Yw/ (u, 2z — 7w, eTL1w>, (9.37)

neN

converges a.l.u. on |7| < |z| to the RHS.

Proof of Prop. 9.25. By Cor. 9.20, as sums of holomorphic functions we have

2 (w', e P, Yy (v, Z)wy = Z <PneTL*1w’,YW(v, z)w)

neN neN
- 2 Yy (e L1 (=272 Loy, 27 Y P10/, w),
neN

which by (9.37) converges a.lL.u. on || < [27!| to

<YW/ (eZLl (—ziQ)LOU, P T)w', 67L1w>.
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We move Yy to the right using (9.15). Then the above becomes
<U)/, Y (6(2_1—7)L1 (—(2_1 o 7_)—2)L06zL1 (_Z—2)LO,U7 (Z_l _ T)_1)67L1w>.
This equals the RHS of (9.33) since, by (9.19b), when acting on V,

(_(z—l _ T)—Q)Loele _ e—z(z’l—r)le(_(z—l _ ’7')_2)L0.

The proof of Thm. 9.21 is complete.

9.14

Definition 9.27. We say that V is self-dual if the vacuum module V (with grading Ly =
Ly) is isomorphic to its contragredient module V’.

The construction of tensor product modules is much easier:

Proposition 9.28. Let V1, Vg be VOAs and W; be an admissible V;-module. Thelfl the vector
space W1 @ Wq has a unique admissible Vi ® Vo-module structure with grading Lo ® 1y, +
1w, ® Lo such that for each v; € V;,

YW1®W2 (’Ul ® V2, Z) = le (1)1, Z) ® YW2 (’1)2, Z). (938)
Equivalently, for each w; € W;, w), € W/,

<'U]/1 ® ’LUé, YW1®W2 (/Ul ® V2, Z)(wl ® w2)> = <’lU,1, YW1 (/U].a Z)wl> : <wéa YWQ (/027 Z)w2>'
(9.39)

Proof. Using (9.39), it is easy to verify that Yy, gw, satisfies the complex analytic Jacobi
identity. O

10 Change of coordinate theorems

10.1

The goal of this section is to study the change of local coordinates in a rigorous way.
Due to some convergence issues, it is very difficult to show that a given local coordinate
of C at 0 can be written as exp(fd,) for a holomorphic vector field fo,. So we first discuss
formal coordinates and find the formal vector fields generating them.

Define the following two subspaces of z - C[|z]]

G = { Z anz”:alqéO}, g, = {z—i— Zanz”eg}. (10.1)

n€Z+ n=2
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Elements of G are viewed as formal local coordinates of C at 0. Likewise, set

G= {oz(z) €G: Y |an|r™ < +oo for some r > o}, Gy =GnGy. (10.2)

Then elements of G are local coordinates of C at 0, or equivalently, transformations of
local coordinates.

There is an obvious right action of G on C((z)) defined by composition f — f o « if
f€C((2)) and « € G. We leave it to the readers to check that it is well-defined. So G is a
group whose product is the composition and whose identity is z.

10.2

According to Sec. 2, to find the change of coordinate operator ¢/ («) for each o € G, we
need to write it as a = exp(}],~( ¢nz"*10.). This task is easy if a € G,. Indeed, write

alz) =z + Z anz". (10.3)

n=2

Then we can indeed choose ¢y = 0, and

a(z) = Z %( Z cnz"H&Z)k(z)

keN " nx=1
1

=z + Z cnlz’"lerl + B Z (n1 + 1)Cn10n22m+n2+1 (10.4)

ni=>1 "np,ng=1

1
b D) (Dt ng+ e ngong 2™ 4

" n1,m2,m3>1
This means that for each m > 1,

1
Umi1 = Cm+ Y, Gt 1) (g ey e o (105)

2<i<m
N1y...,NEL 4
ni+--+nj=m

This shows that one can solve ¢y, ca, ... given the coefficients ag, as, .. ..
For a general o € G, instead of solving a = exp(},, - c,2"110,), it is easier to solve

a(z) = a/(0) - exp < Z cnz”HaZ) (2). (10.6)

n=1

since a(z)/a/(0) € G4. The first several terms are

_ 1a”(0)
c1 == 2 (0) (10.7a)
~1a"(0)  1/a"(0)\2
2= 5 w0) Z(af(0)> : (10.70)



The corresponding linear operator on an admissible V-module W is given by

U(a) = O/(O)EO exp ( Z ann> = 0/(0)ZO Z %( Z ann>k. (10.8)
>

nx=1 keN

Its inverse is U (a) ™! = exp(—,2, enLn)a! (0)~Lo.
The point of replacing Lg with Ly is to avoid the ambiguity caused by the non-integral

eigenvalues of L. Since (by Cor. 9.12) Eo — Ly is a constant if W is irreducible, it is not a
big deal to make such a replacement.

Remark 10.1. By the fact that L,, lowers the weights by n, the above double sum is finite
when U(a) (and similarly U («) 1) is acting on any vector. Moreover, they preserve W<"
for each n € N where

Ws" = @ W(). (10.9)

0<j<n

So U(«) restricts to a linear isomorphism on each W<". Note that U/ («) does not preserve

10.3

In applications, we need to consider a holomorphic family of (analytic) transforma-
tions p : X — G, which means that p = p,(z) is a holomorphic function on a neigh-
borhood of X x {0} in X x C where X is a complex manifold (here (z,z) € X x C), and
pz(0) = 0and p,(0) = 0,p5(0) # 0 forall z € X.

We now restrict to the case that X is an open subset U of C and let ¢ be the standard
variable of U, but consider a slightly more general situation that p = &(U)[[#]] with
pc(0) = 0and p;(0) # 0 for all ¢ € U. Equivalently,

pelz) = 3 ol 0):" (10.10)

n=1 "

where each ( — p(n)(()) is an element of &(U) and p:(0) # 0. Note that when z # 0, p¢(2)
does not make sense as a value. We call p : U — G a family of formal coordinates.

Remark 10.2. We can take limits and derivatives for elements of ' (U)[[2%']] by treating
each O(U)-coefficient. So, for instance, the derivative 0.p¢(2) at (o € U makes sense

analytically as the value of the limit lim¢_,, £e2) e (3)

¢—Co
By (10.5),
pc = p(0) exp ; en(Q)2"10.) (10.11)
where ¢, ca,- - € O(U). So
Ulpe) = p(0)" exp (,;1 ea(O)Ln), (10.12)



which shows that
U(p¢)|yyr € End(WS) @ (V) (10.13)
for each k£ € N.

10.4

Let p: U — G be a family of formal coordinates.

Proposition 10.3. Suppose 0 € U and po(z) = z. Then, when acting on each vector of W, or
equivalently, when restricted to each \WAS

~

oU(p),_, = Zj!(&mé’” O),_,) Lo (10.14)
nz=

where L, = L, when n > 1, and acpé )( ) = 0c02pe(2).

Remark 10.4. The geometric meaning of Prop. 10.3 is the following. Assume thatp : U —
G is a holomorphic family with po(z) = z. Then for each zy near 0, {( — p¢(20) is a path
in C whose initial value is zg. So anC(ZO)az‘ =0 is the tangent vector at zp describing the
velocity of the path. By assembling these tangent vectors, we get a holomorphic tangent
vector field 0¢p¢(z)0. ] 2le—or which equals

Ocpc(2):| _

= Y —acpl(0)z"0. . (10.15)

In view of the correspondence 2"0, <> Ly_1, Prop. 10.3 says that o2 (p¢)| c=0 18 exactly
the linear operator corresponding to the tangent vector field.
Proof of Prop. 10.3. From (10.12), .U (p¢) is expressed in terms of ¢,,. So we need to express
¢, in terms of 8Cpén) (0). By (10.11) and (10.4),
pe(z) = 0 (0) (2 + X ealC)z™) + Re(2)
nx=1

where R¢(z) is a sum of polynomials of z multiplied by at least two terms of

c1(€), c2(¢), . ... Since po(z) = z, equivalently, p;(0) = 1 and ¢;(0) = ¢2(0) = --- = 0,
we have J¢R(2)|¢=0 = 0. So
8<p¢(z)’4 = 0cpe(0)z + Z Ocen(0)2" L (10.16)
n=1

A similar argument applied to the derivative of (10.12) shows

aCU(pC)‘C = anC Lo + Z 8<cn L,. (10.17)
n=1
By (10.16), for all n > 2,
1 n
0en{ )| = dcena(0).
Substituting this relation into (10.17) proves (10.14). O
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10.5

Theorem 10.5 ([Hua97, Sec. 4.2]). U : G — End(W) is a group representation. Namely,
U(ao B) =U(a)UP) forall o, € G.

With the help of this theorem, we can calculate 0:U/(p¢) at ( = 0 without assuming
po(z) = z by computing o:U(p; o py ') using Prop. 10.3.

Proof. 1t suffices to consider the following two cases: (a) o, 5 € G (b) v € G and [ is a
scaling. Let [,, = 2"*10,.

Case (a). We write a(z) = exp(},>ianln)(2) = exp(X)(z) and B(z) =
exp(X,=1 bnln)(2) = exp(Y)(z). By the Campbell-Hausdorff theorem [Jac, Sec. V.5],
a o = exp(Z) where

1 1 1
Z=X+Y+ §[X7 Y] + ﬁ([Xv [Xa Y]] + [Y7 [Ya X]]) - ﬂ[X7 D/a [X7 Y]]]
+ Hs+ Hg+ ---
where each H,, is a finite sum of n — 1 iterated brackets of X and Y, and hence an infinite
linear combination of l,,, l,+1, . ... So Hy, increases the powers of z by at least n. From this
we see that Z is also of the form Zn>1 cnly, for some cq, ¢, - -+ € C.
The representation /,, — w(l,) = L, is a representation of the Lie subalgebra

Spanc{l1,ls, ...} of the Witt algebra. (There is no central term!) Write 7(X) = >} _, anLn
and 7(Y'), n(Z), n(Hy) in a similar way. Note that each 7(H,,) = eL,, + eL, 11 + --- low-
ers the Lo-weights by at least n. So Yn=1 T (Hy) is well defined. By Campbell-Hausdorff
theorem (applied to 7(X) and 7(Y)), we have

U@U(B) = exp(r(X)) exp(r(Y)) = exp ( Y 7(Hy)) = exp(n(Z)) = Ulao §).

n=1

Case (b). Write a(z) = exp(2,,>; @nln)(2) and B(z) = Az where A # 0. One checks
easily that

aof(z) =\ exp ( Z an)\”ln> (2).

n=1
Similar to the argument in Exercise 9.19, [EO, L,]| = —L,, implies
exp ( Z anLn) )\ZO — Ao exp ( Z an)\"Ln)
n=1 n=1
This finishes the proof. O

10.6

Our goal is to find the covariance formula for Yy under the change of local coordinate
of 0 € C from the standard one ¢ to any a € G defined on ID,.. Choose z € D)X, and consider

A= (PL0,005071,1/C), B = (P150,2,0:¢,¢ — 2 1/C). (10.18)
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where a~! is the inverse function of «, not to be confused with 1/a.

We associate W, W', W, V., W’ to the five marked points in the order listed above. By
the change of coordinates formula in Sec. 2, the standard conformal blocks associated to
these two are

', U(a)w), ', Yy (v, 2)w). (10.19)

We sew 2 and ‘B along 0 € 2 and o € PB. We follow Rem. 4.4 to change the a~! of A
to a~!/r and the 1/¢ of B to r/¢. Replace r by a slightly smaller number > |z|. Then
the range of a~!/r contains D{' (which is pulled back to a(DZ) in 21), and the pullback
of the unit disk under r/¢ is P1\D,,, which is disjoint from z and 0. So Assumption 4.3 is
satisfied.
This sewing identifies the following parts of 2, 3 respectively
Ar={y:0<la” (y)] <7}
Ay ={y:1/r <|l/y] <+t ={y:0<[y| <r}

(cf. (4.2)) via the rule a1 (71) - 1/42 = 1, or more precisely,
7 € A is glued to 2 € Ay — 7 = a(y2). (10.20)

The point 0 of A and the part {7 : [1/v] < 1/r} = {7 :r < |y| < 40} of P are discarded.
We thus have an isomorphism

~

AP = X = (Ph0,a(z),0;a ot = 2,1/C) (10.21)
where any v; € P1\{0} of 2 is identified with v; € X, and any 7, € D, of B is identified
with a(vy2) of B.

10.7

On the one hand, the standard conformal block for A#R is the contraction of the two
in (4.2), which is

'\ U ()Y (v, 2)w). (10.22)

On the other hand, since (w',Yw(v,a(z))w) is the standard conformal block for
(P1;0, a(z), 00; ¢, {—a(z),1/¢), by the change or coordinate formula in Sec. 2, the standard
conformal block of 3 should be

(W', Yoy (U(o(a|1))v, o2) ) U()w) (10.23)

where o(a|1), € G is the change from !

— zto ( — a(z), namely,
o(all),(t) = a(z +t) — a(z). (10.24)

(The meaning of the notation o(«|1) will be explained in (11.9).) So (10.22) and (10.23)
should be equal. That this result is a rigorous mathematical theorem is due to Huang.
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Theorem 10.6 ([Hua97]). Let W be an admissible V-module. Then for each w € W, w' € W', v €
Vand o € G, the following equation holds in C((z))

W', U () Yy (v, 2)w) = {w', Yy (U(o(|1))v, a2) ) U ()w). (10.25)
Equivalently, in C((z)),

(', U (o) Yy (v, 2)U () " tw) = (W', Yay (U(o(al1):)v, oz))w). (10.26)

10.8

We explain the meanings of both sides of (10.25); (10.26) is understood in the similar
way.

The meaning of the LHS of (10.25) is clear. Suppose o € &'(D;.). Then (w', Y (v, a(z))w)
is a Laurent polynomial of «(z), which is clearly holomorphic on I;* with finite poles at
0. z — o(a|1), is a holomorphic family of transformations. So U (o(«|1))visin V® €'(D,)
by (10.13). By linearity, the holomorphicity of (w’, Y (v, a(z))w) € C[z*'] implies that the
RHS of (10.25) is also holomrophic on D, with finite poles at 0. So, the RHS of (10.25)
is understood as an element of C((z)) by taking Laurent series expansion of the holomorphic
function.

More generally, let & : X — G be a holomorphic family of transformations over a
Riemann surface X. If « is holomorphic on X x D,, then the RHS of (10.25) is naturally
a holomorphic function on X x D) with finite poles at = = 0. Thus, as an element of
0(X)((z)) obtained by taking Laurent series expansion, it converges a.l.u. on X x D by
Lemma 7.13. So is the LHS. We conclude:

Theorem 10.7. Suppose o : X — G is a holomorphic family of transformations that is holomor-
phic on X x D,.. Then both sides of (10.25) and (10.26) are elements of €'(X)((z)) and converge
alu. on X x D to the same function. Moreover, the following series

D U(a) P Yy (v, 2)w) (10.27)

neN
of elements of O'(X x C*) converges a.l.u. on X x D) to (10.25).

Proof. The last statement is due to Lemma 7.4 when v, w, w’ are homogeneous. O
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We present the proof of (10.26) below. The idea is the same as in the proofs of scale
and translation covariance. Also, it is not hard to see that the following proof works for
all in G.

Proof of Thm. 10.6. Step 1. Let us first assume a € G so that &/(0) = 1. Choose ¢1, ¢, - - €
C such that

a(z) = exp ( Z cnz"H&Z) (2), (10.28)

n=1
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and set

ar(z) = exp ( Z Tcnznﬂé’z) (2) e C[7][[=]]

n=1

so that a1 (z) = «a(z). Note that we can write

2)=z+ Y pa(r)2" (10.29)

n=2

where p,, (1) € C[7]. So we can view «,(z) as a C[[z]]-valued holomorphic function. The
ay(z)—ar(z)

limit 0-a-(2) = lim,_, -

(10.29) shows that

makes sense analytically as in Rem. 10.2.

1/ (2) € 27 1C[r][[2]].

Therefore, (w’, Yyy(v, ar(z))w), which is a Laurent polynomial of «;(z), must also be in
C[7]((2)). It is not hard to verify that d-a.(2)|;=0 = X.c,2""! and that ay o a,(z) =
a+r(2) for each v, 7 € C. By taking derivative in the sense of Rem. 10.2, we obtain

Ora(z Z cnar(z ”H

n=1

From this and the translation property, we obtain in C[7]((z)) that

o', Yy (v, ar (2))w) = Z cnor (2)" - (w!, Yoy (D10, o (2))w) (10.30)

n=1

as C((z))-valued holomorphic functions of 7 € C.

Step 2. Let us calculate 0,U (o(c+|1),)v. Note that any formal power series composed
with z + ¢ is an element of C[[z,t]]. So, even though «; is a formal coordinate, o, (z + t)
still makes sense, and we can use (10.24) again to define p(a-|1).. Namely, in view of
(10.29),

n>2 s
Similarly,
o(a¢[1)a, (5 (1) = 044(047(2) +1) — ac(ar(2))

makes sense as an element of C[(, 7][[2]][[t]]. Using a¢(a-(2)) = acir(2), one checks
easily that

o(a¢|la, (z) © o(ar[1):(t) = e(agir[1)=().
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Apply Thm. 10.5 to the above relation and take 0. at ( = 0, we obtain
& U (0 1):)0 = o (olac| L), )|y - Ulolor 12))0. (1032)

Clearly o(ao|1)a,(2)(t) = t. By going through the proof of Prop. 10.3, we see that Prop.
10.3 also applies to the present situation: acting on V we have

dctle(acMar )|, _,

= %(54 ola C|1)g?(z)(o)‘<=0> Li 1. (10.33)

k=1

By (10.31), it is clear that

&m%mﬁmm=%ﬁkwm.

Since, by (10.28), we have dca(z)| (=0 = 2n>1Cn?" ! and hence

5(04 |< 0~ Z (n —]: 1) annikJrl,

n=1

we obtain

n+1 _
<:0: Z ( N >cnoz.r(z)” lc+1Lk_1

_Ye Y <7:11) ar (=) 1. (1034)

n=1l [=0

To sum up, we get
or (W', Yw(U(o(ar|1)2)v, 2)w)
n+1 nel/
=2%2< >m@ ', Yo L (olar 1)), 2)w). (10.35)

n=1 =0

Combining this relation with (10.30) and (5.3) yields

oW’ Yw(U(o(ar|1)2)v, ar (2))w) = ch<w [Ln, Yiw(U(o(r|1)2)v, ar(2)) Jw).

n=1

(10.36)

(We leave it to the readers to check that this infinite sum is well-defined.) A similar calcu-
lation shows

6T<w',u(aT)YW(U 2)U () w> Z cn<w [Ln,U(ar) Yy (v, 2)U(cr) w> (10.37)

n=1

Thus, by Lemma 3.7, we get (10.26) for all @ € G,.. We have also proved (10.26) when «
is a scaling. The general case follows from the combination of these two cases. We leave
the details the readers. O
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11 Definitions of conformal blocks and sheaves of VOAs

11.1

The goal of this section is to give two equivalent definitions of conformal blocks, both
due to [FBO4].

Assumption 11.1. Starting from this section, we assume dim V(n) < +oo for each n, and
write Yy as Y when possible. By “V-modules”, we mean admissible V-modules.

Let

X=(Ciz1,...,xN;M1,---,1N) (11.1)

be an N-pointed compact Riemann surface with local coordinates. Assume that 7; is
holomorphic (and injective) on an neighborhood Uj of x;. Assume that z; ¢ U; if i # j.

Assumption 11.2. Unless otherwise stated, by an N-pointed compact Riemann surface,
we assume that each connected component contains at least one marked point.

Recall that in Segal’s picture, we have decomposition #'™" = W, ® W;, and the
correlation function decomposes to V- and V-conformal blocks Tx = >, ;5 ¢xi. ®
1|)§’i. as in (1.14), where each ¢y ;, is a linear functional on W;, := W;, ® --- @ W;,,..

In the following discussions, we fix a vector w; in each Wi, and identify each W; with
W; ® w; so that we can restrict the correlation function 7% onto W;, to get a conformal
block. Thus, we shall not distinguish between conformal blocks and (restrictions of) cor-
relation functions.

11.2

We write W;, = Wj, and ¢x,, = ¢ for simplicity. So the V-modules Wy,..., Wy are
associated to x1, ..., xn. Recall the notation W, = W1 ® - - - @ Wy

We add a point x to X different from z1,...,zy. Then we get a new (N + 1)-pointed
compact Riemann surface :X,. We insert vectors of V. ~ V ® 1 to . Then we get a new
conformal block b, : V® W, — C, which is the restriction of the correlation function
Tix, to VR W,. 1d, has the following two features. (Let ¢ be the standard coordinate of
C.)

First, assume 7;(U;) > D,. Let v € nj_l(]D),n].). We assign local coordinate n; — n;(x) to
x so that every marked point of !X, has an associated local coordinate. Let

P,y = (B 0,m(2), 05 ¢, ¢ = nj(), 1/¢). (11.2)
Consider the sewing B, () #X along © € B, () and z; € X. We have an equivalence

where the parts IP’l\]D)Tj and z; of &an (@) and X are discarded; any v € D, is equivalent
to 77]71(7) of 1X,, and is glued with 77;1(7) of X when v € D’; in particular, the marked
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points 0, n;(x) of By, (z) (Which are not discarded) are identified respectively with z;, z of
X

"; (%)
;=0 f it

(11.4)

12

Therefore, by the sewing-contraction correspondence, the conformal block ¢, associated
to 1X, (where the local coordinate at z is n; — n;(x)) is

1z (v@ws) = Pp(w1 ®- - @Y (v,1;(2))w; @ - Quy) (11.5)

where the RHS is short for the following two equivalent series (cf. Lemma 7.4) and is
converging a.l.u. to the LHS of (11.5):

RHS of (11.5) = Z G ® - QY (V)yw; @+ ® wN)Z_n_liz:nj(;p)
- (11.6)
— Z P(w1® - @PY (v,mj(2)w; ® - @uwy).

neN

11.3

The second feature is: according to (1.12), for any x on C not necessarily close to
any of z., 1P, (v ® w,) is holomorphic with respect to the motion of 2. A downside of
this description is that it depends on a particular choice of local coordinates at z: if in
one local coordinate v is a constant, then in another one v will vary. So let us give an
coordinate-independent descrption:

Besides the translation of x, we also allow v to vary holomorphically with respect to
z. Namely, let U < C be open, choose a sufficiently large n € N, and assume v is a V<"-
valued holomorphic function on U. (Recall that V<" is finite dimensional by Convention
11.1.) Namely,

ve VS ®c OU). (11.7)

Assume that there is a univalent (i.e., holomorphic+injective) function p : U — C.* (It is
helpful to think of x vanishing at some point y € U, i.e., x1 is a local coordinate at y. But
technically this is not necessary.) Then at each = € U there is a natural local coordinate

*Indeed, one only needs to assume that dy: is nowhere zero on U. Then p must be locally univalent, which
is sufficient for applications.
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w— p(z). If we let 1d, act on abstract vectors instead of concrete ones, then for each v as
above (so that each U (u — pu(z))~'v(x) is an abstract vector)

zeU =1, (Up— plx) v(z) @w.) (11.8)
is a holomorphic function. The choice of local coordinate ;1 — p(z) is in accordance with
(¢ — z)/rin (1.10) if we assume r = 1 and identify ; with the standard coordinate ¢ of C.
11.4

We explain why this description is independent of the choice of ;1. Let n € &(U) be
also univalent. Let o(n|x), € G be the change of coordinate from p — p(z) to n — n(x).
Namely

o(nlm)e (u(y) — w(x)) = n(y) — n(x) (11.9)

for any y € C close to z. Equivalently,

o)z (2) = nop (2 + p(x)) — n(x), (11.10)

from which we see that o(n|p) : U — G,z — 0(n|p), is a holomorphic family of transfor-
mations. Thus, by (10.13), U(g(n\,u))‘vgn is in EndVs" ® &/(U). Thus, by ¢(U)-linearity,
U(o(n|u)) sends each section of VS ® 0(U) to VS ® 0(U) such that its valued at each x
is an automorphism of V<",

This property can be summarized in the following way: Let &y be the trivial holo-
morphic line (i.e. 1-dimensional vector bundle) over U. So VS" ®¢ Oy is the trivial
(holomorphic) vector bundle® with fiber V<", Then we have an automorphism of vector
bundle (equivalently, an automorphism of &;;-module)

Ulo(nlp)) : V=" ®c Oy — V=" ®c O
By Subsec. 2.11,
W (U — p()) " o(x) @ wa) =1, (U — () u(z) @ w,)

where u(z) = U(o(n|p))v(z). Thus, the function v on U is holomorphic iff u is so. This
implies that the holomorphicity of (11.8) is independent of the choice of p.

