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0 Preface

0.1 Notations

Note: Topics marked with ‹‹ are technical and/or their methods are rarely
used in later studies. Topics marked with ‹ are interesting, but not necessarily
technical or difficult. They are not essential for understanding the rest of the
notes. You can skim or skip the starred topics on first reading. When a chap-
ter/section/subsection is starred, it means that all of the material in that chap-
ter/section/subsection is starred.

We use frequently the abbreviations:

iff=if and only if
LHS=left hand side RHS=reft hand side

D=there exists @=for all
i.e.=id est=that is=namely e.g.=for example

cf.=compare/check/see/you are referred to
resp.=respectively WLOG=without loss of generality

If P,Q are properties, then

P ^Q “ P and Q P _Q “ P or Q ␣P “ Not P

When we write A :“ B or A
def
ùùù B, we mean that A is defined by the expression

B. When we writeA ” B, we mean thatA areB are different symbols of the same
object.

If F is any field (e.g. Q,R,C), we let Fˆ “ Fzt0u. If α is a complex number and
n P N, we define the binomial coefficient

ˆ

α

n

˙

“

$

&

%

α ¨ pα ´ 1q ¨ ¨ ¨ pα ´ n` 1q

n!
if n ě 1

1 if n “ 0
(0.1)

where n! “ npn´ 1qpn´ 2q ¨ ¨ ¨ 2 ¨ 1 and 0! “ 1. The bold letter i means

i “
?
´1

If z “ a` bi where a, b P R, we let

Repzq “ a Impzq “ b

If x, y are two elements, we let

δx,y “

"

1 if x “ y
0 if x ‰ y

(0.2)
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When studying manifolds, we also write δx,y as δyx.
We let R “ r´8,`8s, Rě0 “ r0,`8s, and Rě0 “ r0,`8q. Additions and

multiplications in R and Rě0 are described in Def. 1.36.
If f, g : X Ñ Y where X is a set and Y is a preordered set, we write

f ď g

whenever fpxq ď gpxq for all x P X . If Y is a totally ordered set where a ă b in Y
means a ď b and a ‰ b, we write

f ă g

whenever fpxq ă gpxq for all x P X .
If X is a topological space, then TX denotes the topology of X , i.e., the set of

open subsets of X .
If f : X Ñ V where V is a normed vector space, |f | : X Ñ Rě0 denotes its

absolute value function, i.e., the one sending each x P X to }fpxq}.
If A is a precompact subset of B (cf. Def. 15.21), we write

A Ť B

9



1 Basic set theory and numbers

In this chapter, we discuss informally some of the basic notions in set theory
and basic properties about numbers. A more thorough treatment can be found in
[Mun, Ch. 1] (for set theory) and [Rud-P, Ch. 1] (for numbers).

1.1 Basic operations and axioms

Intuitively, a set denotes a collection of elements. For instance:

Z “ tall integersu N “ Zě0 “ tn P Z : n ě 0u Z` “ tn P Z : n ą 0u

have infinitely many elements. (In this course, we will not be concerned with the
rigorous construction of natural numbers and integers from Peano axioms.) We
also let

Q “ tall rational numbersu R “ tall real numbersu

if we that rational and real numbers exist and satisfy the properties we are familiar
with in high school mathematics. (We will construct Q and R rigorously, by the
way.)

Set theory is the foundation of modern mathematics. It consists of several
Axioms telling us what we can do about the sets. For example, the following way
of describing sets

tx : x satisfies property...u (1.1)

is illegal, since it gives Russell’s paradox: Consider

S “ tA : A is a set and A R Au (1.2)

If S were a set, then S P S ñ S R S and S R S ñ S P S. This is something every
mathematician doesn’t want to happen.

Instead, the following way of defining sets is legitimate:

tx P X : x satisfies property . . . u (1.3)

where X is a given set. For instance, we can define the difference of two sets:

AzB “ A´B “ tx P A : x R Bu

So let us figure out the legal way of defining unions and intersections of sets.
The crucial point is that we assume the following axiom:

Axiom. If A is a set of sets, then there exists a set X such that A Ă X for all
A P A .

10



Thus, if A is a set of sets, let X satisfy A Ă X for all A P A , then we can define
the union and the intersection

ď

APA

A “ tx P X : there exists A P A such that x P Au (1.4a)

č

APA

A “ tx P X : for all A P A we have x P Au (1.4b)

It is clear that this definition does not rely on the particular choice of X .

Remark 1.1. In many textbooks, it is not uncommon that sets are defined as in
(1.1). You should interpret such definition as (1.3), where the set X is omitted
because it is clear from the context. For instance, if the context is clear, the set
tx P R : x ě 0u could be simply written as tx : x ě 0u or even tx ě 0u. By the
same token, the phrase “P X” in (1.4) could be omitted. So we can also write

AYB “ tx : x P A or x P Bu AXB “ tx : x P A and x P Bu

which are special cases of (1.4).

Remark 1.2. In the same spirit, when discussing subsets of a given “large” set X ,
and if X is clear from the context, we shall write XzA (where A Ă X) as Ac and
call it the complement of A.

Example 1.3. We have
ď

xPp1,`8q

r0, xq “ r0,`8q
č

nPZ`

p0, 1` 1{nq “ p0, 1s
ď

nPN

p0, 1´ 1{ns “ p0, 1q

The readers may notice that these examples are not exactly in the form (1.4). They
are actually unions and intersections of indexed families of sets. (See Def. 1.10.)
We need some preparation before discussing this notion.

Axiom. If A1, . . . , An are sets, their Cartesian product exists:

A1 ˆ ¨ ¨ ¨ ˆ An “ tpa1, . . . , anq : ai P Ai for all 1 ď i ď nu

where two elements pa1, . . . , anq and pb1, . . . , bnq of the Cartesian product are re-
garded equal iff a1 “ b1, . . . , an “ bn. We also write

pa1, . . . , anq “ a1 ˆ ¨ ¨ ¨ ˆ an

especially when a, b are real numbers and pa, bq can mean an open interval. We
understand A1 ˆ ¨ ¨ ¨ ˆ An asH if some Ai isH.

If A1 “ ¨ ¨ ¨ “ An “ A, we write the Cartesian product as An.

11



Example 1.4. Assume that the set of real numbers R exists. Then the set of com-
plex numbers C is defined to be R2 “ R ˆ R as a set. We write pa, bq P C as a ` bi
where a, b P R. Define

pa` biq ` pc` diq “ pa` cq ` pb` dqi

pa` biq ¨ pc` diq “ pac´ bdq ` pad` bcqi

Define the zero element 0 of C to be 0 ` 0i. More generally, we consider R as a
subset of C by viewing a P R as a ` 0i P C. This defines the usual arithmetic of
complex numbers.

If z “ a` bi, we define its absolute value |z| “
?
a2 ` b2. Then z “ 0 iff |z| “ 0.

We define the (complex) conjugate of z to be z “ a´ bi. Then |z|2 “ zz.
If z ‰ 0, then there clearly exists a unique z´1 P C such that zz´1 “ z´1z “ 1:

z´1 “ |z|´2 ¨ z. Thus, using the language of modern algebra, C is a field.1

The axiom of Cartesian product allows us to define relations and functions:

Definition 1.5. If A,B are sets, a subset R of AˆB is called a relation. For pa, bq P
A ˆ B, we write aRb iff px, yq P R. We understand “aRb” as “a is related to b
through the relation R”.

Definition 1.6. A relation f of A,B is called a function or a map (or a mapping),
if for every a P A there is a unique b P B such that afb. In this case, we write
b “ fpaq.

When we write f : AÑ B, we always mean that A,B are sets and f is a func-
tion from A to B. A and B are called respectively the domain and the codomain
of f . (Sometimes people also use the words “source” and “target” to denote A
and B.)

If E Ă A and F Ă B, we define the image under f of E and the preimage
under f of F to be

fpEq “ tb P B : Da P E such that b “ fpaqu

f´1
pF q “ ta P A : fpaq P F u.

fpAq is simply called the image of f , or the range of f . If b P B, f´1ptbuq is often
abbreviated to f´1pbq. The function

f |E : E Ñ B x ÞÑ fpxq

is called the restriction of f to E.
1See Rem. 6.7 or [Rud-P, Def. 1.12] for the definition of fields. Rather than memorizing the full

definition of fields, it is more important to keep in mind some typical (counter)examples: Q,R,C
are fields. Z is not a field, because not every non-zero element of Z has an inverse. The set of
quaternions ta`bi`cj`dk : a, b, c, d P Ru is not a field because it is not commutative (ij “ ´ji “ k).
The set of rational functions P pxq{Qpxq, where P,Q are polynomials with coefficients in R and
Q ‰ 0, is a field.
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The intuition behind the definition of functions is clear: we understand func-
tions as the same as their graphs. So a subset f of the “coordinate plane” AˆB is
the graph of a function iff it “intersects every vertical line precisely once”.

Remark 1.7. According to our definition, H (as a subset of H ˆ B) is the only
function from H to B. (A false assumption implies any statement.) If A ‰ H,
there are no functions AÑH.

Definition 1.8. A function x : Z` Ñ A is called a sequence in A. We write xpnq as
xn, and write this sequence as pxnqnPZ`

(or simply pxnqn or pxnq).

Many people write such a sequence as txnunPZ`
. We do not use this notation,

since it can be confused with txn : n P Z`u (the range of the function x).

Axiom. If X is a set, then the power set 2X exists, where

2X “ tSubsets of Xu

Example 1.9. The set 2t1,2,3u has 8 elements: H, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u,
t1, 2, 3u. Surprisingly, 8 “ 23. As we shall see in Exp. 1.54 and Cor. 1.57, this
relationship holds more generally, which explains the terminology 2X .

Now we are ready to define indexed families of sets.

Definition 1.10. An indexed family of sets pSiqiPI is defined to be a function S :
I Ñ 2X for some sets I,X . We write Spiq as Si. (So Si is a subset of X .) I is called
the index set. Define

ď

iPI

Si “
ď

TPSpIq

T
č

iPI

Si “
č

TPSpIq

T

Note that SpIq is the image of the function S.

Example 1.11. In the union
Ť

xPp1,`8q
r0, xq, the index set is I “ p1,`8q, and X can

be the set of real numbers R. Then S : I Ñ 2X is defined to be Si “ Spiq “ r0, iq.

Exercise 1.12. Let f : A Ñ B be a function. We say that f is injective if for all
a1, a2 P A satisfying a1 ‰ a2 we have fpa1q ‰ fpa2q. We say that f is surjective if
for each b P B we have f´1pbq ‰ H. f is called bijective if it is both surjective and
bijective. Define the identity maps idA : A Ñ A, a ÞÑ a and idB in a similar way.
Prove that

f is injectiveðñ there is g : B Ñ A such that g ˝ f “ idA (1.5a)
f is surjectiveðñ there is g : B Ñ A such that f ˝ g “ idB (1.5b)

f is bijectiveðñ there is g : B Ñ A such that g ˝ f “ idA and f ˝ g “ idB (1.5c)

Show that the g in (1.5a) (resp. (1.5b), (1.5c)) is surjective (resp. injective, bijective).

13



The equivalence (1.5b) is subtler, since its proof requires Axiom of Choice.

Axiom. Let pSiqiPI be an indexed family of sets. The Axiom of Choice asserts that
if Si ‰ H for all i P I , then there exists a function (the choice function)

f : I Ñ
ď

iPI

Si

such that fpiq P Si for each i P I .

Intuitively, the axiom of choice says that for each i P I we can choose an ele-
ment fpiq of Si. And such choice gives a function f .

Example 1.13. Let f : A Ñ B be surjective. Then each member of the family
pf´1pbqqbPB is nonempty. Thus, by axiom of choice, there is a choice function g
defined on the index set B such that gpbq P f´1pbq for each b. Clearly f ˝ g “ idB.

Remark 1.14. Suppose that each member Si of the family pSiqiPI has exactly one el-
ement. Then the existence of a choice function does not require Axiom of Choice:
Let X “

Ť

iPI Si and define relation

f “ tpi, xq P I ˆX : x P Siu

Then one checks easily that this relation between I and X is a function, and that
it is the (necessarily unique) choice function of pSiqiPI .

According to the above remark, one does not need Axiom of Choice to prove
(1.5a) and (1.5c). Can you see why?

1.2 Partial and total orders, equivalence relations

Definition 1.15. Let A be a set. A partial order (or simply an order) ď on A is a
relation on Aˆ A satisfying for all a, b, c P A that:

• (Reflexivity) a ď a.

• (Antisymmetry) If a ď b and b ď a then a “ b.

• (Transitivity) If a ď b and b ď c then a ď c.

We write b ě a iff a ď b. Write a ą b iff a ě b and a ‰ b. Write a ă b iff b ą a. So ě
is also an order on A. The pair pA,ďq is called a partially ordered set, or simply a
poset. A partial order ď on A is called a total order, if for every a, b P A we have
either a ď b or b ď a.

Example 1.16. The following are examples of orders.
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• Assume that R exists. Then R has the canonical total order, which restricts
to the total order of Z. This is the total order that everyone is familiar with.

• Let X be a set. Then p2X ,Ăq is a poset.

• R2 is a poset, if we define pa, bq ď pc, dq to be a ď c and b ď d.

Definition 1.17. A relation„ on a set A is called an equivalence relation, if for all
a, b, c P A we have

• (Reflexivity) a „ a.

• (Symmetry) a „ b iff b „ a.

• (Transitivity) If a „ b and b „ c then a „ c.

Later, we will use the notions of partial orders and equivalence relation not
just for a set, but for a collection of objects “larger” than a set. See Sec. 1.4.

Definition 1.18. Let A be a set, together with an equivalence relation „. Define a
new set

A{ „ “ tras : a P Au

where the notion ras can be understood in the following two equivalent ways (we
leave it to the readers to check the equivalence):

(1) ras is a new symbol. We understand ras and rbs as equal iff a „ b.

(2) ras “ tx P A : x „ au

We call ras the equivalence class (or the residue class) of a, and call A{ „ the
quotient set of A under „. The surjective map π : a P A ÞÑ ras P A{ „ is called the
quotient map.

Exercise 1.19. Prove that every surjective map is equivalent to a quotient map.
More precisely, prove that for every surjection f : AÑ B, there is an equivalence
relation„ onA and a bijective map Φ : A{ „ Ñ B such that the following diagram
commutes (i.e. f “ Φ ˝ π):

A

A{ „ B

fπ

Φ

(1.6)

This is the first time we see commutative diagrams. Commutative diagrams
are very useful for indicating that certain maps between sets are “equivalent”
or are satisfying some more general relations. For example, (1.6) shows that the
maps f and π are equivalent, and that this equivalence is implemented by the
bijection Φ. The formal definition of commutative diagrams is the following:
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Definition 1.20. A diagram (i.e. some sets denoted by symbols, and some maps
denoted by arrows) is called a commutative diagram, if all directed paths in the
diagram with the same start and endpoints lead to the same result.

Here is an example of commutative diagram in linear algebra. This example
assumes some familiarity with the basic properties of vector spaces and linear
maps.2

Example 1.21. Let V,W be vector spaces over a field F with finite dimensionsm,n
respectively. Let e1, . . . , em be a basis of V , and let ε1, . . . , εn be a basis of W . We
know that there are unique linear isomorphisms Φ : Fm »

ÝÑ V and Ψ : Fn »
ÝÑ W

such that

Φpa1, . . . , amq “ a1e1 ` ¨ ¨ ¨ ` amem Ψpb1, . . . , bnq “ b1ε1 ` ¨ ¨ ¨ ` bnεn

Let T : V Ñ W be a linear map, i.e., a map satisfying T paξ ` bηq “ aTξ ` bTη
for all a, b P F, ξ, η P V . Then there is a unique n ˆm matrix A P Fnˆm (viewed as
a linear map Fm Ñ Fn defined by matrix multiplication) such that the following
diagram commutes:

Fm V

Fn W

Φ
»

A T

Ψ
»

(1.7)

namely, TΦ “ ΨA. This commutative diagram tells us that T is equivalent to its
matrix representation A under the bases e‚, ε‹, and that this equivalence is imple-
mented by the linear isomorphisms Φ (on the sources) and Ψ (on the targets).

Commutative diagrams are ubiquitous in mathematics. You should learn how
to read commutative diagrams and understand their intuitive meanings. We will
see more examples in the future of this course.

1.3 Q, R, and R “ r´8,`8s
Using equivalence classes, one can construct rational numbers from integers,

and real numbers from rationals. We leave the latter construction to the future,
and discuss the construction of rationals here.

Example 1.22 (Construction of Q from Z). Define a relation on ZˆZˆ (where Zˆ “

Zzt0u) as follows. If pa, bq, pa1, b1q P Z ˆ Zˆ, we say pa, bq „ pa1, b1q iff ab1 “ a1b. It is
a routine check that „ is an equivalence relation. Let Q “ pZˆ Zˆq{ „, and write

2Again, we refer the readers to Internet or any Linear Algebra textbook (e.g. [Axl]) for the
definition of vector spaces and linear maps.
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the equivalence class of pa, bq as a{b or a
b
. Define additions and multiplications in

Q to be

a

b
`
c

d
“
ad` bc

bd

a

b
¨
c

d
“
ac

bd

We leave it to the readers to check that this definition is well-defined: If pa, bq „
pa1, b1q and pc, dq „ pc1, d1q then pad ` bc, bdq „ pa1d1 ` b1c1, b1d1q and pac, bdq „
pa1c1, b1d1q.

We regard Z as a subset of Q by identifying n P Z with n
1
. (This is possible

since the map n P Z ÞÑ n
1
P Q is injective.) Each a{b P Q has additive inverse ´a

b
.

If a{b P Q is not zero (i.e. pa, bq ȷ p0, 1q), then a{b has multiplicative inverse b{a.
This makes Q a field: the field of rational numbers.

If a{b P Q, we say a{b ě 0 if ab ě 0. Check that this is well-defined (i.e.,
if pa, bq „ pa1, b1q, then ab ě 0 iff a1b1 ě 0). More generally, if a{b, c{d P Q, we
say a

b
ě c

d
if a

b
´ c

d
ě 0. Check that ě is a total order on Q. Check that Q is an

Archimedean ordered field, defined below.

Definition 1.23. A field F, together with a total orderď, is called an ordered field,
if for every a, b, c P F we have

• (Addition preserves ď) If a ď b then a` c ď b` c.

• (Multiplication by Fě0 preserves ě 0) If a, b ě 0 then ab ě 0.

These two properties relate ď to ` and ¨ respectively.

Remark 1.24. Many familiar properties about inequalities in Q hold for an or-
dered field. For instance:

a ě b ^ c ě d ùñ a` c ě b` d

a ě 0 ðñ ´a ď 0

a ě 0 ^ b ě c ðñ ab ě ac

a ď 0 ^ b ě c ðñ ab ď a

a2 ě 0

0 ă a ď b ùñ 0 ă b´1
ď a´1

Check them yourself, or see [Rud-P, Prop. 1.18].

Definition 1.25. We say that an ordered field F satisfies Archimedean property if
for each a, b P F we have

a ą 0 ùñ Dn P N such that na ą b

where na means a` ¨ ¨ ¨ ` a
looooomooooon

n

.
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Example 1.26. Q satisfies Archimedean property. Indeed, let a, b P Q and a ą 0.
Then a “ p{q and b “ r{swhere p, q, s P Z` and r P Z. So na ą bwhere n “ q|r|`q.

Prop. 1.29 gives an important application of Archimedian property. We will
use this in the construction of R from Q, and in the proof that Q is dense in R.

Definition 1.27. Let F be a field. A subset E Ă F is called a subfield of F, if E con-
tains the 1 of F, and if E is closed under the operations of addition, multiplication,
taking negative, and taking inverse in F (i.e. if a, b P E then a ` b, ab,´a P E, and
a´1 P E whenever a ‰ 0). We also call F a field extension of E, since E is clearly a
field.

Note that if E is a subfield of F, the 0 of F is in E since 0 “ 1` p´1q P E.

Definition 1.28. Let E be an ordered field. A field extension F of E is called an
ordered field extension, if F is equipped with a total order ď such that F is an
ordered field, and if the order ď of F restricts to that of E. We also call E an
ordered subfield of F.

Our typical example of ordered field extension will be Q Ă R.

Proposition 1.29. Let F be an ordered field extension of Q. Assume that F is
Archimedean. Then for every x, y P F satisfying x ă y, there exists p P Q such that
x ă p ă y.

Proof. Assume x, y P F and x ă y. Then y ´ x ą 0 (since y ´ x ‰ 0 and ´x ` x ď
´x` y). By Archimedean property, there exists n P Z` such that npy ´ xq ą 1. So

y ´ x ą
1

n
and hence x`

1

n
ă y.

Let us prove that the subset

A “
␣

k P Z :
k

n
ď x

(

is nonempty and bounded from above in Z. By Archimedean property, there is
m P Z` such that m ą nx, i.e.

m

n
ą x. So for each k P Z` satisfying k ě m,

we have
k

n
“

m

n
`
k ´m

n
ą x. Therefore, for each k P A we have k ă m. So

A is bounded above. By Archimedean property again, there is l P Z` such that
l

n
ą ´x. So ´

l

n
ă x, and hence A is nonempty.

We now use the fact that every nonempty subset of Z bounded above has a maximal

element. Let k “ maxA. Since k ` 1 R A, we have x ă
k ` 1

n
. Since

k

n
ď x, we have

k ` 1

n
“
k

n
`

1

n
ď x`

1

n
ă y

This proves x ă p ă y with p “
k ` 1

n
.
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To introduce R formally, we need more definitions:

Definition 1.30. Let pX,ďq be a poset and E Ă X . An upper bound of E in X is
an element x P X satisfying e ď x for all e P E. An upper bound x P X of E is
called a least upper bound or a supremum if x ď y for every upper bound y P Y
of E. In this case, we write the supremum as supE. It is not hard to check that
supremums are unique if they exist.

We leave it to the readers to define lower bounds and the greatest lower
bound (if exists) of E, also called the infinimum and is denoted by inf E.

Definition 1.31. Let pX,ďq be a poset. We say that X satisfies the least-upper-
bound property, if every every nonempty subset E Ă X which is bounded above
(i.e. E has an upper bound) has a supremum in X . The greatest-lower-bound
property is defined in the opposite way.

Example 1.32. Z satisfies the least-upper-bound and the greatest-lower-bound
property: Let A Ă Z. If A is bounded above (resp. below), then the maximum
maxA (resp. minimum minA) exists and is the supremum (resp. infinimum) of
A.

Example 1.33. LetX be a set. Then p2X ,Ăq satisfies the least-upper-bound and the
greatest-lower-bound property: Let A Ă 2X , i.e., A is a set of subsets of X . Then
A is bounded from above by X , and is bounded from below byH. Moreover,

supA “
ď

APA

A inf A “
č

APA

A

Theorem 1.34. There is an ordered field extension of Q which is Archimedian and sat-
isfies the least-upper-bound property. This field is denoted by R. Its elements are called
real numbers.

Thm. 1.34 will be proved in Ch. 6. Note that by taking negative, we see that R
also satisfies the greatest-lower-bound property.

Remark 1.35. The ordered field extensions satisfying the conditions in Thm. 1.34
are unique “up to isomorphisms”. (The words “isomorphism” and “equiva-
lence” are often interchangeable, though “isomorphism” is more often used in the
algebraic setting, whereas “equivalence” can be used in almost every context. For
example, in point-set topology, “equivalence” means “homeomorphism”.) We
leave it to the readers to give the precise statement. We will not use this unique-
ness in this course.

Note that to compare two extensions F,R of Q, it is very confusing to regard
Q as a subset of both F and R. You’d better consider two different injective maps
τ : Q Ñ F and ι : Q Ñ R preserving the algebraic operations and the order
of Q, and use a commutative diagram to indicate that τ and ι are equivalent.
(Thus, what’s happening here is that we have an equivalence of maps, not just an
equivalence of the fields F and R.)
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Definition 1.36. Let ´8,`8 be two different symbols, and extend the total order
ď of R to the extended real line

R “ RY t´8,`8u

by letting ´8 ă x ă `8 for all x P R. Define for each x P R that

x˘8 “ ˘8` x “ ˘8 `8´ p´8q “ `8

x ¨ p˘8q “ ˘8 ¨ x “

$

&

%

˘8 if x ą 0
0 if x “ 0
¯8 if x ă 0

x

˘8
“ 0

˘8

x
“ x´1

¨ p˘8q if x ‰ 0

If a, b P R and a ď b, we define intervals with endpoints a, b:

ra, bs “ tx P R : a ď x ď bu pa, bq “ tx P R : a ă x ă bu

pa, bs “ tx P R : a ă x ď bu ra, bq “ tx P R : a ď x ă bu
(1.8)

So R “ p´8,`8q and R “ r´8,`8s. If a, b are in R, we say that the correspond-
ing interval is bounded.

In this course, unless otherwise stated, an interval always means one of the
four sets in (1.8). The first two intervals are called respectively a closed interval
and an open interval.

Remark 1.37. Clearly, every subset E of R is bounded and has a supremum and
an infinimum. We have that supE “ `8 iff E is not bounded above in R, and
that inf E “ ´8 iff E is not bounded below in R.

1.4 Cardinalities, countable sets, and product spaces Y X

Definition 1.38. Let A and B be sets. We say that A and B have the same car-
dinality and write cardpAq “ cardpBq (or simply A « B), if there is a bijection
f : A Ñ B. We write cardpAq ď cardpBq (or simply A À B) if A and a subset of B
have the same cardinality.

Exercise 1.39. Show that cardpAq ď cardpBq iff there is an injection f : A Ñ B,
iff there is a surjection g : B Ñ A. (You need either Axiom of Choice or its
consequence (1.5b) to prove the last equivalence.)

It is clear that « is an equivalence relation on the collection of sets. It is also
true that À is a partial order: Reflexivity and transitivity are easy to show. The
proof of antisymmetry is more involved:
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Theorem 1.40 (Schröder-Bernstein). Let A,B be two sets. If A À B and B À A, then
A « B.

‹‹ Proof. Assume WLOG that A Ă B. Let f : B Ñ A be an injection. Let An “
fnpAq defined inductively by f 0pAq “ A, fnpAq “ fpfn´1pAqq. Let Bn “ fnpBq.
Then

B0 Ą A0 Ą ¨ ¨ ¨ Ą Bn Ą An Ą Bn`1 Ą ¨ ¨ ¨

In particular, C “
Ş

nPNAn equals
Ş

nPNBn. Note that f gives a bijection BnzAn Ñ
Bn`1zAn`1 (since f gives bijections Bn Ñ Bn`1 and An Ñ An`1). Therefore, we
have a bijection g : B Ñ A defined by

gpxq “

"

fpxq if x P BnzAn for some n P N
x otherwise

where “otherwise” means either x P C or x P AnzBn`1 for some n.

Intuition about the above proof: View B as an onion. The layers of B are
BnzAn (the odd layers) and AnzBn`1 (the even layers). The bijection g maps each
odder layer to the subsequent odd one, and fixes the even layers and the core C.

Example 1.41. If ´8 ă a ă b ă `8, then p0, 1q « pa, bq.

Proof. f : p0, 1q Ñ pa, bq sending x to pb´ aqx` a is a bijection.

Example 1.42. If ´8 ă a ă b ă `8, then R « pa, bq

Proof. By the previous example, it suffices to prove R « p´1, 1q. The function

f : RÑ p´1, 1q fpxq “

" x
1`x

if x ě 0

´fp´xq if x ă 0
(1.9)

is bijective.

Alternatively, one may use the tangent function to give a bijection between
p´π{2, π{2q and R. I have avoided this method, since (1.9) is more elementary than
trigonometric functions. The mathematically rigorous definition of trigonometric
functions and the verification of their well-known properties are far from easy
tasks.

Proposition 1.43. Let I be an interval with endpoints a ă b in R. Then I « R.

Proof. Let A “ p0, 1q Y t´8,`8u. By Exp. 1.42, we have

pa, bq Ă I À R « A « r0, 1s Ă p´2, 2q « pa, bq

So I « R by Schröder-Bernstein Thm. 1.40. In particular, R “ p´8,`8q « R.
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Definition 1.44. A set A is called finite if A À t1, . . . , nu for some n P Z`. A is
called countable if A À N.

Clearly, a set A is finite iff either A « H or A « t1, . . . , nu for some n P Z`.

Remark 1.45. Let A Ă N. If A is bounded above, then A Ă t0, . . . , nu and hence
A is finite. If A is not bounded above, then we can construct a strictly increasing
sequence pxnqnPN in A. (Pick any x0 P A. Suppose we have xn P A. Since xn is
not an upper bounded of A, there is xn`1 P A larger than xn. So pxnqnPN can be
constructed inductively.) This gives an injection N Ñ A. Therefore A Á N, and
hence A « N by Schröder-Bernstein.

It follows that if B À N, then either B is a finite set, or B « N. Therefore, “a set
B is countably infinite” means the same as “B « N”.

Theorem 1.46. A countable union of countable sets is countable. In particular, NˆN «
N.

Proof. Recall Exe. 1.39. Let A1, A2, . . . be countable sets. Since each Ai is count-
able, there is a surjection fi : N Ñ Ai. Thus, the map f : N ˆ N Ñ

Ť

iAi de-
fined by fpi, jq “ fipjq is surjective. Therefore, it suffices to show that there is
a surjection N Ñ N ˆ N. This is true, since we have a bijection g : N Ñ N ˆ N
where gp0q, gp1q, gp2q, . . . are p0, 0q, p1, 0q, p0, 1q, p2, 0q, p1, 1q, p0, 2q, p3, 0q, p2, 1q,
p1, 2q, p0, 3q, etc., as shown by the figure

As an application, we prove the extremely important fact that Q is countable.

Corollary 1.47. We have N « Z` « Z « Q.

Proof. Clearly Ză0 « N « Z`. By Thm. 1.46, Z “ Ză0 Y N is countably infinite,
and hence Z « N. It remains to prove Z « Q. By Schröder-Bernstein, it suffices to
prove Q À Z. By Thm. 1.46 again, Z ˆ Z « Z. By Exp. 1.22, there is a surjection
from a subset of Zˆ Z to Q. So Q À Zˆ Z « Z.

Later, when we have learned Zorn’s Lemma (an equivalent form of Axiom of
Choice), we will be able to prove the following generalization of N ˆ N « N. So
we defer the proof of the following theorem to a later section.

Theorem 1.48. Let X be a infinite set. Then X ˆ N « X .
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Proof. See Thm. 16.7.

Our next goal is to prove an exponential law ab`c “ ab ¨ac for cardinalities. For
that purpose, we first need to define the set-theoretic operations that correspond
to the summation b` c and the exponential ab.

Definition 1.49. We writeX “
Ů

αPA Aα and callX the disjoint union of pAαqαPA ,
if X “

Ť

αPA Aα and pAαqαPA is a family of pairwise disjoint sets (i.e. AαXAβ “ H
if α ‰ β). If moreover A “ t1, . . . , nu, we write X “ A1 \ ¨ ¨ ¨ \ An.

Definition 1.50. Let X, Y be sets. Then

Y X
“ tfunctions f : X Ñ Y u (1.10)

A more precise definition of Y X (in the spirit of (1.3)) is tf P X ˆ Y | f : X Ñ

Y is a functionu. Note that by Rem. 1.7,

Y H
“ tHu (1.11)

This new notation is compatible with the old one Y n “ Y ˆ ¨ ¨ ¨ ˆ Y :

Example 1.51. Let n P Z`. We have Y t1,...,nu « Y n due to the bijection

Y t1,...,nu
Ñ Y n f ÞÑ pfp1q, . . . , fpnqq

Remark 1.52. The above example suggests that in the general case that X is not
necessarily finite, we can view each function f : X Ñ Y as pfpxqqxPX , an indexed
family of elements of Y with index set X . Thus, intuitively and hence not quite
rigorously,

Y X
“ Y ˆ Y ˆ ¨ ¨ ¨
loooooomoooooon

cardpXq pieces

(1.12)

This generalizes the intuition in Def. 1.8 that a function f : Z` Ñ Y is equivalently
a sequence pfp1q, fp2q, fp3q, . . . q.

The viewpoint that Y X is a product space with index set X is very important
and will be adopted frequently in this course. More generally, we can define:

Definition 1.53. Let pXiqiPI be a family of sets with index set I . Their product
space is defined by

ź

iPI

Xi “ tf P X
I : fpiq P Xi for all i P Iu

where X “
Ť

iPI Xi. If eachXi is nonempty, then
ś

iPI Xi is nonempty by Axiom of
Choice. An element of

ś

iPI Xi is also written as pfiqiPI when the i-th component
of it is fi P Xi.
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In particular, if all Xi are equal to X , then XI “
ś

iPI X .

Example 1.54. Let X be a set. For each A Ă X , define the characteristic function
χA : X Ñ t0, 1u to be

χApxq “

"

1 if x P A
0 if x R A

Then we have

2X « t0, 1uX

since the following map is bijective:

2X Ñ t0, 1uX A ÞÑ χA

Its inverse is f P t0, 1uX ÞÑ f´1p1q P 2X .

Proposition 1.55 (Exponential Law). Suppose that X “ A1 \ ¨ ¨ ¨ \ An. Then

Y X
« Y A1 ˆ ¨ ¨ ¨ ˆ Y An

Proof. We have a bijection

Φ : Y X
Ñ Y A1 ˆ ¨ ¨ ¨ ˆ Y An

f ÞÑ pf |A1 , . . . , f |Anq
(1.13)

where we recall that f |Ai
is the restriction of f to Ai.

Exercise 1.56. Assume that A1, . . . , An are subsets of X . Define Φ by (1.13). Prove
that Φ is injective iff X “ A1Y¨ ¨ ¨YAn. Prove that Φ is surjective iff A1, . . . , An are
pairwise disjoint.

Corollary 1.57. Let X, Y be finite sets with cardinalities m,n P N respectively. Assume
that Y ‰ H. Then Y X is a finite set with cardinality nm.

Proof. The special case thatm “ 0 (i.e. X “ H, cf. (1.11)) andm “ 1 is clear. When
m ą 1, assume WLOG that X “ t1, . . . ,mu. Then X “ t1u \ ¨ ¨ ¨ \ tmu. Apply
Prop. 1.55 to this disjoint union. We see that Y X » Y ˆ ¨ ¨ ¨ ˆ Y » t1, . . . , num has
nm elements.

We end this section with some (in)equalities about the cardinalities of product
spaces. To begin with, we write X Ä Y (or cardpXq ă cardpY q) if X À Y and
X ff Y .

Proposition 1.58. Let X, Y be sets with cardpY q ě 2 (i.e. Y has at least two elements).
Then X Ä Y X . In particular, X Ä 2X .
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Proof. The case X “ H is obvious since 0 ă 1. So we assume Y ‰ H. Clearly
2X » t0, 1uX is À Y X . So it suffices to prove X Ä 2X . Since the map X Ñ 2X

sending x to txu is injective, X À 2X . Let us prove X ff 2X .
Assume that X « 2X . So there is a bijection Φ : X Ñ 2X sending each x P X to

a subset Φpxq of X . Motivated by Russell’s Paradox (1.2), we define

S “ tx P X : x R Φpxqu

Since Φ is surjective, there exists y P X such that S “ Φpyq. If y P Φpyq, then y P S,
and hence y R Φpyq by the definition of S. If y R Φpyq, then y R S, and hence
y P Φpyq by the definition of S. This gives a contradiction.

Remark 1.59. Write t1, . . . , nuX as nX for short. Assuming that real numbers have
decimal, binary, or (more generally) base-n representations where n P Zě2, then
R « nN. So by Prop. 1.58, N Ä R, i.e. R is uncountable. The base-n representations
of real numbers suggest that cardpnNq is independent of n. This fact can be proved
by elementary methods without resorting to the analysis of real numbers:

Theorem 1.60. Let X be an infinite set. Then

2X « 3X « 4X « ¨ ¨ ¨ « NX

Proof. First, we assume that X “ N. Clearly, for each n P Zě2 we have 2X À nX À

NX . Since elements of NX are subsets of X ˆ N (i.e. elements of 2XˆN), we have

NX
Ă 2XˆN

» 2X

since X ˆ N « X by Thm. 1.46. So 2X « nX « NX by Schröder-Bernstein.
As pointed out earlier (cf. Thm. 1.48), it can be proved by Zorn’s Lemma that

X ˆN « X for every infinite set X . So the same conclusion holds for such X .
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2 Metric spaces

We first give an informal introduction to metric spaces, hoping to motivate the
readers from a (relatively) historical perspective. It is okay if you do not under-
stand all of the concepts mentioned in the introduction on the first read. Simply
return to this section when you feel unmotivated while formally studying these
concepts in later sections. (The same suggestion applies to all the introductory
sections and historical comments in our notes.)

2.1 Introduction: what is point-set topology?
The method which has been used with success by Volterra and Hilbert con-
sists in observing that a function (for instance a continuous one) can be re-
placed by a countable infinity of parameters. One treats the problem first as
though one had only a finite number of parameters and then one goes to the
limit... We believe that this method has played a useful role because it fol-
lowed intuition, but that its time has passed... The most fruitful method in
functional analysis seems to us to treat the element of which the functional
depends directly as a variable and in the form in which it presents itself nat-
urally.

—- Fréchet, 1925 (cf. [Jah, Sec. 13.8])

In this chapter, we begin the study of point-set topology by learning one of its
most important notions: metric spaces. Similar to [Rud-P], we prefer to introduce
metric spaces and basic point-set topology at the early stage of our study. An
obvious reason for doing so is that metric spaces provide a uniform language for
the study of basic analysis problems in R,Rn,Cn, and more generally in func-
tion spaces such as the space of continuous functions Cpra, bsq on the interval
ra, bs Ă R. With the help of such a language, for example, many useful criteria
for the convergence of series in R and C (e.g. root test, ratio test) are generalized
straightforwardly to criteria for the uniform convergence of series of functions in
Cpra, bsq.

Point-set topology was born in 1906 when Fréchet defined metric spaces, mo-
tivated mainly by the study of function spaces in analysis (i.e. functional analysis).
Indeed, point-set topology and functional analysis are the two faces of the same
coin: they both originated from the study of functionals, i.e., functions of func-
tions. See for example (2.1). The core ideas of point-set topology are as follows:

(1) Take X to be a set of functions defined on a “classical space” (e.g. the set
of all continuous functions f : ra, bs Ñ C). Then a functional is a function
S : X Ñ C. This is a generalization of functions on R,C,Rn,Cn or on their
subsets.
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(2) Unlike Rn, a function space X is usually “infinite dimensional”. Thus, one
may think that a functional S is a function with infinite variables. In point-
set topology, this viewpoint is abandoned; the philosophy of point-set topol-
ogy is diametrically opposed to that of multivariable calculus.1 Instead, one
should view a functional S as a function with one variable x, where x de-
notes a general point of the function space X .

(3) Rather than looking at each variable/component and doing explicit muti-
variable calculations, one uses geometric intuitions to study the analytic
properties of functionals.2 These geometric intuitions (e.g. distances, open
balls, convergence) are borrowed from R and Rn and are mostly irrelevant
to dimensions or numbers of variables.

(Sequential) compactness, completeness, and separability are prominent ge-
ometric properties that are useful in the study of the analytic properties of func-
tionals. The importance of these three notions was already recognized by Fréchet
by the time he defined metric spaces. The study of these three properties will be
a main theme of our course.

Consider sequential compactness for example. The application of compact-
ness to function spaces originated from the problems in calculus of variations.
For instance, let Lpx, y, zq be a polynomial or (more generally) a continuous func-
tion in 3 variables. We want to find a “good” (e.g. differentiable) function
f : r0, 1s Ñ R minimizing or maximizing the expression

Spfq “

ż 1

0

Lpt, fptq, f 1
ptqqdt (2.1a)

This is the general setting of Lagrangian mechanics. In the theory of integral
equations, one considers the extreme values and points of the functional

Spfq “

ż 1

0

ż 1

0

fpxqKpx, yqfpyqdxdy (2.1b)

where K : r0, 1s2 Ñ R is continuous and f : r0, 1s Ñ C is subject to the condition
ş1

0
|fpxq|2dx ď 1. Any f maximizing (resp. minimizing) Spfq is an eigenvector

of the linear operator g ÞÑ
ş1

0
Kpx, yqgpyqdy with maximal (resp. minimal) eigen-

value.
As we shall learn, (sequential) compactness is closely related to the problem

of finding (or proving the existence of) maximal/minimal values of a continuous
1Very often, the formula of Spfq involves an integral. See e.g. (2.1). Mathematicians (e.g.

Volterra, Lévy, Fredholm, and early Hilbert) used to study Spfq by discretizing Spfq, i.e., by ap-
proximating integrals by finite sums. Thus, S is approximated by a sequence of functions with n
variables where n Ñ 8. This viewpoint is abandoned in point-set topology.

2This is similar to linear algebra where one prefers vectors, linear subspaces, and linear opera-
tors to n-tuples, sets of solutions, and matrices.
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function and the points at which the function attains its maximum/minimum.
So, in 19th century, when people were already familiar with sequential compact-
ness in Rn (e.g. Bolzano-Weierstrass theorem, Heine-Borel theorem), they applied
compactness to function spaces and functionals. The idea is simple: Suppose we
are given X , a set of functions (say continuous and differentiable) from ra, bs to R.
We want to find f P X maximizing Spfq. Here is an explicit process (see also the
proof of Lem. 3.2):

(A) Find a sequence pfnqnPZ`
in X such that Spfnq increases to M “ supSpXq.

(B) Define convergence in X in a suitable way, and verify that S : X Ñ R is
continuous (i.e. if fn converges to f in the way we define, then Spfnq Ñ
Spfq).

(C) Suppose we can find a subsequence pfnk
qkPZ`

converging to some f P X ,
then S attains its maximum at f . In particular, Spfq “ M and hence M ă

`8.

To carry out step (B), we need to define suitable geometric structures for a
function space X so that the convergence of sequences in X and the continuity
of functions S : X Ñ R can be defined and studied in a similar pattern as that
for Rn. Metric (of a metric space) and topology (of a topological space) are such
geometric structures. As we shall learn, the topology of a metric space is uniquely
determined by the convergence of sequences in this space.

Step (C) can be carried out if every sequence in X has a convergent subse-
quent, i.e., if X is sequentially compact. Thus, we need a good criterion for se-
quential compactness for subsets of a function space. Arzelà-Ascoli theorem, the
Cpra, bsq-version of Heine-Borel theorem, is such a criterion. This famous theorem
was proved in late 19th century (and hence before the birth of point-set topology),
and it gave an important motivation for Fréchet to consider metric spaces in gen-
eral. We will learn this theorem at the end of the first semester.

To summarize: Metric spaces are defined not just for fun. We introduce such
geometric objects because we want to study the convergence of sequences and
the analytic properties of continuous functions using geometric intuitions. And
moreover, the examples we are interested in are not just subsets of Rn, but also
subsets of function spaces. With this in mind, we now begin our journey into
point-set topology.

2.2 Basic definitions and examples

Definition 2.1. Let X be a set. A function d : XˆX Ñ Rě0 is called a metric if for
all x, y, z P X we have

(1) dpx, yq “ dpy, xq.
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(2) dpx, yq “ 0 iff x “ y.

(3) (Triangle inequality) dpx, zq ď dpx, yq ` dpy, zq.

The pair pX, dq, or simply X , is called a metric space. If x P X and r P p0,`8s,3

the set

BXpx, rq “ ty P X : dpx, yq ă ru

often abbreviated to Bpx, rq, is called the open ball with center x and radius r. If
r P r0,`8q,

BXpx, rq “ ty P X : dpx, yq ď ru

also abbreviated to Bpx, rq, is called the closed ball with center x and radius r.

We make some comments on this definition.

Remark 2.2. That “dpx, yq “ 0 iff x “ y” is very useful. Think about X as a set
of functions r0, 1s Ñ R and d is a metric on X . To show that f, g P X are equal,
instead of checking that infinitely many values are equal (i.e. fptq “ gptq for all
t P R), it suffices to check that one value (i.e. dpf, gq) is zero.

Remark 2.3. Triangle inequality clearly implies “polygon inequality”:

dpx0, xnq ď
n
ÿ

j“1

dpxj´1, xjq (2.2)

Remark 2.4. Choose distinct points x, y P X . Then x, y are separated by two open
balls centered at them: there exists r, ρ ą 0 such that Bpx, rq X Bpy, ρq “ H. This
is called the Hausdorff property.

To see this fact, note that dpx, yq ą 0. Choose r, ρ such that r ` ρ ď dpx, yq. If
z P Bpx, rq XBpy, ρq, then dpx, zq ` dpy, zq ă r` ρ ď dpx, yq, contradicting triangle
inequality.

We will see (cf. Prop. 2.19) that Hausdorff property guarantees that any se-
quence in a metric space cannot converge to two different points. Intuition: one
cannot find a point which is very close to x and y at the same time.

We give some examples, and leave it to the readers to check that they satisfy
the definition of metric spaces. We assume that square roots of positive real num-
bers can be defined. (We will rigorously define square roots after we define ex

using the series
ř

nPN x
n{n!.)

Example 2.5. R is a metric space if we define dpx, yq “ |x´ y|
3We want open and closed balls to be nonempty. So we assume r ‰ 0 only for open balls.
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Example 2.6. On Rn, we can define Euclidean metric

dpx, yq “
a

px1 ´ y1q2 ` ¨ ¨ ¨ ` pxn ´ ynq2

if x‚, y‚ are the components of x, y. The following are also metrics:

d1px, yq “ |x1 ´ y1| ` ¨ ` |xn ´ yn|

d8px, yq “ maxt|x1 ´ y1|, . . . , |xn ´ yn|u

Example 2.7. The Euclidean metric on Cn is

dpz, wq “
a

|z1 ´ w1|
2 ` ¨ ¨ ¨ ` |zn ´ wn|2

which agrees with the Euclidean metric on R2n. The following are also metrics:

d1pz, wq “ |z1 ´ w1| ` ¨ ` |zn ´ wn|

d8pz, wq “ maxt|z1 ´ w1|, . . . , |zn ´ wn|u

Convention 2.8. Unless otherwise stated, the metrics on Rn and Cn (and their
subsets) are assumed to be the Euclidean metrics.

Remark 2.9. One may wonder what the subscripts 1,8 mean. This notation is
actually due to the general fact that

dppz, wq “
p
a

|z1 ´ w1|
p ` ¨ ¨ ¨ ` |zn ´ wn|p

is a metric where 1 ď p ă `8, and d8 “ limqÑ`8 dq. It is not easy to prove
that dp satisfies triangle inequality: one needs Minkowski inequality. For now, we
will not use such general dp. And we will discuss Minkowski inequality in later
sections.

Example 2.10. Let X “ X1ˆ ¨ ¨ ¨ˆXN where each Xi is a metric space with metric
di. Write x “ px1, . . . , xNq P X and y “ py1, . . . , yNq P Y . Then the following are
metrics on X :

dpx, yq “ d1px1, y1q ` ¨ ¨ ¨ ` dNpxN , yNq

δpx, yq “ maxtd1px1, y1q, . . . , dNpxN , yNqu

ρpx, yq “
a

d1px1, y1q2 ` ¨ ¨ ¨ ` dNpxN , yNq2

With respect to the metric δ, the open balls of X are “polydisks”

BXpx, rq “ BX1px1, rq ˆ ¨ ¨ ¨ ˆBXN
pxN , rq

There is no standard choice of metric on the product of metric spaces. d, δ, ρ
are all good, and they are equivalent in the following sense:
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Definition 2.11. We say that two metrics d1, d2 on a setX are equivalent and write
d1 « d2, if there exist α, β ą 0 such that for any x, y P X we have

d1px, yq ď αd2px, yq d2px, yq ď βd1px, yq

This is an equivalence relation. More generally, we may write d1 À d2 if d1 ď αd2
for some α ą 0. Then d1 « d2 iff d1 À d2 and d2 À d1.

Example 2.12. In Exp. 2.10, we have δ ď ρ ď d ď Nδ. So δ « ρ « d.

Convention 2.13. Given finitely many metric spaces X1, . . . , XN , the metric on
their product space X “ X1 ˆ ¨ ¨ ¨ ˆXN is chosen to be any one that is equivalent
to the ones defined in Exp. 2.10. In the case that each Xi is a subset of R or C,
we follow Convention 2.8 and choose the metric on X to be the Euclidean metric
(unless otherwise stated).

Definition 2.14. Let pX, dq be a metric space. Then a metric subspace denotes an
object pY, d|Y q where Y Ă X and d|Y is the restriction of d to Y , namely, for all
y1, y2 P Y we set

d|Y py1, y2q “ dpy1, y2q

Convention 2.15. Suppose Y is a subset of a given metric space pX, dq. Unless
otherwise stated, the metric of Y is chosen to be d|Y whenever Y is viewed as a
metric space. For example, the metric of any subset of Rn is assumed to be the
Euclidean metric, unless otherwise stated.

2.3 Convergence of sequences

Definition 2.16. Let pxnqnPZ`
be a sequence in a metric space X . Let x P X . We

say that x is the limit of xn and write lim
nÑ8

xn “ x (or xn Ñ x), if:

• For every real number ε ą 0 there exists N P Z` such that for every n ě N
we have dpxn, xq ă ε.

Equivalently, this means that every (nonempty) open ball centered at x contains
all but finitely many xn.4

Remark 2.17. The negation of xn Ñ x is clear:

• There exists ε ą 0 such that for all N P Z` there exists n ě N such that
dpxn, xq ě ε.

4“All but finitely many xn satisfies...” means “for all but finitely many n, xn satisfies...”. It does
NOT mean that “all but finitely many elements of the set txn : n P Z`u satisfies...”.
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Namely, one changes each “for all” to “there exists”, changes each “there exists”
to “for all”, and negate the last sentence.

Exercise 2.18. Show that in the above definition of limits, it suffices to consider
rational numbers ε ą 0. (Note: You need to use Prop. 1.29.)

This exercise implies that the definition of limits does not require the existence
of real numbers, i.e., does not assume Thm. 1.34. Indeed, we will use limits of
sequences (and “double sequences”) to prove Thm. 1.34.

In many textbooks and research papers, you will see phrases such as

xn satisfies property P for sufficiently large n (2.3)

This means that “there exists N P Z` such that P holds for all n ě N”. (We also
say that xn eventually satisfies P .) Then limnÑ8 xn “ x means that “for every
ε ą 0, we have dpxn, xq ă ε for sufficiently large n”.

Proposition 2.19. Any sequence pxnqnPZ`
in a metric space X has at most one limit.

Proof. Suppose pxnqnPZ`
converges to x, y P X where x ‰ y. By Hausdorff prop-

erty (Rem. 2.4), there exist r, ρ ą 0 such that Bpx, rq X Bpy, ρq “ H. By the
definition of xn Ñ x, there exists N1 P Z` such that xn P Bpx, rq for all n ě N1.
Similarly, xn Ñ y means that there is N2 P Z` such that xn P Bpy, ρq for all n ě N2.
Choose any n ě N1, N2 (e.g. n “ maxtN1, N2u). Then xn P Bpx, rq X Bpy, ρq “ H,
impossible.

2.3.1 Methods for proving convergence and computing limits

Example 2.20. lim
nÑ8

1

n
“ 0.

Proof. Choose any ε P Qą0. By Archimedean property, there exists N P Z` such
that Nε ą 1, i.e. 1{N ă ε. Thus, for all n ě N we have 1{n ă ε.

Proposition 2.21. Let F P tQ,Ru and pxnq, pynq be sequences in F converging to x, y P
R. If xn ď yn for all n, then x ď y.

Proof. If y ă x, let ε “ x ´ y. Then all but finitely many members of pxnq are in
px´ε{2, x`ε{2q, and all but finitely many members of pynq are in py´ε{2, y`ε{2q.
Since y ` ε{2 ă x´ ε{2, there must exist n such that yn ă xn.

Definition 2.22. IfA andB are posets (or more generally, preordered sets, see Def.
5.1), we say a function f : A Ñ B is increasing (resp. strictly increasing), if for
each x, y P A we have

x ď y ùñ fpxq ď fpyq
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resp.
x ă y ùñ fpxq ă fpyq

We leave the definitions of decreasing and strictly decreasing to the readers. We
say that f is monotonic (resp. strictly monotonic), if f is either increasing or
decreasing (resp. either strictly increasing or strictly decreasing).

Proposition 2.23. Let pxnqnPZ be a sequence in ra, bs Ă R. If pxnq is increasing (resp.
decreasing), then lim

nÑ8
xn equals suptxn : n P Z`u (resp. inftxn : n P Z`u).

Proof. Assume pxnq increases. (The case of decreasing is similar and hence its
proof is omitted.) Let A “ suptxn : n P Z`u ă `8. Then for each ε ą 0 there is N
such that xN ą A´ ε (since A´ ε is not an upper bound). Since pxnq is increasing,
for all n P N we have A´ ε ă xn ď A and so |xn ´ A| ă ε.

Example 2.24. Let pxnqnPZ`
be a sequence in a metric space X , and let x P X . It is

easy to see that

lim
nÑ8

xn “ x ðñ lim
nÑ8

dpxn, xq “ 0

Example 2.25. Suppose that panq and pbnq are sequences in Rě0, that an ď bn for
all n, and that bn Ñ 0. Then an Ñ 0.

Proof. For each ε ą 0, r0, εq contains all but finitely many bn, and hence all but
finitely many an.

More generally, we have:

Proposition 2.26 (Squeeze theorem). Suppose that pxnq is a sequence in a metric space
X . Let x P X . Suppose that there is a sequence panq in Rě0 such that lim

nÑ8
an “ 0 and

that dpxn, xq ď an for all n. Then lim
nÑ8

xn “ x.

Proof. This follows immediately from Exp. 2.24 and 2.25.

The above proposition explains why many people say that “analysis is the
art of inequalities”: It transforms the problem of convergence to the problem of
finding a sequence panq P Rě0 converging to 0 such that the inequality dpxn, xq ď
an holds. And very often, a good (hard) analyst is one who knows how to find
such good sequences!

Proposition 2.27. Let X “ X1 ˆ ¨ ¨ ¨ ˆXN be a product of metric spaces pXi, diq. Let d
be any of the three metrics of X in Exp. 2.10. Let xn “ px1,n, . . . , xN,nq be a sequence in
X . Let y “ py1, . . . , yNq. Then

lim
nÑ8

xn “ y ðñ lim
nÑ8

xi,n “ yi p@1 ď i ď Nq
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Proof. We let d be the metric δ in Exp. 2.10, i.e. defined by maxj djpxj, yjq. Now
choose a sequence pxnq and an element y in X . Then

xn Ñ y ðñ dXpxn,yq Ñ 0 ðñ max
1ďjďN

djpxj,n, yjq Ñ 0 (2.4)

Suppose that the RHS of (2.4) is true. Fix any 1 ď i ď N . Then dipxi,n, yiq ď
maxj djpxj,n, yjq. So xi,n Ñ yi by Prop. 2.26.

Conversely, assume that for every i we have xi,n Ñ yi. Then for every
ε ą 0 there is Ki P Z` such that dipxi,n, yiq ă ε for every n ě Ki. Let
K “ maxtK1, . . . , KNu. Then for all n ě K we have maxj djpxj,n, yjq ă ε. This
proves the RHS of (2.4).

If d is one of the other two metrics in Exp. 2.10, one can either use a similar
argument, or use the following important (but easy) fact.

Proposition 2.28. Let d, δ be two equivalent metrics on a setX . Let pxnqnPZ`
and x be in

X . Then pxnq converges to x under the metric d iff pxnq converges to x under δ. Namely,
dpxn, xq Ñ 0 iff δpxn, xq Ñ 0.

Proof. Prove it yourself. (Or see Prop. 2.62.)

More useful formulas about limit will be given in Exp. 4.24.

2.3.2 Criteria for divergence

Definition 2.29. A subset E of a metric space pX, dq is called bounded if either
E “ H or there exist p P X and R P Rą0 such that E Ă BXpp,Rq. If X is bounded,
we also say that d is a bounded metric.

Remark 2.30. Note that if E is bounded, then for any q P X there exists rR P

Rą0 such that E Ă BXpq, rRq. (Indeed, choose rR “ R ` dpp, qq, then by triangle
inequality, Bpp,Rq Ă Bpq, rRq.)

Some easy examples are as follows.

Example 2.31. In a metric space X , if x P X and 0 ă r ă `8, then Bpx, rq is
bounded. Hence Bpx, rq is bounded (since it is inside Bpx, 2rq).

Also, it is easy to see:

Example 2.32. A finite union of bounded subsets is bounded.

Proposition 2.33. Let pxnqnPZ`
be a convergent sequence in a metric space X . Then

pxnqnPZ`
is bounded.

By saying that a sequence pxnqnPZ`
in X is bounded, we mean that its range in

X (namely txn : n P Z`u) is bounded.
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Proof. Suppose that xn Ñ x. Then for each ε ą 0, say ε “ 1, all but finitely
many elements of xn (say x1, . . . , xN ) are in Bpx, 1q. So this whole sequence is in
A “ tx1u Y ¨ ¨ ¨ txNu Y Bpx, 1q. Since each txiu is bounded, and since Bpx, 1q is
bounded, A is bounded by Exp. 2.32.

Remark 2.34. Prop. 2.33 gives our first criterion on divergence: If a sequence
is unbounded (e.g. xn “ n2), then it does not converge. But there are many
bounded and divergent sequences. (See Exp. 2.37.) In this case, we need the
second criterion: If a sequence has two subsequences converging to two different
points, then this sequence diverge. (See Prop. 2.36)

Definition 2.35. Let pxnqnPZ`
be a sequence in a set X . If pnkqkPZ`

is a strictly
increasing sequence in Z`, we say that pxnk

qkPZ`
is a subsequence of pxnqnPZ`

.

Thus, a subsequence of pxnqnPZ`
is equivalently the restriction of the function

x : Z` Ñ X to an infinite subset of Z`.

Proposition 2.36. Let pxnqnPZ`
be a sequence in a metric space X converging to x P X .

Then every subsequence pxnk
qkPZ`

converges to x.

Proof. For every ε ą 0, Bpx, εq contains all but finitely many txn : n P Z`u, and
hence all but finitely many txnk

: k P Z`u.

Example 2.37. The sequence xn “ p´1qn in R is divergent, because the subse-
quence px2kqkPZ`

converges to 1, whereas px2k´1qkPZ`
converges to ´1.

One may wonder if the two criteria in Rem. 2.34 are complete in order to
determine whether a sequence diverges. This is true for sequences in Rn. We will
discuss this topic later. (See Cor. 3.17.)

2.4 Continuous maps of metric spaces

Continuous maps are a powerful tool for showing that a sequence converges.

Definition 2.38. Let f : X Ñ Y be a map of metric spaces. Let x P X . We say that
f is continuous at x if one of the following equivalent conditions hold:

(1) For every sequence pxnqnPZ`
in X , we have

lim
nÑ8

xn “ x ùñ lim
nÑ8

fpxnq “ fpxq

(2) For every ε ą 0, there exists δ ą 0 such that for every p P X satisfying
dpp, xq ă δ, we have dpfppq, fpxqq ă ε.

(2’) For every ε ą 0, there exists δ ą 0 such thatBXpx, δq Ă f´1pBY pfpxq, εqqq.

35



We say that f is a continuous map/function, if f is continuous at every point of
X .

Proof of the equivalence. (2)ô(2’): Obvious.
(2)ñ(1): Assume (2). Assume xn Ñ x. For every ε ą 0, let δ ą 0 be as in (2).

Then since xn Ñ x, there is N P Z` such that for all n ě N we have dpxn, xq ă δ.
By (2), we have dpfpxnq, fpxqq ă ε for all n ě N . This proves fpxnq Ñ fpxq.
␣(2)ñ ␣(1): Assume that (2) is not true. Then there exists ε ą 0 such that for

every δ ą 0, there exists p P X such that dpp, xq ă δ and dpfppq, fpxqq ě ε. Thus,
for every n P Z`, by taking δ “ 1{n, we see that there exists xn P X such that
dpxn, xq ă 1{n and dpfpxnq, fpxqq ě ε. By Squeeze theorem (Prop. 2.26), xn Ñ x.
But fpxnq Û fpxq (i.e. dpfpxnq, fpxqq Û 0). So (1) is not true.

Remark 2.39. One can compare Def. 2.38-(1) to the definition of linear maps. A
map is continuous iff it preserves the convergence of sequences, i.e., iff it maps con-
vergent sequences to convergent ones. A map (between vector spaces) is linear
iff it perserves the addition and the scalar multiplication of vectors. In general, a
good map between two sets with “structures” is a map which preserves the struc-
tures. (Thus, linear combinations encode the linear structures of vector spaces.
Similarly, the convergence of sequences remembers the “topological” structures
of metric spaces.) As another example, we will define an isometry of metric spaces
to be one that preserves the metrics (the structures of metric spaces), see Exe. 2.63.

Remark 2.40. In this section, we mainly use Def. 2.38-(1) to study continuity. But
in later sections we will also use Def. 2.38-(2’). An advantage of (2’) is that it is
more geometric. Indeed, if X is a metric space and E Ă X , we say that x P E is an
interior point of E in X if there exists δ ą 0 such that BXpx, δq Ă E. For example,
a point z P C is an interior point of the closed unit disk BCp0, 1q “ tw P C : |w| ď
1u iff |z| ă 1.

Thus, Def. 2.38-(2’) says that for any map of metric spaces f : X Ñ Y and
x P X , the following are equivalent:

(a) f is continuous at x.

(b) For each ε ą 0, every x P X is an interior point of f´1
`

BY pfpxq, εq
˘

.

We say that a subset U Ă X is open if each point of U is an interior point. For
example, by triangle inequality, every open ball in a metric space is an open set.
Thus, we have:

• A map of metric spaces f : X Ñ Y is continuous iff the preimage under f of
every open ball of Y is an open subset of X .

In the study of point-set topology, we will see that many properties can be
studied in two approaches: using sequences (or using nets, the natural generaliza-
tions of sequences) and their convergence, and using open sets. The first example
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of such property is continuity, as we have seen in Def. 2.38. Another prominent
example is sequential compactness vs. compactness. These two approaches rep-
resent two (very) different intuitions: one is dynamic, while the other is static and
more geometric. (So it is surprising that these two very things are actually equiv-
alent!) Sometimes both approaches work for a problem, but sometimes only one
of them works, or one of them is much simpler. If you are a beginner in analysis
and point-set topology, I suggest that whenever you see one approach applied to
a problem, try to think about whether the other approach also works and which
one is better.

2.4.1 Methods for proving continuity

Lemma 2.41. Let f : X Ñ Y be a map of metric spaces. Let pBiqiPI be a collection of open
balls in X such that X “

Ť

iPI Bi. Suppose that for each i, the restriction f |Bi
: Bi Ñ Y

is continuous. Then f is continuous.

This lemma shows that if we can prove that f is “locally” continuous, then f
is globally continuous.

Proof. Choose pxnq in X converging to x P X . We shall show fpxnq Ñ fpxq.
Choose i such that x P Bi. Then one can find δ ą 0 such that Bpx, δq Ă Bi. (In
the language of point-set topology: x is an interior point of Bi.) To see this, write
Bi “ Bpy, rq. Since x P Bpy, rq, we have r´dpx, yq ą 0. Choose 0 ă δ ď r´dpx, yq.
Then triangle inequality implies Bpx, δq Ă Bpy, rq.

Since xn Ñ x, there is N P Z` such that xn P Bpx, δq for all n ě N . Thus,
pxk`NqkPZ`

converges in Bi to x. Since f |Bi
is continuous, limkÑ8 fpxk`Nq “ fpxq.

So fpxnq Ñ fpxq.

Definition 2.42. A map of metric spaces f : X Ñ Y is called Lipschitz continuous
if there exists L P Rą0 (called Lipschitz constant) such that for all x1, x2 P X ,

dY
`

fpx1q, fpx2q
˘

ď L ¨ dXpx1, x2q (2.5)

Lemma 2.43. Lipschitz continuous maps are continuous.

Proof. Suppose that f : X Ñ Y is Lipschitz continuous with Lipschitz constant L.
Suppose xn Ñ x in X . Then L ¨ dpxn, xq Ñ 0. By (2.5) and Squeeze theorem (Prop.
2.26), fpxnq Ñ fpxq. (You can also use Def. 2.38-(2) to prove this lemma.)

Example 2.44. Let F P tQ,R,Cu. The map z P Fzt0u ÞÑ z´1 P F is continuous.

Proof. Let this map be f . Since F is covered by open balls Bpz, δq where z P Fzt0u
and 0 ă δ ă |z|, by Lem. 2.41, it suffices to prove that f is continuous when
restricted to every such Bpz, δq. Let ε “ |z| ´ δ ą 0. Choose x, y P Bpz, δq. Then
|x| “ |x´ z ` z| ě |z| ´ |z ´ x| ą ε by triangle inequality. Similarly, |y| ą ε. So

|fpxq ´ fpyq| “ |x´1
´ y´1

| “ |x´ y|{|xy| ď ε´2
|x´ y|

So f |Bpz,δq has Lipschitz constant ε´2, and hence is continuous.
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(Question: in the above proof, is the map f : Fzt0u Ñ F Lipschitz continuous?)
We have given a fancy way of proving that if pznq is a sequence in Fzt0u con-

verging to z P Fzt0u, then z´1
n Ñ z´1. You should think about how to prove this

fact directly using ε´N language, and compare your proof with the above proof
to find the similarities!

Proposition 2.45. Let F P tQ,R,Cu. Then the following maps are continuous:

` : Fˆ FÑ F px, yq ÞÑ x` y

´ : Fˆ FÑ F px, yq ÞÑ x´ y

ˆ : Fˆ FÑ F px, yq ÞÑ xy

˜ : Fˆ Fˆ
Ñ F px, yq ÞÑ x{y

Recall our Convention 2.13 on the metrics of finite product spaces.

Proof. We only prove that the last two are continuous: the first two can be treated
in a similar (and easier) way.

Denote the multiplication map by µ. We choose the metric on F2 to be
dpx,x1q “ maxt|x1 ´ x1

1|, |x2 ´ x1
2|u. Since F ˆ F is covered by open balls of the

form Bp0, rq “ tpx, yq P F2 : |x| ă r, |y| ă ru where 0 ă r ă `8, by Lem. 2.41 and
2.43, it suffices to show that µ|Bp0,rq is Lipschitz continuous. This is true, since for
each px, yq, px1, y1q P Bp0, rq, we have

|µpx, yq ´ µpx1, y1
q| “ |xy ´ x1y1

| ď |px´ x1
qy| ` |x1

py ´ y1
q|

ă2r ¨maxt|x´ x1
|, |y ´ y1

|u “ 2r ¨ dppx, yq, px1, y1
qq

(2.6)

By Exp. 2.44 and Prop. 2.47, the map px, yq P F ˆ Fˆ ÞÑ px, y´1q P F ˆ F is
continuous. So its composition with the continuous map µ is continuous, thanks
to Prop. 2.46. So ˜ is continuous.

Proposition 2.46. Suppose that f : X Ñ Y and g : Y Ñ Z are continuous maps of
metric spaces. Then g ˝ f : X Ñ Z is continuous.

Proposition 2.47. Suppose that fi : Xi Ñ Yi is a map of metric spaces, where 1 ď i ď N .
Then the product map

f1 ˆ ¨ ¨ ¨ ˆ fN : X1 ˆ ¨ ¨ ¨ ˆXN Ñ Y1 ˆ ¨ ¨ ¨ ˆ YN

px1, . . . , xNq ÞÑ pf1px1q, . . . , fNpxNqq

is continuous if and only if f1, . . . , fN are continuous.

Proof of Prop. 2.46 and 2.47. Immediate from Def. 2.38-(1) and Prop. 2.27.

Corollary 2.48 (Squeeze theorem). Let F P tQ,Ru and pxnq, pynq, pznq be sequences
in R. Assume that xn ď yn ď zn for all n. Assume that xn and zn both converge to
A P R. Then limnÑ8 yn “ A.
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Proof. Let an “ yn ´ xn and bn “ zn ´ xn. Then 0 ď an ď bn, and limn bn “
limn zn ´ limn xn “ 0 because the subtraction map is continuous (Prop. 2.45). By
Exp. 2.25, an Ñ 0. Since xn Ñ A, yn “ xn ` an converges to A, since the addition
map is continuous by Prop. 2.45.

Again, this is a fancy way of proving Squeeze theorem. The readers should
know how to prove it directly from the definition of limits of sequences.

We give some more examples of continuous maps.

Example 2.49. By Prop. 2.45, fpx, y, zq “ x2y ` 5y4z7 ´ 3xyz2 is a continuous
function on C3. Clearly z P C ÞÑ z P C is continuous. So gpx, y, zq “ fpx, y, zq `

2fpz, x2, xy´9q ´ 5xy´2z´3 is a continuous function on Cˆ Cˆ ˆ Cˆ.

Example 2.50. Let f, g : X Ñ F be continuous functions where F P tQ,R,Cu.
Then by Prop. 2.45 and 2.46, f ˘ g and fg are continuous, and f{g is continuous
when 0 R gpXq. Here

pf ˘ gqpxq “ fpxq ˘ gpxq pfgqpxq “ fpxqgpxq pf{gqpxq “ fpxq{gpxq (2.7)

Example 2.51. Let f : X Ñ Y be a map of metric spaces. Let E,F be subsets of
X, Y respectively. (Recall that the metrics of subsets are chosen as in Def. 2.14.)

• The inclusion map ιE : E Ñ X, x ÞÑ x is clearly continuous. Thus, if f is
continuous, then f |E : E Ñ Y is continuous, since f |E “ f ˝ ιE .

• If fpXq Ă F , then we can restrict the codomain of f from Y to F : let rf : X Ñ

F be rfpxq “ fpxq. Then it is clear that f is continuous iff rf is continuous.

Proposition 2.52. Let X1, . . . , XN be metric spaces. The following projection is clearly
continuous:

πXi
: X1 ˆ ¨ ¨ ¨ ˆXN Ñ Xi px1, . . . , xNq ÞÑ xi

Proposition 2.53. Let fi : X Ñ Yi be maps where X, Y1, . . . , YN are continuous. Then

f1 _ ¨ ¨ ¨ _ fN : X Ñ Y1 ˆ ¨ ¨ ¨ ˆ YN x ÞÑ pf1pxq, . . . , fNpxqq

is continuous iff f1, . . . , fN are continuous.

Example 2.54. Let X be a metric space. Then d : X ˆ X Ñ R, px, yq ÞÑ dpx, yq
is Lipschiz continuous with Lipschitz constant 1 (by triangle inequality). So d is
continuous.

Proposition 2.55. Let X be a metric space and E Ă X is nonempty. Define distance
function

dp¨, Eq : X Ñ Rě0 dpx,Eq “ inf
ePE

dpx, eq

Then dp¨, Eq is has Lipschitz constant 1. So dp¨, Eq is continuous.
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Proof. Choose any x, y P X . By triangle inequality, for each e P E we have
dpx, eq ď dpx, yq ` dpy, eq. Since dpx,Eq ď dpx, eq, we get dpx,Eq ď dpx, yq ` dpy, eq.
Applying infePE to the RHS gives dpx,Eq ď dpx, yq ` dpy, Eq. Hence dpx,Eq ´
dpy, Eq ď dpx, yq. Exchanging x and y gives

ˇ

ˇdpx,Eq ´ dpy, Eq
ˇ

ˇ ď dpx, yq (2.8)

This proves that dp¨, Eq has Lipschitz constant 1.

Definition 2.56. More generally, if E,F are subsets of a metric space E, we can
define

dpE,F q “ inf
ePE,fPF

dpe, fq (2.9)

to be the distance between E and F .

Exercise 2.57. Let E,F Ă X . Prove that

dpE,F q “ inf
fPF

dpE, fq (2.10)

Example 2.58. If X is a metric space and p P X , then by Prop. 2.55 (or simply by
triangle inequality), the function dp : x P X ÞÑ dpx, pq P R has Lipschitz constant
1 and hence is continuous. In particular, if F P tR,Cu, the function z P F ÞÑ |z| is
continuous (since |z| “ dFpz, 0q). Thus, if f : X Ñ F is continuous, then |f | : X Ñ

Rě0 is continuous where

|f |pxq “ |fpxq| (2.11)

Example 2.59. Let N P Z`. Then the following function is continuous:

max : RN
Ñ R px1, . . . , xNq ÞÑ maxtx1, . . . , xNu P R

Similarly, the minimum function is continuous.

Proof. To avoid confusion, we write max as maxN . The case N “ 1 is obvious.
When N “ 2, we have

maxpx1, x2q “
x1 ` x2 ` |x1 ´ x2|

2
(2.12)

So max2 is continuous by Exp. 2.50 and 2.58.
We use induction. Suppose we have proved that maxN is continuous. Then

maxN ˆidR : RN ˆ R Ñ R ˆ R is continuous. So maxN`1 “ max2 ˝pmaxN ˆidRq is
continuous.

40



2.5 Homeomorphisms and isometric isomorphisms; conver-
gence in R

2.5.1 General theory

Definition 2.60. A bijection of metric spaces f : X Ñ Y is called a homeomor-
phism if one of the following equivalent (cf. Def. 2.38) statements holds:

(1) f : X Ñ Y and its inverse map f´1 : Y Ñ X are continuous.

(2) For each sequence pxnq in X and each x P X , we have lim
nÑ8

xn “ x iff

lim
nÑ8

fpxnq “ fpxq.

If such f exists, we say that X, Y are homeomorphic.

A special case of the above definition is:

Definition 2.61. Let X be a set with metrics d, δ. We say that d and δ induce
the same topology on X (or that d, δ are topologically equivalent) if one of the
following clearly equivalent statements holds:

(1) The map pX, dq Ñ pX, δq, x ÞÑ x is a homeomorphism.5

(2) For each sequence pxnq in X and each x P X , pxnq converges to x under the
metric d iff pxnq converges to x under δ.

Proposition 2.62. Suppose that d, δ are equivalent metrics on a set X . Then d, δ are
topologically equivalent.

Proof. Suppose δ ď αd and d ď βδ for some α, β ą 0. Then the map f : pX, dq Ñ
pX, δq, x ÞÑ x and its inverse f´1 have Lipschitz constants α and β respectively. So
f, f´1 are continuous.

Exercise 2.63. Let f : X Ñ Y be a map of metric spaces. We say that f : X Ñ Y is
an isometry (or is isometric) if for all x1, x2 P X we have

dY pfpx1q, fpx2qq “ dXpx1, x2q (2.13)

Show that an isometry is injective and continuous.
We say that f is an isometric isomorphism if f is a surjective isometry. If

an isometric isomorphism between two metric spaces X, Y exists, we say that
X and Y are isometric metric spaces. Show that an isometric isomorphism is a
homeomorphism.

5We prefer not to call this map the identity map, because the metrics on the source and on the
target are different.

41



Remark 2.64. Isometric isomorphisms are important examples of homeomor-
phisms. That f : X Ñ Y is an isometric isomorphism means that X and Y are
equivalent as metric spaces, and that this equivalence can be implemented by the
bijection f .

We now look at isometric isomorphisms in a different direction. Suppose that
f : X Ñ Y is a bijection of sets. Suppose that Y is a metric space. Then there is
unique metric dX on X such that f is an isometric isomorphism: one defines dX
using (2.13). We write such dX as f˚dY , i.e.,

f˚dY px1, x2q “ dY pfpx1q, fpx2qq

and call f˚dY the pullback metric of dY by f .

Pullback metrics are a very useful way of constructing metrics on a set. We
consider some examples below.

Exercise 2.65. Two metrics inducing the same topology are not necessarily equiv-
alent metrics. For example, let f : r0, 1s Ñ r0, 1s be fpxq “ x2. Let X “ r0, 1s, and
let dX be the Euclidean metric: dXpx, yq “ |x´ y|. So

f˚dXpx, yq “ |x
2
´ y2|

is a metric on X . It is not hard to check that f : pX, dXq Ñ pX, dXq is a homeomor-
phism. So dX and f˚dX give the same topology on r0, 1s (cf. Exe. 2.66). Show that
f˚dX and dX are not equivalent metrics.

Exercise 2.66. Let f : X Ñ Y be a bijection of sets with metrics dX , dY . Show
that dX and f˚dY give the same topology on X iff f : pX, dXq Ñ pY, dY q is a
homeomorphism.

In particular, if f : X Ñ X is a bijection, and dX is a metric on X . Then dX and
f˚dX give the same topology on X iff f : pX, dXq Ñ pX, dXq is a homeomorphism.

2.5.2 Convergence in R

Our second application of pullback metrics is the convergence in R.

Definition 2.67. We say that a sequence pxnq in R converges to `8 (resp. ´8), if
for every A P R there is N P Z` such that for all n ě N we have xn ą A (resp.
xn ă A).

Suppose x P R. We say that a sequence pxnq in R converges to x, if there is
N P Z` such that xn P R for all n ě N , and that the subsequence pxk`NqkPZ`

converges in R to x.

This notion of convergence is weird: it is not defined by a metric. So one
wonders if there is a metric d on R such that convergence of sequences under d
agrees with that in Def. 2.67. We shall now find such a metric.
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Lemma 2.68. Let ´8 ď a ă b ď `8 and ´8 ď c ă d ď `8. Then there is a strictly
increasing bijective map ra, bs Ñ rc, ds.

Note that this map clearly sends a to c and b to d. So it restricts to strictly
increasing bijections pa, bq Ñ pc, dq, pa, bs Ñ pc, ds, ra, bq Ñ rc, dq.

Proof. We have a strictly increasing bijection f : R Ñ p´1, 1q defined by (1.9).
f can be extended to a strictly increasing bijective map R Ñ r´1, 1s if we set
fp˘8q “ ˘1. Thus, f restricts to a strictly increasing bijection ra, bs Ñ rfpaq, fpbqs.
Choose a linear function gpxq “ αx`β (where α ą 0) giving an increasing bijection
rfpaq, fpbqs Ñ r0, 1s. Then h “ g ˝ f : ra, bs Ñ r0, 1s is a strictly increasing bijection.
Similarly, we have a strictly increasing bijection k : rc, ds Ñ r0, 1s. Then k´1 ˝ h :
ra, bs Ñ rc, ds is a strictly increasing bijection.

Theorem 2.69. Let φ : RÑ ra, bs be a strictly increasing bijective map where ra, bs Ă R
is equipped with the Euclidean metric dra,bs. Then a sequence pxnq in R converges to
x P R in the sense of Def. 2.67 iff φpxnq converges to φpxq under the metric dra,bs. In
other words, the convergence in R is given by the metric φ˚dra,bs.

Proof. Let y “ φpxq and yn “ φpxnq. We need to prove that xn Ñ x (in the sense
of Def. 2.67) iff yn Ñ y (under the Euclidean metric). Write ψ “ φ´1, which is a
strictly increasing map ra, bs Ñ R. Note that φp`8q “ b and φp´8q “ a.

Case 1: x P R. By discarding the first several terms, we may assume that pxnq is
always in R. If xn Ñ x, then for every ε ą 0, all but finitely many xn are inside the
open interval pψpy´εq, ψpy`εqq. So all but finitely many yn are inside py´ε, y`εq.
So yn Ñ y. That yn Ñ y implies xn Ñ x is proved in a similar way.

Case 2: x “ ˘8. We consider x “ `8 only; the other case is similar. Note
that if 0 ă ε ă b ´ a, then Bra,bspb, εq “ pb ´ ε, bs. If xn Ñ `8, then for each
0 ă ε ă b ´ a, all but finitely many xn are ą ψpb ´ εq. So all but finitely many yn
are inside pb´ ε, bs. This proves yn Ñ b. Conversely, if yn Ñ b, then for each A P R,
all but finitely many yn are inside pφpAq, bs and hence ą φpAq. So all but finitely
many xn are ą A.

Convention 2.70. Unless otherwise stated, a metric on R is one that makes Def.
2.67 true, for instance φ˚dra,bs in Thm. 2.69. Unless otherwise stated, we do NOT
view R (or any subset of R) as a metric subspace of R. Namely, we do not follow
Convention 2.15 for R Ă R, or more generally for RN Ă RN

. Instead, we choose
Euclidean metrics on RN , following Convention 2.8.

The main reason for not following Convention 2.15 here is that metrics on R
are all bounded (by Prop. 3.7). Thus, every subset of R is bounded if we view R as
a metric subspace of R. However, we want a subset of R to be bounded precisely
when it is contained in ra, bs for some ´8 ă a ă b ă `8. (Recall also Def. 1.36.)

After learning topological spaces, we shall forget about the metrics on R and
only care about its topology. (See Conv. 7.18.)
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Remark 2.71. By Thm. 2.69, the properties of ra, bs about convergence of se-
quences and inequalities can be transported to R, for example:

1. If pxnq, pynq are sequences in R converging to A,B P R, and if xn ď yn for all
n, then A ď B.

2. Squeeze theorem: Suppose that pxnq, pynq, pznq are sequences in R, xn ď
yn ď zn for all n, and xn and zn both converge to A P R. Then yn Ñ A.

3. Prop. 2.23 also holds for r´8,`8s “ R: if pxnq is an increasing resp. de-
creasing sequence in R, then limn xn exists in R and equals supn xn resp.
infn xn.

We will see more examples when studying lim sup and lim inf in the future.

We have shown that there is a metric on R which defines the convergence in
Def. 2.67. However, there is no standard choice of such a metric on R. Even worse,
two possible choices of metrics might not be equivalent: Let φ, ψ : RÑ r0, 1s be a
strictly increasing bijections where ψ ˝ φ´1 : r0, 1s Ñ r0, 1s is x ÞÑ x2. Then by Exe.
2.65, φ˚dr0,1s and ψ˚dr0,1s are non-equivalent but topologically equivalent metrics
on R. This is the first example that metrics are not convenient for the description
of convergence. When studying the convergence in R, thinking about metrics is
distracting. In the future, we will see a better notion for the study of convergence:
the notion of topological spaces.

We end this section with a generalization of Thm. 2.69.

Theorem 2.72. Let φ be a strictly increasing bijection in one of the following forms

ra, bs Ñ rc, ds pa, bq Ñ pc, dq

pa, bs Ñ pc, ds ra, bq Ñ rc, dq

where ´8 ď a ď b ď `8 and ´8 ď c ď d ď `8. Then φ is a homeomorphism, i.e., if
pxnq and x are in the domain, then xn Ñ x iff φpxnq Ñ φpxq (in the sense of Def. 2.67).

Proof. The case a “ b is obvious. So we consider a ă b, and hence c ă d. We
consider the left-open-right-closed case for example. The other cases are treated
in a similar way. If the theorem can be proved for p´8,`8s Ñ pc, ds, then it can
also be proved p´8,`8s Ñ pa, bs. By composing the inverse of the second map
with the first map, we see that the theorem holds for pa, bs Ñ pc, ds.

Let us consider φ : p´8,`8s Ñ pc, ds. φ can be extended to a strictly increas-
ing bijection φ : R Ñ rc, ds by letting φp´8q “ c. It suffices to prove that this φ is
a homeomorphism. When ´8 ă c ă d ă `8, then the theorem holds by Thm.
2.69. If one of c, d is ˘8, the same argument as in the proof of Thm. 2.69 proves
that φ is a homeomorphism. We leave it to the readers to fill in the details.
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2.6 Problems and supplementary material

Definition 2.73. Let A be a subset of R satisfying x ` y P A for all x, y P A. (Or
more generally, let A be an abelian semigroup.) We say that a function f : AÑ R
is subadditive if for every x, y P A we have fpx` yq ď fpxq ` fpyq.

Problem 2.1. Consider the following increasing functions:

f1 : Rě0 Ñ r0, 1q f1pxq “
x

1` x

f2 : Rě0 Ñ r0, 1s f2pxq “ mintx, 1u

Prove that they are subadditive functions.

Problem 2.2. Let f : Rě0 Ñ Rě0 be an increasing subadditive function satisfying
the following conditions:

(1) f´1p0q “ t0u.

(2) For any pxnqnPZ`
in Rě0 we have xn Ñ 0 iff fpxnq Ñ 0.

Let pX, dq be a metric space. Define

δ : X ˆX Ñ r0, Aq δpx, yq “ f ˝ dpx, yq

Prove that δ is a metric, and that δ and d are topologically equivalent.

Proposition 2.74. Let pX, dq be a metric space. Then there is a bounded metric δ on X
such that d and δ are topologically equivalent.

Proof. Let f be either f1 or f2 defined in Pb. 2.1. Then f satisfies the assumptions
in Pb. 2.2. So δ “ f ˝ d is a desired metric due to Pb. 2.2. We write down the
formulas explicitly:

δ1px, yq “
dpx, yq

1` dpx, yq
δ2px, yq “ mintdpx, yq, 1u

Problem 2.3. Let pXi, diqiPZ`
be a sequence of metric spaces. Assume that di ď 1

for each i. Let S “
ź

iPZ`

Xi. For each elements f “ pfpiqqiPZ`
and g “ pgpiqqiPZ`

of

S, define

dpf, gq “ sup
iPZ`

dipfpiq, gpiqq

i
(2.14)

Prove that d is a metric on S. Let fn “ pfnpiqqiPZ`
be a sequence in S. Let g P S.

Prove that the following are equivalent:
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(a) lim
nÑ8

fn “ g under the metric d.

(b) fn converges pointwise to g, namely, lim
nÑ8

fnpiq “ gpiq for every i P Z`.

Remark 2.75. The above problem gives our first non-trivial example of function
spaces as metric spaces, where the domain of functions is a countable set. After
learning series, the readers can check that

δpf, gq “
ÿ

iPZ`

2´idipfpiq, gpiqq (2.15)

also defines a metric, and that (a) (with d replaced by δ) and (b) are equivalent. So
δ and d (defined by (2.14)) induce the same topology on X , called the pointwise
convergence topology or simply product topology. Unfortunately, if the index
set Z` is replaced by an uncountable set, there is in general no metric inducing
the product topology. We will prove this in Pb. 7.9.

‹ Problem 2.4. Let X “
Ů

αPA Xα be a disjoint union of metric spaces pXα, dαq.
Assume that dα ď 1 for all i. For each x, y P X , define

dpx, yq “

"

dαpx, yq if x, y P Xα for some α P A
1
2

otherwise

1. Prove that d defines a metric on X .

2. Choose pxnqnPZ`
in X and x P X . What does lim

nÑ8
xn “ x mean in terms of

the convergence in each Xα?

Think about the question: Let X be a set. For each x, y P X define dpx, yq “ 0
if x “ y, and dpx, yq “ 1 if x ‰ y. What does convergence in pX, dqmean?
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3 Sequential compactness and completeness

3.1 Sequential compactness

3.1.1 Basic properties of sequentially compact spaces

Definition 3.1. Let X be a metric space. We say that X is sequentially compact if
every sequence in X has a subsequence converging to some point of X .

The notion of sequential compactness is extremely useful for finding solutions
in an analysis problem. In general, suppose we want to find a point x P X which
makes a property P pxq to be true. Suppose that we can find an “approximate
solution”, i.e. an y P X such that P pyq is close to being true. Thus, we can find a
sequence pxnq in X such that P pxnq is closer and closer to being true when nÑ 8.
Now, if X is sequentially compact, then pxnq has a subsequence pxnk

q converging
to x P X . Then P pxq is true, and hence x is a solution for the problem. (See also
Sec. 2.1.) Let us see an explicit example:

Lemma 3.2 (Extreme value theorem). Let X be a sequentially compact metric space.
Let f : X Ñ R be a continuous function. Then f attains its maximum and minimum at
points of X . In particular, fpXq is a bounded subset of R.

This extremely important result is the main reason for introducing sequen-
tially compact spaces. We call this a lemma, since we will substantially generalize
this result later. (See Exe. 3.6.)

Note that the boundedness of subsets of R (or more generally, of RN ) is always
understood under the Euclidean metric of R, not under any metric of R or RN

.
(Recall Convention 2.70.)

Proof. We show that f attains its maximum on X . The proof for minimum is
similar. Let A “ sup fpXq. Then A P p´8,`8s. If A ă `8, then for each n P Z`

there is xn P X such that A ´ 1{n ă fpxnq ď A (since A ´ 1{n is not an upper
bound of fpXq). If A “ `8, then for each n there is xn P X such that fpxnq ą n.
In either case, we have a sequence pxnq in X such that fpxnq Ñ A in R.

Since X is sequentially compact, pxnq has a subsequence pxnk
qkPZ`

converging
to some x P X . Now, consider f as a map f : X Ñ R, which is continuous (cf.
Exp. 2.51). Since fpxnq Ñ A, its subsequence fpxnk

q also converges to A. But since
xnk

Ñ x and f is continuous at x, we have A “ fpxq. So f attains its maximum at
x. Since fpXq Ă R, we have A P R.

The following are some elementary examples of sequential compactness:

Exercise 3.3. Show that finite unions of sequentially compact spaces is sequen-
tially compact. (In particular, a finite set is sequentially compact.)

More precisely, let X be a metric space. Assume X “ A1Y¨ ¨ ¨YAN where each
metric subspace Ai is sequentially compact. Show that X is sequentially compact.
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Proposition 3.4. Let X1, . . . , XN be sequentially compact metric spaces. Then X “

X1 ˆ ¨ ¨ ¨ ˆXN is sequentially compact.

Proof. SinceX “ pX1ˆ¨ ¨ ¨ˆXN´1qˆXN , by induction, it suffices to assumeN “ 2.
So we write X “ Aˆ B where A,B are sequentially compact. Let pan, bnq be a se-
quence in X . Since A is sequentially compact, panq has a convergent subsequence
pank

q. Since B is sequentially compact, pbnk
q has a convergent subsequence pbnkl

q.
So pankl

, bnkl
q is a convergent subsequence of pan, bnq.

Proposition 3.5. Let f : X Ñ Y be a continuous map of metric spaces. Assume that X
is sequentially compact. Then fpXq, as a metric subspace of Y , is sequentially compact.

Proof. Choose any sequence pynq in fpXq. We can write yn “ fpxnq where xn P X .
SinceX is sequentially compact, pxnq has a subsequence pxnk

q converging to some
x P X . Since f is continuous, ynk

“ fpxnk
q converges to fpxq.

Exercise 3.6. Prove that if Y is a sequentially compact subset of R, then supY P Y
and inf Y P Y . Therefore, Prop. 3.5 generalizes Lem. 3.2.

Proposition 3.7. Let X be a sequentially compact metric space. Then X is bounded
under its metric d.

Proof. Choose any p P X . The function dp : x P X ÞÑ dpx, pq P Rě0 is continuous
by Exp. 2.58. So, by Lem. 3.2, dp is bounded by some 0 ă R ă `8. So X “

BXpp,Rq Ă BXpp, 2Rq.

3.1.2 Limits inferior and superior, and Bolzano-Weierstrass

The goal of this subsection is to prove that closed intervals are sequentially
compact.

Definition 3.8. Let pxnq be a sequence in a metric space X . We say that x P X is a
cluster point of pxnq, if pxnq has a subsequence pxnk

q converging to x.

Warning: In a general topological space, the cluster points of a sequence will
be defined in a different way. (See Pb. 7.2 and Rem. 7.117.)

Definition 3.9. Let pxnq be a sequence in R. Define

αn “ inftxk : k ě nu βn “ suptxk : k ě nu (3.1)

It is clear that αn ď xn ď βn, that pαnq is increasing and pβnq is decreasing. Define

lim inf
nÑ8

xn “ suptαn : n P Z`u “ lim
nÑ8

αn (3.2a)

lim sup
nÑ8

xn “ inftβn : n P Z`u “ lim
nÑ8

βn (3.2b)

(cf. Rem. 2.71), called respectively the limit inferior and the limit superior of
pxnq.
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Remark 3.10. Let pxnq, pynq be sequences in R. Suppose that xn ď yn for every n.
It is clear that

lim inf
nÑ8

xn ď lim sup
nÑ8

xn lim inf
nÑ8

xn ď lim inf
nÑ8

yn lim sup
nÑ8

xn ď lim sup
nÑ8

yn

Theorem 3.11. Let pxnq be a sequence in R, and let S be the set of cluster points of pxnq.
Then lim inf

nÑ8
xn and lim sup

nÑ8

xn belong to S. They are respectively the minimum and the

maximum of S.

In particular, every sequence in R has at least one cluster point.

Proof. We use the notations in Def. 3.9. Let A “ (3.2a) and B “ (3.2b). If x P
S, pick a subsequence pxnk

q converging to x. Since αnk
ď xnk

ď βnk
, we have

A ď x ď B by Rem. 2.71. It remains to show that A,B P S. We prove B P S by
constructing a subsequence pxnk

q converging to B; the proof of A P S is similar.
Consider first of all the special case that pxnq is bounded, i.e., is inside ra, bs Ă

R. Choose an arbitrary n1 P Z`. Suppose n1 ă ¨ ¨ ¨ ă nk have been constructed. By
the definition of β1`nk

, there is nk`1 ě 1` nk such that xnk`1
is close to β1`nk

, say

β1`nk
´

1

k
ă xnk`1

ď β1`nk
(3.3)

Since the left most and the right most of (3.3) both converge to B as k Ñ 8, by
Squeeze theorem (Cor. 2.48) we conclude limk xnk

“ B.
In general, by Lem. 2.68 and Thm. 2.72, there is an increasing (i.e. order-

preserving) homeomorphism (i.e. topopogy-preserving map) φ : R Ñ r0, 1s.
Then φpβnq “ suptφpxkq : k ě nu (cf. Exe. 3.13) and φpBq “ limn φpβnq. So
φpBq “ lim supn φpxnq. By the above special case, pφpxnqq has a subsequence
pφpxnk

qq converging to φpBq. So pxnk
q converges to B.

Remark 3.12. One can also prove the above general case directly using a similar
idea as in the special case. And you are encouraged to do so! (Pay attention to the
case B “ ˘8.)

The proof given above belongs to a classical proof pattern: To prove that a
space X satisfies some property, one first prove it in a convenient case. Then,
in the general case, one finds an “isomorphism” (i.e. “equivalence” in a suitable
sense) φ : X Ñ Y where Y is in the convenient case. Then the result on Y can be
translated via φ´1 to X , finishing the proof.

For example, to solve a linear algebra problem about linear maps between
finite-dimensional vector spaces V,W , one first proves it in the special case that
V “ Fm and W “ Fn. Then, the general case can be translated to the special case
via an equivalence as in Exp. 1.21.

Exercise 3.13. Let X, Y be posets. Let φ : X Ñ Y be an increasing bijection whose
inverse is also increasing. (Namely, φ induces an equivalence of posets). Suppose
E Ă X has supremum supE. Explain why φpEq has supremum φpsupEq.
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It is now fairly easy to prove the famous

Theorem 3.14 (Bolzano-Weierstrass). Let ra1, b1s, . . . , raN , bN s be closed intervals in
R. Then ra1, b1s ˆ ¨ ¨ ¨ ˆ raN , bN s is sequentially compact.

Proof. By Prop. 3.4, it suffices to assume N “ 1. Write a1 “ a, b1 “ b. Let pxnq
be a sequence in ra, bs. By Thm. 3.11, pxnq has a subsequence pxnk

q converging to
some x P R. (E.g. x “ lim supn xn.) Since a ď xnk

ď b, we have a ď x ď b by Rem.
2.71.

Bolzano-Weierstrass theorem illustrates why we sometimes prefer to work
with R instead of R: R is sequentially compact, while R is not. That every se-
quence has limits superior and inferior in R but not necessarily in R is closely
related to this fact. In the language of point-set topology, R is a compactification
of R.

Bolzano-Weierstrass theorem (restricted to RN ) will be generalized to Heine-
Borel theorem, which says that a subset of RN is sequentially compact iff it is
bounded and closed (cf. Def. 3.26 for the definition of closed subsets). See Thm.
3.55.

3.1.3 A criterion for convergence in sequentially compact spaces

At the end of Sec. 2.3, we have raised the following question: Suppose that
pxnq is a bounded sequence in a metric space X such that any two convergent
subsequences converge to the same point. Does pxnq converge?

When X is sequentially compact, pxnq is automatically bounded due to Prop.
3.7. The answer to the above question is yes:

Theorem 3.15. Let X be a sequentially compact metric space. Let pxnq be a sequence in
X . Then the following are equivalent.

(1) The sequence pxnq converges in X .

(2) Any two convergent subsequences of pxnq converge to the same point. In other
words, pxnq has only one cluster point.

Proof. (1)ñ(2): By Prop. 2.36.
(2)ñ(1): Assume that pxnq has at most one cluster point. Since X is sequen-

tially compact, pxnq has at least one cluster point x P X . We want to prove
limnÑ8 xn “ x. Suppose not. Then there exists ε ą 0 such that for every N P Z`

there is n ě N such that dpxn, xq ě ε. Thus, one can inductively construct a sub-
sequence pxnk

q of pxnq such that dpxnk
, xq ě ε for all k. Since X is sequentially

compact, pxnk
q has a subsequence x1

n converging to x1 P X . So dpx1
n, xq ě ε for

all n. Since the function y P X ÞÑ dpy, xq is continuous (Exp. 2.58), we have
limnÑ8 dpx

1
n, xq “ dpx1, xq. This proves that dpx1, xq ě ε ą 0. However, x1, x are

both cluster points of pxnq, and so x “ x1. This gives a contradiction.
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Remark 3.16. Thm. 3.15 can be used in the following way. Suppose that we want
to prove that a given sequence pxnq in a sequentially compact space X converges
to x. Then it suffices to prove that if px1

nq is a subsequence of pxnq converging to
some y P X , then y “ x. This is sometimes easier to prove than directly proving
the convergence of pxnq. We will use this strategy in the proof of L’Hôpital’s rule,
for example. (See Subsec. 12.1.2.)