Example 11.3. Let ¢ be the standard coordinate of C*. Then for each v € C*,

o(1/¢[C)., = e(¢[1/¢),, = 5 (11.11)

where 9, (2) = Viz — % (cf. (9.11)). Therefore, by (9.14),

Ulo(1/¢le),) =U(a(¢[1/C),,,) = e (=)o (11.12)

5In our notes, all vector bundles are holomorphic with finite ranks unless otherwise stated.
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11.5

The combination of these two features gives the definition of conformal blocks. To
simplify the definition and make it more precise, let us introduce some new notions.

We define a vector bundle %" over C whose fibers are equivalent to V<" as follows.
Recall that holomorphic vector bundles can be constructed once we have holomorphic
transation functions. By (7.7), for univalent n; € 0(U), i = 1,2, 3, we have

o(m|m2)z © 0(n2|n3)z = o(n1|n3)z (11.13)

and hence the cocycle condition

U(o(n1|m2) U (e(n2]n3)) = U(e(n|ns)) (11.14)

due to Thm. 10.5. Thus, we have a unique (up to equivalence) vector bundle =" whose
transition functions are of the form U/ (o(n|u)). More precisely, for any open U < C with
a univalent n € O(U) is associated with a trivialization (i.e., an equivalence of vector
bundles/ O-modules)

Uy(n) : V5|, = V"®c Oy (11.15)

compatible with the restriction of 7 to open subsets (i.e., if V' < U is open then U,(n|y) =
Uy(n)|v) such that if 4 € O(U) is also univalent, then

Uy (MU, (1)~ = U(o(n|p)) : VS" ®c Oy > V<" ®c Oy (11.16)

Remark 11.4. Intuitively, the fiber of ¥5" at each x € C is the vector space # (VS")
of abstract VOA vectors whose energies are < n. The trivialization ,(n) sends each
fiber ¥5"|, at x to V<" via the isomorphism U (n — n(z)), and sends each abstract VOA
vector to its (n — n(x))-coordinate representation. If v € VS" ® ¢(U), then the map x —
U(n—n(x))  v(x) is just the section U, (n) ~'v of 5" on U, and any section on U is of this
form. ¥5"(U), the space of all sections of ¥5" on U, is the space of all VOA vectors with
energies < n varying and moving holomorphically on U.

Remark 11.5. The vacuum vector 1 is fixed by any change of coordinate operator
U(o(n|p)) since it is killed by Lx. So we let 1 denote also the element of ¥5"(C) whose
trivialization under any local univalent map 7 is the vacuum vector 1. We call 1 the vac-
uum section.

11.6

Now, the property that :$ is holomorphic with respect to the motion and variation of
the inserted VOA vectors can be expressed in the following form:

1. For each open subset U of C'\{z.},
W(-®@w.) : Y5"(U) — O(U), v = 10(V R w.) (11.17)
is an 0(U)-module (homo)morphism. (The reason that it intertwines the actions of

O(U) is clear.)
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2. 1(- ® w,) is compatible with the restriction to open subsets. Namely, if V' < U is
open, then 1p(v]y @ ws) = 1d(V @ w,)|v .

The above two points can be summarized using the sheaf theoretic language: ¢ (- ®
w,) is a morphism of O (,,}-modules “1/5\’{“:0.} — 0\ (2.} Equivalently,

(- ®w.) € HY(C\{z.}, (F5™)Y).

11.7

To simplify the formulation of definitions and theorems, we consider the direct limit
sheaf

i YS
neN

whose space of sections on any connected open U < C (or more generally, any open U

with finitely many connected component) is

Yo(U) = lim 75" (U).
neN

This is possible since for each n; < n, we have an obvious injective &c-module morphism
(i.e.,, morphism of vector bundles) 75" — ¥5"? which under any trivialization as in
(11.15) is the obvious inclusion V<™ @ 0y — V"2 ® 0y. Both ¥ and 75" are called
sheaves of VOAs associated to C' and V.

Equivalently, 7¢ is an infinite-rank vector bundle such that for each connected open
U c C with a univalent 7, we have a trivialization

Uy(n): Yol > V® Oy

compatible with the restriction of 7 to connected open subsets, such that for any another
univalent u € 0(U) we also have U, (n)U,(1) ™1 = U(o(n|p)) as an automorphism of the
Oy-module V® 0.

Thus, roughly speaking, ¥ (U) is the set of all sections v belonging to %" (U) for
some n € N.

In the rest of these notes, the readers may replace ¥ by 75" for all possible n if they
are not comfortable with locally free sheaves of infinite ranks.

11.8

We are now ready to state the definition of conformal blocks. Recall the data X in
(11.1) and that each 7; is defined on U; 3 z;. Let V be a VOA, and let Wq,..., Wy be
admissible V-modules associated respectively to the marked points z1, ...,z .

Definition 11.6 (Complex analytic version). A linear functional ¢ : Wy = W; ® --- ®
Wy — Cis called a conformal block associated to X and W, if the following holds: For
each w, € W,, there exists a (necessarily unique) ¢ (,,;-module morphism

(- we) : Ve (za) = O}
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(equivalently, (-, ws) € HO(C\{z.}, #{Y)) such that for each 1 < i < N, by identifying
Yolu, =V 0y,  vial,(n;) (11.18)
and identifying
Ui=n;(U;)  vian, (11.19)
so that n; becomes the standard coordinate z, for each v € 7(U;) = V® O(U;) (restricted
to U;\{z;} = n:(U;)\{0}), the equality
W (v, w.), = cb(wl ® QY (v(2),2)wi ® - ® U)N) (11.20)
holds in C[[z%1]]. O
Note that the LHS of (11.20) is an element of &'(n; (U;)\{0}), regarded as one in C[[2%!]]
by taking Laurent series expansions. The RHS is understood as
Z O @Y (Un)pw; ® - - )2m L
meNnezZ

if v has expansion v(z) = ] -, vm2™ where each v,, € V. In particular, (11.20) is in

C((2))-

11.9

Let us make some comments on this definition.

Remark 11.7. By Lemma 7.13, we see that if 1;(U;) © D, then the formal Laurent series
of z on the RHS of (11.20), and equivalently (cf. (11.6)), the series of functions

Z d(wy - @PY (v(2), 2)w; @ - Q)
neN

converge a.l.u. on z € Dy to the LHS of (11.20). This explains why Def. 11.6 is viewed as
a complex analytic definition.

Remark 11.8. The uniqueness of (-, w.) is due to the following reason. It suffices to
restrict w = 1P (-, w. ) to “//5” for each n > 0. Suppose w’ = V (-, w,) is another morphism
satisfying the descriptions in Def. 11.6. Then w and w’ are sections of the vector bundle
(Y5™)Y over C\{z.}. Moreover, by (11.20), w — w’ vanishes on each U;\{z;}. Thus, if we
let Q@ < C\{z,} be the set of all points y such that w — w’ vanishes on a neighborhood of
y, then by Assumption 11.2, €} intersects each connected component of C. By complex
analysis, € is both open and closed. So 2 = C\{z.}.

Remark 11.9. By this uniqueness, we may define (¢ (-, w) for all w € W, such that (-, w)
is linear over w.

Remark 11.10. By complex analysis, it is clear that the definition of conformal blocks is
independent of the sizes and shapes of the neighborhoods Uy, Us, . .. of z,.

Remark 11.11. By &'(U;)-linearity, to verify (11.20) for all v € V®Q &' (U;), it suffices to verify
it for all constantv e V.~ V® 1.
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11.10

Example 11.12. Fix v € C*, and let 3 = (P*;0,~, 0;(, ¢ — v, 1/¢) where ( is the standard
coordinate of C. Let W be an admissible V-module, and associate W,V, W’ to 0,, o0
Then the following linear functional is a conformal block, called the conformal block
associated to the vertex operation Yyy.

W WRVRW — C, We = wW®vRuW — (W, Y (v,y)w) (11.21)

Proof. We construct the O¢x\ (,3-module morphism (w (-, we) : Ygx\(4} = Ocx\(4} as fol-
lows. For every open U < C*\{~}, set
W (-, wa) 1 Vox\ 4y (U) = O(U),
Up(Q)™Hu = (W', Y (u(2), 2)Y (v, y)w)
where u € V® 0(U), and we have used the convention in Def. 8.3 so that the above
termed is defined and holomorphic when z # 0, v, o0 and u is holomorphic.
Assume without loss of generality that « is a constant section, i.e. v € V. By the

complex analytic Jacobi identity for Yy, (11.20) holds for w when ~ is close to 0 or 7.
When 7 is close to o0, (w (-, ws) sends Uy (¢) " u to (w', Y (u, 2)Y (v, y)w). Thus, it sends

Up(1/0) ™ u = Up(§) U (0(¢]1/C))u
to

(11.12)

(' Y (U0(¢[1/¢):)u, 2)Y (v, 7)w) ('Y (e B (=22 Pou, 2)Y (0, y)w),

which by (9.15) equals
Y (u, 2w, Y (v, ) w) = Y (u,100(2) )0, Y (v, 7)w)

where 7, = 1/( is the local coordinate at oo. This proves (11.20) when z is near co. O

Exercise 11.13. Let W;, W5 be admissible V-modules, and let T : W; — W5 be a V-module
homomorphism, i.e., a linear map intertwines the V-actions. Let p = (P%;0,00;¢,1/¢),
and associate Wy, W), to 0, oo respectively. Show that the following linear functional is a
conformal block associated to 8 and W, W5,

W, @ W, - C w1 @ wh — (Twy, wh) (11.22)

11.11

Due to the fact that (11.20) belongs to C((z)), we may regard !$ (-, w,) as a section of
(¥5™)¥ that has finite poles at z,:

W we) € HY(C, (V5™)Y (x24)). (11.23)
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The meaning of the notation is the following. Let & be a vector bundle over C. Then for
each ki,...,kn € Z,

g(kll'l + -+ kNl'N)

denotes the 0c-module whose space of sections on each open U < C areall s € &(U\{z.})
such that for each 1 < i < N the function nfi -5 : o v n;(x)*s(z) is holomorphic on a
neighborhood of z; (equivalently, on U;). Thus, when ki,...,ky = 0, it is the sheaf of
sections of &\ () that have poles of order at most k; at x;. Then

éa(*.’lj.) = h_r)n é"(k:larl + -+ k:NxN) (11.24)
k1,...,kNeEN
is the sheaf of sections of &¢\ (., that have finite poles at z1, ..., 7.

This viewpoint allows us to use the strong residue theorem to obtain the algebraic
definition of conformal blocks. Let wc be holomorphic cotangent line bundle of C, i.e., the
sheaf of holomorphic 1-forms on the open subsets of C. The by residue theorem /Stokes’
theorem,

N
> Resz A =0 (11.25)
i=1

forall A € H°(C\{z.},wc), and hence for all A € HO(C, wc(xx.)).

Theorem 11.14 (Strong residue theorem). Let & be a vector bundle on C. Foreach1 < i < N,
use a trivialization of & and the corresponding dual trivialization for the dual vector bundle &
to fix an identification

Elu, = E; ® Oy, &Yy, = Ef ® Oy, (11.26)
where E; is a finite dimensional vector space and E is its dual space. Choose
S$i= Y €inn € Ei((m))- (11.27)
neL

Then the following are equivalent.

(a) There exists s € HO(C, &(xx.)) whose Laurent series expansion at each x; is s;.

(b) Foreach o e H(C, &Y Qwc(*x.)),
N
> Resy, (si,0) = 0. (11.28)
i=1

Here, & ® wc is the tensor product of the two vector bundles. Recall that in general,
if & and .# are vector bundles over a complex manifold X, then &£ ®.# (or more precisely,
ERQpy F ) is the one whose transition functions are given by the tensor products of those of
& and .#. Equivalently, & ®.7 is the sheafification of the presheaf whose space of sections
overany open U < X is &(U)®g1r)Z (U). (£®.F)(U) equals &(U)Qg(1r)F (U) when &y
and .#y are trivializable (i.e. equivalent to free &y-modules). (To see this, simply assume
& = O™ and Ty = OF")
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11.12

The LHS of (11.28) is understood in the following way. In view of (11.26), at
each z;, o has expansion o = 3} & nn/'dn; where ¢;,, € Ef. Then (s;,0) =
YmmezlCims Einyn; dn;. So (11.28) reads

N
Z Z <6i,m7 5i,n> =0

i=1m+n=—1
where the sum over all m,n € Z satisfying m + n = —1 is finite.

Remark 11.15. Suppose 7;(U;) © D,,. Then it is clear that if (a) or (b) holds, then the
series s; = Y, ., €inn; converges alu. onn; € Dy . It is remarkable that this analytic
property follows from the algebraic condition (11.28). This is analogous to that the formal
variable version of local fields implies the complex analytic one, and that the algebraic
Jacobi identity for VOAs implies the complex analytic one.

That (a) = (b) follows from the residue theorem, since (s,o) is an element of
HY(C,wc(*z4)). The other direction is more difficult. To prove it one needs more ad-
vance tools such as sheaf cohomology and Serre duality, which we are not able to present
here due to page limitations. We refer the readers to [Muk10, Sec. 1.2.21°, [Gui, Sec. 1.4],
or [Gui21, Sec. 7] for details.

11.13

We now apply the strong residue theorem to the case that & = (#5")". The trivial-
ization (11.26) is given by U,(n;) (cf. (11.27)) and its dual. In particular, E; = (VS™)*. The
series s; we choose is the RHS of (11.20), namely,

si= Y sinni € (VS)*((m)

nez

where s; , € (VS™)* sends each v € VS" to
$in(0) = P(w1 @ - Y (V)—p_1w; @ - QN ).

Now, Def. 11.6 says simply that (for all n) all s;,...,sxy are series expansions at
T1,...,7zN of the same section of HY(C, & (xx,)), namely (-, w.). Thus, by the strong
residue Thm. 11.14, the statements in Def. 11.6 (when restricted to “//C@) are equivalent to
Zij\il Res,,(s;,0) = 0 forall o0 € HY(C, 75" ® wc(*x.)). Namely, ¢ vanishes on

N
J'w.=2w1®"'®0'wi®"'®wN (11.29)

i=1

6Though [Muk10] only discusses the case that & = 0, its proof applies to all vector bundles.
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where for each 1,
o-w; = Res,—o Y (vi(2), 2)widz e W; (11.30)

and 0|y, = v;(2)dz under the identifications (11.18) and (11.19).
For instance, if oy, = uzFdz where v € V, then

(uzFdz) - w; = Y (u)pw;. (11.31)

Definition 11.16. We define a linear action of H"(C, ¥c ® wc (*z.)) on W, such that for
each o, w, in the two vector spaces respectively, o - w, is defined by (11.29) and (11.30).
We call it the residue action.

Thus, taking all n € N into account, we see that the complex analytic Def. 11.6 of
conformal blocks is equivalent to the following algebraic one:

Definition 11.17 (Algebraic version). A linear functional ¢ : W, — C is called a confor-
mal block associated to X and W, if it vanishes on the following subspace

H°(C, 7c @wc(*z4)) - W, (11.32)
of W,, where we have suppressed Span in (11.32).
Definition 11.18. The vector space

— W.
- HY(C, Yo @we(*ws)) - W,

Tx(W,) (11.33)

is called the space of coinvariants (also called space of covacua) associated to X and W,.
Its dual space is denoted by .7;¥(W,) and called the space of conformal blocks (or space
of vacua, space of invariants).

12 Pushforward and Lie derivatives in sheaves of VOAs

12.1

We continue our discussions in the previous section. The residue action of o on w; is
crucial in the theory conformal blocks. Let us present its definition in a form that indicates
the choice of local coordinate 7;.

We now only assume that o is a section of Yo ® wc (xx.) defined on a neighborhood
of z;, say on U;. (Namely, o is a section of 7c ® wc on U;\{x;} with finite poles at x;.) Let
V,(ni)o be vi(z)dz in (11.30). Then (11.30) reads

o-w; = Res,—0 Y (Vy(ni)o, 2)w. (12.1)

Let us describe V,(7;) in a more geometric way. Notice that we have an obvious equiv-
alence

(mi)s : Oy; - ﬁm‘(Ui)

116



sending f to fon,” L. Then 1y® (1)« : V®c Oy, — VQc Oy (v;)- We define the pushforward

V@(ni) s SVe ﬁni(Ui)

(12.2)
Vo(ni) = (1v @ (1:):)Up (1)
Its tensor product with (1;). = (n; )* : wy, — Wy, (U;) is also denoted by V,(m;):
V(i) = Vo(ni) ® (i)« : Vi1, @ wu (x3) = V@ wyy ;) (*0).- (12.3)

12.2

The above geometric description is convenient when treating simultaneously more
than one local coordinate at z; and the corresponding trivializations. As an application,
let us show that the action of ¢ on W; can be formulated in a coordinate-independent
way.

From now on, we do not fix the local coordinates of X = (C;xy,...,znN). Let #/(W;)
be an abstract vector space isomorphic to W;. To be more precise, we consider #' (W;) as
a (infinite rank) vector bundle over a single point with trivialization

Um) = W (W;) = W (12.4)

for any local coordinate 7; of C at z;, such that if y; is also a local coodinate at x;, then the
transition function is

Um)U (i)™t =Um; o pi ')+ W S W, (12.5)

Note that 7; o 17 * € G is the change of coordinate from s; to 7;, and U(n; o u; ) is the
corresponding invertible operator on W; defined by (10.8).
For each o € H(U;, %, @ wy, (*;)) and w € # (W,), define

o-w=U(n)""o-Um)w (12.6)

where the action of o on U (n;)w is defined by (12.1).

12.3

Proposition 12.1. The definition of residue action o - w is independent of the choice of local
coordinates n; at x;.

The proof of this proposition is a good exercise of computing V,(n)c when
n, Yu,, W (W;) are not identified with the standard ones using the trivializations.

Proof. Write z; = x,U; = U,W; = W for simplicity. Let u,7 € ¢(U) be coordinates of U
at z. (So n(z) = p(x) = 0.) Identify U with p(U) via i so that p is identified with the
standard coordinate 1¢ of C. We have n € G. Identify # (W) with W via U (u). SoU(n) =
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1,and U(n) : # (W) — W agrees with the operator associated with the transformation 7.
We write w € #/ (W) as w e W.
Due to the above identifications, we have p. = 1 and hence V, (1) = U, (). Write

Vo(k)o = Up(p)o = u(z)dz

where u = u(z) belongs to H(U, V ® 0y (0)). So the action o - w defined by y is simply
Res.—oY (u(2), z)wdz.
Let us compute o - w using 7. In view of (12.1) and (12.6), we compute V,(n)o. First,

Uy(n)o = Up(mU() " u(2)dz = U(o(n|p))u(z)dz = U(e(n]1c):)u(z)dz.

Here z is the standard variable of C. Applying 7. = (n7)*, we get

Vo(m)o =U(o(n|1c),-1(2))u(n™' (2))dn " (2)

defined on n(U) < C. Thus, when evaluated with any vector v’ € W', we have

U)o Umw = D UMW) Py o U

neN

= Z Res.—o U(n) ' P,Y (V,(n)o, 2)U(n)w

neN

= Y Res.—o U(n) ' PY (U(o(n]1c)y10)uln™ ' (2)), 2)U (n)w -dn~ " (2).

neN v
An

By the change of coordiante Thm. 10.7, Y} (w’, A,) converges a.l.u. when z # 0 is small.
Thus we can move the infinite sum into the residue, and by Thm. 10.7 again, the above
equals

Res.—o Y (u(n™1(2)), 17 (2)w - dp~L(2) Ll(z) Res¢—o Y (u(¢), Q)w - dC.

This finishes the proof. O

12.4

We are now ready to give a coordinate independent definition of conformal blocks.
Let X = (C; x.) be an N-pointed compact Riemann surface, for which we do not fix local
coordinates. Again, we associate admissible V-modules W, to the markd points z,. Let

Wa(W.) = # (W) ®--- @ # (Wy). (12.7)
Then for each choice of local coordinates 7,, we have trivialization
Une) :=Um) ® - QU(NN) : #ax(W,) = W,. (12.8)
If 11, is another set of local coordinates, then we have transition function

Un U (pe) " =Ume o pd) i=Umopi ) ® - @U(nN o py). (12.9)
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Foreachw, = w1 ®---wy € #x(W,)and o € H(C; ¥c ®wc (*x,)), define the residue
action

N
O"W.:ZW1®"'®O"Wi®"'®WN (12.10)

i=1

(where each o - w; is defined by (12.6)). This gives a linear action of H(C; ¥c ® we (x74))
on #x(W,).

Definition 12.2. The vector space

Wx(W,)

Tx(We) = HO(C, Yo @wc(xxa)) - #a(W,)

(12.11)

and its dual space 73 (W, ) are called respectively the space of coinvariants and the space
of conformal blocks associated to X and W,.

12.5

Let us generalize the pushforward in Subsec. 12.1 to a more general geometric setting.
Let X and Y be (non-necessarily compact) Riemann surfaces, and let ¢ : X = Y be a bi-
holomorphism. Let

pu:Ox —> Oy, [ fop! (12.12)
be the pushforward of the structure sheaves. We let ¢, also denote
P =1y ® s : VR Ox > VQ Oy. (12.13)

Let U € X and V < Y be open and connected such that V' = ¢(U). Suppose there is a
univalent n € (Y"). Recall that we have an equivalence

Vo(n) = s - Up(n) : Yo = V@ Oy (12.14)
where the pushforward 7, : V® 0y — V® 0,y is similar to (12.13). We define

Volo) : Wy = T, Vo(mVelp) = Vo(no ). (12.15)

Equivalently,
Up(M)Vo(p) = @ - Up(m © ). (12.16)

Proof. Note that V,(n) = 1« -Uy(n), Vo(nop) = (no@)s-Us(now),and (nop)s = nw-px. O

Lemma 12.3. The definition of V,(y) is independent of the choice of univalent map 7.
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Proof. Let € O(V') be univalent. Using (11.9), one checks easily that

Uo(mo o)) = ot - Ulo(nlp)) - ¢«

as morphisms V® 0y — V ® Oy. This means

Ug(no @lUy(pio0) ™" =@ Up(mUy(1) ™" - pu. (12.17)
The independence follows immediately from the above formula and (12.16). O

By this lemma, we have a global equivalence
Vo) : ¥x = Wy (12.18)

defined locally by (12.15) or (12.16). We call V,(¢) the pushforward associated to ¢. We
also use V,(y) to denote

Vo) = Vo(0) ® 95« Tx @uwx — ¥y Quy (12.19)

where @, is (p*) 7! = (p7)* wx — wy.

12.6

Remark 12.4. From (12.15), it is clear that V,(¢ o p) = V,()V,(p) if ¢ : Y — Zisa
bi-holomorphism of complex manifolds.

Remark 12.5. The geometric meanings of V,(¢) : ¥x — 7y and the formula (12.16) are
as follows. Let x € X. Choose a vector u in the fiber ¥x |z, considered an abstract VOA
vector. Let v = V,(¢)u. Then by (12.16) and the geometric meanings of U,(n) and U,(x)
(cf. Rem. 11.4), u and v are related by the property that for any univalent n holomorphic
on a neighborhood y, if we set ;1 = 1 o ¢, then the coordinate representation of u under
u — p(x) is the same as that of v under n — n(y).

We will simply say that the p-trivialization of u and the 7-trvialization of v are equal.

Remark 12.6. Now V,(7) has two meanings: as an equivalence %, — V®0,, ) defined by
(12.14), and as an equivalence 7}, — 7,y defined similar to V,(¢). These two meanings
agree if we identify 7, ) with V® &, () via the trivialization U, (¢) where ( is the standard
coordinate of C.

12.7

That one can define pushforward for (co)tangent bundles as well as for sheaves of
VOAs implies that these two classes of objects are closely related. Indeed, one can view
V¢ as a twisted direct sum of tensor products of the holomorphic tangent line bundle ©¢
of C. (Note that w¢ is the dual of O¢.)

To see this, let us look at the transition function U (o(n|u)) : V<" ® 0y = V<" ®
Oy where p,n € O(U) are univalent. By (10.8), U(o(n|n)). = o(nlp):(0)Fo(1 +
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products of L~¢) on V. From (11.9), o(n|u),(0) = S—Z(x). Thus, as L~ lowers weights,
we conclude that for each v = v(z) € VS" ® Oy,

U (MUy(11) ™ o = Ule(nlp))o = (dn/op)™v mod V<" ® 0. (12.20)

Thus, the transition function U (o(n|x)) from the u-coordinate to the 7-coordinate for the
quotient bundle 75" /#5" ! is (0n/du)", which agrees that of V(n)®@c ©E". We conclude:

Proposition 12.7. There is an equivalence of Oc-modules
VS IET ~ V(n) @c OF" (12.21)

such that if U < C is open and 1 € O(U) is univalent, then for each v € V(n), v ® 0y (which is
an element in the RHS of (12.21)) is equivalent to the equivalence class of U,(n) ‘v in the LHS
of (12.21).

Thus, in general, an element of V(n) ® ©&"(U) is a sum of those of the form v ® f O
where v € V(n) and f € O(U). It is identified with f - U,(n) 'v in the LHS of (12.21).

12.8

If we focus on only primary vectors, we can get subbundles of ¥ naturally equiv-
alent to direct sums of tensor products of O¢ without taking quotient. Recall that a
primary vector v in V(n) is one killed by L~(. So the change of coordinate formula
for v is U(o(n|p))v = (dn/op)"v. Thus, if we let P(n) be the subspace of weight n
primary vectors of V, then 7 has a vector subbundle 270 with local trivialization
Uy(n) : P8y = P(n) ®c Oy for any univalent n € 0(U). Moreover, 2% has the same
transition functions as ©%". So Z% ~ P(n) ®@c 05"

Since the basic properties of line bundles OF" are well known, in the early devel-
opment of the mathematical theory of conformal blocks, sheaves of VOAs were not yet
defined, and the sheaves &% were sometimes used instead to define and study conformal
blocks. Specifically, in the landmark paper [TUY89], conformal blocks for a WZW model
V = Li(g,0) (where g is simple and [ € N) was defined using

PE@we(xws) =~ P(1) @c Oc @ we(x1s) = g Qc Oc(xx.).

(Note that O¢ ® we ~ O¢ since w is dual to O¢.) Thus, for WZW models, the space of
coinvariants was defined (for X with local coordinates) in [TUY89] to be

W
HO(C,gQc Oc(*x.)) - W,

Fortunately, this definition agrees with the one defined using H°(C, ¢ ® wc(*z.)). See
[FBO4, Sec. 9.3].
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12.9

In differential geometry, the Lie derivatives of sections of (tensor products of) tangent
and cotangent bundles are defined using the pushforward or the pullback maps associ-
ated to flows. Likewise, we can define Lie derivatives for sections of 7(.

Let W < C be an open subset, and choose ¢ € ©¢ (W), namely, r is a holomorphic
tangent field on 1. Note that for any precompact open subset V' < W (i.e., the closure
of V in W is compact), there is a neighborhood 7" = C of 0 (with variable ¢) such that the
holomorphic flow exp((x) is holomorphic on 7" x V and is injective as a function on V' for
each ¢ € T. (Cf. Subsec. 2.6.)

In the following, we write exp((r)(z) as expg, ().

Definition 12.8. For any v € ¥5"(W) and r € ©¢(W), define the Lie derivative £,v to
be an element of ¥5" (W) (if the limit exists) as follows . Choose any precompact open
subset V in W. Then

. Vg(equ)_l(v|equ(v)) —v|,
¢—0 ¢

(12.22)

Intuition: For each p € V, v(p) € ¥5"|p is an abstract VOA vector at p. Let ¢ =
expe(p). Then v(q) € ¥5"|q is an abstract VOA vector at v(g), which is pulled back to the
vector V,(expy,) "'v(q) € #F"|p via the map exp,.

V(p) v($)
) cenm‘m)\I / (12.23)

b fremr, cp

Then for small ¢,

Volexpe) ' v(g) — v(p)
¢

(Lev)(p) ~ (12.24)

12.10
Proposition 12.9. Assume that n € (W) is univalent, and set

u = Uy(n)v e VS"®c O(W).

Write x = ho, where h € O(W). Then Lyv exists (i.e. the limit on the RHS of (12.22) exists) as
an element of V<" (W), and its n-trivialization is

1
Uy () Lyv = hdyu — kz Ha};h - L_qu. (12.25)
=1

Proof. We need to find the -trivialization of Vy(exp¢,) ™! (V]| )) atany p € V, namely,

expe(V
the n-trivialization of the red vector in (12.23). Since the n-trivialization of v(q) is u(q),
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by (12.16) or Rem. 12.5, the 7 o exp,-trivialization of the red vector is also u(q). So the
n-trivialization of the red vector (which is at p) is

U(o(n|n o expe,)p)u(expe(p))- (12.26)

Its derivative over ¢ at ( = 0 gives £;v(p) under the 7-trivialization. (The readers can
check [Gui, Sec. 2.6] if they are not satisfied with the rigorousness of the proof here.)

The derivative at ¢ = 0 of u(exp,,(p)) is just the action of the vector field r on u, namely
hdyu at p. (Notice (2.9).) The derivative of U (o(n|n o exp,)p) at 0 can be calculated using
Prop. 10.3: if we identify n with the standard coordinate of C, then

(11.10)
U (o(nln o expee)p)(t)] .-y === 0c(exp_¢(t + expe(p)) = p)] .,

=—h(t+p) + h(p).

Its k-th derivative over t at t = 0 is then —87’3 h(p). Thus, by Prop. 10.3,

1
U (o(nln © expe)p)|c_g = = Hé’f;h Ly

k=1

12.11

In Prop. 12.9, if we assume that v € P(n) ®c 0(W), i.e., the values of u are primary
with weights n, then the Lie derivative formula is hd,u — ndy,h - u. Not surprisingly, this

result agrees with the formula of Lie derivatives in %", including the case n = —m < 0
where we understand @%Fm) = wgm.

Since we have pushforward for sections of 75" @ we (cf. (12.19)), we can also define
Lie derivatives in this bundle using the same formula (12.22). The result is easy to guess
by Leibniz rule and prove rigorously:

Corollary 12.10. Let 0 € V5" Q@ we (W), and set
u-dn =Uy(n)o € VS" ®c we (W)
where w € VS™ € O(W). Write x = ho, where h € O(W). Then

1
Up(n)Lyo = hdyu - dn— ) ya,’;h - Ly—1u-dn+ dyh - u - dn. (12.27)
k=1

13 Families of compact Riemann surfaces and parallel sections
of conformal blocks

13.1

Definition 13.1. A family of compact Riemann surfaces is the data 7 : C — B where 3,C
are Riemann surfaces, the surjective holomorphic map = is proper (i.e. 7!(compact) is
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compact) and a submersion (i.e. the linear map dm between holomorphic tangent spaces
is everywhere surjective), and for each b € B the fiber C,, = 7—1(b) is a compact Riemann
surface. Clearly, 7 is an open map.

By Ehresmann’s fibration theorem, if 53 is connected, then all fibers of the family are
diffeomorphic; moreover, as a family of differential manifolds, 7 : C — B is locally trivial,
i.e. as a projection of C' x V' — V when V' < B is open and C is a surface. However, it is
not locally trivial as a family of complex manifolds.

Definition 13.2. A family of N-pointed compact Riemann surfaces is the data X = (r :
C — B;si,...,sn) where m : C — B is a family of compact Riemann surfaces, and the
following conditions hold:

(a) Each¢; : B — Cis a section, i.e., a holomorphic map such that 7 o g; = 15. (So ;(b)
is are points on the fiber C;.)

(b) <1(b),...,sn(b) are distinct, considered as marked points of each fiber C,.
(c) Each connected component of each fiber C;, contains at least one of <1 (), ..., sn(b).

The following is a hypersurface in C.
N
Sx={J(B) (13.1)
j=1

A local coordinate 7; of the family at ¢; is a holomorphic function on a neighborhood
U; of ¢;(B) that restricts to a local coordinate 7;|c, ~i; of Cp at ;(b) for each b € B, i.e,,
7i(si(b)) = 0 and 7; is injective on the fiber

Ui7b = Cb N Uz

We call thedata X = (7 : C — B;<1,...,5n8;M,---,7n) a family of N-pointed compact
Riemann surfaces with local coordinates. We define the fiber

%b = (Cba Ci(b), o 7§N(b)7 771|Cb7 o 777N|Cb) (132)

which is an N-pointed compact Riemann surface with local coordinates. O

13.2

Since 7 is a submersion, on a neighborhood of p € ¢;(B), 7 is equivalent to the projec-
tion D x V. — V where D < C,V € C™ are open. So g; restricted to V < B is written as
Gi(b) = (oi(b),b) where o; : V' — D is holomorphic. Namely, ¢;|y is the graph of o;.

S. (M:, ) C ]
U i I . (13.3)
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By the fact that 7, is injective on each fiber, 0,,7; is nowhere zero where z; is the coor-
dinate for D. So the Jacobian of (7;, ) is nowhere zero. Thus, by the inverse mapping
theorem, together with the easy fact that (n;, 7) is injective on U;, we see that (1;,7) is a
biholomorphism from U; to a neighborhood of {0} x B in C x B. (13.3) shows a picture in the
case that V' is identified with an open subset of C™.

Thus, by identifying U; with its image W (which is a neighborhood of {0} x B) under
(mi, ™), we may assume that 7 is the projection of W onto B, ¢; is the canonical map B —
{0} x B, and n; is the projection of W < C x B onto the C-axis.

13.3
Example 13.3. Let C be a connected compact Riemann surface. Then
X = (r:C x ContN(C) — Conf¥(C);61,...,5n)

is a family of N-pointed compact Riemann surface, where 7 is the projection onto the
second component, and ¢; : Conf"(C) — C x Conf"(C) sends each (z1,...,zy) to
(3,21, ...,2N). The fibers are X,, = (C;x1,...,zN).

Example 13.4. Let PV = (7 : P! x Conf™ (C*) — Conf™ (C*);0,¢1, ..., sy, o0) where 0, 0
as sections sending z, to (0, z.) and (0, z. ) respectively, and g; is as in the previous exam-
ple. Then ¥ is (N + 2)-pointed. Moreover, B can be equipped with local coordinates
¢,m,--.,nN,1/Cat0,¢1,. .., N, o0 respectively, where ( sends (z, z.) to 2z, 1/( sends (2, z.)
to 1/z, and each n; sends (z, z.) to z — z;. The fibers are

mi\: = (]Pl;()?Zl?"'?ZNaOO;CaC_Zl>"'7C_ZN11/C)

where ( is now the standard coordinate of C.

13.4
Example 13.5. Let
X = (5;:1:1,...,a:N,x’,a:”;m,...,nN;f,w)

be an (N + 2)-pointed compact Riemann surface with local coordinates such that each
connected component contains one of x1,...,zn. Let U’, U” be respectively open disks
centered at 2/, 2" with radii r, p. More precisely, we assume &, w are defined on U’,U”,
and we have biholomorphisms

~ ~

£:U =D, w:U”;ID)p.

We assume moreover that U’, U”, x1, ...,z y are mutually disjoint.
For each ¢ € D}, we can define an N-pointed X, by the sewing operation as follows.
We glue the following annuli

E N Agpe) = {z e U ql/p < ()| < r}
|identify (13.4)

@ (Algrp) = {y € U" : lal/r < |w(y)| < p}

125



where the rule for identification is

x=y iff E(z)w(y) = q. (13.5)

The parts Z, = {zx e U’ : |{(2)| < |q|/p} and Z] = {y € U" : |@w(y)| < |g|/r} are discarded.
By this gluing procedure we obtain the sewn Riemann surface C, with marked points
z1,...,zN (the same as the first N marked points of .’%). The local coordinate at z; is also
chosen to be ;. This defines X, = (Cy; z1,...,ZN; M1, .-, IN)-

One can assemble all X, to form a family

X=(m:C—>D;21,. ., 2NN, -, N)

whose fiber at each ¢ € ]D),Tp is X4. (We have abused notations here to let 2; denote a section
and 7; a local coordinate at the section z;.) It could be obtained in the following way:

e We have closed subsets E' = quD?p Zy x {q}and E" = quDTxp Zy x {q} of C x Dy,
Consider the projection

m: (CxDI\E U E") - Dy,

Each z; is the section sending ¢ € D, to (x4,q), and n; sends (z, q) to n;(x) when x is
close to z;. Modding this data by a suitable holomorphic relation gives the family
X.

O]

In the above example, we can in fact extend X to a family over ,, where Xy =
(Co; xe; 1) is the “limit” of X, as ¢ — 0. As a topological space, C is obtained by gluing 2’
and 2" of C. Cp is not a smooth manifold, and hence cannot be a Riemann surface. How-
ever, one can make Cy a singular complex manifold (more precisely: a complex space)
by defining a suitable structure sheaf 0¢,. Cy is called a nodal curve. Nodal curves are
crucial to the proof of sewing and factorization of conformal blocks. However, this topic
is out of the scope of our notes. We refer the readers to [Gui] for a detailed discussion of
this topic.

13.5

Example 13.6. Let Xo = (C;z1,...,2N;71,...,nn) be an N-pointed compact Riemann
surface with local coordinates. Write 21 = x and 7; = 7 for simplicity. Let n be defined on
a neighborhood U = U; 3 z; disjoint from x5, ..., zxy. Assume that n(U) is an open disk
centered at 0 with radius > 1.

Let h be a holomorphic function on a neighborhood of S'. Then ¢ = hd, is a holomor-
phic tangent field near S'. We choose 0 < 7 < 1 < R such that h is defined on an open set
containing the closure of A, p = {z € C: r < |z| < R}. Moreover, we choose a connected
neighborhood A < C of 0 such that the following hold.
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1. There is a neighborhood A < C of 0 such that the holomorphic flow 7 € A —
exp(7r) = exp,, is defined on (2,7) € A, g x A and is injective on z € A, p for any
fixed 7. (Cf. Subsec. 2.6.)

2. For each T € A, we have 0 ¢ exp,(S1).

Let I'- be the simple closed curve expoy S! — C. Then by the Jordan curve theorem,
for each 7 € A, P'\I'; has two connected components

PN\, = Q, u Q.

where O is the one containing cc. In the following, we give some technical remarks
which can be skipped on first reading;:

* By Stokes’ theorem, for each z € P!, 2 € Q) (resp. z € (0)) iff §r % equals 2im (resp.
0). This implies that

O={(z,7)eP!xA:2eQ,} O ={(z,7)eP' xA:2eQ}

are both closed and open inside P! x A. In summary: the property that z is inside
(resp. outside) I'; is continuous with respect to the variation of 7 and z.

* Consequently, for each z € A, g\S', the subset of all T € A such that exp,(z) belongs
to 2, (resp. €2) is an open subset of A, and hence also closed, and hence must be &
or A. This shows that for each z € A, g,

|z| <1 — exp,(z) € Q, forall T e A
m (13.6)
|2| > 1 — exp,(z) € Q) forall T e A
A similar argument shows that if z € P! and z ¢ exp_.(S!) for all 7 € A, then
& T
|z| <1 — zeQ forallTe A (13.7)
|z] > 1 — ze Q) forallTe A '

In particular, 0 € Q. forall 7 € A.
The family X we shall construct has base manifold A. For each 7 € A, let
R; = eXpTg(AT,R> v Q.

Then the fiber C; is obtained by gluing C\n~*(DZ) with R, by identifying the subsets
n~1(A, r) and exp,(Ar r) via the biholomorphism exp,, on. (We leave it to the readers to
check that C; is a compact Riemann surface. (13.6) is needed when checking the sequential
compactness.)

(13.8)

127



The marked points of C;, together with local coordinates, are chosen to be 0 € R,
with the standard coordinate ¢ of R, < C, and zo,...,2n € C’\n_l(]D)ﬁl) together with
72, ...,nn. This gives an N-pointed compact Riemann surface with local coordinates X .
We leave it to the readers to construct a family X over A whose fibers are X. O

13.6

In the previous example, suppose we associate V-modules Wy,..., Wy to 0 €
Ry, x2,...,xN respectively, and let ¢, denote a conformal block associated to X,. Let
I = X.e7Cn2" 10, Xp is changed to X, by changing the local coordinate 7 of C at z1 to
the first one of X, which is exp,, oy when restricted to C\n~*(D$). Thus, intuitively, for
each given ¢, one can construct ¢, using the formal expression

br(we) = Pole ™ Zn I @y ® - @ w) (13.9)

thanks to the change of boundary parametrization formula. This expression actually con-
verges in certain good cases, e.g. when ¢,, = 0 for sufficiently negative n. (See Example
15.18.) In the case where the expression converges, the map ¢ — ¢, defines a linear map
between the spaces of conformal blocks 73¥ (W,) — 73 (W, ), which is an isomorphism
since the operator e~7 2n ¢l is invertible. In particular, the dimensions of T (W,) and
T (W,) are equal. As we will see in Sec. 15, for an arbitrary family, we will prove the
equidimensionality of spaces of conformal blocks for fibers as well as the local freeness of
sheaves of conformal blocks by this method, and a crucial step is to prove the convergence
of ¢.

¢, satisfies the differential equation ;¢ + >, ¢, dr 0 (L, ® 1w, ®---® 1y, ) = 0. This
fact can be rephrased by saying that

Vo, = 0r + ). a(ln ®@ Ly, ® - @ Lyry )" (13.10)

defines a natural connection V on the sheaf of conformal blocks (associated to X) over A,
and 7 — ¢ is a parallel section under this connection.

13.7

Example 13.6 can be easily generalized to the case that on each neighborhood of S!
around z; a holomorphic vector field ; is associated. The flows generated by these fields
define a family.

We now consider another important generalization of Example 13.6:

Example 13.7. Let Xy, U be as in Example 13.6. Let A be a connected neighborhood of
0 € C. We choose a neighborhood A c C of 0 and an annulus A, p where 0 <r <1 < R,
and choose a holomophic function 8 = f¢(z) on (2,() € A, r x A such that the following
hold:

1. 50(2:) = Z.

128



2. Foreach ¢ € A, ¢ is injective on A, g.
3. Foreach ¢ € A, wehave 0 ¢ 3.(S").

As in Example 13.6, we let I'c = ﬂC(Sl), which divides P! into two connected compo-
nents ()¢ 3 0 and Q/C 5 0. Let

RC = BC(AT,R) U QC'

Then one can construct a family X with base manifold A such that each fiber C. is obtained
by gluing C\n~1 (D) with R by identifying (A, r) and 8;(A, r) via the biholomor-
phism : o . The marked points and the local coordinates of C; are chosen in the same
way as at the end of Example 13.6.

Asin Example 13.6, O = {(z,() e P! x A : z € Q} is an open set. Let

A={(B(2),{) eCx A:ze A Rr}.

Then, as a family, C is obtained by gluing A x (C\n~*(D%)) and A U O such that on each
fiber the gluing is as in the previous paragraph. O

In the above example, the standard local coordinate at 0 € R, is the boundary
parametrization 5 o on C. So Xy is changed to X by changing 7 to 3¢ o . Thus,
we make the following definition:

Definition 13.8. We say that X is the N-pointed compact Riemann surface with local
coordinates obtained by changing the local coordinate n = 7; of Xy at + = z; to the
boundary parametrization S o 7.

13.8

Let ¢ be a conformal block associated to X and W, where X is constructed in Exam-
ple 13.7. As in Subsec. 13.6, let us find the differential equation that ¢ satisfies.