Corollary 3.17. Let pxnq be a sequence in RN . The following are equivalent.

(1) The sequence pxnq converges in RN .

(2) The sequence pxnq is bounded. Moreover, any two convergent subsequences of pxnq
converge to the same point of RN .

Proof. (1)ñ(2): By Prop. 2.33 and 2.36.
(2)ñ(1): Assume (2). Since pxnq is bounded, it can be contained in X “ I1 ˆ

¨ ¨ ¨ ˆ IN where each Ii is a closed interval in R. Clearly, any two cluster points of
pxnq are inside X , and are equal by (2). By Bolzano-Weierstrass, X is sequentially
compact. Thus, by Thm. 3.15, pxnq converges in X and hence in RN .

Corollary 3.18. The following are true.

1. Let pxnq be a sequence in R. Then pxnq converges in R iff lim sup
nÑ8

xn equals

lim inf
nÑ8

xn.

2. Let pxnq be a sequence in R. Then pxnq converges in R iff lim sup
nÑ8

xn equals

lim inf
nÑ8

xn and pxnq is bounded.

Note that if pxnq converges in R, we must have limxn “ lim supxn “ lim inf xn
by Thm. 3.11.

Proof. 1. Let A “ lim inf xn and B “ lim supxn. Let S be the set of cluster points of
pxnq. By Thm. 3.11, A “ minS,B “ maxS. So A “ B iff S has only one element.
This is equivalent to the convergence of pxnq in R due to Thm. 3.15 (since R is
sequentially compact by Bolzano-Weierstrass.)

2. If pxnq converges, then A “ B by part 1. And pxnq is bounded due to Prop.
2.33. Conversely, if A “ B and if pxnq is bounded, say α ď xn ď β for all n where
´8 ă α ă β ă `8. Then α ď A ď B ď β. So A,B P R. By part 1, pxnq converges
to A P R.
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3.2 Outlook: sequentially compact function spaces

In Sec. 2.1, we mentioned that metric spaces and (more generally) point-set
topology were introduced by mathematicians in order to study (typically infinite
dimensional) function spaces with the help of the geometric intuition of RN . Now
we have learned a couple of important results about sequentially compact spaces.
But we have not met any example arising from function spaces. So let me show
one example to the curious readers: The product space r0, 1sZ` , equipped with
the metric defined in Pb. 2.3, is sequentially compact. We will prove this result
at the end of this chapter. (Indeed, we will prove a slightly more general version.
See Thm. 3.54.) This is a famous result, not only because it has many important
applications (some of which will be hinted at in this section), but also because its
proof uses the clever “diagonal method”.

Moreover, we will later prove an even more surprising fact: every sequentially
compact metric space is homeomorphic to a closed subset of r0, 1sZ` . (See Thm.
8.45.) Thus, all sequentially compact metric spaces can be constructed explicitly,
in some sense.

The readers may still complain that functions on Z` are very different from
those we often see and use in analysis and (especially) in differential equations:
We are ultimately interested in functions on R or on ra, bs, but not on countable
sets. This is correct. But r0, 1sZ` (and its closed subsets) are in fact very helpful for
the study of spaces of functions on R and on ra, bs. In this course, we shall learn
two major examples that the sequential compactness of r0, 1sZ` helps with:

1. A “ Q X ra, bs is a countable dense subset of ra, bs. Thus, if we let Cpra, bsq
denote the set of continuous R-functions on ra, bs, then the restriction map
f P Cpra, bsq ÞÑ f |A P RA is injective. In many applications, we are interested
in a subset X Ă Cpra, bsq of uniformly bounded functions, say all f P X take
values in r´1, 1s. Then we have an injective map

Φ : X Ñ r´1, 1sA f ÞÑ f |A

If X satisfies a condition called “equicontinuous”, then a sequence fn in X
converges uniformly to f P Cpra, bsq iff fn|A converges pointwise to f |A. (See
Rem. 3.62.) Thus, from the sequential compactness of r´1, 1sA under point-
wise convergence topology, one concludes that every sequence in X has a
subsequence converging uniformly in Cpra, bsq. This remarkable sequential
compactness result on (the closure of) X is called Arzelà-Ascoli theorem,
and will be used to prove the fundamental Peano existence theorem in ordi-
nary differential equations. We also see that the fact that ra, bs has a count-
able dense subset A plays a crucial role. This property of metric spaces is
called “separable” and will be studied later.

2. Fourier series are powerful for the study of partial differential equations. A
continuous function f : r´π, πs Ñ C satisfying fp´πq “ fpπq has Fourier
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series expansion fpxq “
ř

nPZ ane
inx where an P C. However, for the sake

of studying differential equations, one needs to consider series
ř

nPZ ane
inx

converging to a function much worse than a continuous function. For exam-
ple, in the study of integral equations (which are closely related to certain
partial differential equations), Hilbert and Schmidt discovered that one has
to consider all fpxq “

ř

nPZ ane
inx satisfying

ř

n |an|
2 ď 1. Therefore, one lets

B “ tz P C : |z| ď 1u and considers pf : n P Z ÞÑ an P C as an element
of B

Z
. The sequential compactness of B

Z
helps one find the pf such that

the corresponding fpxq “
ř

n
pfpnq ¨ einx is a desired solution of the integral

equation.

3.3 Complete metric spaces and Banach spaces

In this section, we let F P tR,Cu, and assume that all vector spaces are over F.

3.3.1 Cauchy sequences and complete metric spaces

Definition 3.19. A sequence pxnq in a metric spaceX is called a Cauchy sequence,
if:

• For every ε ą 0 there exists N P Z` such that for all m,n ě N we have
dpxm, xnq ă ε.

Here, “ε ą 0” can mean either “ε P Rą0” or “ε P Qą0”. The choice of this
meaning does not affect the definition. The above definition can be abbreviated
to “for every ε ą 0, we have dpxm, xnq ă ε for sufficiently large m,n”.

Remark 3.20. It is an easy consequence of triangle inequality that pxnq is a Cauchy
sequence iff

• For every ε ą 0 there exists N P Z` such that for all n ě N we have
dpxn, xNq ă ε.

Also, it is clear that every Cauchy sequence is bounded.

Proposition 3.21. Every convergent sequence in a metric space X is a Cauchy sequence.

Proof. Assume pxnq converges to x in X . Then for every ε ą 0 there is N P Z`

such that dpx, xnq ă ε{2 for all n ě N . Since this is true for every m ě N , we have
dpxm, xnq ď dpx, xnq ` dpx, xmq ă ε{2` ε{2 “ ε.

Definition 3.22. A metric space X is called complete if every Cauchy sequence in
X converges.

We have many examples of complete metric spaces:
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Theorem 3.23. If pxnq is a Cauchy sequence in a metric space X with at least one cluster
point x, then pxnq converges in X to x. Consequently, every sequentially compact metric
space is complete.

Proof. Let pxnq be a Cauchy sequence in X with subsequence pxnk
q converging to

x P X . Let us show that xn Ñ x.
Since pxnq is Cauchy, for every ε ą 0 there is N P Z` such that dpxn, xmq ă ε{2

for all m,n ě N . Since xnk
Ñ x, there is k ě N such that dpxnk

, xq ă ε{2. Since nk
is strictly increasing over k, we have nk ě k. So nk ě N . So we can let m “ nk.
This gives dpxn, xnk

q ă ε{2. Therefore dpxn, xq ď dpxn, xnk
q ` dpxnk

, xq ă ε for all
n ě N .

Example 3.24. LetX “ ra1, b1sˆ¨ ¨ ¨ˆraN , bN swhere each rai, bis is a closed interval
in R, then X is sequentially compact by Bolzano-Weierstrass. Thus, by Thm. 3.23.
X is complete.

Corollary 3.25. RN and CN are complete (under the Euclidean metrics).

Proof. Since CN is isometrically isomorphic to R2N , it suffices to prove that RN is
complete. Choose a Cauchy sequence pxnq in RN . Since pxnq is bounded, pxnq is
contained inside X “ I1 ˆ ¨ ¨ ¨ ˆ IN where each Ii “ ra, bs is in R. By Exp. 3.24, X
is complete. So pxnq converges to some x P X .

Definition 3.26. We say that a subset A of a metric space X is closed if the follow-
ing condition is true: For every sequence pxnq in A converging to a point x P X ,
we have x P A.

Thus, the word “closed” here means “closed under taking limits”.

Proposition 3.27. Let A be a metric subspace of a metric space X . Recall that the metric
of A inherits from that of X (cf. Def. 2.14). Consider the statements:

(1) A is complete.

(2) A is a closed subset of X .

Then (1)ñ(2). If X is complete, then (2)ñ(1).

Proof. First, assume that X is complete and (2) is true. Let pxnq be a Cauchy se-
quence in A. Then it is a Cauchy sequence in X . So xn Ñ x P X because X is
complete. So x P A by the definition of closedness. This proves (1).

Next, we assume (1). Choose a sequence pxnq inA converging to a point x P X .
By Prop. 3.21, pxnq is a Cauchy sequence in X , and hence a Cauchy sequence in
A. Since A is complete, there is a P A such that xn Ñ a. So we must have x “ a
because any sequence has at most one limit in a metric space. This proves x P A.
So (2) is proved.
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A similar result holds for sequential compactness. See Pb. 3.4.

Example 3.28. Let ´8 ă a ă b ă `8. Then pa, bq is not complete (under the Eu-
clidean metric), because pa, bq is not closed in the metric space R. (For sufficiently
large n, b´ 1{n is in pa, bq, but limnÑ8pb´ 1{nq “ b is not in b.)

Example 3.29. By Prop. 1.29, for each x P RzQ, we can choose an increasing
sequence in Q converging to x. So Q is not closed in R. So Q is not complete
under the Euclidean topology.

Example 3.30. Let X be a metric space. Let p P X and 0 ď R ă `8. Then
BXpx,Rq is a closed subset of X . Therefore, if X is complete, then BXpp,Rq is
complete by Prop. 3.27.

Proof of closedness. Let pxnq be a sequence in Bpp,Rq converging to x P X . Then
dpp, xnq ď R. Since the function y P X ÞÑ dpp, yq P R is continuous (Exp. 2.58), we
have dpp, xq “ limnÑ8 dpp, xnq ď R. So x P Bpp,Rq.

Exercise 3.31. Let d, δ be two equivalent metrics on a set X . Show that a sequence
pxnq in X is Cauchy under d iff pxnq is Cauchy under δ.

Note that if, instead of assuming d, δ are equivalent, we only assume that d, δ
are topologically equivalent. Then the above conclusion is not necessarily true:

Exercise 3.32. Find a non-complete metric δ on R topologically equivalent to the
Euclidean metric.

3.3.2 Normed vector spaces and Banach spaces

A major application of complete metric spaces is to show that many series
converge without knowing to what exact values these series converge. A typical
example is the convergence of

ř

nPZ`
sinp

?
2nq{n2 in R. We are also interested in

the convergence of series in function spaces, for instance: the uniform conver-
gence of fpxq “

ř

nPZ`
sinp

?
2nx3q{n2 on R; a suitable convergence of the Fourier

series
ř

nPZ ane
inx. But we cannot take sum in a general metric space since it has

no vector space structures. Therefore, we need a notion which combines complete
metric spaces with vector spaces. Banach spaces are such a notion.

Definition 3.33. Let V be a vector space over F with zero vector 0V . A function
} ¨ } : V Ñ Rě0 is called a norm if for every u, v P V and λ P F, the following hold:

• (Subadditivity) }u` v} ď }u} ` }v}.

• (Absolute homogeneity) }λv} “ |λ| ¨ }v}. In particular, (by taking λ “ 0) we
have }0V } “ 0.

• If }v} “ 0 then v “ 0V .
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We call pV, } ¨ }q (often abbreviated to V ) a normed vector space.

Remark 3.34. Assuming }0V } “ 0, to check the absolute homogeneity, it suffices
to check

}λv} ď |λ| ¨ }v}

for all λ and v. Then clearly }λv} “ |λ| ¨ }v}when λ “ 0. Suppose λ ‰ 0. Then

}v} “ }λ´1λv} ď |λ|´1
}λv}

which implies }λv} “ |λ| ¨ }v}.

Remark 3.35. Let V be a vector space. If V is a normed vector space, then

dpu, vq “ }u´ v} (3.4)

clearly defines a metric. (Note that triangle inequality follows from subadditivity.)
Unless otherwise stated, we always assume that the metric of a normed vector
space is defined by (3.4).

Definition 3.36. Let V be a normed vector space. We say that V is a Banach space
if V is a complete metric space where the metric is the canonical one (3.4). If V is
over the field C (resp. R), we call V a complex (resp. real) Banach space.

Example 3.37. We always assume that the norm on FN is the Euclidean norm

}pa1, . . . , aNq} “
a

|a1|2 ` ¨ ¨ ¨ ` |aN |2 (3.5)

The canonical metric it gives is the Euclidean metric. Thus, by Cor. 3.25, FN is a
Banach space.

If pλnq is a sequence in F converging to λ, and if pxnq is a sequence in FN
converging to x, then one can show that λnxn converges to λx by checking that
each component of λnxn converges to the corresponding component of λx. This
is due to Prop. 2.27. However, if pxnq is in general a sequence in a normed vector
space, this method fails. So we need a different argument:

Proposition 3.38. Let V be a normed vector space. The following maps are continuous

` : V ˆ V Ñ V pu, vq ÞÑ u` v

´ : V ˆ V Ñ V pu, vq ÞÑ u´ v

ˆF : Fˆ V Ñ V pλ, vq ÞÑ λv

} ¨ } : V Ñ Rě0 v ÞÑ }v}

We didn’t mention the continuity of the division map pλ, vq P Fˆ ˆ V ÞÑ λ´1v
since it follows from that of ˆF and of the inversion map λ ÞÑ λ´1 by Exp. 2.44.
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Proof. One can check that the addition map, the subtraction map, and the last map
} ¨ } are Lipschitz continuous.

Define metric dppλ, vq, pλ1, v1qq “ maxt|λ ´ λ1|, }v ´ v1}u on F ˆ V . Then F ˆ V
is covered by open balls of the form Bp0, rq “ tpλ, vq P F ˆ V : |λ| ă r, }v} ă ru.
Similar to the argument in (2.6), one uses subadditivity (i.e. triangle inequality)
and absolute homogeneity to show that ˆF has Lipschitz constant 2r on Bp0, rq.
So ˆF is continuous by Lem. 2.41 and 2.43.

3.4 The Banach spaces l8pX, V q and CpX, V q

In this section, we let F P tR,Cu and assume that the vector spaces V are over
F. As the title suggests, in this section we shall introduce two important examples
of Banach spaces: the space of bounded functions l8pX, V q and its subspace of
continuous functions CpX, V q (when X is a sequentially compact metric space).
In order for these two spaces to be Banach spaces, we must assume that V is also
Banach.

In application, the main examples are V “ R,C,RN ,CN . Indeed, Cpra, bs,RNq

is one of the main examples of function spaces considered by Fréchet when he
defined metric spaces. Therefore, the readers can assume that V is one of such
spaces if they want to make life easier. Just keep in mind that we sometimes also
consider the case where V itself is a function space.

Definition 3.39. Let X be a set and let V be a vector space. The set V X is a vector
space if we define for each f, g P V X and λ P F:

f ` g : X Ñ V pf ` gqpxq “ fpxq ` gpxq

λf : X Ñ V pλfqpxq “ λfpxq

We also define the absolute value function

|f | : X Ñ Rě0 x P X ÞÑ }fpxq} (3.6)

The symbol |f | is sometimes also written as }f}when it will not be confused with
}f}8 or other norms of f .

Definition 3.40. Let X be a set and let V be a normed vector space. For each
f P V X , define the l8l8l8-norm

}f}l8pX,V q ” }f}l8 ” }f}8 “ sup
xPX

}fpxq} (3.7)

where }fpxq} is defined by the norm of V . Define the l8l8l8-space

l8pX, V q “ tf P V X : }f}8 ă `8u (3.8)

which is a vector subspace of V X . Then l8pX, V q is a normed vector space under
the l8-norm. A function f : X Ñ V is called bounded if f P l8pX, V q.
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Exercise 3.41. Prove that for every f, g P V X and λ P F we have

}f ` g}8 ď }f}8 ` }g}8

}λf}8 “ |λ| ¨ }f}8

(3.9)

(Note that clearly we have that }f}8 “ 0 implies f “ 0.) Here, we understand
0 ¨ p`8q “ 0. Use these relations to verify that l8pX, V q is a linear subspace of V X

(i.e. it is closed under addition and scalar multiplication) and that } ¨ }8 is a norm
on l8pX, V q.

Definition 3.42. Let V be a normed vector space. We say that a sequence pfnq in
V X converges uniformly to f P V X if limnÑ8 }f ´ fn}8 “ 0. In this case, we write
fn Ñ f .

We say that pfnq converges pointwise to f P V X if for every x P X we have
limnÑ8 fnpxq “ fpxq, i.e. limnÑ8 }fnpxq ´ fpxq} “ 0.

The same definition will be applied to nets pfαqαPI in V X after learning net
convergence in Sec. 5.2.

In more details, the uniform convergence of fn to f means that “for every ε ą 0
there is N P Z` such that for all n ě N and for all x P X , we have }fnpxq ´ fpxq} ă
ε”. If we place the words “for all x P X” at the very beginning of the sentence, we
get pointwise convergence.

Uniform convergence implies pointwise convergence: If }f ´ fn}8 Ñ 0, then
for each x P X we have }fnpxq ´ fpxq} Ñ 0 since }fpxq ´ fnpxq} ď }f ´ fn}8.

Example 3.43. Let fn : p0, 1q Ñ R be fnpxq “ xn. Then fn converges pointwise to
0 (cf. Exp. 4.10). But supxPp0,1q |x

n ´ 0| “ 1 does not converge to 0. So fn does not
converge uniformly to 0.

Remark 3.44. The uniform convergence of sequences in l8pX, V q is induced by
the l8-norm, and hence is induced by the metric dpf, gq “ }f ´ g}8. However,
this formula cannot be extended to a metric on V X , since for arbitrary f, g P V X ,
}f ´ g}8 is possibly `8.

In fact, it is true that the uniform convergence of sequences in V X is induced
by a metric, see Pb. 3.6. When X is countable, we have seen in Pb. 2.3 that the
pointwise convergence in V X is also given by a metric.

Theorem 3.45. Let X be a set, and let V be a Banach space (over F). Then l8pX, V q is a
Banach space (over F).

Proof. Let pfnq be a Cauchy sequence in l8pX, V q. Then for every ε ą 0 there is
N P Z` such that for all m,n ě N we have that supxPX }fnpxq ´ fmpxq} ă ε, and
hence }fnpxq ´ fmpxq} ă ε for each x P X . This shows that for each x P X , pfnpxqq
is a Cauchy sequence in V , which converges to some element fpxq P V because V
is complete.
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We come back to the statement that for each ε ą 0, there exists N P Z` such
that for all n ě N and all x,

}fnpxq ´ fmpxq} ă ε

for every m ě N . Let m Ñ 8. Then by the continuity of subtraction and taking
norm (cf. Prop. 3.38.), we obtain }fnpxq ´ fpxq} ď ε for all n ě N and x P X . In
other words, }fn´f}8 ď ε for all n ě N . In particular, }f}8 ď }fN}8`}fN´f}8 ă

`8 by (3.9). This proves f P l8pX, V q and fn Ñ f .

Mathematicians used to believe that “if a sequence of continuous functions
fn : r0, 1s Ñ R converges pointwise to a function f : r0, 1s Ñ R, then f is continu-
ous”. Cauchy, one of the main figures in 19th century working on putting analy-
sis on a rigorous ground, has given a problematic proof of this wrong statement.
Counterexamples were later found in the study of Fourier series: Let f : R Ñ R
be a function with period 2π such that fpxq “ x when ´π ă x ă π, and fpxq “ 0
when x “ ˘π. Then the Fourier series of this noncontinuous function f converges
pointwise to f , yet the partial sums of this series are clearly continuous functions.
Later, it was realized that uniform convergence is needed to show the continuity
of the limit function. (See Thm. 3.48.) This was the first time the importance of
uniform convergence was realized.

The following discussions about (resp. sequentially compact) metric spaces
also apply to general (resp. compact) topological spaces. The reader can come
back and check the proofs for these more general spaces after studying them in
the future.

Definition 3.46. Let X, Y be metric spaces (resp. topological spaces). Then
CpX, Y q denotes the set of continuous functions from X to Y .

Lemma 3.47. Let X be a metric space (resp. a topological space), and let V be a normed
vector space. Then CpX, V q is a linear subspace of V X . If X is sequentially compact
(resp. compact), then CpX, V q is a linear subspace of l8pX, V q.

Proof. Using Prop. 3.38, one checks easily that CpX, V q is a linear subspace of
V X . For any f P CpX, V q, the absolute value function |f | : x P X ÞÑ }fpxq} is
continuous. Thus, assuming that X is sequentially compact, then by Lem. 3.2, |f |
is bounded on X . This proves that }f}8 ă `8. Thus CpX, V q is a subset (and
hence a linear subspace) of l8pX, V q.

Theorem 3.48. Let X be a metric space (resp. a topological space), and let V be a normed
vector space. Then CpX, V q X l8pX, V q is a closed linear subspace of l8pX, V q. In
particular, if X is sequentially compact (resp. compact), then CpX, V q is a closed linear
subspace of l8pX, V q.
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Proof. Choose a sequence pfnq in CpX, V q X l8pX, V q converging in l8pX, V q to
f . Namely, fn Ñ f . We want to prove that f is continuous. We check that f
satisfies Def. 2.38-(2’). (One can also use Def. 2.38-(1). The proofs using these two
definitions are not substantially different.)

Fix p P X . Choose any ε ą 0. Since fn Ñ f , there existsN P Z` such that for all
n ě N and we have }f ´ fn}8 ă ε. Since fN is continuous, there exists r ą 0 such
that for each x P BXpp, rqwe have }fNpxq´fNppq} ă ε. Thus, for each x P BXpp, rq
we have

}fpxq ´ fppq} ď }fpxq ´ fNpxq} ` }fNpxq ´ fNppq} ` }fNppq ´ fppq} ă 3ε

This finishes the proof.

Convention 3.49. Unless otherwise stated, if X is sequentially compact metric
space (or more generally, a compact topological space to be defined latter), and if
V is a normed vector space, the norm on CpX, V q is chosen to be the l8-norm.

Corollary 3.50. LetX be a metric space (resp. a topological space), and let V be a Banach
space. Then CpX, V q X l8pX, V q is a Banach space under the l8-norm. In particular, if
X is sequentially compact (resp. compact), then CpX, V q is a Banach space.

Proof. This follows immediately from Prop. 3.27, Thm. 3.48, and the fact that
l8pX, V q is complete (Thm. 3.45).

3.5 Problems and supplementary material

Problem 3.1. Let pxnq be a sequence in a metric space X . Let x P X . Prove that
the following are equivalent.

(1) x is a cluster point of pxnq, i.e., the limit of a convergent subsequence of pxnq.

(2) For each ε ą 0 and each N P Z`, there exists n ě N such that dpxn, xq ă ε.

(Note: in a general topological space, these two statements are not equivalent.)

Remark 3.51. Condition (2) is often abbreviated to “for each ε ą 0, the sequence
pxnq is frequently inBpx, εq”. In general, we say “pxnq frequently satisfies P” if for
each N P Z` there is n ě N such that xn satisfies P. We say that “pxnq eventually
satisfies P” if there exists N P Z` such that for every n ě N , xn satisfies P.

Thus “pxnq eventually satisfies P” means the same as “all but finitely many xn
satisfies P”. Its negation is “pxnq frequently satisfies ␣P”.

Remark 3.52. Condition (2) of Pb. 3.1 is sometimes easier to use than (1). For
example, compared to the original definition of cluster points, it is much easier to
find an explicit negation of (2) by using the rule suggested in Rem. 2.17: There
exist ε ą 0 and N P Z` such that dpxn, xq ě ε for all n ě N . (Or simply: there
exists ε ą 0 such that xn is eventually not in Bpx, εq.)
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Problem 3.2. Use Pb. 3.1-(2) to prove that if pxnq is a sequence in R, then lim sup
nÑ8

xn

is a cluster point of pxnq.

Remark 3.53. You will notice that your proof of Pb. 3.2 is slightly simpler than
the proof we gave for Thm. 3.11. This is because our construction of subsequence
as in (3.3) has been incorporated into your proof of (2)ñ(1) in Pb. 3.1.

Problem 3.3. Let f : X Ñ Y be a continuous map of metric spaces. Assume that
f is bijective and X is sequentially compact. Prove that f is a homeomorphism
using the following hint.

Hint. You need to prove that if pynq is a sequence in Y converging to y P Y , then
xn “ f´1pynq converges to x “ f´1pyq. Prove that pxnq has only one cluster point,
and hence converges to some point x1 P X (why?). Then prove x1 “ x. (In the
future, we will use the language of open sets and closed sets to prove this result
again. Do not use this language in your solution.)

Theorem 3.54 (Tychonoff theorem, countable version). Let pXnqnPZ`
be a sequence

of sequentially compact metric spaces. Then the product space S “
ź

nPZ`

Xn is sequentially

compact under the metric defined as in Pb. 2.3.

The method of choosing subsequence in the following proof is the reknowned
diagonal method. A different method will be given in Pb. 8.7.

Proof. Let pxmqmPZ`
be a sequence in S. Since pxmp1qqmPZ`

is a sequence in the se-
quentially compact space X1, pxmqmPZ`

has a subsequence x1,1, x1,2, x1,3 . . . whose
value at n “ 1 converges in X1. Since X2 is sequentially compact, we can choose
a subsequence x2,1, x2,2, x2,3, . . . of the previous subsequence such that its values
at n “ 2 converge in X2. Then pick a subsequence from the previous one whose
values at 3 converge in X3.

By repeating this process, we get an8ˆ8matrix pxi,jqi,jPZ`
:

x1,1 x1,2 x1,3 ¨ ¨ ¨

x2,1 x2,2 x2,3 ¨ ¨ ¨

x3,1 x3,2 x3,3 ¨ ¨ ¨

...
...

... . . .

(3.10)

such that the following hold:

• The 1-st line is a subsequence of the original sequence pxmqmPZ`
.

• The pi` 1q-th line is a subsequence of the i-th line.

• For each n, limjÑ8 xn,jpnq converges in Xn.
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Then the diagonal line pxi,iqiPZ`
is a subsequence of the original sequence

pxmqmPZ`
. Moreover, for each n, pxi,iqiěn is a subsequence of the n-th line, whose

value at n therefore converges in Xn. Thus limiÑ8 xi,ipnq converges in Xn. Thus,
by Pb. 2.3, pxi,iqiPZ`

converges under any metric inducing the product topol-
ogy.

Problem 3.4. LetX be a sequentially compact metric space. LetA Ă X be a metric
subspace. Consider the statements:

(1) A is sequentially compact.

(2) A is a closed subset of X .

Prove that (1)ñ(2). Prove that if X is sequentially compact, then (2)ñ(1).

The above problem implies immediately:

Theorem 3.55 (Heine-Borel theorem). LetA be a subset of RN . ThenA is sequentially
compact iff A is a bounded closed subset of RN .

Proof. Suppose that A is sequentially compact. Then A is bounded under the
Euclidean metric by Prop. 3.7. By Pb. 3.4, A is a closed subset of RN .

Conversely, assume that A is a bounded and closed subset of RN . Then A Ă B
whereB is the product ofN pieces of closed intervals in R. ThenB is sequentially
compact by Bolzano-Weierstrass. Since A is closed in RN , it is not hard to check
that A is closed in B.1 Thus A is sequentially compact by Pb. 3.4.

Example 3.56. Choose any p P RN and 0 ď R ă `8. ThenBRN pp,Rq is a bounded
closed subset of RN (Exp. 3.30), and hence is sequentially compact by Heine-Borel.

Remark 3.57. Think about the question: Equip RZ` with metric

dpx, yq “ sup
nPZ`

mint|xpnq, ypnq|, 1u

n

What are the sequentially compact subsets of RZ`? (Namely, think about how to
generalize Heine-Borel theorem to RZ` .)

Problem 3.5. Do Exercise 3.41.

Problem 3.6. Let V be a normed vector space. For every f, g P V X define

dpf, gq “ mint1, }f ´ g}8u (3.11)

1. Show that d defines a metric on V X .
1If Z is a metric space, if X Ă Y Ă Z, and if X is closed in Z, then it is easy to check that X is

closed in Y .
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2. Show that for every sequence pfnq in V X and every g P V X , we have fn Ñ g
under the metric d iff fn Ñ g.

Definition 3.58. Let X be a set, and let V be a normed vector space. A metric on
V X is called a uniform convergence metric if it is equivalent to (3.11). Thus, by
Def. 2.61, a uniform convergence metric is one such that a sequence pfnq in V X

converges to f under this metric iff fn Ñ f .

Problem 3.7. Let X, Y be metric spaces, and assume that Y is sequentially com-
pact. Let V be a normed vector space. Choose f P CpXˆY, V q, i.e., f : XˆY Ñ V
is continuous. For each x P X , let

fx : Y Ñ V y ÞÑ fpx, yq

Namely fxpyq “ fpx, yq. It is easy to check that fx P CpY, V q. Define a new
function

Φpfq : X Ñ CpY, V q x ÞÑ fx (3.12)

Recall that CpY, V q is equipped with the l8-norm.

1. Prove that Φpfq is continuous. In other words, prove that if pxnq is a se-
quence in X converging to x P X , then fxn Ñ fx on Y , i.e.

lim
nÑ8

}fxn ´ fx}l8pY,V q “ 0

‹ 2. Give an example of f P CpX ˆ Y,Rq where Y is not sequentially compact,
pxnq converges to x in X , and fxn does not converge uniformly to fx. (Note:
you may consider X “ Y “ R.)

Hint. In part 1, to prove that Φpfq is continuous, one can prove the equivalent fact
that for every fixed x P X the following is true:

• For every ε ą 0 there exists δ ą 0 such that for all p P BXpx, δq, we have
supyPY }fpp, yq ´ fpx, yq} ă ε.

(Cf. Def. 2.38.) Prove this by contradiction and by using the sequential compact-
ness of Y appropriately.

Remark 3.59. Let X “ Z` Y t8u, equipped with the metric

dpm,nq “ |m´1
´ n´1

|

In other words, the metric on X is τ˚dR where dR is the Euclidean metric on R,
and τ : X Ñ R, n ÞÑ n´1. It is not hard to show that X is sequentially compact:
either prove it directly, or apply Heine-Borel to τpXq.

Let Y be a metric space. Let pynqnPZ`
be a sequence in Y , and let y8 P Y . It is

not hard to see that the following two statements are equivalent:
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(1) The function F : X Ñ Y, n ÞÑ yn is continuous.

(2) The sequence pynqnPZ`
converges to y8.

The following problem is a generalization of this equivalence.

‹ Problem 3.8. Let V be a normed vector space. Let Y be a metric space. Let
X “ Z` Y t8u with metric defined as in Rem. 3.59. Let pfnqnPZ`

be a sequence in
CpY, V q. Let f8 P V

Y . Prove that the following are equivalent:

(1) The following function is continuous:

F : X ˆ Y Ñ V pn, yq ÞÑ fnpyq (3.13)

In particular, by restricting F to8ˆ Y , we see that f8 P CpY, V q.

(2) pfnqnPZ`
converges pointwise to f8. Moreover, pfnqnPZ`

is pointwise
equicontinuous, which means the following:

• For every y P Y and every ε ą 0, there exists δ ą 0 such that for all
p P BY py, δqwe have

sup
nPZ`

}fnppq ´ fnpyq} ă ε

Note. In part (1), the only nontrivial thing to prove is that F is continuous at p8, yq
for every y P Y .

Remark 3.60. There is a concise way to define pointwise equicontinuity: a se-
quence pfnqnPZ`

in V Y is pointwise equicontinuous iff the function

Y ÞÑ V Z` y ÞÑ pf1pyq, f2pyq, . . . q (3.14)

is continuous, where V Z` is equipped with any uniform convergence metric (cf.
Def. 3.58).

‹ Remark 3.61. In Pb. 3.8, there is a quick and tricky way to conclude (1)ñ(2):
Use Pb. 3.7 and the sequential compactness of X . (Do not use this method in
your solution. Prove (1)ñ(2) directly; it is a good exercise and is not difficult.)

‹ Remark 3.62. Pb. 3.7 and 3.8, together with Thm. 3.48, imply the following fact
(can you see why?):

• Let Y be a sequentially compact metric space. Let V be a normed vector
space. Let pfnqnPZ`

be a pointwise equicontinuous sequence of functions
Y Ñ V converging pointwise to some f : Y Ñ V . Then fn Ñ f on Y .

You can also try to give a straightforward proof of this fact without using Pb. 3.7
and 3.8.
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4 Series

In this chapter, we assume that vector spaces are over F P tR,Cu unless other-
wise stated.

4.1 Definitions and basic properties

Definition 4.1. Let V be a Banach space (over F). A series in V is an expression
of the form

8
ÿ

i“1

vi (4.1)

where pviqiPZ`
is a sequence in V . If s P V , we say that the series (4.1) converges

to s if

s “ lim
nÑ8

n
ÿ

i“1

vi

namely, sn Ñ s where sn is the partial sum sn “
řn
i“1 vi. In this case, we write

s “
8
ÿ

i“1

vi

Remark 4.2. Since V is complete, the series (4.1) converges iff the sequence of
partial sum psnq is a Cauchy sequence: for every ε ą 0 there exists N P Z` such
that for all n ą m ě N we have }sn ´ sm} ă ε, i.e.,

›

›

›

n
ÿ

i“m`1

vi

›

›

›
ă ε (4.2)

Proposition 4.3. Suppose that
ř8

i“1 vi is a convergent series in a Banach space V . Then
lim
nÑ8

vn “ 0.

Proof. Let sn “ v1 ` ¨ ¨ ¨ ` vn, which converges to s P V . Then limnÑ8 sn`1 “ s. So
vn “ sn`1 ´ sn Ñ s´ s “ 0 since subtraction in continuous (Prop. 3.38).

Thus, for example,
ř8

n“1p´1q
n diverges in the Banach space R since

limnÑ8p´1q
n does not converge to 0.

Definition 4.4. Consider a series in Rě0:

8
ÿ

i“1

ai (4.3)
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namely, each ai is in Rě0. Note that the partial sum sn “
řn
i“1 ai is increasing. We

say that limnÑ8 sn (which exists in Rě0 and equals suptsn : n P Z`u, cf. Rem. 2.71)
is the value of the series (4.3) and write

8
ÿ

i“1

ai “ lim
nÑ8

sn

Definition 4.5. We say that a series
ř8

i“1 ai in Rě0 converges if it converges in R
(but not just converges in Rě0, which is always true). Clearly,

ř8

i“1 ai converges
iff

8
ÿ

i“1

ai ă `8

More generally, we say that a series
ř8

i“1 vi in a Banach space V converges abso-
lutely, if

8
ÿ

i“1

}vi} ă `8

Remark 4.6. By the Cauchy condition of convergence,
ř8

i“1 vi converges abso-
lutely iff for every ε ą 0 there exists N P Z` such that for all n ą m ě N we
have

n
ÿ

i“m`1

}vi} ă ε (4.4)

By comparing (4.4) with (4.2) and using the subadditivity of the norm (recall Def.
3.33), we immediately see:

Proposition 4.7. Let
ř8

i“1 vi be a series in a Banach space. The following are true.

1. If
ř8

i“1 vi converges absolutely, then it converges.

2. For each i we choose ai P Rě0 satisfying }vi} ď ai. Suppose that
ř8

i“1 ai ă `8.
Then

ř8

i“1 vi converges absolutely.

Proof. Part 1 has been explained above. In part 2, we have
ř

}vi} ď
ř

ai ă `8.
So

ř

vi converges absolutely.

Exercise 4.8. Suppose that
ř8

i“1 ui and
ř8

i“1 vi are convergent (resp. absolutely
convergent) series in a Banach space V . Let λ P F. Show that the LHS of the
following equations converges (resp. converges absolutely) in V , and that the
following equations hold:

8
ÿ

i“1

pui ` viq “
8
ÿ

i“1

ui `
8
ÿ

i“1

vi

8
ÿ

i“1

λvi “ λ ¨
8
ÿ

i“1

vi
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Remark 4.9. We have seen that absolute convergence implies convergence. In
fact, at least when V “ FN , absolute convergence is in many ways more natural
than convergence. For example, we will learn that if a series

ř

i vi in FN converges
absolutely, then the value of

ř

i vi is invariant under rearrangement of the series:
for every bijection φ : Z` Ñ Z` we have

ř

i vi “
ř

i vφpiq. In the next semester, we
shall learn Lebesgue integral theory and, more generally, measure theory. When
applying measure theory to infinite sums over the countable set Z`, many good
results (e.g. dominated convergence theorem, Fubini’s theorem) hold only for
absolute convergence series, but not for arbitrary convergent series in general.
In fact, there is no analog of convergent (but not absolutely convergent) series in
measure theory at all!

When V is not necessarily finite-dimensional, the situation is subtler: there is
a version of convergence which lies between the usual convergence and absolute
convergence, and which coincides with absolute convergence when V “ FN . This
version of convergence is defined using nets instead of sequences. Moreover,
many good properties (as mentioned above) hold for this convergence, and these
properties can be proved in a very conceptual way (rather than using brute-force
computation). We will learn this convergence in the next chapter.

4.2 Basic examples

Let us study the geometric series
ř8

n“0 z
n where z P C. We first note the

famous binomial formula: for each z, w P C and n P N,

pz ` wqn “
n
ÿ

k0

ˆ

n

k

˙

zkwn´k (4.5)

In particular,

p1` zqn “ 1` nz `
npn´ 1q

2
z2 `

npn´ 1qpn´ 2q

6
z3 ` ¨ ¨ ¨ ` nzn´1

` zn (4.6)

Example 4.10. Assume z P C and |z| ă 1. Then limnÑ8 z
n “ 0.

Proof. If z “ 0 then it is obvious. Assume that 0 ă |z| ă 1. Choose δ ą 0 such that
|z| “ 1{p1` δq. By (4.6), p1` δqn ě 1` nδ. So

0 ď |zn| ď p1` nδq´1

Since lim
nÑ8

p1`nδq´1
“ 0, we have |zn| Ñ 0 by squeeze theorem. Hence zn Ñ 0.

Example 4.11. Let z P C. If |z| ă 1, then
8
ÿ

n“0

zn converges absolutely, and

8
ÿ

n“0

zn “
1

1´ z
(4.7)
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where 00 is understood as 1. If |z| ě 1, then
8
ÿ

n“0

zn diverges in C.

Proof. The partial sum sn “ 1 ` z ` z2 ` ¨ ¨ ¨ ` zn equals p1 ´ zn`1q{p1 ´ zq when
z ‰ 1. Therefore, when |z| ă 1, sn Ñ 1{p1 ´ zq. When |z| ě 1, we have |zn| ě 1
and hence zn Û 0. So

ř8

n“0 z
n diverges by Prop. 4.3.

Example 4.12. The harmonic series
8
ÿ

n“1

1

n
diverges (in R).

Proof. We want to show that the Cauchy condition (cf. Rem. 4.2) does not hold.
Thus, we want to prove that there exists ε ą 0 such that for every N P Z` there
exist n ą m ě N such that |pm` 1q´1 ` pm` 2q´1 ` ¨ ¨ ¨ ` n´1| ě ε.

To see this, for each N we choose m “ 2N and n “ 2N`1. Then n ą m ą N , and
ˇ

ˇ

ˇ

n
ÿ

i“m`1

i´1
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

1

2N ` 1
`

1

2N ` 2
` ¨ ¨ ¨ `

1

2N ` 2N

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

1

2N`1
`

1

2N`1
` ¨ ¨ ¨ `

1

2N`1

ˇ

ˇ

ˇ

looooooooooooooooomooooooooooooooooon

2N terms

“ ε

where ε “ 1
2
.

Exercise 4.13. Choose any p P Z. Prove that
8
ÿ

n“1

n´p converges iff p ě 2.

Hint. Use Prop. 4.7 and Exp. 4.12 to reduce the problem to the case p “ 2. Prove
this case by proving

ř8

n“1 1{npn` 1q “ 1 ă `8.

Definition 4.14. Let V be a Banach space, let X be a set, and let pfnq be a sequence

in l8pX, V q, and let g P l8pX, V q. We say that the series of functions
8
ÿ

i“1

fi con-

verges uniformly to g (on X) if it converges to g as a series in the Banach space
l8pX, V q and under the l8-norm. Equivalently, this means that the partial sum
function sn “ f1 ` ¨ ¨ ¨ ` fn converges uniformly to g as nÑ 8.

Example 4.15. The series of functions
8
ÿ

n“1

sin |nz3|

n2
converges uniformly on C to a

continuous function g : CÑ R which is bounded (i.e. sup
zPC
|gpzq| ă `8).

Proof. Let fnpzq “ sin |nz3|{n2. Then each fn is in X “ CpC,Rq X l8pC,Rqwhere X
is a real Banach space under the l8-norm by Cor. 3.50. Note that }fn}8 ď n´2. By
Exe. 4.13,

ř8

n“1 n
´2 ă `8. Therefore, by Prop. 4.7, the series

ř

n fn converges in
X, i.e., it converges uniformly to an element g P X. (In particular,

ř

n fnpzq “ gpzq
for all z P C.)
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4.3 Root test and ratio test; power series; construction of ez

Root test and ratio test are useful criteria for proving the convergence or di-
vergence of series, especially power series. In addition, the method of power
series provides a unified and elegant proof for many useful formulas about limit
(see Prop. 4.23 and Exp. 4.24). We begin our discussion with the following easy
observation:

Remark 4.16. Let pxnq be a sequence in R, and let A P R. The following are true.

1. If lim sup
nÑ8

xn ă A, then xn ă A is eventually true.

2. If lim sup
nÑ8

xn ą A, then xn ą A is frequently true.

By taking negative, we obtain similar statements for lim inf.

Proof. Recall that lim supxn “ infnPZ`
αn where where αn “ suptxn, xn`1, . . . u.

Assume that infnPZ`
αn ă A. Then A is not a lower bound of tαn : n P Z`u.

Thus, there exists N P Z` such that αN ă A. Then xn ă A for all n ě N .
Assume that infnPZ`

αn ą A. Then for each N P Z` we have αN ą A. So A is
not an upper bound of txn, xn`1, . . . u. So there is n ě N such that xn ą A.

We will heavily use n
?
x (where x ě 0 and n P Z`) in the following discussions.

n
?
x will be rigorously constructed in Exp. 7.108, whose proof does not rely on the

results of this section.

Proposition 4.17 (Root test). Let
8
ÿ

n“1

vn be a series in a Banach space V . Let β “

lim sup
nÑ8

n
a

}vn}. Then:

1. If β ă 1, then
ř

vn converges absolutely, and hence converges in V .

2. If β ą 1, then
ř

vn diverges in V .

Proof. Suppose β ă 1. Then we can choose γ such that β ă γ ă 1. So
lim sup n

a

}vn} ă γ. By Rem. 3.8, there exists N P Z` such that for all n ě N ,
we have n

a

}vn} ă γ, and hence }vn} ă γn. Since
ř8

n“0 γ
n “ p1 ´ γq´1 ă `8 (Exp.

4.11), the series
ř8

n“N vn converges absolutely by Prop. 4.7. So the original series
converges absolutely.

Assume that β ą 1. Then by Rem. 4.16, for each N there is n ě N such that
n
a

}vn} ą 1 and hence }vn ´ 0} ą 1. So vn Û 0. So
ř

vn diverges by Prop. 4.3.

Example 4.18. Let V “ R and vn “ 1{n resp. vn “ 1{n2. Then β “ 1, and
ř

vn diverges resp. converges absolutely due to Exe. 4.13. So Root test gives no
information on the convergence of series when β “ 1. The same can be said about
ratio test.
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Proposition 4.19 (Ratio test). Let
8
ÿ

n“1

vn be a series in a Banach space V such that

vn ‰ 0 for all n. Let α “ lim inf
nÑ8

}vn`1}

}vn}
and β “ lim sup

nÑ8

}vn`1}

}vn}
. Then:

1. If β ă 1, then
ř

vn converges absolutely, and hence converges in V .

2. If α ą 1, then
ř

vn diverges in V .

Proof. Suppose β ă 1. Choose γ such that β ă γ ă 1. Then by Rem. 4.16, there
is N such that for all n ě N we have }vn`1}{}vn} ă γ. So }vn} ă γn´N}vN}. So
ř

něN }vn} ď }vN} ¨
ř

něN γ
n´N “ }vN} ¨ p1 ´ γq´1 ă `8. So

ř

vn converges
absolutely.

Suppose α ą 1. Then by Rem. 4.16, there is N such that for all n ě N we have
}vn`1}{}vn} ą 1. So }vn} ě }vN} ą 0 for all n ě N . So vn Û 0 and hence

ř

vn
diverges, as in the proof of root test.

Definition 4.20. A power series in a complex Banach space V is an expression

of the form
8
ÿ

n“0

vnz
n where the coefficients v0, v1, v2, . . . are elements of V , and z

is a complex variable, i.e., a symbol which can take arbitrary values in C. If the
power series

ř

vnz
n converges at z0 P C, we often let

ř

vnz
n
0 denote this limit.

Proposition 4.21. Let
ř

vnz
n be a power series in a complex Banach space V . Then there

is a unique 0 ď R ď `8 satisfying the following properties:

(a) If z P C and |z| ă R, then
ř

vnz
n converges absolutely in V .

(b) If z P C and |z| ą R, then
ř

vnz
n diverges in V .

Such R is called the radius of convergence of
ř

vnz
n. Moreover, we have

R “
1

lim sup
nÑ8

n
a

}vn}
“ lim inf

nÑ8

1
n
a

}vn}
(4.8)

Proof. Clearly, there are at most one R satisfying (a) and (b). Let us define R using
(4.8) (note that the second and the third terms of (4.8) are clearly equal), and prove
that R satisfies (a) and (b). Let

βpzq “ lim sup
nÑ8

n
a

}vnzn}

Then βpzq “ |z|{R. So (a) and (b) follow immediately from root test.

Remark 4.22. Note that if one can find 0 ď r ď R such that
ř

vnz
n converges

whenever |z| ă r, then r ď R where R is the radius of convergence: otherwise,
the series diverges for any positive z satisfying R ă z ă r, impossible.

It follows that if
ř

vnz
n converges for all |z| ă r, then

ř

vnz
n converges abso-

lutely for all |z| ă r.
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Prop. 4.21 provides a useful method for computing limits of a positive se-
quence:

Proposition 4.23. Let pλnq be a sequence in Rą0. Then

lim inf
nÑ8

λn`1

λn
ď lim inf

nÑ8

n
a

λn ď lim sup
nÑ8

n
a

λn ď lim sup
nÑ8

λn`1

λn
(4.9)

In particular, (by Cor. 3.18) we have

lim
nÑ8

n
a

λn “ lim
nÑ8

λn`1

λn
(4.10)

provided that the limit on the RHS of (4.10) exists in R.

The four numbers in (4.9) can be completely different. See [Rud-P, Exp. 3.35].

Proof. Let R be the radius of convergence of
ř

λnz
n. Then R “ 1{ lim sup n

?
λn

by (4.10). Thus, by Prop. 4.21, if |z| ą R then
ř

λnz
n diverges, and hence

lim sup |λn`1z
n`1|{|λnz

n| ě 1 by ratio test. Therefore,

|z| ą
1

lim sup n
a

λn
ùñ |z| ¨ lim sup

λn`1

λn
ě 1

This proves

lim sup n
a

λn ď lim sup
λn`1

λn

Replacing λn by λ´1
n , we get

1

lim inf n
a

λn
“ lim sup n

a

λ´1
n ď lim sup

λn
λn`1

“
1

lim inf
λn`1

λn

This proves (4.9).

Example 4.24. Let a P Rą0 and p P Z. The following formulas follow immediately
from Prop. 4.23 (especially, from (4.10)):

lim
nÑ8

n
?
a “ 1 (4.11a)

lim
nÑ8

n
?
n! “ `8 (4.11b)

lim
nÑ8

n
?
np “ 1 (4.11c)

Note that (4.11c) follows from

lim
nÑ8

´ n

n` 1

¯p

“ 1 (4.11d)
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(This is clearly true when p “ ˘1, and hence is true for any p by induction.)
By (4.11c), the radius of convergence of

ř

n n
pzn is 1. Therefore, by Prop. 4.21,

ř

npA´n converges absolutely when A ą 1. Thus, by Prop. 4.3,

lim
nÑ8

np

An
“ 0 pif A ą 1q (4.11e)

This means that “polynomials grow slower than exponentials”.
The same conclusions hold for arbitrary p P R once we know how to define xp

and prove the continuity of x P Rą0 ÞÑ xp. (See Sec. 7.8.)

‹ Exercise 4.25. Prove (4.11a) directly. Then use (4.11a) to give a direct proof of
Prop. 4.23. Do not use root test, ratio test, or any results about power series.

Definition 4.26. By (4.11b), the power series

exppzq ” ez “
8
ÿ

n“0

zn

n!

has radius of convergence `8, and hence converges absolutely on C. (In particu-
lar, limnÑ8 z

n{n! “ 0 for all z P C.) This gives a function exp : C Ñ C, called the
exponential function.

Part (a) of Prop. 4.21 can be strengthened in the following way.

Theorem 4.27. Let
ř

vnz
n be a power series with coefficients in a complex Banach space

V . Let R be its radius of convergence, and assume that 0 ă R ď `8. For each z P
BCp0, Rq, let fpzq denote the value of this series at z (which is an element of V ). Then
f : BCp0, Rq Ñ V is continuous. Moreover, for each 0 ă ρ ă R, the series of functions
ř

vnz
n converges uniformly on BCp0, ρq to f .

Note that by calling
ř

vnz
n a series of functions, we understand each term

vnz
n as a function CÑ V .

Proof. For each 0 ă ρ ă R, let Xρ “ BCp0, ρq. Then Xρ is clearly a bounded closed
subset of C, and hence is sequentially compact by Heine-Borel Thm. 3.55. Let
gn “ vnz

n, which is a continuous function Xρ Ñ V . We view gn as an element of
the Banach space (cf. Cor. 3.50) CpXρ, V q. Then }gn}8 “ ρn}vn}. Thus

lim sup
nÑ8

n
a

}gn}8 “ lim sup
nÑ8

ρ n
a

}vn} “ ρ{R ă 1

Therefore, by root test, the series
ř

gn converges in the Banach space CpXρ, V q to
some fρ P CpXρ, V q.

We have proved that for each 0 ă ρ ă R, the series of functions
ř

vnz
n con-

verges uniformly on Xρ to a continuous function fρ. Let f : BCp0, Rq Ñ V whose
value at each z is the value of the original series at z. Thus, if |z| ď ρ, then
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fρpzq “ fpzq. Namely, f |Xρ “ fρ. This shows that
ř

vnz
n converges uniformly

on Xρ to f . It also shows that f |BCp0,ρq is continuous (because fρ is continuous).
Therefore, since BCp0, Rq is covered by all open disks BCp0, ρq (where 0 ă ρ ă R),
we conclude from Lem. 2.41 that f is continuous on BCp0, Rq.

Example 4.28. By Thm. 4.27, the exponential function exp : CÑ C is continuous;
moreover,

ř8

n“0 z
n{n! converges uniformly to ez on BCp0, Rq for every 0 ă R ă

`8, and hence on every bounded subset of C.

4.4 Problems and supplementary material

Let V be a Banach space over F P tR,Cu.

Problem 4.1. Let W be a normed vector space. Prove that W is complete iff every
absolutely convergent series in W is convergent (i.e. if

ř8

n“1 }wn} ă `8 then
ř8

n“1wn converges).

Hint. “ñ” was proved in Prop. 4.7. To prove “ð”, for each Cauchy sequence
pwnq in W , choose a subsequence pwnk

q such that }wnk
´ wnk`1

} ď 2´k. Apply
Thm. 3.23.

Problem 4.2. Use the formula of summation by parts

n
ÿ

k“m`1

fkgk “ Fngn ´ Fmgm ´
n´1
ÿ

k“m

Fkpgk`1 ´ gkq (4.12)

(where Fn “
řn
j“0 fj) to prove the following Dirichlet’s test.

Theorem 4.29 (Dirichlet’s test). Let X be a set. Assume that pfnq is a sequence in
l8pX, V q such that supnPZ`

}Fn}l8 ă `8 (where Fn “
řn
j“1 fj). Assume that pgnq is a

decreasing sequence (i.e. g1 ě g2 ě g3 ě ¨ ¨ ¨ ) in l8pX,Rě0q converging uniformly to 0.
Then

ř8

n“1 fngn converges uniformly on X .

Problem 4.3. Let en : R Ñ C be enpxq “ einx “ cospnxq ` i sinpnxq. Show that
for each x P R,

ř8

n“1 enpxq{n does not converge absolutely. Use Dirichlet’s test to
show that the series of functions

ř8

n“1 en{n converges pointwise on Rzt2kπ : k P
Zu, and uniformly on rδ, 2π ´ δs for every 0 ă δ ă π.
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5 Nets and discrete integrals

5.1 Introduction: why do we need nets?

Nets were introduced by Moore and Smith in 1922 as a generalization of se-
quences. The most well-known motivation for introducing nets is that sequences
are not enough for the study of non-metrizable topological spaces (i.e. topological
spaces whose topologies are not induced by metrics). Here are two examples:

• In a general topological space, the definition of continuous maps using se-
quential convergence (as in Def. 2.38-(1)) is weaker than the definition us-
ing interior points and open sets (as in Def. 2.38-(2’), see also Rem. 4.23).
Therefore, the dynamic intuition of sequences is not equivalent to the static
intuition of open sets.

• Some important topological spaces are compact (i.e. every open cover has
a finite subcover) but not sequentially compact. r0, 1sI (where I is uncount-
able), equipped with the “product topology” (i.e. “pointwise convergence
topology”), is such an example.

As we shall see, nets provide a remedy for these issues: For a general topological
space, the definition of continuity using net convergence is equivalent to that us-
ing open sets; compactness is equivalent to “net-compactness”, where the latter
means that every net has a convergent subset. Thus, by generalizing sequences
to nets, the dynamic intuition and the static and geometric intuition are unified
again.

Nevertheless, the most common topological spaces appearing in analysis are
metrizable. This raises the question: Why should we care about nets, given that
our primary interest is in metrizable topological spaces? Here is my answer: Even
though we are mainly interested in metrizable spaces, we can still find nets help-
ful in the following aspects.

First of all, many convergence processes cannot be described by sequential
convergence, but can be described by net convergence. For example, the follow-
ing limits can be formulated and understood in the language of net convergence:

(1) The limit of a function limxÑx0 fpxq where f : X Ñ Y is a map of metric
spaces and x0 P X .

(2) The limit lim
m,nÑ8

am,n where pam,nqm,nPZ`
is a double sequence in a metric

space X . Note that this is not the same as (but is more natural than) the
iterated limit lim

nÑ8
lim
mÑ8

am,n. Moreover, the limit lim
m,nÑ8

am,n is the key to

understanding the problem of commutativity of iterated integrals:

lim
nÑ8

lim
mÑ8

am,n
?
ùù lim

mÑ8
lim
nÑ8

am,n
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(3) The Riemann integral
şb

a
fpxqdx. This is the limit of the Riemann sum

lim
ř

fpξiqpai ´ ai´1q as the partition of the interval ra, bs is getting finer and
finer.

Moreover, as for (3), we shall see that the net version of Cor. 3.18 provides a
quick and conceptual proof of the following fact: If the upper and lower Darboux
integrals are equal, then the Riemann integral exists and are equal to the two Dar-
boux integrals. Indeed, the upper and lower Darboux integrals are respectively
the lim sup and lim inf of a net in R.

Second, nets provide a conceptual solution to many problems about double
series. Let pam,nqm,nPZ`

be a double sequence in R. Think about the following
questions, which arise naturally when one is trying to prove ezew “ ez`w.

(a) When is it true that
8
ÿ

n“1

8
ÿ

m“1

am,n “
8
ÿ

m“1

8
ÿ

n“1

am,n ?

(b) Since cardpZ` ˆ Z`q “ cardpZ`q, why not use an ordinary series to study
a double series? So let us parametrize Z` ˆ Z` by Z`: choose a bijection

φ : Z` Ñ Z` ˆ Z`. When is it true that
8
ÿ

k“1

aφpkq “

8
ÿ

n“1

8
ÿ

m“1

am,n ?

(c) Choose another parametrization (i.e. bijection) ψ : Z` Ñ Z` ˆ Z`. When is

it true that
8
ÿ

k“1

aφpkq “

8
ÿ

k“1

aψpkq ?

(d) More generally, let X be a countably infinite set, and let f : X Ñ R. In-
tuitively, we can take an infinite sum

ÿ

xPX

fpxq. How to define it rigor-

ously? One may think about choosing a parametrization, i.e., a bijection
φ : Z` Ñ X . Then one defines the infinite sum by

ř8

k“1 fpφpkqq. Is this
definition independent of the choice of parametrization?

(e) As a special case of (d), when is a series invariant under rearrangement?
Namely, choose a bijection φ : Z` Ñ Z`, and choose a sequence panq in R,

when is it true that
8
ÿ

n“1

an “
8
ÿ

n“1

aφpnq ?

Modern differential geometry (whose “intrinsic” spirit stems from Gauss’s
Theorema Egregium) teaches us that in order to answer these questions, one
should first define the infinite sum

ř

xPX fpxq in a parametrization-independent
way. (The reason we call a bijection φ : Z` Ñ X a parametrization is that we want
the readers to compare it with the parametrizations of curves, surfaces, and more
generally manifolds.) We will call this sum a discrete integral. Then, one tries to
answer when this definition agrees with those that depend on parametrizations
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(such as the sums in (a)-(e) above). These goals can be achieved with the help of
nets.

5.2 Nets

5.2.1 Directed sets and nets

Definition 5.1. A relation ď on a set I is called a preorder if for all α, β, γ P I , the
following are satisfied:

• (Reflexivity) α ď α.

• (Transitivity) If α ď β and β ď γ then a ď γ.

The pair pI,ďq (or simply I) is called a preordered set.

Therefore, a partial order is a preorder satisfying antisymmetry: pα ď βq^pβ ď
αq ñ pα “ βq.

Definition 5.2. A preordered set pI,ďq is called a directed set if

@α, β P I Dγ P I such that α ď γ, β ď γ (5.1)

If I is a directed set and X is a set, then a function x : I Ñ X is called a net with
directed set/index set I . We often write xpαq as xα if α P I , and write x as pxαqαPI .

Example 5.3. pZ`,ďq is a directed set. A net with index set Z` in a set X is pre-
cisely a sequence in X .

Definition 5.4. Suppose that pI,ďIq and pJ,ďJq are preordered set (resp. directed
set), then the product pI ˆ J,ďq is a preordered set (resp. directed set) if for every
α, α1 P I, β, β1 P J we define

pα, βq ď pα1, β1
q ðñ α ďI α

1 and β ďJ β
1 (5.2)

Unless otherwise stated, the preorder on I ˆ J is assumed to be defined by (5.2).

Example 5.5. Z` ˆ Z` (or similarly, N ˆ N) is naturally a directed set whose pre-
order is defined by (5.2). A net pxm,nqpm,nqPZ`ˆZ`

with index set Z` ˆ Z` is called
a double sequence and is written as pxm,nqm,nPZ`

or simply pxm,nq. (We will even
write it as pxmnqwhen no confusion arises.)

More generally, we call pxα,βqpα,βqPIˆJ “ pxα,βqαPI,βPJ a double net if its index
set is I ˆ J for some directed sets I, J .

Example 5.6. If X is a set, then p2X ,Ăq and pfinp2Xq,Ăq are directed sets where

finp2Xq “ tA Ă X : A is a finite setu (5.3)

We will use nets with index set finp2Xq to study infinite sums.
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Example 5.7. Let X be a metric space and x P X . Then Xx “ pX,ďq is a directed
set if for each p1, p2 P X we define

p1 ď p2 in Xx ðñ dpp1, xq ě dpp2, xq (5.4)

(Namely, a larger element of Xx is one closer to x.) Nets with this directed set can
be used to study the limits of functions (cf. Rem. 7.83). Note that Xx is our first
example of directed set which is not a poset! (dpp1, xq “ dpp2, xq does not imply
p1 “ p2.)

5.2.2 Limits of nets

If I is an preordered set and β P I , we write

Iěβ “ tα P I : α ě βu (5.5)

Definition 5.8. Let P be a property about elements of a set X , i.e., P is a function
X Ñ ttrue, falseu. Let pxαqαPI be a net in X .

We say that xα eventually satisfies P (equivalently, we say that xα satisfies P
for sufficiently large α) if:

• There exists β P I such that for every α P Iěβ , the element xα satisfies P .

“Sufficiently large” is also called “large enough”.
We say that xα frequently satisfies P if:

• For every β P I there exists α P Iěβ such that xα satisfies P .

Remark 5.9. Note that unlike sequences, for a general net, “xα eventually satisfies
P” does not imply “all but finitely many xα satisfy P” because the complement
of Iěβ is not necessarily a finite set.

Remark 5.10. Let P and Q be two properties about elements of X . Then

␣pxα eventually satisfies P q “ pxα frequently satisfies ␣P q (5.6a)

By the crucial condition (5.1) for directed sets, we have

pxα eventually satisfies P q ^ pxα eventually satisfies Qq
ó

xα eventually satisfies P ^Q
(5.6b)

By taking contraposition and replacing P,Q by ␣P,␣Q, we have

xα frequently satisfies P _Q
ó

pxα frequently satisfies P q _ pxα frequently satisfies Qq
(5.6c)
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Definition 5.11. Let pxαqαPI be a net in a metric space X . Let x P X . We say that
pxαq converges to x and write

lim
αPI

xα ” lim
α
xα “ x

or simply xα Ñ x if the following statement holds:

• For every ε ą 0, xα is eventually in BXpx, εq.

Clearly, xα Ñ x iff dpxα, xq Ñ 0.

Definition 5.12. Let pxm,nqm,nPZ`
be a double sequence in a metric space. Then we

write

lim
pm,nqPZ`ˆZ`

xm,n ” lim
m,nÑ8

xm,n (5.7)

and call it the (double) limit of pxm,nq.

Remark 5.13. Let us spell out the meaning of limm,nÑ8 xm,n “ x: For each ε ą 0
there exists M,N P Z` such that dpxm,n, xq ă ε for all m ě M and n ě N . Clearly,
this is equivalent to the statement:

• For each ε ą 0 there exists N P Z` such that dpxm,n, xq ă ε for all m,n ě N .

Therefore, if pxnq is a sequence in X , then

pxnq is a Cauchy sequence ðñ lim
m,nÑ8

dpxm, xnq “ 0 (5.8)

Thus, the Cauchyness of sequences can be studied in terms of double limits, and
hence in terms of nets.

Proposition 5.14. Let pxαqαPI be a net in a metric space X converging to x, y. Then
x “ y.

Proof. Suppose that x ‰ y. Then there are r, ρ ą 0 such that Bpx, rq XBpy, ρq “ H,
say r “ ρ “ dpx, yq{2. Since xα Ñ x, the point xα is eventually in Bpx, rq. Since
xα Ñ y, the point xα is eventually in Bpy, ρq. Therefore, by the logic (5.6b), xα is
eventually in Bpx, rq XBpy, ρq, impossible.

Theorem 5.15. Let f : X Ñ Y be map of metric spaces continuous at x P X . Let pxαqαPI

be a net in X converging to x. Then lim
α
fpxαq “ fpxq.

Proof. Choose any ε ą 0. By Def. 2.38-(2) and the continuity of f at x, there exists
δ ą 0 such that for all p P Bpx, δq we have fppq P Bpfpxq, εq. Since xα Ñ x, xα is
eventually in Bpx, δq. Therefore fpxαq is eventually in Bpfpxq, εq.
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This theorem implies, for example, that if pvαq is a net in a complex normed
vector space converging to v, and if pλαq is a net in C converging to λ, then λαvα
converges to λv because the scalar multiplication map is continuous (Prop. 3.38).

Exercise 5.16. Prove the generalization of Rem. 2.71:

1. If pxαqαPI , pyαqαPI are nets in R converging to A,B P R, and if xα ď yα for all
α, then A ď B.

2. Squeeze theorem: Suppose that pxαqαPI , pyαqαPI , pzαqαPI are nets in R, xα ď
yα ď zα for all α, and xα and zα both converge to A P R. Then yα Ñ A.

3. If pxαq is an increasing resp. decreasing net in R, then limα xα exists in R and
equals supα xα resp. infα xα.

5.2.3 Subnets (in the sense of Willard)

Definition 5.17. A subset E of a directed set I is called cofinal if:

@α P I Dβ P E such that α ď β

By the transitivity in Def. 5.1 and property (5.1), we clearly have

@α1, . . . , αn P I Dβ P E such that α1 ď β, . . . , αn ď β

Definition 5.18. Let pxαqαPI be a net in a set X . A subnet of pxαqαPI is, by defini-
tion, of the form pxαsqsPS where S is a directed set, and

pαsqsPS : S Ñ I s ÞÑ αs

is an increasing function whose range tαs : s P Su is cofinal in I .

Remark 5.19. There are several different definitions of subnets that are equivalent
for proving the main results in point-set topology. Unfortunately, there is no com-
mon agreement on the standard definition of subnets. The definition we gave is
due to Willard [Wil], and is also the one given in the famous textbook of Munkres
[Mun]. Some famous analysis and topology textbooks (e.g. [?, Kel, RS]) use a
weaker definition, which does not assume that the map S Ñ I is increasing.

Example 5.20. A subsequence of a sequence is a subnet of that sequence.

Example 5.21. Let pxm,nqm,nPZ`
be a net with index set Z` ˆ Z`. Then pxk,kqkPZ`

and px2k,kqkPZ`
are subnets. pxk,1qkPZ`

is not a subnet, because the cofinal condition
is not satisfied. More generally, it is not hard to show that for every function
φ, ψ : Z` Ñ Z`, pxφpkq,ψpkqqkPZ`

is a subnet iff φ, ψ are increasing and limkÑ8 φpkq “
limkÑ8 ψpkq “ `8.
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Exercise 5.22. Prove the following facts:

• The cofinal subset of a cofinal subset of a directed set I is a cofinal subset of
I .

• The subnet of a subnet of a net pxαq is a subnet of pxαq.

Note that in your proof you need to use the transitivity in Def. 5.1.

The biggest difference between subnets and subsequences is that the index set
of a subnet is not necessarily a subset of the index set of the original net. Indeed,
subnets are defined in this way mainly because we want to have a net version of
Pb. 3.1 in any topological space. (This will be achieved in Pb. 7.2.) Let us see an
elementary example of subnet whose index set is larger than that of the original
net. Its importance is justified by the proofs of Exp. 5.28 and Prop. 5.34.

Example 5.23. Let J be a directed set. Then every net pxαqαPI has subnet
pxαqpα,βqPIˆJ . The corresponding increasing map of directed sets is the projection
I ˆ J Ñ I onto the first component.

To appreciate the importance of cofinalness (as well as transitivity), we prove
the following generalization of Prop. 2.36. This result has a wide range of surpris-
ing applications that are unavailable when one only considers sequences. (We will
see them soon in this chapter. For instance, this result explains why the values of
absolutely convergent series are invariant under rearrangement.) So I call this
result a theorem, even though its proof is simple.

Theorem 5.24. Let pxαqαPI be a net in a metric space (or more generally, a topological
space) X converging to x P X . Then every subnet pxαsqsPS converges to x.

The following proof for metric spaces can be generalized straightforwardly to
topological spaces. The readers can come back and check the details after learning
topological spaces.

Proof. Choose any ε ą 0. Since xα Ñ x, there exists β P I such that for all α ě β
we have dpxα, xq ă ε. By the cofinalness, there exists t P S such that αt ě β. Thus,
since s P S ÞÑ αs P I is increasing, for every s ě t, we have αs ě αt ě β and hence
αs ě β by the transitivity in Def. 5.1. So dpxαs , xq ă ε for all s ě t. This finishes
the proof.

This proposition does not hold if one does not assume cofinalness in the defi-
nition of subnets:

Example 5.25. Let pxnq be a sequence in R converging to x P R. Since pxnq is a
Cauchy sequence, we know that limm,nÑ8 xm ´ xn “ 0. We have seen in Exp.
5.21 that px2k ´ xkqkPZ`

is a subnet of pxm,nq. Therefore, limkÑ8 x2k ´ xk “ 0. But
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pxk ´ x1qkPZ`
is not a subnet since the cofinal condition is not satisfied. And if

x ‰ x1, then limkpxk ´ x1q “ x´ x1 ‰ 0, i.e.,

lim
kÑ8

pxk ´ x1q ‰ lim
m,nÑ8

pxm ´ xnq

In Subsec. 2.3.2, we have seen two criteria for the divergence of sequence: a
sequence diverges if it is unbounded, or if it has two subsequences converging to
different points. By Thm. 5.24, the second criterion can be generalized to nets.
However, the following example shows that the first criterion does not has its net
version:

Example 5.26. A convergent net pxαqαPI in a metric space X is not necessarily
bounded. Namely, it is not necessarily true that txα : α P Iu is a bounded subset
of X . Let f : Rą0 Ñ R be fpxq “ 1{x. Then f is net in R with directed set pRą0,ďq.
This net is not bounded, although lim fpxq “ 0.

Example 5.27. The double sequence xm,n “ n{pm ` nq in R has subnets xn,n “
n{pn ` nq “ 1{2 and x2n,n “ 1{3. Since these two subnets converge to different
values, Thm. 5.24 implies that limm,n xm,n does not exist. However, the iterated
limits exist and take different values:

lim
mÑ8

lim
nÑ8

n

m` n
“ 1 lim

nÑ8
lim
mÑ8

n

m` n
“ 0

As we shall see, this gives another criterion for the divergence of double series: If
the two iterated limits exist and are different, then the double series diverge.

Finally, we do an example of convergent double sequence:

Example 5.28. Let xm,n “ pm´2
´ n´1

q sin
πpm`

?
nq

4
. Then lim

m,nÑ8
xm,n “ 0.

Proof. The sequence pm´2qmPZ`
converges to 0. By Exp. 5.23, the double sequence

pm´2qm,nPZ`
is its subnet, and hence converges to 0 by Thm. 5.24. Similarly, the

double sequence pn´1qm,nPZ`
converges to 0. Therefore, m´2 ` n´1 converges to 0

due to Thm. 5.15 and the continuity of the addition map px, yq P RÞ Ñ x ` y P R
(Prop. 2.45). Since 0 ď |xm,n| ď m´2 ` n´1, we conclude |xm,n| Ñ 0 (and hence
xm,n Ñ 0) by squeeze theorem (Exe. 5.16).

5.2.4 Double limits and iterated limits

Theorem 5.29. Let pxα,βqαPI,βPJ be a double net in a metric space X . Assume that the
following are true:

(1) The limit lim
pα,βqPIˆJ

xα,β exists in X .
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(2) For each α P I , the limit lim
βPJ

xα,β exists in X .

Then the LHS limit in the following equation exists and equals the RHS:

lim
αPI

lim
βPJ

xα,β “ lim
pα,βqPIˆJ

xα,β (5.9)

In particular, suppose that the following is also true:

(3) For each β P J , the limit lim
αPJ

xα,β exists in X .

Then the following limits exist and are equal:

lim
αPI

lim
βPJ

xα,β “ lim
βPJ

lim
αPI

xα,β (5.10)

Proof. Let xα “ lim
β
xα,β and x “ lim

α,β
xα,β . We want to show that lim

α
xα “ x. Choose

any ε ą 0. Then there exist A P I, B P J such that for every α ě A and β ě B we
have dpxα,β, xq ă ε{3. In particular, dpxα,β, xq ď ε{2. Using Thm. 5.15 and the fact
that p P X ÞÑ dpp, xq P R is continuous (Exp. 2.58), we see that for every α ě A we
have dpxα, xq “ lim

βPJěB

dpxα,β, xq ď ε{2 ă ε.

The readers may skip the next remark and proof and come back to them when
they have learned about topological spaces.

‹ Remark 5.30. Thm. 5.29 can be generalized to the case that X is a regular topo-
logical space. By saying that the topological space X is regular, we mean that
for every x P X and every open set U containing x, there is a smaller open set V
containing x such that the closure V (cf. Def. 7.28) is contained in U .

‹ Proof. Let xα “ lim
β
xα,β and x “ lim

α,β
xα,β . Choose any open set U containing x.

We want to prove that xα is eventually in U . Choose an open set V containing x
such that V Ă U . Then there are A P I, B P J such that for all α ě A and β ě B
we have xα,β P V . Thus, for each α ě A, since xα,β approaches xα, we have xα P V
and hence xα P U .

Corollary 5.31. Let pxα,βqαPI,βPJ be a double net in R. Assume that x‚,‚ is increasing,
i.e., xα,β ď xα1,β1 if α ď α1 and β ď β1. Then the following equation (5.11) hold, where
all the limits (5.11) exist in R:

lim
αPI

lim
βPJ

xα,β “ lim
βPJ

lim
αPI

xα,β “ lim
pα,βqPIˆJ

xα,β “ suptxα,β : α P I, β P Ju (5.11)

Clearly, a similar result holds for decreasing double nets in R.

Proof. By Exe. 5.16, the three limits lim
α
xα,β , lim

β
xα,β , and lim

α,β
xα,β exist in R. There-

fore, by Thm. 5.29, the three limits in (5.11) exist and are equal. The last equality
in (5.11) is also due to Exe. 5.16.
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5.2.5 Cauchy nets

Definition 5.32. A net pxαqαPI in a metric space X is called a Cauchy net if

lim
α,βPI

dpxα, xβq “ 0

Equivalently, this means that

@ε ą 0 Dγ P I such that @α, β ě γ we have dpxα, xβq ă ε (5.12)

Exercise 5.33. Show that the subnet of a Cauchy net is Cauchy.

Proposition 5.34. A convergent net in a metric space is a Cauchy net.

Proof. Let pxαqαPI converge to x in a metric space X . Then limα dpxα, xq “ 0. Since
pdpxα, xqqα,βPI is a subnet (cf. Exp. 5.23), we have limα,β dpxα, xq “ 0 by Thm. 5.24.
Similarly, we have limα,β dpx, xβq “ 0. Since 0 ď dpxα, xβq ď dpxα, xq ` dpx, xβq, by
Squeeze theorem (Exe. 5.16) we have limα,β dpxα, xβq “ 0.

Proposition 5.35. Let pxαqαPI be a Cauchy net in a metric spaceX . Suppose that pxαqαPI

has a convergent subnet pxαsqsPS converging to x P X . Then pxαqαPI converges to x.

Proof. Choose any ε ą 0. Since pxαq is a Cauchy net, there exists γ P I such that
dpxα, xβq ď ε for all α, β ě γ. Since pαsqsPS has cofinal range, αs0 ě γ for some
s0 P S. Thus αs ě γ for all s ě s0 because pαsqsPS is increasing and because of the
transitivity in Def. 5.1. Thus, for every β ě γ, dpxαs , xβq ď ε for sufficiently large
s. By taking limit over s and using the continuity of y P X ÞÑ dpy, xβq as well as
Thm. 5.15, we get dpx, xβq ď ε for all β ě γ.

Definition 5.36. Two nets pxαqαPI and pyαqαPI in a metric space X are called
Cauchy-equivalent if

lim
αPI

dpxα, yαq “ 0

Two Cauchy nets are simply called equivalent if they are Cauchy-equivalent. It
is not hard to see that Cauchy-equivalence is an equivalence relation (recall Def.
1.17) on XI .

Exercise 5.37. Let pxαqαPI and pyαqαPI be nets in a metric space X .

1. Assume that pxαqαPI and pyαqαPI are Cauchy-equivalent. Prove that pxαq is a
Cauchy net iff pyαq is a Cauchy net.

2. Assume that pxαqαPI converges to x. Prove that pyαqαPI converges to x iff
pxαqαPI and pyαqαPI are Cauchy-equivalent.

Theorem 5.38. Every Cauchy net pxαqαPI in a complete metric space X is convergent.
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We give a hint of the proof and leave the details to the readers as an exercise.

Hint. Construct an increasing sequence pαnqnPZ`
in I such that for every β, γ ě αn

we have dpxβ, xγq ă 1{n. Prove that pxαnqnPZ`
is a Cauchy sequence, and hence

converges to some x P X . Prove that pxαqαPI converges to x. (Warning: pxαnqnPZ`

is not necessarily a subnet of pxαqαPI .)

5.3 Discrete integrals
ř

xPX fpxq

In this section, we fix V to be a Banach space over F P tR,Cu. We fix a (non-
necessarily countable) set X . Note that if f : X Ñ V is a function and X is finite,
then

ř

xPX fpxq can be understood in its most obvious way.

Definition 5.39. Let f : X Ñ V be a map. The expression
ÿ

xPX

fpxq

(or simply
ř

X f ) is called a discrete integral. If v P V , we say that
ř

xPX fpxq
equals (or converges to) v, if

lim
APfinp2Xq

ÿ

xPA

fpxq “ v (5.13)

In this case, we write
ÿ

xPX

fpxq “ v (5.14)

Remark 5.40. Recall from Exp. 5.6 that finp2Xq is the directed set of finite subsets
of 2X . Its preorder is “Ă”. So (5.14) means more precisely that:

• For every ε ą 0, there exists a finite set B Ă X such that for every finite set
A satisfying B Ă A Ă X , we have }v ´

ř

xPA fpxq} ă ε.

Remark 5.41. Discrete integrals are one of the most important and representative
examples in Moore and Smith’s original paper on nets (cf. [MS22]), explaining
why nets are called nets: Imagine an infinitely large fishing net whose vertices
form the set X “ Z2. You grab the net with your hands and pull it up. As you
pull it up, the lifted part A P finp2Xq becomes larger and larger.

Remark 5.42. One of the advantages of discrete integrals over series is that dis-
crete integrals are clearly invariant under rearrangement: For every bijection
φ : X Ñ X , if one side of the following equation converges in V , then the other
side converges, and the equation holds true:

ÿ

xPX

fpxq “
ÿ

xPX

fpφpxqq (5.15)

or simply
ř

X f “
ř

X f ˝ φ.
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Remark 5.43. Let us spell out what Cauchyness means for the net p
ř

A fqAPfinp2Xq:

(1) For every ε ą 0, there exists a finite set B Ă X such that for any finite sets
A1, A2 satisfying B Ă A1 Ă X,B Ă A2 Ă X , we have

›

›

›

ÿ

A1zA2

f ´
ÿ

A2zA1

f
›

›

›
ă ε

Note that the term inside the norm is
ř

A1
f ´

ř

A2
f . This is also equivalent to:

(2) For every ε ą 0, there exists a finite set B Ă X such that for any finite set
E Ă XzB, we have

›

›

›

ÿ

E

f
›

›

›
ă ε

We shall mainly use (2) as the Cauchy criterion for the convergence of
ř

X f .

Proof of the equivalence. (2) follows from (1) by taking A1 “ B and A2 “ B Y E.
(1) follows from (2) by taking E1 “ A1zA2 and E2 “ A2zA1 and then concluding
}
ř

E1
f ´

ř

E2
f} ă 2ε.

Definition 5.44. Let g : X Ñ Rě0 be a map. Note that the net p
ř

A gqAPfinp2Xq is
increasing. Hence, its limit exists in R and equals supAPfinp2Xq

ř

A g (by Exe. 5.16).
We write this as

ř

X g, or more precisely:
ÿ

X

g ”
ÿ

xPX

gpxq
def
ùùù lim

APfinp2Xq

ÿ

A

g “ sup
APfinp2Xq

ÿ

A

g (5.16)

We say that
ř

X g converges or converges absolutely, if
ř

X g ă `8.

It is clear that
ř

X g ă `8 iff there exists C P Rě0 such that
ř

A g ă C for all
A P finp2Xq.

Remark 5.45. Note that when g : X Ñ Rě0, the convergence in Def. 5.44 agrees
with that in Def. 5.39. Therefore, Rem. 5.43 still gives a Cauchy criterion for
convergence.

Definition 5.46. Let f : X Ñ V . We say that
ř

X f converges absolutely if
ÿ

xPX

}fpxq} ă `8

Proposition 5.47. Let f : X Ñ V . If
ř

X f converges absolutely, then it converges, and
›

›

›

ÿ

xPX

fpxq
›

›

›
ď

ÿ

xPX

}fpxq} (5.17)

We write this simply as }
ř

X f} ď
ř

X |f |. (Recall Def. 3.39.)
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Proof. (5.17) clearly holds when X is finite. In the general case, assume that
ř

X f
converges absolutely. Then by Cauchy criterion (Rem. 5.43-(2)), for every ε ą 0
there is A P finp2Xq such that for each finite E Ă XzA we have

ř

E |f | ă ε, and
hence }

ř

E f} ă ε. Therefore
ř

X f converges by Cauchy criterion again.
By the continuity of the norm function v P V ÞÑ }v} P Rě0, and by Thm. 5.15,

we have
›

›

›

ÿ

X

f
›

›

›
“

›

›

›
lim
A

ÿ

A

f
›

›

›
“ lim

A

›

›

›

ÿ

A

f
›

›

›

Since }
ř

A f} ď
ř

A |f |, by Exe. 5.16, the above expression is no less than

lim
A

ÿ

A

|f | “
ÿ

X

|f |

The following proposition gives another demonstration that discrete integrals
are more natural than series. We leave the proof to the readers.

Proposition 5.48. Let f : X Ñ RN where N P Z`. Then
ÿ

xPX

fpxq converges ðñ
ÿ

xPX

fpxq converges absolutely

Hint. Reduce to the case N “ 1. Consider A “ tx P X : fpxq ě 0u and B “

XzA.

When RN is replaced by an infinite-dimensional Banach space, the conver-
gence of a discrete integral may not imply absolute convergence. See Pb. 5.6.

5.4 Fubini’s theorem for discrete integrals

Fix a Banach space V over F P tR,Cu. Let X, Y be sets.

Theorem 5.49 (Fubini’s theorem-A). Let f : X ˆ Y Ñ V . Assume that
ř

XˆY f
converges. Then

ř

Y fpx, ¨q converges for each x P X , and
ř

X fp¨, yq converges for each
y P Y , and

ÿ

xPX

ÿ

yPY

fpx, yq “
ÿ

yPY

ÿ

xPX

fpx, yq “
ÿ

px,yqPXˆY

fpx, yq (5.18)

where all discrete integrals converge in V .

We abbreviate (5.18) to
ř

X

ř

Y f “
ř

Y

ř

X f “
ř

XˆY f .
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Proof. For each x P X , let fxpyq “ fpx, yq. Let us prove that
ř

Y fx converges.
Choose any ε ą 0. Since

ř

XˆY f converges, by Cauchy criterion (Rem. 5.43-(2)),
there exists a finite S Ă XˆY such that the sum of f over any finite subset outside
S has norm ă ε. The projection X ˆ Y Ñ Y maps S to a finite set B Ă Y . Thus,
for each finite E Ă Y zB, we have }

ř

E fx} ă ε since xˆ E is outside S. Therefore
ř

Y fx converges. By the same reasoning,
ř

X fp¨, yq converges for all y.
Recall that

ř

XˆY f is the limit of the net p
ř

S fqSPfinp2XˆY q. This net has subnet
´

ÿ

px,yqPAˆB

fpx, yq
¯

API,BPJ
where I “ finp2Xq J “ finp2Y q

(Its index set is I ˆ J .) Thus, by Thm. 5.24,
ÿ

px,yqPXˆY

fpx, yq “ lim
API,BPJ

ÿ

px,yqPAˆB

fpx, yq (5.19)

We are now going to use Thm. 5.29 to show that

lim
API,BPJ

ÿ

px,yqPAˆB

fpx, yq “ lim
API

lim
BPJ

ÿ

px,yqPAˆB

fpx, yq (5.20)

where the RHS limit exists. For that purpose, we need to check for each A P I the
convergence of limB

ř

px,yqPAˆB fpx, yq. Since
ř

Y fx converges, we have

lim
BPJ

ÿ

px,yqPAˆB

fpx, yq “ lim
BPJ

ÿ

xPA

ÿ

yPB

fpx, yq

“
ÿ

xPA

lim
BPJ

ÿ

yPB

fpx, yq “
ÿ

xPA

ÿ

yPY

fpx, yq (5.21)

(Note that
ř

A is a finite sum and hence commutes with limB.) Thus, the assump-
tion in Thm. 5.29 ensuring (5.20) has now been proved true. So (5.20) is true.
Moreover, combining (5.19), (5.20), (5.21) together, we get

ÿ

px,yqPXˆY

fpx, yq “ lim
API

ÿ

xPA

ÿ

yPY

fpx, yq “
ÿ

xPX

ÿ

yPY

fpx, yq

where the second and the third limits exist. This proves a half of (5.18). The other
half can be proved in the same way.

Theorem 5.50 (Fubini’s theorem-B). Let g : X ˆ Y Ñ Rě0. Then the five discrete
integrals in (5.22) exist in Rě0, and equations (5.22) hold in Rě0:

ÿ

xPX

ÿ

yPY

fpx, yq “
ÿ

yPY

ÿ

xPX

fpx, yq “
ÿ

px,yqPXˆY

fpx, yq (5.22)

87



Proof. The existence in Rě0 of the five discrete integrals is clear. (Recall Def. 5.44.)
Formula (5.22) can be proved in the same way as (5.18). Note that when applying
Thm. 5.29 to prove (5.22), the assumption in Thm. 5.29 on the existence of limits
is satisfied because all nets involved are increasing in R. (Recall Exe. 5.16.)

Corollary 5.51 (Fubini’s theorem-C). Let f : X ˆ Y Ñ V . Then the following are
equivalent.

(1)
ř

XˆY f converges absolutely.

(2)
ř

xPX

ř

yPY }fpx, yq} ă `8.

(3)
ř

yPY

ř

xPX }fpx, yq} ă `8.

Proof. Immediate from Thm. 5.50. It is also not hard to prove it directly.

5.5 Parametrization theorem for discrete integrals

We fix a Banach space V over F P tR,Cu. In the following sections, we shall
apply the results about discrete integrals to the study of series and double series.
For the convenience of applications (e.g. the proof of ezew “ ez`w), we enlarge the
concept of series a little:

5.5.1 Series over Z

Definition 5.52. A series over Z is an expression

`8
ÿ

n“´8

fpnq

where f is a function from Z to either V or Rě0. We say that this series converges
to (or equals) µ P V resp. equals µ P Rě0, if

lim
m,nÑ`8

n
ÿ

i“´m

fpiq “ µ (5.23)

In this case, we write

`8
ÿ

n“´8

fpnq “ µ

We say that
ř`8

n“´8
fpnq converges absolutely if

ř`8

n“´8
}fpnq} ă `8.

Remark 5.53. Note that in the case of Rě0, the limit on the LHS of (5.23) must exist
in Rě0. Again, this is due to the fact that the involved net is increasing, and so one
can use Exe. 5.16.
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Exercise 5.54. Let
ř`8

n“´8
fpnq be a series in either V or Rě0.

1. Fix k P Z. Prove that
ř`8

n“´8
fpnq converges iff the following limits converge:

`8
ÿ

n“k

fpnq “ lim
nÑ`8

n
ÿ

i“k

fpiq (5.24a)

k´1
ÿ

n“´8

fpnq “ lim
mÑ`8

k´1
ÿ

i“´m

fpiq (5.24b)

Moreover, if these limits converge, then

`8
ÿ

n“´8

fpnq “
`8
ÿ

n“k

fpnq `
k´1
ÿ

n“´8

fpnq (5.25)

2. In the case that f has codomain V , prove that
ř`8

n“´8
fpnq converges if it

converges absolutely.

3. Prove that if f is zero outside Z`, then

`8
ÿ

n“´8

fpnq “
`8
ÿ

n“1

fpnq (5.26)

Thus, by (5.26), our following results about series over Z can be directly ap-
plied to series over Z` (or over Zěk where k P Z).

5.5.2 Parametrization theorem

The following theorem relates series and discrete integrals. The structure of
this theorem is similar to that of Fubini’s theorem-A,B,C in Sec. 5.4.

Theorem 5.55 (Parametrization theorem). Let X be an infinite countable set. Let
φ : ZÑ X be a bijection (called a parametrization of X). The following are true.

1. Let f : X Ñ V . If the RHS of (5.27) converges in V , then the LHS converges, and
(5.27) holds:

`8
ÿ

n“´8

f ˝ φpnq “
ÿ

xPX

fpxq (5.27)

2. Let f : X Ñ Rě0. Then (5.27) holds in Rě0.
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3. Let f : X Ñ V . Then the discrete integral
ÿ

xPX

fpxq converges absolutely iff the

series
`8
ÿ

n“´8

f ˝ φpnq converges absolutely.

The same conclusions hold if we assume that φ : Z` Ñ X is a bijection.

Proof. We prove the case φ : ZÑ X ; the other case is similar.
Assume that

ř

X f converges, which means that the limit of the net
p
ř

A fqAPfinp2Xq converges to some v P V . Therefore, by Thm. 5.24, the subnet

´

ÿ

xPAm,n

fpxq
¯

m,nPZ`

“

´

n
ÿ

i“´m

f ˝ φpiq
¯

m,nPZ`

converges to v, where Am,n “ tφpiq : i P Z,´m ď i ď nu. This proves part 1. The
same method proves part 2. Part 3 follows directly from part 2.

5.6 Application to (double) series and power series; ezew “ ez`w

Fix a Banach space V over F P tR,Cu.

5.6.1 General results about series and double series

Corollary 5.56. Let f : ZÑ V , and let ψ : ZÑ Z be a bijection. Suppose that

`8
ÿ

n“´8

}fpnq} ă `8 (5.28)

Then (5.29) holds true, where the RHS of (5.29) converges absolutely:

`8
ÿ

n“´8

fpnq “
`8
ÿ

n“´8

f ˝ ψpnq (5.29)

The same conclusion clearly holds if Z is replaced by Z`.

Proof. By (5.28) and Thm. 5.55-3, the discrete integral
ř

Z f converges absolutely,
and hence converges. By Thm. 5.55-1, the LHS resp. RHS of (5.29) converges to
the value of

ř

Z f if we choose the parametrization to be idZ resp. ψ. This proves
(5.29) and the convergence of the RHS of (5.29). Applying the same conclusion to
}fp¨q} proves the absolute convergence of the RHS of (5.29).

Corollary 5.57. Let f : Z2 Ñ V . Let Φ : Z2 Ñ Z2 be a bijection. Suppose that

`8
ÿ

m“´8

`8
ÿ

n“´8

}fpm,nq} ă `8 (5.30)
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Then (5.31) holds true, where the six series involved in (5.31) converge absolutely.

`8
ÿ

m“´8

`8
ÿ

n“´8

fpm,nq “
`8
ÿ

n“´8

`8
ÿ

m“´8

fpm,nq “
`8
ÿ

k“´8

`8
ÿ

l“´8

f ˝ Φpk, lq (5.31)

Similar results clearly hold if Z2 is replaced by Z2
`: One extends the domain of

f and the domain and codomain of Φ from Z2
` to Z2. Then one apply Cor. 5.57.

Also, note that the second term of (5.31) is redundant: it follows from the
equality of the first and the third terms of (5.31) if we choose Φpk, lq “ pl, kq.

Proof. By Thm. 5.55-2 and Thm. 5.50, we have

`8
ÿ

m“´8

`8
ÿ

n“´8

}fpm,nq} “
ÿ

xPZ

ÿ

yPZ

}fpx, yq} “
ÿ

px,yqPZ2

}fpx, yq} (5.32)

where all the limits exist in Rě0. Therefore, by (5.30), the discrete integral
ř

Z2 f is
absolutely convergent and hence convergent.

Similar to the argument for (5.32), Thm. 5.55-1 and Thm. 5.49 imply that the
first two terms of (5.31) exist and are both equal to the discrete integral

ř

Z2 f .
Since

ř

Z2 f “
ř

Z2 f ˝ Φ (recall Rem. 5.42), by Thm. 5.55-1 and Thm. 5.49 again,
the last term of (5.31) converges to

ř

Z2 f ˝ Φ.
We have proved that the six series in (5.31) converge, and (5.31) holds. Replac-

ing fp¨, ¨qwith }fp¨, ¨q} and applying a similar argument, we see that the six series
in (5.31) converge absolutely.

Remark 5.58. Using the same method as in the above proof, one can easily prove
a more general version of Cor. 5.57: Let N P Z`. Let f : Z2 Ñ V such that (5.30)
holds true. Let Ψ : ZN Ñ Z2 be a bijection. Then the N series involved in the
expression of (5.33) (from innermost to outermost) converge absolutely:

`8
ÿ

n1“´8

¨ ¨ ¨

`8
ÿ

nN“´8

f ˝Ψpn1, . . . , nNq (5.33)

Moverover, the outermost series of (5.33) converges to (5.31). And of course, a
similar result holds if Z2 is replaced by ZM for every M P Z`. We leave it to the
readers to fill in the details.

Corollary 5.59. Assume that

A “
`8
ÿ

n“´8

an B “
`8
ÿ

n“´8

bn
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are absolutely convergent series in C. Then for each k P Z, the series

ck “
`8
ÿ

l“´8

ak´lbl

converges absolutely. Moreover, the LHS of the (5.34) converges absolutely to the RHS:

`8
ÿ

k“´8

ck “ AB (5.34)

Proof. Apply Cor. 5.57 to the case that fpm,nq “ ambn and Φpk, lq “ pk ´ l, lq.

5.6.2 Application to power series

Corollary 5.60. Let fpzq “
`8
ÿ

n“0

anz
n and gpzq “

`8
ÿ

n“0

bnz
n be power series in C with radii

of convergence R1, R2 respectively. Let R “ mintR1, R2u. For each k P Z`, let

ck “
k
ÿ

l“0

ak´lbl

Then the power series hpzq “
`8
ÿ

k“0

ckz
k has radius of convergence ě R. Moreover, for each

z P C satisfying 0 ď |z| ă R, we have

hpzq “ fpzq ¨ gpzq

Proof. For each 0 ď |z| ă R, apply Cor. 5.59 by replacing the an, bn, ck of Cor.
5.59 with anzn, bnzn, ckzk. This shows that hpzq converges absolutely to fpzq ¨ gpzq.
Since this is true for all |z| ă R, hpzq must have radius of convergence at least R
by Rem. 4.21.

The above result also holds more generally for Laurent series. See Exe. 5.66.

Corollary 5.61. For each z, w P C we have

ezew “ ez`w

Proof. Apply Cor. 5.59 to the case an “ zn{n! and bn “ wn{n!. (We set an “ bn “ 0
if n ă 0.) Then

ck “
k
ÿ

l“0

zk´l

pk ´ lq!
¨
wl

l!
“

k
ÿ

l“0

ˆ

k

l

˙

zk´lwl

k!
“
pz ` wqk

k!

by (4.5).

92



5.7 Summary

The following are some fundamental questions about series and double series:

(a) Are they invariant under rearrangement? (Cf. (5.29).)

(b) Does the value of an interated double series remain unchanged if the order
of the two infinite sums is changed? (Cf. the first equality in (5.31).)

(c) A mixture of the above two questions. (Cf. the last term of (5.31).)

We address these questions by relating them to discrete integral, a version of in-
finite sums which is parametrization-independent. The following are some key
features of this theory.

1. (General principle) A discrete integral is to a series (defined by parametriza-
tion) as a net to a subnet.

2. (Netñ Subnet) All subnets of a convergent net converge to the same value:
the limit of the original net.

3. (Discrete integral ñ Series) Therefore, different series converge to the same
value if they are different parametrizations of the same convergent discrete
integral.

4. (Discrete integrals ñ Series) Fubini-type theorems (any theorems about ex-
changing the orders of iterated sums/integrals) hold for convergent double
discrete integrals. Therefore, they hold when passing to subnets, in particu-
lar, when passing to double series.

5. (Subnet ñ Net) Every increasing net in Rě0 has a limit in Rě0. Therefore, if
an increasing net in Rě0 has a subnet converging to a number ă `8, then
the original net converges in Rě0 (to a finite number).

6. (General principle) The discrete integral
ř

xPX }fpxq} is defined by the limit
of an increasing net in Rě0.

7. (Series ñ Discrete integral) Therefore, if any series or double series corre-
sponds in a reasonable way to a discrete integral, then the absolute conver-
gence of this (double) series (more specifically: (5.28) or (5.30)) implies the
absolute convergence (and hence convergence) of the original discrete in-
tegral. This implies the absolute convergence of any other (double) series
arising from that discrete integral.