Let U(5;) be the (not yet rigorously defined) operator associated to the change of
parametrization 3. Then according to the change of boundary parametrization formula
in Sec. 2,

P (UB)w1 w2 ® -+ ®wn) = do(wa). (13.11)

Let us find the formula for 0.U(8;). Choose a holomorphic function h = h(z,() on a
neighborhood of St x Ain A, r x A such that

0cBe(2) = h(Be(2),€)- (13.12)

Since 3 is not necessarily the flow generated by a vector field, h depends on ¢. One may
view f3; as the path generated by the time-dependent vector field ho..

We first consider d.U(B¢) at ¢ = 0. Recall By(z) = 2. Similar to the explanation in
Rem. 10.4, the velocity of 3. at ( = 0 is the vector field J¢ Bg(z)az‘ -y which according to
(13.12) is h(z,0)0.. Writing h as

h(z¢) = > hn(¢)2" (13.13)

nez
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(where h, € O(A)). Then h(z,0)0. = >, .;hn(0)2"0,, which corresponds to
> hn(0)Ly,—1. This should be the formula for o4 (5¢) at ¢ = 0.

For an arbitrary ¢ € A, we find the formula of oU(B¢) = \U(Brrc)| \—o using the
same method. Write U (8x4¢) = U(Bxr4¢ © Bgl) oU(S¢). Then the 0 of Byi¢ o 651 atA =0
is (0¢8) o 7!, which by (13.12) equals h(z, ¢). Thus

OUB) = Y hn(C) LU (B). (13.14)

nez

Thus, since the derivative of the LHS of (13.11) is zero, we conclude that ¢ is killed by
Oc+ 2 hn(Q)(Ln-1® 1w, ® - -®@1w, )". Equivalently, ¢, is parallel under the connection
V defined by

Voo =0c+ Y hn(Q)(Lno1 @ Ly, ® -+ @ Ly ) (13.15)

nez

13.9

The importance of Example 13.7 (or its generalization to the case that around each z;
there is a 3) is that any family with 1-dimensional base manifold is locally of this form.
Let us explain this fact in more details.

Let X = (7 : C — B;<.;n.) be a family of N-pointed compact Riemann surfaces with
local coordinates. Recall that by our convention, ©¢ and © are respectively holomorphic
tangent bundle of C and B. Let U < C be open, and ¢ € O¢(U). Note that W = 7 (U) is
open. Choose 1) € ©g(W). We say that ¢ is a lift of v if for each x € C, the differential map
dm : Oc|: — Oplr(y) between tangent spaces sends r(x) to y(m(x)).

If we have n € 0(U) univalent on each fiber U, = U n C, (where b € B) of U, then the
relationship between r and y can be written in an explicit way:.

Assumption 13.9. Assume W is biholomorphic to an open subset of C™ via a map 7, =
(T1, .+, Tm) : W — C™. Identify W with 7,(W) so that 7, are identified with the standard
coordinates of C™. Note that (7, 7) is a biholomorphism between U and an open subset
of C x C™*1. We identify U with (n, 7)(U) so that  becomes the standard coordinate z of
C, and 7 becomes the standard coordinates 7, of C™.

Then we can write ¢ and v as

D=2 g;(r)0,  r=h(z7)0:+ Y gi(re)d, (13.16a)
L P

where g; € 0(W),h € O(U). From this formula, it is clear that if exp, sends b to ¥/, then
expe, sends points of W, = W n C; to those of W), provided that the flows can be defined
on the points. Namely, exp,, preserves fibers.

Recall Sx = [, <i(B). For each vector bundle & on C and each k € Z, we let & (kSx) be
the sheaf whose sections on any open U < C are all s € £(U\Sx) such that for each i, nf - s
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can be extended to a section of & on a neighborhood of ¢;(B). Then & (kSx) is a locally
free O-module. We let

&(xSx) = lim & (kSx).
keN

So for k > 0, &(kSx) is the sheaf of sections of & with poles of order at most k at Sy, and
& (xSx) is the sheaf of sections of & with finite poles at Sx.

Proposition 13.10. Assume that B is a Stein manifold. Then each vy € H°(B, ©p) has a lift ¢ in
H(C,O¢(*Sx)).

We do not explain the meaning of Stein manifolds in our notes, but refer the interested
readers to [GR-a, Sec. 1.4] or [GR-b, Sec. IIL.3] for details. Here, we only give some
examples, which are sufficient for applications. Stein manifolds are complex manifolds
including the following examples:

¢ Every non-compact connected Riemann surface.

A finite product of Stein manifolds.

A finite intersection of Stein open subsets of a complex manifold.

A closed complex submanifold of a Stein manifold.

If X is Stein and f € 0(X) then X\{z € X : f(z) = 0} is Stein.

From these examples, it is clear that the Stein open subsets of a complex manifold X form
a basis of the topology of X.

Stein manifolds are those that many local problems related to vector bundles have
global solutions. In Prop. 13.10, if B is not necessarily Stein, then a lift of r always exists
locally (i.e., after shrinking B). The global existence is due to the Stein property. We refer
the readers to [Gui][Sec. 3.6] for a detailed explanation of Prop. 13.10.

13.10

We now assume that 3 is a connected Stein open subset of C"™ containing 0, and let 7,
be the standard coordinates of C™. Choose

v =2,9i(r)o,  €H(B Op) (13.17)
J

where g; € 0(B), and letr € H(C,O¢(xSx)) be a lift.

Foreach1 < i < N, let U; < C be a neighborhood of ¢;(B) on which 7; is defined, and
assume U; intersects only ¢;(B) among <i(B), . ..sn(B). Then, after identifying U; with its
image under (7;, 7) as in Assumption 13.9 (which is a neighborhood of {0} x ), we can
write

tlo, = hi(z,70)0: + ) g5(7e)0r, (13.18)
J
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where h; is holomorphic on U;\g;(B) = (n;, 7)(U;)\({0} x B) and has finite poles on {0} x
B, i.e., z2"hi(z,7.) is holomorphic on U; for some n € N. We then have Laurent series
expansion

(2,70) = D hin(7e) (13.19)

neZ

converging a.l.u. on U;\¢;(B), where h; ,, is a zero function for sufficiently negative n.

13.11

We continue our discussion from the previous subsection. We claim that if we restrict
B to the complex curve ¢ — exp.,(0) so that the base manifold of X is 1-dimensional,
then X can be described by Example 13.7.

To see this, let us assume for simplicity that n;(U; n Cp) ]D)ﬁl for all ¢, and choose
0<r<l1. Let

C(J)r _ CO\Unil DCI

which plays the same role as C\n~!(D¢) in Example 13.7. Consider the flow exp; on
C\Sx generated by r. We choose a neighborhood A of 0 € C such that exp, is defined and
injective on C; for all ¢ € A. Let

be = expey(0) e C™.

Then exp, (Cy) is inside C,, .- S50 Cp, has an open submanifold exp, (Cg) equivalent to Cy .
Note that by = 0.

Uz N Cy,
Co ) *

u n
Zt{iﬁ ( C,,

o0 b

(13.20)

Cp, can be viewed as gluing epr(C ) with Uy n Coes- - Un 0 Coy, and clearly the
function n; on U; n Cp. becomes n; on an annulus in eXpQ(C ). Equivalently, Cp, is the
gluing of Gy, with all U; " Cy, such that the n; on U; N Cp, becomes the function »; | ¢, OCXP¢

¢

on an annulus inside Car . It is not hard to see that on that annulus,
m’CbC 0 €Xpey = ﬂz o 771"6’0 (13.21)

where Bé(z) = aé(z,O) and (n;,7) o eXpQO(’I’]Z‘,TF)_l(Z,T.) equals (Oéé(Z,T.),GXan(T.)).
Namely, o' is determined by the fact that under the identification of U; with (n;, 7)(U;)
via (n;, ),

expe(2, 7o) = (aé(z,T.),eXpCU(T.)). (13.22)
Conclusion 13.11. X, is obtained by changing the local coordinates m| Cor IN| Co of Xp, =
Xo to the boundary parametrizations B om|q ..., BY o nn|, - (Cf. Def. 13.8.)
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13.12

That expy, is the flow generated by r means that J, ( Joexpy ) equals (rf) o expg,. Take
f = ni, and identify U with its image under (7;,7) to simplify the situation. Then by
(13.18),

dcat(2,7a) = hiag(z,72), expey(7e)), (13.23)
and hence

0cBE(z) = hi(BE(2), be). (13.24)

Let ¢, be a conformal block associated to X,, for each 7, € B. Recall the Laurent
series expansion (13.19). Similar to the reasoning in Subsec. 13.8, we have

N
Ocbo (we) + Y1 Y i (b)) (W1 ® - ++ @ L 1w ® -+ @ wy) = 0. (13.25)

i=1nez
By (13.17), we have agbc = (91(b¢)7 e ,gm(bc)). Thus

m

a{d)bc U}. Z 7'. aT]d)T. w')|'r.:b§ = U¢T.(w.)|7_.:b<~

We conclude that on the complex path ¢ € A +— b; = exp¢, (0),

m N

Z (Ta)0r, ra(we) + 3 Y hin(7e)br (W1 @+ ® Ly-1w; @ - @wy) = 0. (13.26)

j=1 i=1nezZ

This fact can be rephrased as follows: on the complex path ¢ — b¢, ¢, is parallel under
the connection V, defined by

m N
Vo= 050+ 2, 2 him (1w, @+ @ Ly @+ @1y )" (13.27)
j=1 1=1neZ

Y

13.13
We close this section by giving some examples of lifts.

Example 13.12. Let X the family in Example 13.7. Let h(z, 7) be defined by (13.12) whose
Laurent series expansion with respect to z (cf. (13.13)) has only finitely many negative
powers of z.

Let y € H°(A,04) be 0, where 7 is the standard coordinate of C. Recall (cf. the
end of Example 13.7) that C is the gluing of A x (C\n~'(D%)) and A U O, where the
latter is an open subset of C x C. We define the lift r to be the canonical one ¢, on
A x (C\n~1(D)), i.e., the one parallel to the A-component and hence orthogonal to the
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(C\n~1(D))-component. Then on A U O, using the standard coordinates (z,7) of C x C,
ris h(z,7)0, + J;, which has finite poles at z = 0. This shows that r € H°(C,O¢(*Sx)),
and that (not surprisingly) the V,, defined as in Subsec. 13.12 agrees with that in Subsec.
13.8. O

Example 13.13. In Example 13.4, let (7, ..., 7n) be the standard coordinates of the base
manifold Conf" (C*) inherited from CV. Lety = d,, where 1 < k < N. Then the lift x
can be chosen to the standard one d,, , i.e., the one orthogonal to the P!-component in the
Cartesian product C = P! x Conf™ (C*). Theny e H°(C,O¢).

Using the notations and the identification in (13.18), we have ¢|y, = 0;, if i # k, and

Associate Wy, Wyq,..., Wy, W, to the marked points 0,¢1,...,5n,0 of PN, Then by
(13.27), the conformal blocks are parallel under

Vo, = 0n = (lwy ® Ly, ® - @ Loa|yy @ @ Ly @ 1w,,)"- (13.29)

14 Sheaves of coinvariants and conformal blocks, and their con-
nections
14.1

We study conformal blocks for families of compact Riemann surfaces in a rigorous
way. In this section and the next one, we let

X=(r:C—B;s1,...,sN)

be a family of N-pointed compact Riemann surface. Associate admissible V-modules
Wi...,Wy to <1, ...,sn respectively. Choose a neighborhood U; < C of ¢;(B) disjoint
from ¢;(B) if i # j. If we choose local coordinate 7; at ¢;, we assume 1), is defined on U;.

14.2

For each n € N, let us define a vector bundle ”f/fn on C whose restriction to each fiber
Cp is the bundle ”I/Cf” defined in Subsec. 11.5. Let U < C be open, and choose n, u € 0(U)
univalent on each fiber U, = U n Cp, of U. For each p € U, we define o(n|u), € G to be

Hleuy ) (14.1)

o(nli)p = (e,

Namely, for each z € Uy (),

n(z) —n(p) = o(nlw)p(u(x) — u(p)). (14.2)

The map o(n|p) : pe U — o(n|p), € G is clearly a holomorphic family of transformations.
Thus, by Rem. 10.2, we have an equivalence of £;;-modules

U(e(nlp) : VS"® Oy = V=" ® Op. (14.3)
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Similar to the case of a single compact Riemann surface, we define ;=" to be the
locally free 0¢c-module such that each open U < C with 7 € &(U) univalent on each fiber
is associated with a trivialization

Up(n) : V"o = V=" @ Oy (14.4)

such that U,(n|y) = U,(n)|v for any open V' < U, and that for any p € (U) univalent on
each fiber of U, the transition function is given by

Uy (MU (1)~ = U(o(n])). (14.5)

We let 75 = li_lf)nnEN 7/5". Both 7% and "I/fn are called sheaves of VOAs associated to X
and V.

14.3

©¢ and w¢ have ranks dim B + 1. So their restrictions to each fiber C;, are not ©¢, and
wc,- We consider instead the line bundle O of sections of O killed by dr (i.e., tangent
to each fiber), called the relative tangent sheaf. It’s dual bundle is denoted by w¢ /5 and
called the relative dualizing sheaf. Then we have natural equivalences

Oc¢/sle, = Oc,s  wessle, =~ we,- (14.6)

Sections of we/(U) are of the form fdn where f € 0(U) and € 0(U) is univalent on
each fiber. For another i € &(U) univalent on each fiber, we have transformation rule

0
fdn = f- ﬁdu (14.7)

where the tangent field % of C is perpendicular to dr, i.e. tangent to the fibers. Similar to
Prop. 12.7, we have a natural equivalence

VM VETE = V(n) ®c OFy. (14.8)
For each b € B, let
Sx, = {se(0)} = {c1(b),...,sn(b)}. (14.9)
Then for each k € Z, we have an obvious equivalence of vector bundles.
V=" @ uwep(kSx)|Cy ~ "I/fb” ®we, (kSx,)- (14.10)

(If the readers know how to define the restrictions of sheaves that are not necessarily
(finite rank) vector bundles, they can easily check that the above equation holds if the
superscript < n is removed and k is replaced by x.)
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14.4

Given n € 0(U) univalent on each fiber, we have an obvious equivalence
(0, 7)x : Ou = Oy (14.11)
defined by pulling back functions using (7, 7)~!. We define the pushforward”

Vo(n) : Yalu = V® Oy

(14.12)
Vo(n) = (1v & (1, 7)) Uy ().

Its restriction to each fiber U, = U nC, equals the pushforward V,(nlc,) : %, — VOO, 1y,
defined by (12.2).

We have an equivalence (1, 7). = ((n,7)~1)* : we/Blu — Wiy,m)w)/=u)- Note that
(n, m)(U) = C x B. wi.x)w)/x) is the relative dualizing sheaf associated to the family
(n,7)(U) — 7w(U) inherited from the projection C x B — B. If we let z be the standard
coordinate of C, then for each section fdn € we/s|u where f € O,

(n,m)sfdn = (f o (n,m) ')dz.

We let V,(n) also denote
Vo(n) = Vo(n) @ (,m)x : Y2 Queysly, — V Qc Wiy my(w)/n(0)- (14.13)

14.5

To define sheaves of coinvariants and conformal blocks, we first consider the case that
local coordinates 11, ...,ny atsy, ..., sy are chosen and defined on Uy, ..., Uy.
For each open V' c B, let

Cv =71 V), (14.14)

and we have an ¢(V)-linear action of H%(Cy, %% ® we/s(xSx)) on W, ® (V') whose
restriction to each fiber is the residue action of H°(Cy, %, ® we, (*Sx,)) on W, defined by
Def. 11.16. So this action is compatible with the restriction to open subsets of V.

Let us describe this action in more details. Suppose o € H*(U; n Cy, ¥x ® we/5(*Sx)).
Note that by (14.13) we have (noting 7(U;) = B)

Vg(ni) : ’Vx @UJC/B(*S}:)‘Ui i V@(C w(Th‘,ﬂ')(Ui)/B(*{O} X B) (1415)

since ¢;(B) is the only one of ¢, (B) intersecting (and also inside) U;, and (7;, w) sends ¢;(5)
to {0} x B (cf. (13.3)). Then for each w; € W; ® 0(V') (we regard w; = w;(b) as a W;-valued
holomorphic functions on V'), we define residue action

o-w; = Res,—g Y(Vg(m)a7 z)wi. (14.16)

7 A better notation would be V, (7, 7). However, we use V,(n) to make the notation shorter.
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More precisely, write
Vo(ni)o = v(z,b)dz = ) vn(b)z"dz (14.17)
neZ

where v = v(z,b) is a V-valued holomorphic function on (7;, 7)(U; n Cy) (which is a
neighborhood of {0} x Vin C x V), v, = v,(b) isin V® &(V), and v,, = 0 for sufficiently
negative n. (So o equals vdz if we identify U; n Cy with its image under (7;, 7), and
identify ¥x|v,~c, With V® Oy, ~c, viaUy(n;).) Then

(0 -w;)(b) = Res,—o Y (v(z,b), 2)w;(b)dz = Z Y(Un(b))nwi(b). (14.18)
nez

Now, any element of W, ®c ¢ (V) is a (C-)linear combination of W,-valued holomor-
phic functions w, where (for each b € V)

w.(b) = w1 (b) ®(c s ®(C wN(b) € W, (1419)
and each w; is an W;-valued holomorphic function on V. Alternatively,
We = W1 ®ﬁ(V) s ®ﬁ’(V) WN (1420)

is in
(W1 ®c O(V)) Qo) ®ovy Wy Qc O(V)) ~We®c O(V).

So the expression we, = w; ® - - ® wy can be understood in an unambiguous way. The
residue action of any o € H°(Cy, ¥x @ we/p(*Sx)) on w, is given by

N
U,w.:Zw1®...®0.wi®...®w]\[. (14.21)
1=1

(It is sufficient to understand this action when w, is a constant function, i.e., w, € W,.)

14.6

Define an infinite-rank vector bundle over B:
Wx(We) =W, ®c O5. (14.22)
Define an ¢/(V')-module
Fx(Wa)(V) = H°(Cy, V2 Que/s(*Sx)) - HY (V, #x(W.)). (14.23)

where we have suppressed Spanc. Then we have a presheaf of &3-modules whose space
of sections on any open V' < Bis #Zx(W,)(V). This is a sub-presheaf of #x(W,).

Definition 14.1. The &z-module

Wx(Wa)
T (W, (14.24)
= )
(defined by sheafifying the presheaf V > 2! W') ) and its dual 0z-module 7;¥(W,)

Sx(We)
are called respectively the sheaf of coinvariants and the sheaf of conformal blocks asso-

ciated to X and W,. Sections of .7;¥(W,)(B) are called conformal blocks associated to X
and W,.
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14.7

Let us give an explicit description of 73*(W,). The following is easy to see:

Remark 14.2. Sections of Z3*(W,) over V are all morphisms ¢ : #x(W,)|y — Oy
that vanish when evaluated with any section of _#x(W,)|y, i.e.,, ¢(s) = 0 for all s €
Ix(W,)(V1) where V; < V is open.

Remark 14.3. A morphism ¢ : #%(W,)|y = W.®c Oy — Oy is equivalently a linear map
¢ : W, —» O(V). Indeed, given ¢, we define ® to be ®(w) = ¢(w) € (V) where each
w € W, is identified with the constant section w ® 1 € W, ®c (V). Conversely, given P,
we define ¢ sending each w ® f € W, ® (V1) (where V; < V is open) to f - ®(w)|y,.
Thus, for each b € V, the fiber map ¢|, : #x(W.)|, ~ W, — Oy |, ~ C is given by
weW, W, ®1— d(w)(b) where d(w)(d) is the value of dp(w) € &(V) at b. O

14.8

We can now relate conformal blocks for families and for single complex Riemann sur-
faces. For simplicity, we assume V' = B3; otherwise we just need to restrict X to the sub-
family Xy with base manifold V.

Proposition 14.4. Choose an O-module morphism ¢ : #x(W.) — Op. If B is a Stein manifold,
then ¢ vanishes on _#x(W,)(B) if and only if the restriction |y to the fiber Cy is a conformal block
foreach b € B, i.e., d|, vanishes on

Fx,(Wa) = H°(Cy, %o, @ we, (+Sx,)) - W (14.25)

Proof. This follows from the fact that any element of #x,(W,) is the restriction of an
element of ¢ (W,)(B) due to the next proposition. O

Proposition 14.5. Let V' be a Stein open subset of B. Then every element of H°(Cy, Yo, ®
we, (xS%x,)) is the restriction of some o € H°(Cy, ¥x ® we/p(*Sx)) to the fiber Cy.

In this proposition, we do not assume that X has local coordinates 7,. To prove this
proposition one needs the base change theorem of Grauert [GR-b, Sec. 1I1.4.2]. See [Gui,
Sec. 2.5] for a detailed explanation. It is in general true that if & is a vector bundle on C,
then for any precompact Stein open subset V' < B, there exists ky € N such that for all
k > ko, every element of H°(C, &(kSy)) is the restriction of some o € H(Cy, &(kSx)|v)
to the fiber Cp.

From Prop. 14.4 we immediately get:

Theorem 14.6. Choose an U-module morphism ¢ : #x(W.) — Op. Then ¢ is a conformal
block iff &|y is a conformal block for each b € B. If B is Stein, then these two conditions are also
equivalent to that ¢ vanishes on _#Zx(W,)(B).

We give an application of Thm. 14.6. We remark that Thm. 14.6 and Cor. 14.7 hold
without assuming that X has local coordinates (after we define sheaves of conformal
blocks in this general case, cf. Subsec. 14.10), since Prop. 14.5 does.
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Corollary 14.7. Assume that B is connected. Let ¢ : #3x(W.) — Op be an Op-module mor-
phism. Assume that B contains a non-empty open subset V' such that the restriction ¢|y is a
conformal block associated to Xy (i.e., |y € HO(V, ZF(W.))). Then ¢ is a conformal block
associated to X.

Proof. First, assume B is Stein. Then the evaluation of ¢ with any element of
HY(B, #x(W.,)) (which is an element of ¢'(B)) vanishes on V, and hence vanishes on
B by complex analysis. So, by Cor. 14.7, ¢ is a conformal block.

Now, in the general case, we let By be the (obviously open) subset of B consisting all
b € B such that ¢ restricts to a conformal block on a neighborhood of b. If b € B\By,
then every connected Stein neighborhood W of b is disjoint from Bj: Otherwise, since
d|wnB, is a conformal block, by the first paragraph, ¢z, is a conformal block, which
implies b € By and gives a contradiction. So By is a non-empty open and closed subset of
B, which must be B. O

14.9

There are two advantages of working with sheaves of coinvariants instead of sheaves
of conformal blocks. First, it is easier to relate the fibers of .73(W,) and spaces of coin-
variants than to do so for sheaves and spaces of conformal blocks. Second, though our
ultimate interest lies in the local freeness of .73 (W,), it is easier to first study the local
freeness of Jx(W,).