8. (Conclusion) Thus, when a (double) series converges absolutely (in the form
of (5.28) or (5.30)), the three problems (a), (b), (c) have satisfying answers.
The reason absolutely convergent (double) series are so good is because in-
creasing nets in Rě0 are very good!
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9. (Counterexamples) Non-absolutely convergent series in R have rearrange-
ments converging to different values. This is because non-convergent nets
may have two subnets converging to different values, cf. Pb. 5.5. (Recall
from Prop. 5.48 that for discrete integrals in R, absolute convergence is
equivalent to convergence.)

5.8 Problems and supplementary material

Let X be a set, and let V be a Banach space over R P tR,Cu.

Problem 5.1. Compute limp,qÑ`8 ap,q where pap,qqp,qPZ`
are given below. Or ex-

plain why the limit does not exist.

ap,q “
p´1qp ¨ p

p` q
ap,q “

p´1qp

p
ap,q “

cosppπ{4q

p` q

Problem 5.2. Prove Thm. 5.38. (Every Cauchy net in a complete metric space
converges.)

Problem 5.3. Let f : X Ñ V . Define the support of f to be

Supppfq “ tx P X : fpxq ‰ 0u (5.35)

Prove that if
ř

X f converges absolutely, then Supppfq is a countable set.

Hint. Consider tx P X : |fpxq| ě εuwhere ε ą 0.

Problem 5.4. Prove Prop. 5.48.

‹ Problem 5.5. Prove Riemann rearrangement theorem, which says the follow-
ing: Let

ř`8

n“1 xn be a series in R which converges and which does not converge
absolutely. Choose any A P R. Then

ř`8

n“1 xn has a rearrangement converging to
A (i.e., there is bijection φ : Z` Ñ Z` such that

ř`8

n“1 f ˝ φpnq “ A).

Remark 5.62. By Riemann rearrangement theorem, it is clear that every conver-
gent series in RN which is not absolutely convergent must have two rearrange-
ments converging to two different points. However, when RN is replaced by an
infinite dimensional Banach space, one may find a series

ř`8

n“1 vn which does not
converge absolutely but converge to some v, and every rearrangement of

ř`8

n“1 vn
converges to v. See Pb. 5.6.

Problem 5.6. Consider the case that V is the real Banach space V “ l8pZ`,Rq. For
each n P Z`, let en P V be the characteristic function χtnu. Namey, en takes value 1
at n, and takes 0 at the other points. Prove that the discrete integral

ÿ

nPZ`

1

n
en (5.36)

converges in V , and find the limit. Prove that (5.36) does not converge absolutely.
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Remark 5.63. A more important example that will be considered later is V “

l2pZ`,Cq, the set of all functions f : Z` Ñ C satisfying that the l2l2l2-norm }f}l2 “
b

ř

nPZ`
|fpnq|2 is finite. Then V is in fact a Banach space. (Actually, it is a so-called

Hilbert space.) Again, let en “ χtnu. (These en will be called an orthonormal
basis of V .) Then for each f P V , the discrete integral

ř

nPZ`
fpnq ¨ en converges

to f . But it does not converge absolutely if
ř

nPZ`
|fpnq| “ `8. Take for example

fpnq “ n´1. We will study these objects in the second semester.

Problem 5.7. Define pxj,kqpj,kqPZ`ˆZ`
to be

xj,k “

$

&

%

1

j2 ´ k2
if j ‰ k

0 if j “ k

Prove that the discrete integral
ÿ

pj,kqPZ2
`

xj,k does not converge in R.

Hint. Consider pxj,kq as a net over Z2. Find a good bijection Φ : Z2 Ñ Z2.

Definition 5.64. For each f P V X , define the l1l1l1-norm

}f}l1pX,V q ” }f}l1 ” }f}1 “
ÿ

xPX

}fpxq}

Define the l1-space

l1pX, V q “ tf P V X : }f}l1 ă `8u

Namely, l1pX, V q is the set of all f P V X where
ř

X f converges absolutely. In
particular,

ř

X f converges for such f .

Exercise 5.65. Prove that for each f, g P V X and λ P F, we have

}f ` g}1 ď }f}1 ` }g}1 }λf}1 “ |λ| ¨ }f}1 (5.37)

Show that l1pX, V q is a linear subspace of l8pX, V q, and that } ¨ }l1 is a norm on
l1pX, V q

Problem 5.8. Prove that l1pX, V q is a Banach space. Namely, prove that the metric
on l1pX, V q defined by the l1-norm is complete.

Problem 5.9. Prove the dominated convergence theorem for discrete integrals:
Let pfαqαPI be a net in V X satisfying the following conditions:

(1) There exists g P l1pX,Rq satisfying g ě 0 (i.e. gpxq ě 0 for all x P X) such
that for every α P I, x P X we have

}fαpxq} ď gpxq

We simply write the above condition as |fα| ď g.
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(2) pfαqαPI converges pointwise some f P V X . Namely, limα fαpxq “ fpxq for
every x P X .

Prove that f P l1pX, V q. Prove that the LHS of (5.38) exists and equals the RHS:

lim
αPI

ÿ

xPX

fαpxq “
ÿ

xPX

fpxq (5.38)

‹ Problem 5.10. Assume vn P V for each n. Let z be a complex variable. Then the
expression

fpzq “
`8
ÿ

n“´8

vnz
n

is called a Laurent series in V .
Prove that there exist unique r, R P Rě0 such that fpzq converges absolutely

when |r| ă z ă |R|, and that fpzq diverges when |z| ă r or |z| ą R. Prove that

r “ lim sup
nÑ`8

n
a

}v´n} R “
1

lim sup
nÑ`8

n
a

}vn}
(5.39)

(Recall that by Exe. 5.54, fpzq diverges iff either
ř8

n“0 vnz
n or

ř´1
n“´8

vnz
n di-

verges.) We call r and R the radii of convergence of fpzq.

‹ Exercise 5.66. Consider Laurent series fpzq “
ř`8

n“´8
anz

n (with radii of conver-
gence r1 ă R1) and gpzq “

ř`8

n“´8
bnz

n (with radii of convergence r2 ă R2) in C.
Let

r “ maxtr1, r2u R “ mintR1, R2u

Assume that r ă R. Prove that for each k P Z, the series

ck “
`8
ÿ

l“´8

ak´lbl

converges absolutely. Prove that for each z P C satisfying r ă |z| ă R, the LHS of
the following equation converges absolutely to the RHS:

`8
ÿ

k“´8

ckz
k
“ fpzqgpzq (5.40)
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6 ‹ Construction of R from Q
The goal of this chapter is to construct real numbers from rationals. More

precisely, our goal is to prove Thm. 1.34. We use the method of Cantor to construct
real numbers using equivalence classes of Cauchy sequences in Q. The idea is
quite simple: If we admit the existence of R satisfying Thm. 1.34, then by Prop.
1.29, each x P R is the limit of a sequence pxnq in Q, which must be a Cauchy
sequence. Moreover, if pynq is a sequence in Q converging to y P R, then by Exe.
5.37 we have x “ y iff pxnq and pynq are Cauchy equivalent. Motivated by this, we
now do not assume the existence of R, and make the following definition:

Definition 6.1. We let R be the set of Cauchy sequences in Q, 1 namely, the set of
pxnqnPZ`

P QZ` satisfying

lim
m,nÑ`8

pxm ´ xnq “ 0

We say that two elements pxnq, pynq of R are Cauchy-equivalent and write pxnq „
pynq if limnÑ8pxn ´ ynq “ 0.

Note that the above definition does not rely on the existence of R, because
the limit of nets in Q can be defined using only rational numbers: a net pξαqαPI

converges to ξ iff for every ε P Qą0, ξα is eventually satisfies |ξα ´ ξ| ă ε. The
readers can check that all the properties about limit used in this chapter does not
rely on the existence of R.

Cauchy-equivalence is clearly an equivalence condition on R: For example, if
limpxn ´ ynq “ limpyn ´ znq “ 0 then |xn ´ zn| ď |xn ´ yn| ` |yn ´ zn| Ñ 0. So
|xn ´ zn| Ñ 0. This proves the transitivity. The other two conditions are obvious.
Therefore, we can define:

Definition 6.2. We let R “ R{ „ where „ is the Cauchy-equivalence relation.
(Recall Def. 1.18). The equivalence class of pxnqnPZ`

is denoted by rxnsnPZ`
“

rx1, x2, . . . s, simply written as rxns. The zero element 0 of R is defined to be
r0, 0, . . . s.

Exercise 6.3. Choose rxns P R (i.e. pxnq P R) . The following are equivalent:

(1) rxns ‰ 0. Namely, limn xn does not converge to 0.

(2) There exists ε P Qą0 such that either xn ą ε eventually, or xn ă ´ε eventu-
ally. In particular, xn ‰ 0 eventually.

Consequently, the map a P Q ÞÑ ra, a, . . . s P R is injective. With the help of this
injective map, Q can be viewed as a subset of R.

1Only in this chapter do we use R for this meaning.
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Exercise 6.4. Let rxns P R and a P Q. Suppose that xn ě a (resp. xn ď a) frequently.
Then for every ε P Qą0, we have that xn ě a´ ε (resp. xn ď a` ε) eventually.

Definition 6.5. If ξ, η P R, write ξ “ rxns and η “ ryns. In the case that η ‰ 0, we
assume yn ‰ 0 for all n, which is possible by Exe. 6.3. Define

rxns ` ryns “ rxn ` yns

´rxns “ r´xns

rxns ¨ ryns “ rxnyns

1{ryns “ r1{yns pif ryns ‰ 0q

Exercise 6.6. Prove that the above formulas are well-defined: For example, if
pxnq „ px1

nq in R, then pxnynq „ px1
nynq. (You may need the easy fact that every

Cauchy sequence is bounded.)

Remark 6.7. It is clear that Def. 6.5 makes R a field, which means that for every
α, β, γ P R, the following are satisfied:

α ` β “ β ` α pα ` βq ` γ “ α ` pβ ` γq 0` α “ α α ` p´αq “ 0

αβ “ βα pαβqγ “ αpβγq 1 ¨ α “ α pα ` βqγ “ αγ ` βγ

α ¨
1

α
“ 1 pif α ‰ 0q

Moreover, Q is a subfield of R where the addition, taking negative, multiplication,
and inverse of R restrict to those of Q.

Definition 6.8. Let rxns, ryns P R. We write rxns ă ryns if one of the following
equivalent (due to Exe. 6.4) statements hold:

• There exists ε P Qą0 such that yn ´ xn ą ε eventually.

• There exists ε P Qą0 such that yn ´ xn ą ε frequently.

It is not hard show that “ ă ” is well-defined, and that (by Exe. 6.3) if rxns ă ryns
then rxns ‰ ryns. We write rxns ď ryns if rxns ă ryns or xn “ yn.

Lemma 6.9. pR,ďq is a totally ordered set.

Proof. Choose rxns, ryns, rzns P R. If rxns ă ryns and ryns ă rzns, then clearly rxns ă
rzns. This proves that ď is a preorder.

Suppose rxns ď ryns and ryns ď rxns. Let us prove rxns “ ryns. Suppose not.
Then rxns ă ryns and ryns ă rxns by the definition of “ď”. So there is ε ą 0 such
that yn ´ xn ą ε eventually, and xn ´ yn ą ε eventually. Impossible. So ď is a
partial order.

Suppose rxns ‰ ryns. Then pxn ´ ynq ȷ 0. So Exe. 6.3 implies that either
rxns ă ryns or ryns ă rxns. So ď is a total order.
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Lemma 6.10. Let rxns, ryns P R. Then the following are equivalent.

• rxns ě ryns.

• For every ε P Qą0, xn ´ yn ě ´ε frequently.

• For every ε P Qą0, xn ´ yn ě ´ε eventually.

Proof. Since ď is a total order, the negation of ą is ď. So the statements follow
immediately by negating Def. 6.8.

Lemma 6.11. R is an ordered field extension of Q, and R is Archimedean.

Proof. The order of R clearly restricts to that of Q. We want to prove that R is
an ordered field. (Recall Def. 1.23). Clearly, if rxns ă ryns and rzns P R, then
rxns ` rzns “ rxn ` zns ă ryn ` zns “ ryns ` rzns. If rxns ą 0 and ryns ą 0, then
there are ε ą 0 such that xn ą ε eventually and yn ą ε eventually. So xnyn ą ε2

eventually. So rxnsryns ą 0. This proves that R is an ordered field.
Now let rxns ą 0 and ryns P R. So there exist ε P Qą0 such that xn ą ε

eventually. Since pynq is Cauchy, one checks easily that pynq is bounded. So there
is M P Qą0 such that |yn| ď M for all n. Since Q is Archimedean, there exists
k P Z` such that kε ą M ` 1. So kxn ą M ` 1 eventually. So krxns ą M . This
proves that R is Archimedean.

To finish the proof of Thm. 1.34, it remains to prove that R satisfies the least-
upper-bound property.

Lemma 6.12. Thm. 1.34 holds if every bounded increasing sequence in R converges.

Proof. Suppose that every bounded increasing sequence in R converges. Choose
any nonempty E Ă R bounded from above. We shall show that E has a least
upper bound.

Let F be the set of upper bounds of E. Namely, F “ tη P R : η ě ξ, @ξ P Eu. So
F ‰ H. We construct an increasing sequence pξkq inE and an decreasing sequence
pηkq in F as follows. Since E,F are nonempty, we choose arbitrary ξ1 P E and
η1 P F . Then ξ1 ď η1. Suppose ξ1 ď ¨ ¨ ¨ ď ξk P E and η1 ě ¨ ¨ ¨ ě ηk P F have been
constructed. Let ψk “ pξk ` ηkq{2. Let

"

ξk`1 “ ψk, ηk`1 “ ηk if ψk P E
ξk`1 “ ξk, ηk`1 “ ψk if ψk P F

Then the sequences we have constructed satisfy limkÑ8pηk ´ ψkq “ 0.
By assumption, α “ limkÑ8 ξk exists, and it equals limk ηk. So α is an upper

bound of E. (If λ P E, then λ ď ηk for all k since ηk P F . So λ ď limk ηk “ α.) We
now show that α is the least upper bound. Let ε ą 0. Since ξk Ñ α, there is k such
that α ´ ξk ă ε. So ξk ą α ´ ε, and hence α ´ ε is not an upper bound of E.
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Lemma 6.13. Thm. 1.34 holds if every bounded increasing sequence in Q converges to
an element of R.

Proof. Suppose that every increasing sequence in Q converges in R. By Lem. 6.12,
it suffices to prove that every increasing sequence pξkq in R converges. If tξk : k P
Z`u is a finite subset of R, then pξkq clearly converges. If tξk : k P Z`u is infinite,
then pξkq clearly has a strictly increasing subsequence pξklq. If we can prove that
pξklq converges to some ψ P R, then pξkq converges to ψ. (Choose any ε ą 0.
Choose L P Z` such that |ψ ´ ξkL | ă ε and hence 0 ď ψ ´ ξkL ă ε. Then for all
k ě kL we have 0 ď ψ ´ ξk ă ε.)

Thus, it remains to prove that every strictly increasing sequence pηkq in R con-
verges. Since we have proved that R is an Archimedean ordered field extension
of Q, by Prop. 1.29, for each k, there exists ak P Q such that ξk ă ak ă ξk`1. By
assumption, pakq converges to some α P R. Since ak´1 ă ξk ă ak, by squeeze
theorem, pξkq converges to α.

Proof of Thm. 1.34. By Lem. 6.13, it suffices to show that every bounded increas-
ing sequence pakq in Q converges in R. Let M P Q such that ak ďM for all k.

We first prove that pakq is a Cauchy sequence. If not, then there exists ε P Qą0

such that for every K P Z` there is k ą K such that |ak ´ aK | ą ε, and hence
ak´aK ą ε. Thus, we can find a subsequence paklq such that akl`1

´akl ą ε. By the
Archimedean property for Q, there is l P Z` such that ak1` l ¨ε ąM . So akl`1

ąM ,
impossible.

Note that each ak is identified with ξk “ rak, ak, . . . s. Let ψ “ ra1, a2, a3, . . . s,
which is an element of R since we just proved that panq P R. Then for each k,
ψ ´ ξk “ ra1 ´ ak, a2 ´ ak, . . . s, where the terms are eventually ě 0. So ξk ď ψ by
Lem. 6.10. We have proved that ψ is an upper bound for the sequence pξkq.

Let us prove that limk ξk “ ψ. Choose any ε P Qą0. Let us prove that there
exists k such that ψ ´ ε ă ξk. Then for every k1 ě k we have ψ ´ ε ă ξk1 ď ψ,
finishing the proof of limk ξk “ ψ.

We have proved that a1, a2, . . . is a Cauchy sequence in Q. So there exists k
such that al ´ ak ă ε{2 for all l ě k. Thus, for all l ě k we have ak ´ pal ´ εq ą ε{2.
Thus, the l-th term of ξk “ rak, ak, . . . s minus that of ψ ´ ε “ ra1 ´ ε, a2 ´ ε, . . . s is
ą ε{2 for sufficiently large l. By Def. 6.8, we have that ψ ´ ε ă ξk.
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7 Topological spaces

7.1 The topologies of metric spaces

In this chapter, we begin our study of topological spaces, which were intro-
duced by Hausdorff in 1914 [Hau14] as a generalization of metric spaces. As we
have seen, focusing on metrics in order to study convergence and continuity is
often distracting. For example, in R, we only care about how the convergence of
sequences look like, but not about the particular metrics. The same is true about
the countable product of metric spaces S “

ś

iPZ`
Xi: the metrics (2.14) and (2.15)

give the same topology, although they look very different. Moreover, the shapes
of the open balls defined by these two metrics are not very simple. This makes it
more difficult to study the continuity of functions on S by using (2) or (2’) of Def.
2.38.

Topological spaces generalize metric spaces by giving a set of axioms satisfied
by the open sets of the spaces.

Definition 7.1. Let X be a metric space, and let E Ă X . A point x P E is called
an interior point of E if BXpx, rq Ă E for some r ą 0. We say that E is an open
(sub)set of X , if every point of E is an interior point.

Definition 7.2. Let T be the set of open sets of X . We call T the topology of the
metric space X .

Example 7.3. By triangle inequality, every open ball of a metric space X is open.
H and X are open subsets of X . If p, q P RN and dpp, xq “ r (where 0 ď r ă `8),
then p is not an interior point of BRN px, rq. So the closed balls of RN are not open
sets. In particular, ra, bs are not open subsets of R since a, b are not interior points.

Example 7.4. It is not hard to see that a finite intersection of open sets is open.

In topological spaces, open sets play the role of open balls in metric spaces due
to the following facts:

Exercise 7.5. Let pxnq be a sequence in a metric space X . Let x P X . Show that the
following are equivalent:

(1) pxnq converges to x.

(2) For every neighborhood U of x (i.e. every open set containing x) there is
N P Z` such that for every n ě N we have xn P U .

Exercise 7.6. Let f : X Ñ Y be a map of metric spaces. Let x P X and y “ fpxq.
Prove that the following are equivalent.

(1) f is continuous at x.
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(2) For every neighborhood V of y there is a neighborhood U of x such that
fpUq Ă V (equivalently, U Ă f´1pV q.)

But there is an important difference between the intuitions of open sets and
open balls: We want the open balls at a point x to be small so that they can be
used to describe the approximation to x. However, an arbitrary open set can be
very large. For example, when studying convergence and continuity in R, we
really want a neighborhood of 1 to be p1 ´ ε, 1 ` εq but not the more complicated
and bigger one p´8,´2q Y p0, 100´ εq. Indeed, open sets can be very big:

Lemma 7.7. Let X be a metric space. If pUαqαPI is a family of open subsets of X , then
W “

Ť

αPI Uα is open in X .

Proof. Choose x P W . Then x P Uα for some α. So BXpx, rq Ă Uα for some r ą 0.
So x is an interior point of W .

Thus, people very often choose a class B of smaller open sets (such as the set
of open balls) to study the analytic properties of a topological space.

Definition 7.8. Let B be a set of open sets of a metric space (or more generally, a
topological space) X . We say that B is a basis for the topology T of X if one of
the following (clearly) equivalent statements holds:

• For every point x P X and every neighborhood W of x there exists U P B
such that x P U and U Ă W .

• Every open subset of X is a union of some members of B.

Thus, according to Def. 7.1, the set of open balls of a metric space X form a
basis for the topology of X . Nevertheless, even in the case of metric spaces, we
sometimes consider more convenient bases than the set of open balls. We will see
this when we study the topologies of infinite product spaces.

7.2 Topological spaces

7.2.1 Definitions and basic examples

Definition 7.9. We say that a pair pX, T q (or simply X) is a topological space if X
is a set, and if T (called the topology of X) is a set of subsets of X satisfying the
following conditions

• H P T and X P T .

• (Union property) If pUαqαPI is a family of elements of T , then
Ť

αPI Uα is an
element of T .
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• (Finite intersection property) If n P Z` and U1, . . . , Un P T , then U1X¨ ¨ ¨XUn
is an element of T .

Elements of T are called open (sub)sets of X .

Definition 7.10. Let X be a topological space, and x P X . A subset U Ă X is
called a neighborhood of x, if U is an open subset of X containing x.1 We define
pNbhXpxq,ďq, the directed set of neighborhoods of x, to be

NbhXpxq “ tneighborhoods of x in Xu
U ď U 1

ðñ U Ą U 1
(7.1)

(Note that one needs the finite intersection property to show that NbhXpxq is a
directed set.) We abbreviate this set to NbhXpxq or simply Nbhpxq.

Example 7.11. In Subsec. 7.1, we have proved that the topology of a metric space
satisfies the above axioms of a topological space.

In particular, ifX is a normed vector space, the topology induced by the metric
dpx, x1q “ }x ´ x1} is called the norm topology. If X is a subset of RN or CN , the
topology on X induced by the Euclidean metric is called the Euclidean topology.

Definition 7.12. A topological space pX, T q is called metrizable, if there is a met-
ric on X inducing the topology T .

We have seen that the open balls of a metric space generate a topology. In
general, one may ask what possible subsets of 2X generate a topology on a set X .
Here is a description, whose proof is left to the readers as an exercise.

Proposition 7.13. Let X be a set, and let B Ă 2X . Define

T “ tUnions of elements of Bu (7.2)

The following are equivalent.

(1) pX, T q is a topological space.

(2) The following are satisfied:

(2-a) X “
Ť

UPB U .

(2-b) If U1, U2 P B, then U1 X U2 P T (i.e., for each x P U1 X U2 there exists V P B
such that x P V and V Ă U1 X U2).

1We are following the convention in [Mun, Rud-R]. But many people refer to the word ”neigh-
borhood” with slightly different meaning: a subset A is called a neighborhood of x if there is an
open set U such that x P U Ă A. And our neighborhoods are called “open neighborhoods” by
them.
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When (1) or (2) holds, we call T the topology generated by B. Clearly, B is a
basis for T (cf. Def. 7.8).

Exercise 7.14. Let X be a set. Let B,B1 be subsets of 2X generating topologies
T , T 1 respectively. Prove that the following are equivalent.

(1) T “ T 1.

(2) Each U P B is a union of elements of B1. Each U 1 P B1 is a union of elements
of B.

(3) For each U P B and x P U , there exists U 1 P B1 such that x P U 1 Ă U . For each
U 1 P B and x P U 1, there exists U P B such that x P U Ă U 1.

Example 7.15. If pX, T q is a topological space, then T is a basis for T .

Example 7.16. Let pX, dq be a metric space with topology T . Let B “ tBXpx, rq :
x P X, 0 ă r ă `8u. Then B is a basis for T . For each ε ą 0, the set B1 “

tBXpx, rq : x P X, 0 ă r ă εu is also a basis for T .

Example 7.17. Let B Ă 2R be defined by

B “ tpa, bq, pc,`8s, r´8, dq : a, b, c, d P Ru (7.3)

Using Prop. 7.13, one easily checks that B is a basis for a topology T . We call this
the standard topology of R.

Let φ : R Ñ ru, vs be a strictly increasing bijection where ´8 ă u ă v ă `8.
Let dru,vs be the Euclidean metric, and let T 1 be the topology on R defined by
dR “ φ˚dru,vs. Then the set of open balls under T 1 is

B1
“ tpφ´1

py ´ εq, φ´1
py ` εqq, pφ´1

pv ´ ε1
q,`8s, r´8, φ´1

pu` ε2
qq :

y P pu, vq and ε, ε1, ε2
P Rą0u

(Note that the three types of intervals in the definition of B1 are open balls centered
at φ´1pyq,`8,´8 respectively.) Using Exe. 7.14, one easily checks T “ T 1.

Convention 7.18. Unless otherwise stated, the topology on R is defined to be the
standard one, i.e., the one generated by (7.3). We shall forget about the metric on
R, and view R only as a (metrizable) topological space.

Definition 7.19. Let A be a subset of a topological space pX, TXq. Then

TA “ tU X A : U P TXu

is clearly a topology on A, called the subspace topology. Unless otherwise stated,
when viewing a subset as a topological subspace, we always choose the subspace
topology for the subset.
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Exercise 7.20. Let pX, dXq be a metric space, inducing a topology TX . Let A be a
metric subspace of X . (So A Ă X , and dX restricts to dA.) Prove that the topology
on A induced by dA is the subspace topology.

According to the above exercise, if X is a metric space, then viewing a subset
A as a topological subspace is compatible with viewing A as a metric subspace.

Exercise 7.21. Let A be a subset of a topological space X . Let B be a basis for the
topology of X . Show that tU X A : U P Bu is a basis for the subspace topology of
A.

7.2.2 Convergence of nets

Definition 7.22. Let pxαqαPI be a net in a topological space X . Let x P X . We say
that pxαq converges to x and write

lim
αPI

xα ” lim
α
xα “ x

or simply write xα Ñ x, if the following statement holds:

• For every U P NbhXpxq, we have that xα is eventually in U .

Clearly, if B is a basis for the topology, then xα Ñ x iff:

• For every U P B containing x, we have that xα is eventually in U .

In the case that X is a metric space (and the topology of X is induced by the
metric), the definition here agrees with Def. 5.11.

Exercise 7.23. Let pxαq be a net in X converging to x P X . Prove that every subnet
of pxαq converges to x.

Exercise 7.24. Let A be a subset of a topological space X , equipped with the sub-
space topology. Let pxαq be a net in A, and let x P A. Show that xα Ñ x in A iff
xα Ñ x in X .

Example 7.25. Let X be a set. Let T “ tH, Xu. Then every net in X converges to
every point of X . Thus, if X has at least two elements, then the limit of a net in X
is not unique. Therefore, a general topological space might be very pathological.
To avoid this uniqueness issue, we introduce the following notion:

Definition 7.26. Let X be a topological space with a basis for the topology B.
We say that X is a Hausdorff space if the following equivalent conditions are
satisfied:

(1) (Hausdorff condition) If x, y P X and x ‰ y, then there exist neighborhoods
U of x and V of y such that U X V “ H.
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(1’) If x, y P X and x ‰ y, then there exist U P B containing x and V P B
containing y such that U X V “ H.

(2) If pxαqαPI is a net in X converging to both x and y, then x “ y.

Proof of the equivalence. (1)ô(1’): Obvious.
(1)ñ(2): Suppose that pxαq converges to x and y. Suppose x ‰ y. By (1), we

have disjoint neighborhoods U Q x and V Q y. Since xα Ñ x, xα is eventually in
U . Similarly, xα is eventually in V . Therefore, by the logic (5.6b), xα is eventually
in U X V “ H, impossible.
␣(1)ñ ␣(2): Suppose that (1) is not true. Then there exist x ‰ y such that

every neighborhood of x intersects every neighborhood of y. Let I “ NbhXpxq ˆ
NbhXpyq. For each α “ pU, V q P I , by assumption, there exists xα P U X V .
Then pxαqαPI is a net in X . We leave it to the readers to check that xα Ñ x and
xα Ñ y.

Remark 7.27. In Hausdorff’s 1914 paper introducing topological spaces, the
Hausdorff condition is one of the axioms of topological spaces. Non-Hausdorff
topological spaces were studied much later. The reason that Hausdorff spaces ap-
peared first may be as follows: The original motivation for topological spaces lies
in the study of analysis (especially functional analysis). But in analysis, most
spaces are Hausdorff, because we want the limits of sequences or nets to be
unique.

In differential geometry and in topology2, people are also mainly concerned
with topological spaces that are Hausdorff. This is related to the fact that in these
areas people often use tools from analysis. But in algebraic geometry, the main
examples of topological spaces (e.g. varieties and schemes, whose topologies are
called Zariski topology) are not Hausdorff. As a related fact, sequences and nets
are not effective tools in the study of algebraic geometry.

7.3 Closures, interiors, and closed sets

In this section, we fix a topological space X .

7.3.1 Closure points; dense subsets

Definition 7.28. Let A be a subset of X . We say that x P X is a closure point of A,
if the following equivalent conditions hold:

(1) There is a net pxαqαPI in A converging to x.

(2) Each U P NbhXpxq intersects A.

2Here, I mean genuine topology, such as algebraic topology, differential topology, geometric
topology, etc., but not point-set topology, which is analysis under the guise of topology.
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The closure of A is defined to be

A ” ClpAq ” ClXpAq “ tclosure points of Au

Clearly A Ă A. Clearly, if A Ă B Ă X , then A Ă B.

Unless otherwise stated, if several subsets are involved, we always understand
A as ClXpAqwhere X is the ambient topological space.

Proof of equivalence. (1)ñ(2): Assume (1). Choose any U P NbhXpxq. Since xα Ñ x,
we have that xα is eventually in U . So U must contain some xα. But xα P A. So
U X A ‰ H.

(2)ñ(1): By (2), for each U P NbhXpxq we can choose xU P U X A. Then
pxUqUPNbhXpxq is a net in A converging to x.

Exercise 7.29. Let B be a basis for the topology of X . Show that x P X is a closure
point of A iff every U P B containing x must intersect A.

Exercise 7.30. Let A be a subset of a metric space. Show that x P X is a closure
point of A iff there is a sequence pxnqnPZ`

in A converging to x.

Exercise 7.31. Recall that if X is a metric space, then BXpx, rq “ ty P X : dpx, yq ď
ru. Show that

BXpx, rq Ă BXpx, rq (7.4)

and that these two sets are not necessarily equal.

Remark 7.32. Our proof of (2)ñ(1) in Def. 7.28 is an indirect proof, because it
uses axiom of choice. (Given U P NbhXpxq, the choice of xU P U X A is highly
arbitrary.) Here is a direct proof: Assume (2). Define a direct set pI,ďqwhere

I “ tpp, Uq : U P NbhXpxq, p P U X Au

pp, Uq ď pp1, U 1
q ðñ U Ą U 1

The fact that I is a directed set is due to (2). Then ppqpp,UqPI is a net in A converging
to x.

We will often prove results about nets in topological spaces using axiom of
choice, not only because it is simpler than direct proofs (as above), but also be-
cause it is parallel to our use of sequences in metric spaces. (For example, see the
proof of (1)ñ(2) in Def. 2.38.) However, it is important to know how to give a
direct proof. This is because the studies of topological spaces using nets and us-
ing open sets are often equivalent, and direct proofs using nets can be more easily
translated into proofs using open sets and vice versa.

Exercise 7.33. Prove ␣(1)ñ␣(2) of Def. 7.26 without using axiom of choice.
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Remark 7.34. There is a notion closely related to closure points, called accumula-
tion points. Let A be a subset of X . A point x P X is called a accumulation point
(or limit point or cluster point) of A, if x is a closure point of Aztxu.

We will not use the notion of accumulation points, although this concept is
widely used in many textbooks on analysis or point-set topology. We use closure
points instead. (But note that if x R A, then x is a closure point iff x is an accumu-
lation point.) On the other hand, the following opposite notion of accumulation
points is important and has a clear geometric picture:

Definition 7.35. We say that x P X is an isolated point of X , if the following
(clearly) equivalent conditions hold:

(1) x R Xztxu.

(2) There is no net in Xztxu converging to x.

(3) There is a neighborhood of x disjoint from Xztxu.

If X is a metric space, then x is an isolated point iff there is no sequence in Xztxu
converging to x.

We return to the study of closures.

Proposition 7.36. Let A be a subset of X . Then A “ A.

Proof. Choose any x P A. To prove x P A, we choose any U P NbhXpxq, and try to
prove U X A ‰ H. Since x is a closure point of A, U intersects A. Pick y P U X A.
Then y is a closure point of A, and U P NbhXpyq. So U intersects A.

One should think of A “ A not only as a “geometric” fact about closures.
Instead, one should also understand its analytic content: A closure point of A is
a point which can be approximated by elements of A. Thus, A “ A says that
“approximation is transitive”: If x can be approximated by some elements which
can be approximated by elements of A, then x can be approximated by elements
of A. Alternatively, one can use the language of density:

Definition 7.37. A subset A of X is called dense (in X) if A “ X .

Exercise 7.38. Show that A is dense in X iff every nonempty open subset of X
intersects A.

Remark 7.39. Let A Ă B Ă X . From Def. 7.28-(1), it is clear that

ClBpAq “ ClXpAq XB (7.5)

Thus, A is dense in B iff B Ă ClXpAq.
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Thus, the following property has the same meaning as A “ A.

Corollary 7.40. Let A Ă B Ă X . Assume that A is dense in B, and B is dense in X ,
then A is dense in X .

Proof. Choose any x P X . Then x P ClXpBq since B is dense in X . Since A is dense
in B, we have B Ă ClXpAq. Therefore x P ClXpClXpAqq, and hence x P ClXpAq by
Prop. 7.36.

Example 7.41. Let X “ Cpr0, 1s,Rq, equipped with the l8-norm. Let B be the set
of polynomials with real coefficients, regarded as continuous functions on r0, 1s.
By Weierstrass approximation theorem (which will be studied in the future), B is
a dense subset of X . Then the set A of polynomials with rational coefficients is
clearly a dense subset of B under the l8-norm. (Proof: Let fpxq “ a0 ` a1x` ¨ ¨ ¨ `
akx

k. For each 0 ď i ď k, choose a sequence pai,nqnPZ`
in Q converging to ai. Let

fnpxq “ a0,n ` a1,nx` ¨ ¨ ¨ ` ak,nx
k. Then fn Ñ f on r0, 1s.) Therefore, A is dense in

X . To summarize:

• Since each continuous function on r0, 1s can be uniformly approximated
by polynomials with R-coefficients, and since each polynomial can be uni-
formly approximated polynomials with Q-coefficients, therefore each con-
tinuous function on r0, 1s can be uniformly approximated by polynomials
with Q-coefficients.

7.3.2 Interior points

Interior points are dual to closure points:

Definition 7.42. Let A be a subset of X . A point x P X is called an interior point
of A if the following equivalent conditions hold:

(1) There exists U P NbhXpxq such that U Ă A.

(2) x is not a closure point of XzA.

The set of interior points of A is called the interior of A and is denoted by IntXpAq
or simply IntpAq. So

XzIntpAq “ XzA por simply IntpAqc “ Acq (7.6)

according to (2). In particular, IntpAq Ă A.

Proof of equivalence. A contains no neighborhoods of x with respect to X iff Ac

intersects every neighborhood of x iff x is a closure point of Ac.
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It is clear that if B is a basis for the topology, then x P IntpAq iff there exists
U P B such that x P U Ă A.

In analysis, interior points are not as commonly used as closure points. The
following property is an important situation where interior points are used:

Proposition 7.43. Let U be a subset of X . Then U is open iff every point of U is an
interior point.

In other words, U is open iff U “ IntXpUq.

Proof. If U is open and x P U , then U P NbhXpxq. So x is an interior point of U .
Conversely, suppose that each x P U is interior. Choose Vx P NbhXpxq. Then

U “
Ť

xPU Vx. So U is open by the union property in Def. 7.9.

Note that this is the first time we seriously use the fact that a union of open
sets is open.

7.3.3 Closed sets and open sets

Definition 7.44. We say that A Ă X is a closed (sub)set of X if A “ A.

Exercise 7.45. Show that the above definition of closed subsets agrees with Def.
3.26 when X is a metric space.

Exercise 7.46. Show that a finite subset of a Hausdorff space is closed. Give an
example of non-closed finite subset of a non-Hausdorff topological space.

Remark 7.47. The closure A is the smallest closed set containing A. (Proof: By
Prop. 7.36, A is closed. If B is closed and contains A, then A Ă B “ B.)

Theorem 7.48. Let A be a subset of X . Then A is closed iff XzA is open.

Proof. Let B “ XzA. Then A is closed iff every closure point of A is in A, iff every
non-interior point of B is not in B, iff every point in B is an interior point of B.
By Prop. 7.43, this is equivalent to that B is open.

Corollary 7.49. H and X are closed subsets of X . An intersection of closed subsets is
closed. A finite union of closed subsets is closed.

Proof. Take the complement of Def. 7.9, and apply Thm. 7.48. (Of course, they
can also be proved directly using the condition A “ A for closedness.)

Corollary 7.50. X is Hausdorff iff for every distinct x, y P X there exists U P NbhXpxq
such that y R U .

Proof. “ð”: Let x ‰ y. Choose U P Nbhpxq such that y R U . Then XzU P Nbhpyq
by Thm. 7.48. So x and y are separated by neighborhoods U,XzU .

“ñ”: Let x ‰ y. Choose disjoint U P Nbhpxq and V P Nbhpyq. Then XzV is
closed by Thm. 7.48. So U Ă XzV by Rem. 7.47. So y R U .
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Corollary 7.51. Let Y be a subset ofX , and letA Ă Y . Then the following are equivalent.

(1) A is a closed subset of Y .

(2) A “ B X Y for some closed subset B of X .

Note that the “open subset” version of this corollary is true due to the defini-
tion of the subspace topology of Y (cf. Def. 7.19).

First proof. A is closed in Y iff Y zA “ Y XAc is open in Y , iff Y XAc equals Y XU
for some open subset U Ă X , iff Y X A (which is A) equals Y X U c for some open
subset U Ă X . This finishes the proof, thanks to Thm. 7.48.

Second proof. Recall by (7.5) that A X Y is the closure of A in Y . Then A is closed
in Y iff A “ A X Y . This proves (1)ñ(2) since A is closed by Prop. 7.36. Assume
(2). Then A “ BXY where B “ B. So AXY “ B X Y XY Ă BXY “ BXY “ A.
This proves (1).

As an immediate consequence of Def. 7.9 and Cor. 7.51, we have:

Exercise 7.52. Let A Ă B Ă X .

1. Prove that if B is open in X , then A is open in B iff A is open in X .

2. Prove that if B is closed in X , then A is closed in B iff A is closed in X .

Remark 7.53. Many people define a closed set to be the complement of an open
set, and then proves that a set A is closed iff A “ A. I went the other way because
I believe that A “ A is more essential for understanding of closedness from the
viewpoint of analysis. In Thm. 3.48, we have already seen a classical example
of closed set in analysis: Cpr0, 1s,Rq is a closed subset of l8pr0, 1s,Rq, which has
the clear analytic meaning that the uniform limit of a sequence/net of continuous
functions r0, 1s Ñ R is continuous. And we will see many more examples of this
type in the future.

Remark 7.54. I defined closedness usingA “ A, and hence using the limits of nets.
This is because the intuition of closed sets is very closely related to the intuition
of limits of nets/sequences. On the other hand, the intuition of open sets is very
different. Let me say a few words about this.

Without a doubt, the keyword I give for the intuition of limits of nets is
“approximation”: Limit is not only a dynamic process, but also gives an impres-
sion of ”getting smaller and smaller”. When dealing with closed sets, we often do
the same thing! We take an intersection of possibly infinitely many closed subsets,
and the result we get is still a closed set (cf. Cor. 2.4).

The keyword I give for open sets is “local”, or more precisely, “local-to-global”
(as opposed to “getting smaller and smaller”!). This is not only because a union of
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open sets is open, but also because open sets are very often used to prove a global
result by reducing to local problems. One easy example is Exe. 7.119, which
says that in order to prove that a function is continuous on the whole space X , it
suffices to prove this locally. (We have already used this strategy in Sec. 2.4.) Here
is a more advanced example: to define the integral for a function on a large set,
one can first define it locally (i.e. on small enough open subsets), and then patch
these local values together. We will see many examples in the future, for example,
in the following chapter about compactness.

Remark 7.55. Very often, a theorem is an important result establishing two seem-
ingly different (systems of) intuitions, and hence two different ways of mathemat-
ical thinking. This is why I call “closed sets are the complements of open sets” a
theorem. The term “complement” implies that this theorem often manifests it-
self in the following way: If solving a problem using open sets is a direct proof,
then solving the problem using limits of sequences/nets is a proof by contradic-
tion/contrapositive. And vise versa.

7.4 Continuous maps and homeomorphisms

Unless otherwise stated, X and Y are topological spaces.

7.4.1 Continuous maps

Definition 7.56. Let f : X Ñ Y be a map. Let x P X . We say that f is continuous
at x if the following equivalent conditions hold:

(1) For every net pxαqαPI in X converging to x, we have limαPI fpxαq “ fpxq.

(2) For every V P NbhY pfpxqq, there exists U P NbhXpxq such that for every
p P U we have fppq P V .

(2’) For every V P NbhY pfpxqq, the point x is an interior point of f´1pV q.

We say that f is a continuous function/map, if f is continuous at every point of
X .

It is clear that “for every V P NbhY pfpxqq” in (2) and (2’) can be replaced by
“for every V P B containing fpxq” if B is a basis for the topology of Y .

Note that in the case that pxαq or pfpxαqq has more than one limits (which could
happen when X or Y is not Hausdorff), condition (1) means that fpxq is one of
the limits of pfpxαqqαPI if x is one of the limits of pxαq.

Proof of equivalence. Clearly (2) is equivalent to (2’). The proof of (2)ñ(1) is similar
to the case of sequences in metric spaces. (See Def. 2.38.) We leave the details to
the reader.
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␣(2)ñ ␣(1): Assume that (2) is not true. Then there is a neighborhood V
of fpxq such that for every neighborhood U of x there exists xU P U such that
fpxUq R V . Then pxUqUPNbhXpxq is a net in X , and limU xU “ x since xU P U .
However, for each U we have fpxUq P Y zV . So limU fpxUq cannot converge to
fpxq.

Exercise 7.57. Show that when X, Y are metric spaces, Def. 7.56 agrees with Def.
2.38.

Exercise 7.58. Let f : X Ñ Y and g : Y Ñ Z be maps of topological spaces.
Assume that f is continuous at x P X , and g is continuous at fpxq. Prove that
g ˝ f : X Ñ Z is continuous at x.

The proof of (1)ñ(2) in Def. 7.56 is indirect, since it uses the axiom of choice.
(The merit of this proof is that it is parallel to the proof for metric spaces in Sec.
2.4.) One can also give a direct proof. Indeed, there is a particular net pxαq con-
verging to x such that lim fpxαq “ fpxq iff (2) is true:

Exercise 7.59. Define pPNbhXpxq,ďq, the directed set of pointed neighborhoods
of x, to be

PNbhXpxq “
␣

pp, Uq : U P NbhXpxq, p P U
(

pp, Uq ď pp1, U 1
q ðñ U Ą U 1

(7.7)

For each α “ pp, Uq P PNbhXpxq, let xα “ p. Then pxαqαPPNbhXpxq is a net in X
converging to x. Prove that f is continuous at x iff limα fpxαq “ fpxq.

Proposition 7.60. Let f : X Ñ Y be a map. The following are equivalent:

(1) f is continuous.

(2) If V Ă Y is open in Y , then f´1pV q is open in X .

(3) If F Ă Y is closed in Y , then f´1pF q is closed in Y .

Proof. (1)ô(2): By Def. 7.56-(2’) and Prop. 7.43. (2)ô(3): By Thm. 7.48 and the
fact that f´1pBcq “ f´1pBqc for every B Ă Y .

Remark 7.61. We first defined the continuity of f at a point, and then used this to
define a continuous function f to be one continuous at every point. However, it
seems that the notion of continuity at a point is used only in analysis. In geometry
and in topology, only continuous maps (but not a map continuous at a point) are
used, and they are defined by Prop. 7.60-(2).

One might think that continuous functions are special cases of functions which
are continuous at given points. But in fact, the latter notion can also be derived
from the former:
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Exercise 7.62. Let f : pX, T q Ñ pY, T 1q be a map of topological spaces. Let x P X .
Define a new topological space pXx, Txq as follows. Xx equals X as a set. The
topology Tx of Xx is generated by the basis

Bx “ NbhXpxq Y
␣

tpu : p ‰ x
(

(7.8)

Prove that if X is Hausdorff, then Xx is Hausdorff. Prove that the following are
equivalent:

(1) f : X Ñ Y is continuous at x.

(2) f : Xx Ñ Y is continuous.

Continuous functions are determined by their values on a dense subset:

Proposition 7.63. Let A be a subset of X , and let f, g : AÑ Y be continuous. Then

fpAq Ă fpAq (7.9a)

If Y is moreover Hausdorff, then

f “ g ðñ f |A “ g|A (7.9b)

Proof. If y P fpAq, then y “ fpxq for some x P A. Choose a net pxαq inA converging
to x. Then limα fpxαq “ fpxq, and hence fpxq P fpAq.

Assume that Y is Hausdorff. If f “ g then clearly f |A “ g|A. Assume that
f |A “ g|A. For each x P A, choose a net pxαq in A converging to x. Then fpxq “
lim fpxαq “ lim gpxαq “ gpxq. So f “ g.

You are encouraged to prove Prop. 7.63 using open sets instead of using nets.

7.4.2 Homeomorphisms

Definition 7.64. A map f : X Ñ Y is called open (resp. closed) if for every open
(resp. closed) subset A Ă X , the image fpAq is open (resp. closed) in Y .

Definition 7.65. A bijection f : X Ñ Y is called a homeomorphism if the follow-
ing clearly equivalent conditions hold:

(1) f and f´1 are continuous.

(2) For every net pxαq in X and each x P X , we have that limα xα “ x iff
limα fpxαq “ fpxq.

(3) f is continuous and open.

(4) f is continuous and closed.
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If a homeomorphism f : X Ñ Y exists, we say that X, Y are homeomorphic.

Recall from Def. 2.60 that when X, Y are metric spaces, the sequential version
of (2) holds.

Remark 7.66. Let T1, T2 be two topologies on a set X . Clearly, we have T1 “ T2 iff

φ : pX, T1q Ñ pX, T2q x ÞÑ x (7.10)

is a homeomorphism. Thus, the following are equivalent:

(1) T1 “ T2.

(2) For every net pxαq in X and x P X , we have that limα xα “ x under T1 iff
limα xα “ x under T2.

This equivalence implies that

topologies are determined by net convergence

Therefore, instead of using open sets or bases of topologies to describe a topology,
one can also describe a topology T on a set X in the following way:

T is the unique topology on X such that
a net pxαq in X converges to x P X iff ...

(7.11)

Similarly, by Def. 2.60, metrizable topologies are determined by sequential con-
vergence. Therefore, metrizable topologies can be described in the following way:

T is the unique metrizable topology on X such that
a sequence pxnq in X converges to x P X iff ...

(7.12)

7.5 Examples of topological spaces described by net convergence

Example 7.67. Let A be a subset of a topological space pX, TXq. Then the subspace
topology TA of A is the unique topology such that a net pxαq in A converges to
x P A under TA iff it converges to x under TX .

‹ Example 7.68. Let X “
Ů

αPA Xα be a disjoint union where each pXα, Tαq is a
topology space. Then

B “
ď

αPA

Tα

is clearly a basis generating a topology T on X , called disjoint union topology.
T is the unique topology on X such that for every net pxµqµPI in X and any x P X ,
the following are equivalent:
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(1) pxµqµPI converges to x under T .

(2) There exists ν P I such that for every µ ě ν, the element xµ belongs to the
unique Xα containing x. Moreover, limµPIěν xµ “ x in Xα.

We call pX, T q the disjoint union topological space of pXαqαPA .

The following exercise says that “disjoint union of topological spaces” is syn-
onymous with “disjoint union of open subsets”.

‹ Exercise 7.69. Assume that X “
Ů

αPA Xα. Assume that X has a topology T ,
and equip each Xα with the subspace topology. Show that pX, T q is the disjoint
union topological space of pXαqαPA iff each Xα is an open subset of pX, T q.

Thus, for example,
Ť

nPNr2n, 2n` 1q (under the Euclidean topology) is the dis-
joint union topological space of the family

`

r2n, 2n` 1q
˘

nPN.

‹ Exercise 7.70. In Exp. 7.68, assume that each pXα, Tαq is metrizable. Prove that
pX, T q is metrizable. More precisely: Choose a metric dα inducing Tα, and assume
that dα ď 1 (cf. Prop. 2.74). Define a metric d on X as in Pb. 2.4. Solve the
net version of part 2 of Pb. 2.4. Conclude from this that d induces the topology
T . (Warning: we cannot conclude this from the original sequential version of Pb.
2.4-2.)

Definition 7.71. Let pXαqαPA be a family of topological spaces. Elements of the
product space

S “
ź

αPA

Xα

are denoted by x “ pxpαqqαPA . One checks easily that

B “
!

ź

αPA

Uα : each Uα is open in Xα,

Uα “ Xα for all but finitely many α
)

(7.13)

is a basis for a topology T , called the product topology or pointwise convergence
topology of S. We call pS, T q the product topological space.

Equivalently, let

πα : S Ñ Xα x ÞÑ xpαq (7.14)

be the projection map onto the Xα component. Then

B “
!

č

αPE

π´1
α pUαq : E P finp2

A
q, Uα is open in Xα for each α P E

)

(7.15)

Unless otherwise stated, a product of topological spaces is equipped with the
product topology.
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Example 7.72. Let S “ X1 ˆ ¨ ¨ ¨ ˆ XN be a finite product of topological spaces.
Then the product topology has a basis

B “ tU1 ˆ ¨ ¨ ¨ ˆ UN : each Ui is open in Xiu (7.16)

Theorem 7.73. Let S “
ś

αPA Xα be a product of topological spaces, equipped with the
product topology. Then each projection map πα is continuous. Moreover, for every net
pxµqµPI in S and every x P S, the following are equivalent.

(1) lim
µPI

xµ “ x in S.

(2) For every α P A , we have lim
µPI

xµpαq “ xpαq in Xα.

If pxµq satisfies (1) or (2), we say that xµ converges pointwise to x if we view
pxµq as a net of functions with domain A .

Proof. We leave the proof to the readers. Note that the continuity of πα follows
easily from the basis-for-topology version of Prop. 7.60-(2). And from the conti-
nuity of πα one easily deduce (1)ñ(2).

Remark 7.74. In the spirit of (7.11), one says that:

• The product topology T on S “
ś

αPA Xα is the unique topology such that
a net pxµq converges to x under T iff xµ converges pointwise to x as a net of
functions on A .

Corollary 7.75. If each Xα is a Hausdorff space, then S “
ś

αPA Xα is Hausdorff.

Proof. Either prove this directly using the basis for the topology, or prove that any
net cannot converge to two different values using Thm. 7.73.

Corollary 7.76. Let X1, X2, . . . be a possibly finite sequence of metric spaces. Then
S “

ś

iXi is metrizable. More precisely, for each i, choose a metric di onXi topologically
equivalent to the original one such that di ď 1 (cf. Prop. 2.4). Then the metric d on S
defined by

dpf, gq “ sup
i

dipfpiq, gpiqq

i
(7.17)

induce the product topology.

We note that the product topology is also induced by

δpf, gq “
ÿ

i

2´idipfpiq, gpiqq (7.18)
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Proof. The same method for solving Pb. 2.3 also applies to its net version: One
shows that a net pfαq in S converges to f under d (or under δ) iff pfαq converges
pointwise to f . Thus, by Thm. 7.73, d and δ induce the product topology.

The next example discusses the topologies induced by uniform convergence
metrics. (Recall Def. 3.58.) In this example, Y is usually a normed vector space.

Example 7.77. Let X be a set, and let pY, dY q be a metric space. Then there is a
unique topology T on Y X such that for every net pfαqαPI in Y X and every f P Y X ,
the following are equivalent:

(1) The net pfαq converges to f under T .

(2) We have lim
αPI

sup
xPX

dY pfαpxq, fpxqq “ 0.

(If pfαq satisfies (2), we say that fα converges uniformly to f .) For example, one
checks easily that T is induced by any uniform convergence metric, i.e., any met-
ric on Y X equivalent to d where

dpf, gq “ min
!

1, sup
xPX

dY pfpxq, gpxqq
)

(7.19)

So T is metrizable. We call T the uniform convergence topology on Y X .

Theorem 7.78. Let Y be a complete metric space. Let X be a set. Then Y X , equipped
with the metric (7.19), is complete.

Proof. It can be proved in a similar way as Thm. 3.45. We leave the details to the
readers.

Theorem 7.79. Let V be a normed vector space over R or C. LetX be a topological space.
Equip V X with the uniform convergence topology. ThenCpX, V q is a closed subset of V X .

Proof. This is similar to the proof of Thm. 3.48. Let pfαq be a net CpX, V q converg-
ing uniformly to f : X Ñ V . Choose any x P X and ε ą 0. Then there is α P I
such that suppPX }fpxq ´ fαpxq} ă ε. Since fα is continuous, there is U P NbhXpxq
such that for each p P U we have }fαpxq´fαppq} ă ε. Thus, for each p P U we have

}fpxq ´ fppq} ď }fpxq ´ fαpxq} ` }fαpxq ´ fαppq} ` }fαppq ´ fppq} ă 3ε

So f is continuous.

Remark 7.80. Note that the uniform convergence topology depends on the equiv-
alence class (not just the topological equivalence class) of dY . Thus, one needs
metrics when talking about uniform convergence. On the other hand, the study
of pointwise convergence does not require metrics.
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7.6 Limits of functions

By Prop. 7.63, if A Ă X , and if f : A Ñ Y is continuous, then the value of f is
uniquely determined by f |A provided that Y is Hausdorff (cf. Prop. 7.63). We now
consider the opposite question of

::::::::::
extension

:::
of

::::::::::::
continuous

:::::::::::
functions: Suppose that

f : A Ñ Y is continuous. Can we extend f to a continuous function f : A Ñ Y ?
(We know that such extension must be unique if it exists.) The classical concept
of the limits of functions can be understood in this light.

Definition 7.81. Let A be a subset of X . Let f : AÑ Y be a map. Let x P AzA. Let
y P Y . We say that the limit of the function f at x is y and write

lim
pPA
pÑx

fppq ” lim
pÑx

fppq “ y

if the following equivalent conditions hold:

(1) If we extend f to a function A Y txu Ñ Y satisfying fpxq “ y, then f :
AY txu Ñ Y is continuous at x.

(2) For every V P NbhY pyq, there exists U P NbhXpxq such that for every p P
U X A, we have fppq P V .

(3) For every net pxαqαPI in A converging to x, we have limαPI fpxαq “ y.

When X, Y are metric spaces, the above three conditions and the following two
are equivalent:

(2m) For every ε ą 0, there exists δ ą 0 such that for every p P A, if dpp, xq ă δ
then dpfppq, yq ă ε.

(3m) For every sequence pxnqnPZ`
inA converging to x, we have limnÑ8 fpxnq “ y.

Recall that by the definition of subspace topology, we have

NbhApxq “ tU X A : A P NbhXpxqu (7.20)

Proof of equivalence. Extend f to rf : A Y txu Ñ Y by setting rfpxq “ y. Then by
Def. 7.56-(2), condition (1) of Def. 7.81 means that for every V P NbhY pyq there is a
neighborhood of x in AY txu (which, by (7.20), must be of the form U X pAY txuq

where U P NbhXpxq) such that for every p P U X pA Y txuq we have rfppq P V .
This is clearly equivalent to (2), since rfpxq “ y P V . The equivalence (2)ô(3)
can be proved in a similar way as the equivalence of (1) and (2) in Def. 7.56.
We leave the details to the readers. When X, Y are metric spaces, (2) is clearly
equivalent to (2m). The equivalence (2m)ô(3m) can be proved in a similar way
as the equivalence of (1) and (2) in Def. 2.38.
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The following remarks show that the limit of a function at a point is the limit
of a single net, rather than the limit of many nets (as in Def. 7.81-(3)).

Remark 7.82. Assume the setting of Def. 7.81. In the same spirit of Exe. 7.59,
define a directed set pPNbhApxq,ďqwhere

PNbhApxq “
␣

pp, Uq : U P NbhXpxq, p P U X A
(

pp, Uq ď pp1, U 1
q ðñ U Ą U 1

(7.21)

(That it is a directed set is due to x P A.) We have seen this directed set in Rem.
7.32. Then ppqpp,UqPPNbhApxq is a net converging to x, and

lim
pÑx

fppq “ lim
pp,UqPPNbhApxq

fppq (7.22)

where the convergence of the LHS is equivalent to that of the RHS.

Remark 7.83. In the setting of Def. 7.81, assume moreover that X is a metric
space, then limpÑx fppq can be described by the limit of a simpler net. Define a
directed set pAx,ďqwhere

Ax “ A as sets

p ď p1
ðñ dpp1, xq ě dpp, xq

(7.23)

Then ppqpPAx is a net in A converging to x, and

lim
pÑx

fppq “ lim
pPAx

fppq (7.24)

where the convergence of the LHS is equivalent to that of the RHS.

Remark 7.84. Thanks to the above two remarks, limits of functions enjoy all the
properties that limits of nets enjoy. For example, they satisfy Squeeze theorem; if
f : A Ñ F and g : A Ñ V (where V is a normed vector space over F P tR,Cu),
if x P AzA, and if λ “ limpÑx fppq and v “ limpÑx gppq exist, then limpÑx fppqgppq
converges to λv.

Of course, you can also conclude them by using Def. 7.81-(3) instead of Rem.
7.82. In practice, it makes no difference whether you view limpÑx fppq as the
limit of fpxαq for an arbitrary net xα in A converging to x, or whether you view
limpÑx fppq as the limit of the particular net in Rem. 7.82 or Rem. 7.83. The explicit
constructions of nets in these two remarks are not important for proving results
about limits of functions.

Remark 7.85. Let f : A Ñ Y , and let x P AzA. Suppose that Y is Hausdorff.
Assume that there exist two nets pxαqαPI and pyβqβPJ in A converging to x such
that pfpxαqq and pfpyβqq converge to two different values. Then by Def. 7.81-(2),
the limit limpÑx fppq does not exist.
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The above remark gives a useful criterion for the non-convergence of limits
of functions. The following proposition, on the other hand, gives a method of
computing limits of functions by decomposing the domain into (non-necessarily
mutually disjoint) subsets.

Proposition 7.86. Assume the setting of Def. 7.81. Assume that A “ A1 Y ¨ ¨ ¨ Y AN .
Then the following are equivalent.

(1) We have lim
pÑx

fppq “ y.

(2) For every 1 ď i ď N such that x P Ai, we have lim
pÑx

f |Ai
ppq “ y

Proof. (1)ñ(2): Assume (1). Extend f : A Ñ Y to a function rf : A Y txu Ñ Y

by setting rfpxq “ y. Then rf is continuous by (1). Thus, if x P Ai, then rf |AiYtxu is
continuous. This proves (2).

(2)ñ(1): Assume (2). Choose any V P NbhY pyq. By (2), for each i, either x P Ai
so that there is Ui P NbhXpxq satisfying Ui X Ai Ă f´1pV q (recall (7.20)), or that
x R Ai so that there is Ui P NbhXpxq disjoint from Ai. In either case, we have
Ui X Ai Ă f´1pV q. Let U “ U1 X ¨ ¨ ¨ X UN . Then

U X A “ U X pA1 Y ¨ ¨ ¨ Y ANq “
ď

i

U X Ai Ă
ď

i

Ui X Ai

which is therefore a subset of f´1pV q.
Another proof of ␣(1)ñ ␣(2): Assume (1) is not true. Then there is a net

pxαqαPI in A converging to x such that fpxαq does not converge to y. So there
exists V P NbhY pyq such that fpxαq is not eventually in V , i.e., fpxαq is frequently
in V c. Then pfpxαqq has a subnet pfpxβqqβPJ which is always in V c. For example,
take

J “ tβ P I : fpxβq P V
c
u

Since pxβqβPJ is always in A, by the logic (5.6c), there is 1 ď i ď N such that pxβq is
frequently in Ai. Thus, by the same argument as above, pxβq has a subnet pxγqγPK

which is always in Ai. Since xα Ñ x, we have xγ Ñ x, and hence x P Ai. But
fpxγq P V

c. So we have found a net pxγq in Ai converging to x such that pfpxγqq
does not converge to y. This disproves (2).

Remark 7.87. In many textbooks, limpÑx fpxq is also defined more generally when
x is an accumulation point of A, i.e., when x P Aztxu. In this case, the limit of f at
x simply means

lim
pÑx

fppq
def
ùùù lim

pÑx
f |Aztxuppq (7.25)
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This more general case is important in classical analysis, but is less useful in ab-
stract analysis. (As a matter of fact, accumulation points are less convenient than
closure points.) In order not to deviate too far from the traditional analysis text-
books, let’s take a look at some examples.

Definition 7.88. LetA Ă R and x P R. Let f : AÑ Y be a function. If x is a closure
point of AX Răx resp. AX Rąx, we define the left limit resp. right limit to be

lim
tÑx´

fptq “ lim
tÑx

f |AXRăxptq (7.26a)

lim
tÑx`

fptq “ lim
tÑx

f |AXRąxptq (7.26b)

If x P R and x is a closure point of Aztxu, then limtÑx fptq is understood by (7.25).

Remark 7.89. In Def. 7.88, if x P R is a closure point of Aztxu, then by Prop. 7.86,

lim
pÑx

fppq “ y ðñ lim
pÑx´

fppq “ lim
pÑx`

fppq “ y (7.27)

In particular, the existence of the limit on the LHS is equivalent to the existence
and the equality of the two limits on the RHS.

Example 7.90. Let g, h : R Ñ R be continuous functions. Let c P R. Define
f : RÑ R to be

fpxq “

$

&

%

gpxq if x ă 0
c if x “ 0
hpxq if x ą 0

Since g|p´8,0s is continuous, by Def. 7.81-(1) we have that limxÑ0´ fpxq “

limxÑ0,tă0 gptq “ gp0q. Similarly, limxÑ0` fpxq “ hp0q. Therefore, by Rem. 7.89,
limxÑ0 fpxq exists iff gp0q “ hp0q, and it converges to gp0q if gp0q “ hp0q. The value
c is irrelevant to the limits.

Example 7.91. Let f : X “ R2ztp0, 0qu Ñ R be fpx, yq “ x
x`y

. Then p1{n, 0q and
p0, 1{nq are sequences in X converging to 0. But fp1{n, 0q “ 1 and fp0, 1{nq “ 0.
So limpx,yqÑp0,0q fpx, yq does not exist by Rem. 7.85.

7.7 Connected spaces

Let X be a topological space. In this section, we shall define a notion of con-
nected space. Based on our usual geometric intuition, one might attempt to de-
fine a connected space as one satisfying that any two points can be linked by a
path. Such spaces are actually called path-connected spaces and is stronger than
connected spaces. In fact, connected spaces arise from the study of intermediate
value problem.
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7.7.1 Connectedô IVP

Definition 7.92. We say that the topological space X is connected if X can not be
written as the disjoint of two nonempty open sets. Namely, if X “ U \ V where
U, V are open subsets of X , then either U “ H (and hence V “ X) or V “ H (and
hence U “ X).

Equivalently (by Thm. 7.48), X is connected iff every U Ă X which is both
closed and open must beH or X .

Definition 7.93. We say that X satisfies the intermediate value property (abbre-
viated to IVP) if for every continuous function f : X Ñ R and every x, y P X we
have

fpxq ă fpyq ùñ rfpxq, fpyqs Ă fpXq (7.28)

Theorem 7.94. X is connected iff X satisfies IVP. Moreover, if X is not connected, then
there is a continuous f : X Ñ R such that fpXq “ t0, 1u.

Proof. First, assume that X does not satisfy IVP. Choose a continuous f : X Ñ R
with real numbers a ă b ă c such that a, c P fpXq but b R fpXq. So U “ f´1p´8, bq
and V “ f´1pb,`8q are disjoint non-empty open subsets of X , and X “ U \ V .
They are open, because f is continuous (cf. Prop. 7.60). So X is not connected.

Next, assume that X is not connected. Then X “ U \ V where U, V are open
subsets of X . Define f : X Ñ R to be constantly 0 on U and constantly 1 on V .
It is easy to check that f is continuous. (See also Rem. 7.120.) That fpXq “ t0, 1u
means that X does not satisfy IVP.

We now give a couple of elementary examples.

7.7.2 Connected subsets of R are precisely intervals

Proposition 7.95. Let A be a dense subset of X . Assume that A is connected. Then X is
connected.

Proof. If X “ A is not connected, then by Thm. 7.94, there exists a continuous
surjection f : A Ñ t0, 1u. By Prop. 7.63, fpAq contains fpAq. So fpAq has closure
t0, 1u. So fpAq “ t0, 1u. A does not satisfy IVP, and hence is not connected.

Theorem 7.96. LetA be a nonempty subset of R. ThenA is connected iffA is an interval.

Proof. Step 1. Suppose that A is connected. Let a “ inf A and b “ supB. To show
that A is one of pa, bq, pa, bs, ra, bq, ra, bs, it suffices to show that every c P pa, bq
belongs to A. Suppose that some c P pa, bq does not belong to A. Then A is the dis-
joint union of two nonempty open subsetsAXr´8, cq andAXpc,`8s, impossible.
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Step 2. Every single point is clearly connected. Since every interval containing
at least two points is homeomorphic to one of r0, 1s, p0, 1s, r0, 1q, p0, 1q, it suffices
to prove that these four intervals are connected. Since p0, 1q is dense in the other
three intervals, by Prop. 7.95, it suffices to prove that p0, 1q is connected.

Suppose that p0, 1q is not connected. Then p0, 1q “ U \ V where U, V are
disjoint open nonempty subsets. Choose x1 P U and y1 P V , and assume WLOG
that x1 ă y1. In the following, we construct an increasing sequence pxnq in U and
a decreasing one pynq in V satisfying xn ă yn for all n by induction. Suppose xn, yn
has been constructed. Let zn “ pxn ` ynq{2.

• If zn P U , then let xn`1 “ zn and yn`1 “ yn.

• If zn P V , then let xn`1 “ xn and yn`1 “ zn.

Then yn ´ xn converges to 0. So xn and yn converge to the same point ξ P R.
We have ξ P p0, 1q since x1 ă ξ ă y1. Since V is open, U “ p0, 1qzV is closed in
p0, 1q by Thm. 7.48. So ξ P Clp0,1qpUq “ U . Similarly, ξ P Clp0,1qpV q “ V . This is
impossible.

7.7.3 More examples of connected spaces

Definition 7.97. Let x, y P X . A path inX from x to y is defined to be a continuous
map γ : ra, bs Ñ X where ´8 ă a ă b ă `8, such that γpaq “ x and γpbq “ y.
Unless otherwise stated, we take ra, bs to be r0, 1s. We call x and y respectively the
initial point and the terminal point of γ.

Definition 7.98. We say that X is path-connected if for every x, y P X there is a
path in X from x to y.

Example 7.99. RN is path-connected. BRN p0, Rq and BRN p0, Rq (where R ă `8)
are path connected. tx P RN : r ă x ă Ru (where 0 ď r ă R ă `8) are path
connected. The region enclosed by a triangle is a connected subset of R2. r0, 1sN

is connected.

Theorem 7.100. Assume that X is path-connected. Then X is connected.

Proof. If X is not connected, then X “ U \ V where U, V are nonempty open
subsets of X . Since X is path-connected, there is a path γ from a point of U to a
point of V . So r0, 1s “ γ´1pUq \ γ´1pV q where γ´1pUq, γ´1pV q are open (by Prop.
7.60) and nonempty. This contradicts the fact that r0, 1s is connected (cf. Thm.
7.96).

Proposition 7.101. Let f : X Ñ Y be a continuous map of topological spaces. Suppose
that X is connected. Then fpXq is connected.
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Proof. By replacing f : X Ñ Y by the restricted continuous map f : X Ñ fpXq,
it suffices to assume Y “ fpXq. If Y is not connected, then Y “ U \ V where
U, V are open and nonempty. Then X “ f´1pUq\ f´1pV q are open (by Prop. 7.60)
and nonempty subsets of X . So X is not connected, impossible. (One can also use
Thm. 7.94 to prove that fpXq is connected.)

Remark 7.102. When Y “ R, Prop. 7.101 and Thm. 7.96 imply that fpXq is an
interval. So f satisfies (7.28). Therefore, Prop. 7.101 can be viewed as a general-
ization of IVP for connected spaces.

Corollary 7.103. Let I be an interval, and let f : I Ñ R be a strictly increasing contin-
uous map. Then J “ fpIq is an interval, and the restriction f : I Ñ J is a homeomor-
phism.

Proof. By Thm. 7.96 and Prop. 7.101, J is connected and hence is an interval.
Therefore, by Thm. 2.72, f is a homeomorphism.

‹ Example 7.104. Not all connected spaces are path-connected. Let f : p0, 1s Ñ R2

be defined by fpxq “ px, sinpx´1qq. Then the range fpp0, 1sq is connected by Prop.
7.101. Since fpp0, 1sq is a dense subset of X “ fpp0, 1sq Y tp0, 0qu, by Prop. 7.95, X
is connected. However, it can be checked that X is not path-connected. (Prove it
yourself, or see [Mun, Sec. 24].) X is called the topologist’s sine curve.

The following proposition can be used to decompose (for example) an open
subset of RN into open connected subsets. (See Pb. 7.13.)

Proposition 7.105. Assume that X “
Ť

αPA Xα where each Xα is connected. Assume
that

Ş

αPA Xα ‰ H. Then X is connected.

Proof. Suppose that X is not connected. By Thm. 7.94, there is a continuous sur-
jection f : X Ñ t0, 1u. Let p P

Ş

αXα. Then fppq is 0 or 1. Assume WLOG that
fppq “ 0. Choose x P X such that fpxq “ 1. Choose α such that x P Xα. Then
f |Xα : Xα Ñ t0, 1u is a continuous surjection. So Xα does not satisfy IVP, and
hence is not connected.

Exercise 7.106. Prove a path-connected version of Prop. 7.105.

Exercise 7.107. Prove Prop. 7.95 and 7.105 directly using Def. 7.92 (but not using
IVP).

7.8 Rigorous constructions of n
?
x, log x, and ax

With the help of Cor. 7.103, one can construct a lot of well-known functions
rigorously.
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Example 7.108. Let f : Rě0 Ñ Rě0 be fpxq “ xn where n P Z`. Then by Cor.
7.103, J “ fpRě0q is an interval. Clearly J Ă r0,`8q. Since 0 P J and sup J “ `8,
we have J “ r0,`8q. Therefore f is a homeomorphism. Its inverse function is a
homeomorphism: the n-th root function

n
?

: Rě0 Ñ Rě0 x ÞÑ n
?
x

This gives the rigorous construction of n
?
x.

A similar method gives the rigorous construction of log.

Example 7.109. By Exp. 4.28, the exponential function exp : RÑ R is continuous.
We claim that exp is a strictly increasing homeomorphism from R to Rą0. Its
inverse function is called the logarithmic function

log : Rą0 Ñ R x ÞÑ log x

Proof. From ex “
ř8

n“0 x
n{n! we clearly have e0 “ 1 and ex ą 1 if x ą 0. From

ex`y “ exey proved in Cor. 5.61, we have exe´x “ e0 “ 1, which shows that
ex P Rą0 for all x P R. If x ă y, then ey ą ex ą 0 since ey “ ey´xex and ey´x ą 1. So
exp is strictly increasing. Thus, by Cor. 7.103, exp is a homeomorphism from R to
J “ exppRq, and J is an interval.

When x ě 0, we have ex ě x from the definition of ex. So supxě0 e
x “ `8.

When x ď 0, since exe´x “ 1, we have infxď0 e
x “ 1{ supxě0 e

x “ 0. So sup J “ `8
and inf J “ 0. Since 0 R exppRq (if ex “ 0, then 1 “ exe´x “ 0, impossible), we
have J “ Rą0.

Example 7.110. Let a P Rą0. For each z P C, define

az “ ez log a (7.29)

By Exp. 7.109, if a ą 1 (resp. 0 ă a ă 1), the map

RÑ Rą0 x ÞÑ ax (7.30)

is an increasing (resp. decreasing) homeomorphism, since it is the composition of
the increasing (resp. decreasing) homeomorphism x P R ÞÑ x log a P R and the
increasing one exp : RÑ Rą0. By the proof of Exp. 7.109, we have

a0 “ 1 axa´x
“ 1 axay “ ax`y (7.31)

And clearly

a1 “ a. (7.32)

It follows that for every n P Z`, an “ a1`¨¨¨`1 “ a ¨ ¨ ¨ a. Namely, an “ en log a

agrees with the usual understanding of an. Thus, since pa1{nqn equals a1{n ¨ ¨ ¨ a1{n “

a1{n`¨¨¨`1{n “ a1 “ a, we conclude

a
1
n “ n

?
a
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Example 7.111. By Exp. 7.109, if p ą 0 (resp. p ă 0), then

Rą0 Ñ Rą0 x ÞÑ xp “ ep log x (7.33)

is an increasing (resp. decreasing) homeomorphism, since it is the composition of
the increasing (resp. decreasing) homeomorphism x P Rą0 Ñ p log x P R and the
increasing homeomorphism exp : RÑ Rą0.

7.9 Problems and supplementary material

Let X and Y be topological spaces.

7.9.1 Open sets, closed sets, closures

Problem 7.1. Let A,B P X . Let pAαqαPA be a family of subsets of X . Prove that

AYB “ AYB (7.34a)
č

αPA

Aα Ă
č

αPA

Aα (7.34b)

The following problem is crucial to the study of compactness. (See Sec. 8.3 for
instance.)

Problem 7.2. Let pxαqαPI be a net in X . Let x P X . Prove that the following
statements are equivalent:

(1) pxαqαPI has a subnet converging to x.

(2) For every neighborhood U of x, we have that xα is frequently in U .

(3) x belongs to
č

αPI

txβ : β ě αu.

Any x P X satisfying one of these three conditions is called a cluster point of
pxαqαPI . (Compare Pb. 3.1.)

Hint. (2)ô(3) is a direct translation. Assume (2). To prove (1), show that pJ,ďq is
a directed set, where

J “ tpα, Uq P I ˆ NbhXpxq : xα P Uu

pα, Uq ď pα1, U 1
q ðñ α ď α1 and U Ą U 1

(7.35a)

Prove that pxµqµPJ is a subnet of pxαqαPI if for each pα, Uq P J we set

xpα,Uq “ xα (7.35b)

(Namely, the increasing map J Ñ I is defined to be pα, Uq ÞÑ α.) Prove that
pxµqµPJ converges to x. You should point out where (2) is used in your proofs.
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Remark 7.112. By Pb. 7.2-(3), the set of cluster points of pxαq is a closed subset,
since intersections of closed subsets are closed (cf. Cor. 7.49, or by (7.34b)).

For the reader’s convenience, we present below the sequential version of Pb.
7.2. “(1)ô(2)” is due to Pb. 3.1. “(2)ô(3)” is due to Pb. 7.2.

Proposition 7.113. Assume that X is a metric space. Let pxnqnPZ`
be a sequence in X .

Let x P X . The following statements are equivalent:

(1) pxnqnPZ`
has a subsequence converging to x.

(2) For every neighborhood U of x, we have that xn is frequently in U .

(3) x belongs to
č

nPZ`

txk : k ě nu.

Any x P X satisfying one of these three conditions is called a cluster point of pxnqnPZ`
.

Prop. 7.113-(3) should remind you of the definitions of lim sup and lim inf.

‹ Remark 7.114. It is not hard to show that the (1,2,3) of Prop. 7.113 are equivalent
in the more general case that X is a first countable topological space (see below for the
definition). The proof is similar to that for metric spaces, and is left to the readers
as an exercise.

Definition 7.115. Let X be a topological space. A subset Bx of NbhXpxq is called
a neighborhood basis of x, if for every U P NbhXpxq there exists V P Bx such that
V Ă U . We say that X first countable if every point x has a neighborhood basis
Bx which is a countable set.

Example 7.116. If X is a metric space, then X is first countable, since for every
x P X , tBXpx, 1{nq : n P Z`u is a neighborhood basis of x.

Remark 7.117. By Pb. 7.2-(2) and Prop. 7.113-(2), if pxnq is a sequence in a metric
space X , then pxnq has a subsequence converging to x P X iff pxnq has a subnet
converging to x. This is not necessarily true whenX is a general topological space.
Note that in the general case, cluster points of a sequence pxnqmean cluster points
of pxnq as a net. Thus, they are not the limits of convergent subsequences of pxnq.

Problem 7.3. Assume that X is a metric space. Let E Ă X . Recall that dpx,Eq “
dpE, xq “ infePE dpe, xq. Prove that

tx P X : dpx,Eq “ 0u “ E (7.36)

Remark 7.118. If E,F are disjoint subsets of a metric space X , a continuous func-
tion f : X Ñ r0, 1s is called an Urysohn function with respect to E,F , if

f´1
p1q “ E f´1

p0q “ F
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For example, it is easy to check that

f : X Ñ r0, 1s fpxq “
dpx, F q

dpx,Eq ` dpx, F q
(7.37)

is an Urysohn function.

‹ Problem 7.4. A topological space X is called normal if for every closed disjoint
E,F Ă X , there exist disjoint open subsets U, V Ă X such that E Ă U and F Ă V .

1. Prove that X is normal iff for each E Ă W Ă X where E is closed and W is
open, there exists an open subset U Ă X such that E Ă U Ă U Ă W .

2. Prove that if X is metrizable, then X is normal.

7.9.2 Continuous maps

Exercise 7.119. Let f : X Ñ Y be a map.

1. Suppose that F is a subset of Y containing fpXq. Show that f : X Ñ Y is
continuous iff f : X Ñ F is continuous.

2. (Local to global principle) Suppose that X “
Ť

αPI Uα where each Uα is an
open subset of X , Prove that f is continuous iff f |Uα : Uα Ñ Y is continuous
for every α.

Remark 7.120. The above local-to-global principle for continuous functions can be
rephrased in the following way. Suppose that X “

Ť

αPI Uα where each Uα is an
open subset ofX . Suppose that for each αwe have a continuous map fα : Uα Ñ Y .
Assume that for each α, β P I we have

fα|UαXUβ
“ fβ|UαXUβ

Then there is a (necessarily unique) continuous function f : X Ñ Y such that
f |Uα “ fα for every α.

Problem 7.5. Let f : X Ñ Y be a map. Suppose that X “ A1 Y ¨ ¨ ¨ Y AN where
N P Z` and A1, . . . , AN are closed subsets of X . Suppose that f |Ai

: Ai Ñ Y is
continuous for each 1 ď i ď N . Prove that f is continuous.

Does the conclusion remain true if A1, . . . , AN are not assumed closed? If no,
find a counterexample.

Note. Do not use Prop. 7.86 in your proof. But you can think about how this
problem is related to Prop. 7.86.
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Definition 7.121. Let pI,ďq be a directed set. Let8I (often abbreviated to8) be a
new symbol not in I . Then

I˚
“ I Y t8Iu

is also a directed set if we extend the preorder ď of I to I˚ by setting

α ď 8I p@α P I˚
q

For each α P I , let

I˚
ěα “ tβ P I

˚ : β ě αu

The standard topology on I˚ is defined to be the one induced by the basis

B “
␣

tαu : α P I
(

Y
␣

I˚
ěα : α P I

(

(7.38)

Problem 7.6. Let pI,ďq be a directed set. Let I˚ be as in Def. 7.121.

1. Check that B (defined by (7.38)) is a basis for a topology. (Therefore, B gen-
erates a topology T on I˚.)

2. Let pxαqαPI be a net in a topological space X . Let x8 P X . (So we have a
function x : I˚ Ñ X .) Prove that

x is a continuous function ðñ lim
αPI

xα “ x8 (7.39)

3. Is I˚ Hausdorff? Prove it, or find a counterexample.

7.9.3 Product spaces

Problem 7.7. Prove Thm. 7.73.

Problem 7.8. Let pXαqαPA and pYαqαPA be families of nonempty topological
spaces. Let Z be a nonempty topological space. For each α P A , choose maps
fα : Xα Ñ Yα and gα : Z Ñ Xα.

1. Use Thm. 7.73 to prove that
ź

αPA

fα :
ź

α

Xα Ñ
ź

α

Yα pxpαqqαPA ÞÑ pfαpxpαqqqαPA (7.40)

is continuous iff each fα is continuous.

2. Use Thm. 7.73 to prove that
ł

αPA

gα : Z Ñ
ź

α

Xα z ÞÑ pgαpzqqαPA (7.41)

is continuous iff each gα is continuous.

Problem 7.9. Let pXαqαPA be an uncountable family of metric spaces, where each
Xα has at least two elements. Let S “

ś

αPA Xα be the product space, equipped
with the product topology. Prove that S is not first countable (recall Def. 7.115),
and hence not metrizable.
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7.9.4 Limits of functions

Problem 7.10. Prove the equivalence of (2) and (3) in Def. 7.81.

Problem 7.11. Find lim
px,yqÑp0,0q

fpx, yq, or explain why it does not exist:

fpx, yq “
x2 ´ y2

x2 ` y2

fpx, yq “
pxyq2

pxyq2 ` px´ yq2

fpx, yq “
x6y2

px4 ` y2q2

7.9.5 Connectedness

Problem 7.12. Assume thatX, Y are not empty. Prove thatX and Y are connected
iff X ˆ Y is connected.

Hint. Write X ˆ Y as a union of sets of the form pX ˆ tyuq Y ptxu ˆ Y q.

Definition 7.122. A topological space X is called locally connected if every x P X
has a neighborhood basis Bx (recall Def. 7.115) whose members are all connected.

Example 7.123. Every open subset of a locally connected space is clearly locally
connected.

Example 7.124. RN is locally connected, since open balls are path-connected and
hence connected (by Thm. 7.100). Therefore, every open subset of RN is locally
connected.

Problem 7.13. Suppose that X is locally connected. Prove that X has a unique
(disjoint) decomposition X “

Ů

αPA Xα where each Xα is a nonempty connected
open subset of X . (Each Xα is called a connected component of X .)

Hint. For each x P X , consider the union of all connected neighborhoods contain-
ing x.
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8 Compactness

8.1 Overture: two flavors of compactness

Let X be a topological space.

Definition 8.1. An open cover of X means a family U “ pUαqαPA of open subsets
of X such that X “

Ť

αPA Uα. U is called finite resp. countable if A is finite resp.
countable. A subcover of U means an open cover V “ pVβqβPB ofX such that each
Vβ equals Uα for some α P A .

Definition 8.2. We say that X is a compact space if every open cover of X has a
finite subcover. We say that X is a Lindelöf space if every open cover of X has a
countable subcover.

Remark 8.3. For the purpose of this chapter, it suffices to consider open covers
U “ pUαqαPA such that α P A ÞÑ Uα P 2X is injective. (Namely, one can throw
away repeated open sets.) In this case, we write

U Ă 2X

and view U as a subset of 2X . A subcover of such U is an open cover V such that
V Ă U. The readers can check that this assumption does not affect the definition
of compact spaces and Lindelöf spaces.

Remark 8.4. Compactness can also be formulated in a relevant version: If A is a
compact subset of X , and if U is a set of open subsets of X such that A Ă

Ť

UPU U ,
then since tU X A : U P Uu gives an open cover of A, we know that

A Ă U1 Y ¨ ¨ ¨ Y Un

some U1, . . . , Un P U. Conversely, any A satisfying such property is a compact
subspace of X .

Exercise 8.5. Show that a finite union of compact spaces is compact. Show that a
finite set is compact.

Exercise 8.6. Show that X is compact iff X satisfies the finite intersection prop-
erty: The intersection of a family of non-empty closed subsets is nonempty.

A main goal of this chapter is to prove the following theorem. Its proof will be
finished at the end of Sec. 8.5. In fact, the formal proof will only be in Sec. 8.3 and
Sec. 8.5.

Theorem 8.7. Let X be a metric space. Then X is sequentially compact iff X is compact.
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This is the first fundamental theorem we prove in this course. Its significance
lies in the fact that it connects two seemingly very different notions of compact-
ness, and hence two strikingly different intuitions. We hope that the reader can
not only follow the logical chains of the proofs, but also understand the pictures
behind the proof. More precisely, we hope that the readers can have an intuitive
understanding of the following questions:

• Why are these two compactness both powerful in solving certain problems?
What roles do they play in the proof? How are the roles played by these two
compactness related? (This is more important than just knowing why these
notions are logically equivalent.)

• Why is one version of compactness more powerful than the other one in
solving certain problems?

Thus, I feel that it is better to look at some applications of compactness before
we prove Thm. 8.7 rigorously. For pedagogical purposes, we also introduce two
related notions of compactness:

Definition 8.8. We say that X is net-compact, if every net pxαqαPI in X has at least
one cluster point (recall Pb. 7.2), equivalently, at least one convergent subnet. We
say that X is countably compact, if every countable open cover of X has a finite
subcover.

Sequential compactness and net-compactness clearly share the same intuition.
Countable compactness is intuitively similar to compactness. Also, compactness
clearly implies countable compactness. But net-compactness does not imply se-
quential compactness in general: In a net-compact space, every sequence has a
convergent subnet, but not necessarily a convergent subsequence.

The relationship between these four versions of compactness is as follows. (We
will prove this in the course of proving Thm. 8.7.)

Metric spaces: all the four versions of compactness are equivalent (8.1a)
Topological spaces: net-compact ðñ compact (8.1b)

After proving (8.1), we will not use the notions of countable compactness and net-
compactness. This is because net-compactness is equivalent to compactness, and
countable compactness is more difficult to use than compactness. (Nevertheless,
proving/using compactness by proving/using the existence of cluster points is
often helpful.)

8.2 Act 1: case studies

8.2.1 Extreme value theorem (EVT)

Lemma 8.9 (Extreme value theorem). Let X be a compact topological space. Let f :
X Ñ R be a continuous function. Then f attains its maximum and minimum at points
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of X . In particular, fpXq is a bounded subset of R.

We have seen the sequential compactness version of EVT (extreme value the-
orem) in Lem. 3.2. There, we find the point x P X at which f attains its maximum
by first finding a sequence pxnq such that fpxnq converges to sup fpXq. Then we
choose any convergent subsequence pxnk

q, which converges to the desired point x.
The same method can be used to prove EVT for net-compact spaces if we replace
sequences by nets.

For compact spaces, EVT is proved in a completely different way. In fact,
without the tools of sequences and nets, one can not easily find x at which f
attains it maximum. The argument is rather indirect:

Proof of Lem. 8.9. It suffices to prove that fpXq is bounded for all continuous maps
f : X Ñ R. Then a “ sup fpXq is in R. If a R fpXq, we choose a homeomorphism
φ : p´8, aq Ñ R. So φ ˝ f : X Ñ R is continuous but has no upper bound. This is
impossible.

Thus, to prove EVT, it remains to prove:

Example 8.10. Assume that X is compact and f : X Ñ R is continuous. Then
fpXq is a bounded subset of R.

Proof. For each x P X , since f is continuous at x, there exists Ux P Nbhpxq such that
|fppq´fpxq| ă 1 for all p P Ux. In particular, fpUxq is bounded. SinceX “

Ť

xPX Ux
is an open cover ofX , by compactness,X “ Ux1Y¨ ¨ ¨YUxn for some x1, . . . , xn P X .
Thus X “ fpUx1q Y ¨ ¨ ¨ Y fpUxnq is bounded.

The above proof is typical. It suggests that compactness is powerful for
proving finiteness properties rather than finding solutions of functions satisfy-
ing certain requirements. Thus, if you want to prove a finiteness property using
sequential or net-compactness, you have to prove it indirectly. For example, you
need to prove by contradiction:

Example 8.11. Assume that X is net-compact or sequentially compact. Assume
that f : X Ñ R is continuous. Then fpXq is a bounded subset of R.

Proof. Assume that X is net-compact. If fpXq is not bounded above, then there
is a sequence pxαq in X (viewed as a net) such that limα fpxαq “ `8. By net-
compactness, pxαq has a subnet px1

βq converging to x P X . So fpxq “ limβ fpx
1
βq “

`8, impossible. So f is bounded above, and hence bounded below by a similar
argument. The case where X is sequentially compact can be proved by a similar
method.

Let us look at a more complicated example.
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8.2.2 Uniform convergence in multivariable functions

Example 8.12. Let X, Y be topological spaces. Assume that Y is compact. Let V
be a normed vector space. Choose f P CpX ˆ Y, V q. For each x P X , let

fx : Y Ñ V y ÞÑ fpx, yq

Equip CpY, V qwith the l8-norm. Then the following map is continuous:

Φpfq : X Ñ CpY, V q x ÞÑ fx (8.2)

Remark 8.13. Note that since Y is compact, each g P CpY, V q is bounded by EVT
(applied to |g|). So CpY, V q Ă l8pY, V q.

The continuity of Φpfq means that for each x P X , the following statement
holds:

l For every ε ą 0 there exists U P NbhXpxq such that for all p P U and all y P Y
we have }fpp, yq ´ fpx, yq} ă ε.

This is clearly a finiteness property. Thus, its sequentially compact version or
net-compact version should be proved indirectly. Indeed, when X, Y are metric
spaces and Y is sequentially compact, we have proved this in Pb. 3.7 by contra-
diction. The same method (with sequences replaced by nets) also works for the
net-compact case:

Example 8.14. Example 8.12 is true, assuming that Y is net-compact rather than
compact.

Proof. Suppose “l” is not true. Then there is ε ą 0 such that for every U P

NbhXpxq there is xU P U and yU P Y such that }fpxU , yUq ´ fpx, yUq} ě ε. Then
pxαqαPNbhXpxq is a net converging to x, where xα “ xU if α “ U . Since Y is net-
compact, pyαq has a subnet pyβq converging to some y P Y . Since the subnet pxβq
also converges to x, we have limβ fpxβ, yβq “ fpx, yq and limβ fpx, yβq “ fpx, yq by
the continuity of f . This contradicts the fact that }fpxβ, yβq ´ fpx, yβq} ě ε for all
β.

On the other hand, the solution of Exp. 8.12 using open covers is a direct proof:

Proof of Exp. 8.12. “l” is a finiteness property global over Y . We prove “l” by
first proving it locally, and then passing to the global space Y using the compact-
ness of Y .

Fix x P X . Choose any ε ą 0. For each y P Y , since f is continuous at
px, yq, there is a neighborhood W of px, yq such that for every pp, qq P W we have
}fpp, qq´fpx, yq} ă ε{2. By Exp. 7.72, we can shrinkW to a smaller neighborhood
of the form Uy ˆ Vy where Uy P NbhXpxq and Vy P NbhY pyq. Then for each p P Uy
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and q P Uy we have }fpp, qq´fpx, yq} ă ε{2, and hence }fpp, qq´ fpx, qq} ă ε. This
proves the special case of “l” where Y is replaced by Uy.

Now we pass from local to global in the same way as in the proof of Exp. 8.10.
Since Y “

Ť

yPY Vy is an open cover of Y , by the compactness of Y , there is a finite
subset F Ă Y such that Y “

Ť

yPF Vy. Then “l” is true if we let U “
Ş

yPF Uy.

8.2.3 Conclusions

1. Sequential compactness and net-compactness are useful for finding solu-
tions of a function satisfying some given conditions.

2. Compactness is useful for proving finiteness properties. The proof is usually
a local-to-global argument. It is usually a direct argument (rather than proof
by contradiction).

3. If one uses sequential/net-compactness to prove a finiteness property, one
usually proves it by contradiction: Assume that this finiteness is not true.
Find a sequence/net pxαq that violates this finiteness property, and pass to a
convergent subsequence/subnet to find a contradiction.

4. Therefore, for sequential/net-compact spaces, the argument is in the direc-
tion of “getting smaller and smaller”, opposite to the argument for compact
spaces.

Let me emphasize that the proof for sequentially/net-compact spaces is oppo-
site to the one for compact spaces in two aspects: (1) If one argument is direct,
the other is a proof by contradiction for the same problem. (2) The former has the
intuition of “getting smaller”, while the latter local-to-global argument has the
intuition of “getting larger”.

I have already touched on this phenomenon in Rem. 7.54: The reason that se-
quences and nets run in the opposite direction to that of open sets is because closed sets
are opposite to open sets, as proved in Thm. 7.48. Thus, you can expect that the
transition between closed and open sets plays a crucial role in the following proof
of Thm. 8.7.

8.3 Act 2: “sequentially compactô countably compact” for met-
ric spaces, just as “net-compactô compact”

The road up and the road down is
one and the same.

Heraclitus

As mentioned before, our goal of this chapter is to prove “sequentially com-
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pact ô compact” for metric spaces. Our strategy is as follows: We reformulate
the sequential compactness condition in terms of decreasing chains of closed sets,
and reformulate the compactness condition in terms of increasing chains of open
sets. Then we relate these two pictures easily using Thm. 7.48.

The following difficulty arises when carrying out this strategy. Sequences are
countable by nature, whereas open covers can have arbitrarily large cardinality.
Thus, sequences are related to countable decreasing chains, and hence countable
open covers. Therefore, the above idea only implies the equivalence

sequentially compact ðñ countably compact pfor metric spacesq
(8.3a)

Accordingly, it will only imply

net-compact ðñ compact (8.3b)

since there are no constraints on the cardinalities of indexed sets of nets. We will
prove (8.3) in this section, and leave the proof of “countably compactô compact”
for metric spaces to Sec. 8.5.

Since the proofs of (8.3a) and (8.3b) are similar, we first discuss (8.3b).

Proposition 8.15. Let X be a topological space. Then the following are equivalent.

(1) X is compact.

(2) (Increasing chain property) If pUµqµPI is an increasing net of open subsets of X
satisfying

Ť

µPI Uµ “ X , then Uµ “ X for some µ.

(3) (Decreasing chain property) If pEµqµPI is a decreasing net of nonempty closed
subsets of X , then

Ş

µPI Eµ ‰ H.

Here, “increasing net” means Uµ Ă Uν if µ ď ν, and “decreasing net” means
the opposite.

Proof. (1)ñ(2): Assume (1). Then X “
Ť

µ Uµ is an open cover of X . So, by the
compactness of X , we have X “ Uµ1 Y ¨ ¨ ¨ Y Uµn for some µ1, . . . , µn P I . Choose
µ P I which is ě µ1, . . . , µn. Then X “ Uµ.

(2)ñ(1): Assume (2). LetX “
Ť

αPA Wα be an open cover ofX . Let I “ finp2A q.
For each µ “ tα1, . . . , αnu P I , let Uµ “ Wα1 Y ¨ ¨ ¨ Y Wαn . Then pUµqµPI is an
increasing net of open sets covering X . Thus, by (2), we have Uµ “ X for some µ.
This proves (1).

(2)ô(3): If we let Eµ “ XzUµ, then (2) says that if pEµq is a decreasing net of
closed sets whose intersection is H, then Eµ “ H for some µ. This is the contra-
position of (3).

We now relate decreasing chain property and cluster points of nets using (8.4).
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Theorem 8.16. Let X be a topological space. Then X is net-compact iff X is compact.

Proof. Assume thatX is net-compact. By Prop. 8.15, it suffices to prove thatX sat-
isfies the decreasing chain property. Let pEµqµPI be a decreasing net of nonempty
closed subsets of X . For each µ we choose xµ P Eµ, which gives a net pxµqµPI in X .
The fact that pEµq is decreasing implies that Fµ Ă Eµ if we set

Fµ “ txν : ν P I, ν ě µu (8.4a)

Thus, the closure F µ is a subset of Eµ since Eµ is closed. It suffices to prove that
Ş

µPI F µ ‰ H. By Pb. 7.2,
č

µ

F µ “
␣

the cluster points of the net pxµqµPI

(

(8.4b)

which is nonempty because X is net-compact. This finishes the proof that X is
compact.

Now we assume that X is compact. Let pxµqµPI be a net in X . Define Fµ by
(8.4a). Then pF µqµPI is a decreasing net of nonempty closed subsets. So

Ş

µ F µ, the
set of cluster points of pxµqµPI , is nonempty by the decreasing chain property (cf.
Prop. 8.15). So X is net-compact.

Proposition 8.17. Let X be a topological space. Then the following are equivalent.

(1) X is countably compact.

(2) (Increasing chain property) If pUnqnPZ`
is an increasing sequence of open subsets

of X satisfying
Ť

nPZ`
Un “ X , then Un “ X for some n.

(3) (Decreasing chain property) If pEnqnPZ`
is a decreasing sequence of nonempty

closed subsets of X , then
Ş

nPZ`
En ‰ H.

Proof. Similar to the proof of Prop. 8.15.

Exercise 8.18. Fill in the details of the proof of Prop. 8.17.

Lemma 8.19. LetX be a metric space. ThenX is sequentially compact iffX is countably
compact.

Proof. This lemma can be proved in a similar way as Thm. 8.17. The only dif-
ference is that one should use the sequential version of Pb. 7.2, namely, Prop.
7.113. Note that the “(1)ô(2)” of Prop. 7.113 does not hold for general topological
spaces. Thus, sequential compactness is not equivalent to countable compactness
for general topological spaces.

‹ Remark 8.20. As pointed out in Rem. 7.114, Prop. 7.113 holds more generally
for first countable topological spaces (Def. 7.115). Therefore, Lem. 8.19 also holds
for such spaces:

sequentially compact ðñ countably compact
pfor first countable spacesq

(8.5)
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8.4 Intermezzo: elementary properties about compactness

Proposition 8.21. Suppose that X Ă Y where Y is a topological space. The following
are true.

1. Assume that Y is compact and X is closed in Y . Then X is compact.

2. Assume that Y is Hausdorff and X is compact, then X is a closed subset of Y .

Proof. Part 1. Let pxαq be a net in X . Since Y is compact, pxαq has a subnet px1
βq

converging to some p P Y . Since px1
βq is in X , we have p P X “ X . So X is

compact.
Part 2. To prove X “ X , we choose any net pxαq in X converging to p P Y and

show that p P X . Indeed, since X is compact, pxαq has a subnet px1
βq converging to

some x P X . Since px1
βq also converges to p, we have p “ x because Y is Hausdorff.

So p P X .

I have mentioned that non-Hausdorff spaces are not often used in analysis.
Thus, we mainly use the following special case of Prop. 8.21:

Corollary 8.22. Let Y be a Hausdorff space and X Ă Y . If X is compact, then X is
closed in Y . If X is closed in Y and if Y is compact, then X is compact.

Recall that a similar property holds for complete metric spaces, cf. Prop. 3.27.

Theorem 8.23. Suppose that f : X Ñ Y is a continuous map of topological spaces where
X is compact. Then fpXq is compact. Moreover, if f is injective and X, Y are Hausdorff,
then f restricts to a homeomorphism f : X Ñ fpXq.

Proof. Choose any net pfpxαqq in fpXqwhere xα P X . Since X is compact, pxαq has
a subnet px1

βq converging to some x P X . Then fpx1
βq converges to fpxq. So fpXq

is compact.
Now assume that f is injective and Y is Hausdorff. Then the subspace fpXq is

also Hausdorff. By replacing Y by fpXq, we assume that f is bijective. To show
that f´1 is continuous, by Prop. 7.60, it suffices to prove that f is a closed map, i.e.,
f sends every closed E Ă X to a closed subset fpEq. Indeed, since X is compact,
E is also compact by Cor. 8.22. So fpEq is compact by the first paragraph. So fpEq
is closed in X by Cor. 8.22.

The second part of Thm. 8.23 can also be proved in a similar way as Pb. 3.3 by
replacing sequences with nets. But that argument relies on the fact that every net
in a compact Hausdorff space with only one cluster point is convergent. We leave
the proof of this fact to the readers (cf. Pb. 8.1).

Exercise 8.24. The first part of Thm. 8.23 can be viewed as a generalization of
extreme value theorem. Why?
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Proposition 8.25. Suppose that X, Y are compact topological spaces. Then X ˆ Y is
compact.

Proof. Take a net pxα, yαq in XˆY . Since X is compact, pxαq has a convergent sub-
net pxαβ

q. Since Y is compact, pyαβ
q has a convergent subnet pyαβγ

q. So pxαβγ
, yαβγ

q

is a convergent subnet of pxα, yαq.

Remark 8.26. Note that if X ˆY is compact, then X , as the image of X ˆY under
the projection map, is compact by Thm. 8.23. Therefore, we conclude that X ˆ Y
is compact iff X and Y are compact.

8.5 Act 3: “countably compactô compact” for Lindelöf spaces

Assume in this section that X is a topological space. Recall that X is Lindelöf
iff every open cover has a countable subcover. Thus, it is obvious that

countably compact ðñ compact pfor Lindelöf spacesq (8.6)

Thus, by Lem. 8.19, to prove that sequentially/countably compact metric spaces
are compact, it suffices to prove that they are Lindelöf.

We introduce two related concepts that are more useful than Lindelöf spaces:

Definition 8.27. We say that a topological space X is separable if X has a count-
able dense subset. We say that X is second countable if the topology of X has a
countable basis (i.e., a basis B with countably many elements).

Example 8.28. RN is separable, since QN is a dense subset.

As we shall immediately see, these two notions are equivalent for metric
spaces. It is often easier to visualize and prove separability for concrete examples
(such as Exp. 8.28). Indeed, Exp. 8.28 is the typical example that helps us imagine
more general separable spaces. However, for general topological spaces, second
countability behaves better than separability. The following property gives one
reason.

Proposition 8.29. If Y is a subset of a second countable space X , then Y is second
countable.

Proof. Let B be a countable basis for the topology of X . Then tY X U : U P Bu is a
countable basis for the topology of Y .

Another reason that second countability is better is because it implies Lindelöf
property. This is mainly due to the following fact:

Proposition 8.30. Let B be a basis for the topology of X . Then the following are equiva-
lent.
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(1) X is Lindelöf (resp. compact).

(2) If X has open cover U where each member of U is an element of B, then U has a
countable (resp. finite) subcover.

Proof. “(1)ñ(2)” is obvious. Assume (2). Let W be an open cover of X . Let

U “ tU P B : U Ă W for some W PWu

For each x P X , since there is W PW containing x, and since B is a basis, there is
U P B such that x P U Ă W . This proves that U is an open cover of X . So U has a
countable (resp. finite) subcover U0. For each U P U0, choose WU PW containing
U . Then tWU : U P U0u is a countable (resp. finite) subcover of W.

Corollary 8.31. Every second countable topological space X is Lindelöf.

Proof. Let B be a countable basis for the topology of X . Let U be an open cover
of X such that each member of U is in B. Then by discarding duplicated terms, U
becomes countable. This verifies (2) of Prop. 8.30.

Theorem 8.32. Consider the following statements:

(1) X is second countable.

(2) X is separable.

Then (1)ñ(2). If X is metrizable, then (1)ô(2).

Proof. Assume thatX is second countable with countable basis B. For each U P B,
choose xU P U . Then one checks easily that txU : U P Bu is dense by checking that
it intersects every nonempty open subset of X . This proves (1)ñ(2).

Assume that X is a metric space with countable dense subset E. Let us prove
that the countable set

B “ tBXpe, 1{nq : e P E, n P Z`u

is a basis for the topology of X . Choose any open W Ă X with x P W . We want
to show that some member of B contains x and is in W . By shrinking W , we
may assume that W “ BXpx, 1{nq for some n P Z`. Since E is dense, Bpx, 1{2nq
contains some e P E. So dpx, eq ă 1{2n. Therefore, Bpe, 1{2nq contains x and is
inside W by triangle inequality.

It can be proved that Lindelöf metric spaces are separable. (Therefore, the
three notions agree for metric spaces.) We will not use this fact. So we leave its
proof to the readers as an exercise (cf. Pb. 8.12). The following chart is a summary
of the relationships between the various topological properties about countability.
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Topological spaces: second countable ùñ

$

&

%

subset is second countable
separable
Lindelöf

Metric spaces: second countable ðñ separable ðñ Lindelöf
(8.7)

Example 8.33. Since RN is separable and hence second countable, every subset of
RN is second countable, and hence is separable.

Theorem 8.34. Let X be a sequentially compact metric space. Then X is separable, and
hence second countable and Lindelöf.

Proof. We claim that for every δ ą 0, there is a finite set E Ă X such that for
every x P E, the distance dpx,Eq ă δ. Suppose that there is no such a finite set for
some given number δ ą 0. Pick any x1 P X . Suppose x1, . . . , xk P X have been
constructed. Then there is a point xk`1 P X whose distance to tx1, . . . , xku is ě δ.
This defines inductively a sequence pxkqkPZ`

inX such that any two elements have
distanceě δ. So pxkq has no convergent subsequence, contradicting the sequential
compactness of X .

Thus, for each n P Z`, we can choose a finite En Ă X satisfying dpx,Enq ă 1{n
for all x P X . Let E “

Ť

nPZ`
En, which is countable. Then for each x P X ,

dpx,Eq ď dpx,Enq ă 1{n for every n, which implies dpx,Eq “ 0 and hence x P E
by Pb. 7.3. So E is dense in X .

Remark 8.35. The above proof is indirect because it proves the existence of En by
contradiction but not by explicit construction. However, if X is a bounded closed
subset of RN , one can find an explicit countable basis for the topology of X :

B “ tX XBpx, 1{nq : n P Z`, x P QN
u

and hence has an explicit countable dense subset txU : U P B, U ‰ Hu where
for each U we choose some xU P U . More generally, if X is a closed subset of
the sequentially compact space r0, 1sZ` , one can find a countable basis for the
topology of X and hence a countable dense subset of X in a similar way. (You
will be asked to construct them in Pb. 8.13.)

We shall see in Thm. 8.45 that every sequentially compact metric space is
homeomorphic to a closed subset of r0, 1sZ` . Therefore, for any sequentially com-
pact metric space X you will see in the real (mathematical) life, you don’t need
the indirect construction in the proof of Thm. 8.34 to prove the separability of X .
So what is the point of giving an indirect proof of Thm. 8.34? Well, you need Thm.
8.34 to prove Thm. 8.45.
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Proof of Thm. 8.7. Let X be a metric space. Assume that X is compact. Then
X is clearly countably compact, and hence sequentially compact by Lem. 8.19.
Conversely, assume that X is sequentially compact. Then by Lem. 8.19 and Thm.
8.34, X is countably compact and Lindelöf, and hence compact.

‹ Remark 8.36. Since second countable spaces are first countable, by Rem. 8.20
and Cor. 8.31, we have

sequentially compact ðñ countably compact ðñ compact

pfor second countable topological spacesq
(8.8)

Relation (8.8) not only generalizes Thm. 8.7, but also tells us what are the crucial
properties that ensure the equivalence of compactness and sequential compact-
ness for metric spaces.

8.6 Problems and supplementary material

Let X, Y be topological spaces.

8.6.1 Compactness

Problem 8.1. Let pxαqαPI be a net in a compact Hausdorff spaceX . Prove that pxαq
is convergent iff pxαq has exactly one cluster point.

Problem 8.2. Let pxαqαPI be a net in the compact space R. Let S be the (automati-
cally nonempty) set of cluster points of pxαq in R. Recall that S is a closed subset
by Rem. 7.112. For each α P I , define

Aα “ inftxβ : β ě αu Bα “ suptxβ : β ě αu (8.9)

Then pAαq is increasing and pBαq is decreasing. So they converge in R. Define

lim inf
αPI

xα “ suptAα : α P Iu “ lim
αPI

Aα (8.10a)

lim sup
αPI

xα “ inftBα : α P Iu “ lim
αPI

Bα (8.10b)

Prove that

lim inf
αPI

xα “ inf S lim sup
αPI

xα “ supS (8.11)

Note. You will get a quick proof by choosing the right one of the three equivalent
definitions of cluster points in Pb. 7.2. A wrong choice will take you much more
effort.
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Corollary 8.37. Let pxαq be a net in R. Then pxαq converges in R iff lim supα xα “
lim infα xα.

Proof. R is compact. Therefore, lim supα xα “ lim infα xα iff pxαq has only one clus-
ter point (by Pb. 8.2), iff pxαq converges (by Pb. 8.1).

Problem 8.3. Given a general topological spaceX , which one implies the other be-
tween the conditions of “sequential compactness” and “countable compactness”?
Prove your conclusion with details.

Hint. Check the proof of Thm. 8.16, and think about the question: If pxnq is a
sequence in X , what is the inclusion relation between

Ş

n txk : k ě nu and the set
of limits of the convergent subsequences (rather than subnets) of pxnq?

Problem 8.4. Prove Prop. 8.21 using the original definition of compact spaces (i.e.
every open cover has a finite subcover) instead of using nets.

‹ Problem 8.5. Prove Prop. 8.25 using the original definition of compact spaces
instead of using nets.

Problem 8.6. Assume that Y is compact. Let pxα, yαqαPI be a net inXˆY . Assume
that x P X is a cluster point of pxαq. Prove that there exists y P Y such that px, yq is
a cluster point of pxα, yαq.

Problem 8.7. (Tychonoff theorem, countable version) Let pXnqnPPZ`
be a se-

quence of compact topological spaces. Prove that the product space S “
ś

nPZ`
Xn

(equipped with the product topology) is compact using the following hint.

Hint. Let pfαqαPI be a net in S where fα “ pfαp1q, fαp2q, . . . q. Use Pb. 8.6 to
construct inductively an element x “ pxp1q, xp2q, . . . q P S such that for every
n P Z`, the element pxp1q, . . . , xpnqq is a cluster point of pfαp1q, . . . , fαpnqqαPI in
X1 ˆ ¨ ¨ ¨ ˆXn. Prove that x is a cluster point of pfαqαPI in S.

Remark 8.38. The same idea as above can be used to prove the general Tychonoff
theorem (the version where the index set Z` in Pb. 8.7 is replaced by an arbitrary
set) by replacing mathematical induction by Zorn’s lemma.

‹ Problem 8.8. Let X be the set of two elements: X “ t0, 1u, viewed as a metric
subspace of R. Let S “ X r0,1s, the product space of uncountably many X , where
the index set is the interval r0, 1s. S is equipped with the product topology. Ac-
cording to Tychonoff theorem (to be proved in the future), S is compact. Prove
that S is not sequentially compact.

Hint. Use binary representations in r0, 1s.
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8.6.2 LCH spaces

Definition 8.39. A subset A of a Hausdorff space X is called precompact if its
closureA is compact. This is equivalent to saying thatA is contained in a compact
subset of X .

Proof of equivalence. If A is compact, then A is a compact subset of X (cf. Cor. 8.22)
containing A. Conversely, if A Ă K where K is a compact subset of X , then K is
closed by Cor. 8.22. Since A is the smallest closed subset of X containing A, we
have A Ă K. By Exe. 7.52, A is closed in K. By Cor. 8.22, A is compact.

It is clear that a subset of a precompact set is precompact.

Problem 8.9. Suppose thatX is metric space. LetA Ă X . Prove that the following
are equivalent.

(1) A is precompact, i.e., A is compact.

(2) Every sequence in A has a subsequence converging to some point of X .

Definition 8.40. A Hausdorff space X is called a locally compact Hausdorff
(LCH) space if every point has a precompact neighborhood.

Proposition 8.41. Let X be an LCH space. Then the closed subsets and the open subsets
of X are LCH.

Proof. Let E Ă X be closed. Let x P E. Then there is U P NbhXpxq with compact
closure ClXpUq. So ClXpUqXE is compact by Cor. 8.22. Note that UXE P NbhEpxq,
and U X E is a subset of ClXpUq X E. So U X E is precompact in E. This proves
that E is LCH.

Next, we let W be an open subset of X . Let x P W . We want to show that
there exists U P NbhXpxq such that U “ ClXpUq is compact and U Ă W . Then U is
clearly precompact in W .

Since X is LCH, there is Ω P NbhXpxqwith compact closure Ω “ ClXpΩq. Then
every open subset U of Ω containing x has compact closure in X . Thus, it suffices
to prove that there exists U P I “ NbhΩpxq such that U Ă W . Suppose that this
is not true. Then for each U P I there is xU P UzW . So pxUqUPI is a net in ΩzW ,
where ΩzW is compact by Cor. 8.22. So pxUqUPI has a cluster point y P ΩzW . In
particular, y ‰ x.

Since X is Hausdorff, by Cor. 7.50, there is V0 P NbhXpxq such that y R V 0.
Let V “ V0 X Ω. Then V P I and y R V . For every U P I satisfying U Ă V we
have xU P V . So pxUqUPI is eventually not in the neighborhood XzV of y. This is
impossible.

Definition 8.42. LetX be LCH. Let Y be a metric space. Let pfαqαPI be a net in Y X .
Let f P Y X . We say that pfαq converges locally uniformly to f if the following
equivalent conditions are satisfied:
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(1) For each x P X , there exists U P NbhXpxq such that pfα|Uq converges uni-
formly to f |U .

(2) For each precompact open subset W Ă X , the net pfα|W q converges uni-
formly to f |W .

Problem 8.10. Prove that in Def. 8.42, conditions (1) and (2) are equivalent.

Exercise 8.43. Let X be LCH. Let V be a normed vector space. Let pfαqαPI be a
net in CpX,Vq converging pointwise to f : X Ñ V . Assume that the net pfαq
converges locally uniformly on X (clearly to f ). Prove that f is continuous.

An example of locally uniform convergence was given in Thm. 4.27.

8.6.3 Countability in topological spaces

Problem 8.11. Let pX, T q be a second countable LCH space. Prove that the topol-
ogy T has a countable basis B whose members are all precompact.

Hint. Use Lindelöf property for open subsets of X .

‹ Problem 8.12. Let X be a Lindelöf metric space. Prove that X is separable.

Problem 8.13. Let pXnqnPZ`
be a sequence of topological spaces. Equip S “

ś

nPZ`
Xn with the product topology.

1. Prove that S is second countable if each Xn is second countable.

2. Prove that S is separable if each Xn is separable

Recall from Pb. 7.13 the basic facts about connected components.

Problem 8.14. Let X be a locally connected topological space. Prove that if X is
second countable, then X has countably many connected components. Use this
result to show that every open subset of R is a countable disjoint union of open
intervals.

8.6.4 The problem of embedding

Definition 8.44. Let F be a set of functions X Ñ Y . We say that F separates
points of X , if for every distinct x1, x2 P X there exists f P F such that fpx1q ‰
fpx2q.

Problem 8.15. Let X be a nonempty compact metric space.

1. Prove that there is a sequence of continuous functions pfnqnPZ`
from X to

r0, 1s separating points of X .
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2. Prove that

Φ : X Ñ r0, 1sZ` x ÞÑ pf1pxq, f2pxq, . . . q

gives a homeomorphism Φ : X Ñ ΦpXqwhere ΦpXq is a closed subspace of
r0, 1sZ` (equipped with the subspace topology).

The topological space r0, 1sZ` , equipped with the product topology, is called
the Hilbert cube.

Hint. Part 1: Choose an infinite countable basis B “ pU1, U2, . . . q for the topology
of X where each Un is nonempty. (Why can you do so?) Use Urysohn functions
(Rem. 7.118) to construct fn : X Ñ r0, 1s such that f´1p0q “ XzUn.

Part 2: Notice Pb. 7.8.

Theorem 8.45. Let X be a topological space. The following are equivalent.

(1) X is a compact metrizable space.

(2) X is homeomorphic to a closed subset of the Hilbert cube r0, 1sZ` .

Proof. (1)ñ(2): By Pb. 8.15. (2)ñ(1): By Cor. 7.76, r0, 1sZ` is metrizable. By
countable Tychonoff theorem (Thm. 3.54 or Pb. 8.7), r0, 1sZ` is compact. So its
closed subsets are compact by Cor. 8.22.

‹ Exercise 8.46. Let N P Z`. Prove that the following are equivalent.

(1) X is a compact Hausdorff space. Moreover, there exist f1, . . . , fN P CpX,Rq
separating points of X .

(2) X is homeomorphic to a bounded closed subset of RN .
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9 The injection Ψ : CpX,CpY,Vqq Ñ CpX ˆ Y,VqΨ : CpX,CpY,Vqq Ñ CpX ˆ Y,VqΨ : CpX,CpY,Vqq Ñ CpX ˆ Y,Vq
In this chapter, unless otherwise stated, X, Y are topological spaces, all

normed vector spaces are over F P tR,Cu, and V is a normed vector space.

Remark 9.1. Let Φ : V ÑW be a linear map of normed vector spaces. Recall that
Φ is an isometry (in the category of metric spaces) iff }Φpuq ´ Φpvq} “ }u ´ v} for
all u, v P V . By linearity, we have

Φ is an isometry ðñ }Φpvq} “ }v} for all v P V (9.1)

Definition 9.2. A linear map Φ : V ÑW of normed vector spaces over F is a called
an isomorphism of normed vector spaces if Φ is an isometric isomorphism. If Φ
is an isomorphism, and if one of V ,W is complete, then the other one is also
complete. In this case, we call Φ an isomorphism of Banach spaces.

Recall that if X is compact, then the norm on CpX,Vq is assumed to be the
l8-norm (cf. Conv. 3.49).

9.1 Ψ is bijective when Y is compact

Theorem 9.3. Equip CpY,Vq with the uniform convergence topology (cf. Exp. 7.77).
Then there is a well-defined injective linear map

Ψ : CpX,CpY,Vqq Ñ CpX ˆ Y,Vq
ΨpF qpx, yq “ F pxqpyq

(9.2)

(for each F P CpX,CpY,Vqq ). Moreover, the following are true:

(a) If Y is compact, then Ψ is a linear isomorphism of vector spaces.

(b) If X, Y are compact, then Ψ is an isomorphism of normed vector spaces.

Proof. Step 1. Write W “ CpY,Vq for simplicity. To prove that (9.2) is a well-
defined map, we need to prove that for each F P CpX,Wq, the map f “ ΨpF q :
X ˆ Y Ñ V sending px, yq to fpx, yq “ F pxqpyq is continuous.

The continuity of F : X ÑW means that if pxαqαPI is a net in X converging to
x, then F pxαq converges to F pxq, i.e.,

lim
αPI

Aα “ 0 (9.3a)

where each Aα P Rě0 is

Aα “ sup
yPY

}fpxα, yq ´ fpx, yq} (9.3b)
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Now, suppose that pxα, yαqαPI is a net in X ˆ Y converging to px, yq. Then

}fpxα, yαq ´ fpx, yq} ď }fpxα, yαq ´ fpx, yαq} ` }fpx, yαq ´ fpx, yq}

ďAα ` }fpx, yαq ´ fpx, yq}

Since F pxq : y P Y ÞÑ fpx, yq P V is continuous, we have limα }fpx, yαq ´ fpx, yq} “
0. Therefore, by Squeeze theorem, we have

lim
αPI
}fpxα, yαq ´ fpx, yq} “ 0 (9.4)

Thus, f is continuous at every px, yq.

Step 2. Clearly Ψ is linear and injective. Assume that Y is compact. Then the
surjectivity of Ψ follows from Exp. 8.12. This proves (a). Assume that X is also
compact. Choose any F P CpX,Wq and write f “ ΨpF q. Then

sup
xPX

sup
yPY

}fpx, yq} “ sup
xPX,yPY

}fpx, yq}

by the easy Lem. 9.4. This proves that Φ is an isometry, and hence proves (b).

Lemma 9.4. Let g : AˆB Ñ R be a function where A,B are sets. Then

sup
aPA

sup
bPB

gpa, bq “ sup
pa,bqPAˆB

gpa, bq

Proof. Write λa “ supbPB gpa, bq and ρ “ suppa,bqPAˆB gpa, bq. Then, clearly λa ď ρ
for each a. So supa λa ď ρ. For each a, b we have gpa, bq ď λa, and hence gpa, bq ď
supa λa. Taking sup over a, b yields ρ ď supa λa.

Remark 9.5. Thanks to Thm. 9.3, we can reduce many problems about multi-
variable functions to problems about single-variable functions. Here is an exam-
ple we will study in the future: If I “ ra, bs, J “ rc, ds are compact intervals and
F P CpI ˆ J,Rq, then with the help of Thm. 9.3, the Fubini’s theorem

ż b

a

ż d

c

F px, yqdxdy “

ż d

c

ż b

a

F px, yqdxdy

for Riemann integrals follows directly from the easy general fact
ż b

a

Λ ˝ fpxqdx “ Λ
´

ż b

a

fpxqdx
¯

where f : ra, bs ÑW is a continuous map to a real Banach space W , and Λ : W Ñ

R is a continuous linear map.
Thm. 9.3 can be used the other way round: We will prove in the future that ev-

ery Banach space V is isomorphic to a closed linear subspace of CpY,Fq for some
compact Hausdorff space Y . Thus, a problem about continuous maps X Ñ V
(where V is an abstract Banach space) can be reduced to a problem about contin-
uous scalar-valued functions X ˆ Y Ñ F.
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In the following sections, we give a surprising application of Thm. 9.3: We
show that uniform-convergence and equicontinuity, two closely related but dif-
ferent notions, can be understood in the same context.

9.2 Equicontinuity

Let I be a set not necessarily preordered or directed.

Definition 9.6. Assume that Y is a metric space. A family of functions pfαqαPI

from X to Y is called equicontinuous at x P X if the following equivalent condi-
tions hold:

(1) The function

X Ñ Y I x ÞÑ pfαpxqqαPI (9.5)

is continuous at x, where Y I is equipped with the uniform convergence
topology (Exp. 7.77).

(2) For every ε ą 0, there exists U P NbhXpxq such that for every p P U we have

sup
αPI

dY pfαppq, fαpxqq ă ε

Clearly, if pfαqαPI is equicontinuous at x, then fα : X Ñ Y is continuous at x for
every α P I . We say that pfαqαPI is (pointwise) equicontinuous if it is equicontin-
uous at every point of X .

Proof of equivalence. This is immediate if we choose the uniform convergence met-
ric on Y I to be

dppyαq, py
1
αqq “ min

!

sup
αPI

dY pyα, y
1
αq, 1

)

and use (the base version of) Def. 7.56-(2).

Remark 9.7. Warning: The above definition of equicontinuity is weaker than the
one in Rudin’s book [Rud-P, Ch. 7], which will be called uniform equicontinuity
in this course (cf. Def. 10.11).

Example 9.8. Assume that X and Y are metric spaces. Fix C ě 0. Then

tf P Y X : f has Lipschitz constant Cu

is an equicontinuous family of functions X Ñ Y .
In the future, we will see that if f : ra, bs Ñ R (where ra, bs Ă R) is differentiable

and satisfies |f 1pxq| ď C for all x P ra, bs, then f has Lipschitz constant C. (For
example, if we assume moreover that f 1 is continuous, then for each a ď x ă y ď b
we have |fpyq ´ fpxq| “ |

şy

x
f 1| ď

şy

x
|f 1| ď Cpy ´ xq.) Therefore, all such functions

form an equicontinuous family of functions.
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Equicontinuity is important for several reasons. First, equicontinuity is closely
related to compactness, both under the uniform convergence topology and under
the pointwise convergence topology. This is hinted at in Rem. 9.22, and will be
explored in more detail in a future chapter. Second, equicontinuity and uniform
convergence are symmetric notions:

Remark 9.9. Note that if x P Xzx, a map φ : X Ñ Y is continuous at x iff
limpÑx fppq “ fpxq, where limpÑx fppq is the limit of a net (cf. Rem. 7.82). Now,
assume that Y is a metric space. Then we see that a family pfαqαPI in Y X satisfies
that

pfαqαPI is equicontinuous at x ðñ lim
pÑx

sup
αPI

dpfαppq, fαpxqq “ 0 (9.6)

If we compare this with

fα Ñ f ðñ lim
αPI

sup
xPX

dpfαpxq, fpxqq “ 0 (9.7)

(if I is a directed set and f P Y X), we see that equicontinuity and uniform con-
vergence are “symmetric about the diagonal line of the Cartesian product I ˆX”:
Equicontinuity is a uniform convergence over the index set I , and the uniform
convergence fα Ñ f is uniform over X .

The symmetry of equicontinuity and uniform convergence will be further
studied in Sec. 9.3. (Indeed, we will see that it is better to view “uniform conver-
gence + continuity” and “pointwise convergence + equicontinuity” as symmetric
conditions.) As an application, we will see that equicontinuity is equivalent to
uniform convergence for any sequence pfnq of pointwise convergent continuous
functions on a compact topological space. (See Cor. 9.26.) Thus, in this case, one
can prove the uniform convergence of pfnq by proving for instance that it con-
verges pointwise and has a uniform Lipschitz constant.

9.3 Uniform convergence and equicontinuity: two faces of Ψ

9.3.1 Main results

In this subsection, we fix a directed set I , and let

I˚
“ I Y t8Iu

where 8I is a new symbol not in I . Write 8I as 8 for simplicity. Equip I˚ with
the standard topology as in Def. 7.121. Recall that this topology has basis

B “
␣

tαu : α P I
(

Y
␣

I˚
ěα : α P I

(
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Clearly I ˆ X is dense in I˚ ˆ X . Equip CpX,Vq and CpI˚,Vq with the uniform
convergence topologies.

Throughout this subsection, we fix a net pfαqαPI in VX and an element f8 P VX .
Define

F : I˚
ˆX Ñ V F pµ, xq “ fµpxq (9.8)

The meaning of the title of this section is illustrated by the following theorem.

Theorem 9.10. We have (a)ô(b) and (1)ô(2) where:

(a) pfαqαPI converges uniformly to f8, and fα : X Ñ V is continuous for each α P I .

(b) F gives rise to a continuous map I˚ Ñ CpX,Vq

(1) pfαqαPI is equicontinuous and converges pointwise to f8.

(2) F gives rise to a continuous map X Ñ CpI˚,Vq.

Proof. Assume (a). Then we have f8 P CpX,Vq due to Thm. 7.79. So F gives rise
to a map I˚ Ñ CpX,Vq. Since fα Ñ f8, we see that F is continuous by Pb. 7.6-2.
This proves (b).

Assume (b), then the fact that the map I˚ Ñ CpX,Vq has range in CpX,Vq
means precisely that each fα and f8 are continuous. The continuity of the map
I˚ Ñ CpX,Vq at8means fα Ñ f8. This proves (a).

(1)ñ(2): Assume (1). The equicontinuity of pfαq is equivalent to that

x P X ÞÑ pfαpxqqαPI P VI (9.9)

is continuous where VI is equipped with the uniform convergence topology.
Equivalently, for each x P X and ε ą 0 there is U P NbhXpxq such that for all
p P U and all α P I we have

}fαppq ´ fαpxq} ď ε (9.10)

Since pfαqαPI converges pointwise to f8, by applying limαPI to (9.10), we see that
}fµppq ´ fµpxq} ď ε for all p P U and µ P I˚. So

x P X ÞÑ pfµpxqqµPI˚ P VI˚

(9.11)

is continuous, where VI˚ is given the uniform convergence metric. By Pb. 7.6-2,
the pointwise convergence of pfαqαPI to f8 is equivalent to the continuity of

µ P I˚
Ñ fµpxq P V (9.12)

for each x P X . So the map (9.11) has range inside CpI˚,Vq.
(2)ñ(1): Assume (2). The continuity of X Ñ CpI˚,Vq implies that of (9.9). So

pfαqαPI is equicontinuous. Its pointwise convergence to f is due to the continuity
of (9.12) for each x, which is clearly true by (2).
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Remark 9.11. Conditions (a) and (1) in Thm. 9.10 are symmetric. Condition (a)
says roughly that F converges uniformly under the limit over I , and converges
pointwise under the limit over X . Condition (1) says roughly that F converges
uniformly under the limit over X , and pointwise under the limit over I . The next
theorem clarifies the relationship between these two symmetric conditions. We
will see a similar condition in Thm. 9.28.

Theorem 9.12. Consider the following statements:

(1) The function F : I˚ ˆX Ñ V is continuous.

(2) pfαqαPI converges uniformly to f8, and fα : X Ñ V is continuous for each α P I .

(3) pfαqαPI is equicontinuous and converges pointwise to f8.

Then we have

p2q ùñ p1q ðù p3q

p2q ðñ p1q if X is compact
p1q ðñ p3q if I “ N

where N is equipped with the usual order.

A more explicit description of condition (1) will be given in Prop. 9.16.

Proof. This follows immediately from Thm. 9.10, Thm. 9.3, and the fact that I˚ is
compact if I “ N.

Remark 9.13. From the above proof, we see that the equivalence (1)ô(3) holds in
the more general case that I˚ is compact. See Pb. 9.1 for an equivalent description
of the compactness of I˚.

Example 9.14. Define fn : p0, 1q Ñ R by fnpxq “ xn. Then pfnqnPZ`
is equicon-

tinuous (by Exp. 9.8) and pointwise convergent, but not uniformly convergent.
Accordingly, p0, 1q is not compact.

Example 9.15. Let I “ Z` ˆ Z`, equipped with the product preorder: pk1, n1q ď

pk2, n2q means k1 ď k2 and n1 ď n2. Consider pfk,nqpk,nqPI , where fk,n : r0, 1s Ñ

R is defined by fk,npxq “
xn

k
. Then limpk,nqPI fk,n converges uniformly to 0 by

squeeze theorem and 0 ď fk,n ď k´1. Thus, condition (1) of Thm. 9.12 is satisfied.
However, this net of functions is not equicontinuous at x “ 1. Moreover, for every
pk0, n0q P I , the net of functions pfk,nqpk,nqPIěpk0,n0q

is not equicontinuous at 1.

Proof. Choose any x P r0, 1q. Then (recalling Lem. 9.4)

sup
kěk0

sup
něn0

|fk,np1q ´ fk,npxq| “ sup
kěk0

sup
něn0

1´ xn

k
“ sup

kěk0

1

k
“

1

k0
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In the following, let me give a more explicit description of condition (1) of
Thm. 9.12 in terms of pfαq and f8. More precisely, we show that (1) can be inter-
preted as the convergence of a double limit.

Proposition 9.16. Assume that fα : X Ñ V is continuous for each α P I . Then part (1)
of Thm. 9.12 is equivalent to both (1’) and (1”), where

(1’) For each x P X , we have

lim
pα,pqPIˆX

pα,pqÑp8,xq

fαppq “ f8pxq (9.13)

(1”) For each x P X and ε ą 0, there exist β P I and U P NbhXpxq such that

}fαppq ´ f8pxq} ă ε pfor all α P Iěβ and p P Uq (9.14)

Note that one can make sense of the LHS of (9.13) because I ˆ X is clearly
dense in I˚ ˆX .

Proof. The equivalence of (1’) and (1”) is clear by Def. 7.81. The continuity of fα
for all α P I means precisely that F |IˆX is continuous. Therefore, (1’) is equivalent
to part (1) of Thm. 9.12, thanks to the following Thm. 9.17.

See Exp. 9.32 for an elementary example satisfying (1’) of Prop. 9.16 (or equiv-
alently, (1) of Thm. 9.12), but not satisfying (2) or (3) of Thm. 9.12. (See also Pb.
9.5 and Thm. 9.31 for related facts.)

9.3.2 Proving continuity using limits

Theorem 9.17. Let φ : X Ñ Y be a map of topological spaces where Y is metrizable. Let
A be a dense subset of X . Then the following are equivalent.

(1) φ : X Ñ Y is continuous.

(2) The restriction φ|A : A Ñ Y is continuous. Moreover, for each x P XzA, the
restriction φ|AYtxu is continuous at x, namely (cf. Def. 7.81) ,

lim
pPA
pÑx

φppq “ φpxq (9.15)

Proof. Clearly (2) is equivalent to

φ|AYtxu is continuous at x for all x P X (9.16)

So (1)ñ(2). Assume (2) and that Y is a metric space. Choose any x P X . We want
to show that φ : X Ñ Y is continuous at x. Choose any ε ą 0. Recall that an open
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subset of A is precisely the intersection of A and an open subset of X . Thus, by
(9.16), there is U P NbhXpxq such that for all p P AX U we have

dpφppq, φpxqq ď ε{2 (9.17)

It remains to prove (9.17) for all p P U . Choose any p P U . By Lem. 9.18, AX U
is dense in U . Thus, there is a net ppαq in A X U converging to p. In particular, for
each α we have

dpφppαq, φpxqq ď ε{2

Since φ|AYtpu is continuous (by (9.16)), we have limα φppαq “ φppq. Thus, applying
limα to the above inequality proves (9.17) for p P U .

Lemma 9.18. Suppose that A is a dense subset of X . Let U be an open subset of A. Then
AX U is dense in U .

This lemma is clearly false if U is not assumed to be open: simply take U “

XzA.

First proof. Choose any x P U . We want to find a net in A X U converging to x.
Since A is dense in X , there is a net pxαqαPJ in X converging to x. Since U is a
neighborhood of x, pxαq is eventually in U , say xα P U whenever α ě β. Then
pxαqαPJěβ

is a net in AX U converging to x.

Second proof. We want to show that every nonempty open subset of U intersects
AX U . But an open subset of U is precisely an open subset of X contained inside
U (Exe. 7.52). So this set (when nonempty) must intersect A because A is dense in
X .

‹ Exercise 9.19. In Thm. 9.17, weaken the metrizability of Y to the condition that
Y is regular. (See the definition below.) Prove the conclusion of Thm. 9.17.

‹ Definition 9.20. A topological space Y is called regular if for every y P Y and
every U P NbhY pyq there exists V P NbhY pyq such that ClY pV q Ă U .

9.3.3 Immediate consequences of Thm. 9.12

The following result is parallel to Thm. 7.79 for uniformly convergent nets of
continuous functions.

Corollary 9.21. Let pfαqαPI be an equicontinuous net of functions X Ñ V . Assume that
pfαq converges pointwise to f : X Ñ V . Then f is continuous.

Proof. Write f8 “ f and define F by (9.8). Then F is continuous by (3)ñ(1) of
Thm. 9.12. So f “ f8 is continuous, since f is the composition of F with the
inclusion map x P X ÞÑ p8, xq P I˚ ˆX .
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Remark 9.22. In the future, we will study the general Tychonoff theorem, which
says for example that if pfαqαPI is a net of functions X Ñ RN which is pointwise
bounded, i.e. supαPI }fpxq} ă `8 for all x P X , then pfαq has a subnet converging
poinwise. However, if we assume moreover that each fα is continuous, we cannot
conclude in general that pfαq has a subnet converging pointwise to a continuous
function. But we can make such a conclusion when pfαq is equicontinuous, thanks
to Cor. 9.21. Therefore, Cor. 9.21 tells us that equicontinuity is useful for study-
ing the problems of compactness of families of continuous functions (under the
pointwise convergence topology). Cf. Thm. 17.7.

In fact, we have a slightly stronger version of Cor. 9.21:

Corollary 9.23. Let pfαqαPI be a net of functions X Ñ V equicontinuous at x. Assume
that pfαq converges pointwise to f : X Ñ V . Then f is continuous at x.

Proof. Define Xx to be the same as X as a set, but has a different topology: the one
generated by the basis

Bx “ NbhXpxq Y
␣

tpu : p ‰ x
(

(cf. Exe. 7.62). Define gα : Xx Ñ V and g : Xx Ñ V to be the same as fα
and f . Then pgαq is a net of equicontinuous functions converging pointwise to g.
Therefore, by Cor. 9.21, g is continuous. So f is continuous at x.

Remark 9.24. By a similar argument, we can generalize Thm. 7.79 to the following
form: Let pfαq be a net of functions X Ñ V converging uniformly to f : X Ñ V .
Suppose that each fα is continuous at x. Then f is continuous at x.

Example 9.25. In this example, we pretend to know derivatives. Let pfnq be a
sequence of functions Rě0 Ñ R defined by fnpxq “ x1{n. (We understand 0

1
n “ 0.)

Find all x P Rě0 at which pfnq is equicontinuous.

Proof. We prove that Rą0 is the set of all points at which pfnq is equicontinuous.
First, assume x ą 0. Choose 0 ă a ă 1 ă b such that a ă x ă b. Then, on ra, bs,
f 1
npxq “

1
n
x

1
n

´1 is bounded by C “ maxta´1, bu. So pfn|ra,bsq has Lipschitz constant
C by Exp. 9.8. So pfnq is equicontinuous at x.

Note that pfnq converges pointwise to f where fpxq “ 1 if x ą 0 and fp0q “ 0.
But f is not continuous at 0. So pfnq is not equicontinuous at 0 due to Cor. 9.23.

One can also prove that pfnq is equicontinuous on p0, 1qYp1,`8qwithout using
derivatives: See Thm. 9.31-1.

Corollary 9.26. Let pfαqαPI be a net in CpX,Vq converging pointwise to f P VX . Con-
sider the following statements:

(1) pfαqαPI converges uniformly to f .
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(2) pfαqαPI is equicontinuous.

Then the following are true.

1. If pfαqαPI is a sequence pfnqnPZ`
, then (1)ñ(2).

2. If X is compact, then (2)ñ(1).

Proof. Immediate from Thm. 9.12.

9.4 Uniform convergence and double limits

In view of Prop. 9.16, Thm. 9.12 implies that the convergence of a double limit
is the consequence of uniform convergence. In this section, instead of using the
language of topological spaces, we formulate this result in terms of double nets
so that it can be applied to a broader context. We first give a useful criterion for
uniform convergence.

Proposition 9.27. Assume that V is a Banach space. Let pfαqαPI be a net in CpX,Vq.
Assume that pfαq converges uniformly on a dense subset E of X . Then pfαq converges
uniformly on X to some f P CpX,Vq.

The completeness of V is important here.

Proof. Since E is dense, by (7.9a) (applied to the function |fα ´ fβ|), we have

sup
xPX

}fαpxq ´ fβpxq} “ sup
xPE

}fαpxq ´ fβpxq}

where the RHS converges to 0 under limα,β . Thus, pfαq is a Cauchy net in VX
where VX is equipped with the uniform convergence metric as in Exp. 7.77. So
pfαqαPI converges uniformly on X to some f : X Ñ V by Thm. 7.78. By Thm. 7.79,
f is continuous.

Theorem 9.28 (Moore-Osgood theorem). Let pfα,βqpα,βqPIˆJ be a net in a Banach
space V with index set IˆJ where I, J are directed sets. Assume the following conditions:

(1) For each α P I , there exists fα,8 P V such that

lim
βPJ

fα,β “ fα,8 (9.18)

(2) For each β P J , there exists f8,β P V such that

lim
αPI

sup
βPJ

}fα,β ´ f8,β} “ 0 (9.19)

Then the following are true:
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1. The following limits exist and are equal:

lim
pα,βqPIˆJ

fα,β “ lim
αPI

fα,8 “ lim
βPJ

f8,β (9.20)

2. If I “ N where N is equipped with the usual order, then

lim
βPJ

sup
αPI
}fα,β ´ fα,8} “ 0 (9.21)

Conditions (1) and (2) in Thm. 9.28, which say that the limit of fα,β is pointwise
over one index and uniform in another index, should remind you of conditions (2)
and (3) in Thm. 9.12 (cf. Rem. 9.11). In fact, we shall use Thm. 9.12 to understand
and prove the Moore-Osgood theorem.

Proof. Part 1: By Thm. 5.29, it suffices to prove that limα,β fα,β converges. Define
topological spaces I˚ “ I Y t8Iu and J˚ “ J Y t8Ju as in Subsec. 9.3.1. Define

gα : J˚
Ñ V gαpνq “ fα,ν

where gαp8Jq “ fα,8. By (1), for each α P I , the function gα is continuous at 8J ,
and hence gα P CpJ˚,Vq. By (2), pgαqαPI converges uniformly on J . Since J is
a dense subset of J˚, by Prop. 9.27, pgαqαPI converges uniformly on J˚ to some
g8I

: J˚ Ñ V . Thus, by Thm. 9.12, the function

F : I˚
ˆ J˚

Ñ V F pµ, νq “ gµpνq

is continuous. Its continuity at p8I ,8Jq implies that lim
αPI,βPJ

fα,β “ lim
αPI,βPJ

F pα, βq

converges to F p8I ,8Jq.
Part 2: By Thm. 9.12, pgαqαPI is an equicontinuous family of functions J˚ Ñ V .

Its equicontinuity at8J means precisely (9.21).

Remark 9.29. Whenever you see a theorem stated in very plain language but
proved using a huge machinery, you should always ask yourself if a direct proof
is possible. A huge machinery or fancy language is not always necessary for the
proof, but often helps to understand the nature of the problem.

Now, since Thm. 9.28 is stated without using the language of topological
spaces and continuous maps, it is desirable to have a direct and elementary proof.
It could be done by directly translating the above proof (and the proof of the re-
sults cited in that proof) into the pure language of nets. However, we prefer to
give a simpler proof which is related to, but is not a direct translation of, the
above topological proof.

A direct proof of Thm. 9.28. Part 1: By Thm. 5.29, it suffices to prove that
limα,β fα,β converges. Since V is complete, it suffices to prove the Cauchy con-
dition:
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(i) For each ε ą 0, there exists pα, βq P I ˆ J such that for all pµ, νq P Iěα ˆ Jěβ ,
we have }fα,β ´ fµ,ν} ă ε.

Choose ε ą 0. By condition (2) of Thm. 9.28, pfα,βq, as a net of functions J Ñ V
with index set I , converges uniformly. Thus, by the Cauchy condition for the
uniform convergence metric as in Exp. 7.77 (which is available due to Thm. 7.78),
we have:

(ii) There exists α P I such that for all µ ě α, we have supνPJ }fα,ν ´ fµ,ν} ă ε{2.

Fix α as above. By condition (1), the limit limβPJ fα,β exists. Thus:

(iii) There exists β P J such that for all ν ě β we have }fα,β ´ fα,ν} ă ε{2.

Combining (ii) and (iii) and using triangle inequality, we see that for each µ ě α
and ν ě β,

}fα,β ´ fµ,ν} ď }fα,β ´ fα,ν} ` }fα,ν ´ fµ,ν} ă ε

This proves (i).

Part 2: Assume I “ N. Since pfα,βq is a Cauchy net, for each ε ą 0 there exist
α0 P I, β0 P J such that for all α ě α0 and β, ν ě β0 we have }fα,β ´ fα,ν} ă ε.
Applying limν gives

}fα,β ´ fα,8} ď ε p@α ě α0, β ě β0q

Since I “ N, there are finitely many α not ě α0. For any such α, by condition (1)
of Thm. 9.28, there exists βα P J such that for all β ě βα, we have }fα,β´fα,8} ď ε.
Choose rβ greater than or equal to β0 and all these (finitely many) βα. Thus, we
have }fα,β ´ fα,8} ď ε for all α P I and all β ě rβ. This proves (9.21).

Remark 9.30. The main theme of this chapter is the study of the relationship be-
tween the convergence of limα,β fα,β and the uniform convergence of limα fα,β and
limβ fα,β . The main results of this chapter (i.e. Thm. 9.3, Thm. 9.12 (together with
Prop. 9.16), and Moore-Osgood Thm. 9.28) can be summarized as follows:

(1) If one of limα fα,β and limβ fα,β converges uniformly and the other one con-
verges pointwise, then limα,β fα,β converges. (Consequently, by Thm. 5.29,
we have limα limβ fα,β “ limβ limα fα,β “ limα,β fα,β .)

(2) If limα fα,β , limβ fα,β , and limα,β fα,β all converge pointwise, and if “there is a
compactness on β”, then limα fα,β converges uniformly over all β.

The detailed statements of (1) and (2) are given in Thm. 9.12 ((together with Prop.
9.16)), or equivalently, in Thm. 9.3. (See also Rem. 9.11.) Although Thm. 9.3 and
Thm. 9.12 look very different, they are actually telling the same story. (We have
proved Thm. 9.12 from Thm. 9.3. But it is not hard to see that Thm. 9.3 also im-
plies Thm. 9.12.) The Moore-Osgood theorem is only about part (1), but not about
part (2). (Or, more accurately, the second part of Moore-Osgood corresponds to a
very weak version of (2).)
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9.5 Problems and supplementary materials

Recall from the beginning of this chapter that X is a topological space and V
is a normed vector space over F P tR,Cu.

Problem 9.1. Let I be a directed set. Let I˚ “ IYt8u, equipped with the standard
topology as in Subsec. 9.3.1. Prove that the following are equivalent:

(1) I˚ is compact.

(2) For each α P I , the complement of I˚
ěα “ tβ P I

˚ : β ě αu is a finite set.

Note. Prop. 8.30 can make your proof shorter.

Problem 9.2. Let pfnq be a sequence of functions Rě0 Ñ R defined by fpxq “ x
1
n

(as in Exp. 9.25). Give a direct proof that pfnq is not equicontinuous at 0 using the
definition of equicontinuity. Do not use Cor. 9.23.

Problem 9.3. Give a direct proof of Cor. 9.21 without using Thm. 9.3 (and its
consequences) or using Thm. 9.28.

Problem 9.4. Give a direct proof of Cor. 9.26 without using Thm. 9.3 (and its
consequences) or using Thm. 9.28.

‹ Problem 9.5. Let pfαqαPI be a net in CpX,Rq. Assume that pfαqαPI is increasing,
i.e., fα ď fβ whenever α ď β. Assume that pfαqαPI converges pointwise to f P
CpX,Rq. Prove that for every x P X ,

lim
αPI
pÑx

fαppq “ fpxq (9.22)

in the sense of Prop. 9.16. Namely, prove that for every x P X and ε ą 0 there
exist β P I and U P NbhXpxq such that |fαppq´fpxq| ă ε for all α ě β and all p P U .

Note. Let gα “ f ´ fα. Then pgαqαPI is a decreasing net of continuous func-
tions converging pointwise to 0. It suffices to prove the easier statement that
lim

αPI,pÑx
gαppq “ 0 for every x P X . (Why is this sufficient?)

‹ Theorem 9.31. Let pfαqαPI be a net in CpX,Rq. Assume that pfαqαPI is increasing and
converges pointwise to f P CpX,Rq. The following statements are true.

1. If pfαqαPI is a sequence pfnqnPZ`
, then pfnqnPZ`

is equicontinuous.

2. (Dini’s theorem) If X is compact, then pfαqαPI converges uniformly to f .

Proof. By Pb. 9.5, pfαqαPI and f8 “ f satisfy (1’) of Prop. 9.16. Therefore, the two
statements follow directly from Thm. 9.12.
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Example 9.32. Let fn : p0, 1q Ñ R be fnpxq “ xn, where n P Z. Then pfnqnPZ is
a decreasing net of continuous functions converging pointwise to 0. Here, Z is
given the usual order “ď”. By Pb. 9.5, pfnq satisfies

lim
pn,pqÑp`8,xq

fnppq “ fpxq

for all x P p0, 1q. (So it satisfies condition (1) of Thm. 9.12.) However, pfnqnPZ is
neither equicontinuous (since supnPZ |fnppq ´ fnpxq| “ `8 whenever 0 ă p ă x ă
1) nor converging uniformly to 0 (since supxPp0,1q |fnpxq| “ 1 if n ą 0). Accordingly,
p0, 1q is not compact, and I˚ “ I Y t8Iu is not compact if I “ Z.

However, if we replace Z by Z`, then pfnqnPZ`
is equicontinuous by Exp. 9.8

(applied to any compact subinterval of p0, 1q), or by Thm. 9.31. But pfnqnPZ`
is still

not uniformly convergent.

Problem 9.6. Let X1, X2, . . . be a sequence of nonempty topological spaces. Let
S “

ś

nPN`
Xn, equipped with the product topology. Let f : S Ñ R be continuous.

Fix ppnqnPZ`
P S. For each n P Z`, define

φn : S Ñ S

px1, x2, . . . , xn´1, xn, xn`1, . . .q ÞÑ px1, x2, . . . , xn´1, pn, pn`1, . . .q

Prove for every x‚ “ pxnqnPZ`
that

lim
pn,y‚qPZ`ˆS

pn,y‚qÑp8,x‚q

f ˝ φnpy‚q “ fpx‚q

in the sense of Prop. 9.16. Conclude that pf ˝ φnqnPZ`
is equicontinuous, and that

if each Xn is compact then pf ˝ φnq converges uniformly to f . (Recall that in this
case S is compact by the countable Tychonoff theorem, cf. Pb. 8.7.)
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10 Extending continuous functions to the closures

10.1 Introduction

Let rX,Y be topological spaces, let X Ă rX , and let f : X Ñ Y be a continuous
map. The extension problem asks whether f can be extended to a continuous
map rf : rX Ñ Y . “Extended” means that rf |X “ f . Since we can try to first extend
f fromX to its closure Cl

rXpXq, and then from Cl
rXpXq to rX , the extension problem

can naturally be divided into two cases: (1) X is dense in rX . (2) X is closed in rX .
In this chapter, we study the first case. (The second case will be discussed in

Sec. 15.4.) Assume that X is dense in rX . Then by Prop. 7.63, we know that f can
have at most one extension if Y is Hausdorff. So there is essentially no uniqueness
issue.

The study of extension problem in this case has a long history. As we have seen
in Subsec. 7.6, the limits of functions can be understood in this light: If x P rXzX ,
then f can be extended to a continuous function on X Y txu iff limpÑx fppq exists.
Of course, this is simply a rephrasing of the definition of limpÑx fppq. But the idea
of “extending f to rX by first extending f to a slightly larger set with one extra
point txu” is helpful and can sometimes simplify proofs.

Indeed, recall that in the proof of Prop. 9.16 we used Thm. 9.17, which tells us
that if limpÑx fppq converges for all x P rXzX , then f can be extended (necessarily
uniquely) to a continuous rf : rX Ñ Y where Y is assumed metrizable. Thus, the
extensibility of f to rX can be checked pointwise. Thm. 9.17 is our first important
general result on the extension problem. Let me state Thm. 9.17 in the following
equivalent way, which is more convenient for the study of extension problems.

Corollary 10.1. Let f : X Ñ Y be a continuous map of topological spaces where Y
is metrizable and X is a dense subspace of a topological space rX . The following are
equivalent:

(1) There exists a continuous map rf : rX Ñ Y such that rf |X “ f .

(2) For each x P rXzX , the limit limpÑx fppq exists.

Proof. If (1) is true, then rf |XYtxu is continuous whenever x P rXzX . This proves
(2). Conversely, assume (2). Extend f to a map rf : rX Ñ Y by setting rfpxq “

limpÑx fppq if x P rXzX . Then rf is continuous by Thm. 9.17.

This chapter will focus on another useful method for extending continuous
functions in the setting of metric spaces. A main result (cf. Cor. 10.9) is that if rX,Y
are metric spaces and Y is complete, then a sufficient condition for the extensibil-
ity of f onto rX is that f is uniformly continuous. Moreover, uniform continuity
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is also a necessary condition if rX is compact. (Recall that compact metric spaces
are complete, cf. Thm. 3.23.) It is worth mentioning that the extensibility of f is a
purely topological question, whereas the uniform continuity of f depends on the
metric on rX .

10.2 Uniform continuity

Fix metric spaces rX,Y and a dense subset X Ă rX .

10.2.1 Basics

We first give some examples of f P CpX, Y q that cannot be extended to a con-
tinuous function on rX . Since uniform continuity is a sufficient condition for the
extensibility (when Y is complete), these examples are not uniformly continuous.
Recall our convention that subsets of R or RN are equipped with the Euclidean
metrics.

Example 10.2. Assume X “ p0,`8q, rX “ r0,`8q, Y “ R, and f : X Ñ Y is
defined by fpxq “ 1{x. Then limxÑ0 fpxq is `8 in R, and hence does not converge
in Y . So f cannot be extended onto rX .

Example 10.3. X “ p0, 1s, rX “ r0, 1s, Y “ R, f : X Ñ Y is defined by fpxq “
sinp1{xq. Then limnÑ8 fpxnq equals 0 if the sequence pxnq in X converging to 0 is
defined by xn “ 1{2nπ, and equals 1 if xn “ 1{p2n ` 1

2
qπ. Thus, by Rem. 7.85,

limxÑ0 fpxq does not exist in Y . So f cannot be extended onto rX .

Definition 10.4. A map f : X Ñ Y is called uniformly continuous if the follow-
ing equivalent conditions are satisfied:

(1) For every ε ą 0 there exists δ ą 0 such that for all x, x1 P X we have

dpx, x1
q ă δ ùñ dpfpxq, fpx1

qq ă ε (10.1a)

(2) For every nets pxαqαPI , px
1
αqαPI in X (with the same index set I) we have

lim
αPI

dpxα, x
1
αq “ 0 ùñ lim

αPI
dpfpxαq, fpx

1
αqq “ 0 (10.1b)

(3) For every sequences pxnqnPZ`
, px1

nqnPZ`
in X we have

lim
nÑ8

dpxn, x
1
nq “ 0 ùñ lim

nÑ8
dpfpxnq, fpx

1
nqq “ 0 (10.1c)

Uniformly continuous maps are clearly continuous. Def. 10.4-(2) says that uni-
formly continuous functions are those sending Cauchy-equivalent nets (cf. Def.
5.36) to Cauchy-equivalent nets.

163



Proof of equivalence. (1)ñ(2): Assume (1). Choose nets pxαqαPI , px
1
αqαPI in X .

Choose any ε ą 0. Choose δ ą 0 such that (10.1a) holds. If dpxα, x1
αq Ñ 0, then

dpxα, x
1
αq ă δ for sufficiently large α. So dpfpxαq, fpx1

αqq ă ε for sufficiently large
α. This proves (2).

(2)ñ(3): Obvious.
␣(1) ñ ␣(3): Assume that (1) is false. Then there exists ε ą 0 such that for all

δ ą 0 there exist x, x1 P X with dpx, x1q ă δ such that dpfpxq, fpx1qq ě ε. Thus, for
each n P Z`, there exist xn, x1

n P X such that dpxn, x1
nq ă 1{n and dpfpxnq, fpx

1
nqq ě

ε. The sequences pxnq, px1
nq imply that (10.1c) is false.

Corollary 10.5. Assume that f : X Ñ Y is uniformly continuous. Let pxαqαPI be a
Cauchy net in X . Then pfpxαqqαPI is a Cauchy net in Y .

Proof. Apply Def. 10.4-(2) to the nets pxαqpα,βqPI2 and pxβqpα,βqPI2 of X .

10.2.2 Extensibility of uniformly continuous functions

The following theorem can be viewed as the uniform continuity version of
Prop. 9.27. In particular, both results assume the completeness of the codomain.

Theorem 10.6. Let f : X Ñ Y be uniformly continuous, and assume that Y is complete.
Then there exists a (necessarily unique) uniformly continuous rf : rX Ñ Y satisfying
rf |X “ f .

Proof. Choose any x P rX . Since X is dense in rX , we can choose a sequence pxnq
in X converging to x in rX . In particular, pxnq is a Cauchy sequence. Therefore,
by Cor. 10.5, pfpxnqq is a Cauchy sequence in Y , which converges to some point
rfpxq P Y by the completeness of Y . If x P X , we assume that pxnq is the constant
sequence x. This shows that rfpxq “ fpxq if x P X .

We have constructed a function rf : rX Ñ Y satisfying rf |X “ f . Let us prove
that rf is uniformly continuous. Choose any ε ą 0. Since f is uniformly continu-
ous, there is δ ą 0 such that for all p, q P X we have

dpp, qq ă 2δ ùñ dpfppq, fpqqq ă ε{2

Choose any x, x1 P rX satisfying dpx, x1q ă δ. By our construction of rf , there are
sequences pxnq in X converging to x and px1

nq in X converging to x1 such that
fpxnq Ñ rfpxq and fpx1

nq Ñ
rfpx1q. Thus, there exist N P Z` such that for all n ě N

we have

dpx, xnq ă
δ

2
dpx1, x1

nq ă
δ

2
dp rfpxq, fpxnqq ă

ε

4
dp rfpx1

q, fpx1
nqq ă

ε

4

Choose n “ N . Then by triangle inequality, we have dpxn, x1
nq ă 2δ, and hence

dpfpxnq, fpx
1
nqq ă ε{2. So dp rfpxq, rfpx1qq ă ε by triangle inequality again.
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We now study the other direction. The following theorem implies that if a
continuous f : X Ñ Y can be extended to a continuous rf : rX Ñ Y , and if rX is
compact, then f is uniformly continuous.

Theorem 10.7. Suppose that f : X Ñ Y is continuous and X is compact. Then f is
uniformly continuous.

In the same spirit as in Sec. 8.2, we give two proofs for this theorem, one using
sequences and the other using open covers.

First proof. Assume that f is not uniformly continuous. By Def. 10.4-(3), there
exist sequences pxnq and px1

nq in X such that limnÑ8 dpxn, x
1
nq “ 0, and that

dpfpxnq, fpx
1
nqq Û 0. The latter means that there is ε ą 0 such that dpfpxnq, fpx1

nqq

is frequently ě ε. Thus, by passing to a subsequence, we may assume that
dpfpxnq, fpx

1
nqq ě ε for all n. Since X ˆ X is sequentially compact, by replac-

ing pxn, x1
nq with a convergent subsequence, we assume that xn Ñ x and x1

n Ñ x1

where x, x1 P X . Since dpxn, x1
nq Ñ 0, we must have x “ x1. By the continu-

ity of f , fpxnq and fpx1
nq converge to fpxq “ fpx1q, contradicting the fact that

dpfpxnq, fpx
1
nqq ě ε for all n.

To prove Thm. 10.7 using open covers, we prove a more general result instead.
The following theorem is useful for proving properties of the form “there exists
δ ą 0 such that for all x, x1 P X satisfying dpx, x1q ă δ, we have ...”.

Theorem 10.8 (Lebesgue number lemma). Assume that the metric space X is com-
pact. Let U Ă 2X be an open cover of X . Then there exists δ ą 0 satisfying the following
conditions:

• For every x P X there exists U P U such that BXpx, δq Ă U .

The number δ in Thm. 10.8 is called a Lebesgue number of U. In the following
proof, we follow the local-to-global strategy as in Sec. 8.2.

Proof. Choose any p P X . Then there is U P U containing p. So there is δp ą 0 such
that Bpp, 2δpq Ă U . Therefore, there exists Vp P NbhXppq such that for every x in
Vp we have Bpx, δpq Ă U . (Simply take Vp “ Bpp, δpq.) This solves the problem
locally: for each x P Vp, the ball Bpx, δpq is a subset of some member of U.

Since X “
Ť

pPX Vp and since X is compact, there is a finite subset E Ă X such
that X “

Ť

pPE Vp. Take δ “ mintδp : p P Eu. For each x P X , choose p P E such
that x P Vp. Then Bpx, δpq is a subset of some member of U by the last paragraph.
So the same is true for Bpx, δq.

Of course, similar to the examples studied in Sec. 8.2, Thm. 10.8 can also be
proved by contradiction and by using sequential compactness. See Pb. 10.2.
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Second proof of Thm. 10.7. Let us verify Def. 10.4-(1). Choose any ε ą 0. For each
x P X , the set Ux “ f´1pBY pfpxq, ε{2qq is a neighborhood of x by Prop. 7.60. So
tUx : x P Xu is an open cover of X . Let δ be a Lebesgue number of U. Choose
any x, y P X satisfying dpx, yq ă δ. Then BXpx, δq Ă Uz for some z P X . So
x, y P BXpx, δq and hence x, y P Uz. Therefore,

dpfpxq, fpyqq ď dpfpxq, fpzqq ` dpfpzq, fpyqq ă ε{2` ε{2 “ ε

Corollary 10.9. Choose f P CpX, Y q. Consider the following statements:

(1) f is uniformly continuous.

(2) There exists rf P Cp rX,Y q such that rf |X “ f .

Then (1)ñ(2) if Y is complete, and (2)ñ(1) if rX is compact.

Proof. Immediate from Thm. 10.6 and Thm. 10.7.

Example 10.10. Let D “ BCp0, 1q “ tz P C : |z| ă 1u and S1 “ tz P C : |z| “ 1u. Let
f : D Ñ Y be a continuous function where Y is a complete metric space. Then f
is uniformly continuous iff limwÑz fpwq exists for every z P S1.

Proof. By Cor. 10.1, the limit limwÑz fpwq exists for every z P S1 iff f can be ex-
tended to a continuous function rf : D “ D Y S1 Ñ Y . By Cor. 10.9, this is
equivalent to that f is uniformly continuous (because D is compact and Y is com-
pete).

10.2.3 Uniform equicontinuity

Although the notion of uniform equicontinuity will rarely be used in our
notes, it is used in many textbooks. So let me give a brief account of uniform
equicontinuity.

Definition 10.11. Let pfαqαPI be a family of functions X Ñ Y . (Here, the index set
I is not necessarily directed.) Define a metric d on Y I in a similar way as (7.19),
namely, if y,y1 P Y I then

dpy,y1
q “ min

!

1, sup
αPI

dY pypαq,y
1
pαqq

)

We say that pfαqαPI is uniformly equicontinuous if the map

X Ñ Y I x ÞÑ pfαpxqqαPI (10.2)

is uniformly continuous with respect to the metric d. Clearly, this is equivalent to
saying that:
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• For every ε ą 0 there exists δ ą 0 such that for every x, x1 P X satisfying
dpx, x

1q ă δ, we have

sup
αPI

dY pfαpxq, fαpx
1
qq ă ε

Uniformly equicontinuous families of functions are equicontinuous, because
uniformly continuous functions are continuous. Conversely, we have:

Proposition 10.12. Assume that X is compact and pfαqαPI is a family of functions X Ñ

Y . Then pfαqαPI is equicontinuous iff it is uniformly equicontinuous.

Proof. “ð” is obvious, as mentioned above. “ñ” follows immediately by apply-
ing Thm. 10.7 to the continuous map (10.2).

10.3 Completion of metric spaces

Fix a metric space X in this section. We are going to apply uniform continuity
to the study of completions of metric spaces. Roughly speaking, a completion of
X is a complete metric space pX containingX as a dense subspace. However, com-
pletions are not unique, but are unique “up to equivalence”. So we want to show
that two completions pX, rX of the same metric spaceX are equivalent. However, it
is confusing to view X as a subset of rX and rX simultaneously. A better approach
is to consider (automatically injective) isometries φ : X Ñ pX,ψ : X Ñ rX , and to
show that φ and ψ are equivalent using the language of commutative diagrams
(cf. Sec. 1.2).

Definition 10.13. A completion of the metric space X is an isometry φ : X Ñ pX

where pX is a complete metric space, and φpXq is dense in pX . We sometimes just
say that pX is a completion of X .

Thus, if A is a dense subset of a complete metric space B, then the inclusion
map A ãÑ B is a completion. Therefore, R is a completion of Q, and r0, 1s is a
completion of p0, 1q, r0, 1q, r0, 1s XQ.

Example 10.14. Let A be a dense subset of a metric space X . Suppose that φ :

X Ñ pX is a completion of X . Then φ|A : AÑ pX is clearly a completion of A.

Example 10.15. Let X be a subset of a complete metric space Y . Then X ãÑ

ClY pXq is a completion of X because every closed subset of Y is complete (cf.
Prop. 3.27), and hence ClY pXq is complete. For example, tpx, yq P R2 : x ě 0u is a
completion of both A “ tpx, yq P R2 : x ą 0u and B “ AXQ2.

We want to prove that every metric space X has a completion pX . First, we
need a lemma, which can be viewed as analogous to Pb. 8.9.
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Lemma 10.16. Suppose that X is a dense subspace of a metric space pX . Suppose that
every Cauchy sequence in X converges to an element of pX . Then pX is complete.

Proof. Let pxnq be a Cauchy sequence in pX . Since X is dense, there exists x1
n P X

such that dpxn, x1
nq ă 1{n. So px1

nq is Cauchy-equivalent to pxnq. Thus px1
nq is a

Cauchy sequence by Exe. 5.37. By assumption, px1
nq converges to some x P X . So

px1
nq also converges to x by Exe. 5.37.

Theorem 10.17. Every metric space X has a completion φ : X Ñ pX . Moreover, any
completion ψ : X Ñ rX is equivalent (also called isomorphic) to φ in the sense that
there is an isometric isomorphism of metric spaces Φ : pX Ñ rX such that the following
diagram commutes:

X

pX rX

φ ψ

Φ
»

(10.3)

Recall that the commutativity of (10.3) means that ψ “ Φ ˝ φ.

Proof of existence. The construction of φ : X Ñ pX is similar to the construction
of R from Q in Ch. 6. Let C be the set of Cauchy sequences in X . Let pX “ C { „
be the quotient set (cf. Def. 1.18) where „ is the Cauchy-equivalence relation:
pxnq „ pynq iff limnÑ8 dpxn, ynq “ 0. We let rxnsnPZ`

or simply let rxns denote the
equivalence class of pxnq in pX . The map φ is defined by

φ : X Ñ pX x ÞÑ rxsnPZ`

where rxsnPZ`
is the equivalence class of the constant sequence px, x, . . . q.

Step 1: Let us define a metric d
pX on pX . Note that if pxnq, pynq P C , then by

triangle inequality,

|dpxm, ymq ´ dpxn, ynq| ď dpxm, xnq ` dpym, ynq

where the RHS converges to 0 as m,n Ñ `8. Therefore, the LHS also converges
to 0. This shows that pdpxn, ynqqnPZ`

is a Cauchy sequence in Rě0, and hence con-
verges. Therefore, we define

d
pX : pX ˆ pX Ñ Rě0

d
pXprxns, rynsq “ lim

nÑ8
dpxn, ynq

This is well-defined: If rxns “ rx1
ns, and ryns “ ry1

ns, then

|dpxn, ynq ´ dpx
1
n, y

1
nq| ď dpxn, x

1
nq ` dpyn, y

1
nq
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which converge to 0 as n Ñ 8. So pdpx1
n, y

1
nqqnPZ`

and pdpxn, ynqqnPZ`
are Cauchy-

equivalent, and hence converge to the same number.
Clearly d

pXprxns, rynsq “ 0 iff pxnq „ pynq iff rxns “ ryns. And clearly
d
pXprxns, rynsq “ d

pXpryns, rxnsq. If rxns, ryns, rzns are in C , applying limnÑ8 to

dpxn, znq ď dpxn, ynq ` dpyn, znq

yields d
pXprxns, rznsq ď d

pXprxns, rynsq ` d pXpryns, rznsq. So d
pX is a metric.

Step 2. The map φ : X Ñ pX is clearly an isometry. Let us show that it has
dense range. Choose any rxnsnPZ`

P pX . We shall show that φpxkq “ rxk, xk, . . . s
approaches rxnsnPZ`

as k Ñ 8.
For each k, we have

d
pXpφpxkq, rxnsnPZ`

q “ lim
nÑ8

dpxk, xnq (10.4)

where the RHS converges because d
pX is defined. Since pxnqnPZ`

is a Cauchy se-
quence in X , we have

lim
k,nÑ8

dpxk, xnq “ 0 (10.5)

Therefore, by (10.5) and the convergence of the RHS of (10.4), we can use Thm.
5.29 to conclude that

lim
kÑ8

d
pXpφpxkq, rxnsnPZ`

q “ lim
kÑ8

lim
nÑ8

dpxk, xnq “ lim
k,nÑ8

dpxk, xnq “ 0

Step 3. It remains to prove that pX is complete. By Lem. 10.16 (applied to
φpXq Ă pX) and the fact that φ is an isometry, it suffices to prove that for every
Cauchy sequence pxkqkPZ`

in X , the sequence pφpxkqqkPZ`
converges in pX . But this

is true: we have shown in Step 2 that pφpxkqqkPZ`
converges to rxnsnPZ`

.

Proof of equivalence. Suppose that ψ : X Ñ rX is another completion. The map

Φ : φpXq Ñ ψpXq φpxq ÞÑ ψpxq

is well-defined since φ is injective. Moreover, Φ is an isometry since φ and ψ are
isometries. In particular, Φ is uniformly continuous. Therefore, by Cor. 10.9, Φ
can be extended to a uniformly continuous map Φ : pX Ñ rX . Clearly ψ “ Φ ˝ φ.
The continuous map

pX ˆ pX Ñ R
pp, qq ÞÑ d

rXpΦppq,Φpqqq ´ d pXpp, qq

is zero on the dense subset φpXq ˆ φpXq of its domain. Therefore it is constantly
zero by Prop. 7.63. This proves that Φ is an isometry.
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It remains to prove that Φ is surjective. Since pX is complete and Φ restricts to
an isometric isomorphism of metric spaces pX Ñ Φp pXq, Φp pXq is a complete metric
subspace of pX . Thus, by Prop. 3.27, Φp pXq is a closed subset of rX . But Φp pXq is
dense in rX since it contains ψpXq. Therefore Φp pXq “ rX .

The proof of Thm. 10.17 is complete.

10.4 Why did Hausdorff believe in completion?

Thm. 10.17, the existence and uniqueness of completion of an arbitrary metric
space, was proved by Hausdorff in his 1914 work introducing Hausdorff topolog-
ical spaces [Hau14, Sec. 8.8, p.315]. The construction of completion using equiva-
lence classes of Cauchy sequences is quite abstract: Although it mimics Cantor’s
construction of real numbers (cf. Ch. 6), its main application is not in the realm
of finite-dimensional geometric objects, but in the world of function spaces. But
what is the practical significance of the equivalence classes of Cauchy sequences
of functions? In concrete analysis problems about functions, these objects are
much more difficult to deal with than functions themselves.

Strangely enough, the only nontrivial examples we have now is Q ãÑ R. Be-
sides this, we do not yet have any exciting new metric spaces arising from com-
pletion. For example: we know that r0, 1s is the completion of p0, 1q under the
Euclidean metric, and that Cpr0, 1s,Rq is the completion of the set of real polyno-
mials Rrxs under the norm supxPr0,1s |fpxq|. (The density of the set of polynomials
in Cpr0, 1s,Rq is due to Weierstrass.) But r0, 1s and Cpr0, 1s,Rq are examples we
are already familiar with.

Mathematicians do not generalize just for the sake of generalization. They
want to solve problems by generalizing old concepts to a broader context. More-
over, mathematicians do not randomly choose a way of generalization and then
build a huge theory. Instead, they develop a theory only in the direction that has
already proved useful in solving explicit problems. Thus, Hausdorff proved Thm.
10.17 because he was already convinced of the importance of abstract completion
by certain powerful examples. For the moment, we are not ready to study these
examples rigorously. (We will do this in the next semester.) But I want to give an
informal introduction to one of these examples which historically has paved the
way for many important ideas in analysis.

10.4.1 The Fourier series method in integral equations

In the years of 1900-1907, many important progress has been made in inte-
gral equations, which originated from the study of Dirichlet problems (finding
solutions of harmonic equation ∆φpx, yq “ 0 with given boundary condition,
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where ∆ “ pBxq
2 ` pByq

2). For example, one asks if there is λ P R and a single-
variable complex valued function f : r0, 2πs Ñ C satisfying the eigenvalue prob-
lem Tf “ λf where

pTfqpxq “

ż 2π

0

Kpx, yqfpyqdx

and K : r0, 2πs2 Ñ R is given. (Cf. also Sec. 2.1.)
Hilbert studied this problem using Fourier series. In the modern language, the

theory of Fourier series claims that Cpr0, 2πs,Cq, under the L2-norm

}f}L2 “

d

ż 2π

0

|fpxq|2 ¨
dx

2π
(10.6)

has a completion

Φ : Cpr0, 2πs,Cq Ñ l2pZ,Cq

Φpfq “ pf
(10.7)

where l2pZ,Cq is the space of all g : ZÑ C satisfying
a

ř

nPZ |gpnq|
2 ă `8, and

pf : ZÑ C pfpnq “

ż 2π

0

fpxqe´inx
¨
dx

2π

gives the Fourier coefficients of f . See Cor. 20.42.
Hilbert studied the eigenvalue problem Tf “ λf by transforming it into a

linear algebra problem on l2pZ,Cq (so that T becomes an 8 ˆ 8 discrete matrix
pT ), finding the possible eigenvectors pf and eigenvalues λ satisfying

pT pf “ λ pf

and returning to the original problems by finding the function f whose Fourier
coefficents are pf . It is easy to return: if f P Cpr0, 2πs,Cq, then one gets f from pf by
the formula

fpxq “
ÿ

nPZ

pfpnqeinx (10.8)

where the RHS is called the Fourier series of f .
Here comes the crucial point: the range of Φ, namely t pf : f P Cpr0, 1s,Cqu,

is not the whole space l2pZ,Cq but only its dense subspace. This remains true if
we enlarge Cpr0, 1s,Cq to the space of Riemann integrable functions Rpr0, 1s,Cq.
However, the eigenvectors of pT found by Hilbert were only known to be elements
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of l2pZ,Cq. If we use (10.8) to find the eigenvectors of the original T , namely, if for
an arbitrary g P l2pZ,Cqwe write

Ψpgq “
ÿ

nPZ

gpnqeinx (10.9)

then Ψpgq is not necessarily continuous or even Riemann integrable. It seems that,
in the light of the proof of Thm. 10.17, the only way to make sense of (10.9) is as
follows:

• One views Ψpgq as the Cauchy-equivalence class of the Cauchy sequence
psnqnPZ`

in Cpr0, 2πs,Cq under the L2-norm, where snpxq “
řn
k“´n gpkqe

ikx.

But how can we understand Ψpgq as an actual function on r0, 2πs solving the eigen-
value problem TΨpgq “ λΨpgq?

Therefore, (10.7) and (10.9) are the very first example of abstract completion,
and also one of the most important examples motivating Hausdorff’s study of
completion in general.

10.4.2 Riesz-Fischer theorem

Hilbert established these results by 1906, the same year Fréchet defined metric
spaces. The story was finished by Riesz and Fischer, who proved in 1907 that Ψpgq
can actually be represented by a Lebesgue measurable f : r0, 2πs Ñ C satisfying
}f}L2 ă `8, where the norm }f}L2 is defined by (10.6) using Lebesgue integral
instead of Riemann integral. Let L2pr0, 2πs,Cq denote the space of all such func-
tions, and view Cpr0, 2πs,Cq as its subspace. Then using the language of Thm.
10.17, we have a commutative diagram

Cpr0, 2πs,Cq

l2pZ,Cq L2pr0, 2πs,Cq

Φ ι

»

Ψ

(10.10)

where ι is the inclusion map. Thus:

• The abstract completion Φ : Cpr0, 2πs,Cq Ñ l2pZ,Cq is equivalent to the
concrete completion Cpr0, 2πs,Cq Ă L2pr0, 2πs,Cq, where “concrete” means
that it is function-theoretic.

This equivalence of abstract and concrete completions, connecting Hilbert’s alge-
braic approach to integral equations and Lebesgue’s function-theoretic approach
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to measure theory, is the original form of Riesz-Fischer theorem (proved in
1907),1 one of the most significant theorems in early 20th century.

Thanks to Riesz-Fischer theorem, people were convinced that abstract com-
pletions of function spaces could deepen one’s understanding of analysis in much
the same way that Lebesgue’s measure theory broadened one’s understanding of
functions by harmonizing with Hilbert’s l2 theory. So what is the hesitation in
trying to prove an abstract theorem like Thm. 10.17?

Hausdorff proved the existence and uniqueness of completion in general, but
it was Riesz-Fischer theorem that proved the value of abstract completion.

10.5 Completion of normed vector spaces

Fix a normed vector space V over F P tR,Cu.

Definition 10.18. A completion of the normed vector space V (or a Banach space
completion of V ) is a linear isomertry φ : V Ñ pV such that pV is a Banach space,
and φpV q is dense in pV .

Thus, if φ : V Ñ pV is a completion, then V is isomorphic to φpV q as normed
vector spaces, and hence can be viewed as equivalently a dense normed subspace
of pV .

Theorem 10.19. Every normed vector space V has a completion φ : V Ñ pV . Morevoer,
every completion ψ : V Ñ rV is isomorphic to φ in the sense that there is an isomorphism
of Banach spaces (cf. Def. 9.2) Φ : pV Ñ rV such that the following diagram commutes:

V

pV rV

φ ψ

Φ
»

(10.11)

Proof of existence. By Thm. 10.17, we have a completion φ : V Ñ pV in the context
of metric spaces. So pV is a completion of metric space with metric d

pV , and φ is
an isometry of metric spaces with dense range. We need to show that pV is a
complete normed vector space, and that φ is linear with dense range. Indeed, we
shall identify V with φppV q via φ so that V is the metric subspace of pV . We shall
extend the structure of normed vector space from V to pV . In the following, the

1More precisely, the original form of Riesz-Fischer theorem says that the Ψ in (10.10) (whose
explicit description is as in (10.9)) is an isometric isomorphism. As a consequence, the space L2

is complete, because it is fairly easy to show that l2 is complete. However, most modern analysis
textbooks present Riesz-Fischer theorem in the following simple form: “L2 is a complete metric
space”.
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convergence in pV and the continuity of the maps about pV are understood using
the metric d

pV .
The map

` : V ˆ V Ñ V pu, vq ÞÑ u` v

is Lipschitz continuous, and hence uniformly continuous. Therefore, by Cor. 10.9,
it can be extended (uniquely) to a continuous map ` : pV ˆ pV Ñ pV . Similarly, if
λ P F, the Lipschitz continuous map

V Ñ V v ÞÑ λ ¨ v

can be extended to a continuous map pV Ñ pV . Thus, we have defined the addition
` and the scalar multiplication ¨ for pV . Similarly, the map

} ¨ } : V Ñ Rě0 v ÞÑ }v}

is uniformly continuous and hence can be extended to a map pV Ñ Rě0.
We want to show that the above addition, scalar multiplication, and norm

function make pV a normed vector space. For example, suppose that λ P F. We
want to prove that λpu ` vq “ λu ` λv for all u, v P pV , and we know that this is
true when u, v P V . Indeed, since V ˆV is dense in pV ˆ pV , and since the following
two continuous maps

pu, vq P pV ˆ pV ÞÑ λpu` vq P pV

pu, vq P pV ˆ pV ÞÑ λu` λv P pV

are equal on V ˆ V , these two maps are the same by Prop. 7.63. The same argu-
ment proves that pV is a vector space.

Since the following continuous map

φ : pu, vq P pV ˆ pV ÞÑ }u} ` }v} ´ }u` v} P R

satisfies φpV ˆ V q Ă Rě0, by φppV ˆ pV q Ă φpV ˆ V q (due to Prop. 7.63 again), we
conclude that φppV ˆ pV q Ă Rě0. So }u ` v} ď }u} ` }v} for all u, v P pV . A similar
argument shows }λv} “ |λ| ¨ }v}.

Since the metric on V is induced by the norm of V , the map

pV ˆ pV Ñ R pu, vq ÞÑ d
pV pu, vq ´ }u´ v}

is zero on the dense subset V ˆ V of pV ˆ pV . Since this map is continuous, it is
constantly zero. In particular, if v P pV satisfies }v} “ 0, then d

pV pv, 0q “ 0, and
hence v “ 0. So } ¨ } is a norm on pV , and the complete metric d

pV on pV (arising
from the metric-space-completion of V ) is defined by this norm. So this norm is
complete. Therefore, pV is a Banach space. Since V is dense in pV under d

pV , V is
dense in pV under the norm of pV .
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Proof of uniqueness. By Thm. 10.17, there is a unique isometric isomorphism of
metric spaces Φ : pV Ñ rV such that ψ “ Φ ˝ φ. Since φ and ψ are linear injections,
Φ is a linear isomorphism when restricted to φpV q Ñ ψpV q. Since Φ is continu-
ous and φpV q is dense in pV , we conclude that Φ is linear thanks to the following
property.

Proposition 10.20. Let T : V Ñ W be a continuous map of normed vector spaces.
Assume that V0 is a dense linear subspace of V . Assume that T |V0 : V0 Ñ W is linear.
Then T is linear.

Proof. This is same as the proof of the existence part of Thm. 10.19. Choose any
α, β P F. Then the following continuous map

pu, vq P V ˆ V ÞÑ T pαu` βvq ´ pαT puq ` βT pvqq

is zero on the dense subset V0 ˆ V0. So it is zero on V ˆ V .

Exercise 10.21. Let V and W be normed vector spaces over F, where F “ R (resp.
F “ C). Let T : V Ñ W be a continuous map. Assume that V0 is a dense K-linear
subspace of V , where K “ Q (resp. K “ Q ` iQ). Assume that the restriction
T |V0 : V0 Ñ W is K-linear. Prove that T : V Ñ W is F-linear.

Remark 10.22. So far in this course, we have proved a lot of results about func-
tions whose codomains are normed vector spaces. Some results assume that these
spaces are Banach (i.e. complete), some do not. Thanks to Thm. 10.19, we can
assume that all these results are stated only for Banach spaces, and then check
whether they also hold for normed vector spaces in general (which is not diffi-
cult). This will make us easier to remember theorems.

For example, suppose that we know that Thm. 7.79 holds only for Banach
spaces: Namely, suppose we know that for any Banach space V and topological
space X , if pfαq is a net in CpX, V q converging uniformly to f : X Ñ V , then f is
continuous. Then we know that this result also holds when V is a normed vector
space. To see this, consider the completion V Ă pV . Then pfαq is a net of continuous
functionsX Ñ pV converging uniformly to some f : X Ñ pV (satisfying fpXq Ă V ).
Then f : X Ñ pV is continuous. Hence f : X Ñ V is continuous.

Consider Prop. 9.27 as another example. It tells us that if V is a Banach space
and pfαq is a net in CpX, V q converging uniformly on a dense subset E Ă X , then
pfαq converges uniformly on X . Now assume that V is only a normed vector
space, and take completion V Ă pV . Then pfαq is a net in CpX, pV q converges uni-
formly on E to a function E Ñ V . Thus, by Prop. 9.27, it converges uniformly to
a function f : X Ñ pV . Although we know fpEq Ă V by assumption, we do not
know whether fpXq Ă V . So we cannot prove the normed vector space version
of Prop. 9.27.
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10.6 Bounded linear maps

In this section, we consider normed vector spaces over a given field F P tR,Cu.
We have seen that uniform continuity is crucial to the construction of addition

and scalar multiplication in Thm. 10.19. Indeed, uniform continuity is ubiquitous
in the world of normed vector spaces: We shall see that every continuous linear
map of normed vector spaces is uniformly continuous.

Definition 10.23. Let T : V Ñ W be a linear map of normed vector spaces. The
operator norm }T } is defined to be

}T }
def
ùùù sup

vPBV p0,1q

}Tv} (10.12)

Remark 10.24. }T } is the smallest number in Rě0 satisfying

}Tv} ď }T } ¨ }v} p@v P V q (10.13)

Proof. (10.13) is clearly true when v “ 0. Assume v ‰ 0. Since v{}v} P BV p0, 1q, we
have }T pv{}v}q} ď }T }. This proves (10.13).

Now suppose that C P Rě0 satisfies that }Tv} ď C}v} for all v. Then for each
v P BV p0, 1qwe have }Tv} ď C. So }T } ď C.

Proposition 10.25. Let T : V Ñ W be a linear map of normed vector spaces. Then the
following are equivalent:

(1) T is Lipschitz continuous.

(2) T is continuous.

(3) T is continuous at 0.

(4) }T } ă `8.

Moreover, if one of these conditions holds, then T has Lipschitz constant }T }.

Proof. Clearly (1)ñ(2) and (2)ñ(3). Suppose (3) is true. Note that T0 “ 0. So
there is δ ą 0 such that Tv P BW p0, 1q for all v P BV p0, δq. Namely, for all v P V
satisfying }v} ď δ we have }Tv} “ }Tv ´ T0} ď 1. Thus, if }v} ď 1, then }δv} ď δ.
So

}Tv} “ δ´1
}T pδvq} ď δ´1

This proves }T } ď δ´1. So (4) is proved.
Assume (4). By Rem. 10.24, for each u, v P V we have

}Tu´ Tv} “ }T pu´ vq} ď }T } ¨ }u´ v}

This proves that T has Lipschitz constant }T }.
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Due to Prop. 10.25-(4), we make the following definition:

Definition 10.26. Let V,W be normed vector spaces over F. We call T : V Ñ W
to be a bounded linear map if T is a continuous linear map. We write

LpV,W q “ tbounded linear maps V Ñ W u LpV q “ LpV, V q (10.14)

Thus, the word “bounded” means that the linear map T is bounded on
BV p0, 1q, but not that T is bounded on V .

Proposition 10.27. LpV,W q is a linear subspace of W V , and the operator norm } ¨ } is a
norm on LpV,W q.

Proof. By Rem. 10.24, for each linear S, T : V Ñ W and λ P F, and for each v P V
we have

}pS ` T qv} ď }Sv} ` }Tv} ď p}S} ` }T }q}v}

}λTv} “ |λ| ¨ }Tv} ď |λ| ¨ }T } ¨ }v}

Thus, by Rem. 10.24 again, we have

}S ` T } ď }S} ` }T } }λT } ď |λ| ¨ }T } (10.15)

The proposition now follows easily from the above inequalities. (Notice Rem.
3.34)

Since Lipschitz continuous functions are uniformly continuous, we have:

Proposition 10.28. Let V0 be a dense linear subspace of a normed vector space V . Let W
be a Banach space. Let T0 : V0 Ñ W be a bounded linear map. Then there is a unique
bounded linear map T : V Ñ W such that T |V0 “ T0.

Proof. Uniqueness is clear from the density of V0. By Prop. 10.25, T0 is uniformly
continuous. Therefore, by Cor. 10.9, T0 can be extended to a continuous map
T : V Ñ W , which is linear by Prop. 10.20.

10.7 Problems and supplementary material

Problem 10.1. Give a direct proof of Thm. 10.7 using open covers instead of using
subsequences. Do not use Lebesgue numbers.

The following Pb. 10.2 gives another proof that sequentially compact metric
spaces are compact. Therefore, do not use this fact in your solution of Pb. 10.2.

‹ Problem 10.2. Let X be a sequentially compact metric space. Let U Ă 2X be an
open cover of X .
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1. Prove that U has a Lebesgue number. Namely, prove that there exists δ ą 0
such that for every x P X there is U P U satisfying BXpx, δq Ă U .

2. In our proof that X is separable (cf. Thm. 8.34), we showed that for every
δ ą 0 there exists a finite set E Ă X such that dpx,Eq ă δ for all x P X . Use
this fact and Part 1 to prove that U has a finite subcover.

Definition 10.29. Two norms } ¨ }1 and } ¨ }2 on a vector space V over R or C are
called equivalent if there exist α, β ą 0 such that for all v P V we have

}v}1 ď α}v}2 }v}2 ď β}v}1

Clearly, two equivalent norms induce equivalent metrics, and hence induce the
same topology.

Problem 10.3. Let F P tR,Cu. Let } ¨ } be the Euclidean norm on Fn. Let ν : Fn Ñ
Rě0 be a norm on Fn.

1. Prove that there exists α ą 0 such that νpxq ď α}x} for all x P Fn. In particu-
lar, show that ν is continuous (under the Euclidean topology).

2. Let β “ inftνpxq : x P Fn, }x} ď 1u. Prove that β ą 0. Prove that }x} ď
β´1 ¨ νpxq for all x P Fn.

The above problem proves

Theorem 10.30. Let F P tR,Cu. Then any norm on Fn is equivalent to the Euclidean
norm. In particular, the operator norm on Fmˆn (if we view anmˆnmatrix as an element
of LpFn,Fmq) is equivalent to the Euclidean norm.
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11 Derivatives

11.1 Basic properties of derivatives

Fix a Banach space V over F P tR,Cu. Let Ω be a nonempty open subset of C.
The following assumption will be often considered:

Definition 11.1. Let f : ra, bs Ñ V (where ´8 ă a ă b ă `8) be a map with
variable t, and let x P ra, bs. The derivative of f at x is

f 1
pxq ”

df

dt
pxq

def
ùùù lim

tPra,bsztxu
tÑx

fptq ´ fpxq

t´ x
“ lim

hPra´x,b´xszt0u

hÑ0

fpx` hq ´ fpxq

h

provided that the limits converge. In other words (cf. Def. 7.81),

• f 1pxq converges to v P V iff for every ε ą 0 there exists δ ą 0 such that for
every t P ra, bs satisfying 0 ă |t´ x| ă δ we have

›

›

›

fptq ´ fpxq

t´ x
´ v

›

›

›
ă ε

If f 1pxq exists for some x, we say that f is differentiable at x. If f 1pxq exists
for every x P ra, bs, we say that f is a differentiable function and view f 1 as a
function ra, bs Ñ V .

Derivatives on intervals ra, bq, pa, bs, pa, bq are understood in a similar way.

Definition 11.2. Let E be a subset of Rn. Let f : E Ñ V be a function
with variables t1, . . . , tn, and x “ px1, . . . , xnq P E. Let 1 ď i ď n. Sup-
pose that there are a, b satisfying ´8 ă a ă xi ă b ă `8 such that
px1, . . . , xi´1, t, xi`1, . . . , xnq belongs to E for all t P ra, bs. The derivative of the
function ti ÞÑ fppx1, . . . , xi´1, ti, xi`1, . . . , xnq at t “ xi is denoted by

Bf

Bti
pxq ” Bifpxq

and called the partial derivative of f at x with respect to the variable ti.

Definition 11.3. If V is over C, and if f : Ω Ñ V and z P Ω, we define the
derivative of f at z to be

f 1
pzq “ lim

wPΩztzu
wÑz

fpwq ´ fpzq

w ´ z

provided that the RHS exists, and simply write it as

lim
wÑz

fpwq ´ fpzq

w ´ z
“ lim

ζÑ0

fpz ` ζq ´ fpzq

ζ
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Convention 11.4. Unless otherwise stated, when talking about derivatives of a
function defined on an interval I , we always assume that I is inside R and has
at least two points. When talking about derivatives of a function f : Ω Ñ V , we
always assume that V is over C.

Definition 11.5. Given a function f : E Ñ V where E is an interval in R with
at least two points or E “ Ω, if n P N and x P E, we define the nnn-th derivative
f pnqpxq inductively by f p0q “ f and f pnqpxq “ pf pn´1qq1pxq if f pn´1q exists on some
neighborhood of x with respect to E. f2, f3, f4, . . . mean f p2q, f p3q, f p4q, . . . .

The n-th partial derivative on the i-th variable is written as Bni f .

It is desirable to use sequences or nets to study derivatives. For that purpose,
the following lemma is useful:

Lemma 11.6. Let E be an interval in R with at least two elements, or let E “ Ω. Let
z P E. Let f : E Ñ V . Let v P V . The following are equivalent.

(1) We have f 1pzq “ v.

(2) For any sequence pznqnPZ`
in Eztzu converging to z, we have lim

nÑ8

fpznq ´ fpzq

zn ´ z
“

v.

(3) For any net pzαqαPI inE converging to z, we have lim
αPI

φpzαq “ v, where φ : E Ñ V

is defined by

φpwq “

$

&

%

fpwq ´ fpzq

w ´ z
if w ‰ z

v if w “ z

(11.1)

Proof. The equivalence of (1)ô(2) is due to Def. 7.81-(3m). Also, by Def. 7.81-(1),
that f 1pzq “ v is equivalent to that the function φ in (11.1) is continuous at z. So it
is equivalent (3) by Def. 7.56-(1).

Proposition 11.7. Let E be an interval in R or E “ Ω. If f : E Ñ V is differentiable at
z P E, then f is continuous at z.

Proof. We consider the case f : Ω Ñ V ; the other case is similar. Choose any
sequence pznq in Ωztzu converging to z. By Lem. 11.6, we have limn

fpznq´fpzq

zn´z
“ v.

Since limnpzn ´ zq “ 0, by the continuity of scalar multiplication (Prop. 3.38), we
have

lim
nÑ8

fpznq ´ fpzq “ 0 ¨ v “ 0

Thus, by Def. 7.81-(3m), we obtain limw‰z,wÑz fpwq “ fpzq, which means by Def.
7.81-(1) that f is continuous at z.
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Proposition 11.8. Let E be an interval in R or E “ Ω, and x P E. Suppose that f, g are
functions E Ñ V such that f 1pxq and g1pxq exist. Then pf ` gq1pxq exists, and

pf ` gq1pxq “ f 1
pxq ` g1

pxq (11.2a)

If λ is a function E Ñ F such that λ1pxq exists, then pλfq1pxq exists and satisfies the
Leibniz rule

pλfq1pxq “ λ1
pxqfpxq ` λpxqf 1

pxq (11.2b)

Assume moreover that λ does not have value 0. Then
´1

λ
¨ f

¯1

pxq “
´λ1pxqfpxq ` λpxqf 1pxq

λpxq2
(11.2c)

Proof. The first formula is easy. To compute the second one, we choose any se-
quence pxnq in ra, bsztxu or Ωztxu converging to x. Then

λpxnqfpxnq ´ λpxqfpxq

xn ´ x
“
pλpxnq ´ λpxqq

xn ´ x
¨ fpxnq ` λpxq

pfpxnq ´ fpxqq

xn ´ x

which, by Lem. 11.6 and Prop. 3.38 and the continuity of f at x (Prop. 11.7),
converges to the RHS of (11.2b). This proves (11.2b), thanks to Lem. 11.6.

The third formula will follow from the second one if we can prove that 1{λ has
derivative ´ λ1pxq

λpxq2
at x. This is not hard: Choose any sequence xn Ñ x but xn ‰ x.

Then
´ 1

λpxnq
´

1

λpxq

¯M

pxn ´ xq “ ´
λpxnq ´ λpxq

xn ´ x
¨

1

λpxnqλpxq

converges to ´λ1pxq ¨ 1
λpxq2

as n Ñ 8. Here, we have used the continuity of λ at x
and Prop. 3.38 again.

Example 11.9. The derivative of a constant function is 0. Thus, by Leibniz rule, if
λ is a scalar, and if f 1pzq exists, then pλfq1pzq “ λ ¨ f 1pzq.