For each b € B, note that

Wx(Wa)b
Te(We)p = ——~.
D = W
Letmy, = mpy, = {g € Oy : g(b) = 0}. Then we have an obvious equivalence

b my s Te(Wa )y my - #a(Wa)y + Zx(Wa)y
Recall also that

i, (W) = j;%m. (14.27)

Proposition 14.8. The linear map

Wx(We)p = We ®c Opp — W,

14.28
w — w(b) ( )

descends to an isomorphism of vector spaces
T (W,)|, — Tx,(W,). (14.29)

Proof. The map (14.28) sends my, - #x(W,), = W, ® m, to 0 and sends _Zx(W,);, into
Ix,(W,) (indeed onto by Prop. 14.5). So (14.28) descends to a linear map (14.29) which
is clearly surjective. If w(b) € _#x,(W,), then by Prop. 14.5, w(b) equals s(b) for some
s€ _Ix(We)p. Sow — s € W, ® Op, vanishes at b. So clearly w — s € W, ® my,. Therefore
(14.29) is injective. O
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14.10

Now we do not assume that the local coordinates of X are chosen. We shall define
sheaves of coinvariants and conformal blocks associated to X and W,.

Let #%(W,) be an infinite rank locally free &z-module determined by the following
conditions. For any open subset V' < B together with local coordinates 7, ..., nx of the
restricted family

Xy =(m:Cy=m (V) > Vialv,...,nlv) (14.30)
defined near ¢;(V), ..., sy (V) respectively, we have a trivialization
Une) =UM) ®---U(nn) : #x(W.)|y = W. ®c Oy (14.31)

compatible with the restriction of 1, and Xy to open subsets of V, such that if ;.. is another
set of local coordinates, then

UnU(pe) ™ We® Oy = W, Q Oy
is defined by the transition function

Una U (pe) ™t = UMs|pe) = U((mm)) @ - QU((n| 1)) (14.32)

Here, each (7;|pi) : V' — G is a holomorphic family of transformations such that for each
be V, (nilni)s changes e, to nilc,, i-e.,

nile, = (milpi)s © pile,
holds on a neighborhood of ¢;(b) in C,. So we have an isomorphism
U((nil i) : We ® Oy = W, ® Oy

The restriction of U((n;|p;)) to each fiber at b is clearly the transition function for
Wx,(W,) (cf. (12.9)). Thus, we have an obvious equivalence

Wx(W,)

, = W, (W), (14.33)

We define the (obviously &(V)-linear) residue action of o € H%(Cy, 3 ® we/5(*5%))
onw = H(V, #x(W,)) to be

o-w=UMN) o -Un) 'w (14.34)

where the action of o on U(n,)'w is defined by (14.16). When restricted to each fiber,
(14.34) is equivalent to the residue action of H°(Cy, ¥¢, ® we, (*Sx,)) on #x,(W,) defined
as in (12.6). Since the later is coordinate-independent (cf. Prop. 12.1), so is (14.34).

Thus, using the residue action, we can define the presheaf #x(W,), the sheaf of coin-
variants 7% (W, ), and the sheaf of conformal blocks 73*(W,) in the exact same way as in
Subsec. 14.6.
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14.11

Our next goal is to define connections on .7x(W,) and .7;¥(W,). We begin with the
following general definition:

Definition 14.9. Let & be an 0x-module where X is a complex manifold with holomor-
phic tangent line bundle ©x. A connection V on & associates to each open U < X a
bilinear map

V:0x(U)x&U)— &), (9,5) — Vys
satisfying the following conditions.
(a) If V is an open subset of U then V| sy = (Vys)|v.
(b) If f € O(U) then
Viys = fVys
Vi (fs) =0(f)s+ fVys

If a connection V on & is chosen, the corresponding dual connection V on the dual sheaf
& is defined by

<VUQP7 8> = U<<P, 5> - <907 V\)3> (14.36)
for each ¢ € &Y (U) = Homyg,, (6, Oy ), each y € ©(U), and each s € &7.

Note that r(yp, s) is the action of the vector field ¢ on the holomorphic function (i, s).

14.12
We now suppose that the local coordinates 7, are chosen for X, and identify
Wx(We) = W, ®c O via U(ns).

We assume that B is a Stein manifold. Choose y € ©p(B), together with a lift ¢ €
HY(C,0¢(*Sx)). (Cf. Prop. 13.10). We first define the differential operator V, on

‘ Assume the setting of Subsec. 13.10. ‘Then for each open V' € B, V, is the linear operator
on W,®c & (V) such that for each w; € W;®c (V) and we = w1 ®- - -Quy in We®c O(V)
(cf. (14.19) or (14.20)),

m N
vl)wo = Z gj(T.)aTjw. - Z Z hi7n(7.)w1 R RLp1w; Q- Qwp. (14.37)
j=1

1=1neZ

Using this formula and (14.36), we can define V, on the dual sheaf of #%(W,), i.e., define
V¢ for each Oy-module morphism ¢ : #%(W, )|y — Oy . This definition of V¢ clearly
agrees with (13.27) when wy, . .., wy are constant sections.

Warning: we are using L instead of Eg to define V.
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Remark 14.10. In Subsec. 13.10 we assumed that B is inside C™. In other words, when
defining V, using (14.37), we have fixed an embedding of the abstract complex manifold
B into C"™ as an open subset. However, it is easy to check that this definition is inde-
pendent of the embedding. Thus, to define V,;, we assume only that B is Stein, but not
necessarily that B can be embedded into C™.

14.13

(14.37) can be written in a more compact way. Recall the neighborhood U; of ¢;(53) on
which 7; is defined (cf. Subsec. 14.1). Define

V() e H(Uy v -+ U Uy, %2 @ wep(*Sx))

(14.38)
Vo(n:)v(2)|v, = hi(z, Te)cdz.

Namely, under the given trivialization, v kills ;, and sends 0. to cdz. (Note that c € V(2)
and sz / 7/51 ~ @?/28.) Then it is easy to verify that

Vywe = Z 95(Te)Or;we — V(x) - W. (14.39)
j=1

where v(r) - w, is the residue action.

14.14

Theorem 14.11. V, preserves Zx(W,)(V') for each open V' < B. So V is a linear operator on
Tx(W,) and (via the formula (14.36)) on 73 (W,).
More precisely, for each o € HY(Cy, Vx @ we/p(*Sx)) and w = HO(V, #x(W,)), we have

[Vy,olw = (Lyo) - w (14.40)
where Lo € H(Cy, V3 ® we/B(*Sx)) is the Lie derivative of o under y.

Thus, when B is a Stein open subset of C", we may define a connection V on .73 (W,)
and 7¥(W,) by choosing lifts of 0-,, ..., 0r,,, defining V., ..., V., and then extending
V to a connection using &3-linearity.

We refer the readers to [Gui, Sec. 3.6] for the proof of this theorem. Here, we explain
the meaning of Lie derivative.

14.15

Let U,WW < C be open, and let ¢ : U — W be a biholomorphism from U onto W. We
assume that o preserves fibers, i.e. p(Ur(p)) = Wrop(p) for each p € U. (recall our notation
that W, = U n Cp, W, = W n C, for each b € B). For instance, if U < C\S is open and
precompact, then for sufficiently small ¢, exp, from U to its image preserves fibers. (See
(13.20) for the figure.)
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The pushforward
Vole) s Yalu = Yxlw

is defined such that for each € ¢(W) univalent on fibers, noting the pushforward V,(n) :
Velw = V®c O, x)w) defined by (14.12), we have

Vo(mVo(p) = V(1m0 ). (14.41)

Then for each b € B, the restriction of V,(¢) to 7x|u, = 7/3€|V¢(b> is equivalent to the
pushforward V, () : %, — W, defined in Subsec. 12.5.

By tensoring V() with . = (¢™')* : wesslu — weyslw sending (f o p)d(n o ) to
fdn where f € Oy, we get a pushforward which we also denote by V,(¢):

V() = Vo) ® ps : Y2 ® iyl — Ya @ weysly- (14.42)

We can define the Lie derivative in the same way as Def. 12.8. Let ¢ be as in Subsec.
13.10. Suppose U < C\Sx is open and precompact, and o € H°(U, ¥ ® we/p). Define

V,(expe,)~t . -0
5;‘7|U =%i_r)r(1) e cr ( |C pQ(U)) |U

(14.43)

Of course, if we can show that the limit exists for all precompact U, then Lo exists for all
open U < C\Sk.

The following Proposition can be proved in the same way as Cor. 12.10. (Or see [Gui,
Sec. 2.6] for details.) Formula (14.44) is necessary for the proof of Theorem 14.11.

Proposition 14.12. Let ) € O(U) be univalent on fibers. Choose u € H°(U,V ®c O¢) such that
u - dn = Uy(n)o e H(U,V Q¢ we/p)-
Choose h € O'(U) such that if U is identified with (n,7)(U) < C x C™ via (n, ), then

tly = ho, + Z 95(Te)0r; .
j=1

Then Lo exists as an element of H*(U, 7x ® we/B), and

— 1
Up(n)Lxo = hoyu-dn+ > gidru-dy— ] H&fjh Ly_qu-dn+oph-u-dn.  (14.44)
Jj=1 k>1

Remark 14.13. If we set U = U;\Sx = U;\;(B), choose 0 € H°(Cy, 7x ® we/B(*Sx)),
and let 7 be the local coordinate 7;, then the u in Prop. 14.12 has finite poles at Sy, i.e.,
ue HO(U;, V®c we/p(*Sx)). The h in Prop. 14.12 should be the h; in Subsec. 13.10, which
has finite poles at Sx. Therefore, by (14.44), the Lie derivative L0, as a section of ¥x®w¢/s
defined on Cy\ Sk, has finite poles at Sx. So Lo € H(Cy, ¥x @ we /B(*Sx)), as claimed at
the end of Thm. 14.11.
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14.16

Recall that we are assuming B is Stein (but not necessarily open inside C™) and local
coordinates 7, are given to X. As we have seen, the definition of V,, depends not only on
ne but also on the lift ¢ of y € ©3(B).

Proposition 14.14. Let V,, and V| be defined by n. and two lifts v,v’ € H°(C,O¢(*Sx)) of v.
Then there exists f € O(B) depending only on X, the local coordinates 1., r and ¢, and the central
charge c of V, such that

Vy=Vy+f1  onJx(W.,). (14.45)

See the end of Sec. 3.6 (and also Sec. 4.2) of [Gui] for the formula of f.
In the next subsection, we shall discuss an important case where the projective term f
in Prop. 14.14 equals 0.

Proposition 14.15 (Projective flatness). Suppose 11,92 € ©g(B), and V,, and ¥V, are defined
using a set of local coordinates ne and the lifts r1,r2 of 91,92 respectively. Then there exists
f € O(B) depending only on X, ne, r1 and ra, and c, such that the curvature

[V‘Juvnz] - V[U1,\)2] = f1 on %(W.)

Proposition 14.16. Suppose that on each W;, Ly — INLO is a constant A; (for instance, when W;
is irreducible). Suppose also that Vy, V| are defined by a lift x and two sets of local coordinates
Ne, 1. Then there exists f € O(B) depending only on X, ne and n,,, t, ¢, and Ay, ..., Ay such
that

Vy=Vy+ f1 on Tx(W,). (14.46)

Clearly, similar results hold on .7;¥ (W,).
We refer the readers to Sections 5.1 and 5.2 of [Gui] for details of these two proposi-
tions.

14.17

Definition 14.17. Let C be a Riemann surface, and let (Uy, 74 ) e be a chart, i.e., (Uy)aen
is an open covering of C and 7, € (U, ) is univalent. We say that (U,, 7)a)aen is a pro-

jective chart if for each «, 8 € 2, the function 7, o %—1 on n3(Uy N Ug) < Cis a Mobius

az+b

transformation z +— o

Definition 14.18. For the family X, let (Uy, 1a)aea Where (Uy)qen is an open cover of C
and each 7, € 0(U,) is univalent. We say that (Uy, 7)a)acal is a projective chart of X if
its restriction to each fiber C; is a projective chart. A maximal projective chart is called a
projective structure.

Example 14.19. P! has an obvious projective structure consisting of all Mébius transfor-
mations. It is the unique projective structure containing the standard coordinate ¢ of C.
Indeed, it is the unique projective structure of P! [FB04, 8.2.12].
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Theorem 14.20. For any family X of N-pointed compact Riemann surfaces, if B is Stein then X
has a projective structure.

This theorem is due to [Hub80]. See also [Gui, Sec. 4.1] or [Gui, Sec. B]. According to
this theorem, for any N-pointed family X, by shrinking the base manifold 3, we may find
local coordinates 7, of X that are contained in a projective structure of X.

Proposition 14.21. Suppose that (Ui,m1), ..., (Un,nn) belong to a projective structure of X.
Then the operator Vy on Tx(W,) defined by n, is independent of the lift ¢ of v.

Remark 14.22. The rough reason for this Proposition is the following: Let r and ¢’ be two
lifts of 1. Then dr sends 3 = r — ¢’ to 0. This means that 3 ¢ H°(C, O¢/p(*S%)). In view of
(14.39), we need to show that the residue action of v(3) = v(zr) — v(¢’) is 0 on Fx(W,), or
equivalently, v(3)w. € _#x(W,)(B) for each w, € W,. The map 3 — v(3) sends a section of
O¢/p(*Sx) on Uy u--- LUy to one of “//52 ®uwe/p(*Sx) whose trivialization is described by
cdz. Locally and under reasonable trivializations, this map sends h(z, 7, )0, to h(z, 7e)cdz.
Since c has weight 2, the coordinate transformation formula for 0, in ©¢/3 equals that of
cdz mod a section of ”//fl ® we/p(*Sx) (cf. Subsec. 12.7). The expression of section is
determined by Lac = 51.

Here comes the crucial point: Since all (U;, 7;) are contained in a projective structure
(Ua, Ma)aent, and since in the change of coordinate formula for Mobius transformations
only Lo, L+ are involved but Ls is not, the change of coordinate formulas for cdz and for
0, are equal. Therefore, as 3 is a global section of ©¢/3(*Sx), v(3) can be extended to a
global section of ;=% ® we/B(*Sx). So v(3)we € Fx(W,)(B). O

Due to Prop. 14.21, if B is Stein and 7. belong to a projective structure of X, then we
can define a connection V on .7x(W,) and hence on .73 (W,) such that for each ) € O3,
V, is the one defined by (14.39) using any lift ¢ of v.

Example 14.23. For each 7 € H = {z € C : Imz > 0}, the torus T, defined by C mod
the rank 2 lattice Z + 7Z has a standard projective structure: the one inherited from the

standard projective structure of C. This projective structure is modular invariant: Let

g€ PSL(2,Z)be g(1) = Z:ig where a, b, ¢, d € Z and ad—bc = 1. Then the biholomorphism

z
ct+d
sends the standard projective structure of T to that of Ty,

Thus, for sheaves of conformal blocks associated to a family of N-pointed tori, stan-
dard connections are those defined by the local coordinates inside this modular invariant
projective structure. O

Tr =Ty, 27

15 Local freeness of sheaves of coinvariants and conformal
blocks

15.1
As in Subsec. 14.1, we associate admissible V-modules W1, ..., Wy to the marked
points ¢i,...,sy of X = (7 : C — B;¢,). We do not assume that 3 can be embedded as an
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open subset of C" or the local coordinates are chosen.

Definition 15.1. We say that V is Cy-cofinite if V/C5(V) is finite-dimensional where
C5(V) = Spanc{Y (u)_sv : u,v € V}.

The C>-cofinite condition was introduced by Zhu [Zhu96] in the study of genus-1
conformal blocks.

Definition 15.2. We say that the weak V-module W is generated by a subset & if the
smallest V-invariant subspace of W containing & is W. We say that W is finitely gen-
erated if it is generated by finitely many vectors. When W is admissible, this is clearly
equivalent to saying that W is generated by finitely many homogeneous vectors.

Remark 15.3. Note that in the case & < V, that & generates the vacuum module V is not
the same as that & generates the VOA V (cf. Def. 5.6). For instance, the vacuum vector 1
generates the V-module V, but not the VOA V.

The following important result is due to [Miy04, Lemma 2.4]. Some weaker versions
of this result are due to [GN03, Buhl02].

Theorem 15.4. Assume that V is Ca-cofinite. Let E < V be a finite subset such that V. =
Span(E) + Co(V). If W is a weak V-module generated by a finite set & of vectors, then W is
spanned by vectors of the form

Y('Uk)—nk ’ "Y(Ul)—nlw (15-1)
whereke N, we &, vi,...,vp € E,and ny,...,n, € Zsatisfyny <ng < --- < ng.

Exercise 15.5. Use Thm. 15.4 to show that if V is C»-cofinite, then every finitely-generated
admissible V-module is finitely-admissible.

15.2

Assumption 15.6. In this section, we assume that V is C-cofinite and Wy, ..., Wy are
finitely-generated (finitely-)admissible modules.

In our notes, we do not use Thm. 15.4 directly. Instead, we use the following conse-
quence of Thm. 15.4. See [Gui20, Sec. 7] or [Gui, Sec. 3.7] for the proof.

Theorem 15.7. For each Stein open subset V' < B, the O(V')-module

Wx(We)(V)

e (W)(V) (152)

is generated by finitely many elements.

Corollary 15.8. .73 (W,) is a finite type Op-module.
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Proof. Assume without loss of generality that B is a Stein open subset of C™. Then
Wx(W,) = W, ® O is generated by constant sections, i.e., elements of W, ~ W, ® 1.
So Jx(W,) is generated by W,. Choose wy,...,w, € #3x(W,)(B) generating the &'(5)-
module (15.2) (setting V' = B). So each element of W, is an ¢'(B)-linear combination of
wi, ..., wy in the quotient (15.2). So 7% (W,) is generated by wy, ..., wy. O

By the basic properties of finite type sheaves (cf. Thm. A.22), each fiber F%(W,)|,
(which is equivalent to J%,(W.) ~ 73 (W,) by Prop. 14.8) is finite-dimensional; the
following rank function R : B — N,

R(b) = dim Tx(W.)|, = dim Jx,(W,) = dim F5 (W,) (15.3)

is upper semicontinuous; if R is also lower semicontinuous and hence locally constant,
then 7x(W,) is locally free and so is its dual sheaf .7;¥(W,). Then we will have a natural
equivalence Iy (W, )|, ~ 73 (W,). Namely, if we can show that R is locally constant,
then the spaces of conformal blocks for all fibers X, of X form a vector bundle over B.

15.3

Theorem 15.9. 7x(W,) and hence 7F (W,) are locally free O g-modules. In particular, the rank
function R defined by (15.3) is locally constant.

As discussed above, to prove Thm. 15.9, it suffices to prove that R is locally constant.
Suppose we can show that R|3, is lower semicontinuous for any one-dimensional com-
plex submanifold B of B biholomorphic to an open disc, then Rz, is constant since it is
also upper semicontinuous. It then follows that R is locally constant

Therefore, we may just assume that B is a simply-connected open subset of C contain-
ing 0, and X admits a set of local coordinates 7,. Then either B = C or B is not closed. So,
as any connected non-compact Riemann surface is Stein, B is Stein. Identify

Wx(We) =W, ®c Op via U(ne).
It suffices to show:

Lemma 15.10. R is lower semicontinuous at 0.

15.4

Let 7 be the standard coordinate of B — C. By Sec. 14, we can define a differential
operator Vo on W, ®c 05 which preserves #x(W,)(B) due to Thm. 14.11. We shall
prove Lemma 15.10 using this fact and Thm. 15.7.

We fix an element ¢g € #%,(W,), i.e. alinear functional on W, vanishing on #x,(W,).
Let us prove Lemma 15.10 by constructing a conformal block ¢~ € #%_(W,) foreach 7 € B
such that the map ¢ — ¢ is linear and injective.

Convention 15.11. Let W5 be the subspace of W, spanned by homogeneous w;®: - -®@wy
satisfying wt(wi) + - - - + wt(wy) < k. Note that WF is finite-dimensional since each W;
is finitely-admissible.
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In view of (14.37), for each w, € W, ® O, we can write

Vo we = Orwe + A(T)ws (15.4)
where
N
A we == > > hig(r)wr - @ Lywi ® -+ @ wy (15.5)
i=1keZ

We take power series expansion

A(r) = ) AnT”

neN
where A, € End(W,) is given by
N
A, = —Z Zhi,k,n-1W1®-..®Lk_l‘wk®...®1WN
i=1keZ

where h; j,, € C is determined by h; 1(7) = >, oy hikn7" and vanishes for all ¢,n and
k < K for some K € Z. So A(t) € End(W,)[[7]].

Definition 15.12. Define a linear map
¢ :We = Cl[7]],  w— dr(w)
such that for each w € W,, ¢, (w) is determined by the formal differential equation
Orbr(w) = ¢r(A(T)w) (15.6)
whose initial value ¢,|,—¢ is the conformal block ¢ chosen at the beginning.

More precisely, if we write ¢ (w) = >, . $n(w)7T™ where each ¢, : W, — Cis linear
and ¢y is just the previously chosen conformal block, then

an)n(w)T”_l = Z P (Apw)T™ ™,

neN m,neN

So foreachn € Z,,

n—1
noy, = Z bro A1 (15.7)
1=0

This determines all ¢,, inductively. Our goal is to show that ¢, (w) is the series expansion
of an analytic function on B.
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15.5

By C[[7]]-linearity, we can extend ¢ to a linear map from W, ® C[[7]] to C[[7]]. (Note
that the RHS of (15.6) is understood in this way.) Then W ® &'(B) is an &/(B)-submodule

of W, ® [[7]] by taking power series expansions. We are interested in the restriction
¢:We®0(B) = C[[r]],  w— dr(w).
It clearly satisfies the differential equation 0, ¢, (w) = ¢, (0rw+A(T)w), namely (cf. (15.4))

ﬁTd)T(w) = d)'r(vﬁ-rw)‘ (158)
Lemma 15.13. ¢, vanishes on Zx(W,)(B).

Proof. Choose any w € _#Zx(W,)(B), which by power series expansion is an element of
W, ® C[[7]]. Then by (15.8), ¢ (w) has series expansion

$r(w) = Z 76”‘1’7’ Z d)‘r o, W

neN neN

where ¢ (V3 w )| denotes the constant term of the series ¢, (V% w) € C[[]]. By Thm.
14.11, s, = V3 w belongs to #Zx(W,)(B). In particular, s,(7)|r—0 € _Zx,(W,). Clearly
&r(Sp)|r=0 = ¢0(Sn(0)) which equals 0 because ¢ is a conformal block associated to Xy.
This proves the lemma. O

15.6
To prove that ¢ is analytic, we need a basic fact about differential equations:

Lemma 15.14. Let W be a finite dimensional vector space. Suppose f (1) = >, .y faT" € W[[7]]
satisfies a formal differential equation

Orf(r) = A(T)f(7) (15.9)

for some A € End(W) ®c O(B), then f(7) is the power series expansion of an element of W &
O (B) which we also denote by f(7).