Example 11.10. The identity map f : z P C ÞÑ z P C has derivative limwÑz
w´z
w´z

“ 1.
Thus, by induction and Prop. 11.8, we have pznq1 “ nzn´1 if n P Z`. If ´n P Z`,
then when z ‰ 0 we have

pznq1 “ p1{z´n
q

1
“ ´

pz´nq1

z´2n
“ ´

´nz´n´1

z´2n
“ nzn´1

We conclude that pznq1 “ nzn´1 whenever n P N, or whenever n “ ´1,´2, . . . and
z ‰ 0. The same conclusion holds for the real variable function xn.
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Example 11.11. Let f : z P C ÞÑ z P C. We claim that for every z P C, the limit

f 1
pzq “ lim

wÑz

w ´ z

w ´ z
“ lim

hÑ0
h{h (11.3)

does not exist with the help of Rem. 7.85: Take hn “ 1{n. Then hn Ñ 0 and
hn{hn “ 1 Ñ 1 as n Ñ 8. Take hn “ i{n. Then hn Ñ 0 and hn{hn “ ´i{i “ ´1 Ñ
´1 as nÑ 8. So f 1pzq does not exist.

Theorem 11.12 (Chain rule). Let Ω,Γ be nonempty open subsets of C. Assume that
f : Ω Ñ Γ is differentiable at z P Ω, and that g : Γ Ñ V is differentiable at fpzq. Then
g ˝ f is differentiable at z, and

pg ˝ fq1pzq “ g1
pfpzqq ¨ f 1

pzq (11.4)

The same conclusion holds if Ω is replaced by an interval in R, or if both Ω and Γ are
replaced by intervals in R.

Recall Conv. 11.4 for the assumption on the field F.

Proof. Define a function A : ΓÑ C by

Apζq “

$

&

%

gpζq ´ g ˝ fpzq

ζ ´ fpzq
if ζ ‰ fpzq

g1
pfpzqq if ζ “ fpzq

(11.5)

Choose any sequence pznq in Ωztzu converging to z. Then

g ˝ fpznq ´ g ˝ fpzq

zn ´ z
“ Apfpznqq ¨

fpznq ´ fpzq

zn ´ z

By Prop. 11.7, f is continuous at z. So limn fpznq “ fpzq. Thus, by Lem. 11.6-(3),
the above expression converges to g1pfpzqqf 1pzq as nÑ 8.

Proposition 11.13. Let Ω,Γ be nonempty open subsets of C. Let f : ΩÑ Γ be a bijection.
Let z P Ω. Suppose that f 1pzq exists and f 1pzq ‰ 0. Suppose also that f´1 : Γ Ñ Ω is
continuous at fpzq. Then f´1 is differentiable at fpzq, and

pf´1
q

1
pfpzqq “

1

f 1pzq
(11.6)

The same conclusion holds if Ω and Γ are replaced by intervals of R.

Proof. Choose any sequence pwnq in Γztfpzqu converging to fpzq. Then, as nÑ 8,
we have f´1pwnq Ñ f´1pfpzqq “ z since f´1 is continuous at fpzq, and hence

f´1pwnq ´ f
´1pfpzqq

wn ´ fpzq
“

f´1pwnq ´ z

fpf´1pwnqq ´ fpzq
(11.7)

converges to 1{f 1pzq by Lem. 11.6 and the continuity of the map ζ P Cˆ ÞÑ 1{ζ P C.
This proves pf´1q1pfpzqq “ 1{f 1pzq, thanks to Lem. 11.6.
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11.2 Rolle’s and Lagrange’s mean value theorems (MVT)

Fix a Banach space V over F P tR,Cu. Assume ´8 ă a ă b ă `8.

11.2.1 MVTs

Definition 11.14. Let f : X Ñ R where X is a topological space. We say that
f has a local maximum (resp. local minimum) at x P X , if there exists U P

NbhXpxq such that f |U attains its maximum (resp. minimum) at x. The word
“local extremum” refers to either local maximum or local minimum.

You must know that derivatives can be used to find the monotonicity of real-
valued real variable functions. Here is the precise statement:

Proposition 11.15. Assume that f : ra, bs Ñ R is differentiable at x P ra, bs, and
f 1pxq ą 0. Then there exists δ ą 0 such that for any y P px´ δ, x` δq X ra, bs, we have

y ą xñ fpyq ą fpxq y ă xñ fpyq ă fpxq (11.8)

We leave it to the readers the find the analogous statement for the case f 1pxq ă
0.

Proof. LetA “ f 1pxq ą 0. Then there exists δ ą 0 such that for all y P px´δ, x`δqX

ra, bs not equal to x, we have
ˇ

ˇ

ˇ

fpyq ´ fpxq

y ´ x
´ A

ˇ

ˇ

ˇ
ă
A

2
, and hence

fpyq ´ fpxq

y ´ x
ą
A

2
.

This proves (11.8).

Corollary 11.16. Assume that f : ra, bs Ñ R has a local extremum at x P pa, bq. Assume
that f 1pxq exists. Then f 1pxq “ 0.

Proof. If f 1pxq is a non-zero number, then either f 1pxq ą 0 or p´fq1pxq ą 0. In either
case, Prop. 11.15 indicates that f cannot have a local extremum at x.

From Prop. 11.15, it is clear that if f 1 ą 0 on pa, bq, then f is strictly increasing.
However, to prove that if f 1 ě 0 then f is increasing, we need more preparation.

Lemma 11.17 (Rolle’s MVT). Suppose that f P Cpra, bs,Rq is differentiable on pa, bq.
Suppose moreover that fpaq “ fpbq. Then there exists x P pa, bq such that f 1pxq “ 0.

Proof. If f is constant than f 1 “ 0. Suppose that f is not constant. Then there is
x P pa, bq at which f attains its maximum (if fptq ą fpaq for some t P pa, bq) or
minimum (if fptq ă fpbq for some t P pa, bq). So f 1pxq “ 0 by Cor. 11.16.

Example 11.18. Rolle’s MVT does not hold for vector-valued functions. Espe-
cially, it does hot hold for functions to C » R2. Consider f : r0, 2πs Ñ C defined
by fptq “ eit “ cos t` i sin t. We assume that sin1 “ cos and cos1 “ ´ sin are proved.
Then fp0q “ fp2πq “ 1, whereas f 1ptq “ ´ sin t` i cos t is never zero.
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Theorem 11.19 (Lagrange’s MVT). Suppose that f P Cpra, bs,Rq is differentiable on
pa, bq. Then there is x P pa, bq such that

f 1
pxq “

fpbq ´ fpaq

b´ a
(11.9)

Proof. The case fpaq “ fpbq is just Rolle’s MVT. When fpaq ‰ fpbq, we can “shift
the function f vertically” so that its two end points have the same height. Techni-
cally, we consider gpxq “ fpxq ´ kx where k “ fpbq´fpaq

b´a
is the slope of the interval

from pa, fpaqq to pb, fpbqq. Then gpaq “ gpbq. By Rolle’s MVT, there is x P pa, bq such
that g1pxq “ 0, i.e. f 1pxq ´ k “ 0.

11.2.2 Applications of MVTs

Corollary 11.20. Assume that f P Cpra, bs,Rq is differentiable on pa, bq. Then

f 1
ě 0 on pa, bq ðñ f is increasing on ra, bs (11.10)

Moreover, if f 1 ą 0 on pa, bq, then f is strictly increasing on ra, bs.

Proof. If f 1pxq ă 0 for some x P pa, bq, then Prop. 11.15 implies that x has a neigh-
borhood on which f is not increasing. Conversely, suppose that f 1pxq ě 0 for all
x P pa, bq. Choose x, y P ra, bs satisfying a ď x ă y ď b. Then by Lagrange’s MVT,
there is z P px, yq such that fpyq ´ fpxq “ f 1pzqpy ´ xq ě 0. So f is increasing on
ra, bs. We have finished proving (11.10).

Suppose that f 1 ą 0 on pa, bq. Then by Prop. 11.15, f is strictly increasing on
pa, bq. If a ă x ă b, then there is ε ą 0 such that fpa`1{nq ď fpxq´ε for sufficiently
large n. Since f is continuous at a, by taking limnÑ8 we get fpaq ď fpxq ´ ε
and hence fpaq ă fpxq. A similar argument proves fpbq ą fpxq. So f is strictly
increasing on ra, bs.

Corollary 11.21. Suppose that f P Cpra, bs,Rq is differentiable on pa, bq, and f 1pxq ‰
0 for all x P pa, bq. Then f is strictly monotonic (i.e. strictly increasing or strictly
decreasing). In particular, by Cor. 11.20, either f 1 ě 0 on pa, bq or f 1 ď 0 on pa, bq.

Proof. Rolle’s MVT implies fpbq´fpaq ‰ 0, and similarly, fpyq´fpxq ‰ 0 whenever
a ď x ă y ď b. Therefore f is injective. The strict monotonicity of f follows from
the following general fact:

Proposition 11.22. Let ´8 ď a ă b ď `8, and let f : ra, bs Ñ R be a continuous
injective function. Then f is strictly monotonic.

Proof. Choose a strictly increasing homeophism φ : r0, 1s Ñ ra, bs. It suffices to
prove that g “ f ˝ φ : r0, 1s Ñ R is strictly monotonic. Assume for simplicity that
gp0q ď gp1q. Let us show that g is increasing. Then the injectivity implies that g is
strictly increasing.
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We claim that for every x P p0, 1q we have gp0q ď gpxq ď gp1q. Suppose the
claim is true. Then for every 0 ă x ă y ă 1 we have gp0q ď gpyq ď gp1q. Applying
the claim to the interval r0, ys shows gp0q ď gpxq ď gpyq. So f is increasing.

Let us prove the claim. Suppose the claim is not true. Then there is x P p0, 1q
such that either gp0q ď gp1q ă gpxq or gpxq ă gp0q ď gp1q. In the first case,
by intermediate value theorem (applied to f |r0,xs), there is p P r0, xs such that
gppq “ gp1q. So g is not injective since p ă 1. This is impossible. Similarly, the
second case is also impossible.

Besides monotonicity, the uniqueness of antiderivatives is another classical
application of MVT.

Definition 11.23. An antiderivative of a function f : E Ñ V is a differentiable
function g : E Ñ V satisfying g1 “ f on E.

The renowned fact that any two antiderivatives g1, g2 of f : ra, bs Ñ V differ
by a constant is immediate from the following fact (applied to g1 ´ g2):

Corollary 11.24. Suppose that f P Cpra, bs, V q is differentiable on pa, bq and satisfies
f 1 “ 0 on pa, bq. Then f is a constant function.

Proof for V “ FN . Since CN » R2N , it suffices to prove the case V “ RN . Since
a sequence in RN converges to a vector iff each component of the sequence con-
verges to the corresponding component of the vector, it suffices to prove the case
f : ra, bs Ñ R.

Choose any x P pa, bs. By Lagrange’s MVT, there exists y P pa, xq such that

0 “ f 1
pyq “

fpxq ´ fpaq

x´ a
. This proves fpxq “ fpaq for all x P pa, bs.

Now we discuss the general case.

Remark 11.25. When V is not necessarily finite-dimensional, the method of reduc-
ing Cor. 11.24 to the case of scalar-valued functions is quite subtle: How should
we understand the “components” of an element v in the Banach space V ? In fact,
in the general case, we should view

xφ, vy ” xv, φy
def
ùùù φpvq (11.11)

as a component of v, where φ is an element inside the dual (Banach) space of V ,
defined by

V ˚
“ LpV,Fq (11.12)

An element φ in V ˚ is called a bounded linear functional on V . (In general,
a linear functional on a vector space W over a field K is simply a linear map
W Ñ K.)
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The vector space V ˚, equipped with the operator norm, is indeed a Banach
space. (This is why we call V ˚ the dual Banach space.) For the moment we do not
need this fact. And we will discuss this topic in a later chapter.

Remark 11.26. In the future, we will prove that V ˚ separates points of V . (Recall
Def. 8.44.) By linearity, this is equivalent to saying that for any v P V we have

v “ 0 ðñ xφ, vy “ 0 for all φ P V ˚ (11.13)

In fact, in the future we will prove the famous Hahn-Banach extension theorem,
which implies (cf. Cor. 16.6) that if v P V then

Dφ P V ˚
zt0u such that xφ, vy “ }φ} ¨ }v} (11.14)

where }φ} is the operator norm of φ. (Note that, by Rem. 10.24, we have |xφ, vy| ď
}φ} ¨ }v} for all v P V, φ P V ˚. It is nontrivial that “ď” can be ““” for some φ ‰ 0.)

Proof of Cor. 11.24 assuming Hahn-Banach. Let us prove that fpxq “ fpaq for
any x P ra, bs. Since V ˚ separates points of V , it suffices to choose an arbitrary
φ P V ˚ and prove that φ ˝ fpxq “ φ ˝ fpaq. Indeed, since φ is continuous, for each
sequence pxnq in ra, bsztxu converging to x, in view of Lem. 11.6 we have

lim
nÑ8

φ ˝ fpxnq ´ φ ˝ fpxq

xn ´ x
“ φ

´

lim
nÑ8

fpxnq ´ fpxq

xn ´ x

¯

“ φpf 1
pxqq “ φp0q “ 0

if a ă x ă b. Thus pφ ˝ fq1 “ 0 on pa, bq. Therefore, by the finite-dimensional
version of Cor. 11.24, we have that φ ˝ f is constant on ra, bs.

Hahn-Banach theorem is extremely useful for reducing a problem about
vector-valued functions to one about scalar-valued functions. In this course, we
will also use Hahn-Banach to prove another fun fact: every Banach space over
F is isormorphic to a closed linear subspace of CpX,Fq where X is a compact
Hausdorff space. However, in the following section we would like to give an
elementary proof of Cor. 11.24 without using Hahn-Banach.

11.3 Finite-increment theorem

Fix a Banach space V over F P tR,Cu. Assume ´8 ă a ă b ă `8.
Cor. 11.24 follows immediately from the following theorem by taking g “ 0.

Theorem 11.27. Suppose that f P Cpra, bs, V q and g P Cpra, bs,Rq are differentiable on
pa, bq. Assume that for every x P pa, bq we have }f 1pxq} ď g1pxq. Then

}fpbq ´ fpaq} ď gpbq ´ gpaq (11.15)
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Proof. By continuity, it suffices to prove }fpβq ´ fpαq} ď gpβq ´ gpαq for all α, β
satisfying a ă α ă β ă b. Therefore, by replacing ra, bs by rα, βs, it suffices to
assume that f, g are differentiable on ra, bs.

Step 1. For each ε ą 0, consider the condition on x P ra, bs:

}fpxq ´ fpaq} ď gpxq ´ gpaq ` εpx´ aq (11.16)

The set

Eε “
␣

x P ra, bs : x satisfies (11.16)
(

is nonempty because a P Eε. One checks easily that Eε is a closed subset of ra, bs:
This is because, for example, Eε is the inverse image of the closed subset p´8, 0s
of R under the map

ra, bs Ñ R x ÞÑ }fpxq ´ fpaq} ´ gpxq ` gpaq ´ εpx´ aq (11.17)

We now fix x “ supEε. Then x P Eε because Eε is closed. We shall prove that
x “ b. Then the fact that b P Eε for all ε ą 0 proves (11.15).

Step 2. Suppose that x ‰ b. Then a ď x ă b. We shall prove that there exists
y P px, bq such that

}fpyq ´ fpxq} ď gpyq ´ gpxq ` εpy ´ xq (11.18)

Add this inequality to (11.16) (which holds because x P Eε). Then by triangle
inequality, we obtain y P Eε, contradicting x “ supEε.

Let us prove the existence of such y. For each y P px, bq, define vpyq P V, λpyq P
R such that

fpyq ´ fpxq “ f 1
pxqpy ´ xq ` vpyqpy ´ xq

gpyq ´ gpxq “ g1
pxqpy ´ xq ` λpyqpy ´ xq

The definition of f 1pxq and g1pxq implies that vpyq Ñ 0 and λpyq Ñ 0 as y Ñ x.
Therefore, there exists y P px, bq such that }vpuq} ă ε{2 and |λpyq| ă ε{2. Thus

}fpyq ´ fpxq} ´ pgpyq ´ gpxqq

ďp}f 1
pxq} ´ g1

pxqqpy ´ xq ` p}vpyq} ´ λpyqq ¨ py ´ xq

ď0 ¨ py ´ xq `
`ε

2
`
ε

2

˘

¨ py ´ xq “ εpy ´ xq

This proves (11.18).

Remark 11.28. If we apply Thm. 11.27 to the special case that f “ 0, we see that
if g P Cpra, bs,Rq satisfies g1 ě 0 on pa, bq, then g is increasing. This gives another
proof of (11.10) besides the one via Lagrange’s MVT.
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An important special case of Thm. 11.27 is:

Corollary 11.29 (Finite-increment theorem). Suppose that f P Cpra, bs, V q is differ-
entiable on pa, bq, and that there exists M P Rě0 such that }f 1pxq} ďM for all x P pa, bq.
Then

}fpbq ´ fpaq} ďM |b´ a| (11.19)

Proof. Choose gpxq “Mx in Thm. 11.27.

It is fairly easy to prove finite-increment theorem for complex-variable func-
tions.

Definition 11.30. A subset E of a real vector space is called convex, if for every
x, y P E, the interval

rx, ys “ ttx` p1´ tqy : t P r0, 1su (11.20)

is a subset of E.

When talking about convex subsets of C, we view C as R2. Then, for example,
all open disks in C are convex.

Corollary 11.31 (Finite-increment theorem). Assume F “ C. Let Ω be a nonempty
open convex subset of C. Let f : Ω Ñ V be differentiable on Ω. Choose any z1, z2 P Ω.
Suppose that there existsM P Rě0 such that }f 1pzq} ďM for all z in the interval rz1, z2s.
Then

}fpz2q ´ fpz1q} ďM |z2 ´ z1| (11.21)

Proof. Define γ : r0, 1s Ñ C by γptq “ p1´ tqz1 ` tz2. Then γpr0, 1sq Ă Ω because Ω
is convex. By chain rule (Thm. 11.12), we have

pf ˝ γq1ptq “ f 1
pγptqq ¨ γ1

ptq “ pz2 ´ z1qf
1
pγptqq

whose norm is bounded by M |z2 ´ z1|. Applying Cor. 11.29 to f ˝ γ finishes the
proof.

Example 11.32. Let X be an interval in R, or let X “ Ω where Ω is convex. Let
A be the set of differentiable functions f : Ω Ñ V satisfying }f 1}l8 ď M . Then
elements of A have Lipschitz constant M by Finite-increment theorems. So A is
equicontinuous.

11.4 Commutativity of derivatives and limits

Fix a Banach space V over F P tR,Cu. Let Ω be a nonempty open subset
of C. Recall Conv. 11.4. Recall Def. 8.42 for the meaning of locally uniform
convergence.
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11.4.1 Main theorem

Theorem 11.33. Let X be Ω or an interval in R. Let pfαqαPI be a net of differentiable
functions X Ñ V . Suppose that the following are true:

(a) The net pfαqαPI converges pointwise to some f : X Ñ V .

(b) The net pf 1
αqαPI converges uniformly to some g : X Ñ V .

Then f is differentiable on X , and f 1 “ g.

Proof. We prove the case X “ Ω. The other case is similar. Choose any z P Ω.
By shrinking Ω, we assume that Ω is an open disk centered at z. We know
limwÑz

fαpwq´fαpzq

w´z
converges to f 1

αpzq for each α. Therefore, if we can show that
fαpwq´fαpzq

w´z
converges uniformly (over all w P Ωztzu) under limα, then it must con-

verge uniformly to fpwq´fpzq

w´z
since it converges pointwise to fpwq´fpzq

w´z
by (a). Then,

by Moore-Osgood Thm. 9.28, we have

lim
wÑz

lim
α

fαpwq ´ fαpzq

w ´ z
“ lim

α
lim
wÑz

fαpwq ´ fαpzq

w ´ z
“ lim

α
f 1
αpzq “ gpzq

finishing the proof.
To prove the uniform convergence, by the Cauchy condition on V Ωztzu

(equipped with a complete uniform convergence metric as in Exp. 7.77), it suf-
fices to prove that

sup
wPΩztzu

›

›

›

fαpwq ´ fαpzq

w ´ z
´
fβpwq ´ fβpzq

w ´ z

›

›

›
(11.22)

converges to 0 under limα,βPI . Applying Cor. 11.31 to the function fα ´ fβ , we see

}fαpwq ´ fβpwq ´ fαpzq ` fβpzq} ď |w ´ z| ¨ sup
ζPrz,ws

}f 1
αpζq ´ f

1
βpζq}

ď|w ´ z| ¨ }f 1
α ´ f

1
β}l8pΩ,V q (11.23)

Thus, we have

(11.22) ď }f 1
α ´ f

1
β}l8pΩ,V q

where the RHS converges to 0 under limα,β due to (b). This finishes the proof.

We didn’t assume the uniform convergence of pfαq in Thm. 11.33 because it is
often redundant:

Lemma 11.34. Assume that either X is a bounded interval in R, or X “ Ω where Ω is
assumed to be bounded and convex. Then under the assumptions in Thm. 11.33, the net
pfαqαPI converges uniformly to f .
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Proof. We already know that pfαq converges pointwise to f . In fact, we shall only
use the fact that limα fαpzq “ fpzq for some z P X . Let z be such a point. Motivated
by the proof of Thm. 11.33, let us prove the Cauchy condition that

lim
α,βPI

sup
wPΩ

}fαpwq ´ fβpwq ´ fαpzq ` fβpzq} “ 0

Then pfα ´ fαpzqq converges uniformly, and hence pfαq converges uniformly. In-
deed, the Cauchy condition follows easily from (11.23), in which supwPΩ |w ´ z| is
a finite number because X is bounded.

Thus, whether or not Ω satisfies boundedness and convexity, the net pfαqmust
converge locally uniformly to f . Knowing the locally uniform convergence is
often enough for applications. And here is another proof of this fact:

Another proof that pfαq converges locally uniformly to f . We consider the case X “

Ω; the other case is similar. For each z P X , choose a convex precompact U P

NbhXpxq. (Namely, ClXpUq is compact.) By (b) of Thm. 11.33, there is µ P I such
that supxPU }f

1
αpxq ´ f 1

µpxq} ď 1 for all α ě µ. Let hα “ fα ´ fµ, and replace I by
Iěµ. By finite-increment Thm. 11.31, for each x, y P U we have

}hαpxq ´ hαpyq} ď }x´ y}

i.e., phα|UqαPI has uniform Lipschitz constant 1, and hence is an equicontinuous
set of functions. Choose a closed ball B centered at z such that B Ă U . Then,
since phα|BqαPI is equicontinuous and converges pointwise to f ´ fµ (on B), by
Cor. 9.26, pfα ´ fµqαPI converges uniformly on B to f ´ fµ. Thus fα converges
uniformly on B to f .

11.4.2 An interpretation of Thm. 11.33 in terms of Banach spaces

We give a more concise way of understanding the two conditions in Thm.
11.33.

Corollary 11.35. Let X be Ω or an interval in R. Define

l1,8pX, V q “ tf P V X : f is differentiable on X and }f}l1,8 ă `8u

where } ¨ }l1,8 “ } ¨ }1,8 is defined by

}f}1,8 “ }f}l8 ` }f
1
}l8 “ sup

xPX
}fpxq} ` sup

xPX
}f 1
pxq}

Then l1,8pX, V q is a Banach space with norm } ¨ }1,8.
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Proof. It is a routine check that }f}l1,8 defines a norm on l1,8pX, V q. We now prove
that l1,8pX, V q is complete. Let pfnq be a Cauchy sequence in l1,8pX, V q. So pfnq
and pf 1

nq are Cauchy sequences in l8, converging uniformly to f, g P V X respec-
tively. By Lem. 11.33, f is differentiable, and f 1 “ g. (In particular, }f 1}8 ă `8.)
So f 1

n Ñ f 1. Thus

}fn ´ f}1,8 “ }fn ´ f}8 ` }f
1
n ´ f

1
}8 Ñ 0

Remark 11.36. Thm. 11.33 and Cor. 11.35 are almost equivalent. We have proved
Cor. 11.35 using Thm. 11.33. But we can also prove a slightly weaker version of
Thm. 11.33 using Cor. 11.35 as follows: In the setting of Thm. 11.33, assume that
each fα : X Ñ V is differentiable, and that

fα Ñ f f 1
α Ñ g (11.24)

where f, g P l8pX, V q. Then Cor. 11.35 implies that f is differentiable and f 1 “ g.

‹ Proof. By (11.24), there is β P I such that }fα´ f}8 ă `8 and }f 1
α´ g} ă `8 for

all α ě β. Thus, by replacing I with Iβ , we assume that fα and f 1
α are bounded on

X . So fα P l1,8pX, V q.
By (11.24), both pfαq and pf 1

αq converge in l8pX, V q. So they are Cauchy nets
under the l8-norm. So pfαq is a Cauchy net in l1,8pX, V q. By Cor. 11.35, pfαq
converges to rf P l1,8pX, V q under the l1,8 norm. In particular, fα Ñ rf and f 1

α Ñ rf 1.
Since, by assumption, we have fα Ñ f and f 1

α Ñ g, we therefore get f “ rf and
g “ rf 1.

It is not surprising that Thm. 11.33 can be rephrased in terms of the complete-
ness of a normed vector space. After all, our proof of Thm. 11.33 uses Cauchy
nets in an essential way. In the future, we will use the completeness of l1,8 to
understand the commutativity of derivatives and other limit processes.

11.5 Derivatives of power series

This section is a continuation of the previous one. We shall use Thm. 11.33 to
compute derivatives of power series.

11.5.1 General result

Corollary 11.37. Assume that V is over C. Let fpzq “
ř8

n“0 vnz
n be a power series in

V . Assume that its radius of convergence is R ą 0. Then f is differentiable on BCp0, Rq
and

f 1
pzq “

8
ÿ

n“0

nvnz
n´1
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Note that since limn
n
?
n “ 1, p n

a

}vn}qnPZ`
and p n

a

n}vn}qnPZ`
have the same

cluster points. Therefore

lim sup
nÑ8

n
a

}vn} “ lim sup
nÑ8

n
a

n}vn} (11.25)

So
ř

vnz
n and

ř8

n“0 nvnz
n´1 have the same radius of convergence.

First proof. For each n P N`, let gnpzq “ v0 ` v1z ` ¨ ¨ ¨ ` vnz
n. Then by Thm.

4.27, for each 0 ă r ă R, the sequences pgnq (resp. pg1
nq) converges uniformly to

f (resp. converges uniformly to hpzq “
ř8

0 nvnz
n´1) on BCp0, rq. Therefore, by

Thm. 11.33, we have f 1pzq “ hpzq for all z P BCp0, rq, and hence all z P BCp0, Rq
since r is arbitrary.

Second proof. Choose any 0 ă r ă R, and let Xr “ BCp0, rq. Consider
ř

vnz
n as a

series in the Banach space l1,8pXr,Cq (cf. Cor. 11.35). The norm of each term is
}vn} ` pn ` 1q}vn`1}. So the radius of convergence is R. Thus

ř

vnz
n converges

in l1,8pXr,Cq to some g P l1,8pXr,Cq. This means that, on Xr,
ř

vnz
n converges

uniformly to g (and hence f “ g on Xr) and
ř

nvnz
n´1 converges uniformly to g1.

So f 1pzq “ g1pzq “
ř

nvnz
n´1 for all z P Xr.

11.5.2 Examples

Example 11.38. By Cor. 11.37, the function exp : CÑ C is differentiable, and

d

dz
ez “ ez

Thus, if γ : ra, bs Ñ C is differentiable, then by chain rule, exp ˝γ is differentiable
on ra, bs, and

d

dt
eγptq

“ eγptq
¨
d

dt
γptq

For example:

peαtq1 “ αeαt pet
2`it
q

1
“ p2t` iqet

2`it

Example 11.39. Define functions sin : CÑ C and cos : CÑ C by

cos z “
eiz ` e´iz

2
sin z “

eiz ´ e´iz

2i

It follows from ezew “ ez`w that

cospz ` wq “ cos z cosw ´ sin z sinw sinpz ` wq “ sin z cosw ` cos z sinw

(11.26)

By chain rule, we have peαzq1 “ αeαz. So

sin1 z “ cos z cos1 z “ ´ sin z
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Remark 11.40. From ez “
ř

nPN z
n{n!, it is clear that the complex conjugate of ez is

ez “
8
ÿ

n“0

zn

n!
“

8
ÿ

n“0

zn

n!
“ ez

Here, we have exchanged the order of conjugate and infinite sum, because the
function z P C ÞÑ z is continuous. Thus, if t P R, then

eit “ e´it
|eit|2 “ eiteit “ e´iteit “ 1

It follows that

cos t “ Repeitq sin t “ Impeitq

pcos tq2 ` psin tq2 “ pRepeitqq2 ` pImpeitqq2 “ |eit|2 “ 1

It also follows from |eit| “ 1 that if a, b P R then, by ea`bi “ eaebi, we have

ea`bi
“ ea P Rą0

Example 11.41. By Prop. 11.13, the function log : Rą0 Ñ R is differentiable, and

plog xq1 “
1

x

Example 11.42. We have

lim
tÑ0

logp1` tq

t
“ plog xq1|x“1 “ 1

and hence limxÑ`8 x logp1 ` 1{xq “ 1 by Def. 7.81-(3) (since limxÑ`8 1{x “ 0 as a
net limit). Taking exponential, and using the continuity of exp at 1, we get

lim
xÑ`8

´

1`
1

x

¯x

“ e

Example 11.43. If a ą 0 and z P C, recalling az “ ez log a, we use chain rule to find

d

dz
az “ az log a

Similarly, if α P C and x ą 0, then the chain rule gives the derivative of xα:

d

dx
xα “ α ¨ xα´1

Example 11.44. Compute
8
ÿ

n“0

n2

3n
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Proof. The series fpzq “
8
ÿ

n“0

zn

3n
has radius of convergence 3. When |z| ă 3, it

converges absolutely to p1´ z
3
q´1 “ 3p3´ zq´1. So, by Cor. 11.37, when |z| ă 3 we

have
8
ÿ

n“0

nzn´1

3n
“ f 1

pzq “ 3p3´ zq´2

8
ÿ

n“0

npn´ 1qzn´2

3n
“ f2

pzq “ 6p3´ zq´3

So the value of the original series equals

f2
p1q ` f 1

p1q “
3

2

11.5.3 A proof of (generalized) Leibniz rule

We end this section by giving a fun proof of Leibniz rule for higher derivatives.
For simplicity, we consider only scalar-valued functions.

Proposition 11.45 (Leibniz rule). Let X be either a nonempty interval in R (resp. a
nonempty open subset of C). Let f, g be functions from X to R (resp. to C). Let z P X .
Suppose that f pnqpzq and gpnqpzq exist. Then

pfgqpnq
pzq “

n
ÿ

j“0

ˆ

n

j

˙

f pn´jq
pzqgpjq

pzq (11.27)

The above Leibniz rule is usually proved using the formula
ˆ

n` 1

j

˙

“

ˆ

n

j ´ 1

˙

`

ˆ

n

j

˙

(11.28)

where n P N and 1 ď j ď n. In the following, we give a proof without using this
formula. We need the fact that the function

Cn
Ñ CpR,Cq pa0, . . . , an´1q ÞÑ ppxq “

n´1
ÿ

j“0

ajx
j (11.29)

is injective: this is because j! ¨ aj “ f pjqp0q by Exp. 11.10.
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Proof of Prop. 11.45. By induction on n and by the classical Leibniz rule (Prop.
11.8), we have

pfgqpnq
pzq “

n
ÿ

j“0

Cn,j ¨ f
pn´jq

pzqgpjq
pzq (11.30)

where each Cn,j is an integer independent of f and g. (In particular, Cn,j is in-
dependent of whether the variables are real of complex.) Thus, to determine the
value of Cn,j , we can use some special functions.

We consider fpxq “ esx and gpxq “ etx where s, t P R. Recall that we have
proved that peαtq1 “ αeαt using chain rule and the derivative formula for expo-
nentials. So (11.30) reads

ps` tqn ¨ eps`tqx
“

n
ÿ

j“0

Cn,j ¨ s
n´jtj ¨ eps`tqx

Taking x “ 0 gives

ps` tqn “
n
ÿ

j“0

Cn,j ¨ s
n´jtj (11.31)

Comparing this with the binomial formula (4.5), and noticing the injectivity of
(11.29) (first applied to (11.31) for each fixed t, where (11.31) is viewed as a poly-
nomial of s; then applied to each coefficient before sn´j , which is a polynomial of
t), we immediately get Cn,j “

`

n
j

˘

.

11.6 Problems and supplementary material

Let Ω be nonempty open subset of C. Let V be a Banach space over F P tR,Cu.
Assume that F “ C if we take derivatives with respect to complex variables.

Definition 11.46. Let X be either Ω or an interval in R. Define

Cn
pX, V q “ tf P V X : f, f 1, . . . , f pnq exist and are continuousu pif n P Nq

C8
pX, V q “

č

nPN

Cn
pX, V q

If X Ă R, elements in C8pX, V q are called smooth functions.

Problem 11.1. Let X be either Ω or an interval in R. For each n P N, define

ln,8pX, V q “ tf P V X : f, f 1, . . . , f pnq exist, and }f}n,8 ă `8u

where }f}n,8 “ }f}ln,8 is defined by

}f}n,8 “ }f}8 ` }f
1
}8 ` ¨ ¨ ¨ ` }f

pnq
}8

(In particular, we understand l0,8 as l8.) Clearly }¨}n,8 is a norm. We have proved
that ln,8pX, V q is complete when n “ 0, 1.
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1. Prove by induction on n that ln,8pX, V q is complete for every n.

2. Prove that for each n P N, CnpX, V q X ln,8pX, V q is a closed subset of
ln,8pX, V q (and hence, is a Banach space by Prop. 3.27). Prove that if X
is compact then CnpX, V q Ă ln,8pX, V q.

Convention 11.47. Unless otherwise stated, when X is compact, we always
choose ln,8 to be the norm on CnpX, V q.
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12 More on derivatives

12.1 Cauchy’s MVT and L’Hôpital’s rule

The goal of this section is to prove L’Hôpital’s rule. For that purpose, we first
need to prove Cauchy’s MVT.

12.1.1 Main theorems

Theorem 12.1 (Cauchy’s MVT). Let ´8 ă a ă b ă `8. Let f, g P Cpra, bs,Rq be
differentiable on pa, bq. Then there exists x P pa, bq such that

f 1
pxqpgpbq ´ gpaqq “ g1

pxqpfpbq ´ fpaqq

In particular, if g1 ‰ 0 on pa, bq, then g is injective (Cor. 11.21), and we can write
the above formula as

f 1pxq

g1pxq
“
fpbq ´ fpaq

gpbq ´ gpaq

Proof. Cauchy’s MVT specializes to Lagrange’s MVT if we set gpxq “ x. Moreover,
in the proof of Lagrange’s MVT (Thm. 11.19), we applied Rolle’s MVT to the
function fpxq ´ kx where k is the slope of a line segment. Motivated by this
observation, we consider the function ψpxq “ fpxq ´ kgpxq. If one wants ψpaq “
ψpbq, one then solves that k “ fpbq´fpaq

gpbq´gpaq
. But we would rather consider pgpbq´gpaqqψ

in order to avoid the issue that the denominator is possibly zero. So we set

hpxq “ pgpbq ´ gpaqqfpxq ´ pfpbq ´ fpaqqgpxq

Clearly hpaq “ hpbq. By Rolle’s MVT, there exists x P pa, bq such that

0 “ h1
pxq “ pgpbq ´ gpaqqf 1

pxq ´ pfpbq ´ fpaqqg1
pxq

Theorem 12.2 (L’Hôpital’s rule). Let ´8 ď a ă b ď `8. Let f, g P Cppa, bq,Rq
be differentiable on pa, bq. Assume that g1 is nowhere zero on pa, bq. (So g is strictly
monotonic, cf. Prop. 11.22.) Assume

lim
xÑa

f 1pxq

g1pxq
“ A exists in R (12.1)

Assume that one of the following two cases are satisfied:

lim
xÑa

fpxq “ lim
xÑa

gpxq “ 0 (Case 0
0
)
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lim
xÑa

|gpxq| “ `8 (Case ˚

8
)

Then we have lim
xÑa

fpxq

gpxq
“ A. The same conclusion holds if “x Ñ a” is replaced by

“xÑ b”.

Remark 12.3. Since g is strictly monotonic, there is at most one x P pa, bq such that
gpxq “ 0. So limxÑa fpxq{gpxqmeans the limit over x P pa, bqzg´1p0q. Alternatively,
one can assign an arbitrary value to fpxq{gpxq when gpxq “ 0, and understand
limxÑa as a limit over x P pa, bq.

Example 12.4. Compute lim
xÑ`8

xn

ex

Proof. By L’Hôpital’s rule in the case ˚

8
, we have

lim
xÑ`8

xn

ex
“ lim

xÑ`8

nxn´1

ex
“ lim

xÑ`8

npn´ 1qxn´2

ex
“ ¨ ¨ ¨ “ lim

xÑ`8

n!

ex
“ 0

where the convergence of the limit is derived from right to left.

12.1.2 Proof of L’Hôpital’s rule

We divide the proof of L’Hôpital’s rule into several steps. Also, we only treat
the case x Ñ a, since the other case is similar. In the following, pa, bq means an
interval, but not an element in the Cartesian product (which will be written as
aˆ b).

Step 1. We let
fpxq ´ fpyq

gpxq ´ gpyq
take value

f 1pxq

g1pxq
if x “ y. In this step, we prove

lim
xˆyÑaˆa

fpxq ´ fpyq

gpxq ´ gpyq
“ A (12.2)

where xˆy is defined on pa, bq2 “ pa, bqˆpa, bq. In view of Def. 7.81-(3m), we pick
any sequence xnˆ yn in pa, bq2. By Cauchy’s MVT, there is ξn P rxn, yns (if xn ď yn)
or ξn P ryn, xns (if xn ě yn) such that

f 1
pξnqpgpxnq ´ gpynqq “ g1

pξnqpfpxnq ´ fpynqq.

So we have
f 1pξnq

g1pξnq
“
fpxnq ´ fpynq

gpxnq ´ gpynq

Since limn xn “ limn yn “ a, we clearly have limn ξn “ a. Therefore, by (12.1) (this
is the only place where we use (12.1)), we have

lim
nÑ8

fpxnq ´ fpynq

gpxnq ´ gpynq
“ lim

nÑ8

f 1pξnq

g1pξnq
“ A

This proves (12.2).
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Step 2. It follows from Def. 7.81-(3) that if pxnq and pykq are sequences in pa, bq
converging to a, then

lim
n,kÑ8

fpxnq ´ fpykq

gpxnq ´ gpykq
“ A (12.3)

In other words, we apply Def. 7.81-(3) to the net pxn ˆ ykqnˆkPZ2
`

which replaces
the sequence pxn ˆ ynqnPZ`

in Step 1. We shall use (12.3) to prove the two cases of
L’Hôpital’s rule.

Let us prove the case 0
0
. This is the easier case. Choose any sequence pxnq

in pa, bq converging to a. We want to prove that limn fpxnq{gpxnq “ A. So we
choose any sequence pykq in pa, bq converging to a, and we know that the double
limit (12.3) exists. Moreover, if n is fixed, then limk fpykq “ limk gpykq “ 0 by
assumption. Thus

lim
kÑ8

fpxnq ´ fpykq

gpxnq ´ gpykq
“
fpxnq

gpxnq
(12.4)

Thus, by Thm. 5.29, when n Ñ 8, the RHS of the above equation converges to
(12.3). This finishes the proof for the case 0

0
.

Step 3. Finally, we address the (more difficult) case ˚

8
. Assume limxÑa |gpxq| “

`8. Again, we choose a sequence pxnq in pa, bq converging to a. To prove
fpxnq{gpxnq Ñ A, one may want to pick any sequence pykq in pa, bq, and compute
the limit on the LHS of (12.4). Unfortunately, in this case, we do not know whether
this limit converges or not: As one can compute, it is equal to limkÑ8 fpykq{gpykq,
whose convergence is part of the result we need to prove!

It is not hard to address this issue: Since R is (sequentially) compact, by Thm.
3.15, it suffices to prove that any cluster point B P R of pfpxnq{gpxnqqnPZ`

is equal
to A. Thus, we let pykq be any subsequence of pxnq such that pfpykq{gpykqqkPZ`

converges to B. Let us prove A “ B using the same method as in Step 2. We
compute that

fpxnq ´ fpykq

gpxnq ´ gpykq
“

gpykq

gpxnq ´ gpykq
¨
fpxnq ´ fpykq

gpykq
(12.5)

Since limk |gpykq| “ `8, we have limkÑ8 C{gpykq Ñ 0 for any C P R independent
of k. Therefore, as k Ñ 8, the first factor on the RHS of (12.5) converges to ´1,
and the second factor converges to ´B. It follows that

lim
nÑ8

lim
kÑ8

fpxnq ´ fpykq

gpxnq ´ gpykq
“ lim

nÑ8
B “ B

Therefore A “ B by Thm. 5.29.

The proof of L‘Hôpital’s rule is now complete.
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Remark 12.5. The above proof can be easily translated into a language without
double limits. We consider the case of ˚

8
and assume for example that ´8 ă A ă

`8 and a P R, and sketch the proof as follows.
By (12.1) and Cauchy’ MVT, for every ε ą 0 there is δ ą 0 such that for all

a ă x, y ă a` δ (where x ‰ y) we have

A´ ε ď
fpxq ´ fpyq

gpxq ´ gpyq
ď A` ε

Choose any sequence pxnq in pa, bq converging to a. Let B be any cluster point
of pfpxnq{gpxnqqnPZ`

in R. We need to prove that A “ B. Let pykqkPZ`
be any

subsequence of pxnq such that limk fpykq{gpykq “ B. Then there is N P N such that
for all n ě N, k ě N satisfying xn ‰ yk, we have

A´ ε ď
fpxnq ´ fpykq

gpxnq ´ gpykq
ď A` ε

For each n ě N , apply limkÑ8 to the above inequality, and notice limk |gpykq| “
`8. Then we get A´ ε ď B ď A` ε, finishing the proof.

12.2 Trigonometric functions and π

In this section, we prove that sin, cos, and π satisfy the properties we learned
in high schools. Some of them have already been proved in Subsec. 11.5.2. We
leave the proof of the basic properties of the other trigonometric functions to the
reader.

Let x be a real variable. Recall that sin, cos : R Ñ R are determined by the fact
that eix “ cosx ` i sinx. In particular, that |eix| “ 1 implies pcosxq2 ` psinxq2 “ 1.
We have proved that

sin1
“ cos cos1

“ ´ sin

Since ei¨0 “ 1, we have

psinxq1|x“0 “ cos 0 “ 1 pcosxq1|x“0 “ ´ sin 0 “ 0

In particular, since sin1 “ cos is strictly positive on a neighborhood of 0, by Cor.
11.20, sin is strictly increasing on that neighborhood.

We shall define π
2

to be the smallest positive zero cos. However, we must first
prove the existence of this number:

Lemma 12.6. There exists x ě 0 such that cosx “ 0.

Proof. Suppose this is not true. Then by cos 0 “ 1 and intermediate value theorem,
we have cosx ą 0 for all x ě 0. In other words, sin1 ą 0 on Rě0. Thus, by Cor.
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11.20, sin is strictly increasing on Rě0. Therefore A “ limxÑ`8 sinx exists in R.
Since sin 0 “ 0, we must have A P Rą0. By L’Hôpital’s rule in case ˚

8
, we have

lim
xÑ`8

cosx

x
“ lim

xÑ`8
´ sinx “ ´A ă 0

contradicting the fact that cosx ą 0 if x ě 0.

Definition 12.7. We define the number π to be

π “ 2 ¨ inf
`

Rě0 X cos´1
p0q

˘

“ 2 ¨ inftx P Rě0 : cosx “ 0u

Note that
`

Rě0X cos´1p0q
˘

is a closed subset of R. So its infinimum belongs to this
set. Therefore, π

2
is the smallest x ě 0 satisfying cospx{2q “ 0.

Proposition 12.8. We have

sin 0 “ 0 sin
π

2
“ 1 cos 0 “ 1 cos

π

2
“ 0 (12.6)

On p0, π{2q, sin and cos are strictly positive. On r0, π{2s, sin is strictly increasing, and
cos is strictly decreasing.

Proof. All the formulas in (12.6), except sinpπ{2q “ 1, has been proved. Since
psin π

2
q2 “ 1´ pcos π

2
q2, we have sin π

2
“ ˘1.

By the definition of π, we know that sin1 “ cos is ą 0 on r0, π
2
q. So sin is strictly

increasing on r0, π
2
s. Thus, sin 0 “ 0 implies that sin ą 0 on p0, π

2
s. In particular,

sin π
2
“ 1. Since cos1 “ ´ sin is ă 0 on p0, π

2
q, cos is strictly decreasing on r0, π

2
s.

Proposition 12.9. We have sinp´xq “ ´ sinx and cosp´xq “ cosx.

Proof. Immediate from e´ix “ 1{eix and the definitions of sin and cos.

From what we have proved, we know that the graph of sin and cos on r´π
2
, π
2
s

looks as follows.

Proposition 12.10. We have

sinx “ cospx´
π

2
q “ cosp

π

2
´ xq cospxq “ sinp

π

2
´ xq

Proof. Immediate from (11.26) and (12.6).
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Thus, the graph of sin is the rightward translation of that of cos by π
2
. Therefore,

the graph of sin on r´π
2
, 0s is translated to the graph of cos on r´π,´π

2
s. That

cospxq “ cosp´xq gives us the graph of cos on rπ
2
, πs. Thus, we know the graph of

cos on r´π, πs.

Theorem 12.11 (Euler’s formula). We have eiπ “ ´1, and hence e2iπ “ eiπeiπ “ 1.

Proof. We have eiπ{2 “ cospπ
2
q ` i sinpπ

2
q “ i. Hence eiπ “ i2 “ ´1.

Proposition 12.12. We have sinx “ sinpx` 2πq and cosx “ cospx` 2πq

Proof. Immediate from (11.26) and that 1 “ e2iπ “ cosp2πq ` i sinp2πq.

Thus, cos and sin have period 2π. This completes the graphs of cosx and sinx “
cospx´ π

2
q on R.

The fact that 2π is the length of the unit circle will be proved in Exp. 13.39.

12.3 Taylor’s theorems

Assume throughout this section that ´8 ă a ă b ă `8 and V is a Banach
space over F P tR,Cu.

In this section, we generalize MVTs and finite-increment theorem to higher
derivatives. These generalizations are all under the name “Taylor theorem”. Re-
call Def. 11.46 and Pb. 11.1 for the meaning of ln,8, Cn, C8. We first discuss the
generalization of finite-increment theorem, which can be applied to vector-valued
functions.

12.3.1 Taylor’s theorems for vector-valued functions

Definition 12.13. Let X be a normed vector space. Let A Ă X . Let a P ClXpAqzA
(or more generally, assume a P ClXpAztauq). Let f : AÑ V . Let r P Rě0.

• We write fpxq “ op}x´ a}rq if lim
xÑa

fpxq

}x´ a}r
“ 0.

• We write fpxq “ Op}x ´ a}rq if lim sup
xÑa

}fpxq}

}x´ a}r
ă `8 where lim sup is the

limit superior of a net (cf. Rem. 7.83 and Pb. 8.2). In other words, there
exists U P NbhXpaq such that supxPAXU }fpxq}{}x´ a}

r ă `8.

When r “ 0, we simply write op1q and Op1q. The two symbols o,O are called
Landau symbols.

In this section, we will frequently use the formula

Snpxq “
n
ÿ

k“0

f pkqpaq

k!
px´ aqk (12.7)

whenever the RHS makes sense.
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Theorem 12.14 (Taylor’s theorem, Peano form). Let f : ra, bs Ñ V and n P Z`.
Assume that f 1, f2, . . . , f pnq exist at a (resp. at b). Then for each x P pa, bq we have

fpxq “
n
ÿ

k“0

f pkqpaq

k!
px´ aqk ` oppx´ aqnq (12.8a)

resp.

fpxq “
n
ÿ

k“0

f pkqpbq

k!
px´ bqk ` oppb´ xqnq (12.8b)

Expressions of the form (12.8a) are called Taylor expansions of f with center
a.

Remark 12.15. In order for f pnqpaq to exist, it is assumed that f pn´1q exists on a
neighborhood of a.

Proof of Peano-form. Since the two cases are similar, we only treat the case at a.
Define remainder gpxq “ fpxq ´ Snpxq. Then

gpaq “ g1
paq “ ¨ ¨ ¨ “ gpnq

paq “ 0 (12.9)

It suffices to prove Taylor’s theorem for g, i.e.

gpxq “ oppx´ aqnq (12.10)

We prove this by induction. The case n “ 1 is obvious from the definition of
derivatives, which says

gpxq ´ gpaq

x´ a
´ g1

paq “ op1q (12.11)

and hence gpxq “ px´ aqop1q “ opx´ aq.
Now assume n ě 2. Assume that Peano form has been proved for case n ´ 1.

Applying this result to g1. We then get g1pxq “ oppx ´ aqn´1q. Since g2paq exists, g1

exists on ra, cs where a ă c ă b. In particular, g is continuous on ra, cs. Therefore,
by finite-increment Thm. 11.29, if x P pa, cq, then

}gpxq} ď px´ aq ¨ sup
aătăx

}g1
ptq}

If we can prove supaďtďx }g
1ptq} “ oppx´ aqn´1q, then we immediately have gpxq “

oppx´ aqnq. Thus, the proof of Peano form is finished by the next lemma.

Lemma 12.16. Assume that f : ra, bs Ñ V satisfies fpxq “ oppx´ aqrq. Define

rfpxq “ sup
aătăx

}fptq}

Then rfpxq “ oppx´ aqrq.
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Proof. Choose any ε ą 0. Since fpxq “ oppx ´ aqrq, we know that there is c P pa, bq
such that for all a ă x ă c we have }fpxq} ď ε|x´ a|r. Thus

| rfpxq| ď sup
aătăx

ε|t´ a|r “ ε|x´ a|r

Among all the versions of Taylor’s theorem discussed in this section, the fol-
lowing one is most useful. (Another useful version, the integral form of Tay-
lor’s theorem, will be proved in Thm. 13.32.) Note that if we assume f P

Cpn`1qpra, bs, V q in Thm. 12.14, then Thm. 12.17 immediately implies Thm. 12.14.

Theorem 12.17 (Higher order finite-increment theorem). Let n P N and f P

Cnpra, bs, V q. Assume that f pn`1q exists everywhere on pa, bq. Then, for every x P pa, bs
resp. x P ra, bq, we have respectively

›

›

›
fpxq ´

n
ÿ

k“0

f pkqpaq

k!
px´ aqk

›

›

›
ď
px´ aqn`1

pn` 1q!
¨ sup
aătăx

}f pn`1q
ptq} (12.12a)

›

›

›
fpxq ´

n
ÿ

k“0

f pkqpbq

k!
px´ bqk

›

›

›
ď
pb´ xqn`1

pn` 1q!
¨ sup
xătăb

}f pn`1q
ptq} (12.12b)

Proof. We only prove the first formula: applying the first formula to rfpxq “ fp´xq
implies the second one. We prove (12.12a) by induction on n. Moreover, we shall
prove (12.12a) for the case x “ b. The general case follows by restricting f to ra, xs.
When n “ 0, (12.12a) is the content of (classical) finite-increment Thm. 11.29.
Assume case n ´ 1 has been proved (n P Z`). In case n, take gpxq “ fpxq ´ Snpxq.
Then (12.9) is true. Let

M “ sup
aătăb

}f pn`1q
ptq} “ sup

aătăb
}gpn`1q

ptq}

By case n´ 1, for each a ď x ď b we have

}g1
pxq} ď

px´ aqn

n!
¨M “ h1

pxq where hpxq “
Mpx´ aqn`1

pn` 1q!

Thus, by Thm. 11.27, we have

}gpbq ´ gpaq} ď hpbq ´ hpaq “
Mpb´ aqn`1

pn` 1q!

This proves (12.12a) for g, and hence for f .
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12.3.2 Taylor’s theorem for real-valued functions

Theorem 12.18 (Taylor’s theorem, Lagrange form). Let n P N and f P Cnpra, bs,Rq.
Assume that f pn`1q exists everywhere on pa, bq. Then for every x P pa, bs resp. x P ra, bq,
there exists ξ P pa, xq resp. η P px, bq such that, respectively,

fpxq “
n
ÿ

k“0

f pkqpaq

k!
px´ aqk `

f pn`1qpξq

pn` 1q!
px´ aqn`1 (12.13a)

fpxq “
n
ÿ

k“0

f pkqpbq

k!
px´ bqk `

f pn`1qpηq

pn` 1q!
px´ bqn`1 (12.13b)

Proof. We only prove (12.13a). Applying (12.13a) to rfpxq “ fp´xq (defined on
r´b,´as) implies the second formula. Again, it suffices to prove (12.13a) for gpxq “
fpxq ´ Snpxq, which satisfies (12.9). Thus, we want to find ξ P pa, xq satisfying

gpxq “
gpn`1qpξq

pn` 1q!
px´ aqn`1

This can be proved by applying Cauchy’s MVT repeatedly:

gpxq

px´ aqn`1

Dx1Ppa,xq
ùùùùùùù

g1px1q

pn` 1qpx1 ´ aqn
Dx2Ppa,x1q
ùùùùùùùù

g2px2q

pn` 1qnpx2 ´ aqn´1

“ ¨ ¨ ¨
DxnPpa,xn´1q
ùùùùùùùùù

gpnqpxnq

pn` 1q!pxn ´ aq

DξPpa,xnq
ùùùùùùù

gpn`1qpξq

pn` 1q!

We will mainly use Thm. 12.17 instead of the Lagrange form, since the latter
does not apply directly to vector valued functions. However, Thm. 12.17 can be
derived from the Lagrange form and Hahn-Banach theorem. We have used the
fact that V ˚ separates points of V to prove that a function ra, bs Ñ V is constant
if its derivative exists and is constantly zero. (See Cor. 11.24.) However, to prove
Thm. 12.17, we need the stronger fact that for every v P V there exists a nonzero
φ P V ˚ such that xφ, vy “ }φ} ¨ }v}. (See Rem. 11.26.) By scaling φ, we can assume
that }φ} “ 1 and xφ, vy “ }v}.

We now give the second proof of Thm. 12.17:

Proof of Thm. 12.17 using Lagrange form and Hahn-Banach. The Lagrange form
clearly implies Thm. 12.17 in the special case that V “ R. Now consider
the general case, and view V as a real Banach space if it was originally over
C. Take gpxq “ fpxq ´ Snpxq. We need to prove }gpxq} ď px´aqn`1

pn`1q!
M where

M “ supaătăx }g
pn`1qptq}.
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By Hahn-Banach (Rem. 11.26), there exists φ P V ˚ with }φ} “ 1 such that
φ ˝ gpxq “ }gpxq}. Applying the one dimensional special case to φ ˝ g, we have

}gpxq} “ φ ˝ gpxq ď
px´ aqn`1

pn` 1q!
¨ sup
aătăx

ˇ

ˇpφ ˝ gqpn`1q
ptq

ˇ

ˇ (12.14)

provided that φ ˝ g P Cnpra, bs, V q and that pφ ˝ gqpn`1q exists on pa, bq.
By the continuity of φ, we have

pφ ˝ gq1ptq “ lim
sÑt

φ ˝ gpsq ´ φ ˝ gptq

s´ t
“ φ

´

lim
sÑt

gpsq ´ gptq

s´ t

¯

“ φpg1
ptqq (12.15)

Applying this formula repeatedly, we see that φ ˝ g P Cnpra, bs, V q, that pφ ˝ gqpn`1q

exists on pa, bq, and that pφ ˝ gqpn`1q “ φ ˝ gpn`1q. By Rem. 10.24, we have

sup
aătăx

ˇ

ˇpφ ˝ gqpn`1q
ptq

ˇ

ˇ “ sup
aătăx

ˇ

ˇxφ, gpn`1q
ptqy

ˇ

ˇ ď sup
aătăx

}gpn`1q
ptq} “M

Combining this result with (12.14) finishes the proof.

When V is RN equipped with the Euclidean norm, the Hahn-Banach theorem
(in the form of Rem. 11.26) is very easy: Define the linear map φ : RN Ñ R
sending each v P RN to its dot product with gpxq{}gpxq}. Then φ satisfies }φ} “ 1
and φ ˝ gpxq “ }gpxq}. So there is nothing mysterious in the above proof. (You are
encouraged to compare this proof with the one of [Rud-P, Thm. 5.19].)

12.4 Functions approximated by their Taylor series

Taylor’s theorems do not imply that a smooth function f on an interval of R
can be approximated by its Taylor series (with center a):

8
ÿ

k“0

f pkqpaq

k!
px´ aqk (12.16)

The following is a typical example:

Example 12.19. Define f : RÑ R by

fpxq “

$

&

%

exp
`

´
1

x2
˘

pif x ą 0q

0 pif x ď 0q

Then f pnqp0q “ 0 for all n P N. So the Taylor series of f at 0 is 0, which cannot
approximate fpxqwhen x ą 0.
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On the contrary, if f is defined on an open subset of C, and if f 1 exists every-
where on its domain, then f pnq exists for all n, and f can be approximated locally
uniformly by its Taylor series. This is a deep result in complex analysis. In fact,
a thorough understanding of power series is impossible without the help of com-
plex analysis.

In the following, we show that some important real variable functions can
be approximated by their Taylor series. Actually, the proof can be simplified by
complex analysis, since these examples are the restriction of some differentiable
complex variable functions (aka holomorphic functions) to the real line.

Example 12.20. Consider the Taylor expansion of log : Rą0 Ñ R at x “ 1. By
induction on n P Z`, one computes that

logpnq
pxq “ p´1qn´1 pn´ 1q!

xn

Therefore, its Taylor expansion in order n is

n
ÿ

k“1

p´1qk´1

k
px´ 1qk `Rn`1pxq

where Rn`1pxq is the remainder. To show that log x is approximated uniformly
(on certain domain) by its Taylor series, one need to show that Rn`1 converges
uniformly to 0 on that domain.

We would like to prove that for every 0 ă r ă 1 we have Rn`1 Ñ 0 on r1 ´
r, 1`rs. This would imply that series on the RHS of the following formula (whose
radius of convergence is 1) converges uniformly to f on r1´ r, 1` rs:

logpxq “
n
ÿ

k“1

p´1qk´1

k
px´ 1qk (12.17)

However, using the Taylor’s theorems proved in the previous section, one can
prove the uniform convergence only when 0 ă r ď 1{2. The general case of
0 ă r ă 1 should be proved by another method.

Proof for the case 0 ă r ď 1
2
. In fact, we shall prove the uniform convergence on

r1´ r, 2s. By Thm. 12.17, for all x P r1´ r, 1` rswe have

|Rn`1pxq| ď
|x´ 1|n`1

pn` 1q!
¨ sup

1ďtďx
or xďtď1

ˇ

ˇ logpn`1q
ptq

ˇ

ˇ “
|x´ 1|n`1

n` 1
¨ sup

1ďtďx
or xďtď1

1

tn`1

where the sup is over 1 ď t ď x or x ď t ď 1, depending on whether 1 ď x ď 1` r
or 1´ r ď x ď 1.
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If 1 ď x ď 1` r, then 1 ď t ď x implies 1{tn`1 ď 1. So

|Rn`1pxq| ď
px´ 1qn`1

n` 1
ď

rn`1

n` 1

where the RHS converges to 0 as n Ñ 8 whenever 0 ă r ď 1. In particular, we
get the renowned formula

log 2 “
8
ÿ

n“1

p´1qn´1

n
(12.18)

If 1´ r ď x ď 1, then x ď t ď 1 implies 1{tn`1 ď 1{xn`1. Thus

|Rn`1pxq| ď
1

n` 1

´1

x
´ 1

¯n`1

ď
1

n` 1

´ 1

1´ r
´ 1

¯n`1

“
1

n` 1

´ r

1´ r

¯n`1

If 0 ă r ď 1{2, then 0 ă r{p1´ rq ď 1, and hence the RHS above converges to 0 as
nÑ 8. This proves that Rn`1 Ñ 0 on r1´ r, 1` rswhen 0 ă r ď 1{2.

Proof for the case 0 ă r ă 1. Assume 0 ă r ă 1. For the convenience of discus-
sion, we prove instead that

8
ÿ

k“1

p´1qk´1

k
xk (12.19)

the Taylor series of logp1` xq at 0, converges uniformly to logp1` xq on r´r, rs
The radius of convergence of the series (12.19) is 1. Thus, by Thm. 4.27, (12.19)

converges locally uniformly on p´1, 1q to some function f : p´1, 1q Ñ R. By Cor.
11.37, f is differentiable on p´1, 1q, and the series

8
ÿ

k“0

p´1qkxk (12.20)

converges locally uniformly on p´1, 1q to f 1. But we clearly have

(12.20) “
1

1´ p´xq
“

1

1` x
(12.21)

Thus f 1pxq “ d
dz
plogp1`xqq. Now, (12.19) clearly implies that fp0q “ 0 “ logp1`0q.

Therefore, by Cor. 11.24, we obtain fpxq “ logp1 ` xq on p´1, 1q. In other words,
(12.19) converges locally uniformly on p´1, 1q (and hence uniformly on r´r, rs) to
logp1` xq.

Example 12.21. Let α P C. Then
8
ÿ

k“0

ˆ

α

k

˙

xk (12.22)

the Taylor series of p1 ` xqα “ exppα logp1 ` xqq at x “ 0, converges locally uni-
formly on p´1, 1q to p1` xqα.
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Proof. Using Prop. 4.23, one easily checks that the radius of convergence of (12.22)
is 1. So Thm. 4.27 implies that (12.22) converges locally uniformly on p´1, 1q to
some f : p´1, 1q Ñ C. Let

gpxq “ p1` xqα

Our goal is to prove f “ g.
It is clear that p1` xqg1pxq “ αgpxq. By Cor. 11.37, the series

8
ÿ

k“0

k

ˆ

α

k

˙

xk´1
“

8
ÿ

k“0

pk ` 1q

ˆ

α

k ` 1

˙

xk (12.23)

converges locally uniformly on p´1, 1q to f 1. Thus, by Cor. 5.60, we have

p1` xqf 1
pxq “

8
ÿ

k“0

ˆ

k

ˆ

α

k

˙

` pk ` 1q

ˆ

α

k ` 1

˙˙

xk

“

8
ÿ

k“0

α

ˆ

α

k

˙

xk “ αfpxq

Therefore, f satisfies the same differential equation as g, namely p1 ` xqf 1 “ αf .
Moreover, we clearly have fp0q “ 1 “ gp0q. So we have f “ g on p´1, 1q if we
apply the next lemma to f ´ g.

Lemma 12.22. Let I be an interval of R (with at least two points) such that 0 P I . Let
F P tR,Cu. Let φ P CpI,Fnˆnq. Assume that f P C1pI,Fnq satisfies

f 1
pxq “ φpxq ¨ fpxq fp0q “ 0 (12.24)

Then for all x P I we have fpxq “ 0.

Proof. We prove this lemma for the case that I is an open interval. The proof for
the other types of intervals is similar. Also, we equip Fnˆn with the operator norm
by viewing nˆ n matrices as elements of LpFnq. (Recall that the operator norm is
equivalent to the Eucliden norm, see Thm. 10.30.) Let

Ω “ tx P I : fpxq “ 0u “ f´1
p0q

which is a closed subset of I (since the inverse image under a continuous map of
a closed set is closed). Clearly Ω is nonempty since 0 P Ω. If we can prove that Ω
is open, then we have Ω “ I because I is connected. This will finish the proof.

So let us prove that any p P Ω is an interior point of Ω with respect to I . Choose
r ą 0 such that rp´ r, p` rs Ă I . Let

C “ sup
´rďxďr

}φpxq}
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which is a finite number by extreme value theorem. Let δ “ mint 1
2C
, ru which is

ą 0. It suffices to prove that

M “ sup
xPrp´δ,p`δs

}fpxq}

is zero. (Note that M ă `8 again by EVT.) Then we will have rp ´ δ, p ` δs Ă Ω,
finishing the proof.

For each x P rp´ δ, p` δs, by Rem. 10.24 for operator norms, we have

}f 1
pxq} “ }φpxqfpxq} ď }φpxq} ¨ }fpxq} ď CM

Thus, by finite-increment theorem, we have for all x P rp´ δ, p` δs that

}fpxq} “ }fpxq ´ fppq} ď CM |x´ p| ď CMδ ď
M

2

Applying supxPrp´δ,p`δs to }fpxq}, we get M ďM{2. So M “ 0.

Remark 12.23. The above Lemma can also be proved in a similar way as Thm.
11.27: Let x P I . Assume WLOG that x ą 0. Let E “ f´1p0q X r0, xs, which is a
closed subset of r0, xs. So t “ supE is in r0, xs. To show fpxq “ 0, one just need
to prove t “ x. If not, then t ă x. Then, as in the above proof, one can find δ ą 0
such that φpsq “ 0 whenever s P rt, t` δs, impossible.

12.5 Convex functions

In this section, we fix an interval I Ă R containing at least two points.

Definition 12.24. Let x “ px1, x2q, y “ py1, y2q, z “ pz1, z2q be three points of R2

satisfying x1 ă y1 ă z1. We say that the ordered triple px,y, zq is a convex triple if
the following equivalent conditions are satisfied:

(1) y is below or on the interval rx, zs. In other words, we have y2 ď tx2`p1´tqz2
if t P r0, 1s is such that y1 “ tx1 ` p1´ tqz1.

(2) We have
y2 ´ x2
y1 ´ x1

ď
z2 ´ y2
z1 ´ y1

.

(3) We have
y2 ´ x2
y1 ´ x1

ď
z2 ´ x2
z1 ´ x1

.

(4) We have
z2 ´ x2
z1 ´ x1

ď
z2 ´ y2
z1 ´ y1

.

Proof of equivalence. The equivalence of these statements is clear from the picture,
and is not hard to check rigorously using inequalities. We leave the details to the
reader.
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Recall the definition of convex subsets in real vector spaces (Def. 11.30).

Definition 12.25. A function f : I Ñ R is called convex if the following equivalent
conditions are true:

(1) The set

Df “ tpx, yq P R2 : x P I, y ě fpxqu (12.25)

is a convex subset of R2.

(1) For any three points x ă y ă z of I , the points px, fpxqq, py, fpyqq, pz, fpzqq
form a convex triple.

Proof of equivalence. Again, the equivalence is clear from the picture. The details
are left to the readers.

The convexity of differentiable functions is easy to characterize:

Theorem 12.26. Let f : I Ñ R be differentiable. Then f is convex iff f 1 is increasing. In
particular, if f2 exists on I , then f is convex iff f2 ě 0 on I .

Proof. Assume that f 1 is increasing. Choose x ă y ă z in I . By Lagrange’s
MVT, there exist ξ P px, yq and η P py, zq such that the slope of the interval
rpx, fpxqq, py, fpyqqs equals f 1pξq, and that the slope of rpy, fpyqq, pz, fpzqqs equals
f 1pηq. Since f 1pξq ď f 1pηq, the points px, fpxqq, py, fpyqq, pz, fpzqq form a convex
triple. This proves that f is convex.

Now assume that f is convex. Choose any x ă y in I . We need to prove that
f 1pxq ď f 1pyq. Choose any ε ą 0. Then there exist x1 and y1 such that x ă x1 ă
y1 ă y, that f 1pxq ´ ε is ď the slope k1 of rpx, fpxqq, px1, fpx1qqs, and that f 1pyq ` ε
is ě the slope k2 of rpy1, fpy1qq, py, fpyqqs. Since f is convex, k1 is ď the slope k1 of
rpx1, fpx1qq, py1, fpy1qqs, and k1 ď k2. Therefore k1 ď k2. Thus f 1pxq ´ ε ď f 1pyq ` ε.
Since ε ą 0 is arbitrary, we get f 1pxq ď f 1pyq.

When f2 exists, the equivalence between f2 ě 0 and the increasing monotonic-
ity of f 1 is due to Cor. 11.20.

The most important general property about convex functions is:

Theorem 12.27 (Jensen’s inequality). Let f : I Ñ R be a convex function. Let n P Z`

and x1, . . . , xn P I . Choose t1, . . . , tn P r0, 1s such that t1 ` ¨ ¨ ¨ ` tn “ 1. Then

fpt1x1 ` ¨ ¨ ¨ ` tnxnq ď t1fpx1q ` ¨ ¨ ¨ ` tnfpxnq (12.26)

Proof. The points px1, fpx1qq, . . . , pxn, fpxnqq are in Df “ (12.25). Therefore, by
Lem. 12.28, the point

t1px1, fpx1qq ` ¨ ¨ ¨ ` tnpxn, fpxnqq “ pt1x1 ` ¨ ¨ ¨ ` tnxn, t1fpx1q ` ¨ ¨ ¨ ` tnfpxnqq

is in the convex set Df .
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Lemma 12.28. Let V be a real vector space. Let E be a convex subset of V . Let n P Z`

and p1, . . . , pn P E. Any convex combination of p1, . . . , pn (i.e., any point of the form
t1p1 ` ¨ ¨ ¨ ` tnpn where t1, . . . , tn P r0, 1s and t1 ` ¨ ¨ ¨ ` tn “ 1) is inside E.

The geometric meaning of this lemma is clear: If V “ R2 (which is the main
case we are interested in), then t1p1`¨ ¨ ¨` tnpn stands for an arbitrary point inside
the polygon with vertices p1, . . . , pn. So this point is clearly inside E.

Proof. We prove by induction on n. The case n “ 1 is obvious. Suppose case n´ 1
has been proved n ě 2. Consider case n. It is trivial when t1 ` ¨ ¨ ¨ ` tn´1 “ 0. So
let us assume t1 ` ¨ ¨ ¨ ` tn´1 ą 0. By case n´ 1, the point q “ λ1p1 ` ¨ ¨ ¨ ` λn´1pn´1

is in E where

λi “
ti

t1 ` ¨ ¨ ¨ ` tn´1

Since E is convex, the point pt1`¨ ¨ ¨` tn´1qq` tnpn (which equals t1p1`¨ ¨ ¨` tnpn)
is in E.

Example 12.29. Since p´ log xq2 “ x´2 is positive on Rą0, by Thm. 12.26, ´ log is a
convex function on Rą0. Therefore, if 0 ă λ1, . . . , λn ď 1 and λ1`¨ ¨ ¨`λn “ 1, then
by Jensen’s inequality, for each x1, . . . , xn ą 0 we have ´ logp

ř

i λixiq ď ´λi log xi.
Taking exponentials, we get

xλ11 ¨ ¨ ¨ x
λn
n ď λ1x1 ` ¨ ¨ ¨ ` λnxn

for all x1, . . . , xn ą 0, and hence for all x1, . . . , xn ě 0. In particular, we get the
inequality of arithmetic and geometric means

px1 ¨ ¨ ¨ xnq
1
n ď

x1 ` ¨ ¨ ¨ ` xn
n

(12.27)

and the Young’s inequality

x
1
py

1
q ď

x

p
`
y

q
(12.28)

if p, q ą 1 and 1
p
` 1

q
“ 1.

Definition 12.30. Let p P r1,`8s. We say that q P r1,`8s is the Hölder conjugate
of p if 1

p
` 1

q
“ 1.

12.6 Hölder’s and Minkowski’s inequalities; lp spaces

In this section, we use Young’s inequality to prove two inequalities that are of
vital importance to the development of modern analysis:
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Theorem 12.31. Let x1, . . . , xn, y1, . . . , yn P Rě0. Let p, q P p1,`8q satisfy 1
p
`

1
q
“ 1. Then the following inequalities (called respectively Hölder’s inequality and

Minkowski’s inequality) are true:

x1y1 ` ¨ ¨ ¨ ` xnyn ď
p
a

xp1 ` ¨ ¨ ¨ ` x
p
n ¨

q
a

yq1 ` ¨ ¨ ¨ ` y
q
n (12.29a)

p
a

px1 ` y1qp ` ¨ ¨ ¨ ` pxn ` ynqp ď
p
a

xp1 ` ¨ ¨ ¨ ` x
p
n `

p
a

xp1 ` ¨ ¨ ¨ ` x
p
n (12.29b)

In the special case that p “ q “ 2, Hölder’s inequality is called the Cauchy-
Schwarz inequality.

The following proof is quite tricky. In Sec. 29.6, we will give a more straight-
forward proof of the two inequalities using Lagrange multipliers.

‹‹ Proof. Assume WLOG that xi ą 0 and yj ą 0 for some i, j. Young’s inequality
implies that for each i,

xi
p
a

ř

k x
p
k

¨
yi

q
a

ř

k y
q
k

ď
xpi

p
ř

k x
p
k

`
yqi

q
ř

k y
q
k

Taking sum over i gives

ÿ

i

xi
p
a

ř

k x
p
k

¨
yi

q
a

ř

k y
q
k

ď
1

p
`

1

q
“ 1

This proves Hölder’s inequality.
Notice that pq “ p` q. Let zi “ xi ` yi. By Hölder’s inequality, we have

x1z
p´1
1 ` ¨ ¨ ¨ ` xnz

p´1
n ď

´

ÿ

k

xpk

¯
1
p
¨

´

ÿ

k

z
pp´1qq
k

¯
1
q
“

´

ÿ

k

xpk

¯
1
p
¨

´

ÿ

k

zpk

¯
1
q

and similarly

y1z
p´1
1 ` ¨ ¨ ¨ ` ynz

p´1
n ď

´

ÿ

k

ypk

¯
1
p
¨

´

ÿ

k

zpk

¯
1
q

Adding up these two inequalities, we get

ÿ

k

zpk ď

ˆ

´

ÿ

k

xpk

¯
1
p
`

´

ÿ

k

ypk

¯
1
p

˙

¨

´

ÿ

k

zpk

¯
1
q

Dividing both sides by
´

ř

k z
p
k

¯
1
q

proves Minkowski’s inequality.

Minkowski’s inequality is often used in the following way:
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Theorem 12.32. Let X be a set, and let V be a normed vector space over F P tR,Cu. Let
1 ď p ă `8. For each f P V X , define the lplplp-norm

}f}p ” }f}lp “
´

ÿ

xPX

}fpxq}p
¯

1
p

(12.30)

Then for each f, g P V X and λ P F we have

}f ` g}p ď }f}p ` }g}p }λf}p “ |λ| ¨ }f}p (12.31)

In particular, } ¨ }p is a norm on the lplplp-space

lppX, V q “ tf P V X : }f}lp ă `8u (12.32)

If V is Banach space, then so is lppX, V q.

Recall 0 ¨ p˘8q “ 0.

Proof. Choose any A P finp2Xq. By Minkowski’s and triangle inequality, we have

ÿ

A

|f ` g|p ď
ÿ

A

p|f | ` |g|qp ď
´´

ÿ

A

|f |p
¯

1
p
`

´

ÿ

B

|f |p
¯

1
p
¯p

ď

´´

ÿ

X

|f |p
¯

1
p
`

´

ÿ

X

|f |p
¯

1
p
¯p

“ p}f}p ` }g}pq
p

Taking limAPfinp2Xq gives }f ` g}pp ď p}f}p ` }g}pq
p, proving the first inequality of

(12.31). The second of (12.31) clearly holds by taking limAPfinp2Xq of
ÿ

A

|λf |p “ |λ|
ÿ

A

|f |p

and noting that the multiplication map t P Rě0 ÞÑ |λ|t P Rě0 is continuous.
Suppose that V is complete. Let pfnq be a Cauchy sequence in lppX, V q. Then

for each x P X , pfnpxqq is a Cauchy sequence in V , converging to some element
fpxq P V . By Cauchyness, for each ε ą 0 there is N P Z` such that for all n, k ě N
we have }fn ´ fk}p ď ε, and hence

ÿ

xPA

}fnpxq ´ fkpxq}
p
ď εp

for all A P finp2Xq. Taking limk gives
ř

A |fn ´ f |p ď εp. Taking limAPfinp2Xq gives
}fn ´ f}p ď ε for all n Pě N . (In particular, }f}p ď }fN} ` ε ă `8, and hence
f P lppX, V q.) This proves that pfnq converges to f under the lp-norm. So lppX, V q
is complete.
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Theorem 12.33. Let X be a set. Let F P tR,Cu. Let p, q P r1,`8s such that 1
p
` 1

q
“ 1.

Then there is a linear isometry

Ψ : lppX,Fq Ñ lqpX,Fq˚ f ÞÑ Ψpfq (12.33a)

where for each g P lqpX,Fq, the value of Ψpfq at g is

xΨpfq, gy “
ÿ

xPX

fpxqgpxq (12.33b)

where the RHS converges.

In fact, we will see in Thm. 17.30 that if q ă `8 (and hence p ą 1), Ψ is
surjective, and hence is an isomorphism of normed vector spaces. (This is not a
difficult fact. So you can prove it yourself.)

Proof. We treat the case 1 ă p, q ă `8, and leave the case that p P t1,`8u to the
readers. Assume f P lp and g P lq, then for each A P finp2Xq we have by Hölder’s
inequality that

›

›

›

ÿ

A

fg
›

›

›
ď
ÿ

A

|fg| ď
´

ÿ

A

|f |p
¯

1
p
´

ÿ

A

|g|q
¯

1
q
ď }f}p ¨ }g}q

Applying limAPfinp2Xq to the second term above implies that
ř

X |fg| ă `8. So
ř

X fg converges absolutely, and hence converges. So (12.33b) makes sense, and
hence Ψ is a well-defined linear map. Applying limAPfinp2Xq to the first term above
implies that

|xΨpfq, gy| ď }f}p ¨ }g}q

Thus, by Rem. 10.24, we obtain }Ψpfq} ď }f}p.
To show }Ψpfq} “ }f}p, assume WLOG that f ‰ 0, and define g : X Ñ F to be

g “ f
|f |
¨ |f |p´1, where gpxq is understood as 0 if fpxq “ 0. Then

xΨpfq, gy “
ÿ

X

|f |p “ }f}pp

and }g}qq “
ř

X |f |
pq´q “

ř

X |f |
p “ }f}pp. So

}f}p ¨ }g}q “ }f}
1`p{q
p “ }f}pp “ xΨpfq, gy

This proves }Ψpfq} “ }f}p by Rem. 10.24. So Ψ is a linear isometry.

I do not want to deviate too much from the main purpose of this section, which
is to show some important applications of convex functions. I will therefore stop
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my discussion about lp spaces, and continue this topic in the future. The cru-
cial role of lp spaces and their continuous versions (namely Lp spaces) in modern
analysis is a long story. The study of these objects constitutes a major part of the
second half of this course. Let me mention just one point: the compactness of
Bl2pZ,Cqp0, 1q under the pointwise convergence topology (by viewing it as a sub-
space of CZ) was the most important reason for Hilbert and Schmidt to study the
Hilbert space l2pZ,Cq, and it was the crucial property that allowed them to fully
solve the eigenvalue problem in integral equations (cf. Subsec. 10.4.1).

12.7 Problems and supplementary material

Let ´8 ă a ă b ă `8. Let V be a Banach space over F P tR,Cu.

Problem 12.1. Let f be the function in Exp. 12.19. Prove that f pnqp0q “ 0 for all
n P N.

Problem 12.2. Let n P N. Let f : ra, bs Ñ V such that f, f 1, . . . , f pnq exist every-
where on ra, bs. Use the higher order finite-increment theorem to prove that

›

›

›
fpxq ´

n
ÿ

k“0

f pkqpaq

k!
px´ aqk

›

›

›
ď
px´ aqn

n!
¨ sup
aătăx

}f pnq
ptq ´ f pnq

paq} (12.34)

Remark 12.34. Setting n “ 1 and dividing both sides by x ´ a, we obtain an
especially useful formula for any differentiable f : ra, bs Ñ V as follows.

›

›

›

fpxq ´ fpaq

x´ a
´ f 1

paq
›

›

›
ď sup

aătăx

›

›f 1
ptq ´ f 1

paq
›

› (12.35)

Problem 12.3. Use Thm. 11.33 to prove the following theorem. (Formula (12.35)
might be helpful.)

Theorem 12.35. Let I “ ra, bs and J “ rc, ds be intervals in R with at least two points.
Let f : I ˆ J Ñ V be a function such that B1f, B2f, B2B1f exist on I ˆ J , and that B2B1f
is continuous. Then B1B2f exists on I ˆ J and equals B2B1f .

‹ Problem 12.4. Prove that, for x P p´1, 1s,

arctanx “
8
ÿ

k“0

p´1qk
x2k`1

2k ` 1
“ x´

x3

3
`
x5

5
´
x7

7
`´ ¨ ¨ ¨ , (12.36)

and hence (Leibniz formula)

π

4
“

8
ÿ

k“0

p´1qk

2k ` 1
“ 1´

1

3
`

1

5
´

1

7
`´ ¨ ¨ ¨
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Hint. Use the method in the second proof of Exp. 12.20 to prove (12.36) for x P
p´1, 1q. To prove (12.36) for x “ 1, show that the series on the RHS of (12.36)
converges uniformly on r0, 1s to a continuous function using Dirichlet’s test for
uniform convergence (Thm. 4.29).

‹ Problem 12.5. Let n P N. Find the radius of convergence of

fpzq “
8
ÿ

k“n

ˆ

k

n

˙

zk (12.37)

Find the explicit formula of fpzq.

Problem 12.6. Prove the following higher order finite-increment theorem for com-
plex variables. (For simplicity, it suffices prove the case that z0 “ 0.)

Theorem 12.36 (Higher order finite-increment theorem). Let V be a Banach space
over C. Let R ą 0 and z0 P C. Let f : ΩÑ V where

Ω “ BCpz0, Rq “ tz P C : |z ´ z0| ă Ru

Assume that f 1, f2, . . . , f pn`1q exist everywhere on Ω. Then for every z P Ω we have
›

›

›
fpzq ´

n
ÿ

k“0

f pkqpz0q

k!
pz ´ z0q

k
›

›

›
ď
|z ´ z0|

n`1

pn` 1q!
¨ sup
ξPrz0,zs

}f pn`1q
pξq} (12.38)

where rz0, zs “ ttz ` p1´ tqz0 : 0 ď t ď 1u.

‹ Problem 12.7. Let V be a Banach space over C. Assume that the power series
fpzq “

ř8

k“0 vkz
k (where vk P V ) has radius of convergence R ą 0. Choose any

z0 P BCp0, Rq. Prove that there exists a neighborhood Ω P NbhCpz0q contained
inside BCp0, Rq, such that the Taylor series of f at z0 converges uniformly on Ω to
f . Namely, prove that the series gpzq converges locally uniformly to f on Ω where

gpzq “
8
ÿ

k“0

f pkqpz0q

k!
pz ´ z0q

k (12.39)

Hint. Use Thm. 12.36. Pb. 12.5 might also be helpful.

‹ Problem 12.8. Let W be a real vector space. Let A be a nonempty subset of W .
Define the convex hull of A to be the set of all convex combinations (recall Lem.
12.28) of elements of A, i.e.

CvhpAq “
␣

convex combinations of v1, . . . , vn : n P Z` and v1, . . . , vn P A
(

(12.40)

Prove that CvhpAq is the smallest convex set containing A. In other words, prove
that CvhpAq is a convex set containing A, and that CvhpAq Ă B if B is a convex
subset of W containing A.

Problem 12.9. Prove Thm. 12.33 for the case p “ 1 and p “ `8.
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13 Riemann integrals

13.1 Introduction: the origin of integral theory in Fourier series

13.1.1 Antiderivatives VS. approximation by areas of rectangles

Modern people can easily appreciate the importance of giving a rigorous def-
inition to the integral

şb

a
fpxqdx where f is a general (say, continuous) function.

And you may already know that this integral is defined by taking the limit of Rie-
mann sums, which are “areas of some rectangles”. This idea sounds so natural
to you, because you know that by the time Calculus was invented, people knew
very well that

şb

a
f means the area of the region between the graph of f and the

x-axis, and that this area can be approximated by the areas of some rectangles or
triangles. So why did Riemann integral not appear until 19th century, more than a
hundred years after Newton’s and Leibniz’s invention of calculus? And why was
the inadequacy of defining integrals by means of antiderivatives not recognized
until 19th century?

Beyond the superficial reason that 19th century is the century in which people
began to pay attention to the foundations of calculus, there is a deeper reason:
the study of partial differential equations (PDE) and the introduction of Fourier
series caused a drastic change in the general view of what functions are. This
change of view motivated people to search for a general definition of integrals, in
particular one that does not use antiderivatives.

Before the systematic study of PDEs (i.e., before 19th century), functions only
mean analytic functions, which means that they can be approximated by their
Taylor series. But if f is such a function, then fpxq “

ř8

n“0
f pnqpaq

n!
px ´ aqn. So the

values of f are all determined by fpaq, f 1paq, f2paq, . . . , and hence
:::
are

:::::::::::::
determined

:::
by

:::
f |I::::::::

where
::
I

::
is

::::
an

::::::::::
arbitrary

::::::::::::
nonempty

::::::
open

:::::::::
interval. (Technically, such func-

tions are called (real) analytic functions.) Therefore, periodic functions (except
trigonometric functions) were not accepted, because they are not determined by
their values on a small interval. (A function with expression fpxq “ x on r0, 1s
should also have the same expression on R. So it must not be the periodic func-
tion fpxq “ x´ n where x P pn, n` 1s.) The function Exp. 12.19 was not accepted,
because it was not determined by fp0q, f 1p0q, f2p0q, . . . .

Therefore, in these old days, people did not worry about the rigorous defini-
tion of integrals, because they can simply define integrals using antiderivatives
instead of using the areas of rectangles to approximate the integrals, which is
practically less convenient than finding the antiderivatives. In particular, one un-
derstood
ż b

a

ÿ

anpx´ cq
ndx

def
ùùù F pbq ´ F paq where F pxq “

ÿ an
n` 1

px´ cqn`1
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13.1.2 PDEs and periodic functions

The wonderful dream was shattered when people started working on PDEs.
The simplest such example is wave equation

B
2
xfpx, tq ´ B

2
t fpx, tq “ 0 (13.1)

This equation describes the vibration of a string: at time t, the shape of the string
is the graph of the function x P ra, bs ÞÑ fpx, tq P R. (Here, we assume that the two
end points of the string are pa, 0q and pb, 0q.)

D’Alambert solved the wave equation in the following way. Using the trick

B
2
x ´ B

2
t “ 4BuBv where u “ x` t, v “ x´ t

it is not hard to find the general solution of the wave equation:

fpx, tq “
1

2

`

gpx` tq ` gpx´ tq
˘

`
1

2

ż x`t

x´t

hpsqds (13.2)

where gpxq “ fpx, 0q and hpxq “ Btfpx, 0q. In particular, if we assume that h “ 0
(i.e., at time t “ 0 the string is held in place and does not vibrate), then the solution
is

fpx, tq “
1

2

`

gpx` tq ` gpx´ tq
˘

(13.3)

Here comes the trouble. If we assume that the two end points of the string are
always pinned at p0, 0q and p1, 0q respectively, then we have fp0, tq “ fp1, tq “ 0
for all t P R. Translating this condition to g, we get gptq “ ´gp´tq “ ´gp2 ´ tq
and hence g is a function with period 2, totally unacceptable! Worse still, the
derivatives of periodic functions might have points of discontinuities.

13.1.3 Fourier series

The next important progress was made by Fourier in the study of heat equa-
tion

Btfpx, tq ´ B
2
xfpx, tq “ 0 (13.4)

where x is defined on a closed interval (say r´π, πs) representing a thin rod, fpx, tq
is the temperature of the point x of this rod at time t. Fourier solved the problem
by separation of variables: He first assumed fpx, tq “ upxqvptq. Then the heat
equation implies u2pxqvptq “ upxqv1ptq, and hence

u2pxq

upxq
“
v1ptq

vptq
(13.5)

219



The LHS is independent of t, and the RHS is independ of x. So (13.5) should be
a constant ´λ. The solution is then upxq “ ei

?
λx and vptq “ e´λt. If one assumes

that the temperature at the two end points ´π, π are equal, then
?
λ must be an

integer n P Z. So fpx, tq “ einx´n2t. Taking infinite linear combinations, Fourier
found the general solution

fpx, tq “
`8
ÿ

n“´8

ane
inx´n2t (13.6)

The initial temperature gpxq “ fpx, 0q is a Fourier series

gpxq “
`8
ÿ

n“´8

ane
inx (13.7)

and, in particular, a function with period 2π (since each einx is so).
In order to use (13.6) to determine the solution fpx, tq when the initial condi-

tion fpx, tq “ gpxq is given, one must first find the values of these Fourier coeffi-
cients an in terms of g. In fact, since

1

2π

ż π

´π

eikx ¨ e´inxdx “ δk,n (13.8)

(recall (0.2)), it is not hard to guess the formula

an “
1

2π

ż π

´π

gpxqe´inxdx (13.9)

since this formula is true when gpxq “ eikx.

13.1.4 From Riemann integrals to Lebesgue integrals

Here comes the question that is closely related to integral theory: What is the
meaning of the integral (13.9) if g is no longer a real analytic function?

To be more precise, in 19th century there was a long debate about what are
(good) functions, and what functions have Fourier expansions, i.e., expansions
of the form (13.7). Fourier himself believed that all “functions” can be approxi-
mated by trigonometric functions (equivalently, functions of the form einx). But
Lagrange did not, partly due to his (and many people’s) insistence that functions
must be real analytic (cf. [Kli, Sec. 28.2]). The doubt on whether many functions
have Fourier expansions is quite understandable. From the modern perspective,
we know that many Lebesgue measurable functions are not approximated by
their Fourier series pointwise or uniformly, but are approximated under some
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other norms (e.g. the L2-norm }f}L2 “

b

şπ

´π
|f |2). Indeed, there are many con-

tinuous functions r´π, πs Ñ R whose Fourier series diverge on a dense subset
of r´π, πs (cf. [Rud-R, Thm. 5.12]). Therefore, Fourier’s pioneering view that all
“reasonable” functions can be approximated by Fourier series is incorrect unless
we define what “approximation” means in a new and appropriate way.

In order to understand which functions have Fourier series expansions (in
whatever sense), the first step is to understand for which function g the in-
tegral (13.9) makes sense. Therefore, the history of extending the class of
integrable functions from continuous functions to Riemann integrable functions
and finally to Lebesgue integrable functions is also part of the history of
understanding which functions can have Fourier expansions and which functions
are “reasonable”.

The goal of this chapter is to learn Riemann integrals. The construction of
Riemann integrals is much easier than Lebesgue theory. But compared to the
latter, Riemann integrals have some serious drawbacks.

For example, suppose that a sequence of functions pfnq on r´π, πs converges
to f in some sense. It is natural to ask whether the Fourier coefficients of pfnq con-
verge to those of f . (A typical example is fnpxq “

řn
k“´n ake

ikx. Then this question
asks whether the n-th Fourier coefficient of the series

ř`8

k“´8
ake

ikx is an.) In view
of (13.9), this problem is reduced to the problem of showing

ş

f “ limn

ş

fn. If pfnq
is a sequence of Riemann integrable functions converging uniformly to f , then f
is Riemann integrable, and

ş

f “ lim
ş

fn. (See Cor. 13.21.) However, if pfnq only
converges pointwise to f , then f is not necessarily Riemann integrable. Even if f
is Riemann integrable, one does not have a useful criterion for

ş

f “ lim
ş

fn in the
framework of Riemann integrals.

But uniform convergence often does not hold in application, and especially in
Fourier theory and PDEs. For example, let f be the function on R with period 2π
defined by fpxq “ x if ´π ă x ă π and fpπq “ 0. Then the Fourier series

8
ÿ

n“1

p´1qn´1 2

n
sinpnxq (13.10)

converges pointwise to f . (See also Pb. 4.3.) It does not converge uniformly to
f , because the uniform limit of a sequence of continuous functions is continuous,
but f is not continuous.

Lebesgue’s integral theory will provide a more satisfying answer to the above
problem. We will learn it in the second semester.

13.2 Riemann integrability and oscillation

In this section, we fix a Banach space V over F P tR,Cu, and let I “ ra, bswhere
´8 ă a ă b ă `8. We understand |I| as b´ a.
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13.2.1 Riemann integrals

Definition 13.1. A partition of the interval I “ ra, bs is defined to be an element
of the form

σ “ ta0, a1, . . . , an P I : a0 “ a ă a1 ă a2 ă ¨ ¨ ¨ ă an “ b, n P Z`u (13.11)

Equivalently, this partition can be written as

I “ I1 Y I2 Y ¨ ¨ ¨ Y In Ij “ raj´1, ajs (13.12)

If σ, σ1 P finp2Iq are partitions of I , we say that σ1 is a refinement of σ (or that σ1 is
finer than σ), if σ Ă σ1. In this case, we also write

σ ă σ1

We define PpIq or simply P to be

PpIq “ tpartitions of Iu

Remark 13.2. If σ, σ1 P PpIq, then clearly σYσ1 P PpIq and σ, σ1 ă σYσ. Therefore,
ă is a partial order on PpIq. We call σ Y σ1 the common refinement of σ and σ1.

Definition 13.3. A tagged partition of I is an ordered pair

pσ, ξ‚q “
`

ta0 “ a ă a1 ă ¨ ¨ ¨ ă an “ bu, pξ1, . . . , ξnq
˘

where σ P PpIq and ξj P Ij “ raj´1, ajs for all 1 ď j ď n. The set

QpIq “ ttagged partitions of Iu

equipped with the preorder ă defined by

pσ, ξ‚q ă pσ1, ξ1
‚q ðñ σ Ă σ1 (13.13)

is a directed set.

Definition 13.4. Let f : I Ñ V . For each pσ, ξ‚q P QpIq, define the Riemann sum

Spf, σ, ξ‚q “
ÿ

jě1

fpξjqpaj ´ aj´1q

The Riemann integral is defined to be the limit of the net pSpf, σ, ξ‚qqpσ,ξ‚qPQpIq:
ż b

a

f ”

ż b

a

fpxqdx “ lim
pσ,ξ‚qPQpIq

Spf, σ, ξ‚q

When the RHS exists, we way that f is Riemann integrable on I . We let

RpI, V q “ tRiemann integrable f P V I
u
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Convention 13.5. There are several equivalent ways to write the integrals:

ż b

a

f “ ´

ż a

b

f “

ż

ra,bs

f

if a ă b. Also, if a “ b, the above terms are understood to be 0, and all functions
on ra, bs are considered Riemann integrable.

Remark 13.6. It is clear that
şb

a
f “ v P V iff for every ε ą 0 there exists σ0 P PpIq

such that for any partition σ “ ta0 ă ¨ ¨ ¨ ă anu finer than σ0, and for any ξj P
raj´1, ajs (for all 1 ď j ď n) we have

›

›

›
v ´

ÿ

jě1

fpξjqpaj ´ aj´1q

›

›

›
ă ε

There is not need to tag σ0.

13.2.2 Riemann integrability and strong Riemann integrability

In this subsection, we give a useful criterion for Riemann integrability.

Definition 13.7. Let A be a nonempty subset of a metric space Y . The diameter
of A is defined to be

diampAq “ sup
x,yPA

dpx, yq

If f : X Ñ Y is a map where X is a set, and if E Ă X , the oscillation of f on E is
defined to be diamfpEq.

The following lemma allows us to control the difference of Riemann sums by
means of the oscillation.

Lemma 13.8. Let f : I “ ra, bs Ñ V and M “ diampfpIqq. Then for each
pσ, ξ‚q, pσ

1, ξ1
‚q P QpIq we have

}Spf, σ, ξ‚q ´ Spf, σ
1, ξ1

‚q} ďMpb´ aq (13.14)

Proof. Write σ Y σ1 “ ta0 “ a ă a1 ă ¨ ¨ ¨ ă an “ bu. Then there exist γ1, . . . , γn P
tξ1, ξ2, . . . u such that

Spf, σ, ξ‚q “

n
ÿ

i“1

fpγiqpai ´ ai´1q
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(Here is how to choose γi: Let k be the unique number such that the k-th subin-
terval of σ contains rai´1, ais. Then let γi “ ξk.) Similarly, there exist γ1

1, . . . , γ
1
n P

tξ1
1, ξ

1
2, . . . u such that

Spf, σ1, ξ1
‚q “

n
ÿ

i“1

fpγ1
iqpai ´ ai´1q

Then

}Spf, σ, ξ‚q ´ Spf, σ
1, ξ1

‚q} ď

n
ÿ

i“1

}fpγiq ´ fpγ
1
iq} ¨ pai ´ ai´1q

ď

n
ÿ

i“1

Mpai ´ ai´1q ďMpb´ aq

Definition 13.9. Let f : I Ñ V . For each σ “ ta0 ă ¨ ¨ ¨ ă anu P PpIq, write
Ii “ rai´1, ais and define the oscillation of f on σ to be

ωpf, σq “
n
ÿ

j“1

diampfpIjqq ¨ paj ´ aj´1q (13.15)

Exercise 13.10. Show that if σ1 Ą σ, then ωpf, σ1q ď ωpf, σq. Therefore,
pωpf, σqqσPPpIq is a decreasing net in Rě0.

Now, Lem. 13.8 can be upgraded to the following version.

Lemma 13.11. Let f : I Ñ V . Let σ P PpIq. Choose pσ1, ξ1
‚q, pσ

2, ξ2
‚q P QpIq such that

σ Ă σ1 and σ Ă σ2. Then

}Spf, σ1, ξ1
‚q ´ Spf, σ

2, ξ2
‚q} ď ωpf, σq (13.16)

Proof. Write σ “ ta0 ă ¨ ¨ ¨ ă anu and Ij “ raj´1, ajs. Let Spf, σ1, ξ1
‚qIj be the

restriction of Spf, σ1, ξ1
‚q to Ij . Namely,

Spf, σ1, ξ1
‚qIj “

ÿ

all k such that
rak´1,aksĂIj

fpξkqpak ´ ak´1q (13.17)

Define Spf, σ2, ξ2
‚qIj in a similar way. Then, by Lem. 13.8 we have

}Spf, σ1, ξ1
‚qIj ´ Spf, σ

2, ξ2
‚qIj} ď diampfpIjqq|Ij|

Thus, (13.16) follows immediately from triangle inequality and
n
ÿ

j“1

Spf, σ1, ξ1
‚qIj “ Spf, σ1, ξ1

‚q

n
ÿ

j“1

Spf, σ2, ξ2
‚qIj “ Spf, σ2, ξ2

‚q
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Definition 13.12. We say that f : I Ñ V is strongly Riemann integrable if

inf
σPPpIq

ωpf, σq “ 0

Theorem 13.13. Let f : I Ñ V . Consider the following statements:

(1) f P RpI, V q.

(2) f is strongly Riemann integrable.

Then (2)ñ(1). If V is RN or CN , then (1)ô(2).

When V is infinite-dimensional, Riemann integrable functions are not neces-
sarily strongly Riemann integrable. See Pb. 13.3.

Proof. Assume (2). Choose any ε ą 0. Then there exists σ P PpIq such
that ωpf, σq ă ε. By Lem. 13.11, for every pσ1, ξ1

‚q, pσ
2, ξ2

‚q P QpIq satisfying
σ Ă σ1 and σ Ă σ2, we have }Spf, σ1, ξ1

‚q ´ Spf, σ2, ξ2
‚q} ă ε. This proves that

pSpf, σ, ξ‚qqpσ,ξ‚qPQpIq is a Cauchy net in V , and hence f P RpI, V q.
Now assume that V is RN or CN . Since CN » R2N , it suffices to consider the

case V “ RN . Since a net in RN converges iff each component of this net converge,
and since the strong Riemann integrability can be checked componentwisely, it
suffices to prove (1)ñ(2) for the case V “ R.

So let us assume f P RpI,Rq. Then pSpf, σ, ξ‚qqpσ,ξ‚qPQpIq is a Cauchy net in R.
Thus, there exists σ “ ta0 ă ¨ ¨ ¨ ă anu P PpIq such that for all pσ1, ξ1

‚q, pσ
2, ξ2

‚q P

QpIq satisfying σ Ă σ1 and σ Ă σ2, we have }Spf, σ1, ξ1
‚q ´ Spf, σ2, ξ2

‚q} ă ε. To
prove (2), we only need to take σ1 “ σ2 “ σ. Thus, for any tags ξ1

‚, ξ
2
‚ of σ, we have

}Spf, σ, ξ2
‚q ´ Spf, σ, ξ

1
‚q} ă ε

Write Ij “ raj´1, ajs. Then

diampfpIjqq “ sup fpIjq ´ inf fpIjq

So there exist ξ1
j, ξ

2
j P Ij such that

fpξ1
jq ď inf fpIjq ` ε fpξ2

j q ě sup fpIjq ´ ε

It follows that diampfpIjqq ´ 2ε ď fpξ2
j q ´ fpξ

1
jq. Thus

ωpf, σq “
ÿ

j

diampfpIjqq ¨ |Ij| ď
ÿ

j

pfpξ2
j q ´ fpξ

1
jqq ¨ |Ij| `

ÿ

j

2ε ¨ |Ij|

“Spf, σ, ξ2
‚q ´ Spf, σ, ξ

1
‚q ` 2pb´ aqε ă ε` 2pb´ aqε

Since ε ą 0 is arbitrary, we have infσPPpIq ωpf, σq “ 0.
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Example 13.14. Every continuous function f : I Ñ V is strongly Riemann inte-
grable, and hence Riemann integrable.

Proof. Since I “ ra, bs is compact, by Thm. 10.7, f P CpI, V q is uniformly con-
tinuous. Therefore, for every ε ą 0, there exists n P Z` such that for all x, y P I
satisfying |x ´ y| ď 1{n, we have }fpxq ´ fpyq} ă ε. Let σ “ ta0 ă a1 ă ¨ ¨ ¨ ă anu
be the partition of I such that |Ij| “ aj ´ aj´1 “ 1{n. Then diampfpIjqq ď ε, and
hence

ωpf, σq ď
ÿ

j

ε ¨ |Ij| “ εpb´ aq

Since ε is arbitrary, we get infσPPpIq ωpf, σq “ 0.

Example 13.15. The Dirichlet function χQ is not (strongly) Riemann integrable
on I “ ra, bs, since for every σ P PpIqwe have ωpχQ, σq “ b´ a.

13.3 Basic properties of Riemann integrals

Let I “ ra, bs be a compact interval in R. Let V be a Banach space over F P
tR,Cu. We begin this section with the following fundamental fact, which will be
used to prove Fubini’s theorem, the second fundamental theorem calculus, and
much more.

Theorem 13.16. Let W be also a Banach space over F. Let T P LpV,W q. Then for every
f P RpI, V q, we have T ˝ f P RpI,W q and

T
´

ż b

a

f
¯

“

ż b

a

T ˝ f (13.18)

In other words, we have a commutative diagram

RpI, V q RpI,W q

V W

T˝

ş

I

ş

I

T

(13.19)

where the top arrow denotes the composition map f ÞÑ T ˝ f .

Proof. By linearity, we have

SpT ˝ f, σ, ξ‚q “ T
`

Spf, σ, ξ‚q
˘

(13.20)

Since T is continuous, the limit over pσ, ξ‚q P QpIq of (13.20) is

T
´

lim
pσ,ξ‚qPQpIq

Spf, σ, ξ‚q

¯

“ T
´

ż b

a

f
¯

This proves that limSpT ˝ f, σ, ξ‚q converges to T p
şb

a
fq, i.e.,

şb

a
T ˝ f exists and

equals T p
şb

a
fq.
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Remark 13.17. Let f : I Ñ V and ε ą 0. To simplify the following discussion,
we say that f is ε-dominated by σ P PpIq, if for all pσ1, ξ1

‚q, pσ
2, ξ2

‚q P Qpra, bsq
satisfying σ Ă σ1, σ2, we have }Spf, σ1, ξ1

‚q ´ Spf, σ
2, ξ2

‚q} ă ε.
Thus, by Cauchy condition, if f is ε-dominated by some partition for every

ε ą 0, then f P RpI, V q. Moreover,

›

›

›

ż b

a

f ´ Spf, σ, ξ‚q

›

›

›
ď ε (13.21)

for every pσ, ξ‚q P QpIq such that f is ε-dominated by σ.

13.3.1 Integral operators as bounded linear maps

Proposition 13.18. Let f P RpI, V q and g P RpI,Rq. Assume that |f | ď g, i.e.,

}fpxq} ď gpxq for all x P I . Then
›

›

›

ż b

a

f
›

›

›
ď

ż b

a

g.

Proof. Apply limpσ,ξ‚qPQpIq to the obvious inequality }Spf, σ, ξ‚q} ď Spg, σ, ξ‚q.

Corollary 13.19. Assume that f : I Ñ V is strongly Riemann integrable. Then |f | :

I Ñ R is (strongly) Riemann integrable, and
›

›

›

ż b

a

f
›

›

›
ď

ż b

a

|f |

Proof. By triangle inequality, for every σ P PpIqwe have ωp|f |, σq ď ωpf, σq. So |f |
is strongly integrable. The rest of the corollary follows from Prop. 13.18.

Theorem 13.20. RpI, V q is a closed linear subspace of l8pI, V q. So RpI, V q is a Banach
space under the l8-norm. Moreover, the map

ż

: RpI, V q Ñ V f ÞÑ

ż b

a

f (13.22)

is a bounded linear map with operator norm b´ a if we equip RpI, V q with the l8-norm.

Proof. By the basic properties of limits of nets, we know that if f, g P RpI, V q and
α, β P F, then αf ` βg P RpI, V q, and

ż b

a

pαf ` βgq “ α

ż b

a

f ` β

ż b

a

g (13.23)

This proves that RpI, V q is a linear subspace of V I , and that (13.22) is linear.
Let us prove RpI, V q Ă l8pI, V q. Choose f P RpI, V q. Then f is 1-dominated

by some σ “ ta0 ă ¨ ¨ ¨ ă anu P PpIq. Fix any tag ξ‚ on σ. Choose any x P X .
Let rai´1, ais be the subinterval containing x. Let η‚ “ pξ1, . . . , ξi´1, x, ξi`1, . . . , ξnq.
Then }Spf, σ, η‚q ´ Spf, σ, ξ‚q} ă 1 implies that }fpxq ´ fpξiq} ď 1{pai ´ ai´1q. So

}f}l8 ď max
␣

}fpξiq} ` pai ´ ai´1q
´1 : 1 ď i ď n

(

ă `8
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Let pfnq be a sequence in RpI, V q converging to f P l8pI, V q. Choose any ε ą 0.
Then there is n such that }f ´ fn}8 ă ε. Since fn is Riemann integrable, fn is ε-
dominated by some σ P PpIq. By triangle inequality, f is pε` pb´ aqεq-dominated
by σ. Since ε is arbitrary, we conclude that f P RpI, V q. This proves that RpI, V q
is closed, and hence is Banach by Prop. 3.27.

Let us prove the claim about the operator norm. Choose any f P RpI, V q. Let
M “ }f}8 ă `8. Then |f | ď M . It is easy to see that

şb

a
M “ Mpb ´ aq. Thus, by

Prop. 13.18, we have }
şb

a
f} ď Mpb ´ aq “ }f}8 ¨ pb ´ aq, where “ď” becomes ““”

if we let f be a nonzero constant function. This proves that (13.22) has operator
norm b´ a thanks to Rem. 10.24.

Corollary 13.21. Let pfαqαPI be a net in RpI, V q converging uniformly to f P V I . Then

f P RpI, V q and lim
αPI

ż b

a

fα “

ż b

a

f .

Proof. This is immediate from Thm. 13.20, which implies that RpI, V q is closed in
l8pI, V q (and hence closed in V I since l8pI, V q is closed in V I), and that the map
(13.22) is continuous.

13.3.2 Some criteria for Riemann integrability

Proposition 13.22. Let f, g : I Ñ V . Suppose that tx P I : fpxq ‰ gpxqu is a finite set.

Suppose that f P RpI, V q. Then g P RpI, V q, and
ż b

a

f “

ż b

a

g.

Proof. By Thm. 13.20, it suffices to prove that g ´ f is Riemann integrable and
şb

a
pg ´ fq “ 0. This is easy to show, since g ´ f is zero outside finitely many

points.

Proposition 13.23. Let f : ra, bs Ñ V . Let c P ra, bs. Then f P Rpra, bs, V q iff
f |ra,cs P Rpra, cs, V q and f |rc,bs P Rprc, bs, V q. Moreover, if f P Rpra, bs, V q, then

ż b

a

f “

ż c

a

f `

ż b

c

f (13.24)

Proof. This is obvious when c “ a or c “ b (recall Conv. 13.5). So we assume
a ă c ă b.

First, we assume f P Rpra, bs, V q. By Cauchy condition, for each ε ą 0, f is
ε-dominated by some σ P PpIq. By enlarging σ, we assume that c P σ. Then it
is easy to see that f |ra,cs is ε-dominated by σ X ra, cs, and f |rc,bs is ε-dominated by
σ X rc, bs. So f |ra,cs and f |rc,bs are Riemann integrable.

Now assume that f |ra,cs and f |rc,bs are Riemann integrable. Choose any ε ą 0.
Then f |ra,cs is ε-dominated by some τ P Ppra, csq, and f |rc,bs is ε-dominated by
some ϱ P Pprc, bsq. Then f is 2ε-dominated by σ “ τ Y ϱ. This proves that f P
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RpI, V q. Let α‚ be a tag on ra, cs, and let β‚ be a tag on rc, bs. Then ξ‚ “ pα‚, β‚q “

pα1, α2, . . . , β1, β2, . . . q is a tag on ra, bs, and

Spf, σ, ξ‚q “ Spf |ra,cs, τ, α‚q ` Spf |rc,bs, ϱ, β‚q

By Rem. 13.17, we have
›

›

›

ż b

a

f ´ Spf, σ, ξ‚q

›

›

›
ď 2ε

›

›

›

ż c

a

f ´ Spf |ra,cs, τ, α‚q

›

›

›
ď ε

›

›

›

ż b

c

f ´ Spf |rc,bs, ϱ, β‚q

›

›

›
ď ε

Therefore, the difference of the LHS and the RHS of (13.24) has norm ď 4ε. This
proves (13.24) since ε can be arbitrary.

Example 13.24. Let f P l8pI, V q. Suppose that there exist σ “ ta0 ă a1 ă ¨ ¨ ¨ ă

anu P PpIq such that f |paj´1,ajq : paj´1, ajq Ñ V is continuous for each 1 ď j ď n.
Then f P RpI, V q.

Proof. By Prop. 13.23, it suffices to prove that each f |raj´1,ajs is Riemann integrable.
Thus, we assume WLOG that M :“ }f}8 ă `8, and that f is continuous when
restricted to pa, bq. Choose any ε ą 0. Choose δ ą 0 such that Mδ ă ε and a` δ ă
b´ δ. Let J “ ra` δ, b´ δs. Then f |J is continuous, and hence Riemann integrable
by Exp. 13.14. So f |J is ε-dominated by some ϱ P PpJq. Since diampfpIqq ď 2M ,
by Lem. 13.8, f |ra,a`δs is 2ε-dominated by ta, a ` δu, and f |rb´δ,bs is 2ε-dominated
by tb ´ δ, bu. So f is 5ε-dominated by σ “ ϱ Y ta, bu. Since ε ą 0 is arbitrary, we
conclude f P RpI, V q by Cauchy condition.

Example 13.25. The function f : r0, 1s Ñ R defined by fpxq “ sinp1{xq if 0 ă x ď 1
and fp0q “ 0 is Riemann integrable, although f is not uniformly continuous on
p0, 1s.

Example 13.26. Let I1, . . . , In be intervals inside I . Choose v1, . . . , vn P V and set
f “

řn
j“1 vjχIj . Then f P RpI, V q.

Proof. The case of arbitrary n follows from the case n “ 1 by linearity and Thm.
13.20. Assume n “ 1, and let c “ inf I1 and d “ sup I1. Then the restriction of
f to ra, cs (resp. rc, ds and rd, bs) equals a constant function except possibly at the
end points of the interval. So f |ra,cs, f |rc,ds, f |rd,bs are Riemann integrable by Prop.
13.22. So f is Riemann integrable by Prop. 13.23.

Example 13.27. Let f P CpI, V q. For each n P Z`, choose a tag ξ‚,n for the partition
σ “ ta, a` |I|{n, a` 2|I|{n, . . . , a` pn´ 1q|I|{n, bu of I . Then

lim
nÑ8

b´ a

n

n
ÿ

i“1

fpξi,nq “

ż b

a

f (13.25)
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Proof. Let fn “
řn
i“1 fpξi,nq ¨ χJi,n where Ji,n “

`

a ` i´1
n
|I|, a ` i

n
|I|
‰

if i ą 1, and
J1,n “ ra, a ` |I|{ns. Then fn P RpI, V q by Exp. 13.26. Moreover, by Prop. 13.23,
the LHS of (13.25) equals limn

şb

a
fn.

By Thm. 10.7, f is uniformly continuous. So for every ε ą 0 there existsN P Z`

such that for all n ě N and all x, y P ClRpJi,nqwe have }fpxq´ fpyq} ă ε. Thus, for
all n ě N we have }f ´ fn}l8 ă ε. Therefore fn Ñ f . Thus, by Cor. 13.21 we have
şb

a
fn Ñ

şb

a
f . This proves (13.25).

Example 13.28. By Thm. 13.30, we have
ş2

1
x´1dx “ log 2. Thus, by Exp. 13.27, we

have limnÑ8

řn
i“1

2´1
n
¨ p1` i{nq´1 “ log 2, namely

lim
nÑ8

`

pn` 1q´1
` pn` 2q´1

` ¨ ¨ ¨ ` p2nq´1
˘

“ log 2

13.4 Integrals and derivatives

Let I “ ra, bs be an interval in R. Let V be a Banach space over F P tR,Cu.

13.4.1 Fundamental theorems of calculus (FTC)

There are two versions of FTC. Roughly speaking, the first FTC says that in-
tegrals give antiderivatives. The second FTC says that antiderivatives give in-
tegrals. These two FTC are equivalent when the function f to be integrated is
continuous. Otherwise, there is a subtle difference (which I can never remember)
between these two theorems.

Theorem 13.29 (First FTC). Let f P RpI, V q. Define

F : I Ñ V F pxq “

ż x

a

f (13.26)

Then F P CpI, V q. If f is continuous at x, then F 1pxq “ fpxq.

In particular, if f P CpI, V q, then F 1 “ f . Thus, by Cor. 11.24, the antideriva-
tives of f are precisely of the form F pxq ` v0 where v0 P V is viewed as a constant
function.

Recall Conv. 13.5.

Proof. Recall by Thm. 13.20 that }f}8 ă `8. For each x, y P ra, bswe have

}F pyq ´ F pxq} “
›

›

›

ż y

a

f ´

ż x

a

f
›

›

›
“

›

›

›

ż y

x

f
›

›

›
ď }f}8 ¨ |y ´ x|

So F has Lipschitz constant }f}8. Now suppose that f is continuous at x. Then
for every ε ą 0, there exists U P NbhIpxq such that }fpxq ´ fpyq} ă ε for every
y P U . Thus, for each y P Uztxu, since

şy

x
fpxqdt “ fpxqpy ´ xq, we have

›

›

›

F pyq ´ F pxq

y ´ x
´ fpxq

›

›

›
“ |y ´ x|´1

›

›

›

ż y

x

pfptq ´ fpxqqdt
›

›

›
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ď|y ´ x|´1

ż

rx,ys

}fptq ´ fpxq}dt ď |y ´ x|´1

ż

rx,ys

εdt “ ε

This proves F 1pxq “ fpxq.

Theorem 13.30 (Second FTC). Let f P RpI, V q. Assume that F : I Ñ V is differen-
tiable and F 1 “ f . Then

ż b

a

f “ F
ˇ

ˇ

b

a

def
ùùù F pbq ´ F paq (13.27)

This theorem is easy when f P CpI, V q: In this case, by Thm. 13.29, we have
F pxq “ v0 `

şx

a
f for some v0 P V . Then (13.27) follows immediately from Prop.

13.23. The proof for the general case is more difficult:

Proof assuming Hahn-Banach. Since R is a subfield of C, we may view V as a real
Banach space. We first consider the special case that V “ R. Let A “

şb

a
f . Choose

any ε ą 0. Since f P RpI,Rq, there exists σ “ ta0 ă ¨ ¨ ¨ ă anu P PpIq such that for
every tag ξ‚ on σ, we have |A´ Spf, σ, ξ‚q| ă ε. By Lagrange’s MVT (Thm. 11.19),
there exists ξi P pai´1, aiq such that

F paiq ´ F pai´1q “ fpξiqpai ´ ai´1q

Thus, we have a tag ξ‚ such that Spf, σ, ξ‚q “ F pbq´F paq. Hence |A´F pbq`F paq| ă
ε. Since ε is arbitrary, we get A “ F pbq ´ F paq.

The case V “ RN can be reduced to the above special case easily. We now
consider the general case that V is a Banach space over R. Similar to (12.15), for
everyφ P V ˚ “ LpV,Rq, we have thatφ˝F is differentiable, and that pφ˝F q1 “ φ˝f .
Note that φ ˝ f P RpI,Rq by Thm. 13.16. Apply the one-dimensional special case
to φ ˝ f . Then by Thm. 13.16, we have

φ
´

ż b

a

f
¯

“

ż b

a

φ ˝ f “ φ ˝ F
ˇ

ˇ

b

a
“ φpF pbq ´ F paqq

By Hahn-Banach theorem, V ˚ separates points of V . (See Rem. 11.26.) Therefore
şb

a
f “ F pbq ´ F paq.

13.4.2 Applications of FTC: integration by parts

Proposition 13.31 (Integration by parts). Let f P C1pI, V q and g P C1pI,Fq. Then
ż b

a

f 1g “ pfgq
ˇ

ˇ

b

a
´

ż b

a

fg1 (13.28)

Proof. pfgq
ˇ

ˇ

b

a
“
şb

a
pfgq1 “

şb

a
f 1g `

şb

a
fg1.
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Theorem 13.32 (Taylor’s theorem, integral form). Let n P N and f P

Cn`1pra, bs, V q. Then for every x P ra, bs we have

fpxq “
n
ÿ

k“0

f pkqpaq

k!
px´ aqk `

ż x

a

f pn`1qptq

n!
px´ tqndt (13.29)

Proof. When n “ 0, (13.29) is just FTC. We now prove (13.29) by induction. Sup-
pose that case n´ 1 has been proved, then by integration by parts,

fpxq ´
n´1
ÿ

k“0

f pkqpaq

k!
px´ aqk “

ż x

a

f pnqptq

pn´ 1q!
px´ tqn´1dt

“

ż x

a

´
f pnqptq

n!
Btpx´ tq

ndt

“´
f pnqptq

n!
px´ tqn

ˇ

ˇ

ˇ

x

t“a
`

ż x

a

f pn`1qptq

n!
px´ tqndt

“
f pnqpaq

n!
px´ aqn `

ż x

a

f pn`1qptq

n!
px´ tqndt

Exercise 13.33. Use the integral form of Taylor’s theorem to give a quick proof
higher order finite-increment Thm. 12.17 under the assumption that f P

Cn`1pra, bs, V q. (This assumption is slightly stronger than that in Thm. 12.17, but
is enough for applications.)

In the case that V “ R, the integral form of Taylor’s theorem actually implies a
slightly weaker (but useful enough) version of Lagrange form. This relies on the
following easy fact:

Proposition 13.34 (Mean value theorem). Let f, g P Cpra, bs,Rq such that gpxq ě 0
for all x P pa, bq. Then there exists ξ P ra, bs such that

ż b

a

fg “ fpξq

ż b

a

g (13.30)

Moreover, ξ can be chosen to be in pa, bq if gpxq ą 0 for all x P pa, bq.

Proof. Let m “ inf fpIq and M “ sup fpIq. Then mg ď fg ď Mg, and hence
m
ş

I
g ď

ş

I
fg ď

ş

I
Mg. So there is y P rm,M s such that

ş

I
fg “ y

ş

I
g. By extreme

value theorem, we have m,M P fpIq. Thus, by intermediate value property, we
have y P fpIq. So y “ fpξq for some ξ P I .

Now assume gpxq ą 0 for all a ă x ă b. Let φpxq “
şx

a
fg and ψpxq “

şx

a
g. By

Cauchy’s MVT, there exists ξ P pa, bq such that gpξqpφpbq´φpaqq “ fpξqgpξqpψpbq´
ψpaqq. This finishes the proof.
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Remark 13.35. Let f P Cn`1pra, bs,Rq. By the above mean value theorem, for each
x P pa, bs there exists ξ P pa, xq such that

ż x

a

f pn`1qptq

n!
px´ tqndt “ f pn`1q

pξq

ż x

a

px´ tqn

n!
dt “

f pn`1qpξq

pn` 1q!
px´ aqn`1

Thus, the integral form of Taylor’s theorem implies Lagrange’s form (Thm. 12.18)
in the case that f P Cn`1pI,Rq.

13.4.3 Application of FTC: change of variables

Proposition 13.36 (Change of variables). Let Φ P C1pI,Rq such that ΦpIq Ă J “
rc, ds. Let f P CpJ, V q. Then

ż Φpbq

Φpaq

f “

ż b

a

pf ˝ Φq ¨ Φ1 (13.31)

Proof. Define F : J Ñ V and G : I Ñ V by F pyq “
ż y

Φpaq

f and Gpxq “ F ˝ Φpxq “

ż Φpxq

Φpaq

f . Then, by chain rule and FTC, G1 “ pF 1 ˝ Φq ¨ Φ1 “ pf ˝ Φq ¨ Φ1. By FTC, we

have G1 “ H 1 where H : I Ñ V is defined by

Hpxq “

ż x

a

pf ˝ Φq ¨ Φ1

Thus, since Gpaq “ F paq “ 0, by Cor. 11.24 we have G “ H . Then Gpbq “ Hpbq
finishes the proof.

The change of variable formula allows us to define the length of a curve:

Definition 13.37. Let γ be a C1-curve in V , i.e. γ P C1pra, bs, V q. Its length is
defined to be

lpγq “

ż b

a

}γ1
ptq}dt

Proposition 13.38. The length of γ is invariant under a reparametrization. Namely, if
f : rc, ds Ñ ra, bs is a bijection and is in C1prc, ds,Rq, then lpγq “ lpγ ˝ fq.

Proof. By Prop. 11.22, f is either increasing or decreasing. We prove the case that
f is decreasing; the other case is similar. Then fpcq “ b and fpdq “ a. By chain
rule, we have

lpγ ˝ fq “

ż d

c

|pγ ˝ fq1| “

ż d

c

|pγ1
˝ fq ¨ f 1

| “

ż d

c

p|γ1
| ˝ fq ¨ |f 1

|

which equals ´
şd

c
p|γ1| ˝ fq ¨ f 1 “

şc

d
p|γ1| ˝ fq ¨ f 1 because f 1 ď 0 by Cor. 11.20. This

expression equals
şb

a
|γ1| “ lpγq by Prop. 13.36.
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Example 13.39. The upper half circle S1
` “ tz P C : |z| “ 1, Imz ě 0u has a bijective

C8-parametrization γ : r0, πs Ñ C, γptq “ eit. Its length is π.

Proof. We have lpγq “
şπ

0
|γ1| “

şπ

0
1 “ π. So it remains to prove that γ restricts

to a bijection r0, πs Ñ S1
`. Clearly γpr0, πsq Ă S1 “ tz P C : |z| “ 1u. Note that

γptq “ cosptq` i sinptq. In Sec. 12.2, we have proved that sinpxq ě 0 when x P r0, πs.
So γpr0, πsq Ă S1

`.
We have also proved in Sec. 12.2 that cos : r0, π{2s Ñ R is a decreasing (contin-

uous) function such that cosp0q “ 1 and cospπ{2q “ 0, and that cospxq “ cospπ´xq.
The last relation shows that cos : r0, πs Ñ R is decreasing, and cosp0q “ 1, cospπq “
´1. Therefore, by the intermediate value theorem, we see that cos sends r0, πs bi-
jectively to r´1, 1s. Since the projection map onto the x-axis sends S1

` bijectively
to r´1, 1s, we conclude that γ sends r0, πs bijectively to S1

`.

Remark 13.40. You may wonder if the above argument really proves that π is
the length of S1

`: Suppose that λ : ra, bs Ñ C is another C8 map restricting to a
bijection ra, bs Ñ S1

`, how can we show that
şπ

0
|γ1| “

şb

a
|λ1| ? Clearly, there is a

bijection f : ra, bs Ñ r0, πs such that λ “ γ ˝ f . Thus, by Prop. 13.38, the two
integrals are equal if f P C8, or at least if f P C1. However, it seems that there is
no general argument ensuring that f P C1.

In the next semester, we will learn that f P C8 if the two C8-parametrizations
λ, γ satisfy that λ1 and γ1 are nowhere zero. (Clearly γ1 is nowhere zero if γptq “
eit.) Such parametrizations are called (smooth) immersions.

13.5 Problems and supplementary material

Let I “ ra, bswhere ´8 ă a ă b ă `8.

Problem 13.1. Let f P l8pI,Rq. Recall from Subsec. 13.2.1 that the refinements
of partitions define preoders on PpIq and QpIq so that they are directed sets. For
each σ “ ta0 ă a1 ă ¨ ¨ ¨ ă anu P PpIq, define the upper Darboux sum and the
lower Darboux sum

Spf, σq “
ÿ

i“1

Mipai ´ ai´1q Spf, σq “
ÿ

i“1

mipai ´ ai´1q

where Mi “ sup
ξPrai´1,ais

fpξq mi “ inf
ξPrai´1,ais

fpξq

Prove that

´pb´ aq}f}8 ď Spf, σq ă Spf, σq ď pb´ aq}f}8

Choose any tag ξ‚ on σ. Prove that

Spf, σq “ sup
pσ1,ξ1

‚qąpσ,ξ‚q

Spf, σ1, ξ1
‚q Spf, σq “ inf

pσ1,ξ1
‚qąpσ,ξ‚q

Spf, σ1, ξ1
‚q (13.32)

234



Pb. 13.1 immediately implies:

Theorem 13.41. Let f P l8pI,Rq. Define the upper Darboux integral and the lower
Darboux integral to be

ż b

a

f “ inf
σPPpIq

Spf, σq

ż b

a

f “ sup
σPPpIq

Spf, σq

which are elements of r´pb´ aq}f}8, pb´ aq}f}8s. Then we have (recalling Pb. 8.2)

ż b

a

f “ lim sup
pσ,ξ‚qPQpIq

Spf, σ, ξ‚q

ż b

a

f “ lim inf
pσ,ξ‚qPQpIq

Spf, σ, ξ‚q

Therefore, by Cor. 8.37, we have

f P RpI,Rq ðñ

ż b

a

f “

ż b

a

f (13.33)

Moreover, if f P RpI,Rq, then
şb

a
f “

şb

a
f “

şb

a
f .

Problem 13.2. Let V be a vector space over C. Since R is a subfield of C, V can be
viewed as a real normed vector space. Let Λ : V Ñ R be a R-linear map. Recall
i “

?
´1. Define the complexification of Λ to be

ΛC : V Ñ C ΛCpvq “ Λpvq ´ iΛpivq (13.34)

1. Prove that ΛC is C-linear.

2. Given a C-linear Φ : V Ñ C, we define its real part

ReΦ : V Ñ R v ÞÑ Re
`

Φpvq
˘

(13.35)

Then clearly RepΦq is R-linear. Prove that Φ ÞÑ ReΦ is a bijection from the
set of C-linear maps V Ñ C to the set of R-linear maps V Ñ R, and that its
inverse is the map Λ ÞÑ ΛC defined by (13.34).

3. Assume that V is a (non-necessarily complete) normed C-vector space. For
each C-linear Φ : V Ñ C, prove the following equation about operator
norms:

}Φ} “ }ReΦ} (13.36)

(Hint: One of “ď” and “ě” is obvious. To prove the other one, for each
v P V , find some θ P R such that eiθΦpvq P R.)
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Remark 13.42. The above problem shows how to extend a real-valued integral to
a complex-valued one. For example, suppose that we define real-valued Riemann
integrals using Darboux integrals. Suppose we have proved that the map f P

RpI,Rq ÞÑ
şb

a
f is R-linear with operator norm pb ´ aq. Then, applying Pb. 13.2 to

the R-linear map

Λ : RpI,Cq Ñ R f ÞÑ

ż b

a

Refptqdt

gives a C-linear map
ż b

a

: RpI,Cq Ñ C
ż b

a

f “

ż b

a

Ref ` i

ż b

a

Imf

since Repifq “ ´Imf . Moreover, this linear map has operator norm pb ´ aq. This
defines the complex integral operator by means of real Darboux integrals. In the
next semester, we will use the same method to extend real-valued Lebesgue in-
tegrals to complex-valued ones. Pb. 13.2 will also be used to prove the Hahn-
Banach extension theorem.

Exercise 13.43. Let u, v P CpI,Rq. Find the C-linear map CpI,Cq Ñ C whose real
part is f P CpI,Cq ÞÑ

ş

I
puRef ` vImfq P R.

‹ Problem 13.3. Let V “ l8pr0, 1s,Rq, equipped with the l8-norm. Define

f : r0, 1s Ñ V fpxq “ χrx,1s

Then, for every x ‰ y in r0, 1s we have }fpxq ´ fpyq}l8pr0,1s,Rq “ 1. This implies
ωpf, σq “ 1 for every σ P PpIq. So f is not strongly Riemann integrable on any
closed subintegral of ra, bs.

Define F : r0, 1s Ñ V such that for each x P r0, 1s,

F pxq : r0, 1s Ñ R t ÞÑ mintt, xu

Choose any x P r0, 1s. Prove that f P Rpr0, xs, V q and
şx

0
f “ F pxq. (In particular,

ş1

0
f “ idr0,1s.) Prove that F 1pxq does not exist.

Problem 13.4. Let V be a Banach space. Use the fundamental theorem of calculus
to give another proof that C1pI, V q is complete under the l1,8-norm. (Do not use
Thm. 11.33.)

‹ Theorem 13.44 (Gronwall’s inequality). Let f P Cpra, bs,Rě0q. Let α P Rě0, and
β P Cpra, bs,Rě0q. Assume that for each x P ra, bs we have

fpxq ď α `

ż x

a

βptqfptqdt (13.37)
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Then for each x P ra, bs we have

fpxq ď α ¨ exp
´

ż x

a

βptqdt
¯

(13.38)

In particular, if β is a constant, then Gronwall’s inequality reads

fpxq ď α ¨ eβpt´aq

‹ Problem 13.5. Prove Gronwall’s inequality. Hint: Let gpxq be the RHS of (13.37).
Show that expp´

şx

a
βq ¨ gpxq is a decreasing function.

‹ Remark 13.45. Gronwall’s inequality is often used in the following way. Let V
be a Banach space over F P tR,Cu. Let f P CpI, V q, v P V , and β P CpI,Rě0q.
Suppose that for all x P ra, bswe have

}fpxq ´ v} ď

ż x

a

βptq}fptq}dt (13.39)

Applying Gronwall’s inequality to |f | and α “ }v}, we see that for every x P ra, bs,

}fpxq} ď }v} ¨ exp
´

ż x

a

βptqdt
¯

(13.40)

‹ Problem 13.6. Let V be a Banach space over F P tR,Cu. Assume that φ P

CpI ˆ V, V q has Lipschitz constant L P Rě0 over the second variable, i.e., for each
t P ra, bs and u, v P V we have

}φpt, uq ´ φpt, vq} ď L}u´ v} (13.41)

Use Gronwall’s inequality to solve the following problems.

1. Let f1, f2 : I Ñ V be differentiable and satisfying the differential equation

f 1
iptq “ φpt, fiptqq p@t P Iq

with the same initial condition f1paq “ f2paq. Prove that f1 “ f2 on I .

2. Let X be a topological space. Let f : I ˆX Ñ V be a function such that B1f
exists everywhere, and that

B1fpt, xq “ φpt, fpt, xqq p@t P I, x P Xq

Assume that the function fpa, ¨q : X Ñ V (sending x to fpa, xq) is continu-
ous. Prove that f P CpI ˆX, V q.
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Remark 13.46. In practice, V is often RN , and φ is a “smooth function”, i.e. a
function whose (mixed) partial derivatives of all orders exist and are continu-
ous. It is also common that φ is independent of t P I . (Indeed, a t-dependent
differential equation f 1 “ φpt, fq can be transformed into a t-independent one
pt, fq1 “ p1, φpt, fqq.) However, sometimes f is not defined on RN , but on a closed
subset of RN , for example, on a closed ball. In this case, the uniqueness and the
continuity of the solutions of differential equations can be treated by extending φ
to a smooth function on RN that is zero outside a compact set. (Then the Lipschitz
continuity of this extended function will follow automatically.)

In fact, by the smooth Tietze extension theorem (cf. [Lee, Lem. 2.26]), every
smooth function AÑ Rk (where A is a compact subset of a smooth real manifold
M (such as a Euclidean space, an n-dimensional sphere, etc.)) can be extended to
a smooth function M Ñ Rk vanishing outside a compact set. We will study this
theorem in the second semester. (The case A Ă R will be proved in Exp. 15.30.)
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14 More on Riemann integrals

14.1 Commutativity of integrals and other limit processes

Let I “ ra, bs and J “ rc, ds where ´8 ă a ă b ă `8 and ´8 ă c ă d ă `8.
Let V be a Banach space over F P tR,Cu.

14.1.1 Fubini’s theorem

Theorem 14.1 (Fubini’s theorem for Riemann integrals). Let f P CpIˆJ, V q. Then
ş

I

ş

J
f “

ş

J

ş

I
f . More precisely,

ż

I

´

ż

J

fpx, yqdy
¯

dx “

ż

J

´

ż

I

fpx, yqdx
¯

dy (14.1)

Our strategy is to view
ş

I
fpx, yqdx as the integral of the function I Ñ CpJ, V q

sending x to fpx, ¨q. Then Fubini’s theorem follows from the commutativity of
integrals and the bounded linear map

ş

J
: CpJ, V q Ñ V (cf. Thm. 13.16). We first

make some general discussion before giving the rigorous proof.
Let Y be a compact topological space. By Thm. 9.3, we have a canonical equiv-

alence CpI ˆ Y, V q » CpI, CpY, V qq by viewing f P CpI ˆ Y, V q as a map

Φpfq : I Ñ CpY, V q (14.2a)

where

Φpfqpxq “ fpx, ¨q : Y Ñ V y ÞÑ fpx, yq (14.2b)

Recall that the space of continuous functions on a compact space is equipped with
the l8-norm, and CpY, V q is complete since V is complete (Cor. 3.50).

Lemma 14.2. The integral
ş

I
Φpfq, which is an element of CpY, V q, is the function

ż

I

fpx, ¨qdx : Y Ñ V y ÞÑ

ż

I

fpx, yqdx (14.3)

In other words, for every y P Y we have

´

ż

I

Φpfq
¯

pyq “

ż

I

fpx, yqdx (14.4)

Consequently, the function
ş

I
fpx, ¨qdx is continuous.

It is easy to show that
ş

I
fpx, ¨qdx is continuous without assuming that Y is

compact. See Exe. 14.8.
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Proof. For each y P Y , define linear map

φy : CpY, V q Ñ V g ÞÑ gpyq

Then this linear map is clear bounded (with operator norm 1). Thus, by Thm.
13.16, we have

´

ż

I

Φpfqpxqdx
¯

pyq “ φy

´

ż

I

Φpfqpxqdx
¯

“

ż

I

φy
`

Φpfqpxq
˘

dx “

ż

I

fpx, yqdx

Proof of Thm. 14.1. By Thm. 13.20, the integral operator
ş

J
: CpJ, V q Ñ V is a

bounded linear map. Therefore, by Thm. 13.16 (and in particular (13.19)), we
have a commutative diagram

CpI, CpJ, V qq CpI, V q

CpJ, V q V

ş

J ˝

ş

I

ş

I
ş

J

where the top arrow is the map sending Φpfq to
ş

J
˝Φpfq, i.e., sending x ÞÑ fpx, ¨q

to x ÞÑ
ş

J
fpx, yqdy. Thus, the direction ÑÓ sends Φpfq to

ş

I

ş

J
fpx, yqdydx. By Lem.

14.2, the left downward arrow sends Φpfq to the function y P J ÞÑ
ş

I
fpx, yqdx. So

ÓÑ sends Φpfq to
ş

J

ş

I
fpx, yqdxdy. Thus, the commutativity of the above diagram

proves Fubini’s theorem.

Definition 14.3. Let I1, . . . , IN be compact intervals in R. Let B “ I1 ˆ ¨ ¨ ¨ ˆ IN
and f P CpB, V q. We define the Riemann integral of f to be

ż

B

f “

ż

I1

¨ ¨ ¨

ż

IN

fpx1, . . . , xNqdxN ¨ ¨ ¨ dx1

Then, by Fubini’s theorem, for any bijection σ : t1, . . . , Nu Ñ t1, . . . , Nuwe have
ż

B

f “

ż

Iσp1q

¨ ¨ ¨

ż

IσpNq

fpx1, . . . , xNqdxσpNq ¨ ¨ ¨ dxσp1q

14.1.2 Commutativity of integrals and derivatives

Recall from Cor. 11.35 that l1,8pJ, V q is a Banach space. So its closed linear
subspace C1pJ, V q (cf. Pb. 11.1) is a Banach space under the l1,8-norm }g}1,8 “

}g}8 ` }g
1}8.

Let f : I ˆ J Ñ V . Consider f as a map Ψpfq : I Ñ V J sending x to

Ψpfqpxq “ fpx, ¨q : J Ñ V y ÞÑ fpx, yq (14.5)
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Let BJ be the (partial) derivative with respect the variable y P J . Clearly

BJ
`

Ψpfqpxq
˘

“ BJfpx, ¨q (14.6)

The linear map of derivative

BJ : C1
pJ, V q Ñ CpJ, V q g ÞÑ g1

“ BJg (14.7)

is clearly bounded (with operator norm ď 1).

Proposition 14.4. Let X be a topological space. Let f : X ˆ J Ñ V , and define Ψpfq :
X Ñ V J by (14.5). Then the following are equivalent.

(1) Ψpfq is an element of CpX,C1pJ, V qq. In other words:

(1a) For each x P X we have Ψpfqpxq P C1pJ, V q.

(1b) The function x P X ÞÑ Ψpfqpxq P C1pJ, V q is continuous.

(2) BJf exists everywhere on X ˆ J . Moreover, we have f, BJf P CpX ˆ J, V q.

Proof. (1a) means that the functions y ÞÑ fpx, yq and y ÞÑ BJfpx, yq exist and are
continuous. (1b) is equivalent to that the maps

x P X ÞÑ Ψpfqpxq “ fpx, ¨q P CpJ, V q

x P X ÞÑ BJΨpfqpxq “ BJfpx, ¨q P CpJ, V q

are continuous (under the l8-norm). By Thm. 9.3, this is equivalent to that f and
BJf are continuous maps X ˆ J Ñ V . So (1)ô(2).

We return to the setting of f : I ˆ J Ñ V .

Lemma 14.5. The integral
ş

I
Ψpfq, which is an element of C1pJ, V q, is the function

ż

I

fpx, ¨qdx : J Ñ V y ÞÑ

ż

I

fpx, yqdx (14.8)

Consequently, the function
ş

I
fpx, ¨qdx is in C1pJ, V q.

Proof. This lemma can be proved in the same way as Lem. 14.2, using the fact that
for every y P J , the linear map g P C1pJ, V q Ñ gpyq is bounded.

Theorem 14.6. Let f : IˆJ Ñ V . Assume that BJf exists everywhere on IˆJ . Assume
moreover that f, BJf P CpI ˆ J, V q. Then for each y P J , the LHS of (14.9) exists and
equals the RHS of (14.9), where

BJ

ż

I

fpx, yqdx “

ż

I

BJfpx, yqdx (14.9)
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First proof. Again, by Thm. 13.16, we have a commutative diagram

CpI, C1pJ, V qq CpI, CpJ, V qq

C1pJ, V q CpJ, V q

BJ˝

ş

I

ş

I

BJ

By Prop. 14.4, Ψpfq is an element of CpI, C1pJ, V qq. The map Ψpfq : I Ñ C1pJ, V q,
composed with BJ , gives x P I ÞÑ BJfpx, ¨q. By Lem. 14.2, the direction ÑÓ sends
Ψpfq to

ş

I
BJfpx, ¨qdx. By Lem. 14.5,

ş

I
Ψpfq equals

ş

I
fpx, ¨q. In particular,

ş

I
fpx, ¨q

is a C1-function. So ÓÑ sends Ψpfq to BJ
ş

I
fpx, ¨qdx. This finishes the proof.

Second proof. Fix any y P J . In view of Cor. 13.21, it suffices to prove that the limit
of the net of functions pφpqpPJztyu from I to V converges uniformly to BJfp¨, yq
under limpÑy, where

φppxq “
fpx, pq ´ fpx, yq

p´ y

By Rem. 12.34, we have

}φppxq ´ BJfpx, yq} ď Apx, pq :“ sup
qPrp,ysYry,ps

}BJfpx, qq ´ BJfpx, yq}

Since BJf is continuous, it can be viewed as a continuous map J Ñ CpI, V q by
Thm. 9.3. Thus, for every ε ą 0 there exists δ ą 0 such that for every p P J
satisfying |p ´ y| ď δ, we have supxPI }BJfpx, qq ´ BJfpx, yq} ď ε for all q P rp, ys Y
ry, ps, and hence supxPI Apx, pq ď ε. This proves that Ap¨, pq converges uniformly
to 0 (as a net of functions I Ñ R) as pÑ y, finishing the proof.

14.1.3 Commutativity of partial derivatives

We write BIfpx, yq as B1fpx, yq and BJfpx, yq as B2fpx, yq. In the following, we
use Thm. 14.6 to give a new proof of a slightly weaker version of Thm. 12.35 on
the commutativity of B1 and B2. The idea is as follows. Suppose we know thatA,B
are linear operators on a vector space such that A is invertible and A´1B “ BA´1.
Then one deduces A´1BA “ BA´1A “ B and hence BA “ AA´1BA “ AB. Now,
Thm. 14.6 says that BJ commutes with

ş

I
, the inverse of BI (in a vague sense). So

one can use a similar algebraic argument to prove that BJ commutes with BI .

Theorem 14.7. Let f : I ˆ J Ñ V be a function such that B1f, B2f, B2B1f exist and are
continuous on I ˆ J . Then B1B2f exists on I ˆ J and equals B2B1f . (So B1B2f is also
continuous.)
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Thm. 14.7 is weaker than Thm. 12.35 in that we assume B1f, B2f to be con-
tinuous. Indeed, as we shall see in the proof, the continuity of B2f is not used.
However, in concrete examples, it is fairly easy to check the continuity of B1f, B2f .

Proof. Let F px, yq “
ż x

a

B2B1fpu, yqdu, which can be defined because B2B1f is con-

tinuous. By FTC, we have B1F “ B2B1f . On the other hand, by Thm. 14.6 and the
continuity of B1f, B2B1f , we have

F px, yq “ B2

ż x

a

B1fpu, yqdu “ B2pfpx, yq ´ fpa, yqq

Therefore B1B2f exists and equals B1F “ B2B1f .

Exercise 14.8. Let Y be a topological space. Let f P CpI ˆ Y, V q. Prove that the
following function is continuous:

I ˆ Y Ñ V px, yq ÞÑ

ż x

a

fpu, yqdu (14.10)

Exercise 14.9. Use Fubini’s Thm 14.1 to prove Thm. 14.6.

14.2 Lebesgue’s criterion for Riemann integrability

Fix I “ ra, bs where ´8 ă a ă b ă `8. Let V be a Banach space over
F P tR,Cu. The goal of this section is to prove:

Theorem 14.10 (Lebesgue’s criterion). Let f : I Ñ V . Then the following are equiv-
alent.

(1) f is strongly Riemann integrable.

(2) f is bounded (i.e. }f}l8 ă `8). Moreover, the set of discontinuities

tx P I : f is not continuous at xu (14.11)

is a null set.

Definition 14.11. A subset E of R is called a (Lebesgue) null set (or a set of
(Lebesgue) measure zero) if for every ε ą 0 there exist countably many closed
intervals I1, I2, . . . such that E Ă

Ť

i Ii, and that
ř

i |Ii| ă ε. Here, |Ii| is the length
of Ii.

The word “countably many” can be omitted, because the sum of uncountably
many strictly positive reals numbers must be `8 due to Pb. 5.3.
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Remark 14.12. Covering E by open intervals instead of closed ones does not
change the definition of null sets. This is because any open/closed interval can
be stretched by a factor of 1 ` δ to a larger closed/open interval, where δ is any
given positive number.

Proposition 14.13. A countable union of null subsets of R is a null set.

Proof. If E “ E1 Y E2 Y ¨ ¨ ¨ where each Ei is a null set, then for each ε, Ei can be
covered by countably many closed intervals of total length ă 2´iε. So E can be
covered by by countably many closed intervals of total length ă ε.

Example 14.14. Every interval with at least two points is not a null set.

Proof. Since every such interval contains a closed invertal with at least two points,
it suffices to prove that the latter is not null. Thus, let us prove that I is not
null. Suppose I is covered by some open intervals. Then, since I is compact, I
is covered by finitely many of these open intervals, say U1, . . . , Un. It is easy to
see that

řn
i“1 |Ui| ě |I| “ b ´ a. (For example, let f “

ř

i χUi
. Then f ě χI . So

ř

i |Ui| “
ř

i

ş

χUi
“
ş

f ě
şb

a
1 “ b´ a.)

Before proving Lebesgue’s criterion, let us first see some useful applications.
Recall that if V “ RN then Riemann integrability is equivalent to strong Riemann
integrability (Thm. 13.13).

Corollary 14.15. Let f P RpI,Rnq. Let Ω be a subset of Rn containing fpIq. Let
g P CpΩ,Rmq such that }g}8 ă `8. Then g ˝ f P RpI,Rmq

Note that if Ω is compact, we automatically have }g}8 ă `8.

Proof. Clearly g ˝ f is bounded. The set of discontinuities of g ˝ f is null since it is
a subset of the set of discontinuities of f , where the latter is a null set.

Corollary 14.16. Let f P RpI,Fmˆnq and g P RpI,Fnˆkq. Then fg P RpI,Fmˆkq.

Proof. This is immediate from Lebesgue’s criterion.

14.2.1 Proof of Lebesgue’s criterion

The first step of proving Lebesgue’s criterion is to express the set of disconti-
nuities by the oscillation.

Definition 14.17. Let X be a topological space. Let Y be a metric space. The
oscillation of a function f : X Ñ Y at x P X is defined to be

ωpf, xq “ inf
UPNbhXpxq

diampfpUqq
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Proposition 14.18. LetX be a topological space, let Y be a metric space, and let f : X Ñ

Y . Then f is continuous at x P X iff ωpf, xq “ 0.

Proof. Assume that f is continuous at x. Then for every ε ą 0, there exists U P

Nbhpxq such that dpfppq, fpxqq ă ε{2 for every p P X . Then clearly diampfpUqq ď ε.
So ωpf, xq ď ε. Since ε ą 0 is arbitrary, we get ωpf, xq “ 0.

Conversely, suppose ωpf, xq “ 0. Then for every ε ą 0 there exists U P Nbhpxq
such that diampfpUqq ă ε. So for every p P U we have dpfppq, fpxqq ă ε.

Proof of Thm. 14.10, part 1. Let us prove (1)ñ(2). Assume that f is strongly Rie-
mann integrable. Choose any ε ą 0. Let us prove that

Ωεpfq “ tx P I : ωpf, xq ě εu (14.12)

is a null set. Then the set of discontinuities, which is
Ť

nPZ`
Ω1{npfq, is a null set

by Prop. 14.13.
Since infσPPpIq ωpf, σq “ 0, for every δ ą 0, there exists σ “ ta0 ă ¨ ¨ ¨ ă anu P

PpIq such that, with Ii “ rai´1, ais, we have

n
ÿ

i“1

diampfpIiqq ¨ |Ii| ă δε (14.13)

Note that if x P Izσ is in some Ii where diampfpIiqq ă ε, then clearly ωpf, xq ă ε.
Thus, if ωpf, xq ě ε (i.e., if x P Ωεpfq), then either x P σ, or x P Ii for some Ii such
that diampfpIiqq ě ε. We conclude

Ωεpfq Ă ta0, . . . , anu Y
´

ď

kPK

Ik

¯

where K “ t1 ď k ď n : diampfpIkqq ě εu. Clearly ta0, . . . , anu can be covered by
some intervals with total length ă δ. But (14.13) implies that

ř

kPK ε|Ik| ă δε and
hence

ř

kPK |Ik| ă δ. So Ωεpfq can be covered by intervals with total length ă 2δ
for every δ ą 0. Thus Ωεpfq is a null set.

To prove the other direction, we need some preparation.

Lemma 14.19. Let f : X Ñ Y where X is a topological space and Y is a metric space.
Then for every ε ą 0, Ωεpfq “ tx P X : ωpf, xq ě εu is a closed subset of X .

Proof. Let us prove that each x P XzΩεpfq is an interior point. (Recall Prop.
77.43.) Indeed, since infUPNbhpxq diampfpUqq ă ε, there exists U P Nbhpxq such
that diampfpUqq ă ε. Then for each p P U we have infV PNbhppq diampfpV qq ă ε since
U P Nbhppq. So U Ă XzΩεpfq.

Lemma 14.20. Let ε ą 0. Suppose that for every x P I we have ωpf, xq ă ε. (Namely,
suppose Ωεpfq “ H.) Then there exists a partition I “ I1 Y ¨ ¨ ¨ Y In satisfying
diampfpIiqq ă ε for all i.
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Proof. For every x P I , there exists Ux P NbhIpxq such that diampfpUxqq ă ε.
Choose n P Z` such that 1{n is a Lebesgue number of the open cover U “ tUx :
x P Iu of I . (Recall Thm. 10.8.) Dividing I into 2n subintervals with the same
length gives the desired partition.

Proof of Thm. 14.10, part 2. Let us prove (2)ñ(1). Suppose that M “ }f}8 is
ă `8, and that the set of discontinuities is a null set. Then for each ε ą 0, Ωεpfq is
a null set. By Lem. 14.19 and Heine-Borel, Ωεpfq is compact. Thus, for every δ ą 0,
Ωεpfq can be covered by finitely many closed intervals with total length ă δ. Let
∆ be the union of these closed intervals. Then Ωεpfq Ă ∆. Clearly, both ∆ and
J “ IzIntp∆q can be written as disjoint unions of finitely many closed intervals,
which are their connected components. And ∆ has length |∆| ă δ.

Since JXΩεpfq “ H, applying Lem. 14.20 to each of the components J1, J2, . . .
of J , we see that Ji has a partition ϱi such that the oscillation of f (recall Def. 13.7)
on each subinterval cut out by ϱi is ă ε. Let σ “ ϱ1 Y ϱ2 Y ¨ ¨ ¨ Y ta, bu, which is a
partition of I . Then σ divides I into subintervals I1, I2, . . . such that either Ij Ă J
or Ij Ă ∆.

• If Ij Ă J , then Ij belongs to a subinterval cut out by one of ϱ1, ϱ2, . . . in
J1, J2, . . . . This implies diampfpIjqq ă ε by the construction of ϱ1, ϱ2, . . . .

• If Ij Ă ∆, then Ij is a component of ∆. We have diampfpIjqq ď 2M . More-
over, the total length of such Ij is equal to |∆|, which is ă δ.

From the discussion of these two cases, we see that

ωpf, σq “
ÿ

j

diampfpIjqq ¨ |Ij| ď ε ¨ pb´ aq ` 2M ¨ δ

Since b´a andM are fixed numbers and ε, δ are arbitrary, we see that infσ ωpf, σq “
0. So f is strongly Riemann integrable.

14.3 Improper integrals

In this section, all intervals in R are assumed to contain at least two points. Let
I be an interval in R with a “ inf I and b “ sup I . So ´8 ď a ă b ď `8. Let V be
a Banach space over F P tR,Cu.

Definition 14.21. We define

RpI, V q “ tf P V I : f |J P RpJ, V q for every compact interval J Ă Iu

Define the improper integral
ż

I

f ”

ż b

a

f
def
ùùù lim

uÑa
vÑb

ż v

u

f “ lim
J

ż

J

f (14.14)
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Here, the last limit is over the directed set tcompact intervals in Iu with preorder
“Ă”. If the above limit exists, we say that

ş

I
f exists or converges.

When f P RpI,Rq and takes values in Rě0, we write f P RpI,Rě0q. Then
ş

I
f

clearly exists in Rě0. We write
ż

I

f ă `8 if
ş

I
f converges in R.

In the case that a or b is in I , when taking the limit over u Ñ a and v Ñ
b in (14.14), it is immaterial whether u, v can take values a, b or not, due to the
following easy observation:

Lemma 14.22. Let f P RpI, V q. If I “ ra, bs, then the meanings of RpI, V q and
ş

I
f are

the same as before. If I “ ra, bq resp. I “ pa, bs, then

ż

I

f “ lim
vÑb

ż v

a

f resp.
ż

I

f “ lim
uÑa

ż b

u

f

where the convergence of the LHS is equivalent to that of the RHS.

Proof. Assume I “ ra, bs. Then I is a compact interval. The new and old meanings
of RpI, V q are the same by Prop. 13.23. Let f P RpI, V q. Then by Thm. 13.20, we
have }f}8 ă `8. If a ď u ă v ď b, then Thm. 13.20 and Prop. 13.23 show that

›

›

›

ż b

a

f ´

ż v

u

f
›

›

›
“

›

›

›

ż u

a

f `

ż b

v

f
›

›

›
ď }f}8 ¨ ppu´ aq ` pb´ vqq

which converges to 0 as uÑ a and v Ñ b, whether u, v take values a, b or not.
Similarly, if I “ ra, bq, then since f is Riemann integrabe on the compact subin-

terval J “ ra, pa` bq{2s, we have M :“ }f |J}8 ă `8. This implies that for all u, v
such that a ď u ă v ă b and u ď pa` bq{2,

›

›

›

ż v

a

f ´

ż v

u

f
›

›

›
“

›

›

›

ż u

a

f
›

›

›
ďMpu´ aq

which converges to 0 as u Ñ a and v Ñ b. So p
şv

a
fqu,v and p

şv

u
fqu,v are Cauchy-

equivalent nets. So their convergences and values are equivalent. The case I “
pa, bs is similar.

Remark 14.23. Let f P RpI, V q. The Cauchy condition for the convergence of
şb

a
f

is easy to describe. In view of
şv

u
´
şv1

u1 “
şu1

u
`
şv1

v
(Prop. 13.23), we have:

• For every ε ą 0, there exist u0 ă v0 in I such that for all u, u1, v, v1 P I
satisfying a ď u, u1 ă u0 and v0 ă v, v1 ď b we have

›

›

›

ż u1

u

f
›

›

›
ă ε

›

›

›

ż v1

v

f
›

›

›
ă ε
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Definition 14.24. Let f P RpI, V q. We say that
ş

I
f converges absolutely (or that

f is absolutely integrable on I) if there exists g P RpI,Rq such that |f | ď g (i.e.,
}fpxq} ď gpxq for all x P I , in particular gpxq ě 0) and that

ş

I
g ă `8. We let

R1pI, V q “
␣

f P RpI, V q :
ş

I
f converges absolutely

(

(14.15)

which is clearly a linear subspace of V I . By the Cauchy condition in Rem. 14.23,
it is clear that

ş

I
f converges if

ş

I
f converges absolutely. Though Rě0 is not a

Banach space, we still write

R1pI,Rě0q “
␣

f P RpI,Rě0q :
ş

I
f converges absolutely

(

which is clearly the set of all f P RpI,Rě0q satisfying
ş

I
f ă `8.

The superscript 1 of R1 has a similar meaning as that of l1, but is different from
that of C1.

Remark 14.25. Assume that f : I Ñ V is strongly integrable on each compact
subinterval of I . (This is the case, for example, when f P CpI, V q, or when f P
RpI, V q and V “ FN .) Then |f | : x P I ÞÑ }fpxq} P Rě0 is an element of RpI,Rě0q

by Cor. 13.19. Thus, in this case,

f P R1
pI, V q ðñ

ż

I

|f | ă `8

Example 14.26. We have
ż `8

1

x´2dx “ lim
vÑ`8

ż v

1

x´2dx “ lim
vÑ`8

p´x´1
q
ˇ

ˇ

v

1
“ 1 ă `8

Therefore
ż `8

1

eix

x2
dx converges absolutely, and hence converges.

The following proposition generalizes Prop. 13.18.

Proposition 14.27. Let f P R1pI, V q and g P R1pI,Rě0q such that |f | ď g. Then
›

›

›

ż

I

f
›

›

›
ď

ż

I

g.

Proof. Apply the limit over uÑ a, v Ñ b to }
şv

u
f} ď

şv

u
g.

The next proposition shows that improper integrals are helpful for studying
series:

Proposition 14.28. Let f P Rpr1,`8q,Rě0q be decreasing. Then we have

ż `8

1

f ă `8 ðñ

`8
ÿ

n“1

fpnq ă `8 (14.16)

248



Proof. Since f is decreasing, we clearly have g ď f ď h where g, h are defined by
the series in l8pr0,`8q,Rq:

g “
`8
ÿ

n“1

fpn` 1q ¨ χrn,n`1q h “
`8
ÿ

n“1

fpnq ¨ χrn,n`1q

One computes easily that
ş`8

1
g “

ř`8

n“2 fpnq and
ş`8

1
h “

ř`8

n“1 fpnq in Rě0. Thus
`8
ÿ

n“2

fpnq ď

ż `8

1

f ď
`8
ÿ

n“1

fpnq

The proposition follows easily.

Example 14.29. Let s ą 0. The function f : r2,`8q Ñ `8 defined by fpxq “
1

xplog xqs
is decreasing, and

ż x

2

f “

#

p1´ xq´1
`

plog xq1´s ´ plog 2q1´s
˘

if s ‰ 1

logplog xq ´ logplog 2q if s “ 1

So
ř8

n“2 fpnq ă `8 iff
ş`8

2
f ă `8 iff s ą 1.

14.4 Commutativity of improper integrals and other limit pro-
cesses

In this section, all intervals in R are assumed to contain at least two points. Let
I be an interval in R with a “ inf I and b “ sup I . Let J “ rc, ds be a compact
interval. Let V be a Banach space over F P tR,Cu.

The goal of this section is to generalize the main results of Sec. 14.1 to improper
integrals. Namely, we shall prove the commutativity of

ş

I
with

ş

J
and with BJ

under reasonable assumptions. There are three ways to achieve this goal:

• We know that
ş

I
is the limit of integrals over compact intervals. Therefore,

the problem is reduced to that of proving that limuÑa,vÑb can be moved in-
side in lim

ş

J

şv

u
and in lim BJ

şv

u
.

• We generalize Thm. 13.16 to improper integrals, and use this generalized
version to prove the commutativity in a similar way as in Sec. 14.1.

• The commutativity of
ş

I
with BJ can also be studied by generalizing Cor.

13.21 to improper integrals, similar to the second proof of Thm. 14.6.

We will use the second approach because its proof is more conceptual and
involves fewer technical calculations, thus making it easier for us to remember
the conditions of the theorems to be proved. Nevertheless, we will also give the
appropriate generalization of Cor. 13.21, which is helpful for future application.
Recall Def. 14.24 for the meaning of R1.
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14.4.1 Commutativity of improper integrals and bounded linear maps

Theorem 14.30. Let W be also a Banach space over F. Let T P LpV,W q. Then for every
f P R1pI, V q we have T ˝ f P R1pI,W q and

T
´

ż b

a

f
¯

“

ż b

a

T ˝ f (14.17)

In other words, we have a commutative diagram

R1pI, V q R1pI,W q

V W

T˝

ş

I

ş

I

T

(14.18)

Proof. By Thm. 13.16, T ˝ f is Riemann integrable on compact subintervals of I .
Since f P R1, there exists g P RpI,Rě0q such that |f | ď g and

ş

I
g ă `8. Let

M “ }T } be the operator norm, which is a finite number. By Rem. 10.24, for each
x P I we have }T ˝fpxq} ďM}fpxq} ďMgpxq, and hence |T ˝f | ďMg. This proves
T ˝ f P R1pI,W q. In particular, the integrals of f, T ˝ f over I converge. Thus, by
the continuity of T and the commutativity of T with

şv

u
(when a ă u ă v ă b) due

to Thm. 13.16, we have

T
´

ż

I

f
¯

“ T
´

lim
uÑa
vÑb

ż v

u

f
¯

“ lim
uÑa
vÑb

T
´

ż v

u

f
¯

“ lim
uÑa
vÑb

ż v

u

T ˝ f “

ż

I

T ˝ f

14.4.2 Fubini’s theorem

Recall that J “ rc, ds is a compact interval but I is not necessarily compact.

Lemma 14.31. Lem. 14.2 holds verbatim to the current case that I is not necessarily
compact.

Proof. We can prove this general case in the same way as Lem. 14.2, using the
commutativity of

ş

I
and the bounded map g P CpY, V q ÞÑ gpyq P V , which is

available thanks to Thm. 14.30.

Theorem 14.32 (Fubini’s theorem for improper integrals). Let f P CpI ˆ J, V q.
Assume that there exists h P R1pI,Rě0q satisfying

}fpx, yq} ď hpxq p@x P I, y P Jq (14.19)

Then the functions
ş

J
fp¨, yqdy : I Ñ V and

ş

I
fpx, ¨qdx : J Ñ V are continuous, and

the equation
ż

I

´

ż

J

fpx, yqdy
¯

dx “

ż

J

´

ż

I

fpx, yqdx
¯

dy (14.20)

holds where the integral over I on the LHS converges absolutely.
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Proof. Let T : CpJ, V q Ñ V be the bounded linear map
ş

J
. By Thm. 14.30, we have

a commutative diagram

R1pI, CpJ, V qq R1pI, V q

CpJ, V q V

T˝

ş

I

ş

I

T

(14.21)

Since J is compact, by Thm. 9.3, we can view f as a continuous function Φpfq :
I Ñ CpJ, V q sending x to fpx, ¨q. Then (14.19) says that Φpfq ď g. Since g P R1,
we conclude Φpfq P R1pI, CpJ, V qq.

By Lem. 14.31,
ş

I
Φpfq equals the function

ş

I
fpx, ¨qdx. In particular,

ş

I
fpx, ¨qdx

is continuous since
ş

I
Φpfq P CpJ, V q by (14.21). The continuity of

ş

J
fp¨, yqdy is

similar, or is even easier because J is compact.
Clearly T p

ş

I
Φpfqq is

ş

J

ş

I
f . By the top arrow of (14.21), T ˝ Φpfq belongs to

R1pI, V q. Since T ˝ Φpfq is the function sending x to
ş

J
fpx, ¨qdy, the integral of

this function over I is absolutely convergent, and
ş

I
T ˝ Φpfq “

ş

I

ş

J
f . Thus, the

commutativity of (14.21) proves (14.20).

The continuity of
ş

I
fpx, ¨qdx can be generalized: see Cor. 14.36.

14.4.3 Commutativity of improper integrals and partial derivatives

Lemma 14.33. Lemma 14.5 holds verbatim to the current case that I is not necessarily
compact.

Proof. Again, this is proved in the same way as Lem. 14.2 by applying Thm. 14.30
to the bounded linear functional g P C1pJ, V q Ñ gpyq (where y P J).

Theorem 14.34. Let f : I ˆ J Ñ V . Assume that BJf exists everywhere on I ˆ J .
Assume that f, BJf P CpI ˆ J, V q. Assume moreover that there exists h P R1pI,Rě0q

satisfying

}fpx, yq} ď hpxq and }BJfpx, yq} ď hpxq p@x P I, y P Jq (14.22)

Then for each y P J , the LHS of (14.23) exists and equals the RHS of (14.23), where

BJ

ż

I

fpx, yqdx “

ż

I

BJfpx, yqdx (14.23)

Proof. Let T : C1pJ, V q Ñ CpJ, V q be the bounded linear map BJ . By Thm. 14.30,
we have a commutative diagram

R1pI, C1pJ, V qq R1pI, CpJ, V qq

C1pJ, V q CpJ, V q

T˝

ş

I

ş

I

T

(14.24)
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Define Ψpfq : X Ñ V J sending x to fpx, ¨q. By Prop. 14.4, Ψpfq belongs to
CpI, C1pJ, V qq. By (14.22), Ψpfq belongs to R1pI, C1pJ, V qq. As in the first proof
of Thm. 14.6, one can use Lem. 14.31 and 14.33 (the improper version of Lem.
14.2 and 14.5) to show that

ş

I
T ˝Ψpfq “ T

ş

I
Ψpfq (which is a consequence of the

commutativity of (14.24)) implies (14.23).

14.4.4 Commutativity of improper integrals and net limits

Theorem 14.35. Let pfαqαPI be a net in R1pI, V q. Let f P V I . Assume that the follow-
ing conditions are true:

(1) On every compact subinterval of I , the net pfαq converges uniformly to f .

(2) There exists g P R1pI,Rě0q such that |fα| ď g for all α P I .

Then f P R1pI, V q, and
ż

I

f “ lim
αPI

ż

I

fα.

Proof. By Cor. 13.21, f P RpI, V q. Since pfαq converges pointwise to f , we clearly
have |f | ď g. So f P R1pI, V q. Choose any ε ą 0. Since limuÑa,vÑb

ş

I
g converges,

there exists u, v such that a ă u ă v ă b and
ż u

a

g `

ż b

v

g “

ż

I

g ´

ż v

u

g ă ε

Thus, by Prop. 14.27, for each α we have }
şu

a
fα} ` }

şb

v
fα} ă ε and }

şu

a
f} `

}
şb

v
f} ă ε. Since fα converges uniformly to f on ru, vs, by Cor. 13.21, we get

limα }
şv

u
fα ´

şv

u
f} “ 0. Thus

›

›

›

ż

I

f ´

ż

I

fα

›

›

›
“

›

›

›

ż u

a

f `

ż b

v

f ´

ż u

a

fα ´

ż b

v

fα `

ż v

u

pf ´ fαq
›

›

›

ď2ε`
›

›

›

ż v

u

pf ´ fαq
›

›

›

where the lim supα of the RHS is 2ε. Thus }
ş

I
f ´

ş

I
fα} converges to 0 under

lim supα, and hence under limα.

It is a good practice to prove Thm. 14.34 using Thm. 14.35. (See Pb. 14.2.)

Corollary 14.36. Let Y be a topological space. Let f P CpI ˆ Y, V q. Assume that there
exists h P R1pI,Rě0q such that

}fpx, yq} ď hpxq p@x P I, y P Y q (14.25)

Then the map
ş

I
fpx, ¨qdx (sending y P Y to

ş

I
fpx, yqdx) is continuous.
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Proof. By Def. 7.56-(1), we need to prove that for every net pyαq in Y converging to
y, we have

ş

I
fpx, yqdx “ limα

ş

I
fpx, yαqdx. By Thm. 14.35, it suffices to prove that

limα fp¨, yαq converges uniformly on any compact subinterval ru, vs Ă I to fp¨, yq.
This is true because, by Thm. 9.3, the restriction of f to ru, vs ˆ Y can be viewed
as an element of CpY,Cpru, vs, V qq.

Example 14.37. Compute F ptq “
ż `8

0

e´tx
¨
sinx

x
dx for all t ą 0.

Solution. We first compute F 1ptq. Choose any δ ą 0. Then for any t ě δ, the norms
of e´tx sinx

x
and Btpe´tx sinx

x
q “ ´e´tx sinx are both bounded by e´δx, where the latter

is absolutely integrable since
ş`8

0
e´δxdx “ δ´1 ă `8. Thus, by Thm. 14.34, we

have

F 1
ptq “

ż `8

0

´e´tx sinxdx “

ż `8

0

ep´t`iqx ´ ep´t´iqx

2i
dx

“
t sinx` cosx

1` t2
e´tx

ˇ

ˇ

ˇ

`8

x“0
“ ´

1

1` t2

for all t ě δ and δ ą 0, and hence for all t ą 0. Therefore F ptq “ C ´ arctan t for
some C P R. Let us determine C using C “ limtÑ`8 F ptq `

π
2
.

To compute limtÑ`8 F ptq, it suffices to assume t ě 1. Then |e´tx sinx
x
| ď e´x

where
ş`8

0
e´x ă `8. Moreover, on every compact interval ra, bs in p0,`8q

(where 0 ă a ă b ă `8), limtÑ`8 e
´tx sinx

x
converges uniformly to 0 since

|e´tx sinx
x
| ď e´ta. Thus, the assumptions in Thm. 14.35 are satisfied, and hence

lim
tÑ`8

F ptq “

ż `8

0

lim
tÑ`8

e´tx
¨
sinx

x
dx “ 0

This proves C “ π
2
, and hence F ptq “ π

2
´ arctan t.

14.5 Convolutions and smooth/polynomial approximation

Fix a Banach space V over F P tR,Cu.

Definition 14.38. Let X be a topological space. The support of a function f P V X

is defined to be the closure

Supppfq “ tx P X : fpxq ‰ 0u

Define CcpX, V q to be the set of continuous functions with compact support

CcpX, V q “ tf P CpX, V q : Supppfq is compactu

Unless otherwise stated, CcpX, V q is equipped with the l8-norm.
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14.5.1 Convolutions and approximation of identity

A goal of this section is to show that the elements of CcpR, V q can be approxi-
mated by smooth functions with compact supports, i.e., elements in

C8
c pR, V q “ C8

pR, V q X CcpR, V q

Indeed, we will do more. We shall prove the celebrated Weierstrass approxi-
mation theorem, which implies that elements in CcpR, V q can be approximated
uniformly by polynomials on compact intervals. The proof we will give is also
due to Weierstrass, which relies on an important construction called convolution:
If f : R Ñ V and g : R Ñ F, then their convolution is a functions f ˚ g : R Ñ V
defined by

pf ˚ gqpxq ” pg ˚ fqpxq “

ż

R
fpx´ yqgpyqdy (14.26a)

whenever the above integral converges for every x P R. Taking y “ x ´ t, we
get

şv

u
fpx ´ yqgpyqdy “ ´

şx´v

x´u
fptqgpx ´ tqdt “

şx´u

x´v
fptqgpx ´ tqdt. Letting u Ñ

´8, v Ñ `8, we get

pf ˚ gqpxq “

ż

R
fpyqgpx´ yqdy (14.26b)

The main idea of doing approximation via convolutions is as follows. Sup-
pose that g is smooth, then by (14.26b), one should expect that pf ˚ gqpnqpxq “
ş

R fpyqpBxq
ngpx ´ yqdy “

ş

R fpyqg
pnqpx ´ yqdy to be true. Thus f ˚ g is expected to

be smooth. Moreover, if g can be approximated by polynomials, for example, if
gpxq “

ř

anx
n on R, then it is expected that f ˚ g can be approximated by f ˚ gn

where gnpxq “ anx
n, and it is easy to see that f ˚ gn “ an

ş

R fpyqpx ´ yqndy is a
polynomial of x.

To summarize, one advantage of convolution is that whenever g has a good
property, the same is in general true for f ˚ g. Another key property of convo-
lution is that f can be approximated by f ˚ g in some sense. The meaning of
“approximation” will depend on the analytic property of f , e.g. whether f is con-
tinuous, continuous with compact support, or only integrable. In this section, we
will only be interested in the case that f P CcpR, V q. In this case, the integrals in
(14.26) are actually over compact intervals, which makes our lives easier.

We shall show that f P CcpR, V q can be approximated uniformly by f ˚ g.
More precisely, we shall show that for every absolutely convergent g P CpR,Rě0q

satisfying
ş

R g “ 1, if we define gε P CpR,Rq (where ε P Rą0) by

gεpxq “
1

ε
g
`x

ε

˘

(14.27)

then pf ˚ gεq converges uniformly to f as ε Ñ 0. This method is extremely useful
and is used widely in analysis. (The assumption that g ě 0 is not necessary. We
assume g ě 0 only for simplifying discussions.)
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Lemma 14.39. Choose g P CpR,Rě0q satisfying
ş

R g “ 1, and define gε by (14.27). Then
ş

R gε “ 1 for each ε ą 0. Moreover, for every δ ą 0 we have

lim
εÑ0

ż `8

δ

gε “ lim
εÑ0

ż ´δ

´8

gε “ 0 (14.28)

Proof. By the change of variable formula we have
şv

u
ε´1gpε´1xqdx “

şv{ε

u{ε
gpyqdy.

This gives
ş

R gε “ 1. Another change of variable shows
ş`8

δ
gε “

ş`8

δ{ε
g “

ş`8

0
g ´

şδ{ε

0
g, which clearly converges to 0 as ε Ñ 0. This proves the first half of (14.28).

The second half is similar.

Proposition 14.40. Let f P CcpR, V q. Choose g P CpR,Rě0q satisfying
ş

R g “ 1, and
define gε by (14.27) for each ε ą 0. Then pf ˚gεq converges uniformly on R to f as εÑ 0.

In other words, the convolution operator f ÞÑ f ˚ gε converges pointwise to
the identity map when εÑ 0.

Proof. Let M “ }f}8, which is ă `8. Since
ş

R gε “ 1, for each x P R we have
ş

R fpxqgεpyqdy “ fpxq. Thus

}pf ˚ gεqpxq ´ fpxq} “
›

›

›

ż

R
pfpx´ yq ´ fpxqqgεpyqdy

›

›

›

ď

ż

R
}fpx´ yq ´ fpxq} ¨ gεpyqdy (14.29)

By Thm. 10.7 and the compactness of Supppfq, f is uniformly continuous on R.
Therefore, for every e ą 0, there exists 0 ă δ ă 1 such that }fpx ´ yq ´ fpxq} ď e
for all x P R and y P p´δ, δq. Thus, if we let Jδ “ Rzp´δ, δq, then

(14.29) ď
ż

Jδ

}fpx´ yq ´ fpxq} ¨ gεpyqdy ` e ¨

ż δ

´δ

gεpyqdy

ď2M ¨

ż

Jδ

gεpyqdy ` e

which converges to e under lim supεÑ0 by Lem. 14.39. Since e is arbitrary, we
conclude that limεÑ0 (14.29) “ 0.

Remark 14.41. The uniform continuity of a function f : R Ñ V is equivalent to
the continuity of F : R Ñ CpR, V q defined by F ptqpxq “ fpx ´ tq. Note that the
continuity of F follows from Thm. 9.3. This means that Prop. 14.40 can also be
proved by Thm. 9.3.

Remark 14.42. In analysis, there are two especially important classes of g P

CpR,Rě0q satisfying
ş

R g “ 1. The first class consists of g P CcpR,Rě0q satisfy-
ing

ş

R g “ 1. Although functions with compact supports are often easy to use,
they cannot be approximated by their Taylor series on R. (See Exp. 12.19 for a
related example.) Instead, we should consider another type of function:
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14.5.2 Polynomial approximation

Example 14.43. Define the Gauss function gpxq “
1
?
π
e´x2 . Then g P CpR,Rě0q

and
ş

R g “ 1. Thus, g satisfies the assumptions in Prop. 14.40.

Although g does not have compact support, it is a real analytic function. So
we can use f ˚ gε to prove Weierstrass approximation theorem.

Proof. It is easy to see that
ş`8

1
1{x2dx ă `8. Thus, since ex

2
ě x2, we get

ş

R e
´x2dx ă `8.
It is not so easy to show that

ż `8

´8

e´x2dx “
?
π (14.30)

This integral is called Gauss integral. In the next semester, we will use the change
of variable formula for double integrals to prove (14.30). A more elementary (but
also more complicated) proof is given in Pb. 14.3. For the purpose of this section,
knowing

ş

R e
´x2dx ă `8 is enough, since we can define g to be e´x2 divided by

its integral on R.

We now show that if g is the Gauss function, then f ˚ gε can be approximated
uniformly by polynomials on every compact interval.

Lemma 14.44. Let hpxq “
ř8

n“0 anx
n have radius of convergence `8, where an P F for

each an. Let hnpxq “
řn
j“0 ajx

j be the partial sum. Let f P CcpR, V q. Then limnÑ8 f ˚hn
converges uniformly on compact intervals to f ˚ h, and each f ˚ hn is in

V rxs “ tv0 ` v1x` ¨ ¨ ¨ ` vkx
k : k P N, v0, v1, . . . , vk P V u (14.31)

Note that we do not need the assumption
ş

R |h| ă `8 in this Lemma. So
letting hpxq “ ex is also OK. Clearly, if g is the Gauss functions, then gε satis-
fies the assumptions on h. This implies that if f P CcpR, V q, then f ˚ gε can be
approximated uniformly on compact intervals by polynomials with coefficients
in V . Combining this fact with Prop. 14.40, we see that f can be approximated
uniformly by polynomials on compact intervals.

Proof. Note that pf ˚ hqpxq “
ş

R hpx ´ yqfpyqdy is well-defined since it is equals
şa

´a
hpx ´ yqfpyqdy if a ą 0 and if r´a, as contains Supppfq. (So this is a usual

Riemann integral.) Similarly, pf ˚ hnqpxq “
şa

´a
hnpx ´ yqfpyqdy. Since hn is a

polynomial, it is obvious that f ˚ hn is also a polynomial.
We now show that f ˚ hn converges uniformly to f ˚ h on r´b, bs for any b ą 0.

Let c “ a` b. Then

sup
xPr´b,bs

}pf ˚ hqpxq ´ pf ˚ hnqpxq} ď sup
xPr´b,bs

ż a

´a

|hpx´ yq ´ hnpx´ yq| ¨ }fpyq}dy
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ďAn

ż a

´a

}fpyq}dy

where An “ suptPr´c,cs }hptq ´ hnptq}. By Thm. 4.27, hn converges uniformly on
r´c, cs to h. So limnÑ8 An “ 0.

Theorem 14.45 (Weierstrass approximation theorem). Let I “ ra, bs where ´8 ă

a ă b ă `8. Then V rxs is dense in CpI, V q under the l8-norm.

Proof. Choose any f P CpI, V q. Then f can be extended to a continuous function
R Ñ V with compact support: For example, we let fpxq “ px ´ a ` 1qfpaq if
x P ra´1, as, let fpxq “ pb`1´xqfpbq if b P rb, b`1s, and let fpxq “ 0 if x ă a´1 or
x ą b`1. Let g be the Gauss function. For every e ą 0, by Prop. 14.40, there exists
ε ą 0 such that }f ´ f ˚ gε}l8pR,V q ă e{2. By Lem. 14.44, there exists a polynomial
p P V rxs such that }f ˚ gε ´ p}l8pI,V q ă e{2. So }f ´ p}l8pI,V q ă e.

Corollary 14.46. Let I “ ra, bs where ´8 ă a ă b ă `8. Then Cpr0, 1s,Rq is
separable.

Proof. Qrxs, the set of polynomials with coefficients in Q, is countable. By Thm.
14.45, Qrxs is dense in Cpr0, 1s,Rq.

The Weierstrass approximation theorem will be generalized to Stone-
Weierstrass theorem (cf. Thm. 15.9). Accordingly, Cor. 14.46 will be substantially
generalized as an application of (the proof of) Stone-Weierstrass theorem: we will
show that CpX,Rq is separable if X is a compact metric space. (See Thm. 15.37)

14.5.3 Smooth approximation

By the Weierstrass approximation theorem, we know that any f P CcpR, V q
can be approximated uniformly by polynomials on compact intervals. However,
unless f “ 0, f cannot be approximated by polynomials uniformly on R. (If
p, q P V rxs are different, then }p ´ q}l8pX,V q “ `8. So any Cauchy sequence in
V rxs under the l8pX, V q-norm is eventually constant. So its limit is a polynomial,
which does not have compact support unless when it is zero.) Nevertheless, we
shall show that f can be approximated by smooth compactly supported functions
uniformly on R. This task is not difficult: one simply pick a nonzero g P C8

c pR,Rq
satisfying g ě 0. Dividing g by g{

ş

R g, we may assume that
ş

R g “ 1. Then it can
be shown that f ˚ gε P C8

c pR, V q. By Prop. 14.40, limεÑ0 f ˚ gε converges uniformly
on R to f . This finishes the proof. However, we must first prove the existence of
such g:

Proposition 14.47. Let 0 ă a ă b. Then there exists g P C8
c pR,Rq such that gpRq “

r0, 1s, that g´1p1q “ r´a, as, and that g´1p0q “ p´8,´bs Y rb,`8q.
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Proof. Let α : RÑ Rě0 be the smooth function in Exp. 12.19. Then α is increasing
and α´1p0q “ p´8, 0s. Define β : R Ñ Rě0 by βpxq “ αpx ` bqαp´x ` bq. Then
β´1p0q “ p´8,´bs Y rb,`8q. In particular, β P C8

c pR,Rq. Define γ : R Ñ Rě0 by
γpxq “ αpx´ aq ` αp´x´ aq. Then γ´1p0q “ r´a, as. Note that βpxq ` γpxq ą 0 for
all x P R, since β´1p0q X γ´1p0q “ H.

Then g “ β{pβ ` γq is a desired function.

Corollary 14.48. Let I be an interval in R with a “ inf I and b “ sup I satisfying
´8 ď a ă b ď `8. Then C8

c pI, V q is dense in CcpI, V q under the l8-norm.

In the following, we only prove the case that I “ pa, bq. The other cases can be
reduced to this case: For example, the case ra, bq is implied by the case pa´ 1, bq.

First proof. Let f P CcpR, V q supported in ru, vs where a ă u ă v ă b. By Prop.
14.47, there exists a nonzero smooth g P CcpR,Rě0q supported in r´1, 1s such that
ş

R g “ 1. Since gε is supported in r´ε, εs, it is easy to see that f ˚ gε is supported
in ru´ ε, v ` εs. By Lem. 14.2, f ˚ gε is continuous . Moreover, one can check that
f ˚ gε is smooth (cf. Pb. 14.4). So f ˚ gε P C8

c pR, V q, and f ˚ g is supported in I
when ε ă mintu ´ a, b ´ vu. By Prop. 14.40, limεÑ0 f ˚ gε converges uniformly on
R to f .

Second proof. Let f P CcpR, V q supported in ru, vs where a ă u ă v ă b. Choose
any e ą 0. Choose any positive ε ă mintu´a, b´vu. By Weierstrass approximation
Thm. 14.45, there exists p P V rxs such that }fpxq´ppxq} ď e for all x P ru´ε, v`εs.
In particular, since f “ 0 on J “ ru ´ ε, us Y rv, v ` εs, we have }ppxq} ď e for all
x P J .

By Prop. 14.47, there exists h P C8
c pR,Rq such that hpRq “ r0, 1s, that h´1p1q “

ru, vs, and that h´1p0q “ p´8, u´εsYrv`ε,`8q. Then hp P C8
c pR, V q is supported

in ru´ ε, v ` εs and hence in p´a, aq. One checks easily that }fpxq ´ hpxqppxq} ď e
for all x P pa, bq.

Remark 14.49. It should be noted that if I is an open interval, then C8
c pI, V q

and CcpI, V q are naturally subspaces of CcpR, V q. This is not true when I is a
closed or an half-open-half-closed interval. Therefore, Cor. 14.48 implies that any
f P CpR, V q supported in an open interval I can be uniformly approximated by
smooth functions RÑ V supported in I .

Remark 14.50. The above observation can be generalized: LetX be an LCH space.
Assume that Ω is a nonempty open subset ofX . Recall that Ω is LCH by Prop. 8.41.
Then an element of CcpΩ, V q is equivalently an element of CcpX, V q supported in
U . The former gives the latter by “extension by zero”; the latter gives the former
by restriction to Ω. We will say more about this in Sec. 15.4.
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14.6 L1-approximation; Riemann-Lebesgue lemma

A non-continuous integrable function cannot be approximated uniformly by
smooth functions. However, it can be approximated by the latter under the L1-
norm. To avoid distraction, in this section we consider C-valued functions. Fix
I Ă R to be an interval containing at least two points. Then on R1pI,Cq one can
define the L1-seminorm to be

}f}L1 ” }f}L1pI,Cq “

ż

I

|f | (14.32)

It is easy to check that this is a seminorm, i.e., it satisfies the definition of a norm,
except the assumption that }f}L1 “ 0 implies f “ 0.

Proposition 14.51. Let f P R1pI,Cq. Choose any ε ą 0. Then there exists g P
C8
c pR,Cq supported in I such that }f ´ g}L1 ă ε. And there exists a step function

h supported in I (i.e., a linear combination of functions of the form χE where E is a
compact interval in I) such that }f ´ h}L1 ă ε.

Note that if E is a bounded interval, then χE is clearly a linear combination of
characteristic functions over compact intervals (including the single point sets).
Thus, in the above definition of step functions, one can just assume that E is a
bounded interval whose closure is in I .

The following proof shows that Prop. 14.51 can be easily generalized to the
case that f : I Ñ V is strongly integrable on compact subintervals of I and

ş

I
|f | ă

`8. (V is a Banach space.)

Proof. Let a “ inf I, b “ sup I . Since
ş

I
|f | “ limuÑa,vÑb

şb

a
|f |, there exist u, v such

that a ă u ă v ă b and that
şu

a
|f | `

şb

v
|f | ă ε{2. We claim that there exists a step

function h supported in J “ ru, vs such that
ş

J
|f ´ h| ă ε{2. Then

ş

I
|f ´ h| ă ε,

finishing the proof that f can be L1-approximated by step functions supported in
I .

Since f |J is strongly Riemann integrable, there exists σ “ ta0 ă ¨ ¨ ¨ ă anu P
PpJq such that ωpf, σq ă ε

2
. Let Ji “ rai´1, ais. Pick any λi P fpJiq. Then |f ´

λi ¨ χJi | ď diampfpJiqq on Ji, and hence
ş

Ji
|f ´ λi ¨ χJi | ď diampfpJiqq ¨ |Ji|. Let

h “
řn
i“1 λi ¨ χJi . It follows that

ˇ

ˇ

ˇ

ż

J

f ´

ż

J

h
ˇ

ˇ

ˇ
ď

n
ÿ

i“1

ż

Ji

|f ´ λi ¨ χJi | ď
n
ÿ

i“1

diampfpJiqq ¨ |Ji| “ ωpf, σq ă
ε

2

finishing the proof.
Finally, we show that f can be L1-approximated by smooth functions sup-

ported in I . It suffices to prove that any step function supported in I is so. By lin-
earity and triangle inequality, it suffices to prove that χE is so, if E is a nonempty
compact interval in I . For each ε ą 0, it is easy to construct a piecewise linear
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(and hence continuous) function g0 : R Ñ R supported in pa, bq “ IntpIq such
that

ş

I
|χE ´ g0| ă ε. Choose a bounded open interval pc, dq Ă pa, bq containing

Supppg0q. By Cor. 14.48, there exists g P C8
c pR,Rq supported in pc, dq such that

|gpxq ´ g0pxq| ă ε{pd´ cq for all x P pc, dq. It follows that
ż

I

|g ´ g0| “

ż d

c

|g ´ g0| ď ε

Thus
ş

I
|χe ´ g| ă 2ε, finishing the proof.

We give an application of Prop. 14.51 by proving Riemann-Lebesgue lemma.
The RL lemma plays a fundamental role in Fourier analysis, see for instance Pb.
14.6 and Cor. 14.56.

Theorem 14.52 (Riemann-Lebesgue lemma). Let f P R1pR,Cq. Then

lim
tÑ`8

ż

R
fpxqeitxdx “ lim

tÑ´8

ż

R
fpxqeitxdx “ 0

The idea of the proof is the following: We L1-approximate f by some com-
pactly supported step function g P CcpR,Cq. Then it suffices to prove the RL
lemma for g. By linearity, it suffices to assume that g “ χra,bs. This special case can
be proved easily.

Proof. By Prop. 14.51, for every ε ą 0 there exists a compactly supported step
function g : R Ñ C such that

ş

R |f ´ g| ă ε. So |
ş

R fpxqe
itx ´ gpxqeitxdx| ă ε by

Prop. 14.27. Thus

lim sup
tÑ˘8

ˇ

ˇ

ˇ

ż

R
fpxqeitxdx

ˇ

ˇ

ˇ
ď lim sup

tÑ˘8

ˇ

ˇ

ˇ

ż

R
gpxqeitxdx

ˇ

ˇ

ˇ
` ε

Since ε is arbitrary, it suffices to prove that limtÑ˘8

ş

R gpxqe
itxdx “ 0. Since g is

a linear combination of functions of the form χra,bs where ´8 ă a ă b ă `8, it
suffices to prove the RL lemma for this function:

ż

R
χra,bs ¨ e

itxdx “

ż b

a

eitxdx “
einb ´ eina

it

converges to 0 as tÑ ˘8.

14.7 Problems and supplementary material

Let V be a Banach space over F P tR,Cu.

Problem 14.1. Solve Exe. 14.8.
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Problem 14.2. Prove Thm. 14.34 using Thm. 14.35.

‹ Problem 14.3. Define fpxq “
´

ż x

0

e´t2dt
¯2

and gpxq “

ż 1

0

e´x2pt2`1q

t2 ` 1
dt

1. Show that f 1 ` g1 “ 0, and conclude that f ` g “ π
4
.

2. Use part 1 to prove
ż `8

´8

e´t2dt “
?
π (14.33)

Problem 14.4. Let f : R Ñ V be strongly integrable on compact intervals, and
assume

ş

R |f | ă `8. Let g P C1pR,Rq. Assume that }g}8, }g
1}8 ă `8. (This is

automatic when g has compact support.) Use Thm. 14.35 to prove that f ˚ g is
well-defined, that f ˚ g P C1pR,Rq, and that pf ˚ gq1 “ f ˚ g1.

Note. Since f is not assumed to be continuous, you cannot use Thm. 14.34 di-
rectly to compute pf ˚ gq1 and to show f ˚ g P C1. You have two options: (1) Use
Thm. 14.35. (2) Use Prop. 14.51 to L1-approximate f by a continuous compactly-
supported function. Then apply Thm. 14.34 (together with Cor. 14.36) to that
continuous function. Whichever method you use, I suggest you think about how
you can use the other method to solve the problem.

Remark 14.53. In particular, if g P C8
c pR,Rq, then the above problem shows that

f ˚ g P C8pR,Rq and pf ˚ gqpnq “ f ˚ gpnq for all n P N.

‹ Problem 14.5. The translation of each f P R1pR,Cq by t P R is defined to be

ft : R1
pR,Cq Ñ R1

pR,Cq ftpxq “ fpx´ tq

Prove that the translation map is continuous under the L1-seminorm, in the sense
that limtÑ0 }f ´ ft∥L1“ 0. Namely, prove that

lim
tÑ0

ż

R
|f ´ ft| “ 0

Hint. Use Prop. 14.51 to L1-approximate f by compactly supported continuous
functions or step functions. (Both types of functions will work.)

Definition 14.54. Let f P Rpr´π, πs,Cq. For each n P Z, define the n-th Fourier
coefficient to be

pfpnq “
1

2π

ż π

´π

fpxqe´inxdx

We call
`8
ÿ

n“´8

pfpnqeinx the Fourier series of f .
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Definition 14.55. For each N P N, define the Dirichlet kernel

DNpxq “
N
ÿ

n“´N

einx “
sinpN ` 1

2
qx

sinpx{2q

(When x P 2πZ, the RHS above should be 2N ` 1.) From 1
2π

şπ

´π
einxdx “ δn,0 we

easily see
1

2π

ż π

´π

DNpxqdx “ 1.

Problem 14.6. Let f P RpR,Cq have period 2π. Define sNpf ;xq “
N
ÿ

n“´N

pfpnqeinx.

1. Prove that sNpf ;xq “ pf ˚ DNqpxq where the convolution is defined with
respect to the integral 1

2π

ş

I
where I is any interval of length 2π. (Note that

both f and DN have period 2π. So translating I does not affect the result.)
In other words, prove that

sNpf ;xq “
1

2π

ż π

´π

fptqDNpx´ tqdt “
1

2π

ż π

´π

fpx´ tqDNptqdt (14.34)

2. Fix x P R. Assume that there exist A,B P C such that

lim sup
tÑ0`

ˇ

ˇ

ˇ

fpx´ tq ´ A

t

ˇ

ˇ

ˇ
ă `8 lim sup

tÑ0`

ˇ

ˇ

ˇ

fpx` tq ´B

t

ˇ

ˇ

ˇ
ă `8 (14.35)

(In other words, assume that there exist δ,M ą 0 such that |pfpx´tq´Aq{t| ď
M and |pfpx` tq ´Bq{t| ďM for all 0 ă t ă δ.) Prove that

lim
NÑ`8

sNpf ;xq “
A`B

2
(14.36)

Hint for part 2. Choose g : r´π, πs Ñ C such that gptq “ B if t ă 0, and gptq “ A if
t ą 0. Prove that

1

2π

ż π

´π

gptqDNptqdt “
A`B

2
(14.37)

Let φ : r´π, πs Ñ R such that φptq “
fpx´ tq ´ gptq

sinpt{2q
if t ‰ 0. Use Lebesgue’s

criterion to show that φ P Rpr´π, πs,Cq. Use Riemann-Lebesgue lemma to prove

lim
NÑ`8

ż π

´π

φptq sin
`

N `
1

2

˘

t ¨ dt “ 0.

Corollary 14.56. Let g P C1pra´π, a`πs,Cq. Let f : RÑ C be a 2π-periodic function

such that fpxq “ gpxq if a´ π ă x ă a` π, and that fpa` πq “
gpa´ πq ` gpa` πq

2
.

Clearly f P RpR,Cq. Then the Fourier series of f converges pointwise to f .
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Proof. Immediate from part 2 of Pb. 14.6.

Example 14.57. If we let a “ 0 and gpxq “ x, then one can compute that the
Fourier series of f is (13.10). It converges pointwise but not uniformly to f .
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15 A topological proof of the Stone-Weierstrass theo-
rem

15.1 *-algebras and subalgebras

Fix F P tR,Cu.

Definition 15.1. An F-algebra is defined to be a ring A (not necessarily having
1) which is at the same time also an F-vector space (where the vector addition is
equal to the ring addition) such that the ring multiplication and the scalar multi-
plication satisfy the associativity: For every λ P F and x, y P A , we have

λpxyq “ pλxqy “ xpλyq (15.1)

An F-algebra is called unital if A , as a ring, has the identity 1. In this case, we
write λ ¨ 1 as λ if λ P F.