Proof. 1t is clear that any formal solution f(7) of (15.9) is uniquely determined by its con-
stant term fy € W. (Cf. the argument for (15.7).) By the basic theory of differential
equations (e.g. [Kna, Thm. B.1]), (15.9) must have a solution in W ® &'(B) with initial
value fy. So this solution must equal f because their constant terms are equal. O

Lemma 15.15. ¢ is an 0(B)-module morphism from W, ® €'(B) to &(B). Thus, it is automati-
cally an Op-module morphism W, ® Op — 0.

Proof. By O(B)-linearity, it suffices to prove that ¢ sends each constant section w € W, to
¢r(w) e W ® O(B).

By Thm. 15.7, we can find finitely many elements s, s2,--- € W, ® €(B) generating
W.® 0(B) mod _#x(W.,)(B). We fix ko € N such that sy, s, - - - € Wko @ ¢/(B). Consider
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the restriction of ¢ to Wk — C[[7]] for all k > ko, which we denote by ¢<F. Recall that
Ws* is finite-dimensional. So ¢ = is an element of (Ws*)* ® C[[7]].

Let {e;}es be a basis of Wk, By (15.6) or (15.8), 0, - (e;) = ¢, (Va.ej) where V,_e; €
W, ® 0(B). Since V;, ¢; is an ¢(B)-linear combination of s1, s2,... mod _#x(W,)(B), we
can find Q; ;(7) € O(B) for all i, j € J such that

Vo, € = Z Q;j(m)e;  mod Zx(W.)(B).

jedJ
Thus, by (15.8) and Lemma 15.13, we have

05 (er) = D1 Qi) b5 (ey). (15.10)
jedJ

Therefore, = as an element of ((W,)<¥)* ® C[[r]] satisfies a linear holomorphic dif-
ferential equation similar to (15.9). So by Lemma 15.14, this series is an element of
(Wsk)* @ 0(B). This finishes the proof. O

Remark 15.16. The differential equation (15.10) has a significant role in conformal field
theory. Take V to be a WZW model L;(g,0) and let Wy, ..., Wy be irreducible, and as-
sume that the lowest Eg—eigenvalue for each W; is 0. Take X to be the genus-0 family
in Example 13.12. Then we can choose the kq in the proof of Lemma 15.15 to be 0. By
restricting the base manifold Conf” (C*) of X to any complex line parallel to the z;-axis,
then (15.10) shows that ¢ =<' satisfies a linear holomorphic 0,,-differential equation. This
is the celebrated Knizhnik-Zamolodchikov (KZ) equation.

15.7
To summarize the results proved so far, we have:

Theorem 15.17. Let B be a simply-connected open subset of C containing 0, and choose local
coordinates ne for X. Define Vo, using a lift of 0r. Then for each o € T35 (W.), the b, defined
by Def. 15.12 is an element of 73 (W, )(B) whose value at T = 0 is ¢o, and which is annihilated
by V@T.

Proof. By Lemma 15.15, we can define ¢ to be an 0z-module morphism W, ® 05 — Op.
It is a conformal block by Lemma 15.13 and Thm. 14.6. It is annihilated by V;_due to
(15.8) and (14.36). O

Proof of Lemma 15.10. For each 79 € B, the map ¢g — ¢, is linear. Moreover, for suf-
ficiently large k, ¢S satisfies a linear holomorphic differential equation (15.10) whose
solutions are determined by their values at any tixed point of B, say 79. So the function
¢ of 7 is uniquely determined by ¢p5*. So d5* is determined by $5F for all large k. So
the linear map ¢o — ¢, is injective. O

The proof of Thm. 15.9 is complete.
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Example 15.18. Assume the setting of Example 13.6. Assume moreover that A < C is
an open disk centered at 0, and that the holomorphic function 4 defined near S! is holo-
morphic on D for some 7 > 1 with finite poles at 0. So h(z) = Y. _,c,2""1 where
cn, = 0 for sufficiently negative n. Using Example 13.12, it is easy to see that for each
$o € T3 (W,), the ¢ defined by (13.9) as a formal power series of 7 satisfies Def. 15.12.
So ¢, € 73 (W,)(A). In particular, for each w € W,, ¢, (w) converges a.l.u. on 7 € A.

15.8
Corollary 15.19. Assume the setting of Thm. 15.17. Then for each T € B, the linear map
T (W) = FE (W), b0,
is bijective.
Proof. The injectivity follows from the proof of Lemma 15.9. The bijectivity follows from
the fact that the two vector spaces have the same dimension (due to Thm. 15.9). Alter-

natively, it follows from that by switching the role of 7 and 0, we have a similar injective
linear map 7 (W,) — J5% (W,). O

Corollary 15.20. Assume the setting of Thm. 15.17. Then 73 (W,) and hence Tx(W,) are
trivial vector bundles on .

Proof. The Op-module morphism
Ty (We) ®c Op — T (W.)

sending each constant section ¢ to ¢, (and hence each ¢¢ ® f to f, where f € Op) is
an isomorphism due to Cor. 15.19. O

Corollary 15.21. Let Q) = (C;z1,...,xn) be an N-pointed compact Riemann surface where C
is connected with genus g, and associate W; to x;. Then the dimension of space of conformal blocks
dim 35 (W,) depends only on g, N, and the (finitely-)admissible V-modules W1, ..., Wy.

So, dim J4;(W,) does not depend on the complex structure of C, the position of z., or
the choice of local coordinates.

Proof. There is a family T, y of N-pointed compact connected genus-g Riemann surfaces
whose base manifold is the Teichmdiller space 7, y (which is connected), and any 9) is
equivalent to some fiber of T, x. (See for instance [ACG, Chapter XV].) Thus, the corollary
follows immediately from Thm. 15.9. O

16 Sewing, propagation, and factorization of conformal blocks

16.1

Let X = (7 : C — D} ; z4;74) be the family obtained by sewing an N-pointed compact
Riemann surface with local coordinates X = (C;z.,',2"; 7., £, @) as in Example 13.5.
Recall that we assume, unless otherwise stated, that:
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Assumption 16.1. Each connected component of C contains one of T1,...,TN-
It follows that each connected component of C;, also contains one of z1, ...,z .

Convention 16.2. In this section, by “V-modules” we mean finitely admissible V-
modules.

Let Wy,...,Wy,M be V-modules. We associate W1, ..., Wy, M, M’ to the marked
points z,,2’, 2" of X and Wy, ..., Wy to x1,...,zx of X. Recall that M’ is the contragre-
dient of M. Identify

Vi (W.@MOM) =W, MM viald(n.,, ),
Wx(W,) =W, via U(ns).

16.2
Letd : We @ M® M’ — C be a conformal block associated to X and W, M, M. Let

b= m(n,a) ®m(n,a) € M(n) ®M(n)* (16.1)

be the contraction where {m(n, a) : a € 2, } is a basis of M(n) with dual basis {m(n,a) : a €
2, }. Equivalently, x,, is the identity operator when viewed as an element of End(W(n)).
Recall that M(n) and M(n)* are respectively the Lo-weight n subspaces of M and M/
respectively. We define a linear map

S¢: W, — C[[q]]
Sh(ws) = Sy (we) = Y G(we® )" = Y d(we @ W (n) @W(n)*)g"  (16.2)
) ) ;N ( q ;N ( ( )*)q

contraction

called the (normalized) sewing of ¢.
The meaning of S¢(w.,) is easy to understand: Informally,

Spd(we) = d(we @™ - ® . ) =dp(wa® ® ™) (16.3)
contraction contraction

since we can place the projection P,, on the right of qEO and take the sum over all n, noting
that inPn — ¢"P,. Suppose that the series S, (w.) of ¢ converges a.l.u. on Dy,. Note
that for each ¢, X, is obtained by scaling either ¢ or @ by ¢~! (or more generally, scaling ¢
and w by ¢; L q5 'such that ¢1¢2 = ¢) and then perform the sewing as in Subsec. 4.2 along
2’ and z” using their local coordinates. Then g’qd)(fw.) is the contraction with respect to
this sewing.

We can also use L instead of Ly for scaling. For simplicity, we assume that M is irre-

ducible (or more generally, that Ly — I}O is a constant on M), then we define the (standard)
sewing of ¢ to be

Sp=q¢*-Sp: W, > C{q} (16.4)
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where d - 1y = Lo|y — Eo!M- Here, we have used the notation that for any vector space
w,

W{q} = { Z wpq"  wy, € W}
neC

By linearity, we can extend the definition of S¢ to the case that M is a semi-simple V-
module, i.e. a direct sum of irreducible V-modules.

16.3

A proof of the following theorem can be found in [Gui, Sec. 3.3] or [Gui20, Sec. 10,
11].
Theorem 16.3. Instead of Assumption 16.1, we assume a weaker condition that for each q € Dy,
each connected component of Cy contains one of x1, ..., xn. Let ¢ € TF (We @ M ®@M). Then
St is a conformal block associated to X, provided that Sd(w.) converges a.lu. on q € Dy,

(equivalently, converges absolutely on Dy, or on D) for each we € W,.

For instance, suppose that N > 0, and C' is a dls]omt union of two connected Riemann

surfaces Cl, C’g such that 2/ € Cl and z1,...,zn,2" € C’2 Then the condition in this
theorem is satisfied but Assumption 16.1 is not.
By Thm. 14.6, that S¢ is a conformal block means the following equivalent conditions:

. SNq(b €Iy (W,) for each g € D7,
¢ By extending S toan G, % -module morphism
S : W, Q¢ Opx, — Opy s (16.5)
S¢ vanishes on (W) (D).

T (We)).

e Asan ﬁ’ﬁm—module morphism, S¢ is an element of H O(Dx '

16.4

We give an application of Thm. 16.3. Assume only in this subsection and the next one
that X = (C;z.;7.) is an N-pointed compact Riemann surface. Recall that by Assumption
11.2, each connected component of C contains one of z1, . .., zx. Identify

Wx(W,) =W, via U(n.). (16.6)

Let ¢ : W, — C be a conformal block associated to X. We use the notations in Subsec.
11.2. Recall that (11.5) gives an explicit formula for (¢, when z is close to x;, and the RHS
of (11.5) converges a.l.u.. for such z. It is clear that the RHS of (11.5) is the sewing of a
conformal block associated to *B, () 1 X. Therefore, by Thm. 16.3, 1, is a conformal
block associated to (X, ~ B, () #X and V, W, when z is close to z;.
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Let us be more precise. Recall

X, = (Cyz,x,) (16.7)
where z # z1,...,znN. By Def. 11.6 and Rem. 11.9, we have an ﬁc\x.-module morphism
W Yo, @c We — Ocng, VU ® we — 1D (v, ws). (16.8)

For each z € C'\z., we have a linear map
W) - Yolr ®c W, — C. (16.9)

For every neighborhood U of z and a univalent y € &(U), the equivalence U, (1) : Yo|y —
V ®c Oy restricts to U,(11) : Yc|z = V. Note that y — pu(z), ne are local coordinates of 1X,

at z, z,. We then have an equivalence

Up(11)'®
—_—

Wi, (V@ W,) L),y @ vy, 5 Yolr @ W (16.10)

~

Exercise 16.4. Show that the equivalence (16.10) is independent of the choice of p.

Thus, by identifying #jx,(V ® W,) with 7|z ® W, via (16.10), we see that :d|, is a
linear functional

Wle : #ix, (VO W,) — C. (16.11)

(Indeed, one can check that this definition is also independent of the local coordinates 7,
of X).

By the discussion at the beginning of this subsection, (|, is a conformal block when
x is near any marked point z;. Thus, by Cor. 14.7 and the fact that each connected com-
ponent of C'\z, intersects a neighborhood of z; for some j, we conclude that !$|, is a
conformal block for every x € C\z,. Note that in order to apply Cor. 14.7, we should
organize all 1X; to a family

X = (C x (C\xe) > C\Te;6, X1, ..., TN) (16.12)

where ¢ sends each z € C\z, to (z,z) and z; sends z to (z;,z). Clearly the fiber of !X at
each z € C'\z, is 1X;. Thus, we can view ! as an O, -morphism #jx (VO W.) — Oc,, .
It is a global conformal block since it is so near z1, . .., zx. We conclude:

Theorem 16.5. Let ¢ € 73¥(W,). Then the Oc\,,-module morphism ¢ = #x(V® W,) —
Oz, 1 a conformal block associated to X and V, W, called the propagation of .

We can consider multi-propagations of conformal blocks. Namely, we let sev-
eral distinct points y1, ..., y, (instead of a single point z) vary on C'\z., which gives a
family "X with base manifold Conf"(C\xz.) and fibers (C;y1,...,yn,21,...,2n). Then
one has the n-propagation "¢ defined inductively by :(*~1¢), which is a conformal
block associated to "X and V,...,V,Wy,..., Wy. For instance, the (N + 2)-point func-
tion (w',Y (v1,21) - Y (v, z2y)w) is the n-propagation of the conformal block w ® w' €
W@ W’ — (w,w") associated to (P!; 0, 00; ¢, 1/¢). See [Gui, Sec. 3.4] or [Gui21] for details.
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16.5

As in the previous subsection, let X = (C; z.; 7. ) be N-pointed, and assume the iden-
tification (16.6). We give two applications of propagation of conformal blocks. The first
one uses only the fact that ! (-, ws) is an O, -module, but not really Thm. 16.5. Recall
the meaning of generating subsets of V-modules in Def. 15.2.

Proposition 16.6. Assume that C' is connected and N > 2. For each j = 2,..., N, chose a
subset E; — W; generating W;. Let & : W, — C be a conformal block associated to X and W,.
Then d) = Oifd)(wl ®w2®---®wN) = Oforallw1 EWl andw2 € EQ,...,U)N € EN.

The proof of this Proposition is similar to that of Goddard uniqueness (Prop. 8.10).

Proof. Let w, € W, such that w; € E; for all j > 2. Clearly ¢(Y (u, z)u1 @ wa - - @ Qun)
(which converges al.u. when z # 0 is small) is 0. So (-, w,), as a section of (¥F)¥
on C\z,, vanishes near z; for all k. So it vanishes globally on C\z,, and in particular
vanishes near xs. This shows that ¢ (w1 ® Y (u, 2)we ® - - - ® wy ) vanishes when z is small.
By taking residue at z = 0, we see that ¢(w; @ Y (u)p,w2 ® -+ - @ wn) = 0 for all w € V and
n € Z. Repeating this argument, we see that ¢(w; ®Y (u1)n, - -+ Y (ug)n, w2 ®- - -Quwpy) =0

forall uy,...,ux € Vand ny,...,ny € Z. Therefore, as Ey generates Wy, we conclude that
d(ws) = 0 for all w; € Wi, wy € Wy and w; € E; (Where 3 < j < N). Repeating this
procedure shows ¢ = 0. ]

The second application is the following one. Recall 1X, = (C;z, z,) if z € C'\z,. Recall
that 1 € H°(C, ¥¢) is the vacuum section which locally equals the constant vacuum vector
under any trivialization.

Theorem 16.7. Choose any x € C\z, and identify
Wix, VOW,) = 7oz @W, via (16.10).
Then we have an isomorphism of vector spaces

73, (VOW,) = 7 (W.)

(16.13)
VR we € Yo|lr @ We — (v ® w,) — wWe € We > P(1 ® w,)
Note first of all the easy fact:
Lemma 16.8. For each & € 7F(W,), the following holds in &'(C\x.).
W (1,we) = d(w.) (16.14)
Proof. (16.14) clearly holds near z1, ..., zy by (11.5). So (16.14) holds on C\z, by complex
analysis. O

Proof of Thm. 16.7. We leave it to the readers to check that for each conformal block
associated to X, the linear functional ¢ : W, — C defined by the RHS of (16.13) satisfies
the definition of conformal blocks (Def. 11.6). The linear map (16.13) is injective by Prop.
16.6 and the fact that 1 generates the vacuum module V. It is surjective due to Lemma
16.8, which says that i is a preimage of ¢ € .73 (W,) under the map (16.13). O
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16.6
We give some applications of propagation.

Example 16.9. Let (finitely-admissible) W, W/, be associated to the marked points 0, oo of
P = (P';0,00;(,1/¢) where ( is the standard coordinate of C. Then it is not hard to check
(cf. Example 17.2) that there is an isomorphism

Homy (W1, W§') = Z55 (W1 @ Wh)

(16.15)

T — w1 @ wh — {(Twy,wh)y

(Note that each Y (u),, acts on W¢ in an obvious way.) Therefore, by Thm. 16.7, for
any N-pointed (N > 2) sphere such that W;, W, are associated to two marked points
and V is associated to the remaining one, the corresponding space of conformal blocks is
isomorphic to Homy (Wq, W¢!).

Remark 16.10. In many important cases, we have
Homy (W1, Ws) = Homy (W1, WS). (16.16)

For instance, this is true when Ly is diagonalizable on W, W5, and each Ly-weight space
of W is finite-dimensional. (E.g. when W, W, are semisimple.)

To see this, choose any Lg-eigenvector w; € W; with Low; = Aw;. Choose linear T :
Wy — ng intertwining the actions of V. Then as LT = T'Lg, we see that Tw; € ng is an
Ly-eigenvector with eigenvalue \. Recall that [ZNLO, Lo] = 0 (cf. Rem. 9.7). So Ly preserves
each (Lo-)weight space Ws(n) of Wy. But Lg lw,(n) has eigenvalue A for only finitely many
different n, otherwise the \-eigenspace of Ly on Wy would be infinite dimensional. This
proves T'wy € Ws. ]

Example 16.11. In Example 16.9, we let W; = V and W = W,. Then we have

Homy (V, W) = g1 0170 (VO W) = T 116y (W) (16.17)

where the corresponding element of 7' € Homy (V, W¢) in 5(1’;1, 00:1/¢) (W)isT1e Wasa
linear functional on W’. In particular, taking W = V’, we have

Homy (V, V') = Homy(V, (V)) ~ Fig1. . (V). (16.18)

So ZI’;% 00:1/¢) (V) is trivial if V is not self-dual.

16.7

We return to the setting of Subsec. 16.1.

Theorem 16.12. Assume that V is Coy-cofinite, W1,..., Wy, M are finitely-generated, and
Lo|lm — Lol|m is a constant (e.g. when M is irreducible). Let ¢ € 95;‘ (We @ M ® M'). Then
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St and S¢ converge a.lu. on q € Dy,. Moreover, if we define the connection V on 7F(W,)
using ne and a lift of 0,, then

Vo, Sqb = [ - Sy (16.19)

for some f € O(Dy,) depending only on X( including the local coordinates 1., &, w) and r, p, the
lift of 04, and the central charge c. Moreover, f = 0 if n., &, w belong to a projective structure of
X.

The proof of Thm. 16.12 has some similarities to the proof in Sec. 15 that ¢ is analytic
and the sheaves of coinvariants/conformal blocks are locally free. We refer the readers
to [Gui, Sec. 4.3] or [Gui20, Sec. 11] for details of the proof. In the following, we explain
some key ideas.

Suppose we add the nodal curve Cy = lim,_,o C; to the family X (see the end of Subsec.
13.4). One can also define sheaves of coinvariants and conformal blocks for X. Due to the
fact that dr : ©¢|, — Op,,|x(p) is not surjective if p € C is the node of Cy, we cannot lift J,
to a section of O¢ near p, let alone to HY(C, ©¢(*S%)). (Near the node p, 7 is equivalent to
(¢, @) € C? — (wnear € = w = 0.) But we can lift ¢d, to an element r € H°(C, ©¢(*S%)),
and one can check that r is actually in H°(C, ©¢(—logCy + *Sx)), which means that r has
finite poles at Sy and that r|¢, is tangent to Cy and vanishes at the node. (See [Gui, Sec.

3.6] or [Gui20, Sec. 11]).
(/3 0
AR
/s ) (16.20)

Using the lift r, one can define a differential operator V.5, (or more generally, Vg5,
where g € Op,, vanishes on 0) on 7%(W,) and 75" (W.,). We say that the connection V has
logarithmic singularity (or is a logarithmic connection with singularity) at 0. Then one
can show that

VouSab = f - Sy (16.21)

where the dependence of f € /(D,,) on the given data is as in Thm. 16.12. (Note that un-
like in Thm. 16.12, here f is also holomorphic at 0.) Thm. 15.7 indeed holds in the present
case as well. So, similar to the proof of Lemma 15.15, one shows that for sufficiently large
k,

4048,0% (ei) = ) Qi ()8, (e;). (16.22)
where Q; ; € 0(D,,). Namely, as an End(WsF)-valued formal power series of g, §q¢<k
satisfies a linear holomorphic differential equation with simple pole at ¢ = 0. It is

well known that Lemma 15.14 can be generalized to this case, which asserts that a formal
power series satisfying a linear holomorphic differential equation with simple pole must
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converge a.l.u. on D7) (cf. e.g. [Gui, Sec. 1.7]). The a.l.u. convergences of gd) and S¢
follow.

Finally, we remark that Thm. 16.12 can be generalized to the simultaneous sewing
along several pairs of points (4},4/),. .., (i, ¥/i;) of C, or even more generally, the case
that X is a family with base manifold 5. In this most general case, X is a family over
B x D, x - xDf , , and the sewing is a.l.u. convergent on this domain. See the
references mentioned above.

16.8

Let £ be a finite set of mutually inequivalent irreducible V-modules. Then for each
q € Dy, with a choice of argument arg ¢, we have a linear map

Sq: D FF(W.@MOM') — T (W)

Me€&
16.23
D b — D Sy (16:29)
M M

Note that »; Sdm(ws) is a multivalued holomorphic function on Dy, (i.e., a single-
valued holomorphic function of log ¢ on the universal cover of D;))

Theorem 16.13. Assume that V is Co-cofinite and W1, ..., W are finitely generated. Then for
each q € Dy, with chosen arg q, the linear map &, is injective.

See [Gui, Sec. 4.4] or [Gui20, Sec. 12] for a proof. The last part of that proof can be
simplified thanks to the propagation of conformal blocks. In the following, we present
this simplified proof.

Proof. Suppose ¥, = > Sydm is 0 for one g. Then it vanishes for all ¢ € D;, (and all
choices of arg q) since the restriction of 1 to W satisfies a linear holomorphic differential
equation (16.22) whose solutions are determined by their (initial) values at any fixed ¢ and
arg q. Write Vg(we) = Y., cc Wn(we)q", then V¥, (we) = 0 foralln e C.8

Let F be the set of all M € £ such that ¢ # 0. Let us prove that 7 = ¢&. Note that

Pg(we) = D0 > ¢" - dra(we ® xun)

neC MeF

where xyn, € M) ® M’(*n) (Where M, is the Lo-weight n subspace of M) is the vector
for contraction, i.e., xmn = I, € End(M(n)). Let X = @per M® M’ as a (semisimple)
V ® V-module. Then for each n € C, {,,(ws) = 0 means

<(—D dum, we® (P XM,n)> =0.