An F-algebra is called commutative or abelian if xy “ yx for all x, y P A .
If A is an F-algebra, then an (F-)subalgebra is a subset B which is invariant

under the ring addition, ring multiplication, and scalar multiplication. (Namely,
B is a subring and also a subspace of A .) If A is unital, then a unital (F-
)subalgebra of A is an F-subalgebra containing the identity of A .

Remark 15.2. A unital F-algebra A is equivalently a ring with unit 1, together
with a ring homomorphism CÑ ZpA qwhere ZpA q is the center of A , i.e.

ZpA q “ tx P A : xy “ yx for every y P A u

We leave it to the readers to check the equivalence.

Example 15.3. If V is a F-vector space, then EndpV q, the set of F linear maps
V Ñ V , is naturally an F-algebra. If V is a normed vector space, then LpV q is an
F-algebra.

Definition 15.4. A (complex) *-algebra is defined to be a C-algebra together with
an antilinear map ˚ : A Ñ A sending x to x˚ (where “antilinear” means that for
every a, b P C and x, y P A we have pax ` byq˚ “ ax˚ ` by˚) such that for every
x, y P A , we have

px˚
q

˚
“ x pxyq˚ “ y˚x˚

Note that ˚ must be bijective. We call ˚ an involution. A *-subalgebra B is de-
fined to be a subalgebra satisfying x P B iff x˚ P B. If A is a unital algebra with
unit 1, we say that A is a unital *-algebra if A is equipped with an involution
˚ : A Ñ A such that A is a *-algebra, and that

1˚
“ 1

A unital *-subalgebra is a unital subalegbra and also a *-subalgebra.
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Example 15.5. The set of complex n ˆ n matrices Cnˆn is naturally a unital ˚-
algebra if for every A P Cnˆn we define A˚ “ A

t
, the complex conjugate of the

transpose of A.

In this chapter, we are mainly interested in abelian algebras.

Example 15.6. LetX be a set. Then FX is naturally a unital F-algebra, and l8pX,Cq
is its unital F-subalgebra. If X is a topological space, then CpX,Fq is a unital
F-subalgebra of FX . If X is compact, then CpX,Fq is a unital F-subalgebra of
l8pX,Fq.

The following is our main example of this chapter.

Example 15.7. Let X be a set. Then CX is a unital *-algebra if for every f P CX we
define

f˚ : X Ñ C f˚
pxq “ fpxq (15.2)

Then l8pX,Cq is a unital *-subalgebra of CX . Assume that X is a compact topo-
logical space. Then CpX,Cq is a unital *-subalgebra of l8pX,Cq. If f1, . . . , fn P
CpX,Cq, then Crf1, . . . , fns, the set of polynomials of f1, . . . , fn with coefficients
in C, is a unital subalgebra of CpX,Cq. And Crf1, f˚

1 , . . . , fn, f
˚
n s is a unital *-

subalgebra of CpX,Cq.

More generally, we have:

Example 15.8. Let A be an abelian unital F-algebra. Let S Ă A . Then

FrSs “ SpanFtx
n1
1 ¨ ¨ ¨ x

nk
k : k P Z`, xi P S, ni P Nu (15.3)

the set of polynomials of elements in S, is the smallest unital F-subalgebra con-
taining S, called the unital F-subalgebra generated by S. (Here, we understand
x0 “ 1 if x P A .) Thus, if A is an abelian unital *-algebra, then CrSYS˚s (where
S˚ “ tx˚ : x P Su) is the smallest unital *-algebra containing S, called the unital
*-subalgebra generated by S.

15.2 The Stone-Weierstrass (SW) theorems

The main goal of this chapter is to prove the following theorem.

Theorem 15.9 (SW theorem, compact real version). Let X be a compact Hausdorff
space. Let A be unital subalgebra of CpX,Rq separating points of X . Then A is dense
in CpX,Rq (under the l8-norm).
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Example 15.10. Let X “ ra, bs be a compact interval in R. Then Rrxs is a unital
subalgebra of CpX,Rq. It separates points of ra, bs because it contains id. Thus, by
SW theorem, Rra, bs is dense in Cpra, bs,Rq. This special case was proved in Thm.
14.45.

More generally, let X “ I1 ˆ ¨ ¨ ¨ ˆ IN where each Ii Ă R is a compact interval.
Let πi : X Ñ Ii be the projection onto the i-th component, i.e., the i-th coordinate
function. Then π1, . . . , πN separate points of X , since π1 ˆ ¨ ¨ ¨ ˆ πN is the identity
map of X . Thus, by SW theorem, Rrπ1, . . . , πN s is dense in CpX,Rq. In fact, we
will first prove this special case before we prove the general SW theorem.

From the above version of SW theorem it is easy to prove:

Theorem 15.11 (SW theorem, compact complex version). LetX be a compact Haus-
dorff space. Let A be a unital *-subalgebra of CpX,Cq separating points of X . Then A
is dense in CpX,Rq (under the l8-norm).

Proof. Let ReA “ tRef “ pf ` f˚q{2 : f P A u. Since for each f P A we have f˚ P

A , we know that Ref P A . This proves that ReA Ă A . Since f “ Repfq´iRepifq,
we conclude

A “ ReA ` iReA (15.4)

In other words, elements of A are precisely of the form α` iβ where α, β P ReA .
From this, it is clear that ReA is a unital subalgebra of CpX,Rq separating points
of X . Thus, by Thm. 15.9, ReA is dense in CpX,Rq. It is clear from (15.4) that A
is dense in CpX,Cq.

Example 15.12. Let S1 “ tz P C : |z| “ 1u. For each n P Z, let en : S1 Ñ C be
defined by enpeixq “ einx. In other words, enpzq “ zn. Then Cre1, e´1s “ SpanCten :
n P Zu is a unital *-subalgebra of CpS1,Cq. It separates points of S1 since e1 does.
Therefore, by SW theorem, Cre1, e´1s is dense in CpS1,Cq.

One often views

CpS1,Cq “ tg P Cpr´π, πs,Cq : gp´πq “ gpπqu (15.5)

since any g in the RHS corrsponds bijectively to f in the LHS by setting fpeitq “
gptq. Therefore, the above conclusion is that any g P Cpr´π, πs,Cq satisfying
gp´πq “ gpπq can be approximated uniformly by functions of the form

řN
n“´N an ¨ e

inx

where an P C. This property is fundamental to the theory of Fourier series.

Example 15.13. We continue the above discussion. Cre1s “ SpanCten : n P Nu is a
unital subalgebra (though not a *-subalgebra) of CpS1,Cq separating points of S1.
Let us prove that it is not dense in CpS1,Cq.
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Proof. We view functions on S1 as those on r´π, πs having the same values at π
and at ´π. We claim that e´1 is not in the closure of Cre1s. Indeed, it can be
checked that

şπ

´π
e´1e1 “ 2π, and that

şπ

´π
p ¨ e1 “ 0 for every p P Cre1s (since this

is true when p “ en and n ě 0). If e´1 is in the closure of Cre1s, then there is a
sequence ppkqkPZ`

in Cre1s converging uniformly on r´π, πs to e´1. By Cor. 13.21,
0 “

şπ

´π
pke1 converges to

şπ

´π
e´1e1 “ 2π as k Ñ 8, impossible.

Example 15.14. Let X, Y be compact metric spaces spaces. Let A be the subspace
of CpX ˆ Y,Rq spanned by elements of the form fg where f P CpX,Rq and g P
CpY,Rq. (More precisely, one should understand fg as pf ˝ πXq ¨ pg ˝ πY q where
πX , πY are the projections of X ˆ Y onto X and Y respectively.) By the Urysohn
functions (cf. Rem. 7.118), we see that CpX,Rq resp. CpY,Rq separates points of
X resp. Y . (This is in fact also true when X, Y are compact Hausdorff spaces.)
Thus A is a unital subalgebra of CpX ˆ Y,Rq separating points of X ˆ Y . By SW
theorem, A is dense in CpX ˆ Y,Rq. Nevertheless, we will prove SW theorem by
first proving this special case: see Cor. 15.33.1

15.3 Proof of SW, I: polynomial approximation on r0, 1sI

Starting from this section, we begin our proof of SW Thm. 15.9. We first ex-
plain our strategy of the proof. Let X be a compact Hausdorff space.

We first consider the special case thatX is metrizable. Then by Thm. 8.45, X is
homeomorphic to a closed (and hence compact) subset of r0, 1sZ` . Therefore, we
may assume that X is a closed subset of r0, 1sZ` . As we will see, any continuous
real-valued function on X can be extended to a continuous function on r0, 1sZ` .
(This is due to Tietze extension theorem, which will be proved in the next sec-
tion.) Thus, it suffices to prove SW theorem for r0, 1sZ` . In fact, as we will see, it
suffices to prove that any element of Cpr0, 1sZ` ,Rq can approximated uniformly
by polynomials, i.e., by elements of Rrπ1, π2, . . . swhere πn : r0, 1sZ` Ñ r0, 1s is the
projection onto the n-th component. This task will be achieved in this section.

The above method can be easily genearlized to the case that X is not necessar-
ily metrizable. In fact, since A Ă CpX,Rq separates points of X , as in the proof of
Thm. 8.45, A enables us to embed X onto a compact subset of r0, 1sI where I is
an index set. Therefore, we need to show that r0, 1sI is compact. This is indeed
due to:

Theorem 15.15 (Tychonoff theorem). Let pXαqαPI be a family of compact topological
spaces. Then the product space S “

ś

αPI Xα (equipped with the product topology) is
compact.

1More precisely, we don’t need Exp. 15.14 to prove SW. But our method of proving SW imme-
diately implies Exp. 15.14. To put it differently, we don’t need the full power of the SW theorem
to prove Exp. 15.14.
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Note that S is obviously Hausdorff if each Xα is Hausdorff. We will prove Ty-
chonoff theorem in Sec. 16.3 using Zorn’s lemma. Assuming Tychonoff theorem,
we will show that elements of Cpr0, 1sI ,Rq can be approximated uniformly by
polynomials. This is the goal of this section:

Proposition 15.16. Let pIαqαPI be a family of nonempty compact intervals in R. Let
S “

ś

αPI Iα. For each α, define the coordinate function

πα : S Ñ Iα x‚ “ pxµqµPI ÞÑ xα

Then Rrtπα : α P I us, the unital subalgebra of CpS,Rq generated by all coordinate
functions, is dense in CpS,Rq.

Since the coordinate functions separate points of S, Prop. 15.16 is clearly a
special case of SW theorem.

Lemma 15.17. Prop. 15.16 holds when I is a finite set.

Proof. We prove by induction on N that elements of CpS,Rq, where S “ I1 ˆ
¨ ¨ ¨ ˆ IN , can be approximated uniformly by polynomials (i.e. by elements of
Rrπ1, . . . , πN s). The case N “ 1 follows from Weierstrass approximation Thm.
14.45. Assume that case N ´ 1 has been proved. Let use prove case N where
N ą 1.

Write S “ I1 ˆ Y where Y “ I2 ˆ ¨ ¨ ¨ ˆ IN . Then by Thm. 9.3, we have a
canonical equivalence of normed vector spaces

CpS,Rq » CpI1,Vq where V “ CpY,Rq

Choose any f P CpS,Rq, viewed as an element of CpI1,Vq. Then by Thm. 14.45, f
can be approximated uniformly on I1 by elements of Vrπ1s. Thus, for any ε ą 0,
there exist n P Z` and g0, . . . , gn P CpY,Rq such that }f ´

řn
i“0 gi ¨ π

i
1}l8pI1,Vq ă ε.

Equivalently,

›

›

›
f ´

n
ÿ

i“0

gi ¨ π
i
1

›

›

›

l8pS,Rq
ă ε

where gi actually means the composition of gi with the projection S Ñ Y . By case
N ´ 1, each gi can be approximated uniformly on Y by elements of Rrπ2, . . . , πN s.
So by triangle inequality, f can be uniformly approximated by elements of the
form

řn
i“1 hi ¨ π

i
1 where each hi is a polynomial of π2, . . . , πN . This finishes the

proof of case N .

The key to the transition from finite to general index sets is the following
lemma.
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Lemma 15.18. Let pXαqαPI be a family of nonempty topological spaces. Let S “
ś

αPI Xα. Let f P CpS,Rq. Let p‚ “ ppαqαPI P S. For each A P finp2I q, define a
map φA : S Ñ S such that for each x‚ “ pxαqαPI ,

φApx‚qα “

"

xα if α P A
pα if α R A

Then φA is continuous, and hence f ˝ φA is continuous. Moreover, for every x‚ P S we
have

lim
pA,y‚qPfinp2I qˆS

pA,y‚qÑp8,x‚q

f ˝ φApy‚q “ fpx‚q (15.6)

in the sense of Prop. 9.16. Thus, if each Xα is compact, then S is compact by Tychonoff
Thm. 15.15, and hence lim

APfinp2I q
f ˝ φA converges uniformly to f by Thm. 9.12.

In other words, φA fixes the α-th component if α P A, and changes the α-th
component to pα if α R A. (15.6) means that for every ε ą 0 there exist U P Nbhpx‚q

and a finite A Ă I such that for every y‚ P U and for every finite set B satisfying
A Ă B Ă I , we have |fpx‚q ´ f ˝ φBpy‚q| ă ε.

Proof. The proof is similar to that of Pb. 9.6. The continuity of φA follows easily
from the net-convergence description of product topology in Thm. 7.73. Choose
any x‚ P S and ε ą 0. Since f is continuous, there exists U P Nbhpx‚q such that
|fpx‚q ´ fpy‚q| ă ε for all y‚ P U . By the definition of product topology by means
of basis (Def. 7.71), we can shrink U to a smaller neighborhood of x‚ of the form

U “
ź

αPI

Vα

where Vα P NbhXαpxαq for each α P I , and Vα “ Xα for all α outside some
A P finp2I q. Thus, y‚ P S belongs to U iff yα P Vα for each α P A. Therefore, if
y‚ P U , then for each finite B satisfying A Ă B Ă I , we have that

φBpy‚qα “ yα P Vα p@α P Aq

and hence that φBpy‚q P U . It follows that |fpx‚q ´ f ˝ φBpy‚q| ă ε.

Proof of Prop. 15.16. Choose any continuous f : S “
ś

αPI Iα Ñ R. By Lem.
15.18, f can be approximated uniformly by functions depending on finitely many
variables. In other words, for any ε ą 0, there exist A P finp2I q and a continuous
g : SA “

ś

αPA Iα Ñ R such that }f ´ g ˝ πA}l8pS,Rq ă ε, where πA : S Ñ SA
is the natural projection. By Lem. 15.17, g can be approximated uniformly by
polynomials of tπα : α P Au. This finishes the proof.
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15.4 Partition of unity and the Tietze extension theorem

In this section, we fix a Banach space V over F P tR,Cu, and fix a nonempty
LCH space X . Recall from Prop. 8.41 that every open subset of X is LCH.

Remark 15.19. Let U be an open subset of X . Let f P CcpU,Vq supported in U .
Then by zero-extension, f can be viewed as an element of CcpX,Vq supported in
U .

Proof. Let f take value 0 outside U . Let A “ tx P U : fpxq ‰ 0u and K “ ClUpAq,
which is compact by assumption. In particular, K is closed in X by Cor. 8.22.
Then X “ U Y Kc is an open cover on X . By assumption, f |U is continuous.
Also f |Kc “ 0 is continuous. So f is continuous by Exe. 7.119. To show that
f P CcpX,Vq and Supppfq Ă U , it remains to prove that A “ ClXpAq is compact
and is contained in U . This fact follows from Rem. 15.20.

Remark 15.20. Let W be a subset of a Hausdorff space Y . (In this section, we are
mainly interested in the case that Y is the LCH space X and W is open. In this
case, W is LCH by Prop. 8.41.) Let A Ă W , and recall A “ ClY pAq. Then

A is precompact in W ðñ A is compact, and A Ă W (15.7)

Moreover, if A is precompact in W , then A equals ClW pAq.

Note that if W is open, but if A is not precompact in W , then ClY pAq and
ClW pAq are not necessarily equal: take Y “ R and A “ W “ Rą0.

Proof. “ð” is obvious from the definition of precompactness (recall Def. 8.39).
“ñ”: Clearly ClW pAq Ă A in general. Assume that A is a precompact subset

of W . By Def. 8.39, we have A Ă ClW pAq Ă W where ClW pAq is compact. In
particular, ClW pAq is closed in Y (by Cor. 8.22). So A Ă ClW pAq. So A “ ClW pAq.
Thus A is a compact subset of W since ClW pAq is so.

Definition 15.21. Let W be a subset of a Hausdorff space Y . We write

A Ť W (15.8)

whenever A is a precompact subset of W , or equivalently, whenever A Ă Y satis-
fies that ClY pAq is a compact subset of W .

15.4.1 Tietze extension theorem

The goal of this section is to prove the celebrated

Theorem 15.22 (Tietze extension theorem). Let K be a compact subset of X . Let
f P CpK,Vq. Then there exists rf P CcpX,Vq such that rf |K “ f , and that } rf}l8pX,Vq “

}f}l8pK,Vq.
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The reader can first assume this theorem and read Sec. 15.5 about the proof of
SW theorem, and then return to this section to read the proof of Tietze extension
theorem.

Remark 15.23. Tietze extension theorem is often used in the following form: Sup-
pose that U is an open subset of X containing K. Applying Tietze extension
to U (which is LCH by Prop. 8.41) and noticing Rem. 15.19, we see that every
f P CpK,Vq can be extended to some rf P CcpX,Vq supported in U such that
} rf}l8pX,Vq “ }f}l8pK,Vq. In other words, in Tietze extension theorem, we can as-
sume that the extended function is compactly supported in a given open subset.

Corollary 15.24. CcpX,Rq separates points of X .

Proof. Choose distinct points x, y P X . Let K “ tx, yu. Let f : K Ñ R such that
fpxq “ 1 and fpyq “ 0. By Thm. 15.22, f can be extended to some rf P CcpX,Rq
which clearly separates x and y.

There is another version of Tietze extension theorem: If A is a closed subset
of a normal topological space Y , then any f P CpA,Rq can be extended to some
rf P CpY,Rq without increasing the l8-norm. Its proof is not quite the same as the
LCH version. See [Mun, Sec. 35]. We will not use this version in our course.

15.4.2 Urysohn’s lemma

The proof of Tietze extension theorem involves several steps. The first step
is to prove a special case: If K Ă X is compact, then the characteristic function
χK : X Ñ R can be extended to a continuous f P CcpX,Rq. Then f |K “ 1.
Replacing f by maxtf, 0u, we may assume that f ě 0. Replacing f by mintf, 1u,
we may assume 0 ď f ď 1. This special case is called

Theorem 15.25 (Urysohn’s lemma). LetK be a compact subset ofX . Then there exists
f such that

K ă f ă X (15.9)

The meaning of the notations in (15.9) is explained below. Note that since any
open subset U Ă X is LCH (Prop. 8.41), Urysohn’s lemma can be applied to U
and any compact subset K Ă U , which shows that there exists f P CcpX, r0, 1sq
such that K ă f ă U .

Definition 15.26. Let U be an open subset of X . Let K be a compact subset of X .

• f ă U means that f P CcpX, r0, 1sq (i.e. f P CcpX,Rq and fpXq Ă r0, 1s) and
that Supppfq Ă U .

• K ă f means that f P CcpX, r0, 1sq and that f |K “ 1.
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The symbol “ă” is chosen for the following reason. Assume f P CcpX, r0, 1sq.
Then K ă f means that χK ď f . However, the meaning of f ă U is slightly
stronger than that of f ď χU : the latter means that U contains tx : fpxq ‰ 0u, but
not that U contains its closure Supppfq.

To prove Urysohn’s lemma we need some elementary observations:

Lemma 15.27. Let W be an open subset of X . Let K be a compact subset of W . Then
there exists an open set U of X such that K Ă U Ť W .

By Rem. 15.20, this lemma simply means that every compact K Ă W is con-
tained in a precompact open subset ofW . To prove it, it suffices to assumeX “ W .

Proof. We assume X “ W . Since X is LCH, every x P K is contained in a precom-
pact open subset Ux. Since K is compact, K is contained in U “ Ux1 Y ¨ ¨ ¨ Y Uxn
for some x1, . . . , xn P K. Clearly U is open and precompact.

Recall Def. 14.17 for the meaning of ωpf, xq, the oscillation of a function f at x.

Lemma 15.28. Let Y be a topological space andZ a metric space. Let pfnq be a sequence in
ZY converging uniformly to f P ZY . Assume that for each x P Y , limnÑ8 ωpfn, xq “ 0.
Then f is continuous.

Note that Thm. 7.79 can be viewed as a special case of this lemma. However,
this lemma is not used as often as Thm. 7.79. This is why we call this result only
a lemma.

Proof. Choose any ε ą 0. Then there is N P Z` such that for all n ě N we have
}f ´ fn}8 ă ε. Since limnÑ8 ωpfn, xq “ 0, there is n ě N such that ωpfn, xq ă ε.
Thus there exist n ě N and U P NbhXpxq such that diampfnpUqq ă ε. Then by
triangle inequality, we have diampfpUqq ď 3ε. So ωpf, xq ď 3ε. Since ε is arbitrary,
we conclude ωpf, xq “ 0. So f is continuous at x by Prop. 14.18.

‹ Proof of Urysohn’s lemma. By Lem. 15.27, we can choose U1 Ť X containingK.
In the case thatX is metrizable, fpxq “ dpx, U c

1q{pdpx,Kq`dpx, U
c
1qq gives a desired

function. However, in the general case, we need to construct f in a different way.
We shall construct inductively a sequence of functions fn : X Ñ r0, 1s such

that the following conditions are satisfied:

(a) fn|K “ 1 and fn|XzU1 “ 0.

(b) ωpfn, xq ď 1
2n

for all x P X .

(c) }fn`1 ´ fn}l8 ď
1

2n`1 for all n.
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Then }fn`k ´ fn}8 ď 1{2n for all n, k ą 0. Thus pfnqnPZ`
is a Cauchy sequence

in l8pX,Rq, converging uniformly to some f P l8pX,Rq. Clearly fpXq Ă r0, 1s,
f |K “ 1, and f |XzU1 “ 0. So f is compactly supported since U1 is compact. By
Lem. 15.28, f P CcpX, r0, 1sq, finishing the proof.

In fact, our construction of fn relies on

K Ă U0 Ť U 1
2n
Ť U 2

2n
Ť ¨ ¨ ¨ Ť U 2n´1

2n
Ť U1

f0 is simply defined to be χU0 where U0 is a precompact open subset of U1 contain-
ing K (which exists due to Lem. 15.27).

Suppose that fn and U j
2n

(where 0 ď j ă 2n) have been constructed. Clearly
U j

2n`1
already exists when j is even. Suppose that j is odd, let U j

2n`1
be a precom-

pact open subset of U j`1

2n`1
containing the closure of U j´1

2n`1
. ThenK Ă U0 Ť U 1

2n`1
Ť

U 2
2n`1

Ť ¨ ¨ ¨ Ť U1. Let

hn`1 “
ÿ

0ăjă2n`1

j is odd

2´n´1
¨ χ∆j

where ∆j “ U j

2n`1
zU j´1

2n`1

and let fn`1 “ fn ` hn`1. The best way to understand this construction is to look
at the pictures:

Clearly (a) and (c) are satisfied. Choose any x P X . For each n, let U 2n`1
2n

“ X

and U´ 1
2n
“ H. ThenX is a disjoint union of ∆j “ U j

2n`1
zU j´1

2n`1
over 0 ď j ď 2n`1,

and fn can be described by fn|∆j
“ maxt1 ´ j

2n
, 0u. For each x P ∆j (where

1 ď j ď 2n ` 1), let

W “ U j
2n
zU j´2

2n

Then W P NbhXpxq, and diampfnpW qq ď
1
2n

since W Ă ∆j Y∆j´1. If x P ∆0, then
∆0 P Nbhpxq and diampfnp∆0qq “ 0. This proves (b).

15.4.3 Partition of unity

In the second step of the proof of Tietze extension theorem, we prove the the-
orem on partition of unity.
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Recall that we defined Riemann integrals by partitioning a compact interval
into small intervals. Thus, in order to define the integral of a function on R2,
one can partition a rectangle into smaller ones. However, it is more difficult to
integrate a function defined on a more complicated space (a complicated compact
surface M in R3, for example) by dividing M into small pieces, since these small
pieces may have complicated shapes.

Instead of partitioning M , a better way to define
ş

M
f is by partitioning f .

Let f : M Ñ R be continuous. Suppose first of all that Supppfq is contained
in a small enough neighborhood U which can be “parametrized by a rectangle”.
(More precisely: we can find a bijection φ : R Ñ U , where R “ pa, bq ˆ pc, dq is
an open rectangle in R2, such that φ and φ´1 are both smooth. Such φ is called
a diffeomorphism.) Then we can use integrals on rectangles to define

ş

M
f by

“pulling back f to R”. Now, in the general case, one can define
ş

M
f by writting

f as f1 ` ¨ ¨ ¨ ` fn where each fn P CpM,Rq has a small enough support such that
ş

M
fi can be defined. Then

ř

i

ş

M
fi gives the formula of

ş

M
f .

Notice that it suffices to write the constant function 1 on M as h1 ` ¨ ¨ ¨ ` hn
where each Suppphiq is small enough. Then f “ fh1 ` ¨ ¨ ¨ ` fhn gives a desired
partition of f . Thus, 1 “ h1` ¨ ¨ ¨`hn is called a partition of unity (where “unity”
means the constant function 1).

Theorem 15.29. Let K be a compact subset of X . Let U “ pU1, . . . , Unq be a finite set of
open subsets of X covering K (i.e. K Ă U1 Y ¨ ¨ ¨ Y Un). Then there exist h1, . . . , hn P
CcpX,Rq such that the following conditions hold:

(1) For each 1 ď i ď n, we have hi ě 0 and Suppphiq Ă Ui.

(2)
n
ÿ

i“1

hi
ˇ

ˇ

K
“ 1.

(3) 0 ď
n
ÿ

i“1

hi ď 1.

Such h1, . . . , hn are called a partition of unity of K subordinate to U.

Many people do not assume (3) in the definition of partition of unity. We as-
sume (3) since it is useful. In fact, conditions (1)-(3) imply that

ř

i hi is an Urysohn
function for K and

Ť

i Ui. Therefore, Urysohn’s lemma is a special case of Thm.
15.29. However, we shall prove Thm. 15.29 using Urysohn’s lemma. In fact,
h1, . . . , hn should be viewed as a partition of the Urysohn function

ř

i hi.

Proof. Step 1. Let us construct Gi P CcpUi,Rě0q for each 1 ď i ď n such that
G :“

ř

iGi is ą 0 on K (i.e., GpKq Ă Rą0).
By Urysohn’s lemma, for each x P X there exists gx P CcpX, r0, 1sq supported

in Ui such that gxpxq ‰ 0. Since K is compact and is contained in
Ť

xPK g
´1
x pRą0q,

there exists a finite subset E Ă K such that K Ă
Ť

xPE g
´1
x pRą0q. So

ř

xPE gx
ˇ

ˇ

K
ą 0.
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Now, for each 1 ď i ď n, define

Gi “
ÿ

xPE
SupppgxqĂUi

gx (15.10)

Since for each x P E there is some Ui containing Supppgxq, when summing
up (15.10) over all i, each gx must appear at least once in the summand. So
G :“

ř

iGi is ě
ř

i gi, and hence G|K ą 0. Clearly each Gi is ě 0 and is compactly
supported in Ui.

Step 2. G1, . . . , Gn satisfy (1) but not necessarily (2) or (3). It is tempting to
define hi “ Gi{G. Then h1, . . . , hn satisfy all the desired conditions except the
continuity. To remedy this issue, we define hi “ Gi{ rG, where rG P CcpX,Rq satis-
fies that rG ą 0 on X , that rG ě G (so that 0 ď

ř

i hi ď 1), and that rG|K “ G|K (so
that

ř

i hi|K “ 1). Then h1, . . . , hn are the desired functions.
Let us prove the existence of such rG. Let W “ tx P X : Gpxq ą 0u. Let

F P CpX, r0, 1sq such that F |K “ 0 and that F |XzW “ 1. The existence of such 1´F

is ensured by Urysohn’s lemma. Then one can let rG “ G` F .

15.4.4 How to use partition of unity

In Sec. 8.2, we have discussed how to use the condition of compactness: Sup-
pose thatK is compact and f is a function onK, for instance, a continuous one. To
prove that f satisfies a global finiteness condition, we first prove that each x P K
is contained in a neighborhood Ux on which f satisfies this finiteness condition.
Then we pick finitely many Ux1 , Ux2 , . . . covering K, and show that f satisfies the
finiteness condition globally.

To summarize, we can use compactness to prove many finiteness properties
by a local-to-global argument. As pointed out in Sec. 8.2, usually, these finiteness
properties can also be proved by contradiction using net-compactness or sequen-
tial compactness.

Now assume that K is a compact subset of the LCH space X , and let f be a
function on K. With the help of partition of unity, one can construct new objects
from f using a local-to-global argument. Moreover, these constructions are usu-
ally very difficult to obtain by using net-compactness or sequential compactness.
The following are two typical examples:

1. (Integral problems) Construction of an integral
ş

K
f . This was already men-

tioned in Subsec. 15.4.3.
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2. (Extension problems) Construct a “good” function rf on X extending (or
“approximately extending”) f . The idea is simple: Suppose that the exten-
sion exists locally, i.e., suppose that for each x P K there exists Ux P NbhXpxq
such that f |UxXK can be extended to a good function gx on Ux. By compact-
ness, K is covered by

Ť

xPE Ux where E is a finite subset of K. Let phxqxPE be
a partition of unity ofK subordinate to this open cover. Then rf “

ř

xPE hx¨gx
gives a good extension.

In the study of measure theory in the second semester, we will use partition
of unity extensively. Readers who want to get a head start can do the problems
in Subsec. 15.8.2, 15.8.3, and 15.8.4 to see how to build a theory of multivariable
Riemann integrals using partitions of unity. For the moment, let’s look at a simple
example of extension problem before we prove the Tietze extension theorem. This
example is not used elsewhere in this chapter, but it serves as a good illustration
of how to use partitions of unity.

Example 15.30. Let I be an open interval in R, and let K be a nonempty compact
subset of I . Let r P Z` Y t8u. Assume that f : K Ñ R is Cr, which means that
for each x P K there exist an open interval Ux Ă I containing x and gx P CrpUx,Rq
extending f |UxXK . Then there exists rf P CrpI,Rq extending f and is compactly
supported in I .

This example is the smooth Tietze extension theorem in dimension 1, as men-
tioned in Rem. 13.46.

Proof. Let Ux and gx be as in the example. Since K is compact, it can be covered
by Ux1 , . . . , Uxn . Call this open cover U. Similar to the proof of Thm. 15.29, one
can find a set of Cr-partition of unities h1, . . . , hn of K subordinate to U . In other
words, h1, . . . , hn are Cr functions and form a partition of unity. (Similar to the
proof of Thm. 15.29, in order to find such h1, . . . , hn, it suffices to prove the Cr-
version of Urysohn’s lemma. But this has been done in Prop. 14.47, noting that K
is contained in a compact subinterval of I .) Now each higxi is an Cr-function on I
compactly supported in Uxi . Then rf “

ř

i higxi is a desired extension.

You will see many more examples in the future when you study differential
manifolds and sheaf theory. It is no exaggeration to say that partition of unity is
one of the most important techniques in modern mathematics.

15.4.5 Proof of Tietze extension theorem

Now you may wonder: Under the assumption of Tietze extension Thm. 15.22,
we don’t even know how to extend f P CpK,Vq locally. Then how can we use
the local-to-global argument? Here is the answer: you can find an approximate
extension locally. Therefore, you can first find an approximate global extension
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of f . Then, passing to the limit, you get the desired extension. This will be our
strategy of the proof of Thm. 15.22.

Lemma 15.31. Let K be a compact subset of X , and let f P CpK,Vq. Then for every ε,
there exists φ P SpanpCcpX,RqVq such that

}f ´ φ}l8pK,Vq ď ε }φ}l8pX,Vq ď }f}l8pK,Vq

The meaning of SpanpCcpX,RqVq is clear: the smallest linear subspace of
CcpX,Vq containing CcpX,RqV . Thus

SpanpCcpX,RqVq “ tg1v1 ` ¨ ¨ ¨ ` gnvn : n P Z`, gi P CcpX,Rq, vi P Vu (15.11)

Proof. Let M “ }f}l8pK,Vq. For each p P K, since f is continuous at p, there exists
Up P NbhXppq such that diampfpUp X Kqq ď ε (cf. Prop. 14.18). Then the contant
function fppq gives a local approximate extension of f |UpXK .

Since K is compact, there exists a finite subset E Ă K such that K is covered
by U “ tUp : p P Eu. By Thm. 15.29, there is a partition of unity phpqpPE of K
subordinate to U. Since hp P CcpUp,Rq can be viewed as a compactly supported
continuous function on X (Rem. 15.19), the function φ “

ř

pPE hpfppq is an ele-
ment of CcpX,Vq.

If x P K, then since hp ě 0, we have

}fpxq ´ φpxq} “
›

›

›

ÿ

pPE

hppxq ¨
`

fpxq ´ fppq
˘

›

›

›
ď

ÿ

pPE

hppxq}fpxq ´ fppq}

In the RHS, if hppxq ‰ 0, then x P Up, and hence }fpxq ´ fppq} ď ε. So the RHS
is no greater than

ř

pPE hppxqε, and hence no greater than ε since
ř

pPE hppxq “ 1.
Finally, for every x P X , we have

}φpxq} ď
ÿ

pPE

hppxq}fppq} ď
ÿ

pPE

hppxqM “M

finishing the proof.

The following special case of Lem. 15.31 is more useful for application.

Proposition 15.32. Assume that X is a compact Hausdorff space, and let f P CpX,Vq.
Then for every ε ą 0, there exists φ P SpanpCcpX,FqVq such that }f ´ φ}8 ă ε.

Corollary 15.33. Let X, Y be compact Hausdorff spaces. Then for every f P CpX ˆ

Y,Fq and ε ą 0, there exist g1, . . . , gn P CpX,Fq and h1, . . . , hn P CpY,Fq such that
}f ´ g1h1 ´ ¨ ¨ ¨ ´ gnhn}l8pXˆY,Fq ă ε.

Proof. By Thm. 9.3, we view f as an element of CpX,Vqwhere V “ CpY,Rq. Then
the corollary follows immediately from Prop. 15.32. From this proof, we see that
it is not necessarily to assume that Y is Hausdorff. (This is not an important fact
anyway.)
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Now we are ready to finish the

Proof of Tietze extension Thm. 15.22. Recall that K is compact in X and f P

CpK,Vq, and that our goal is to extend f to rf P CcpX,Vq. Moreover, we need
that } rf}l8pX,Vq equals M “ }f}l8pK,Vq. We first note that the last requirement is
easy to meet. Assume WLOG that M ą 0. Let rf P CcpX,Vq extend f , and de-
fine g : X Ñ Rě0 by gpxq “ maxtM, } rfpxq}u. Then g is continuous, g ě M , and
g|K “ M . Then M rf{g is an element of CcpX,Vq extending f and is l8-bounded
by M , finishing the proof.

Second, note that it suffices to extend f to rf P CpX,Vq. By Urysohn lemma,
there exists h such that K ă h ă X . Then rfh P CcpX,Vq extends f .

We now construct rf P CpX,Vq extending f . By Lem. 15.31, there exist
φ1, φ2, ¨ ¨ ¨ P CcpX,Vq such that

}f ´ φ1}l8pK,Vq ď
M

2
}φ1}l8pX,Vq ďM

}f ´ φ1 ´ φ2}l8pK,Vq ď
M

4
}φ2}l8pX,Vq ď

M

2

}f ´ φ1 ´ φ2 ´ φ3}l8pK,Vq ď
M

8
}φ3}l8pX,Vq ď

M

4
...

Then
ř8

n“1 }φn}l8pX,Vq ď 2M , and hence
ř8

n“1 φn converges to some rf in the Ba-
nach space CpX,Vq X l8pX,Vq (Cor. 3.50). Clearly rf extends f .

15.5 Proof of SW, II: embedding into r0, 1sI

In this section, we shall finish the proof of SW Thm. 15.9.

Remark 15.34. Suppose that Φ : X Ñ Y is a homeomorphism of topological
spaces. Then X and Y can be “viewed as the same space” via Φ. This means
that a point x P X can be identified with Φpxq P Y , that an open or closed subset
A Ă X can be identified with ΦpAq, which is open or closed in Y . It also means, for
example, that if A Ă X , then the closure of A can be identified with the closure of
ΦpAq in Y . More precisely: Φ restricts to a homeomorphism ClXpAq Ñ ClY pΦpAqq.

The continuous functions of X and Y can also be identified: If g P CpY, Zq
where Z is a topological space (e.g. Z “ R), then g is equivalent to its pullback
under Φ, which is an element of CpX,Zq given by

Φ˚g :“ g ˝ Φ P CpX,Zq (15.12)
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This equivalence of functions can be illustrated by the commutative diagram

X Y

Z

Φ
»

Φ˚g g
(15.13)

Proof of SW Thm. 15.9. Recall that X is a compact Hausdorff space and A is a
unital subalgebra of CpX,Rq separating points of X . For each f P A , let Mf “

}f}8 and If “ r´Mf ,Mf s. Define

Φ : X Ñ S “
ź

fPA

If x ÞÑ pfpxqqfPA

In other words, Φ “
Ž

fPA f , using the notation in Pb. 7.8. Thus, by Pb. 7.8
(or by Thm. 7.73), Φ is continuous. The fact that A separates points of X is
equivalent to that Φ is injective. Since X is compact, by Thm. 8.23, Φ restricts to a
homeomorphism Φ : S Ñ ΦpSq.

Recall that the coordinate function πf : S Ñ If is the projection onto the f -
component. So Φ˚πf “ πf ˝ Φ “ f . Therefore, by Rem. 15.34, X is equivalent
to ΦpXq under Φ, and πf |ΦpXq P CpΦpXq,Rq is equivalent to f P CpX,Rq under
Φ. Therefore, we can identify X with ΦpXq via Φ so that f is identified with
πf |ΦpXq. Thus, in this case, A is the set of all πf |X , and clearly A contains all
the polynomials of the coordinate functions tπf |X : f P A u since A is a unital
subalgebra. Thus, it suffices to prove that the polynomials of coordinate functions
are dense in CpX,Rq.

Choose any g P CpX,Rq. Since X is compact, and since S is a compact Haus-
dorff space (by Tychonoff Thm. 15.15), by Tietze extension Thm. 15.22, g can be
extended to rg P CpS,Rq. By Prop. 15.16, rg can be approximated uniformly by the
polynomials of coordinate functions of S.

Remark 15.35. If you feel that identifying X and ΦpXq is cheating, it is easy to
revise the proof without identifying them: Choose any g P CpX,Rq. One first
concludes that g ˝ Φ´1 P CpΦpXq,Rq can be uniformly approximated by the poly-
nomials of coordinate functions. Then, since the pullback of these polynomials
under Φ are elements of A , one concludes that g can be approximated uniformly
by elements of A .

15.6 Summary of the proof of SW

The key steps of the proof of SW Thm. 15.9 are as follows.
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1. We first prove the case that X is a compact interval I and A is the poly-
nomial algebra: Let f P CpI,Rq, and extend f to an element in CcpR,Rq.
Let gpxq “ π´ 1

2 e´x2 and gεpxq “ ε´1gpx{εq. On the one hand, limεÑ0 f ˚ gε
converges uniformly to f . On the other hand, for each ε, since gε is approxi-
mated by polynomials uniformly on compact intervals (consider the Taylor
series of gε), one shows that f ˚ gε is also approximated by polynomials uni-
formly on compact intervals.

2. When V is a Banach space, the same method shows that Vrxs, the set of
polynomials with coefficients in V , is l8-dense in CpI,Vq.

3. Taking V “ CpJ,Rqwhere J is a compact interval, the above step shows that
polynomials are dense in CpI ˆ J,Rq.2 Similarly, by induction, one sees that
polynomials are dense in CpI1 ˆ ¨ ¨ ¨ ˆ In,Rq if each Ij is a compact interval.

4. Let S “
ś

αPI Iα where each Iα is a compact interval. Then S is a compact
Hausdorff space by the Tychonoff theorem. One shows that any f P CpS,Rq
can be approximated by a function g depending on finitely many variables
(Lem. 15.18, or Pb. 9.6 when I is countable). By the previous step, g can be
approximated by polynomials. So f can be approximated by polynomials
(of coordinate functions of S).

5. Let X be a compact subset of S “
ś

αPI Iα, and let f P CpX,Rq. Then
by the Tietze extension theorem, f can be extended to rf P CpS,Rq where
rf can be approximated by polynomials by the previous step. So f can be
approximated by polynomials.

6. Now let X be a compact Hausdorff space, and let A be a unital subal-
gebra of CpX,Rq separating points of X . Then the map Φ “

Ž

fPA f
maps X homeomorphically to a compact subspace of S “

ś

αPA If where
If “ r´}f}8, }f}8s. By the previous step, continuous functions on ΦpXq can
be approximated by polynomials of the coordinate functions of S. This is
equivalent to the density of A in CpX,Rq. The proof is complete.

The proof we have given, which is different from the proofs in most textbooks,
has several advantages. First, it clearly shows that “A separates points of X” is
an embedding condition, which ensures that the map Φ “

Ž

fPA f is injective.
The embedding of spaces is a common theme in many branches of mathemat-
ics. In differential geometry, one can show that every (second countable) smooth
manifold can be smoothly embedded into a Euclidean space. (This is the Whit-
ney embedding theorem.) Projective manifolds, the compact complex manifolds

2Instead of using step 2, one can also use step 1 and the fact that elements in CpI ˆJ,Rq can be
approximated by those of the form f1g1 ` ¨ ¨ ¨ ` fngn where fi P CpI,Rq and gi P CpJ,Rq, cf. Cor.
15.33.
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that can be holomorphically embedded into complex projective spaces CPn, are
among the most important examples in complex (algebraic) geometry.

Second, Urysohn’s lemma and partition of unity are extremely important tools
in differential manifolds and in measure theory, both of which will be studied next
semester.

Thus, although our proof is longer than those in the other textbooks,3 the
methods we used in the proof (convolutions, embedding of spaces, partition of
unity, etc.) will appear frequently in the future study. Through our proof, the SW
theorem is closely and organically related to other mathematical concepts.

We close this section with an immediate consequence of the proof of SW theo-
rem, which is parallel to Thm. 8.45.

Theorem 15.36. Let X be a topological space. Then the following are equivalent.

(1) X is a compact Hausdorff space.

(2) X is homeomorphic to a closed subset of r0, 1sI for some set I .

Proof. Clearly r0, 1sI is Hausdorff. By Tychonoff Thm. 15.15, r0, 1sI is compact.
So its closed subsets are compact Hausdorff. Conversely, let X be compact Haus-
dorff. By Cor. 15.24, CpX,Rq separates points of X . Thus there is a subset
I Ă CpX,Rq separating points of X such that fpXq Ă r´1, 1s for all f P I .
Therefore Φ “

Ž

fPI f : X Ñ r´1, 1sI is a continuous injective map of X into
r´1, 1sI . So it reduces to a homeomorphism X Ñ ΦpXq by Thm. 8.23.

15.7 Application: separability of CpX,Rq
Our proof of SW theorem relies on Tychonoff Thm. 15.15, which in turn relies

on Zorn’s lemma, an uncountable version of mathematical induction. Though
Zorn’s lemma is equivalent to the axiom of choice, it is much more difficult to
grasp intuitively than mathematical induction. Thus, one would like to find a
proof without using Zorn’s lemma if possible.

In the following, we will show that when the compact Hausdorff space X is
second countable (equivalenty, metrizable), in the proof of SW theorem, it suffices
to embed X into a countable product of compact intervals. The latter is compact
by countable Tychonoff theorem, whose proof does not rely on Zorn’s lemma (cf.
Thm. 3.54 or Pb. 8.7).

3The proofs in most textbooks (e.g. [Fol-R, Sec. 4.7], [Rud-P, Ch. 7], [Zor-2, Sec. 16.4]) are
similar and are due to M. Stone [Sto48], which used the idea of lattices. A lattice is a set L together
with operations ^,_ satisfying a _ pa ^ bq “ a and a ^ pa _ bq “ a. In analysis, one considers
L Ă CpX,Rq where f_g “ maxtf, gu and f^g “ mintf, gu. In Stone’s day, lattices were relatively
popular in functional analysis. But today it seems that they are a bit cold. The shorter proof in
[Sto48] is actually not the original proof of SW theorem. The original proof was given in [Sto37]
and is much more complicated.
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We first discuss a general fact about countability in compact Hausdorff spaces.
The following theorem is one of the most important general properties about sep-
arability: It tells us that for a compact Hausdorff space X , the countability prop-
erty of the topology of X is equivalent to that of the uniform convergence topol-
ogy of CpX,Rq. This is in stark contrast to compactness, where the compactness
of X does not in general imply the compactness of bounded closed subsets of
CpX,Rq (cf. Exp. 17.1).

Theorem 15.37. Let X be a compact Hausdorff space. The following are equivalent.

(1) X is metrizable.

(2) X is second countable.

(3) CpX,Rq is separable (equivalently, second countable, cf. Prop. 8.32).

Here, as usual, CpX,Rq is equipped with the l8-norm. See Pb. 15.14 for a
generalization of Thm. 15.37 to LCH spaces. Also, assuming (3), one can write
down a metric and a countable basis explicitly; see Pb. 15.15 for details.

Proof. By Thm. 8.45, we have (1)ô(1’) where

(1’) X is homeomorphic to a closed subset of r0, 1sZ` .

Let us prove that (2) and (3) are equivalent to (1’).
(1’)ñ(3): By Tietze extension theorem, it suffices to prove that CpS,Rq is sep-

arable where S “ r0, 1sZ` . Let E “ Qrtπn : n P Z`us be the set of polynomials of
the coordinate functions of S with coefficients in Q. (πn : S Ñ r0, 1s is the projec-
tion onto the n-th component.) Then E is countable (cf. Exe. 15.38), and is clearly
dense in Rrtπn : n P Z`us. By Prop. 15.16, E is dense in CpS,Rq.

(3)ñ(1’): Let E “ tf1, f2, . . . u be a countable dense subset of CpX,Rq. By en-
larging E , we assume WLOG that E is infinite. By Cor. 15.24, CpX,Rq separates
points of X . So E also separates points of X . We scale fn P E by a nonzero real
number such that }fn}8 ď 1. Then

Φ : X Ñ r´1, 1sZ` x ÞÑ pf1pxq, f2pxq, . . . q (15.14)

is a continuous injective map, restricting to a homeomorphism X Ñ ΦpXq where
ΦpXq is a compact (and hence closed) subset of r´1, 1sZ` » r0, 1sZ` .

(1’)ñ(2): Since r0, 1s is separable and hence second countable, by Pb. 8.13,
r0, 1sZ` is second countable. So its subsets are second countable by Prop. 8.29.4

4Alternatively, one can also use Thm. 8.34 to prove directly (1)ñ(3). However, as the reader can
feel in Rem. 8.35, I personally don’t like the proof of Thm. 8.34. I would rather define a metrizable
compact space to be a topological space homeomorphic to a closed subset of r0, 1sZ` : adopting
this definition, the proof of second countability will be more intuitive and less tricky. And after
all, the method in the proof of Thm. 8.34 will never be used in the future.

282



(2)ñ(1’): Let pUnqnPZ`
be an infinite countable basis of the topology of X . For

each m,n P Z`, if Un Ă Um, we choose fm,n such that Un ă f ă Um (which exists
by Urysohn lemma); otherwise, we let fm,n “ 0. Then tfm,n : m,n P Z`u separates
points of X . (Proof: Choose distinct x, y P X . Since Xztyu P NbhXpxq, there exists
Um containing x and is contained in Xztyu. By Lem. 15.27, there is n such that
txu Ă Un Ť Um. Then fm,npxq “ 1 and fm,npyq “ 0.) Thus, as in (15.14), the map

X Ñ r0, 1sZ`ˆZ` x ÞÑ pfm,npxqqm,nPZ`

restricts to a homeomorphism from X to a compact subset of r0, 1sZ`ˆZ` .

Exercise 15.38. Let A be a unital R-algebra (resp. unital C-algebra). Let K be Q
(resp. Q ` iQ). Let x1, x2, . . . be a possibly finite sequence of elements of A . Let
E “ Krx1, x2, . . . s be the set of polynomials of x1, x2, . . . with coefficients in K.
Prove that E is a countable set.

Remark 15.39. Note that Prop. 15.16 is used (and is only used) in the proof of
(1’)ñ(3) of Thm. 15.37. Our proof of Thm. 15.37 relies on Tychonoff theorem,
which in turn relies on Zorn’s lemma. However, in the proof of (1’)ñ(3) we only
consider countable products of integrals. In this special case, the proof of Ty-
chonoff theorem uses mathematical induction but not Zorn’s lemma. (See the
proof of Thm. 3.54 or Pb. 8.7.) Therefore, our proof of Thm. 15.37 does not rely
on Zorn’s lemma.

Remark 15.40. Since the proof of Prop. 15.16 uses Weierstrass approximation
Thm. 14.45, the proof of “ñ(3)” in Thm. 15.37 also relies on Thm. 14.45. This is
as expected. In fact, even if one wants to prove that Cpr0, 1s,Rq is separable, one
needs Thm. 14.45. (See Cor. 14.46.) Therefore, it is fair to say that the separability
ofCpX,Rq is one of the most important applications of Weierstrass approximation
(or SW) theorem.

Claim 15.41. If X is a compact Hausdorff space satisfying one of the equivalent condi-
tions in Thm. 15.37, then the SW Thm. 15.9 can be proved without using Zorn’s lemma.

Proof. Let A be a unital subalgebra of CpX,Rq separating points of X . Since
CpX,Rq is separable (equivalently, second countable), so is A (by Prop. 8.29).
Therefore, A has a countable dense subset E “ tf1, f2, . . . u which clearly sepa-
rates points of X . By enlarging E we assume that it is infinite. So (15.14) restricts
to a homeomorphism from X to a closed subset of S “ r0, 1sZ` . As in the proof
of (1’)ñ(3) of Thm. 15.37, the polynomials of the coordinate functions of S, when
restricted to ΦpXq, form a dense subset of CpΦpXq,Rq. Pulling back this result
to X , we conclude that polynomials of f1, f2, . . . (which are in A ) form a dense
subset of CpX,Rq.
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15.8 Problems and supplementary material

We always let V be a Banach space over F P tR,Cu.

15.8.1 SW theorems for LCH spaces

Problem 15.1. LetX be an LCH space with topology T . Define a setX˚ “ XYt8u
where8 is a new symbol not in X .

1. Prove that the set

U “ T Y tX˚
zK : K Ă X is compactu

is a basis for a topology on X˚. Let T ˚ be the topology on X˚ generated by
U. Prove that T is the subspace topology of T ˚. (Namely, prove that U Ă X
is open iff U “ X X V for some open V Ă X˚.)

2. Prove that pX˚, T ˚q is a compact Hausdorff space. We call pX˚, T ˚q (or sim-
ply call X˚) the one-point compactification of X .

3. Prove that if X is not compact, then X is dense in X˚.

More generally, we define:

Definition 15.42. Let X be LCH. A one-point compactification (OPC) of X is a
compact Hausdorff space pX , together with an injective map φ : X Ñ pX such
that pXzφpXq has exactly one element, and that φ restricts to a homeomorphism
φ : X Ñ φpXq. In particular, the X˚ constructed in Pb. 15.1 is a one-point com-
pactification of X .

Problem 15.2. Prove the uniqueness of one-point compactifications in the follow-
ing sense. Let X be LCH with one-point compactifications p pX,φq and p rX,ψq.
Then there is a unique homeomorphism Φ : pX Ñ rX such that the following dia-
gram commutes:

X

pX rX

φ ψ

Φ
»

(15.15)

Example 15.43. If X is compact Hausdorff and contains at least two points, then
for every p P X , the subset Xztpu has OPC X (together with the inclusion map).
Thus r0, 1s has OPC r0, 1s Y t2u. p0, 1s has OPC r0, 1s. p0, 1q has OPC S1 (the unit
circle in C) together with the map φ : x P p0, 1q ÞÑ e2iπx P S1.

Convention 15.44. Let X be LCH and f : X Ñ V . According to part 3 of Pb. 15.1,
when X is not compact, the limit of functions limxÑ8 f makes sense. In the case
that X is compact, we understand limxÑ8 f as 0.
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Definition 15.45. Let X be LCH with one-point compactification X˚. Define

C0pX,Vq “
␣

f P CpX,Vq : lim
xÑ8

fpxq “ 0
(

(15.16)

Since tX˚zK : K Ă X is compactu is a neighborhood basis of 8 P X˚ (recall Def.
7.115), by Def. 7.81-(2), it is clear that f P CpX,Vq belongs to C0pX,Vq iff

for every ε ą 0 there exists a compact K Ă X such that
for each x P XzK we have }fpxq} ă ε

For each f : X Ñ V define rf : X˚ Ñ V where

rfpxq “

#

fpxq if x P X

0 if x “ 8
(15.17)

Then by Def. 7.81-(1), rf is continuous at8 iff limxÑ8 fpxq “ 0. Thus, we have

C0pX,Vq “
␣

rf |X : rf P CpX˚,Vq and rfp8q “ 0u (15.18)

Proposition 15.46. Let X be LCH with one-point compactification X˚. Then we have
an linear isometry of Banach spaces (under the l8-norms)

C0pX,Vq Ñ CpX˚,Vq f ÞÑ rf “ (15.17) (15.19)

Proof. Clearly }f}l8pX,Vq “ }
rf}l8pX˚,Vq. So (15.19) is a linear isometry. The range of

(15.19) is tg P CpX˚,Vq : gp8q “ 0u, which is clearly a closed subset of the Banach
space CpX,Vq and hence is complete by Prop. 3.27.

Convention 15.47. According to Prop. 15.46, people often identify C0pX,Vq with
its image under (15.19), i.e., identify f P C0pX,Vqwith rf defined by (15.17).

Problem 15.3. Let Y be a compact Hausdorff space. Let E be a closed subspace
of Y . Prove that

C0pY zE,Vq “ tg|Y zE : g P CpY,Vq, g|E “ 0u

Theorem 15.48 (SW theorem, LCH real version). Let X be an LCH space. Let A
be a subalgebra of C0pX,Rq. Assume that A separates points of X . Assume that A
vanishes nowhere on X (i.e. for every x P X there is f P A such that fpxq ‰ 0). Then
A is dense in C0pX,Rq (under the l8-norm).

Problem 15.4. Prove the above SW theorem by following the steps below. Let
X˚ “ X Y t8u be the one-point compactification of X . By Conv. 15.47, A is
naturally a subalgebra of CpX˚,Rq. Define

B “ tf ` λ : f P A , λ P Ru

which is a unital subalgebra of CpX˚,Rq. Use SW Thm. 15.9 to prove that B is
dense in CpX˚,Rq. Use this fact to prove that A is dense in C0pX,Rq.
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Theorem 15.49 (SW theorem, LCH complex version). Let X be an LCH space. Let
A be a *-subalgebra of C0pX,Cq. Assume that A separates points of X . Assume that A
vanishes nowhere on X . Then A is dense in C0pX,Cq (under the l8-norm).

Proof. This follows from the LCH real version, just as the compact complex ver-
sion of SW theorem (Thm. 15.11) follows from the compact real version (Thm.
15.9).

Problem 15.5. Let X be LCH. Prove that CcpX,Vq is dense in C0pX,Vq. (This
proves that C0pX,Vq is the Banach space completion of CcpX,Vq.) Conclude that
C0pX,Vq is separable iff CcpX,Vq is separable.

Hint. Use Urysohn’s lemma or Tietze extension.

Definition 15.50. Let A be an F-algebra. A subset J Ă A is called an ideal if J is
an F-linear subspace of A such that A J Ă J (i.e. xy P J for all x P A , y P J).

The following problem gives an interesting application of SW Thm. 15.48.

‹ Problem 15.6. (Nullstellensatz) Let X be a compact Hausdorff space. For each
closed subset A Ă X , let

IpAq “ tf P CpX,Rq : f |A “ 0u

Clearly IpAq is a closed ideal of CpX,Rq. For each closed ideal J of CpX,Rq, let

NpJq “ tx P X : fpxq “ 0 for all f P Ju

which is a closed subset of X . Prove that A ÞÑ IpAq gives a bijection between the
closed subsets of A and the closed ideals of CpX,Rq, and that its inverse map is
J ÞÑ NpJq. In other words, for every closed subset A Ă X and every closed ideal
J Ă CpX,Rq, prove that

NpIpAqq “ A IpNpJqq “ J (15.20)

Hint. For both parts of (15.20) it is easy to prove “Ą”. To prove NpIpAqq “ A,
use Urysohn’s lemma or the Tietze extension theorem. To prove IpNpJqq “ J ,
identify IpNpJqq with C0pXzNpJq,Rq (cf. Pb. 15.3) and apply SW Thm. 15.48 to
the LCH space XzNpJq.

15.8.2 Lebesgue measures of open sets

The theory of Riemann integrals on R can be easily generalized to RN by par-
titioning boxes, i.e. I1 ˆ ¨ ¨ ¨ ˆ IN where each Ij is a compact interval in R. In the
following, we establish the basic theory of Riemann integrals on bounded sub-
sets of RN using partitions of unity. Compared to partitioning boxes, the methods
provided below are closer to those in measure theory.
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Definition 15.51. If f P CcpRN ,Rq, define
ż

f ”

ż

R
f “

ż

B

f where B Ă RN is any

box containing Supppfq. (See Def. 14.3.)

Problem 15.7. Let U be an open subset of RN . Define the (Lebesgue) measure of
U to be

µpUq “ sup
!

ż

RN

f : f P CcpU, r0, 1sq
)

(15.21)

which is an element of Rě0. It is clear that if V is an open subset of U then µpV q ď
µpUq.

1. In the case that N “ 1 and U “ pa, bq (where ´8 ď a ă b ď `8), prove that
µpUq “ b´ a.

2. Suppose that U has compact closure. Prove that µpUq ă `8. (Hint: use
Urysohn’s lemma.)

3. Let pUαqαPA be an increasing net of open subsets of RN . Prove

µ
´

ď

αPA

Uα

¯

“ sup
αPA

µpUαq

4. Let pVjqjPI be a (non-necessarily increasing) family of open subsets of RN .
Prove that

µ
´

ď

jPI

Vj

¯

ď
ÿ

jPI

µpVjq

(Hint: Use part 3 to reduce to the special case µpUYV q ď µpUq`µpV q. Prove
it using partition of unity.)

5. Let pVjqjPI be a family of mutually disjoint open subsets of RN . Prove

µ
´

ď

jPI

Vj

¯

“
ÿ

jPI

µpVjq

Definition 15.52. A subset E Ă RN is called a (Lebesgue) null set if for every ε
there exists an open U Ă RN containing E such that µpEq ă ε.

Exercise 15.53. Show that a countable union of null sets is null.

Exercise 15.54. (This exercise is not need below.) Show that when N “ 1, the
above definition of null sets agrees with Def. 14.11. More generally, for arbitrary
N , show that E Ă RN is null iff for every ε ą 0, E can be covered by boxes whose
total volumes are ă ε.
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15.8.3 ‹Multiple Riemann integral

Problem 15.8. Let f P CcpRN ,Rě0q.

1. Let M ě 0. Assume that there is an open U Ă RN such that f |U ď M and
that Supppfq Ă U . Prove

ż

RN

f ď µpUq ¨M

2. Let ε ě 0. Assume that there is an open U Ă RN such that f |U ě ε. Prove
ż

RN

f ě µpUq ¨ ε

Remark 15.55. Pb. 15.8 is easy but useful. It tells us that the values of
ş

f and
µpUq are controlled by each other. For example, part 2 implies that if

ş

f is small,
then the measure of tx P RN : fpxq ą εu cannot be very big, and is converging to
0 as εÑ `8.

Definition 15.56. Let f P l8pRN ,Rq have compact support. Define upper inte-
grals and lower integrals to be

ż

f “ inf
!

ż

g : g P CcpRN ,Rq, g ě f
)

ż

f “ sup
!

ż

h : h P CcpRN ,Rq, h ď f
)

Clearly
ş

f ď
ş

f . Moreover, it is clear that if f P CcpRN ,Rq then
ş

f “
ş

f “
ş

f . In

general, if
ş

f “
ş

f , we say that f is Riemann integrable, and define its integral
ş

f to be
ş

f . Let

RcpRN ,Rq “ tf P l8pRN ,Rq : f has compact support and is Riemann integrableu

Remark 15.57. Let f P l8pRN ,Rq be compactly supported. It is clear from the
definition that the following statements are equivalent:

(1) f P RcpRN ,Rq.

(2) For every ε ą 0 there exist g, h P CcpRN ,Rq satisfying h ď f ď g and
ş

pg ´
hq ă ε.

In fact, (2) is easier to use than the original definition of Riemann integrability.

Exercise 15.58. (This exercise is not needed below.) Prove that when N “ 1, the
above definition of upper and lower integrals agrees with that in Pb. 13.1.
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Problem 15.9. Let f, g P l8pRN ,Rq have compact supports. Prove

ż

pf ` gq ď

ż

f `

ż

g

ż

pf ` gq ě

ż

f `

ż

g

Prove that RcpRN ,Rq is a linear subspace of RRN . Prove that
ş

: RcpRN ,Rq Ñ R is
linear. Prove that if f, g P RcpRN ,Rq then

f ď g ùñ

ż

f ď

ż

g (15.22)

Problem 15.10. (Fubini’s theorem) Let X “ RM , Y “ RN . Let f P RcpX ˆ Y,Rq.
Prove that x P X ÞÑ

ş

Y
fpx, yqdy and x P X ÞÑ

ş

Y
fpx, yqdy are Riemann integrable,

and that
ż

XˆY

f “

ż

X

ż

Y

f “

ż

X

ż

Y

f .

Hint. Choose g, h P CcpX ˆ Y,Rq such that g ď f ď h and
ş

XˆY
ph´ gq ă ε. Apply

Fubini’s theorem for compactly supported continuous functions (available due to
Thm. 14.1) to g, h, h´ g. ((15.22) is also useful.)

Remark 15.59. In the next semester, we will prove Fubini’s theorem for Lebesgue
measurable functions using more complicated methods. The goal of Pb. 15.10 is to
show you how to prove Fubini’s theorem for a large class of functions (sufficient
for many applications) without using those methods. When studying mathemat-
ics, it is often important to know how to simplify a proof when the objects studied
are simpler.

15.8.4 ‹ Lebesgue’s criterion for multiple Riemann integrals

Definition 15.60. As in (14.12), for each f : RN Ñ R and ε ą 0, define

Ωεpfq “ tx P RN : ωpf, xq ě εu (15.23)

where ωpf, xq “ infUPNbhpxq diamfpUq. Note that by Lem. 14.19, Ωεpfq is a closed
subset of Supppfq, and hence is compact when f is compactly supported.

Problem 15.11. Let f P RcpRN ,Rq. Prove that Ωεpfq is a null set. (Thus,
Ť

nPZ`
Ω1{npfq is null. This proves that the set of discontinuities of f is null.)

Hint. For each δ ą 0, choose g, h P CcpRN ,Rq such that h ď f ď g and
ş

pg´hq ď δε,
which exist due to Rem. 15.57. Let U “ tx P RN : gpxq ´ hpxq ą ε{2u. Use Pb. 15.8
to give a small upper bound of µpUq. Prove that Ωεpfq Ă U .

The following problem can be compared with Lem. 14.20.
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Problem 15.12. Let f P l8pRN ,Rq be supported in a compact set K. Let W Ă RN

be an open set containing K. Let ε ą 0, and assume that for every x P RN we have
ωpf, xq ă ε. Prove that there exist g, h P CcpW,Rq such that

g ď f ď h 0 ď g ´ h ď ε

Hint. First construct the functions locally. Then pass from local to global functions
using a partition of unity of K subordinate to an open cover.

Problem 15.13. Let f P l8pRN ,Rq be compactly supported. Assume that the set
of discontinuities of f is a null set. Prove that f P RcpRN ,Rq.

Hint. Choose any ε, δ ą 0. Choose an open set U containing the compact set Ωεpfq
such that µpUq ă δ. Use a partition of unity of K “ Supppfq subordinate to U and
V “ RNzΩεpfq to write f “ fV ` fU where fV , fU P CcpRN ,Rq are supported in
K X V and U respectively. Apply Pb. 15.12 to fV to get gV ď fV ď hV with small
ş

phV ´ gV q. Let M “ }f}8. Find gU P CcpRN , r0,M sq such that ´gU ď fU ď gU .
Show that

ş

pgU ` hV ´ p´gU ` gV qq is small.

Definition 15.61. Let Ω be a bounded subset of RN . We say that f : Ω Ñ R is
Riemann integrable if rf P RcpRN ,Rq, where rf is the zero extension of f (i.e.
rf |Ω “ f and rf |XzΩ “ 0). If f is Riemann integrable, we define

ż

Ω

f “

ż

RN

rf

Example 15.62. Let D “ tpx, yq P R2 : x2 ` y2 ď 1u and f P CpD,Rq. Then the
set of discontinuities of the zero extension rf is a subset of S1 “ tpx, yq P R2 :
x2 ` y2 “ 1u. It is not hard to show that S1 is a null subset of R2. Since }f}8 ă `8

by extreme value theorem, we conclude that f is Riemann integrable thanks to
Lebesgue’s criterion (Pb. 15.13). Clearly

ş

R fp¨, yqdy is Riemann integrable. By
Fubini’s theorem (Pb. 15.10), we have

ż

D

f “

ż

R2

rf “

ż 1

´1

ż 1

´1

χD rfpx, yqdydx “

ż 1

´1

ż

?
1´x2

´
?
1´x2

fpx, yqdydx

15.8.5 Compactness and countability

The following problem shows that the equivalence (2)ô(3) in Thm. 15.37 can
be generalized to LCH spaces.

Problem 15.14. Let X be an LCH space with one-point compactification X˚.
Prove that the following are equivalent:

(1) X˚ is second countable.
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(2) X is second countable.

(3) C0pX,Rq is separable (equivalently, second countable).

Here, as usual, C0pX,Rq is equipped with the l8-norm. Note also that by Pb. 15.5,
(3) is equivalent to that CcpX,Rq is separable.

‹ Remark 15.63. By Pb. 15.14 and Thm. 15.37, if an LCH space X is second count-
able, then X˚ is metrizable, and hence X is metrizable. However, a metrizable
LCH space is not necessarily second countable. For example, let X be an un-
countable set, equipped with the discrete topology T “ 2X . Then T is induced
by a metric d defined by dpx, yq “ 1 if x ‰ y and dpx, xq “ 0. X is LCH, but not
second countable.

Problem 15.15. Let X be a compact Hausdorff space. Suppose that pfnqnPZ`
is a

sequence in CpX,Rq separating points of X . Assume for simplicity that }fn}l8 ď
1 for all n. Use these functions to define an explicit metric on X inducing its
topology T , and construct an explicit countable basis for T .

Note. This problem tests whether you truly understand the method of embedding
and the proof of Thm. 15.37. Hint: How do you construct a metric and a countable
basis for r´1, 1sZ`? What do their pullbacks look like under the embedding X Ñ

r´1, 1sZ` defined by f1, f2, . . . ?
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16 Zorn’s lemma and applications
The Axiom of Choice is obviously true, the well-ordering principle obviously
false, and who can tell about Zorn’s lemma?

—- Jerry L. Bona

16.1 Zorn’s lemma

Theorem 16.1 (Zorn’s lemma). Let pP,ďq be a nonempty partially ordered set. Suppose
that every totally oredered subset of P has an upper bound in P . Then there is a maximal
element p P P .

By a totally ordered subset Q Ă P , we mean that Q satisfies that for every
x, y P Q, either x ď y or y ď x. An upper bound of Q (in P ) means an element
p P P such that x ď p for all x P Q. A maximal element p P P means that p
satisfies tx P P : x ě pu “ tpu.

Zorn’s lemma and the axiom of choice are equivalent. (They are both equiva-
lent to the so called “well-ordering principle”.) Although it is easier to prove the
axiom of choice from Zorn’s lemma than the other way round, one may prefer to
take the axiom of choice as the starting point, since axiom of choice is easier to
grasp intuitively. Therefore, in the following, I will give a proof of Zorn’s lemma
under the assumption of axiom of choice, in order to comfort those who are ob-
sessed with building a complete and rigorous mathematical theory in their heads
from a few “self-evident” axioms. However, it is recommended that you skip or
only skim this proof, since it is safe enough to assume that Zorn’s lemma is an
axiom that needs no proof. Although Zorn’s lemma is far from “self-evident”,
knowing how to use it is much more important than knowing how to prove it.
This is because in most areas of mathematics the ideas in the proof of Zorn’s
lemma are never used.

‹‹ Proof of Zorn’s lemma. Let pP,ďq satisfy the assumption in Zorn’s lemma but
has no maximal element. We shall find a contradiction. By assumption, every
totally ordered subset A Ă P has an upper bound p P P , and p is not maximal. So
there exists xA ą p in P . (Here, xA ą p means that xA ě p and x ‰ p.) Thus, we
have a function A ÞÑ xA whose existence is due to axiom of choice.

Step 1. Fix a P P throughout the proof. For an arbitrary F Ă 2P , consider the
following conditions:

(a) tau P F .

(b) Every A P F is a totally ordered subset of P .

(c) If A P F then AY txAu P F .
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(d) If E is a nonempty totally ordered subset of F (under the partial order Ă),
then

Ť

APE A P F . (Note that if every A P P is a totally ordered subset of P ,
then so is

Ť

APE A.)

There exists at least one F satisfying the above conditions. For example, one can
let F be the set of all totally ordered subsets of P containing a.

We let F be the intersection of all the subsets of 2P satisfying the above four
conditions. Then F clearly also satisfies these conditions. (In particular, F ‰ H

because tau P F .) So F is the smallest subset of 2P satisfying these four conditions.
We claim that F is a totally ordered subset of 2P . Suppose this is true. Let

B “
Ť

APF A. Then B P F by condition (d). In particular, by (b), B is a totally
ordered subset of P . Then xB is defined as at the beginning of the proof and
satisfies xB ą B. By (c), we have B Y txBu P F . By the definition of B, we get
xB P B. This is impossible. So we are done with the proof.

Step 2. Let us prove that F is totally ordered. Let

F0 “ tA P F : every B P F satisfies either A Ă B or B Ă Au

It is not hard to check that F0 satisfies (a,b,d). It suffices to prove that F0 satisfies
(c). Then we will have F0 “ F and hence that F is totally ordered.

Let us prove (c) for F0. Choose any A P F0. We need to prove that A Y txAu P
F0. It suffices to prove that the following set equals F :

FA “ tB P F : B Ă A or AY txAu Ă Bu

One checks easily that FA satisfies (a,b,d). To check that FA satisfies (c), we choose
any B P FA. Then there are two possible cases:

• AY txAu Ă B or B “ A. Then AY txAu Ă B Y txBu.

• B Ĺ A. Then, since A P F0 and since B Y txBu P F (because B P F and F
satisfies (c)), we have either A Ĺ BYtxBu or BYtxBu Ă A. The former case
is clearly impossible. So B Y txBu Ă A.

Thus, in both cases we have B Y txBu P FA. This proves that FA also satisfies (c).
So FA “ F .

16.2 Comparison of Zorn’s lemma and mathematical induction

Zorn’s lemma can be viewed as the uncountable version of mathematical in-
duction. Therefore, the best way to understand Zorn’s lemma is to first use it to
prove some classical results traditionally proved by mathematical induction.

Example 16.2. Let n P N and sn “ 0` 1` 2` ¨ ¨ ¨ ` n. Then sn “
npn`1q

2
.
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Proof. Let N˚ “ NY t`8uwith the usual order. Let

P “
!

n P N˚ : si “
ipi` 1q

2
for all i ď n and i ă `8

)

P is nonempty since it contains 0. (Checking that P is nonempty is important,
since it corresponds to checking the base case in mathematical induction.) P is
totally ordered, and clearly every nonempty subset Q Ă P has an upper bound
supQ. Thus, by Zorn’s lemma, P has a maximal element.

If n ă `8, then from sn “
npn`1q

2
and sn`1´sn “ n`1 we have sn`1 “

pn`1qpn`2q

2
.

(This step corresponds to checking “case n implies case n ` 1” in mathematical
induction.) So n ` 1 P P , contradicting the maximality of n. So n “ `8, and
hence `8 P P , finishing the proof.

Example 16.3. Let f : R Ñ R be a function not continuous at 0. Assume that
fp0q “ 0. Then there exists ε ą 0 and a sequence pxnqnPZ`

in Rzt0u converging to
0 such that |fpxnq| ą ε for all n.

Proof. By assumption, there is ε ą 0 such that for every δ ą 0, there exists x P
p´δ, δqzt0u such that |fpxq| ą ε. Let

P “ tfinite or countably infinite sequence x‚ “ px1, x2, . . . q

satisfying 0 ă |xi| ă 1{i and |fpxiq| ą ε for all iu

Then P is nonempty. (This corresponds to checking the base case in mathemat-
ical induction.) View each element of P as a subset of Z` ˆ R, and let Ă be the
partial order on P . Then every nonempty totally ordered subsetQ Ă P has an up-
per bound (defined by taking union). Thus, by Zorn’s lemma, P has a maximal
element x‚.

Suppose that x‚ has finite length N P Z`. (So x‚ “ px1, . . . , xNq) Then by the
first sentence of the proof, there exists xN`1 satisfying 0 ă |xN`1| ă 1{pN ` 1q
satisfying |fpxN`1q| ą 0. (This step corresponds to checking “case n implies case
n ` 1” in mathematical induction.) Then px1, . . . , xN , xN`1q belongs to P and is
ą x‚, contradicting the maximality of x‚. So x‚ must be an infinite sequence. This
finishes the construction of the sequence pxnq.

16.3 Proof of the Tychonoff theorem

We first recall Pb. 8.6: Assume for simplicity that X, Y are compact spaces. Let
pxα, yαqαPI be a net in X ˆ Y such that x P X is a cluster point of pxαq. Then there
exists y P Y such that px, yq is a cluster point of pxα, yαq.

The proof is easy. By the definition of cluster points (Pb. 7.2-(1)), pxαq has
a subnet pxαβ

qβPJ converging to x. Since Y is net-compact, pyαβ
q has a subnet

pyαβγ
qγPK converging to some y P Y . Then pxαβγ

, yαβγ
q is a subnet of pxα, yαq con-

verging to px, yq.
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In the following, we present a proof of Tychonoff Thm. 15.15 which was due to
Chernoff [Che92]. Our method is similar to the proof of the countable Tychonoff
theorem (Pb. 8.7) which uses net-compactness. It is strongly recommended that
you compare the proof with the one of Pb. 8.7, and even reprove Pb. 8.7 using
Zorn’s lemma.

Proof of Tychonoff Thm. 15.15. Recall the setting that pXαqαPI is a family of com-
pact topological spaces. Assume WLOG that I and each Xα are nonempty. We
want to prove that S “

ś

αPI Xα is compact.
We first introduce a few notations. For each I Ă I , let SI “

ś

αPI Xα. If
x P SI , we write x as pxpαqqαPI , and view it as a function with domain I and
codomain X “

Ť

αPI Xα. We write Dompxq “ I . If x P SI and J Ă I , the restriction
x|J “ pxpαqqαPJ is clearly in SJ .

Step 1. Let pfµqµPM be a net in S. Let

P “
ď

IĂI

␣

x P SI : x is a cluster point of pfµ|IqµPM in SI
(

Let “Ă” be the partial order on P (defined by identifying each element of P with
its graph, which is an element of I ˆ X). Thus x Ă y iff Dompxq Ă Dompyq and
y|Dompxq “ x.

Clearly P is nonempty: Choose any α P I . Since Xα is compact, pfµpαqqµPM

has a cluster point in Xα. This point, viewed as a function from tαu to this point,
belongs to P .1

We claim that every totally ordered subset of P has an upper bound. Suppose
this is true. Then by Zorn’s lemma, there is a maximal element x P P . If
Dompxq ‰ I , then by Pb. 8.6 (applied to SDompxq ˆ Xβ where β P I zDompxq), x
can be extended to a function with larger domain which is again the cluster point
of the restriction of pfµqµPM to that domain.2 This proves that P has an element
strictly larger than x. This is impossible. So we must have Dompxq “ I , finishing
the proof.

Step 2. Let Q be a nonempty totally ordered subset of P . Let x be the union of
the elements of Q. Let K “ Dompxq. Then Q can be written in the form

Q “ tx|I : I P U u

where U is a totally ordered subset of 2K and K “
Ť

IPU I .

1This part corresponds to checking the base case in mathematical induction.
2This part corresponds to checking “case n implies case n`1” in mathematical induction. More

precisely, it corresponds to constructing pxp1q, . . . , pxpn` 1qqq from pxp1q, . . . , xpnqq in the proof of
Pb. 8.7.
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To prove that x P P , let us use Pb. 7.2-(2) to prove that x is a cluster point
of pfµ|KqµPM.3 Let W be a neighborhood of x in SK . By the definition of product
topology (Def. 7.71), we can shrink W to a smaller neighborhood of the form

W “
ź

αPK

Uα

where each Uα is a neighborhood of xpαq, and there exists a finite subset E Ă K
such that Uα “ Xα for all α P KzE. Choose I P U containing E. The fact that x|I
is a cluster point of pfµ|IqµPM implies (by Pb. 7.2-(2)) that pfµ|EqµPM is frequently
in

ś

αPE Uα. Therefore pfµ|KqµPM is frequently in W . This finishes the proof.

16.4 Proof of the Hahn-Banach extension theorem

Recall from Rem. 11.25 that a linear functional on a vector space V over a
field F is defined to be a linear map V Ñ F.

Lemma 16.4. Let V be a normed vector space over R, and let M be a linear subspace.
Let φ P M˚ “ LpM,Rq with operator norm }φ} ď 1. Assume that e P V zM , and let
ĂM “ M ` Re. Then φ can be extended to a linear functional rφ : ĂM Ñ R such that
}rφ} ď 1.

‹ Proof. Let A P R whose value will be determined later. Since any vector in ĂM
can be written uniquely as x´ λe where x PM and λ P R, we can define

rφ : ĂM Ñ R rφpx´ λeq “ φpxq ´ λA

It remains to prove }rφ} ď 1 (for some A). This means that we want to prove
|φpxq ´ λA| ď }x ´ λe} for all x P M,λ P R. Clearly this is true when λ “ 0.
Assume λ ‰ 0. Then replacing x by λx and dividing both sides by λ, we see that
it suffices to prove

|φpxq ´ A| ď }x´ e}

for all x P V , or equivalently,

φpxq ´ }x´ e} ď A ď φpxq ` }x´ e}

To prove the existence ofA satisfying the above inequalities for all x P V , it suffices
to prove

sup
xPV

`

φpxq ´ }x´ e}
˘

ď inf
yPV

`

φpyq ` }y ´ e}
˘

(16.1)

3This part corresponds to showing that x is a cluster point of pfαq in the proof of Pb. 8.7.
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namely, to prove that φpxq´}x´e} ď φpyq`}y´e} for all x, y P V . Using }φ} ď 1,
we compute

φpxq ´ φpyq “ φpx´ yq ď }px´ eq ´ py ´ eq} ď }x´ e} ` }y ´ e}

Theorem 16.5 (Hahn-Banach extension theorem). Let V be a normed vector space
over F P tR,Cu. Let M be an F-linear subspace of V . Let φ P M˚ “ LpM,Fq. Then
there exists Φ P V ˚ such that Φ|M “ φ and }Φ} “ }φ}.

Proof. We first consider the case F “ R. Assume WLOG that φ ‰ 0. By scaling φ,
we assume WLOG that }φ} “ 1. Let

P “
␣

pW,Φq :W is a linear subspace of V and contains M

Φ P RW is linear and satisfies Φ|M “ φ, }Φ} “ 1
(

Then P is nonempty since it contains pM,φq. Define a partial order on P by setting
pW,Φq ď pW 1,Φ1qwhenever W Ă W 1 and Φ “ Φ1|W .

Suppose that Q is a totally ordered subset of P . Let ĂW “
Ť

pW,ΦqPQW , and
let rΦ be the union of the functions Φ over all pW,Φq P Q (by taking the union of
the graphs of the functions). So rΦ : W Ñ R is the unique functions satisfying
rΦ|W “ Φ for all pW,Φq P Q. Then it is easy to see that pĂW, rΦq belongs to P and is
an upper bound of Q.

Thus, we can use Zorn’s lemma, which says that P has a maximal element
pW,Φq. If W ‰ V , we let e P V zW . Then by Lem. 16.4, Φ can be extended to
rΦ P ĂW ˚ where ĂW “ W ` Re, and }rΦ} “ 1. So pĂW, rΦq belongs to P and is strictly
larger than pW,Φq, impossible. So W “ V .

We are done with the proof for the case F “ R. Now assume F “ C. By Pb.
13.2, the real part Reφ :M Ñ R sending v to Repφpvqq is linear with operator norm
}Reφ} “ }φ}. By the real Hahn-Banach, Reφ can be extended to Λ P LpV,Rq with
}Λ} “ }φ}. By Pb. 13.2, there exists a unique Φ P LpV,Cqwith real part Λ such that
}Φ} “ }φ}. Since ReΦ|M “ Λ|M “ Reφ, by Pb. 13.2, we have Φ|M “ φ.

In this course, we only use the following special case of Hahn-Banach theorem.

Corollary 16.6 (Hahn-Banach). Let V be a nonzero normed vector space over F P

tR,Cu. Then for every v P V , there exists a nonzero φ P V ˚ such that xφ, vy “ }φ} ¨ }v}.
Consequently, the linear map

V Ñ V ˚˚ v ÞÑ x¨, vy (16.2)

is an isometry.
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More precisely, the map (16.2) sends each φ P V ˚ to xφ, vy. By scaling φ, Hahn-
Banach implies that for each v P V , there is φ P V ˚ with }φ} “ 1 such that xφ, vy “
}v}.

Proof. Let v P V , and assume WLOG that v ‰ 0. Let φ : Fv Ñ F send λv to λ}v}.
Then φ is linear and has operator norm 1, and xφ, vy “ }v}. By Hahn-Banach Thm.
16.5, φ can be extended to a bounded linear V Ñ F with operator norm 1. This is
a desired linear functional.

Denote (16.2) by Ψ. To show that Ψ is an isometry, we need to prove that for
every v P V , Ψpvq : V ˚ Ñ F has operator norm }v}. Choose any φ P V ˚. Then

xΨpvq, φy “ xφ, vy ď }φ} ¨ }v}

where “ď” is ““” for some nonzero φ by the first paragraph. Therefore, by Rem.
10.24, we obtain }Ψpvq} “ }v}.

16.5 Problems and supplementary material

Problem 16.1. Let V be a vector space over a field F. Use Zorn’s lemma to prove
that V has a basis, i.e. a set E of linearly independent vectors such that any vector
of V can be written as a (finite) linear combination of elements of E.

Problem 16.2. Let X be a set. Let E Ă X be an infinite subset such that XzE
is countable. (Recall that finite sets are also countable.) Prove that cardpXq “
cardpEq.

Problem 16.3. Let X be an infinite set. Use Zorn’s lemma to prove that X can be
written as a countably infinite union of subsetsX “

Ů8

n“1Xn such that cardpXiq “

cardpXjq for each i, j.

Hint. Assume WLOG that X is uncountable. Consider

P “
!

`

pAnqnPZ`
, pφnqnPZ`

˘

:A1, A2, . . . are mutually disjoint subsets of X

φn : An Ñ An`1 is a bijection (for every n P Z`)
)

which is nonempty (why?). Define a suitable partial order on P .

Theorem 16.7. Let X be an infinite set, and let Y be a nonempty countable set. Then
cardpXq “ cardpX ˆ Y q

Proof. By Pb. 16.3, we have X « A ˆ N for some subset A Ă X . Since N ˆ Y is
infinite and countable, we have Nˆ Y « N. Therefore

X ˆ Y « Aˆ Nˆ Y « Aˆ N « X
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‹ Problem 16.4. Let E,F be two bases of a vector space V . Use Thm. 16.7 to
prove that cardpEq “ cardpF q. (When one of E,F is finite, this result was proved
in linear algebra. You can assume this in your proof.)

Problem 16.5. Let V be a separable normed vector space over R. Prove Hahn-
Banach Thm. 16.5 for V using mathematical induction instead of Zorn’s lemma.
(You will need Prop. 10.28 in the proof.)
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17 Compactness and completeness revisited

Tychonoff theorem asserts the compactness of function spaces under the point-
wise convergence topology. In application, we are often interested in the compact-
ness of function spaces satisfying certain additional condition such as the conti-
nuity.

Example 17.1. X “ Cpr0, 1s, r0, 1sq is not compact under either the pointwise con-
vergence topology or the uniform convergence topology.

Proof. We first choose the pointwise convergence topology. Choose any sequence
pfnq in X converging pointwise to a non-continuous function f . Then pfnq has no
subnet converging in X, since any subnet converging to g P X must satisfy f “ g
and hence f is continuous. This is impossible. So X is not compact.

Now we choose the uniform convergence topology for X, which is metrizable
by the l8-norm. Let pfnq be a sequence in X such that }fm ´ fn}8 “ 1 whenever
m ‰ n. (For example, one chooses fn such that Suppfn Ă In “ p 1

2n`2
, 1
2n`1

q and
that fnpξnq “ 1 for some ξn P In.) Then every subsequence of pfnq is not Cauchy
and hence not convergent. Therefore, X is not sequentially compact, and hence
not compact.

Note that this example does not contradict Tychonoff theorem. In fact, if
we choose the pointwise convergence topology, then Tychonoff theorem im-
plies that every sequence pfnq in Cpr0, 1s, r0, 1sq has a subnet convergent to some
f P r0, 1sr0,1s. However, one cannot deduce the continuity of f . To prove that
the limit function is continuous, we need additional assumptions on the sequence
pfnq. For example, Cor. 9.21 tells us that we need the equicontinuity.

17.1 Precompactness in function spaces

Since CpX, r0, 1sq is in general not compact, one should search for com-
pact subsets of CpX, r0, 1sq, or more generally, subsets with compact closures in
CpX, r0, 1sq. You know what precompact sets mean geometrically: In RN , precom-
pact subsets of RN are exactly bounded subsets of RN . If Ω Ă RN , then precompact
subsets of Ω are precisely bounded subsets of RN whose closures are inside Ω, cf.
Rem. 15.20.

However, when studying function spaces, it is often more convenient to use
another description of precompactness. As we shall see in Cor. 17.5, saying that
A Ă CpX, r0, 1sq is precompact in CpX, r0, 1sq is equivalent to saying that every
net pfαq in A converges to some f P CpX, r0, 1sq.

Recall from Def. 8.39 that a subset A of a Hausdorff space X is called precom-
pact if A is contained in a compact subset of X , or equivalently, if A is compact.

Proposition 17.2. Let X be a metrizable topological space, and let A Ă X . Then the
following are equivalent.
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(1) A is precompact.

(2) Every net in A has a cluster point in X .

(3) Every sequence in A has a cluster point in X .

From the following proof, it is clear that (1)ñ(2) holds even without assuming
that X is metrizable.

Proof. (1)ñ(2): Since A is compact, every net in A has a cluster point in A and
hence in X .

(2)ñ(3): Obvious.
(3)ñ(1): See Pb. 8.9.

17.1.1 ‹ Precompactness in regular spaces

(Since this section is a starred section, I will not use the results proved here
in future sections. However, the material of this section is helpful for a better
understanding of precompactness in function spaces.)

You may wonder to what general topological space the equivalence (1)ô(2)
generalizes. This equivalence is not true for an arbitrary topological space, but
is true for regular spaces (recall Def. 9.20). Metrizable spaces are clearly regular.
More generally, we have:

Example 17.3. Every subset of a regular space is regular. Every LCH space is
regular. Products of regular spaces are regular.

Proof. Assume that X is regular and A Ă X . For each x P A, choose a neighbor-
hood of x in A, which must be of the form U X A where U P NbhXpxq. Since X is
regular, there is V P NbhXpxq such that V Ă U . So ClApV X Aq Ă V X A Ă U X A.
So A is regular. That LCH spaces are regular follows from Lem. 15.27 (together
with Rem. 15.20).

Let S “
ś

αPI Xα where each Xα is regular. Choose x “ pxαqαPI in S. Choose
a neighborhood of x which, after shrinking, is of the form

ś

α Uα where Uα P
NbhXαpxαq, and there is a finite subset E Ă I such that Uα “ Xα if α P I zE. If
α P E, let Vα be a neighborhood of x such that V α Ă Uα. If α P I zE, let Vα “ Xα.
Then one checks easily that

ś

αPI Vα is a neighborhood of xwith closure
ś

αPI V α,
which is clearly inside

ś

α Uα. So S is regular.

Theorem 17.4. Let X be a regular topological space, and let A Ă X . Then the following
are equivalent.

(1) A is compact.

(2) A is contained in a compact subset of X .

301



(3) Every net in A has a cluster point in X .

Thus, although regular spaces are not necessarily Hausdorff, the two equiva-
lent definitions of precompact subsets of Hausdorff spaces in Def. 8.39 are also
equivalent in regular spaces. (However, most important examples of regular
spaces are also Hausdorff. Regular Hausdorff spaces are called T3 spaces.)

Proof. “(1)ñ(2)” is obvious. “(2)ñ(3)” is also obvious: if X Ă K where K is a
compact subset of X , then every net in A is a net in K, which has a cluster point
in K and hence in X .

Assume (3). Let us show that A is compact by showing that every nonempty
net pxαqαPI inA has a cluster point inA. For each γ P I , letEγ “ txα : α P I, α ě γu.
Define

J “
␣

pU, γq P 2X ˆ I : U is open and contains Eγ
(

It is not hard to check that J is a directed set if we define its preorder “ď” to be

pU, γq ď pU 1, γ1
q ðñ U Ą U 1, γ ď γ1

For each pU, γq P J , since Eγ Ă U , U intersects A, and hence intersects A. There-
fore, we can choose some yU,γ P A X U . In this way, we get a net pyU,γqpU,γqPJ in A.
By (3), this net has a cluster point x P X . So clearly x P A. Let us prove that x is
also a cluster point of pxαqαPI .

Assume that x is not a cluster point of pxαqαPI . Then, by the definition of cluster
points (Pb. 7.2-(2)), there exists Ω P NbhXpxq such that pxαq is not frequently in Ω,
i.e., eventually outside Ω. So there exists γ P I such that Eγ Ă XzΩ. Since X is
regular, there exists V P NbhXpxq such that V Ă Ω. Let U “ XzV . Then Eγ Ă U ,
and hence pU, γq P J .

Since x is a cluster point of y‚, for the neighborhood V of x, there exists
pU 1, γ1q ě pU, γq in J such that yU 1,γ1 P V . By the definition of the net y‚, we
have yU 1,γ1 P AX U 1 Ă U . This is impossible, since U X V “ H.

Corollary 17.5. LetX be a topological space, and let Y be a metric space. Equip CpX, Y q
with either the pointwise convergence topology or the uniform convergence topology.
(Note that both topologies are Hausdorff.) Let A be a subset of CpX, Y q. Then the
following are equivalent:

(1) A is precompact.

(2) Every net pfαqαPI in A has a subnet converging to some f P CpX, Y q.

Proof. If the topology T on CpX, Y q is the pointwise convergence topology, then
CpX, Y q is a subspace of Y X (equipped with the product topology). By Exp. 17.3,
CpX, Y q is regular. So one can use Thm. 17.4 to prove (1)ô(2). If T is the uniform
convergence topology, then CpX, Y q is metrizable (and hence also regular). So
one can also use Thm. 17.4 (or even Prop. 17.2) to prove (1)ô(2).
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17.2 Equicontinuity and precompactness; the Arzelà-Ascoli the-
orem

17.2.1 Precompactness under pointwise convergence topology

Definition 17.6. Let X be a set and Y be a metric space. A subset A Ă Y X is
called pointwise bounded if

A pxq “ tfpxq : f P A u (17.1)

is a bounded subset of Y for every x P X .

Theorem 17.7. Let X be a topological space, and equip CpX,RNq with the pointwise
convergence topology. Let A be an equicontinuous and pointwise bounded subset of
CpX,RNq. Then A is precompact in CpX,RNq, and A is equicontinuous.

Proof. Write Y “ RN . Let us show that A “ ClCpX,Y qpA q is equicontinuous. Since
A is equicontinuous, for every x P X and ε ą 0, there exists U P Nbhpxq such that
diampfpUqq ď ε for all f P F . Since each g P A is the pointwise limit of a net in
A , we also have diampgpUqq ď ε. This proves that A is equicontinuous at x.

Now let us show that A is compact. Choose any net pfαq in A . It is clear that
A pxq is pointwise bounded. By Heine-Borel, for each x P X , A pxq is contained in
a compact subset Kx Ă Y . So A is contained in S “

ś

xPX Kx where S is compact
by Tychonoff theorem. Therefore, pfαq has a subnet pfβq converging pointwise to
some f : X Ñ Y . Since pfβq is equicontinuous (as A is equicontinuous), by Cor.
9.21, f P CpX, Y q.1 So f P ClCpX,Y qpA q “ A since f can be approximated by
elements of A . This proves that A is compact.

Remark 17.8. Theorem 17.7 is of fundamental importance because most compact-
ness results about function spaces (such as Arzelà-Ascoli Thm. 17.15, Banach-
Alaoglu Thm. 17.21) are derived from this theorem. As we will see in Claim 17.11,
when X is separable, the proof of Thm. 17.7 uses only the countable version of
Tychonoff theorem, and hence not using Zorn’s lemma. This is in line with the
history that Thm. 17.7 (which is implicit in the proof of Arzelà-Ascoli theorem)
appeared earlier than Zorn’s lemma and was proved using diagonal method. (If
you remember, the proof of countable Tychonoff theorem uses diagonal method,
cf. Thm. 3.54. And we will use Thm. 3.54 to prove Claim 17.11.)

In the late 19th and early 20th centuries, the diagonal method was often used
to derive compactness properties of function spaces. Prominent examples are
Hilbert’s and Schmidt’s solutions of eigenvalue problems in integral equations
(cf. Subset. 10.4.1) and F. Riesz’s solution of moment problems (cf. Rem. 17.34).
Thus, Thm. 17.7 can be viewed as a summary of this method.

1Alternatively, by the argument in the first paragraph, tfβ : all βu Y tfu is equicontinuous. So
f is continuous.
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The following exercise is a variant of Thm. 17.7. Another variant, the Banach-
Alaoglu theorem, will be discussed in the next section.

Exercise 17.9. Let X be a metric space, and equip CpX,RNq with the pointwise
convergence topology. Let A be a pointwise bounded subset of CpX,RNq. As-
sume that A has a uniform Lipschitz constant L ă `8. (Namely, }fpxq ´ fpyq} ď
L ¨ dpx, yq for all f P A and x, y P X .) Prove that A is precompact in CpX,RNq,
and A has a uniform Lipschitz constant L. 2

The proof of Thm. 17.7 uses Tychonoff theorem for uncountable product
spaces, and hence relies on Zorn’s lemma. In the following, we shall show that
Zorn’s lemma is not needed when X is separable. We first need a preparatory
result: the following proposition is the equicontinuous analog of Prop. 9.27.

Proposition 17.10. Let V be a Banach space. Let X be a topological space. Let pfαqαPI be
an equicontinuous net in CpX,Vq converging pointwise on a dense subset E of X . Then
pfαq converges pointwise on X to some f P CpX,Vq.

It follows that if pfαq also converges pointwise on E to some g P CpX,Vq, then
pfαq converges pointwise on X to g. (Indeed, since f |E “ g|E , we have f “ g
because f, g are continuous and E is dense.)

Proof. Let x P X . Since V is complete, to show that pfαpxqq converges, it suffices
to prove that pfαpxqqαPI is a Cauchy net. Choose any ε ą 0. Since pfαq is equicon-
tinuous at x, there exists U P NbhXpxq such that diampfαpUqq ă ε for all α. Since
E is dense in X , E intersects U . Pick p P E X U . Since pfαppqq is a Cauchy net, we
have limα,βPI }fαppq ´ fβppq} “ 0. Then

}fαpxq ´ fβpxq} ď }fαpxq ´ fαppq} ` }fαppq ´ fβppq} ` }fβppq ´ fβpxq}

ď}fαppq ´ fβppq} ` 2ε

where the RHS converges to 2ε under lim supα,βPI . Therefore lim supα,βPI }fαpxq ´
fβpxq} is ď 2ε. Since ε is arbitrary, we conclude lim supα,βPI }fαpxq ´ fβpxq} “ 0.

We have proved that pfαq has a pointwise limit f : X Ñ V . Since pfαq is
equicontinuous, by Cor. 9.21, f is continuous.