MeF MeF

8Suppose f(q) = 3, .c ang™ € C{q} converges absolutely and equals 0 when ¢ # 0 is small. If f(q) €
C[[¢*']], then by taking contour integrals one concludes a,, = 0 for all n. In the general case, one has to be
more careful. See the discussions in [Gui, Sec. 4.4].
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where @y » dm : We ® X — C is a linear map defined by sending each ws ® m @ m/
(where m € M, m' € M) to dpr(we @ m @ m’).
Let

A= {V6X1<<—D ¢M,w.®u>=0forallw.ew.}.
MeF

We claim that A is a V ® V-invariant subspace of X. It follows that if 7 # J, then
A (which contains all xu,,) must be a non-trivial V ® V-submodule of the semisimple
module X. Since the irreducible summands M @ M’ of X are mutually non-isomorphic, A
must contain some M®M’ where M € F. Then ¢y = 0, contradicting the definition of F.

That A is V ® V-invariant can be argued in the same way as Prop. 16.6. Choose any
v € A. Then when z # 0is small, for eachu €V,

(P b, Y (u,2)w1 @2 ® - Q@ wy Qv (16.24)
MeF

converges a.l.u. and equals 0. This shows that @y 7 tdm (-, we ® v) vanishes near x1, and
hence near 2’. Therefore, forallu € V,

(D dm,we® (Y(u,2) @1)v)

MeF

equals 0. So (Y (u), ® 1)v € A for all u € V, n € Z, which proves that A is V ® 1-invariant.
Similarly, A is 1 ® V-invariant. O

Remark 16.14. If we define éq using the normalized sewing §q, then using the fact that
for each M, S, ¢y = ¢?S,dn for some d € C, one shows easily that &, is also injective.

16.9

Corollary 16.15. Assume that V is Ca-cofinite. Then there are only finitely many equivalence
classes of irreducible V-modules.

Proof. For each finite set £ as in the previous subsection, we give an upper bound for its
cardinality |€|. For each M € &, the vertex operator Y); defines a conformal block wyy :
MEVM’ — C for P = (P*;0,1,0;¢,(—1,1/¢) asin Example 11.12. Sewing 93 along 0, o
with a fixed parameter ¢ € D} gives a 1-pointed torus T. By Thm. 16.13, {S,wy; : M € £}
is a linearly independent subset of .7 (V). Therefore |£| < dim FZ(V). O

Recall that V is called rational if every admissible V-module is a direct sum of irre-
ducible V-module.

Theorem 16.16 (Factorization). Assume that V is Cy-cofinite and rational. Assume that £ is
a maximal set of mutually inequivalent irreducible V-modules. (“Maximal” means that every
irreducible V-module is isomorphic to one element of £.) Then the linear map &, defined by
(16.23) is an isomorphism.
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Factorization is equivalent to that for maximal &,

dim 7§ (W,) = )" dim TEHW.@M@M). (16.25)
Me&

This formula gives an algorithm of calculating the dimensions of spaces of conformal
blocks of higher genera or more marked points from those of lower genera or less marked
points. Factorization in this form was first proved by [DGT19] using Zhu's algebras. In
[Gui, Sec. 4.6, 4.7], a different but more analytic and geometric proof was given using
(a slight generalization of) double-propagations. The proof of factorization has a long
history. In particular, the factorization of WZW conformal blocks was first proved in the
landmark paper [TUY89]. See the Introduction of [DGT19] for a discussion of the history.

Corollary 16.17. Assume that V is Cy-cofinite and rational. Then the number of equivalence
classes of irreducible V-modules equals the dimension of the space of conformal blocks associated
to any 1-pointed torus T and the vacuum module V.

Proof. This follows immediately from factorization and the proof of Cor. 16.15. O

17 Genus 0 conformal blocks and tensor categories of VOA mod-
ules

17.1

In this section, we still follow Convention 16.2: V-modules mean finitely-admissible
V-modules. For each z, € Conf™ (C), let

%Z. :(P1;217"'7ZN700;C_Z17"'7<_ZN71/<)

where ( is the standard coordiante of C. Choose V-modules W1,..., Wy, W', ; associ-
ated to z1, ..., zn, 0. Write

WOZW1®"'®WN5

namely, N + 1 are not included in the . Note that a linear functional on W, ® W'y, | is
equivalently a linear map W, — W¢ _ ;.

17.2

We give a criterion to decide whether a linear functional on W, @ Wy ; is a conformal
block.

Proposition 17.1. A linear map ) : W, — W?VH belongs to 7y (We ® W'y, 1) if and only if
the following condition holds: For each w, € W,, w)y_, € Wiy, and u €'V, the following formal
Laurent series

(W, Y @ @Y (u, 2 — z)wi ® - Quy))y € C((z— %))
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(foralli =1,...,N)and the series

<Y(u, 2) Wy 41, y(w.)> e C((z™Y)
are expansions at z1, . .., zN+1, % of the same function f € HO(PL, Opi (%24 + *0)).

According to our notation (11.24), f € H(P!, Op1 (xz. + *00)) means simply that f is
a meromorphic function on P! (i.e. a rational function) with possible (finite) poles only at
Ze, 0.

Proof. “If”: Denote the function f in the Proposition by fuw@uy, - Then we can define
an Og\,,-module morphism

Zy(~,w. ®w§\/+1) : /y(C\:B. - ﬁ(C\;B.
u@(()_l(u@)g) = g- fu,w.@w?v+l

where u® g € V®c Oc\,,. Using the same argument as in Example 11.12, one checks that
1Y satisfies the conditions in the complex analytic definition of conformal blocks.

“Only if”: Let v € H(P!, ¥p1(xx0)) be v = U,(¢)'u. Let f =1V (v,we @ why,) by
viewing ) as a linear functional on W, ® W’ ;. One checks that f satisfies the claim in
Prop. 17.1. O

17.3

Example 17.2. Consider the case that N = 1 and 21 = 0. Then Y : W; — W is a con-
formal block iff f1(z2) = (wsa, VY (u, 2)w; ) (Which is in C((2))) and f2 = (Y (u, 2)*w2, Yw: )
(in C((271))) are expansions at 0, of some f € HY(P, Op1 (x0 + x0)) = C[2*!]. This is
equivalent to that Res,—¢ f1 (2)2%dz + Res,—o f2(2)2¥dz = 0, and hence equivalent to that
(we, [Y (u)g, Y]w1) = 0, namely Y € Homy (W1, WS!). We conclude

Homy (W1, W) =~ Tig1.0 .10y (Wi, Wh). (17.1)
O

Example 17.3. Consider the case that N = 0 and W; = V, which is associated to the only
marked point co. In this case, £ := ) belongs to el According to Prop. 17.1, YV is a
conformal block iff for each w’ € W, u € V, (w', Y (u, 2)€) belongs to HO(P!, Op1 (x0)) =
C[z]. Equivalently, Y (u),& = 0 whenever u € V,n € N. In particular, Lo§ = Y (c):£ = 0.
We conclude

TP o011/0) (V) ={veV():Y(u),v=0forallueV,neN}. (17.2)
Note also that by Subsec. 5.7, Y (u),v = 0 for all n € N iff [Y(u, 21),Y (v,22)] = 0in
Cll=1, 2]

It follows that if V ~ V’ (self-dual) and V(0) = C1 (CFT-type), then

‘Z$1;®;1/C) (V) ~ ‘?(;1;00;1/() (V) = C1. (17.3)
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Therefore, by Example 16.11, Endy(V) = Cly. This implies that if V is completely re-
ducible, i.e. a sum of irreducible V-modules, then V must be simple (i.e. an irreducible
V-module). We remark that without assuming completely reducibility, one can also de-
duce that V is simple from self-dualness and CFT-type. See for instance [CKLW18, Prop.
4.6]. O

Now consider the case N = 2 and z3 = 0. Set £ = 21 which is non-zero. In this case,
we write a conformal block Y(w; ® wa) as Y (w1, §)ws.

Proposition 17.4. A linear map Y(-,§) : W; ® Wy — ng is an element of

‘7(131;0,5700;4,&6,1/() (W1 ® Wo ® W4) if and only if for each wy € Wy and u e V

5 (n;) LYY () pyrwr, €)

leN

(17.4)
n n n—
=S (3) 0 Y W31 - 3 (1) 0 Ywn, Y (e
leN leN
Proof. With the help of Prop. 17.1, we can prove the only if part by taking residues as in
Prop. 4.8, and prove the if part using strong residue Thm. 11.14. O
17.4

Assume that V is C>-cofinite and Wy, ..., W, are finitely generated. We assemble X .,
to a family

X = (P! x Conf™(C) - Conf¥(C);¢y,. .., sn, 00501, ... 0N, 1/C) (17.5)

as in Example 13.4. Namely, ¢; sends z, € Conf¥(C) to (z;, z.), o sends z. to (0, z.), 7
sends (z, z.) to z — z;, and 1/( sends (z, z,) to 1/z. Identify

WX(W.) :W.®ﬁcoan((c) VlaZ/l(n.,l/Q

By Example 13.13, over the vector bundle .7;*(W,) one has a (clearly flat) connection V
defined by

Vo, =0 — (Qw, @ L alyy ® @ 1w, Olw,)" (17.6)

Tk

forall1 <k < N.

Thus, if we fix 7, € Conf™ (C), then each element Y(-,7.) € Z(W.)|7. is extended to a
parallel section V(- ze) : we € W4 — Y(w,, zs) € C on any simply-connected open subset
of Conf” (C) containing 7., and furthermore to a multivalued parallel section Y(-, z,) on
Conf™¥(C) (namely, single-valued on the universal cover of Conf" (C)).
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17.5
As a variant of the above family, we can consider the family
PN = (7 : P! x Conf™ (C*) — Conf™ (C*);0,61,...,5n5,90;C, M1, - .., 1N, 1/C)
in Example 13.4. Then similar properties hold for conformal blocks associated to B*.

Definition 17.5. A parallel section Y = Y(wy, {)ws of 95‘1 (We ®@ Wy ® W) multivalued
on £ € C* (and hence single-valued on the universal cover of log{ € C*) is called a type
(W‘X‘}VJ intertwining operator. The space of these intertwining operators is denoted by
A (WYV@VQ) Its dimension is called the fusion rule between W1, Wy, W3.

Note that Wy, W1, W, are associated to the sections 0, ¢ = ¢, o respectively. Also, V
being parallel means that ) satisfies the translation property

afy(wl,g) = y(Lflwlag)' (177)

17.6

We now address a problem overlooked previously: is the vector space W’ independent
of the operator Ly that makes W finitely-admissible?

Let us prove that this is true when L is diagonalizable and each Lg-eigenspace is
finite-dimensional (e.g. when W is semi-simple). Let W = @, .c W(,,) be the Lo-grading
of W. We can define the graded dual WY = P, ¢ W, using the Lo-grading. Then the

independence of W’ on L follows from:

Proposition 17.6. Suppose that W has Lo-grading W = @,,.c W ,,) where each W ,,) is finite-

dimensional. Suppose also that W has an Lo-grading W = @, . W(n) making W finitely-
admissible. Then W' = WVY.

Proof. Consider the linear operators L, L§ defined on W*, namely,
(L' wy = (', Low), (Liw',wy = (W', Low)

for all w € W,w' € W*. Notice the following facts which are stated for Lo, W" and also
hold for Ly, W' in a similar way:

e From W* =[], ¢ W), we see that a vector w’ € W* belongs to WY iff v’ is a finite
sum of eigenvectors of L.

* Any generalized eigenvector w’ € W* of L is an eigenvector of L{. Namely, if (L{ —
MEw' = 0 for some k € N, then (L§ — A)w' = 0. In particular, L} is diagonalizable
on each finite-dimensional L{-invariant subspace of W*.

By Rem. 9.7, Ly and Eo commute on W. So L{ and EB commute on W*. Therefore,
since W(n)* * is L§-invariant, and
hence Lj|yw,)+ is diagonalizable. This proves that any ig-eigenvector is a finite sum of
Li-eigenvectors. Therefore W < WY. A similar argument shows WY < W', O

is the n-eigenspace of Lf on W*, we see that W(n)
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17.7

We now assume for simplicity that W, Wy, W3 are semisimple, and show that our def-
inition of intertwining operators agrees with the usual ones in the literature (for instance
[FHL93]).

In (17.4),setn = 0,u = c,m = 1, we get

[L()a y(wlag)] = éy(L_1WI,§) + y(LOwlag)
=£0¢Y (w1, §) + Y(Lowt, &).

It follows that we have scale covariance (assuming z # 0)

ZoY(wy, &)zl = Y(towy, 2€). (17.8)

Here, and in the rest of this section, we adhere to the following convention, which is
necessary since both 220 and Y(-, ) depends on the arguments of the variables z, .

Convention 17.7. We assume arg(z¢) = argz + argé and arg 2~ ! = —argz. If a € R, we

assume arg z* = a arg z. By a positive variable r > 0, we assume unless otherwise stated
that argr = 0. We assume arg 1 = 0, arge'? = 6 (where § € R).

Set £ = 1. Then (17.8) shows
Y(wr, 2)wz, why = Y (z 0wy, 1)z 0wy, 2M0ws) (17.9)

which must be a (finite) linear combination of (non-necessarily integral) powers of z since
it is so when wy, wy, wj are Lp-homogeneous. Thus we can write

V(wy,z) = Y Y(wy)pz "

where each Y(w1), : Wy — ng satisfies
[Lo, Y(w1)n] = Y(Low1)n — (n + 1)V (w1)n. (17.10)

This shows that if w; is Lo-homogeneous with weight wtw,, then Y(w),, raises the Lo-
weights by wtw; — n — 1. In particular, Y (w1)y, is a linear map

y(wl)n : WQ i Wg.
Thus, by checking the coefficients before each powers of £ in (17.4), we obtain:

Proposition 17.8. Let V be Cy-cofinite and W1, Wy, W5 be semisimple. Then a type (W Wz)
intertwining operator is equivalently a linear map

y : W1 — Hom(Wg,Wg){z}
wy — Y(wi, 2) Zywlnz n—1

neC

satisfying the following conditions
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* Jacobi identity: Foreachu eV, wy € Wi, m,ne Z,and k € C,

Z <77> V(Y (Wnpiwi), 0y

leN

=330 ()Y e = S0 ()Y s @

leN leN

(17.11)

e Translation property: For each wy € Wy, we have [L_1,Y (w1, 2)] = Y(L_1w1, 2).
Note also that by setting n = 0,u = ¢,m = 0in (17.4), we get

(L1, Y(wi, 2)] = Y(L_yw, ). (17.12)

17.8

Assumption 17.9. In the remaning part of this section, we assume V is C-cofinite and
rational.

We shall construct the braided tensor category Rep(V) of semisimple V-modules, due
to Huang and Lepowsky. See [BK, EGNO] for the definition of braided tensor categories.

The objects of Rep(V) are semisimple V-modules, and the morphism space between
two objects Wy, Wy is Homy (W, W3). This makes Rep(V) a semisimple abelian category.

Fix £ to be a maximal set of mutually-inequivalent irreducible V-modules as in the
factorization Thm. 16.16. Recall that £ is finite by Cor. 16.15. For each semisimple W, W,
define the tensor product (more precisely, fusion product)

W *
W Wo = W, ®Z 17.13
1 2 W@s ® <W1W2> ( )

where 7 (W‘X‘;&* is the dual space of the (finite-dimensional) space Z (s, ). If F €
Homy (Wi, W3) and G € Homy (W, Wy), then the transpose of the linear map

coo( W\ o W,
o6 z( g ) = (g
Y(,2) = V(- 2)G

(17.14)

gives a linear map 7 (W\xf%f%)* -7 (W?W%@)*’ whose tensor product with 1w,, added up
over all W, € £, gives the definition of fusion product of morphisms

FRG: W ®Wsy — Ws X W,. (17.15)

17.9

We have an obvious equivalence

W
Homy (W X Wy, W3) ~ Homy (W,, W ®I< s >
v(Wq 2, W3) W@S v( 3) W, W,
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Through the isomorphism

@ HOmV(W57W3)®I< Ws >i>I( Ws )

W,e€ Wi Ws Wi W, (17.16)
TR®Y(,z) = ToY(,2)
we get an isomorphism
Homy (W, X Wy, W3) ~ T Ws (17.17)
V(Wi 2W8) =L w,w, .

which is functorial in the sense that if ' : M; — Wy, G : My — Wy, H : W3 — M;
are morphisms, and if Y € T (W‘\?@%) corresponds to T' € Homy (W, [x] Wa, W3), then H o
Y(F-, z)G corresponds to HT'(F' [x] G) in Homy (M x] Mz, M3).

As a special case, we have

W
H ~7 . 17.1
omy (VX W, W) (V W> (17.18)

By Thm. 16.7 (propagation of conformal blocks) and Subsec. 16.6, we have an isomor-
phism

I<szw) = Endy(W) Y Y(1,2)

This shows that dim Homy (V x] W, W) = 1 of W is irreducible. Therefore, we have a
standard homomorphism (the left unitor)

pr  VEW S W (17.19)
which corresponds to 1y in Endy(W). Clearly, s, corresponds to the vertex operator Yy
in Z (')

pr, is indeed an isomorphism. This is easy to see when W € £. The general case
follows by taking direct sums and applying the functoriality of the isomorphism (17.17).

The right unitor up : WKV = W is defined using the braiding 8Yiy € Z () of the
vertex operator Yy, where 8 is defined in Subsec. 17.12.

17.10
To define the associativity isomorphism
A (W R W2) W3 — Wi & (W2 1 W),

we write

W, ’
Wi B (We I Ws) = D Wi ®Z
| B (W2 1 Ws) @g t® <W1,W2W3>
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W, *
_Pw ®z< ) |
WC—J_EDS : Wi, Dw,ee Wp ®I(W2W3)

Note that in general, for any finite-dimensional vector space J we have an equivalence

Wt ~ Wt
z =T
<W1’Wp>®J <W1’WP®J>
YQw — \I/))®w
where Uyg,, (w1, 2)(w, ® §) (Where w, € W, and ¢ € J) equals Y (w1, 2)w,, - (w, ). So we

have a canonical equivalence

W, \*

W Wo X1 W3) 7z 1z 7.

@mE) = @ @ mei(y ) oz(, ) (17.20)
t P

Similarly, we have a canonical equivalence

W, \* W, \*
(WiRW)xWs ~ B P Wt®z< > ®I< > : (17.21)
Wiel W€ W W W1 Wo

Thus, the associativity map can be defined such that on each component it is 1y, tensor-
ing the transpose of an isomorphism

W W
F: T XKL < P > A < > A ( N > . 17.22
W@s <W1W > WoW4 W@eg W, W3 ® W, W, ( )
Let us define F.
17.11

Choose any 0 < r < p. Recall that by Convention 17.7, argr = argp = 0. Recall that
by the notations in Example 13.4, ‘Brp (PL;0,7, p,00;¢, ¢ —1,¢ — p,1/¢). By Thm. 16.16,
we have an isomorphism

W N
T T Pl S 7% (Wis@Wy@W; W,
F1as w@g <W1W>® (ngvg) T2, (Ws @ W2 @ W1 @ W)

sending each ), ® V3 to the linear functional on W3 ® Wy ® W; ® W} defined by

<w£,ya(w1,p)y5(w2, T)w3> = Z <w£, ya(wl,p)PnyB(wQ,r)w3>. (17.23)

neN

(17.23) corresponds to the sewing as in Subsec. 4.5. Therefore, the RHS of (17.23) con-
verges absolutely on the region 0 < r < p thanks to Thm. 16.12. Now assume without
loss of generalities that all the vectors are Ly-homogeneous. Then by scale covariance
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(17.8) and that Lo — Ly is a scalar on the irreducible W,, the RHS of (17.23) can be written
as p®r® (where a, b € C) times

3 e Valun, VP Vst sy ()

neN P

(Cf. the argument in Subsec. 7.4.) This shows that the absolute convergence of (17.23)
implies the a.l.u. convergence on 0 < r < p.
Similarly, when 0 < p — r < r we have an isomorphism

W ~
7 z ) S T (Wi @Wr@ Wi @ W,
F123: W@E (W Wg) ® <W1W2) ‘B?,R( 3@ W @ Wi @ W})
sending each ), ® Vs to the linear functional defined by
(wi, Yy (Vs (wr, p — r)wa, r)ws )y == Z (wi, Yy (PoYs(wy, p — r)ws, m)ws ) (17.24)
neN

which converges a.l.u. on 0 < p — 7 < r and correspond to the sewing in Subsec. 4.7.
We define (17.22) to be

F = Fibyo Fizs (17.25)

for any r, p satisfying 0 < p —r < r < p. Using Thm. 16.12, one checks easily that
both (17.23) and (17.24) are parallel sections. Therefore F is independent of the particular
choice of 7, p.

17.12

It remains to define the braiding isomorphisms. We define an isomorphism

W3 ~ W3
3:7 — T 17.2
<W1W2> <W2W1> (17.26)
as follows. For each ) € I(W W, ), note that Y(-,1) € «7@1 01,001 (1 1/O(Wg ® W1 ®@ W5).
Lety : [0,1] — Conf?(C) be the path which is the anticlockwise rotation around 0.5 from

(0,1) to (1,0) by 7, namely y(¢) = (0.5—0.5¢™, 0.5+ 0.5¢!). Along this path we parallel-
transport )(-, 1) to an element of ‘7@?1 10.0:.C—1,1/C) (Wg ® W; ® W5). We then define 8Y

such that (w4, BY (ws, 1)wy ) is this element.
Now we can define the braiding

W, \* ~ W, \*
o:WikW, = P W,QZT SWokW, = P W,
Wit WV 47.07)

Wse€ Wse€
0 = @ 1Ws @ Bt
Wse€

where B' is the transpose of B : Z (. ) — Z(y55,)-
One can check that with the unitors, associators, and braiding operators defined
above, Rep(V) is a braided tensor category. Moreover, Huang showed in [Hua08b] that
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Theorem 17.10. Suppose that V is Cy-cofinite, rational, CFT type (i.e. V(1) = C1), and self
dual (i.e. V ~ V). Then Rep(V) is a rigid modular tensor category.

Huang'’s proof relies on the convergence of genus-1 sewing and factorization [Zhu96,
Hua05] and (generalized) Verlinde formula [Hua08a].

17.13

We give an explicit formula of 8) for any ) € I(W‘?@J. First assume z is positive
and z > 1; in particular arg z = 0. Recall the path vy in Subsec. 17.12. Note that Y(-, 1) is
parallel-transported to )(, z) along the rightward path «; () = (0,1 —t + zt) in Conf?(C)
from (0,1) to (0,2), and B) similarly along the rightward path x3(t) = (1 — ¢ + zt,0)
from (1,0) to (z,0). Therefore, J(:, z) is parallel-transported to 8)(-, z) along the path
ot #y * ag from (0, 2) to (2, 0), which is homotopic to y; * y2 where

* y1(t) = (0,€'™2) is from (0, 2) to (0, —2) where the first component is fixed and the
second one is the anticlockwise rotation by 7 around 0 from 1 to —1.

® vo(t) = (tz,tz — z) is the rightward translation from (0, —z) to (z,0).

Thus, along v1, Y(-, 2) is parallel-transported to )(-, e"2). Let g : Wi @ Wy ® W, — C
be the conformal block (w}, Y (w1, ei™z)ws) associated to (P';—1,0,00;¢ + 1,¢,1/¢) and
Wi, Wy, WS, Parallel-transporting ¢ along the y2 gives ¢ = b (w; @ we @ wh) : Wi ®
Wo ® W4 — &/(C), considered as an Hom(W; ® Wy ® W5, C)-valued power series of 7.
Then according to the definition of V, we have

Orbi(w1 @ wa @ wy) = 2y (L_1w1 @ wa @ wh) + 2 (w1 ® L_1wr ® wh).
Let Py (w1 ® wa @ w3) = (L1}, Y (w1, €™ 2)ws). Then g = do, and by (17.12),
o (w1 @ wy @ wh) = z<LletZL1wg, V(wy, ei”z)w2>
=2 (L_jwi @ wa ® wy) + 24 (w1 @ L_jws ® wh).
So by Lemma 3.7, we must have ¢; = ;. Since ¢; is given by 8)(-, z), we obtain
(wh, BY (wa, 2)wr ) = (*Lrwh, Y(wy, ™ 2)ws) (17.28)

when z > 1, and hence for all z € C* and arg z by the uniqueness of analytic continuation.
We write (17.28) for short as

BY(wa, 2)wy = eZL—ly(wl,ei’Tz)wg. (17.29)

Remark 17.11. Consider the vertex operator Y = Yy for V. Using (17.28), one checks
easily that for all v/ € V/, (v/, Y (1,2)1) = (', BY (1, 2)1). Thus, by Prop. 16.6, we see that
forallu,v eV,

WY (u, 2)v) = W, e2E1Y (v, —2)u). (17.30)
Namely,
Yo = BYq. (17.31)

This fact is called skew-symmetry.
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A Appendix: basic sheaf theory

The language of sheaves of modules is inevitable in the theory of conformal blocks
for the following reason. The spaces of conformal blocks are expected to form a vector
bundle (equivalently, locally free sheaves). This result is highly nontrivial. Moreover, we
need to formulate the notion of “forming a vector bundle” in a precise way. To accomplish
this goal, we need to expand the concept of vector bundles to that of sheaves of modules.

The goal of this appendix section is to get familiar with the basic language of sheaves.
The key points are the following: The equivalence of holomorphic vector bundles and
locally free sheaves, the description of dual vector bundles in terms of &'x-module mor-
phisms, the fibers of &x-modules and their relationship to the fibers of vector bundles.

A.1 (Pre)sheaves and stalks

By definition, a presheaf of (complex) vector spaces .# associated to a topological
space X consists of the following data: for each open U < X there is a vector space
Z(U), and for each open V' c U, there is a linear map .% (U) — .#(V), s — s|y called the
restriction map such that s|yy = s, and (s|v)|w = s|w forall s e #(U) if W < V is open.
Elements in .7 (U) are called sections.

A presheaf .7 is called a sheaf if it satisfies:

* (Locality) If U ¢ X is a union U = [J,cq Ua of open subsets, and if s € 7 (U)
satisfies that s|y, = 0 for each a € 2, then s = 0.

* (Gluing) If U < X is aunion U = |,y Un of open subsets, and if for each « there
is an element s,, € .7 (U, ) such that s.|v,~v,; = $plu.nu, for all a, 8 € 2, then there
exists s € .# (U) whose restriction to each U, is s,.

We also write
HY(X,Z) = Z(X), (A1)

regarding the space of global sections of .7 as the 0-th cohomology group of .#.

If Y is an open subset of X, then the set of all .#(U) (where U c Y) form naturally a
presheaf, which we denote by .#y or .Z|y.

Let .# be a presheaf. For each z € X, we let .#,, be the set of all sections s € .# defined
on a neighborhood of =, mod the equivalence relation that two elements s,t of .7, are
regarded as equal iff s equals ¢ on a possibly smaller neighborhood of z inside the open
sets on which s, t are defined. ., is called the stalk of .# at x, and elements in .%, are
called germs. For each s € .# defined near z, the corresponding germ at x is denoted by
Sg.

Remark A.1. It is easy to see that the presheaf .# satisfies locality iff the following holds:
for every open U < X and section s € #(U), s = 0iff s, = 0forallz € U.
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A.2 Sheafification

We are not interested in presheaves that are not sheaves. And each presheaf . can
be made a sheaf .7 through the following procedure called sheafification:

For each open U < X, let #;(U) be the set of all s := (5q)acu Where (Uy)aeq( is an
open cover of U, and sq, » = Sas,z forall oy, a0 € Aand z € Uy, N Uy,. F(U) is F#1(U)
mod the following relation: let (V3)sen be another open cover. Then s := (54)ae2 and
t := (tg)gewn are regarded equal iff s, , = tg, forall a € A, § € B, and = € U, n V3. The
linear combinations of s and ¢ can be defined easily by replacing (Uy)aea and (V) e by
a common finer open cover, e.g. (Uy N V3)aeat ges-

Note that the stalk (%)), can be naturally identified with that of the sheafification .%,..

A.3 (Pre)sheaves of modules and morphisms

We now let X be a complex manifold. Then all &(U) (where U < X is open) form the
sheaf 0x of holomorphic functions on X, called the structure sheaf of X.

Example A.2. Let U < C™ be open. Then the stalk 019 = Ocm g can be identified with
the C-subalgebra of elements of C[[z1,..., z,]] converging absolutely on an open ball
centered at 0.

A (pre)sheaf of Ox-modules .# is a (pre)sheaf such that each .#(U) is an 0(U)-
module, and that for each open V' < U, the restriction map s € #(U) — s|y € F(V)
intertwines the actions of 0(U), i.e., (fs)ly = flv - s|y forall f € O(U). A sheaf of
Ox-modules is simply called an &'x-module.

A morphism of (resp. presheaves of) Ox-modules ¢ : & — F# gives each open
U < X an O0(U)-module morphism ¢y : &(U) — % (U) that is compatible with the
restriction to open subsets: if V < U is open and s € &(U) then ¢y (s)|v = ¢v(s|v).

Convention A.3. We abbreviate each ¢y (s) to ¢(s). So ¢(s|v) = ¢(s)|v.

Remark A.4. Note that the stalk Ox , of Ox at = is a C-algebra. A morphism ¢ : & — .
naturally gives an 0x ;-module morphism ¢, : & — Z,.

Also, there is a natural Ox-module morphism &° — .#° where &° and .#° are the
sheafifications of & and .%#. The corresponding stalk morphism ¢, : &; — % agrees
with ¢, : & — F,.

Example A.5. Any (holomorphic) vector bundle .7 ? over X is an &x-module.

Example A.6. If W is a finite dimensional vector space, let W ®c Ox be the presheaf
whose space of sections on each open U < X is W ®c O(U). Then W ®¢ Ox is naturally a
sheaf, and hence an &x-module. It is regarded as the trivial vector bundle with fiber W.
We often suppress the subscript Cin W ®¢ Ox.

When W is infinite-dimensional, the above defined presheaf is not a sheaf since the
gluing property does not hold when considering an open subset U < X that has infinitely
many connected components. We let W ®c O'x denote the sheafification of this presheaf.

Unless otherwise stated, all vector bundles are holomorphic with finite ranks.
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Then (W®cOx)(U) equals WRO'(U) if U is connected, or more generally, iff U has finitely
many connected components. Thus, we have a natural isomorphism of &x ,-modules

(W®ﬁX)x =~ W®ﬁX,ac-

Note that when U is connected, elements of W ® &'(U) can be viewed as holomorphic
functions from U to a finite-dimensional subspace of W. We shall call such sections W'-
valued holomorphic functions. O]

Convention A.7. The space of 0x-module morphisms ¢ : & — .# form a vector space,
which is clearly an &'(X)-module such that f € &(X) times ¢is f, sending each s € &(U)
(where U c X is open) to f| - ¢(s). We denote this &'(X)-module by Homg, (&,.%).

Example A.8. Let V, W be finite dimensional vector spaces. A morphism
p:VR®0Ox - W®RO0x

is equivalently a Hom(V, W)-valued holomorphic function ¢ on X. Indeed, choose basis
{e;} of V and {f;} of W*. Identify each vector of W as a constant section of W ® 0(X).
Then ¢(e;) € W ® 0(X), and ¢ is a matrix-valued holomorphic function whose (7, 7)-
component is the function z — {f;, p(e;)(x)).

To summarize, we have a canonical isomorphism of &'(X)-modules

Homg, (V ® Ox,W ® Ox) ~ Home (V, W) ® O(X).

A.4 Injectivity, surjectivity, isomorphisms

An Ox-module morphism ¢ : & — .# is called injective resp. surjective if for each
x € X the corresponding stalk morphism ¢, : &, — %, is injective resp. surjective.

Exercise A.9. Show that ¢ is injective iff ¢ : &(U) — .#(U) is injective for all open U < X.
Show that ¢ is surjective iff for each x € X and each section ¢ € .# on a neighborhood U
of X, by shrinking U to a smaller neighborhood V' 5 z, we can find s € &(V) such that
©(s) = t when restricted to V.

(Warning: surjectivity does not mean that each x is contained in a neighborhood U
such that ¢ : &(U) — #(U) is surjective. Thus, surjectivity of sheaves is defined both
locally and sectionwisely!)

Remark A.10. Let &,.7 be presheaves of 0x-modules. Suppose that each &(U) is an
O (U)-submodule of . (U), and the inclusion maps &' (U) «— .# (U) are compatible with
the restriction maps of sheaves. Then there is a natural morphism ¢ : & — .# such that ¢y
is the inclusion & (U) — % (U). We say that & is a sub-presheaf of 0x-modules of .%. If
both &,.% are sheaves, we say & is an Ox-submodule of .%.

Now suppose .# is an Ox-modules and & is a sub-presheaf of &'x-modules of 7.
Then the sheafification of & can be viewed as an Ox-submodule of .#. Its spaces of
sections are all s € .# (U) such that s, € &, for every z € U. O
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We say that an 0'x-module morphism ¢ : & — .# is an isomorphism of &'x-modules
if it is bijective (i.e. injective+surjective).

Exercise A.11. Show that ¢ is an isomorphism if and only if for each open subset U — X,
oy : E(U) — F(U) is an isomorphism of &'(U)-modules. (Indeed, the only nontrivial
part is to show that ¢ being an isomorphism implies the surjectivity of . Surprisingly,
to prove this part we need the injectivity!)

A.5 Kernals, cokernels, images

Let ¢ : & — .# be an Ox-module morphism. The kernel Ker(y) is the presheaf whose
space of sections on any open subset U is the kernel of ¢ : &£(U) — .#. It is clear that
Ker(yp) is a sheaf and is an &x-module. Clearly Ker(y), is the kernel of the stalk map
0 E — Fp.

The image ¢(&) = Im(y) is the sheafification of the presheaf whose space of sections
on each U is p(&(U)).

The cokeral Coker(y) is the sheafification of the presheaf whose space of sections on
each U is #(U)/p(&(U)). Equivalently, Coker(yp) is the sheafification of the presheaf
whose space of sections on each U is .% (U)/¢(&)(U). Thus, we also say that Coker(y) is
the quotient of the sheaves .# and (&), and write

F (&) = coker(p). (A.2)
Exercise A.12. Show that we have natural equivalences

P(&)z ~ (&), (A.3)
Coker(¢), ~ Fp/o(E). (A4)

A.6 Locally free sheaves

Let I be an index set. Let C! be the direct sum of |I| copies of C indexed by elements
of I. Then C! has basis {e;};c; where e; is the vector whose only non-zero component is
the i-th one, which is 1.

Let & be an Ox-module. A collection of sections (s;)icr < &(X) is said to generate
(resp. generate freely) & if the natural Ox-module v : C! ® Ox — & sending each e;
(regarded as a constant section e; ® 1) to s; is surjective (resp. bijective).

Equivalently, (s;)icr generates (resp. generates freely) & iff for each x € X, each t € &,
can be written as a (resp. unique) O'x ,-linear combination of the germs (s; »)ier-

If U < X is open, we say (s;)ier generates (resp. freely) & if (s;|t)ier does.

We say that & is locally free if each x € X is contained in a neighborhood U such that
the following equivalent conditions hold:

* &y is generated freely by finitely many sections s1,...,s, € &(U). (s, play the role
of basis of a vector space.)

* &y isisomorphic to C" ® Oy for some n € N.
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Remark A.13. It is an important fact that locally free &'x-modules are the same as holo-
morphic vector bundles. Indeed, the sections of vector bundles clearly form a locally
free module. Conversely, suppose & is locally free, then we can get a vector bundle
whose transition functions are ¥y o ™! : W ® 0y — W ® Oy (considered as EndW -
valued holomorphic functions) where ¢, : & = W ® Oy are trivializations. Equiva-
lently, if s1,...,s, and ¢y, ..., %, both generate freely &y, then there is a unique invertible
My, xn(C)-valued holomorphic function A such that ¢;(z) = > ; A; j(x)s;(z). Then A gives
a transition function.

A.7 Sheaves of morphisms, dual modules

If &,.% are Ox-modules, we have a presheaf ¢ whose space of sections on each open
U c X is Homg, (&y, Zu). There is an obvious restriction map from Homg,, (677, ) to
Homg, (&, #v) if V < U is open. ¥ is clearly a presheaf of &'x-modules. It is a routine
check that ¢ is a sheaf. We denote this sheaf of &'x-modules by

o g (&, F).

Exercise A.14. Find a natural equivalence .# —> #om g, (Ox, F).

Example A.15. In the setting of Example A.8, we have a natural &'x-module isomorphism
Home,(VQOx,W® Ox)~Home(V,W)® Ox. (A.5)
We define
EY = Home (&, 0x),

called the dual Ox-module of &. Then by (A.5), if & is locally free (i.e., a vector bundle),
then so is &'V, and they have the same rank. We regard & as the dual vector bundle of &

Exercise A.16. Let & be an Ox-submodule of .%. Show that (.#/&)" is the sheaf whose
sections over any open U < X are the O-module morphisms .#;; — Oy vanishing on
the stalks of &.

Convention A.17. If U,V < X are open, ¢ € Homg,, (v, Oy ) and s € &(U), we set

{p,8) = @(slunv) (€U NV)).

Remark A.18. If & is a vector bundle, then the transition functions of &V are the inverses
of those of &. To see this, choose si,...,s, € &(U) generating freely &;. Then by & ~
C" ® Oy, we can easily find 51,...,5, € &Y (U) generating freely &/ such that (s;, s;) is
the constant section d; ;. 51, ..., 5, are regarded as the dual basis of s1, ..., sj.

Now, if t1,...,t, € &(U) also generates freely &, then by Rem. A.13, the matrix
valued holomorphic function A € M, ® O(U) such thatt; = ), ; A; js; is a transition
function of &. Let At € M, x, ® O(U) be the function sending = € U to A(z)~!. Then

~

t; = Zj(A_l)i,j\s/j- L]
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A.8 Fibers

One can recover the fibers from a locally free sheaf in the following way. Let us con-
sider a general &x-module &. For each z € X, let my , (or simply m,) be the ideal of Ox ,
consisting of all s € Ox , whose values at z vanish. Then m,&, is an Ox ,-submodule of
&, and so is the fiber

&

(A.6)
where the Spanc is suppressed in the notation m,&,. The equivalence class of s € & in
&|x is denoted by s(x), called the value of s on the fiber &|x.

If p: & — F is an Ox-module morphism and z € X, then ¢ : &, — .%, descends to a
linear map

p: 8l — Flx (A7)
since p(M; &) = myp(&y) € My Fy.

Example A.19. Let U > 0 be an open subset of C™. Then my is the set of all series
Ding.mmeN O, 21+ 2 converging absolutely near 0 such that ag,. o = 0. Equiva-
lently,

m(cm70 = zZ1 ﬁ(Cmp + -4+ Zmﬁ(c'm,o.

Exercise A.20. Let W be a vector space, and let & = W ® O where U < C™. Letx € U.
Show that the evaluation map

(W@6Ou)e =W, w®fr— fla)w. (A8)

descends to an isomorphism of vector spaces (W ® Ox )|z ~ W.

A.9 A criterion on local freeness

This subsection is needed only in the Sec. 15.

Let X be a complex manifold and & an &x-module. We say that & is of finite type
(also called finitely generated) if each x € X is contained in a neighborhood U < X such
that there exist finitely many sections s1, ..., s, € &(U) generating &7;. Equivalently, each
x is contained in a neighborhood U such that there is a surjective &y;-module morphism
C"® oy — &y.

Warning: knowing that & (U) is a finitely generated ¢'(U)-module is not enough to
show that &7 is generated by finitely many elements of & (U).

If v € Uand sy,...,s, € &U) generate &y, then they clearly generate &, and hence
51(z),. .., sn(z) span the fiber &|x. In particular, &|z is finite-dimensional. Conversely,
we have:

Proposition A.21 (Nakayama’s lemma). Suppose & is of finite type. Choose x € X and a
neighborhood U 5 x. Let s1,. .., s, € &(U) such that sy(z),. .., sn(x) span the fiber &|x. Then
there exists a neighborhood V' < U of x such that si|v, ..., sy|v generate &|y .
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Proof. By shrinking U, we may extend the list s1,...,s, to s1,...,sy € &(U) (Where N >
n) such that they generate &;. If N = n then there is nothing to prove.

Suppose N > n. Since s1(z), ..., sp(z) span &|x = &;/m, &, every element of &, and
in particular sy, can be written as

SN =a181+ - +aps, +0 €&,
where a1,...,a, € Cand 0 € m,;&;. Since s1,...,sy generate the Ox ,-module &, we
have o = f1s1 + --- + fnsy in &, where f1,..., fny € mg. So

SN =9g151 + -+ gNSN

in &, where g1,...,9n € Ox 5 and gp11(x) = -+ = gy(z) = 0. Since gy (z) = 0,1 — gn is
invertible in Ox ;. So

N-1
sn=(1—gn)"" ). gisi
i=1

in &,. So, after shrinking U to a smaller neighborhood of x on which g1, ..., gn, (1 —gn) "}

are holomorphic, the above equation holds in & (U). This shows that sy is an &'(U)-linear
combination of s1,...,sy_1. S0 51, ..., SNn—1 generate &77. By repeating this argument, we
see that sq,. .., s, generated & for a smaller U. O

Theorem A.22. Assume that & is of finite type. Then the rank function
r: X — N, x v r(r) =dimé&|x (A.9)

is upper semicontinuous. (So r(x) = r(y) for all y in a neighborhood of x.) Moreover, if the rank
function is locally constant, then & is locally free.

Proof. Let n = r(x). Choose s1,...,s, € &(U) (where U 3 z) such that si(z),...,s,(z)
form a basis of &|x. Then by Nakayama’s Lemma, after shrinking U, sy, ..., s, generate
&|v, and hence span &'|y for all y € U. This proves the upper semicontinuity.

Now suppose r is constantly n on U. Then, as s1(y),...,sn(y) span &y, and since
dim&ly = n, s1(y), ..., sn(y) are linearly independent. Let us show that sy, ..., s, gener-
ate freely &7 by showing that they are y-linearly independent. Choose any open V < U
and fi,..., fn € O(V)suchthat fis;+---+ fps, = 0. Thenforeachy e V, > | f(y)sn(y)
equals 0in &y. So fi(y) = --- = fu(y) = 0 by the linear independence of s1(y), ..., sn(y).
Sofi=--=f,=0. O
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Cy-cofinite VOAs, 146

N-pointed compact Riemann surfaces, 107

W-valued holomorphic functions, 172

Aliftrof y e H(B,©5), 130

Absolute and locally uniform (a.l.u.) con-
vergence, 69

Dong’s Lemma, 86

Families of N-pointed compact Riemann
surfaces, 124

Finitely generated weak V-modules, 146

Formal convergence, 71

Generatig subsets of the VOA V, 50

Generating sets of homogeneous fields, 56

Generating subsets of W, 146

Goddard uniqueness, 87

Holomorphic families of transformations,
100

Irreducible VOA modules, 89

Jacobi identity, algebraic version, 47, 88

Jacobi identity, complex-analytic version,
79

Mutually local fields, 80

Projective charts/structures, 144

Rational VOAs, 90

Self local fields, 80

Self-dual VOAs, 98

Semisimple VOA modules, 153

Stein manifolds , 131

The action of H%(C, ¢ ® wc(xz.)) on W,,
116

Univalent functions, 108

Weak V-modules and (finitely) admissible
V-modules, 88

1, the vacuum section, 110

1, the vacuum vector, 10

A, g and the standard thin annulus A4, 1,9
(ApB)(2),77

Cy, = m1(b), the fiber of C at b, 124
C, %, the complex conjugate of C and ¥, 10
Cy = 7 1(V), 136

Diff * (S!), 16

& (*x,.), 114
g(k‘Sx), @ﬁ(*Sx), 130
Elx = &g, s(x), 175

Fy, 8z, stalks agd germs., 170
f*n* ... and f,7,..., where f*(7) = f(x)
and f(z) = f(x)., 10

G, G, 99
G.94,,98

HY(X,Z)=7(X),170
Homg, (£, .7),172

Ix(W.), Zx,(W,), 137,138, 140

L,, the Lie derivative, 122, 143
Lo, 88

My, =mg, 175
P,, 31,92

S¢, the standard sewing, 152

S ¢, the normalized sewing, 152
Sx = UL 4 (B), 124

Sx, = {s1(b),...,sn(b)}, 135

Tx,,Tx: The interaction map/correlation
function, 8, 26

T(W.), TF(W,), 116,119, 137, 140

U(e),U(n),U(n.), 100,117, 118, 140
U,(n), 110,135
Ub = Cb () U, 130

V,o(m:), Vo(i), 117,119, 136, 143

Y&, Ve, 110, 111

V', W', the graded dual spaces, 31, 92
Vel Wl the algebraic completions, 31, 92
wtv, wiw, 28, 88

V", Vx, 135

W, the contragredient V-module of W, 94
W<s",100
Wsk, 147
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W (W;), #x(W,), 117,118, 137, 140

we = w1 ® -+ @ wy as an element W, Q¢
o), 137

W{z}, 153

X, 124
Xy, 140

Y (u)n, 28

©, the CPT operator, 11

O¢c, 120

Oc/p, 135

(0 H®? — C, the correlation function
TA1,1 for Al,l/ 16

>, 152

we, 114

wc/B, 135

o(a1), o(n|p), 103, 109, 134

9,93

1, propagation of conformal blocs, 154
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