Claim 17.11. When X is a separable topological space, Thm. 17.7 can be proved without
using Zorn’s lemma.

We know that separable is equivalent to second countable when X is metriz-
able, but is slightly weaker in general (cf. Sec. 8.5). In practice, however, almost
all separable topological spaces you will encounter are Hausdorff and second
countable. So there is no need to count the nuances of separability and second
countability.

2In fact, instead of assuming that A is pointwise bounded, it suffices to assume that A pxq is
bounded for some x P X . Then the pointwise boundedness will follow automatically from the
uniform Lipschitz continuity. Can you see why?
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Proof. Let Y “ RN . As in the proof of Thm. 17.7, A “ ClCpX,Y qpA q is equicon-
tinuous and pointwise bounded. Let pfαq be a net in A . Since X is separable,
we can choose a countable dense subset E Ă X . For each p P E, A ppq is con-
tained in a compact Kp Ă Y . By the countable Tychonoff theorem (whose proof
does not rely on Zorn’s lemma, see Thm. 3.54 or Pb. 8.7),

ś

pPEKp is compact.
Therefore, pfαq has a subnet pfβq converging pointwise on E. Since A is equicon-
tinuous, so is pfβq. Therefore, by Prop. 17.10, pfβq converges pointwise on X to
some f P CpX, Y q. So f P ClCpX,Y qpA q “ A . This proves that A is compact.

Remark 17.12. Claim 17.11 and its proof can be compared with Pb. 16.5. In partic-
ular, Prop. 10.28 plays the same role in the solution of Pb. 16.5 as Prop. 17.10 does
in the proof of Claim 17.11. In both situations, if one wants to prove the separable
case without using Zorn’s lemma, one needs an extra analytic step to pass from a
dense subset to the original space.

Remark 17.13. The readers may wonder why I often give two proofs of the same
theorem, one using Zorn’s lemma, which applies to a (slightly) larger setting and
is somewhat simpler, and the other not using Zorn’s lemma, but requires more
extra steps. I have mentioned that Zorn’s lemma is equivalent to the axiom of
choice. However, whether or not to accept the axiom of choice is a matter of taste
(or faith). After all, both the statements and the proof of Zorn’s lemma are very
hard to understand intuitively (at least to me).

Nowadays, most mathematicians accept it because it often simplifies proofs
and theories, it often proves theorems for a larger class of examples, and it is
compatible with the theorems proved without using it. Therefore, the more the-
orems that can be proved both with and without Zorn’s lemma, the more reason
there is to believe in Zorn’s lemma/axiom of choice. If there is any way to under-
stand Zorn’s lemma intuitively, it is to compare a proof using Zorn’s lemma with
a proof of the same theorem without using it, as we did in Sec. 15.7 and Ch. 16
and continue to do in this chapter.

17.2.2 Precompactness under uniform convergence topology

In the last subsection, we see that equicontinuity implies precompactness un-
der the pointwise convergence topology. The converse is not necessarily true.
In this section, we will see that under reasonable assumptions, equicontinuity is
equivalent to precompactness under the uniform convergence topology.

Theorem 17.14. Let X be a topological space. Let V be a Banach space. Equip CpX,Vq
with the uniform convergence metric. Let A be a precompact subset of CpX,Vq. Then A
is equicontinuous.

First proof. It suffices to prove that A is equicontinuous. Thus, by replacing A
with A , we assume that A is compact (under the uniform convergence metric).
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Let us prove the equicontinuity of A at any x P X . Choose any ε ą 0. For each
f P A , let Uf be the open ball centered at f with radius ε, i.e.

Wf “
␣

g P CpX,Vq : }g ´ f}l8pX,Vq ă ε
(

Since A is compact, there is a finite subset E Ă A such that A Ă
Ť

fPE Wf . Since
each f P E is continuous at x, and since E is finite, there exists U P NbhXpxq such
that diampfpUqq ă ε for all f P E . Therefore, for each g P A , choose f P E such
that g P Uf . Then since diampfpUqq ă ε for that particular f , by triangle inequality,
we have diampgpUqq ă 3ε. Thus supgPA diampgpUqq ď 3ε. Since ε can be arbitrary,
we conclude that A is equicontinuous at x.

Second proof. This is a fancy proof, just for entertainment. Again, we assume
WLOG that A is compact. Consider the inclusion map A ÞÑ CpX,Vq (sending f
to f ). By Thm. 9.3, it can be viewed as a continuous map

X ˆA Ñ V px, fq ÞÑ fpxq

Since A is compact, by Thm. 9.3, the above map can be viewed as a continuous
map

Φ : X Ñ CpA ,Vq

where for each x P X , Φpxq : A Ñ V sends f to fpxq. By enlarging the codomain
of Φ, we can view Φ as a map X Ñ VA where VA is equipped with the uni-
form convergence topology. The continuity of Φ means, by the very definition of
equicontinuity (cf. Def. 9.6), that A is equicontinuous.

Theorem 17.15 (Arzelà-Ascoli (AA) theorem). Let X be a compact topological space.
Equip CpX,RNqwith the uniform convergence topology. Let A be a subset of CpX,RNq.
Then the following are equivalent.

(1) A is a precompact subset of CpX,RNq.

(2) A is pointwise bounded and equicontinuous.

Proof. Assume (1). For each x P X , since the map f P A ÞÑ fpxq is continuous
and A is compact, by the extreme value theorem, we have supfPA }fpxq} ă `8.
So A is pointwise bounded. By Thm. 17.14, A is equicontinuous.

Assume (2). Write Y “ RN . Note that the uniform convergence topology is
metrizable. Thus, to prove (1), by Prop. 17.2 it suffices to choose an arbitrary
net pfαq in A and show that it has a cluster point in CpX, Y q. By Thm. 17.7, A
is precompact under the pointwise convergence topology. So pfαq has a subnet
pfβq converging pointwise to some f P CpX, Y q. Since X is compact and pfβq is
equicontinuous, by Cor. 9.26, pfβq converges uniformly to f .
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In the next chapter, we will use the AA theorem to study differential equations.
See Thm. 18.6.

Remark 17.16. The proof of AA theorem relies on Thm. 17.7, and hence in turn
relies on Zorn’s lemma. If X is separable, then AA theorem does not rely on
Zorn’s lemma since Thm. 17.7 does not (cf. Claim 17.11).

‹ Remark 17.17. One may wonder if AA theorem still holds when RN is replaced
by an arbitrary normed vector space V (or even a metric space). In fact, in this
case, if we assume that A is pointwise precompact (i.e., for each x P X , A pxq
is precompact in V), then Thm. 17.7 still holds, as one can check by reading the
proof of Thm. 17.7. Therefore, AA theorem also holds if “pointwise bounded” is
replaced by “pointwise precompact”. However, in most applications, V is RN .

17.3 Operator norms and compactness: the Banach-Alaoglu the-
orem

Every interesting topological space is a metric space. Every interesting Ba-
nach space is separable. Every interesting real-valued function is Baire/Borel
measurable.

—- Barry Simon [Sim-R, Preface of Part 1]

In this section, we fix a normed vector space V over F P tR,Cu.
We are going to apply the results and methods in Sec. 17.2 to linear maps on

V . Note that if W is a normed vector space over F, the operator norm on LpV,W q
is defined to be }T } “ }T }l8pBV p0,1q,W q. Therefore, if pTαq is a net in LpV,W q and
T P LpV,W q, then

lim
α
}Tα ´ T } “ 0 ðñ Tα Ñ T on BV p0, 1q (17.2)

In other words, operator norms describe the uniform convergence of linear maps
on the closed unit balls.

To apply the results in the last section, we must let W be FN . Let us consider
the case W “ F. Then LpV,Fq “ V ˚. The closed unit ball BV p0, 1q is not compact
unless when V is finite dimensional. (See Thm. 17.55.) We have seen such an
example in Exp. 17.1 where V “ Cpr0, 1s,Rq. Therefore, the Arzelà-Ascoli the-
orem is not available. Thus, one cannot expect general compactness in V ˚ if the
topology on V ˚ is the uniform convergence topology on BV p0, 1q, i.e. the topol-
ogy induced by the operator norm. To get compactness in V ˚, one must consider
the pointwise convergence topology.
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17.3.1 Weak-* topology and Banach-Alaoglu theorem

Definition 17.18. The topology on V ˚ “ LpV,Fq inherited from the product topol-
ogy on FV is called the weak-* topology. A net pφαq in V ˚ is said to converge
weak-* to φ P V ˚ if pφαq converges to φ under the weak-* topology, equivalently,
if pφαq converges pointwise to φ when viewed as functions V Ñ F. By contrast,
the norm topology (cf. Def. 7.11) on V ˚ is the topology induced by the (operator)
norm of V ˚.

Note that since BV p0, 1q spans V , a net of linear maps converges pointwise on
V iff it converges pointwise on BV p0, 1q. Therefore, the weak-* topology is also
the one induced by the product topology on FBV p0,1q.

We first prove the normed vector space version of Prop. 17.10.

Proposition 17.19. Let V and W be normed vector spaces over F where W is a Banach
space. LetM P Rě0, and let pTαq be a net in LpV,W q such that }Tα} ďM for all α. LetE
be a subset of V spanning a dense subspace of V . Assume that pTαq converges pointwise
on E. Then pTαq converges pointwise on V to some T P LpV,W q satisfying }T } ďM .

It follows that if pTαq also converges pointwise onE to some T 1 P LpV,W q, then
pTαq converges pointwise on V to T 1. (This is because both T and T 1 are bounded
linear, and they are equal on the dense subset SpanFE of V . So T “ T 1.)

Proof. By assumption, F “ SpanFE is dense in V . By linearity, pTαq converges
pointwise on F . By Prop. 10.25, pTαq has uniform Lipschitz constant M . So pTαq is
an equicontinuous net. By Prop. 17.10 and the completeness ofW , pTαq converges
pointwise on V to T P CpV,W q.

For each u, v P V, a, b P F we have

T pau` bvq “ lim
α
Tαpau` bvq “ lim

α
paTαpuq ` bTαpvqq “ aT puq ` bT pvq

So T is linear. For each v P V , since }Tαpvq} ď }Tα} ¨ }v} ďM}v}, we have

}T pvq} “ lim
α
}Tαpvq} ďM}v}

So }T } ďM by Rem. 10.24.

Roughly speaking, Prop. 17.19 says that if a net of bounded linear operators
have a uniform upper bound for their operator norms, then pointwise conver-
gence on a dense subset (or more generally, on a subset spanning a dense sub-
space) implies pointwise convergence on the whose space. The assumption on
the uniform upper bound cannot be removed:

Example 17.20. For each n P Z`, define Tn : l1pZ`,Rq Ñ R sending each f to
n3fpnq. Let E “ tχtku : k P Z`u. Then E spans a dense subspace of l1pZ`,Rq. For
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each k P Z` we have limn Tnχk “ 0. However, }Tn} “ n3 has no uniform upper
bounds. Define f P l1pZ`,Rq by fpnq “ n´2. Then Tnf “ n does not converge
in R as n Ñ 8. So pTnq does not converge pointwise on l1pZ`,Rq, although it
converges pointwise on E (and hence on SpanE) to 0.

The following Banach-Alaoglu theorem can be viewed as the normed vector
space version of Thm. 17.7.

Theorem 17.21 (Banach-Alaoglu theorem). BV ˚p0, 1q is weak-* compact, i.e., it is
compact under the weak-* topology.

By our notations, BV ˚p0, 1q is the set of all φ P V ˚ satisfying }φ} ď 1. Note that
weak-* topology is clearly Hausdorff.

Proof. Let A “ BV ˚p0, 1q. Since elements in A have operator norms ď 1, they
have Lipschitz constant 1 by Prop. 10.25. So A is equicontinuous on V . For each
v P V , A pvq is bounded since A pvq Ă BFp0, }v}q. Thus, by Thm. 17.7, A has
compact closure in CpV,Fq under the pointwise convergence topology. Therefore,
to show that A is compact, it suffices to show that A is closed in CpV,Fq. Let pφαq
be a net in A converging pointwise to φ P CpV,Fq. By Prop. 17.19, φ P V ˚ and
}φ} ď 1. So A is closed.

Remark 17.22. Similar to Arzelà-Ascoli theorem, the proof of the Banach-Alaoglu
theorem relies on Thm. 17.7, and hence relies on Zorn’s lemma. If V is a separable
normed vector space, the Banach-Alaoglu theorem does not rely on Zorn’s lemma
because the proof of Thm. 17.7 does not, cf. Claim 17.11.

17.3.2 Application: embedding into CpX,Fq

Recall that V is a normed vector space over F.

Theorem 17.23. There is a compact Hausdorff space X and a linear isometry Φ : V Ñ

CpX,Fq. Moreover, if V is separable, then X can be chosen to be metrizable.3

In other words, V is isomorphic to a linear subspace ofCpX,Fq (namely, ΦpV q).
Clearly, if V is Banach, then ΦpV q is complete and hence closed. So each Banach
space is isomorphic to a closed linear subspace of CpX,Fq for some X .

A similar embedding for metric spaces is given in Pb. 17.4.

Proof. We let X “ BV ˚p0, 1q, equipped with the weak-* topology. By Banach-
Alaoglu, X is a compact Hausdorff space. The linear map Φ : V Ñ CpX,Fq is
defined by sending each v to the function

Φpvq : X Ñ F φ ÞÑ xφ, vy

3In fact, every separable normed vector space can be embedded into Cpr0, 1s,Fq. This is called
the Banach-Mazur theorem, whose proof is more involved. Cf. [AK, Sec. 1.4].
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To check the continuity of Φpvq : X Ñ F, we let pφαq be any net in X converging
weak-* to φ P X . Then Φpvqpφαq “ xφα, vy converges to xφ, vy “ Φpvqpφq, proving
that Φpvq is continuous.

Let v P V . For each φ P X , we have

|xΦpvq, φy| “ |xφ, vy| ď }φ} ¨ }v} “ }v}

This proves that }Φpvq}l8pX,Fq ď }v}. (Recall Rem. 10.24.) By Hahn-Banach Cor.
16.6, there is φ P X with }φ} “ 1 such that xφ, vy “ }v}. Thus }Φpvq}l8pX,Fq “ }v}.
This proves that Φ is a linear isometry.

Suppose that V is separable. Then we can find a sequence pvnqnPZ`
dense in V .

It is clear that ΦpV q separates points of X . So Φpv1q,Φpv2q, . . . separate points of
X . Therefore,

X Ñ S “ FZ` φ ÞÑ
`

Φpvnqpφq
˘

nPZ`
(17.3)

is a continuous injective map ofX into S. SinceX is compact,X is homeomorphic
to ΦpXq. Since S is metrizable, so is X “ BV ˚p0, 1q.

As an immediate consequence of the above proof we have:

Theorem 17.24. V is separable iff BV ˚p0, 1q is metrizable (under the weak-* topology).

Recall Thm. 15.37 for equivalent descriptions of metrizable compact Haus-
dorff spaces. In fact, Thm. 17.24 is closely related to Thm. 15.37, since the rela-
tionship between V and BV ˚p0, 1q is similar to that between CpX,Rq and X , as
implied by the proof of Thm. 17.23.

Proof. The proof of Thm. 17.23 shows that if V is separable then X “ BV ˚p0, 1q is
metrizable. Conversely, assume that X is metrizable. The proof of Thm. 17.23
shows that V is isomorphic to a linear subspace of CpX,Rq. By Thm. 15.37,
CpX,Rq is second countable. So V is second countable, equivalently, separa-
ble.

Remark 17.25. It follows from Thm. 17.24 that if V is separable then BV ˚p0, 1q
is sequentially compact. In history, at a time when sequential compactness was
still the primary way for people to understand compactness, there were good
reasons for studying the sequential compactness of BV ˚p0, 1q. This is because
early examples of Banach spaces that people focused on were separable.

Remark 17.26. A typical example of a non-separable Banach space is l8pZ,Fq, cf.
Pb. 17.7. Precisely for this reason, the dual space of l8pZ,Fq is not much studied,
and the norm topology on l8pZ,Fq is not good enough. The weak-* topology on
(the unit ball of) l8pZ,Fq is more natural since, given the equivalence l1pZ,Fq˚ »
l8pZ,Fq (cf. Thm. 17.30) and the separability of l1pZ,Fq, the closed unit ball of
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l8pZ,Fq is weak-* metrizable (equivalently, secound countable).4 In the study of
modern analysis, it is helpful to keep in mind the following two principles:

• Metrizability and second-countability are tests for whether or not a topo-
logical space is natural (e.g. whether or not it is reasonable from a natural
science point of view).

• However, proving theorems only for metrizable and second-countable
spaces will actually make the theory more complicated. It is mainly for the
purpose of simplifying the theory (e.g. making the assumptions in the theo-
rems shorter) that we prove the theorems in general, regardless of whether
a topological space is metrizable/second-countable or not.5

In Rem. 17.27, I will say more about the significance of Thm. 17.24.

17.4 Banach-Alaoglu for Lp and lp spaces

So far, we have discussed V ˚ and its weak-* topology on a very abstract level.
In the following, we shall understand the results proved in Sec. 17.3 in a more
concrete setting.

17.4.1 Weak-* topology in context

Let 1 ă p ď `8 and 1 ď q ă `8 satisfy 1
p
` 1

q
“ 1. Let I be an interval in R.

Let LppIq be the set of Lebesgue measurable functions 6 f Ñ C satisfying that the

Lp-(semi)norm }f}p “
p

b

ş1

0
|f |p is finite. A remarkable representation theorem of

F. Riesz says that we have an (isometric) isomorphism of Banach spaces

Φ : LppIq Ñ LqpIq˚

such that for each f P LppIq, Φpfq is the linear map sending each g P LqpIq to

xΦpfq, gy “

ż

fg

4If V is infinite dimensional, the weak-* topology of V ˚ is indeed not first countable, and hence
is neither metrizable nor second countable. Therefore, the weak-* topology of BV ˚ p0, 1q is more
natural than that of V ˚.

5For example, the fact that pl1q˚ » l8 shows that separability is not closed under taking dual.
Thus, if we stick to separable Banach spaces, the use of Hahn-Banach and Banach-Alaoglu will be
more restricted (e.g. when discussing the relationship between V and V ˚˚, see Hahn-Banach Cor.
16.6 and Goldstine’s Thm. 17.54).

6Lebesgue measurable functions are more general than Riemann integrable functions. We will
discuss them in the next semester. To understand the material of this section, it is not important
to know the precise meaning of them.

311



Therefore, if pfαq is a net in LppIq and f P LppIq, then pfαq converges weak-* to
f (more precisely, pΦpfαqq converges weak-* to Φpfq) iff limα

ş

I
fαg “

ş

I
fg for all

g P LqpIq.
In fact, when I “ r´π, πs, using the l8-density of Spanteinx : n P Zu in

Cpr´π, πsq (Exp. 15.12), it can be proved that if pfαq is a net in Lppr´π, πsq sat-
isfying supα }fα}p ă `8, then pfαq converges weak-* to f P Lppr´π, πsq iff

lim
α

ż π

´π

fαpxqe
´inxdx “

ż π

´π

fpxqe´inxdx

i.e., iff the Fourier coefficients of pfαq converge to the corresponding ones of f .

Remark 17.27. Let me discuss the importance of Thm. 17.24 in the context of Lp

spaces. As we will see in the future, Lebesgue measure (and measure theory in
general) is not very compatible with net convergence. The main reason is that
measure theory is countable by nature, as one can feel in Sec. 14.2. For example,
the pointwise limit of a sequence of Lebesgue measurable functions is Lebesgue
measurable, but the pointwise limit of a net of measurable functions is not neces-
sarily so. Lebesgue’s dominated convergence theorem, a powerful theorem about
the commutativity of limits and integrals, applies only to sequences but not nets
of functions.

However, it is true that LqpIq is separable. Therefore, by Thm. 17.24, the closed
unit ball of LppIq is a metrizable compact space under the weak-* topology. There-
fore, to study the weak-* convergence for functions f P LppIq satisfying }f}p ď 1,
it suffices to use sequences instead of nets, because metrizable topologies and
their compactness are determined by sequential convergence. Therefore, one can
use all the results in measure theory to study the weak-* topology on BLppIqp0, 1q.

17.4.2 Weak-* topology on lp spaces

Let F P tR,Cu, and let X be a set. Recall that 1 ă p ď `8 and 1 ď q ă `8

satisfy 1
p
` 1

q
“ 1.

In this subsection, we prove that the linear isometry Ψ in Thm. 12.33 is sur-
jective, thus establishing the isomorphism lppX,Fq » lqpX,Fq˚. Using this iso-
morphism, we give a concrete (and historically important) description of weak-*
topology on the norm-bounded subsets of lppX,Fq. We introduce a temporary
notation

SpX,Fq “ tf P FX : f “ 0 except at finitely many pointsu (17.4)

Then SpX,Fq is clearly a subspace of lqpX,Fq.

Lemma 17.28. SpX,Fq is dense in lqpX,Fq under the lq-norm.
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Proof. Let f P lqpX,Fq. Then limAPfinp2Xq

ř

A |f |
q “

ř

X |f |
q ă `8. Thus, for every

ε ą 0 there is A P finp2Xq such that
ř

XzA |f |
q ă εq, and hence }f ´ fχA}q ă ε. This

finishes the proof, since fχA P SpX,Fq.

Exercise 17.29. Show that SpX,Fq is not dense in l8pX,Fq if X is an infinite set.

Theorem 17.30. The linear isometry

Ψ : lppX,Fq Ñ lqpX,Fq˚

xΨpfq, gy “
ÿ

xPX

fpxqgpxq

in Thm. 12.33 is an isomorphism of Banach spaces.

In the special case that p “ 2, Thm. 17.30 is called the Riesz-Fréchet represen-
tation theorem. Recall that we are assuming 1 ă p ď `8 in this theorem. When
X is infinite and p “ 1, Ψ is not surjective. See Pb. 17.8 for details.

Proof. It remains to prove that Ψ is surjective. Choose a nonzero bounded linear
Λ : lqpX,Fq Ñ F. We want to show that Λ is in the range of Ψ. By scaling Λ we
assume for simplicity that }Λ} “ 1. Define

f : X Ñ F fpxq “ xΛ, χtxuy (17.5)

Let us prove that f P lppX,Fq. If p “ `8, then |fpxq| ď }Λ} ¨ }χtxu}q “ 1, and
hence }f}8 ď 1. Assume p ă `8. We understand fpxq{|fpxq| as 0 if fpxq “ 0.
Choose any A P finp2Xq. Define g : X Ñ F to be g “ pf{|f |q ¨ |f |p´1χA. Then clearly
g P lqpX,Fq. We compute

xΛ, gy “
@

Λ,
ÿ

xPA

gpxqχtxu

D

“
ÿ

xPA

gpxqxΛ, χtxuy “
ÿ

xPA

fpxqgpxq “
ÿ

A

|f |p

On the other hand,

}g}q “
´

ÿ

A

|f |p
¯1{q

Since |xΛ, gy| ď }Λ} ¨ }g}q “ }g}q, we obtain p
ř

A |f |
pq ď p

ř

A |f |
pq1{q, and hence

ÿ

A

|f |p ď 1

Applying limAPfinp2Xq, we get }f}p ď 1.
Now choose any g P lqpX,Fq. Since 1 ď q ă `8, as in the proof of Lem.

17.28, it is easy to see that
ř

xPX gpxqχtxu “ limAPfinp2Xq

ř

xPA gpxqχtxu converges to
g (under the lq-norm). Thus, since Λ is continuous, we have

xΛ, gy “
A

Λ, lim
APfinp2Xq

ÿ

xPA

gpxqχtxu

E

“ lim
APfinp2Xq

ÿ

xPA

A

Λ, gpxqχtxu

E
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“ lim
APfinp2Xq

ÿ

xPA

fpxqgpxq “
ÿ

X

fg

This proves that Ψpfq “ Λ.

We are now able to give an explicit characterization of the weak-* topology on
::::::::::::::::
norm-bounded

::::::::
subsets (e.g. the unit ball) of lppX,Fq.

Theorem 17.31. Let pfαq be a net in lppX,Fq satisfying supα }fα}p ă `8, and let
f P lppX,Fq. Then the following are equivalent.

(1) pfαq converges weak-* to f . (More precisely, pΨpfαqq converges weak-* to Ψpfq.)

(2) pfαq converges pointwise to f as functions X Ñ F.

We warn the reader that (1) is not equivalent to (2) if supα }fα}p “ `8.

Proof. For each x P X we have fαpxq “ xΨpfαq, χtxuy and fpxq “ xΨpfq, χtxuy.
Therefore, (2) is equivalent to that Ψpfαq converges to Ψpfq when acting on each
χtxu. Since Ψ is an isometry, supα }Ψpfαq} “ supα }fα}p ă `8. Therefore, by
Prop. 17.19, (2) is equivalent to that Ψpfαq converges pointwise on lqpX,Fq to
Ψpfq, because functions of the form χtxu span SpX,Fq, a norm-dense subspace of
lqpX,Fq due to Lem. 17.28.

Remark 17.32. Weak-* convergence and the Banach-Alaoglu theorem were first
studied for (the closed unit ball of) l2pZ,Fq by Hilbert in his study of integral
equations and eigenvalue problem (cf. Ch. 9.23). Of course, Hilbert didn’t have
the modern definition of weak-* topology. For him, the weak-* convergence on
the unit ball simply means condition (2) of Thm. 17.31. Taking Thm. 17.31-(2) as
the definition of weak-* convergence, the Banach-Alaoglu theorem can be proved
quite easily for l2pZ,Fq (cf. Pb. 17.5). Therefore, as with many abstract definitions,
the notion of weak-* topology has its origins in very concrete forms of expression.

After Hilbert’s study of l2 spaces (a.k.a. Hilbert spaces), F. Riesz generalized
weak-* topology and Banach-Alaoglu theorem to lp and Lp spaces for arbitrary
1 ă p ď `8, as we shall see in the next section.

Remark 17.33. If 1 ă p ă `8, the weak-* topology on lppXq is also called the
weak topology. See Rem. 21.26.

17.5 The birth of operator norms: moment problems

It can be said that F. Riesz made the first crucial contribution to the notion of
dual spaces of Banach spaces. According to Riesz, bounded linear functionals on
LqpIq (when 1 ă q ă `8 and I is an interval in R) are nothing abstract. They
are simply elements of LppIq. But what is the advantage of viewing f P LppIq not
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only as a function on I , but also as a linear functional on LqpIq? Why was Riesz
interested in characterizing LqpIq˚ at all?

In fact, Riesz’s study of dual spaces is related to the moment problems which
have applications to probability. In his 1910 paper [Rie10], Riesz studied the
following type of moment problem: Let g1, g2, . . . be a sequence in LqpIq, let
c1, c2, ¨ ¨ ¨ P C, and find some f P LppIq such that

ż

fgj “ cj pfor all jq (17.6)

(For example, in the classical moment problem, gnpxq “ xn, and f is understood
as a “probability distribution”. Then

ş

fpxqxdx “ c1 is the mean (i.e., expected
value) of f , and

ş

fpxqpx´ c1q
2dx is the variance of f . The number cn “

ş

fpxqxndx
is called the n-th moment of f .)

By Hölder’s inequality, if such f exists, then there must be some M P Rě0 (e.g.
M “ }f}Lp), such that

|a1c1 ` ¨ ¨ ¨ ` ancn| ďM ¨ }a1g1 ` ¨ ¨ ¨ ` angn}Lq p@n P Z`, a1, ¨ ¨ ¨ , an P Cq
(17.7)

Riesz proved that the existence of M satisfying (17.7) is also a sufficient condition
for the existence of f P LppIq satisfying (17.6).

From the modern viewpoint, Riesz’s result can be proved in the following
way: Let V be spanned by g1, g2, . . . . By (17.7), there exists a unique linear func-
tional φ : V Ñ C with operator normďM satisfying φpgjq “ cj for all j. By Hahn-
Banach Thm. 16.5, φ can be extended to a bounded linear functional φ : LqpIq Ñ C
also with operator norm ď M . Then, by the isomorphism LppIq » LqpIq˚, φ can
be realized by some f P LppIq, which is the desired function.

Remark 17.34. In fact, Riesz didn’t find the linear functional LqpIq Ñ C in this
way. He didn’t see this problem as extending linear functionals. And Hahn-
Banach theorem didn’t exist before Riesz solved the moment problem. (Riesz’s
solution is actually an important motivation for the Hahn-Banach theorem.)

Riesz found φ : LqpIq Ñ C in the following way (cf. [Die-H, Sec. VI.2]). In
the first step, by using complicated methods, he could find fn P L

ppIq satisfying
}fn}Lp ďM and

ż

I

fngi “ ci pfor every 1 ď i ď nq

In Sec. 17.9, we will explain more about how to find these fn.
In the second step, Riesz considered Φpfnq : LqpIq Ñ C sending each g P

LqpIq to
ş

fng. Then, for each j, we have limnÑ8xΦpfnq, gjy “ cj . Riesz made the
following crucial steps:
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• He proved the Banach-Alaoglu theorem for LqpIq˚ using diagonal method.
Therefore, since supn }Φpfnq} “ supn }fn}p ď M , one has a subsequence
Φpfnk

q converging weak-* to some φ P LqpIq˚.7 Then clearly xφ, gjy “ cj
for all j.8

Then φ can be represented by some f P LppIq thanks to LppIq » LqpIq˚.

Therefore, Riesz’s study of moment problems contributed to:

(a) The discovery of important special cases of Banach-Alaoglu theorem.

(b) The realization that operator norms play an important role in the
compactness of dual Banach spaces.

(c) The discovery of LppIq » LqpIq˚.

After the work of Riesz, operator norms became a central concept in modern anal-
ysis.

We refer the readers to [Die-H, Ch. VI] and [NB97] for more details about the
relevant history, and to [Sim-R, Sec. 4.17 & 5.6] for a modern treatment of moment
problems.

17.6 Operator norms and completeness: functional calculus

In this section, all normed vector spaces are over F P tR,Cu.
That one can do a lot of analysis on the linear maps of function spaces is a re-

markable fact. In fact, in the early history of functional analysis, people were more
interested in nonlinear functionals on function spaces, for example, the expression
Spfq in the calculus of variations (cf. (2.1)), for which one searched for the extreme
values. The problem of finding extreme values is almost trivial if the functional
S is linear and defined on a vector space of functions. Even Hilbert studied the
eigenvalue problem for the integral operator pTfqpxq “

ş1

0
Kpx, yqfpxqdx (cf. Sub-

sec. 10.4.1) by transforming it to the extreme value problem of the functional
Spfq “ (2.1b) defined for all f on the closed unit ball of L2pr0, 1s,Cq, viewing Spfq
as an (infinite-dimensional) quadratic form.

The idea of operator norms was implicit in Hilbert’s study of boundedness of
sesquilinear/quadratic forms. (See Subsec. 21.5.2.) But it was Riesz who gave the
first systematic study of operator norms. Riesz used operator norms mainly in
the following two cases:

7Since LqpIq is separable, the closed ball of LqpIq˚ with radius M is compact metrizable by
Thm. 17.24, and hence is sequentially compact.

8More precisely, the following is what Riesz did: Using the diagonal method as in the proof
of Thm. 3.54, he found Φpfnk

q whose evaluations with the elements in a given countable dense
subset of LqpIq converge. Since supk }Φpfnk

q} ă `8, by Prop. 17.19, one concludes that pΦpfnk
qq

converges weak-* to some φ P LqpIq˚.
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(1) Bounded linear maps V Ñ F. By Banach-Alaoglu, one can use the operator
norm to get a weak-*

:::::::::
compact set BV ˚p0, 1q. This has been discussed in

previous sections.

(2) Bounded linear maps V Ñ V . As we will see below, the operator norm
makes LpV q :“ LpV, V q a Banach space which is compatible with its F-
algebra structure. Namely, LpV q is a Banach algebra. Here, the crucial
analytic property is

:::::::::::::::
completeness rather than compactness.

Thus, in these two cases, the operator norms are playing different roles: compact-
ness in the first case, and completeness in the second one. For example, as I will
argue in the future, Hilbert and Schmidt noticed the importance of l2pZ,Cq not so
much because of its completeness, but because of the weak-* compactness of its
closed unit ball.

However, these two cases have one thing in common: there is a close relation-
ship between operator norms and

::::::::::::::::
equicontinuity. In (1), equicontinuity ensures

(pre)compactness. In (2), equicontinuity ensures the convergence of double limits
(Thm. 8.10), the importance of which will be seen in the future study of spectral
theory (cf. Sec. 27.6 and especially Rem. 27.54).

17.6.1 The Banach algebra LpV q

Let me explain the meaning of the statement “LpV q is a Banach algebra”. First,
we observe:

Theorem 17.35. Assume that V is a normed vector spaces and W is a Banach space.
Recall that LpV,W q is a linear subspace ofW V (cf. Prop. 10.27). Then LpV,W q, equipped
with the operator norm, is a Banach space.

Proof. By Prop. 10.27, it remains to prove that LpV,W q is complete. Let pTnq be
a Cauchy sequence in LpV,W q. So limm,nÑ8 }Tm ´ Tn} “ 0. For each v P V , we
have }Tmv ´ Tnv} ď }Tm ´ Tn} ¨ }v}which converges to 0 under limm,n. So pTnvq is
a Cauchy sequence in W , converging to a vector Tv P W . Thus, we have proved
that pTnq converges pointwisely to T . ClearlyM :“ supnPZ`

}Tn} is a finite number.
Therefore, by Prop. 17.19, we have T P LpV,W q and }T } ďM .

Note that limn }T ´ Tn} “ 0 means precisely that Tn Ñ T on BV p0, 1q. Since
pTnq converges pointwise to T , to prove that limn }T ´ Tn} “ 0, it suffices to prove
that pTnq converges uniformly to some function on BV p0, 1q. This is due to the
completeness of l8pBV p0, 1q,W q and the Cauchyness of pTn|BV p0,1qqnPZ`

.

Definition 17.36. Let A be an F-algebra. Suppose that A , as a vector space, is
equipped with a norm } ¨ } so that A is a normed vector space, and that

}xy} ď }x} ¨ }y} (17.8)
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for all x, y P A . Then we call A a normed algebra over F. If the norm is complete,
we say that A is a Banach algebra over F. A unital Banach algebra is a unital
algebra (with unit 1) which is also a Banach algebra and satisfies

}1} “ 1

As mentioned above, the most important reason for considering operator
norms on V ˚ is due to the Banach-Alaoglu theorem. The most important rea-
son for considering operator norms on LpV q is due to the following elementary
but important fact:

Theorem 17.37. Let V be a Banach space. Then LpV q, equipped with the operator norm,
is a unital Banach algebra.

Recall that the multiplication in LpV q is defined by the composition of linear
operators.

Proof. This is immediate from Thm. 17.35 and Prop. 17.38.

Proposition 17.38. Let S : U Ñ V and T : V Ñ W be linear maps of normed vector
spaces. Then

}TS} ď }T } ¨ }S} (17.9)

Proof. For each u P U we have }TSu} ď }T } ¨ }Su} ď }T } ¨ }S} ¨ }u}. According to
Rem. 10.24, we get (17.9).

17.6.2 Power series functional calculus

The word “functional calculus” refers in general to the procedure of replacing
the variable x or z in the F-valued function fpxq or fpzq by T to get fpT q, where
T is an element in a unital Banach algebra T . The notation T suggests that the
most important case is where T P LpV q for some Banach space V . Depending
on whether f is a continuous/analytic/integrable/measurable function, fpT q is
defined in different ways. Let us consider the simplest case. In the following, we
fix a complex unital Banach algebra A . (For example, A “ LpV q where V is a
complex Banach space.)

Functional calculus was introduced by Riesz in [Rie13] to the study of spectral
theorem of bounded linear operators. See Fig. 17.1 for a summary of historical
motivation. The relationship between functional calculus and equicontinuity in
Fig. 17.1 will not be explained in this chapter; see Rem. 27.54 and Subsec. 27.7.1
for the related history.

Let fpzq “
ř8

n“0 anz
n be a power series in C with radius of convergence R. If

T P A and }T } ă R, we can define

fpT q “
8
ÿ

n“0

anT
n (17.10)
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Figure 17.1 The motivation in history

By (17.8), we have }T n} ď }T }n. Therefore, by root test, we have
ř

n |an| ¨ }T
n} ă

`8. So the RHS of (17.10) converges absolutely, and hence converges in A . So
(17.10) makes sense.

The most important general fact about functional calculus is that f ÞÑ fpT q is
a homomorhism of unital algebras:

Proposition 17.39. If fpzq “
ř

n anz
n and gpzq “

ř

n bnz
n be power series in C with

radius of convergence R1, R2. Let R “ mintR1, R2u. If A is a complex unital Banach
algebra with unit 1, and if T P A satisfies }T } ă R, then for each a, b P C we have

1pT q “ 1 paf ` bgqpT q “ afpT q ` bgpT q pfgqpT q “ fpT qgpT q

Proof. The first two equations are obvious. We prove the last one. Let cn “
řn
k“0 akbn´k. Then hpzq “

ř

n cnz
n equals fpzqgpzq on BCp0, Rq. Cor. 5.59 im-

mediately implies hpT q “ fpT qgpT q.

Let me give a simple application of Prop. 17.39. Recall that one can use deter-
minants to prove that the set of nˆn complex matrices is open in Cnˆn. However,
in the infinite dimensional case one clearly cannot use determinants. Functional
calculus provides an easy method to treat this problem.

Example 17.40. Let T P A such that }T } ă 1. Then 1` T is invertible.

Proof. Let fpzq “ 1 ` z. Let gpzq “
ř8

n“0p´zq
n, which has radius of convergence

1 and equals p1 ` zq´1 when |z| ă 1. Since fg “ gf “ 1, by Prop. 17.39 we have
p1` T qS “ Sp1` T q “ 1 if we let S “ gpT q “

ř8

n“0 T
n.
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Proposition 17.41. The set A ˆ of invertible elements is an open subset of A .

Proof. Let T P A be invertible. Let δ “ }T´1}´1. Then for each S P A satisfying
}T ´ S} ă δ we have

}T´1
pS ´ T q} ď }T´1

} ¨ }S ´ T } ă 1

Thus, by Exp. 17.40, 1 ` T´1pS ´ T q is invertible. So its multiplication with T
(which is S) is invertible.

Functional calculus is also useful in differential equations, even in the finite
dimensional case:

Exercise 17.42. Let A,B P A . Suppose that AB “ BA. Show that eA`B “ eA ¨ eB.
Show that

deAt

dt
“ AeAt “ eAtA

Exercise 17.43. Let V be a complex Banach space. Let v P V . Let T P LpV q. Show
that there is a unique differentiable f : RÑ V satisfying the differential equation

f 1
ptq “ Tfptq fp0q “ v

Show that fptq “ eTtv satisfies this differential equation.

17.7 Contraction theorem

Definition 17.44. Let f : X Ñ Y be a map of metric spaces. Suppose that f has
Lipschitz constant L P r0, 1q, we say that f is a contraction.

Theorem 17.45 (Contraction theorem). Let X be a nonempty complete metric space.
Let T : X Ñ X be a contraction. Then T has a unique fixed point, i.e., there exists a
unique x P X satisfying T pxq “ x.

In the following proof, we let L P r0, 1q be a Lipschitz constant of T .

Proof. Uniqueness: Suppose x, y P X satisfy T pxq “ x and T pyq “ y. Then

0 ď dpx, yq “ dpT pxq, T pyqq ď Ldpx, yq

showing that dpx, yqmust be 0.
Existence: Choose x0 P X . Define pxnqnPN inductively by xn`1 “ T pxnq. Then

dpxn`1, xnq “ dpT pxnq, T pxn´1qq ď Ldpxn, xn´1q. From this, we conclude

dpxn`1, xnq ď Ldpxn, xn´1q ď L2dpxn´1, xn´2q ď ¨ ¨ ¨ ď Lndpx1, x0q
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Therefore, for each k P Z` we have

dpxn`k, xnq ď dpxn`k, xn`k´1q ` dpxn`k´1, xn`k´2q ` ¨ ¨ ¨ ` dpxn`1, xnq

ďpLn`k´1
` Ln`k´2

` ¨ ¨ ¨ ` Lnqdpx1, x0q ď
Ln

1´ L
dpx1, x0q

This proves that pxnqnPN is a Cauchy sequence inX . So it converges to some x P X .
Since pT pxnqq “ pxn`1q also converges to x, by the continuity of T we conclude
T pxq “ x.

The contraction theorem is also called the Banach fixed-point theorem. In the
next chapter, we will use the contraction theorem to study differential equations.
In the next semester, we will use the contraction theorem to prove the inverse
function theorem for multivariable functions.

17.8 Problems and supplementary material

Let 1 ă p, q ď `8 satisfy 1
p
` 1

q
“ 1. Let F P tR,Cu.

‹ Problem 17.1. Let 1 ď p ă `8. Let X be a set. Let A be a subset of lppX,Fq
equipped with the lp-norm. Prove that the following are equivalent:

(1) A is precompact.

(2) For each x P X we have supfPA |fpxq| ă `8. Moreover, for every ε ą
0, there exists a finite subset K Ă X such that for each f P A we have
}f |XzK}lp ă ε; in other words,

lim
KPfinp2Xq

sup
fPA

ÿ

xPXzK

|fpxq|p “ 0 (17.11)

Hint. (1)ñ(2): Mimic the first proof of Thm. 17.14. (2)ñ(1): Choose any net pfαq
in A . First find a subnet pfµq converging pointwise to a function f : X Ñ F. Then
show that f P lppX,Fq and limµ }f ´ fµ}p “ 0.

Pb. 17.1 is the lp-version of the Fréchet-Kolmogorov theorem.

‹ Exercise 17.46. In Pb. 17.1, assume that A is precompact. Prove that E “
Ť

fPA Supppfq ”
Ť

fPA tx P X : fpxq ‰ 0u is a countable set.

Hint. Method 1: Show that A is separable. Let E be a countable dense subset of
A . Prove E “

Ť

fPE Supppfq.
Method 2: For each ε “ 1{n, write the K in (2) as Kn. Prove E Ă

Ť

nKn.
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‹ Problem 17.2. Let V be a Banach space. Let ξ P CpR, V q such that }ξ}L1 “
ş

R }ξptq}dt ă `8. Let X “ CpR,Rq X l8pR,Rq, equipped with the l8-norm. Define
a linear map

Φ : XÑ V f ÞÑ

ż

I

fptqξptqdt

Show that Φ is a bounded linear map. Show that Φ is a compact operator, which
means that ΦpBXp0, 1qq is a precompact subset of V .

Hint. By Thm. 17.23, we can view V as a closed linear subspace of CpX,Rqwhere
X is a compact Hausdorff space. So ξ can be viewed as a function on RˆX . Use
Arzelà-Ascoli to prove that Φ is a compact operator.

Problem 17.3. Let V be a separable normed vector space over F. Let pvnqnPZ`

be a dense sequence in BV p0, 1q. (The density is with respect to the norm topol-
ogy.9) Use pvnqnPZ`

to construct an explicit metric on BV ˚p0, 1q inducing its weak-
* topology, and construct an explicit countable basis for the weak-* topology on
BV ˚p0, 1q.

Hint. Check the proof of Thm. 17.24 (or more precisely, Thm. 17.23). This prob-
lem is related to Pb. 15.15.

Remark 17.47. The metric you are asked to find in Pb. 17.3 can actually be found
in many analysis textbooks, although their authors do not tell you how they find
it. The point of this problem (together with Pb. 15.15) is to tell you that the cor-
rect geometric viewpoint (i.e., embedding into Hilbert cubes) can lead you to the
formula of the metric.

Another goal of this problem is to justify the point in Rem. 8.35: For all con-
crete examples of compact metrizable spaces, you can explicitly construct count-
able bases for their topologies. Therefore, there is no need to use the indirect proof
of the second countability in Thm. 8.34.10

Problem 17.4. Let Y be a metric space. Prove that there is a compact Hausdorff
space X and an isometry Φ : Y Ñ CpX,Fq following the hint below.

In particular, any metric space can be (isometrically) embedded into a Banach
space. 11

9Recall that subsets of separable (equivalently, second countable) metric spaces are separable.
10You can feel how much I hate the proof of Thm. 8.34 :-)
11If we simply want to embed Y into a Banach space V , there is a simpler method called Ku-

ratowski embedding: Assume Y is nonempty and fix a P Y . Let V “ l8pY,Rq, and define the
embedding sending each y P Y to the function p P Y ÞÑ dpy, pq ´ dpa, pq.
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Hint. This problem is similar to Thm. 17.23. Since CpX,Rq Ă CpX,Cq, it suffices
to assume F “ R. In Thm. 17.23, X is constructed to be the set of linear function-
als with operator norms ď 1. The assumption on the operator norms ensures the
equicontinuity and hence the (pre)compactness of X . Thus, in the current situa-
tion, in order to get a compact X , one should consider a pointwise bounded set
of functions with a uniform Lipschitz constant (cf. Thm. 17.7 or Exe. 17.9). For
example, assume Y is nonempty and fix a P Y , and define

X “ tf P RY : fpaq “ 0, and f has Lipschitz constant 1u (17.12)

equipped with the pointwise convergence topology.

Remark 17.48. Similar to the proof of Thm. 17.24, one can show that X “ (17.12)
is metrizable (equivalently, second countable) iff Y is separable.

Remark 17.49. Pb. 17.4 tells us that any metric space can be embedded into a
Banach space. This fact is useful in the same way that the existence of the com-
pletions of normed vector spaces is useful, cf. Rem. 10.22. (Interestingly, Pb. 17.4
gives a new proof that every metric space Y has completion, since one can restrict
Φ : Y Ñ V to Y Ñ ΦpY q.)

For example, assume that X, Y are topological spaces, and Z is a metric space.
Equip CpY, Zq with a uniform convergence metric (cf. Exp. 7.77). By Pb. 17.4, Z
can be viewed as a metric subspace of a Banach space V . By Thm. 9.3, there is a
canonical injection Ψ : CpX,CpY, V qq Ñ CpX ˆ Y, V q which is bijective when Y
is compact. It is easy to see that Ψ restricts to an injective map CpX,CpY, Zqq Ñ
CpX ˆ Y, Zq, and that this restriction is surjective when Y is compact. Therefore,
Thm. 9.3 can be generalized to the case that the codomain is a metric space, but
not necessarily a normed vector space.12 Similarly, Thm. 9.12 can be generalized
to functions whose codomains are metric spaces, and the Moore-Osgood theorem
can be generalized to functions whose codomains are complete13 metric spaces.

Problem 17.5. Let X be a set. By the Banach-Alaoglu theorem and Thm. 17.31,
when 1 ă p ď `8, the closed unit ball

B “ tf P lppX,Fq : }f}p ď 1u (17.13)

is compact under the pointwise convergence topology (i.e. the product topology
inherited from FX). Give a direct proof of this fact for all 1 ď p ď `8 (including
the case p “ 1) without using Banach-Alaoglu Thm. 17.21.

Now you may wonder if the pointwise convergence topology on the closed
unit ball of l1 can be realized by a weak-* topology. The answer is yes:

12Of course, we can prove the case of metric spaces for Thm. 9.3 at the very beginning. We
didn’t do it just to avoid distraction.

13You need completeness because in the proof you need the fact that Y is closed in V .
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‹ Problem 17.6. Let X be a set. Let

c0pX,Fq “ tf P FX : for all ε ą 0 there exists A P finp2Xq such that }f}l8pAc,Fq ă εu

equipped with the l8-norm. By Prop. 15.46, c0pX,Fq is a Banach space. (You can
also check it directly.) Find a natural isomorphism of Banach spaces

Ψ : l1pX,Fq »
ÝÝÑ c0pX,Fq˚ (17.14)

Let pfαq be a net in l1pX,Fq satisfying supα }fα}l1 ă `8, and let f P l1pX,Fq. Prove
that Ψpfαq converges weak-* to Ψpfq iff pfαq converges pointwise to f as functions
X Ñ F.

‹ Problem 17.7. Prove that lqpZ`,Fq is separable (where 1 ď q ă `8), and
l8pZ`,Fq is not separable.

Hint. Every subset of a second countable space is second countable and hence
Lindelöf. Find an uncountable discrete (and hence non-Lindelöf) subset of
l8pZ`,Fq.

‹ Problem 17.8. By Thm. 12.33, there is a linear isometry

Ψ : l1pZ`,Fq Ñ l8pZ`,Fq˚ (17.15)

such that xΨpfq, gy “
ř

n fpnqgpnq. Let B “ Bl1pZ`,Fqp0, 1q, the closed unit ball of
l1pZ`,Fq. If Ψ is surjective (and hence an isomorphism), then ΨpBq is the closed
unit ball of l8pZ`,Fq˚, and hence is weak-* compact by Banach-Alaoglu.

Let fn “ χtnu, viewed as an element of B. Prove that the sequence pΨpfnqqnPZ`

has no weak-* convergent subnet in ΨpBq.14 Conclude that the map Ψ is not sur-
jective.

17.9 ‹ Supplementary material: a discussion of Riesz’s treatment
of moment problems

Unless otherwise stated, V is a Banach space over F P tR,Cu.

17.9.1 Quotient Banach spaces in moment problems

Problem 17.9. Let U be a closed linear subspace of V . Let V {U be its quotient
vector space. Prove that V {U has a norm defined by

}v ` U} “ inf
uPU
}v ` u} (17.16)

for all v P V . Prove that V {U is complete under this norm. We call V {U the
quotient Banach space of V by U .

14It is not enough to consider subsequences, since l8pZ`,Fq is not separable and hence the unit
ball of l8pZ`,Fq˚ is not weak-* metrizable, cf. Thm. 17.24.
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Hint. Use Pb. 4.1 to prove that V {U is complete.

Proposition 17.50 (Abstract moment problem, finite version). Let φ1, . . . φn P V
˚.

Let c1, . . . , cn P F. Suppose that there exists M P Rě0 such that

|a1c1 ` ¨ ¨ ¨ ` ancn| ďM ¨ }a1φ1 ` ¨ ¨ ¨ ` anφn} p@a1, . . . , an P Fq (17.17)

Then for every ε ą 0 there exists v P V satisfying that }v} ďM ` ε and that

xφi, vy “ ci pfor all 1 ď i ď nq (17.18)

The above proposition is credited to Helly.

Problem 17.10. Assume the setting of Prop. 17.50. Define a bounded linear map

Φ : V Ñ Fn v ÞÑ pφ1pvq, . . . , φnpvqq (17.19)

The following two steps will lead you to prove Prop. 17.50.

1. Consider the special case that KerpΦq “ 0. In particular, V is a finite dimen-
sional normed vector space, and dimV “ dimSpanpφ1, . . . , φnq. We have
dimV ˚ “ dimV ă `8 because all linear maps V Ñ F are bounded. Simi-
larly dimV ˚˚ “ dimV ˚. So the canonical linear isometry

V Ñ V ˚˚ v ÞÑ x¨, vy (17.20)

(cf. Cor. 16.6) must be bijective. Use this observation to prove that there
exists v P V satisfying }v} ďM and (17.18).

2. Reduce the general case to the special case in part 1 by considering V {KerpΦq
and its bounded linear functionals ψ1, . . . , ψn defined by

xψi, v `KerpΦqy “ xφi, vy (17.21)

(Note that you need to prove }ψi} “ }φi}.)

Remark 17.51. Recall from Sec. 17.5 that Riesz wanted to solve the moment prob-
lem: Let I “ ra, bs be a compact interval in R. The scalar field is chosen to be C.
Let g1, g2, ¨ ¨ ¨ P LqpIq “ LqpI,Cq (where 1 ă q ă `8) and c1, c2, ¨ ¨ ¨ P C satisfying

|a1c1 ` ¨ ¨ ¨ ` ancn| ďM ¨ }a1g1 ` ¨ ¨ ¨ ` angn}Lq p@n P Z`, a1, ¨ ¨ ¨ , an P Cq

The goal is to find f P LppIq (where p´1 ` q´1 “ 1) satisfying
ş

I
fgj “ cj for all

j “ 1, 2, . . . . As mentioned in Rem. 17.34, Riesz’s first step in solving this problem
is to find fn P L

ppIq for each n P Z` satisfying }fn}Lp ďM and
ż

I

fngi “ ci pfor every 1 ď i ď nq (17.22)
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The second step is then to find a weak-* convergent subsequence of pfnqnPZ`
.

In Sec. 17.5, I didn’t explain how Riesz solved step 1. Some of the key ideas
can now be explained. (For simplicity, the reader can replace LqpIq, LppIq by
lqpZq, lppZq and replace the integrals by the series. The main idea remains the
same.)

Let us slightly weaken the above assumption to }fn}Lp ďM ` ε where ε ą 0 is
fixed at the beginning. (Later, I will explain why ε can be chosen to be 0.) Then,
in view of the canonical isomorphism Ψ : LqpIq Ñ LppIq˚, Riesz’s first step can
be proved by directly applying Prop. 17.50 to the special case that V “ LppIq and
φi “ Ψpgiq.

Remark 17.52. It should be noted that the proof of Prop. 17.50 relies on the fact
that V Ñ V ˚˚ is an isometry (cf. Pb. 17.10-1) when V is finite-dimensional. This
follows from Hahn-Banach in the general case. As I said in Rem. 17.34, the Hahn-
Banach theorem did not exist by the time Riesz was studying the moment prob-
lems.

In the case of moment problems, according to Pb. 17.10, one should take V to
be LppIq{KerpΦq for some bounded linear Φ : LppIq Ñ Cn. In this case, without
using Hahn-Banach, one can at least show easily that V Ñ V ˚˚ is bijective. But
it is quite hard to give a direct (i.e. function-theoretic) proof that V Ñ V ˚˚ is an
isometry. Nevertheless, Riesz circumvented this problem by using a complicated
method due to Schmidt (cf. [Die-H, Sec. 6.2 and 5.3]), which was rarely used after
the appearance of Hahn-Banach. In some sense, one can say that Riesz proved a
weak version of Hahn-Banach theorem for the finite-dimensional Banach space
LppIq{KerpΦq. Anyway,

:::
the

:::::::::::::::::::::::
infinite-dimensional

::::::::::::::::
Hahn-Banach

:::::::::
theorem

:::
is

:::::
not

::::::::
needed

:::
in

::::::::
Riesz’s

:::::::::
method. (So Hahn-Banach is nontrivial enough in the finite-

dimensional case.)

Remark 17.53. The notion of quotient Banach spaces introduced in this section is
also implicit in Riesz’s work. Indeed, Riesz wanted to find fn P L

ppIq satisfying
(17.22) for small enough }fn}Lp . This amounts to the fact that in (17.16), the value
of }v ` U} can be estimated by finding u P U such that }v ` u} is small enough.

In fact, Riesz was able to find fn satisfying (17.22) and minimizing }fn}; more-
over, for such fn, one has }fn} ďM (but not just }fn} ďM ` ε). This follows from
Pb. 17.11, applied to V “ LqpIq and E “ tg1, . . . , gnu.

Problem 17.11. Let E be a subset of V . Let

EK
“ tφ P V ˚ : φ|E “ 0u (17.23)

which is clearly a weak-* closed linear subspace of V ˚. Let φ P V ˚. Prove that
there exists ψ P EK such that }φ` ψ} equals }φ` EK} ” infηPEK }φ` η}.

It is in fact true that any weak-* closed linear subspace of V ˚ is of the form EK.
To prove it one needs a more general version of the Hahn-Banach theorem. We
will not discuss it in our notes.
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Hint. Choose a sequence pψnq in V ˚ such that limn }φ ` ψn} “ }φ ` EK}. Since
this sequence is clearly norm-bounded, by Banach-Alaoglu, it has a subnet pψαq
converging weak-* to some ψ P V ˚. Clearly ψ P EK. For each ε ą 0, choose
v P V with }v} “ 1 such that |xφ` ψ, vy| ě }φ ` ψ} ´ ε. Show that |xφ` ψ, vy| ď
limα }φ` ψα}. Conclude that }φ` ψ} ´ ε ď }φ` EK} for all ε ą 0.

17.9.2 Some consequences

The goal of this subsection is to give some quick consequences of the results
and the methods introduced in the previous subsections. These important prop-
erties are mainly about compactness, and are not difficult to find in many books
on functional analysis. The reason I present these results is to show that they can
(or should?) be understood in the light of Riesz’s treatment of moment problems.
(Unfortunately, this point is often not emphasized in many textbooks.)

Theorem 17.54 (Goldstine’s theorem). Let Γ : V Ñ V ˚˚ be the linear isometry
(cf. Cor. 16.6) sending v to the bounded linear functional φ P V ˚ ÞÑ xφ, vy. Then
ΓpBV p0, 1qq is weak-* dense in BV ˚˚p0, 1q.

Consequently, since BV p0, 1q is a compact Hausdorff space by Banach-
Alaoglu, we conclude that Γ is bijective iff ΓpBV p0, 1qq is weak-* compact.15 A
Banach space satisfying these two equivalent conditions is called reflexive. For
example, if 1 ă p ă `8, then Thm. 17.30 shows that lppX,Fq is reflexive. It is also
true that Lppra, bs,Fq is reflexive.

Proof. Since
Ť

0ără1BV ˚˚p0, rq is norm dense and hence weak-* dense in
BV ˚˚p0, 1q, it suffices to prove that for each 0 ă r ă 1 and v P BV ˚˚p0, rq, v can be
approximated weak-* by elements of ΓpBV p0, 1qq.

We shall prove that for each E P finp2V
˚

q there exists vE P BV p0, 1q such that
xv, φy “ xvE, φy for all φ P E. Then the net pΓpvEqqEPfinp2V ˚

q converges weak-* in
BV ˚˚p0, 1q to v, finishing the proof. To find vE , we write E “ tφ1, . . . , φnu. Let
ci “ xv, φiy. Since }v} ď r, for each a1, . . . , an P F we have

|a1c1 ` ¨ ¨ ¨ ` ancn| “ |xv, a1φ1 ` ¨ ¨ ¨ ` anφny| ď r ¨ }a1φ1 ` ¨ ¨ ¨ ` anφn}

Therefore, by Prop. 17.50, there exists vE P BV p0, 1q such that xvE, φiy “ ci for all
1 ď i ď n. This finishes the construction of vE .

Problem 17.12. Let M be a linear subspace of V . Suppose that e P V is not in
M “ ClV pMq. Prove that there exists ψ P V ˚ such that ψ|M “ 0 and ψpeq ‰ 0.

15The weak topology on V is defined to be the pullback of the weak-* topology of V ˚˚ by
V Ñ V ˚˚. So a net pvαq in V converges weakly to v P V iff limαxvα, φy “ xv, φy for all φ P V ˚.
Thus, the conclusion is that Γ : V Ñ V ˚˚ is bijective iff BV p0, 1q is weakly compact.
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This problem is a special case of the Hahn-Banach separation theorem. As
a consequence of this exercise, we know that M is dense in V iff every ψ P V ˚

vanishing on M is zero.

Hint. Use Hahn-Banach Cor. 16.6 to prove the special case that M “ 0. Then
reduce the general case to the special case by considering V {M .

Problem 17.13. Let V be a reflexive Banach space. Let U be a closed linear sub-
space of V . Let v P V . Show that there exists u P U such that }v ` U} “ }v ` u}.

Hint. The canonical linear isometry Γ : V Ñ V ˚˚ is an isomorphism of Banach
spaces. Use the Hahn-Banach separation theorem (Pb. 17.12) to show that ΓpUq “
WK where W “ tψ P V ˚ : ψ|U “ 0u. Then apply Pb. 17.11.

Theorem 17.55 (Riesz’s theorem). Let V be a Banach space. Then the closed unit ball
BV p0, 1q is compact under the norm topology iff dimF V ă `8.

Proof. If dimF V ă `8, then the norm on V is equivalent to the Euclidean norm
by Pb. 10.3. So BV p0, 1q is compact by Bolzano-Weierstrass.

Now we assume dimF V is not finite. We fix any 0 ă ε ă 1. (For example,
choose ε “ 1{2.) Notice that for each closed linear subspace U Ĺ V , there clearly
exists v P U such that }v ` U} “ 1´ ε. By replacing v by v ` u for some u P U , we
assume moreover that }v} ď 1.

Now we construct an infinite linearly-independent sequence pvnqnPZ`
in

BV p0, 1q as follows. v1 is arbitrary. Suppose v1, . . . , vn have been constructed.
Let Un “ SpanFpv1, . . . , vnq. Then Un is a closed linear subspace of V since Un is
complete. (Any finite dimensional normed vector space is equivalent as a metric
space to Fn by Pb. 10.3, and hence is complete.) Then Un is a closed proper linear
subspace of V since dimF V ă `8. Therefore, by the previous paragraph, there
exists vn`1 P BV p0, 1q such that }vn`1 ` Un} “ 1 ´ ε. So }vn`1 ´ vj} ě 1 ´ ε for all
j ď n.

The sequence constructed above satisfies that }vm ´ vn} ě 1 ´ ε for all m ‰ n.
So pvnqnPZ`

has no Cauchy subsequence, and hence no norm-convergent subse-
quence. Therefore BV p0, 1q is not sequentially compact under the norm topology,
and hence not compact.

Remark 17.56. If V is a reflexive infinite dimensional Banach space (i.e. if V is
Lppr0, 1s,Fq or lppX,Fq where 1 ă p ă `8), the above proof that BV p0, 1q is not
compact can be simplified by choosing ε “ 0. This is due to Pb. 17.13.
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18 Application to differential equations

18.1 The Picard-Lindelöf theorem

We fix a Banach space V over F P tR,Cu. Let I be an interval in R containing
at least two points.

Definition 18.1. Let T be a set. Let X, Y be metric spaces. We say that a function
f : T ˆ X Ñ Y is Lipschitz continuous on X if there exists L P Rě0 (called the
Lipschitz constant) such that for every t P T and x1, x2 P X we have

dpfpt, x1q, fpt, x2qq ď Ldpx1, x2q

Theorem 18.2. Let E Ă V . Let φ P CpI ˆ E, V q be Lipschitz continuous on E. Fix
t0 P I, ξ P E. Then there exists at most one differentiable f : I Ñ E satisfying

f 1
ptq “ φpt, fptqq fpt0q “ ξ (18.1)

for all t P I .

Proof. This theorem generalizes Lem. 12.22. In fact, we will prove this theorem
in a similar way as we proved Lem. 12.22. Let f, g : I Ñ be differentiable and
assume that they both satisfy (18.1). Then Ω “ tt P I : fptq “ gptqu is a closed
subset of I since f, g are continuous. Ω is nonempty since t0 P Ω. Since I is
connected, to prove that Ω “ I , it suffices to prove that Ω is open.

Choose any x P Ω. We want to prove that x P IntIpΩq. Let us prove that if
x ă sup I then there exists δ ą 0 such that rx, x` δq Ă Ω. Then a similar argument
shows that if x ą inf I then there exists δ ą 0 such that px´ δ, xs Ă Ω. This proves
x P IntIpΩqwhether x is an endpoint of I or not.

We first choose δ ą 0 such that rx, x ` δs Ă I . Since f, g are continuous,
both φpt, fptqq and φpt, gptqq are continuous in t. Therefore, by the fundamental
theorem of calculus, we have

fptq “ fpxq `

ż t

x

φps, fpsqqds gptq “ gpxq `

ż t

x

φps, gpsqqds

Since fpxq “ gpxq, we have

}fptq ´ gptq} ď

ż t

x

}φps, fpsqq ´ φps, gpsqq}ds ď L

ż t

x

}fpsq ´ gpsq}ds

where L P Rě0 is a Lipschitz constant of φ on E. Let A “ sup
tPrx,x`δs

}fptq ´ gptq}.

Then the above inequality implies }fptq ´ gptq} ď LAδ for all t P rx, x ` δs, and
hence A ď LAδ. Now we shrink δ so that Lδ ă 1. Then we must have A “ 0. So
f “ g on rx, x` δs, and hence rx, x` δq Ă Ω.
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Example 18.3. The function φpxq “ x
1
3 is not Lipschitz continuous on any compact

interval containing 0. For every c ě 0, the function

fpxq “

#

`

2
3
px´ cq

˘
3
2 if x ě c

0 if x ă c

is differentiable on R and satisfies the differential equation

f 1
ptq “ pfptqq

1
3 fp0q “ 0

Therefore, Thm. 18.2 does not hold without assume the Lipschitz continuity.

Theorem 18.4 (Picard-Lindelöf theorem). Let ξ P V and 0 ă R ă `8. Let I “ ra, bs
where ´8 ă a ă b ă `8. Assume that φ P C

`

I ˆBV pξ, Rq, V
˘

satisfies the following
conditions:

(1) φ is Lipschitz continuous on BV pξ, Rq.

(2) M “ }φ}l8 is ă `8.

Assume that

|I| ď
R

M
(18.2)

where |I| “ b ´ a. Then there exists a unique differentiable function f : I Ñ BV pξ, Rq
satisfying the differential equation

f 1
ptq “ φpt, fptqq fpaq “ ξ (18.3)

for all t P I . The same conclusion holds if fpaq “ ξ is replaced by fpbq “ ξ.

Note that the assumption M ă `8 is automatic when V “ FN , since in that
case I ˆBV pξ, Rq is compact.

Proof. We only prove the existence, since the uniqueness follows from Thm 18.2.
We treat the case fpaq “ ξ. The other case is similar. Also, by translating f , it
suffices to assume a “ 0. So we let I “ r0, bs. Then bM ď R. Let L be the Lipschitz
constant of φ on BV pξ, Rq. Note that if we can find f P C

`

I, BV pξ, Rq
˘

satisfying
the integral equation

fptq “ ξ `

ż t

0

φps, fpsqqds (18.4)

for all t P I , then f clearly satisfies (18.3).
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Step 1. We first consider the special case that bL ă 1. Define a map

T : C
`

I, BV pξ, Rq
˘

Ñ CpI, V q

pTfqptq “ ξ `

ż t

0

φps, fpsqqds

Then T has range insideX “ C
`

I, BV pξ, Rq
˘

since for each f P X and t P I “ r0, bs
we have

}pTfqptq ´ ξ} ď

ż t

0

}φps, fpsqq}ds ď bM ď R (18.5)

by (18.2). Therefore, T can be viewed as a map X Ñ X .
Any fixed point of T satisfies (18.4). Therefore, by the contraction Thm. 17.45,

it suffices to prove that T is a contraction. Here, the metric on X is defined by the
l8-norm on CpI, V q. Then for each f, g P X . We compute that for each t P r0, bs,

}pTfqptq ´ pTgqptq} “
›

›

›

ż t

0

φps, fpsqqds´

ż t

0

φps, gpsqqds
›

›

›

ď

ż t

0

›

›φps, fpsqq ´ φps, gpsqq
›

›ds ď L

ż t

0

›

›fpsq ´ gpsq
›

›ds ď bL}f ´ g}8

Applying suptPr0,bs to the LHS, we get }Tf ´ Tg}8 ď bL}f ´ g}8. Since bL ă 1, T
is a contraction.

Step 2. We consider the general case. Choose N P Z` such that bL{N ă 1. Let
us prove by induction that for each n “ 0, 1, . . . , N there exists

fn P C
`

r0, nb{N s, BV pξ, nR{Nq
˘

satisfying (18.4) for all t P r0, nb{N s. Then fN gives the desired function satisfying
(18.4) for all t P I “ r0, bs.

The case n “ 0 is obvious. Assume that case n ´ 1 has been proved where
1 ď n ď N . Let ξn´1 “ fn´1ppn´ 1qb{Nq, which is inside BV pξ, pn´ 1qR{Nq. Now
we apply step 1, but replace the I in step 1 by In “ rpn´ 1qb{N, nb{N s and replace
the BV pξ, Rq by BV pξn´1, R{Nq. Note that by triangle inequality we have

BV pξn´1, R{Nq Ă BV pξ, nR{Nq

Note also that assumption (18.2) becomes b{N ď R{NM , which is still satisfied.
Thus, according to step 1, there exists gn P C

`

In, BV pξn´1, R{Nq
˘

satisfying

gnptq “ ξn´1 `

ż t

pn´1qb{N

φps, gpsqqds

for all t P In. Then (the graph of) fn is defined to be the union of (the graphs of)
fn´1 and gn.
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Thm. 18.4 still holds if we assume R “ `8 and I “ R:

Corollary 18.5. Let ξ P V . Assume that φ P CpR ˆ V, V q satisfies the following condi-
tions:

(1) φ is Lipschitz continuous on V .

(2) M “ }φ}l8 is ă `8.

Choose any t0 P R. Then there exists a unique differentiable f : RÑ V satisfying

f 1
ptq “ φpt, fptqq fpt0q “ ξ (18.6)

for all t P R.

Proof. By Thm. 18.4, for each a ą 0 there exists a unique differentiable f : rt0 ´
a, t0 ` as Ñ V satisfying (18.6). The union of the graphs of these fa (for all a ą 0)
gives the graph of the desired function.

18.2 Peano’s existence theorem

Theorem 18.6. Let ξ P RN . Let φ P CpR ˆ RN ,RNq satisfy M :“ }φ}8 ă `8. Let
t0 P R. Then there exists a differentiable f : RÑ RN satisfying

f 1
ptq “ φpt, fptqq fpt0q “ ξ (18.7)

for all t P R.

Proof. Assume WLOG that t0 “ 0. It suffices to find f P Cpr0, 1s,RNq satisfying

fptq “ ξ `

ż t

0

φps, fpsqqds (18.8)

on r0, 1s. Then f is differentiable and satisfies (18.7). Then we can similarly find
f1 : r1, 2s Ñ RN satisfying f 1

1ptq “ φpt, f1ptqq and f1p1q “ fp1q. Namely, f can be
extended to a function r0, 2s Ñ RN satisfying (18.7). Repeating this argument, we
get f : r0,`8q Ñ RN satisfying (18.7), and similarly f : RÑ RN satisfying (18.7).

Step 1. Let X “ BRN pξ,Mq. Since I ˆ X is compact Hausdorff, by Stone-
Weierstrass Thm. 15.9, we have a sequence of multivariable polynomials pφnqnPZ`

(where φn P RN rt, x1, . . . , xN s) converging uniformly on r0, 1sˆX to φ. Since M “

}φ}8, we have limn }φn}l8pIˆX,RN q “M . Therefore, by scaling each φn, we assume
that }φn}l8pIˆX,RN q ď M . Since polynomials are clearly Lipschitz continuous, by
Picard-Lindelöf Thm. 18.4, for each n there exists a differentiable fn : r0, 1s Ñ X
satisfying f 1

nptq “ φnpt, fnptqq and fnp0q “ ξ. Equivalently, fn P Cpr0, 1s, Xq and

fnptq “ ξ `

ż t

0

φnps, fnpsqqds (18.9)
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for all t P r0, 1s.

Step 2. Recall that }φn} ďM . For each 0 ď t1 ď t2 ď 1, by (18.9) we have

}fnpt2q ´ fnpt1q} ď

ż t2

t1

}φnps, fnpsqq}ds ďMpt2 ´ t1q

Therefore pfnqnPZ`
is an equicontinuous sequence inCpr0, 1s,RNq and is uniformly

bounded because fnpr0, 1sq Ă X . By Arzelà-Ascoli Thm. 17.15, tfn : n P Z`u is a
precompact subset of Cpr0, 1s,RNq. Thus, by Prop. 17.2, pfnq has a uniformly con-
vergent subsequence. By replacing pfnqwith this subsequence, we assume WLOG
that pfnq converges uniformly to some f P Cpr0, 1s,RNq. Since fn P Cpr0, 1s, Xq,
we have f P Cpr0, 1s, Xq.

To prove (18.8), in view of (18.9), it suffices to prove for each t P r0, 1s that

lim
nÑ8

ż t

0

φnps, fnpsqqds “

ż t

0

φps, fpsqqds

By Cor. 13.21, it suffices to prove limn φnp¨, fnp¨qq “ φp¨, fp¨qq in Cpr0, 1s,RNq under
the l8-norm. Note that

}φp¨, fp¨qq ´ φnp¨, fnp¨qq} ď }φp¨, fp¨qq ´ φp¨, fnp¨qq} ` }φp¨, fnp¨qq ´ φnp¨, fnp¨qq}

The first term on the RHS converges uniformly to 0 since fn Ñ f and since φ is
uniformly continuous (Thm. 10.7). The second term converges uniformly to 0
since φn Ñ φ on r0, 1s ˆX . So the LHS converges uniformly to 0.

Thm. 18.6 is parallel to Cor. 18.5 since φ is defined on the whole space RˆRN .
However, in applications it is common that φ is only defined on a subset of R ˆ
RN . Thus, we want to prove an existence theorem similar to Thm. 18.4 without
assuming the Lipschitz continuity, and hence without concluding the uniqueness.
We shall state this result for a finite dimensional real Banach space V . This means
that we consider V “ RN , but not necessarily equipped with the Euclidean norm.
Since all norms on RN are equivalent (cf. Pb. 10.3), we conclude that the closed
balls under any norm of RN is compact (since they are closed subsets of standard
closed balls of RN ). In practice, it is useful to consider non-Euclidean norms of
RN . For example, under the l8-norm on RN “ l8pt1, . . . , Nu,Rq, the closed balls
are actually the cubes.

Theorem 18.7 (Peano’s existence theorem). Let V be a finite-dimensional real Banach
space. Let ξ P V and 0 ă R ă `8. Let I “ ra, bs where ´8 ă a ă b ă `8. Let
φ P C

`

I ˆBV pξ, Rq, V
˘

. Assume

|I| ď
R

M
(18.10)
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where |I| “ b ´ a and M “ }φ}8. Then there exists a differentiable function f : I Ñ
BV pξ, Rq satisfying the differential equation

f 1
ptq “ φpt, fptqq fpaq “ ξ (18.11)

for all t P I . The same conclusion holds if fpaq “ ξ is replaced by fpbq “ ξ.

Proof. Since RˆV » RN`1 is LCH and IˆBV pξ, Rq is compact, by Tietze extension
Thm. 15.22, φ can be extended to an element in CcpIˆV, V q still satisfying }φ}8 “

M . Therefore, by Thm. 18.6, there exists a differentiable ξ : R Ñ V satisfying
(18.11). It remains to check that fpIq Ă BV pξ, Rq: For each t P I “ ra, bs, since
fptq “ ξ `

şt

a
φps, fpsqqdt, we have

}fptq ´ ξ} ď

ż t

a

}φps, fpsqq}dt ď pt´ aqM ď |I| ¨M ď R

and hence fptq P BV pξ, Rq.
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19 Differential calculus on RN

In this chapter, we fix a Banach space V over R. However, we will be mainly
interested in the case that V is finite dimensional.

19.1 Differentiability and C1

A motivating question of this short chapter is the following: Suppose that f is
a function on an open subset Ω Ă RN , and γ : pa, bq Ñ Ω is differentiable. How to
calculate pf˝γq1? The key to the answer of this question is the following definition:

Definition 19.1. Let Ω Ă RN be open. Let p P Ω. Let f : Ω Ñ V . Assume that
there is an R-linear map A : RN Ñ V such that for all v P RN we have

fpp` vq “ fppq ` Av ` op}v}q

(recall Def. 12.13 for the meaning of op}v}q). Namely,

lim
vÑ0

}fpp` vq ´ fppq ´ Av}

}v}
“ 0 (19.1)

Then we say that f is differentiable at p. We write

A “ df |p “ dfppq : RN
Ñ V

and call A the differential of f at p. If f is differentiable at every point of Ω, we
simply say that f is differentiable on Ω.

Remark 19.2. Every linear map A : RN Ñ V is bounded since, if v “ a1e1 ` ¨ ¨ ¨ `
aNeN where e1, . . . , eN are the standard basis of RN , then

}Av} ď
ÿ

i

|ai| ¨ }Aei} ď }v}
´

ÿ

i

}Aei}
2
¯

1
2

by Minkowski’s inequality.

Remark 19.3. If f is differentiable at p, then f is continuous at p since, by the
continuity of A, we have limvÑ0pAv ` op}v}qq “ 0.

Whenever f is differentiable at p, its differential can be computed explicitly:

Proposition 19.4. Let Ω Ă RN be open. Let f : ΩÑ V be differentiable at p P Ω. Then
B1f, . . . , BNf exist at p. Define the Jacobian (matrix)

Jacf |p “ pB1fppq, . . . , BNfppqq (19.2)
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viewed as an 1 ˆ N matrix with entries in V . (When V “ RM , we view Jacf |p as an
M ˆN real matrix.) Then for each v “ pa1, . . . , anqt P RN (viewed as an N ˆ 1 matrix)
we have

df |p ¨ v “ Jacf |p ¨ v “
N
ÿ

i“1

aiBifppq (19.3)

Note that when V “ RM and f “ pf 1, . . . , fNqt, (19.3) reads

df |p ¨ v “

¨

˚

˝

B1f
1 ¨ ¨ ¨ BNf

1

...
B1f

M ¨ ¨ ¨ BNf
M

˛

‹

‚

p

¨

¨

˚

˝

a1
...
aN

˛

‹

‚

(19.4)

We also define the Jacobian (determinant) Jpfq : Ω Ñ R whose value at each
p P Ω is

Jpfq|p “ det
`

Jacpfqp
˘

(19.5)

Thus, Jacpfqp is invertible iff Jpfq|p ‰ 0.

Proof. Let e1, . . . , eN P RN be the standard basis of RN . So v “ a1e1 ` ¨ ¨ ¨ ` aNeN .
Let A “ df |p. By (19.1), we have

lim
tÑ0

›

›

›

fpp` teiq ´ fppq

t
´ Aei

›

›

›
“ lim

tÑ0

}fpp` teiq ´ fppq ´ tAei}

}tei}
“ 0

which shows that Bifppq “ Aei. Therefore

Av “
ÿ

i

aiAei “
ÿ

i

aiBifppq

Corollary 19.5. f has at most one differential at a point p.

Proof. Immediate from (19.3).

Example 19.6. When N “ 1, the above definition of differentiability in Def. 19.1
agrees with the one in Sec. 11.1. Moreover, we clearly have Jacf |p “ f 1ppq.

Theorem 19.7 (Chain rule). Let Γ Ă RM and Ω Ă RN be open. Let g : Γ Ñ Ω be
differentiable at p P Γ. Let f : Ω Ñ V be differentiable at gppq. Then f ˝ g : Γ Ñ V is
differentiable at p, and

dpf ˝ gq|p “ df |gppq ¨ dg|p (19.6)

Equivalently, we have

Jacpf ˝ gq|p “ Jacf |gppq ¨ Jacg|p (19.7)
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Note that when V “ RL, (19.7) is of type LˆM “ pLˆNqpN ˆMq, and reads
¨

˚

˝

B1pf ˝ gq
1 ¨ ¨ ¨ BMpf ˝ gq

1

...
B1pf ˝ gq

L ¨ ¨ ¨ BMpf ˝ gq
L

˛

‹

‚

p

“

¨

˚

˝

B1f
1 ¨ ¨ ¨ BNf

1

...
B1f

L ¨ ¨ ¨ BNf
L

˛

‹

‚

gppq

¨

¨

˚

˝

B1g
1 ¨ ¨ ¨ BMg

1

...
B1g

N ¨ ¨ ¨ BMg
N

˛

‹

‚

p

(19.8)

Proof. We write

gpp` vq “ gppq `Bv ` βpvq fpgppq ` wq “ f ˝ gppq ` Aw ` αpwq

where A : RN Ñ V and B : RM Ñ RN are linear, and

lim
vÑ0

βpvq{}v} “ lim
wÑ0

αpwq{}w} “ 0 (19.9)

Then

f ˝ gpp` vq “ fpgppq `Bv ` βpvqq “ f ˝ gppq ` ApBv ` βpvqq ` αpBv ` βpvqq

“f ˝ gppq ` ABv ` Aβpvq ` αpgpp` vq ´ gppqq

Note that A,B are bounded by Rem. 19.2. So }Aβpvq} ď }A∥¨}βpvq}, and hence
limvÑ0 }Aβpvq}{}v} “ 0. To finish the proof, it remains to prove

lim
vÑ0

}αpgpp` vq ´ gppqq}{}v} “ 0

Since g is continuous at p, there is a neighborhood ∆ of 0 P RM such that
gpp` vq ´ gppq is defined and is in the domain of α (which is tq´ gppq : q P Ωu) for
every v P ∆. Define γ : ∆Ñ V to be

γpvq “

$

’

&

’

%

α
`

gpp` vq ´ gppq
˘

}gpp` vq ´ gppq}
if gpp` vq ´ gppq ‰ 0

0 otherwise

Then γ is continuous at v “ 0 and γp0q “ 0 by (19.9). (This part is similar to the
construction (11.5).) Thus

}αpgpp` vq ´ gppqq}

}v}
“ }γpvq} ¨

}gpp` vq ´ gppq}

}v}

“}γpvq} ¨
}Bv ` βpvq}

}v}
ď }γpvq} ¨ }B} ` }γpvq} ¨

}βpvq}

}v}

where the RHS converges to 0 as v Ñ 0.
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Corollary 19.8 (Chain rule). Let I be an interval. Let Ω Ă RN be open. Let t0 P I . Let
γ : I Ñ Ω be differentiable at t0. Let f : ΩÑ V be differentiable at p “ γpt0q. Then f ˝ γ
is differentiable at t0, and

pf ˝ γq1pt0q “ Jacf |γpt0q ¨ γ
1
pt0q “

N
ÿ

i“1

pγiq1pt0q ¨ Bifpγpt0qq (19.10)

Proof. This follows easily from Thm. 19.7 when t0 is an interior point of I . Sup-
pose that t0 is an end point of I . For example, consider t0 “ b where I is ra, bs
or pa, bs. Then we can easily extend γ to a function on ra, b ` 1q or pa, b ` 1q
which is differentiable at t0. (For example, if t P pb, b ` 1q, we can define
γptq “ γpbq ` pt ´ bqγ1pbq.) Then we can apply Thm. 19.7 again to finish the
proof.

Example 19.9. Let Ω Ă RN be open. Let f : ΩÑ V be differentiable at p P Ω. Then
for each v P RN , the directional derivative

p∇vfqppq “ lim
tÑ0

fpp` tvq ´ fppq

t

exists and equals df |p ¨ v “ Jacf |p ¨ v.

Proof. Apply the chain rule to γptq “ p` tv.

We have thus proved the chain rule, one of the most important reasons for
introducing differentiability on RN . We know that differentiable functions have
partial derivatives of first order. However, having first order partial derivatives
does not imply differentiability or even continuity:

Example 19.10. Let fpx, yq “
xy

x2 ` y2
when px, yq ‰ p0, 0q, and fp0, 0q “ 0. Then

limrÑ0 fpr, rq “
1
2

and limrÑ0 fpr, 0q “ 0, showing that f has no limit and is not
continuous p0, 0q at. However, fpx, 0q “ fp0, yq “ 0. So B1f and B2f are both equal
to 0 at p0, 0q.

Example 19.11. Let fpx, yq “
x3

x2 ` y2
when px, yq ‰ p0, 0q, and fp0, 0q “ 0. Since

|fpx, yq| ď |x| and limpx,yqÑp0,0q |x| “ 0, we conclude that f is continuous at p0, 0q
(and hence is continuous everywhere). We have B1f |p0,0q “

d
dx
x|x“0 “ 1 and

B2f |p0,0q “ 0. Let γptq “ pat, btqwhere pa, bq P R2ztp0, 0qu. Then

p∇pa,bqfqp0q “ pf ˝ γq
1
p0q “

a3

a2 ` b2

is not equal to Jacf |p0,0q ¨ pa, bq
t “ a. Thus, by Exp. 19.9, f is not differentiable at

p0, 0q.
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To have differentiability, we need the continuity of partial derivatives of first
order.

Definition 19.12. Let Ω Ă RN be open. For each r P N, we let

Cr
pΩ, V q “

␣

f P CpΩ, V q : Bi1 ¨ ¨ ¨ Bikf exists and is in CpΩ, V q

for all 0 ď k ď r and 1 ď i1, . . . , ik ď N
(

In particular, we understand C0pΩ, V q as CpΩ, V q, and

C8
pΩ, V q “

č

rPN

Cr
pΩ, V q

Elements in C8pΩ, V q are called smooth functions.

It is clear that CrpΩ, V q Ă CqpΩ, V q if r ě q.

Remark 19.13. Suppose that r P Z` and f P CrpΩ, V q. Let 1 ď k ď r, and let
σ : t1, . . . , ku Ñ t1, . . . , ku be a bijection. Then by Thm. 12.35 or 14.7, for each
1 ď i1, . . . , ik ď N we have

Bi1 ¨ ¨ ¨ Bikf “ Biσp1q
¨ ¨ ¨ Biσpkq

f

Proposition 19.14. Let Γ Ă RM and Ω Ă RN be open. Let g : Γ Ñ Ω and f : Ω Ñ V
be Cr-functions (where r P NY t8u). Then f ˝ g is Cr.

Proof. This is obvious when r “ 0. Assume r ą 0. By induction on k (where 1 ď
k ď r), and by using the (one-variable) chain rule and the Leibniz product rule,
for each 1 ď i1, . . . , ik ďM one sees that Bi1 ¨ ¨ ¨ Bikpf ˝ gq is a linear combination of
products of (possibly more than two) functions of the form

`

pBj1 ¨ ¨ ¨ Bjk1fq ˝ g
˘

or Bl1 ¨ ¨ ¨ Blk2g (19.11)

where 0 ď k1, k2 ď k and 0 ď j1, . . . , jk1 ď N and 0 ď l1, . . . , lk2 ďM . So f ˝ g is Cr

since the functions in (19.11) are continuous.

Theorem 19.15. Let Ω be an open subset of RN . Let f P C1pΩ, V q. Then f is differen-
tiable on Ω.

Proof. We prove this by induction. The case N “ 1 is obvious. Assume that the
case N is true where N P Z`. Let Ω Ă RN`1 be open, and let pp0, p1, . . . , pNq “
pp0, p‚q P Ω. Let v “ pa0, a‚q “ pa0, a1, . . . , aNq P Ω. Then

fpp0 ` a0, p‚ ` a‚q ´ fpp0, p‚q

“fpp0 ` a0, p‚ ` a‚q ´ fpp0, p‚ ` a‚q ` fpp0, p‚ ` a‚q ´ fpp0, p‚q

“

ż a0

0

B0fpp0 ` t, p‚ ` a‚qdt` fpp0, p‚ ` a‚q ´ fpp0, p‚q
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By case N , there exist λ1, . . . , λN P R such that

fpp0, p‚ ` a‚q ´ fpp0, p‚q “

N
ÿ

i“1

λiai ` op}a‚}q

(In fact, λi “ Bifpp0, p‚q by Prop. 19.4.) Let

hpa0, a‚q “

ż a0

0

B0fpp0 ` t, p‚ ` a‚qdt´ B0fpp0, p‚q ¨ a0

“

ż a0

0

`

B0fpp0 ` t, p‚ ` a‚q ´ B0fpp0, p‚q
˘

dt

Since B1f is continuous, for every ε ą 0 there exists δ ą 0 such that for all pt, a‚q P

RN with norm ď δ we have

}B0fpp0 ` t, p‚ ` a‚q ´ B0fpp0, p‚q} ď ε

and hence }hpa0, a‚q} ď ε|a0| for all pa0, a‚qwith normď δ. Thus hpa0, a‚q “ op|a0|q.
Therefore

fpp0 ` a0, p‚ ` a‚q ´ fpp0, p‚q ´ B0fpp0, p‚q ¨ a0 ´
N
ÿ

i“1

λiai

“op|a0|q ` op}a‚}q “ op}pa0, a‚q}q

19.2 Applications of the chain rule

Example 19.16. Let I, J be nonempty open intervals in R. Choose f P CpI ˆ J, V q
such that B2f exists and is in CpI ˆ J, V q. Let α, β P C1pJ,Rq such that αpJq Ă
I, βpJq Ă I . Then

d

dy

ż βpyq

αpyq

fpx, yqdx “

ż βpyq

αpyq

B2fpx, yqdx` fpβpyq, yqβ
1
pyq ´ fpαpyq, yqα1

pyq (19.12)

Proof. Define F : I ˆ I ˆ J Ñ V by

F pr, s, tq “

ż s

r

fpx, tqdx “

ż s

e

fpx, tqdx´

ż r

e

fpx, tqdx

where e is any element of I . By Exe. 14.8, F is continuous. Since B2f is assumed
to be continuous, by Thm. 14.6, we have

B3F pr, s, tq “

ż s

r

B2fpx, tqdx
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By the fundamental theorem of calculus, we have

B1F pr, s, tq “ ´fpr, tq B2F pr, s, tq “ fps, tq

By Exe. 14.8, B1F, B2F, B3F are continuous, and hence F is a C1-function. There-
fore, by the chain rule (Cor. 19.8), the LHS of (19.12) can be calculated by setting
pr, s, tq “ pαpyq, βpyq, yq:

d

dy
F pαpyq, βpyq, yq

“B1F pαpyq, βpyq, yqα
1
pyq ` B2F pαpyq, βpyq, yqβ

1
pyq ` B3F pαpyq, βpyq, yq

which equals the RHS of (19.12).

Example 19.17. Fix v P V and φ P CpR, V q. Let A P LpV q. Then d
dt
eAt “ AeAt “

eAtA by Exe. 17.42. By Exp. 19.16 and Thm. 13.16, we have

d

dt

ż t

0

eApt´sqφpsqds “ φptq `

ż t

0

AeApt´sqφpsqds “ φptq ` A

ż t

0

eApt´sqφpsqds

It follows that

fptq “ eAtv `

ż t

0

eApt´sqφpsqds (19.13)

is a solution of the differential equation

f 1
ptq “ Afptq ` φptq fp0q “ v

It is the unique solution by Picard-Lindelöf Cor. 18.5.

Theorem 19.18 (Finite-increment theorem). Let Ω be an open subset of RN . Assume
that f : ΩÑ V is differentiable. Assume that x, y P Ω satisfy rx, ys Ă Ω where

rx, ys “ tp1´ tqx` ty : 0 ď t ď 1u

Then

}fpyq ´ fpxq} ď
´

sup
zPrx,ys

}df |z}
¯

¨ }y ´ x} (19.14)

where }df |z} is the operator norm of df |z.

Proof. This can be proved in a similar way as Cor. 11.31. Let γ : r0, 1s Ñ Ω be
γptq “ p1 ´ tqx ` ty. Then by chain rule we have pf ˝ γq1ptq “ df |γptq ¨ γ

1ptq “
df |γptq ¨ py ´ xq. Thus }pf ˝ γq1ptq} is ď the RHS of (19.14). Therefore, by the single-
variable finite-increment Thm. 11.29, we have

}fpyq ´ fpxq} “ }f ˝ γp1q ´ f ˝ γp0q} ď sup
tPr0,1s

}pf ˝ γq1ptq}

which is ď the RHS of (19.14).
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The following corollary provides a lot of examples satisfying the assumptions
on φ in Picard-Lindelöf Thm. 18.4. Recall Def. 11.30 for the meaning of convex
sets.

Corollary 19.19. Let Ω be an open subset of RN . Let f P C1pΩ, V q. Let K be a compact
convex subset of Ω. Then f |K is Lipschitz continuous.

Proof. Since df : Ω Ñ LpRN , V q is continuous (because it is essentially Jacf by
Prop. 19.4), there exists L P Rě0 such that }df |x} ď L for all x P K. By Thm. 19.18,
L is a Lipschitz constant of f |K .

Corollary 19.20. Let Ω be a nonempty open connected subset of RN . Assume that f :
ΩÑ V satisfies that df “ 0 everywhere on Ω. Then f is a constant.

Proof. Fix p P Ω, and let v “ fppq. Let us prove that f “ v on Ω. Let ∆ “ tx P
Ω : fpxq “ vu, which is a closed subset of Ω by the continuity of f (Rem. 19.3). ∆
is nonempty since p P ∆. Thus, if we can show that ∆ is open in Ω, then ∆ “ Ω
because Ω is connected, and hence the proof is complete.

To see that ∆ is open, we choose any x P ∆, and choose r ą 0 such that
U “ BRN px, rq is contained in Ω. Since U is path-connected and hence connected,
by Thm. 19.18 and the fact that df “ 0, for every y P U we have }fpxq ´ fpyq} “ 0
and hence fpyq “ v. So U Ă ∆. This proves that x is an interior point of ∆.
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20 Inner product spaces

Hilbert spaces and measure theory are two parallel but deeply connected the-
ories that arose in the study of Fourier series and differential equations. We will
spend half the semester learning these two theories in turn. The climax of this
entire story is the Riesz-Fischer theorem, which establishes a connection between
these two theories.

In the following three chapters, we develop the basic theory of Hilbert spaces.
A Hilbert space is defined to be a complete inner product space. This definition
indicates that Hilbert spaces have two important aspects:

• Geometry: orthogonal and orthonormal vectors.

• Analysis: completeness, and more.

We will focus on the geometric aspect in this chapter, and leave the discussion of
the analytic aspect to the next chapter. As we shall see, the geometry of orthogonal
vectors (together with the powerful Gram-Schmidt process) provides a uniform
understanding of many identities and inequalities: Bessel’s inequality (and its
special case, Cauchy-Schwarz inequality), Parserval’s identity. We will apply this
geometric understanding to Fourier series. Surprisingly, the geometry of inner
product spaces provides an elegant proof of the following analytic result: Every
Riemann integrable function on r´π, πs is the limit of its Fourier series under the
L2-norm.

When referring to Hilbert spaces and inner product spaces, it is usually as-
sumed that the field is C, since complex Hilbert spaces are more useful than real
ones. We will present the theory only for complex Hilbert spaces, although it can
be easily adapted to real ones.

Starting from this chapter, we adopt the notations

lppXq “ lppX,Cq CpXq “ CpX,Cq CcpXq “ CcpX,Cq (20.1)

20.1 Inner product spaces

We fix a complex vector space V .

Definition 20.1. A map of complex vector spaces T : V Ñ W is called antilinear
or conjugate linear if for every a, b P C and u, v P V we have

T pau` bvq “ au` bv

where a, b are the complex conjugates of a, b.

For example, the involution ˚ : A Ñ A of a ˚-algebra is antilinear (recall Def.
15.4).
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Definition 20.2. A function x¨|¨y : V ˆV Ñ C (sending uˆv P V 2 to xu|vy) is called
a sesquilinear form if it is linear on the first variable, and antilinear on the second
one.1 Namely, for each a, b P C and u, v, w P V we have

xau` bv|wy “ axu|wy ` bxv|wy xw|au` bvy “ axw|uy ` bxw|vy

More generally, if V,W are complex vector spaces, a map V ˆ W Ñ C is also
called sesquilinear if it is linear on the V -component and antilinear on the W -
component.

Notice the difference between the notations xu|vy and xu, vy: the latter always
means a bilinear form, i.e., a function which is linear on both variables.

Proposition 20.3. Suppose that x¨|¨y and p¨|¨q are sesquilinear forms on V satisfying
xv|vy “ pv|vq for all v P V . Then xu|vy “ pu|vq for all u, v P V .

Proof. Let us prove that xu|vy can be written in terms of expressions of the form
xξ|ξywhere ξ P V . Choose any t P r´π, πs. Let

fptq :“ xu` eitv|u` eitvy “ xu|uy ` xv|vy ` e´it
xu|vy ` eitxv|uy

Then xu|vy is a Fourier coefficient of f . Namely, using the fact that 1
2π

şπ

´π
eintdt “

δn,0 (where n P Z), we have

xu|vy “
1

2π

ż π

´π

xu` eitv|u` eitvyeitdt (20.2)

This finishes the proof.

Remark 20.4. In practice, it is sometimes more convenient to have a discrete ver-
sion of (20.2): We view fptq as a function on the finite abelian group t0, π

2
, π, 3π

2
u »

Z{4Z. Then xu|vy is a coefficient of the “discrete Fourier transform” of f :

xu|vy “
1

4

ÿ

t“0,π
2
,π, 3π

2

xu` eitv|u` eitvyeit

“
1

4

´

xu` v|u` vy ´ xu´ v|u´ vy ` ixu` iv|u` ivy ´ ixu´ iv|u´ ivy
¯

(20.3)

We call (20.3) the polarization identity.

Definition 20.5. A function x¨|¨y : V ˆ V Ñ C is called a Hermitian form if it
is linear on the first variable and satisfies xu|vy “ xv|uy for all u, v P V . Then
x¨|¨y is automatically antilinear on the second variable, i.e., a Hermitian form is
automatically a sesquilinear form.

1Physicists prefer the opposite convention, i.e., their sesquilinear forms are antilinear on the
first variables.
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Example 20.6. Let A P CNˆN be a complex N ˆ N matrix. Define x¨|¨y : CN ˆ

CN Ñ C by xu|vy “ vt ¨ A ¨ u where u, v are viewed as column vectors. Then
x¨|¨y is a sesquilinear form on CN . (It is an easy linear algebra exercise that every
sesquilinear form on CN is of this form.) Moreover, x¨|¨y is a Hermitian form iff A
is a Hermitian matrix, i.e., A “ At.

The following is our first application of the polarization identity:

Proposition 20.7. Let x¨|¨y be a sesquilinear form on V . The following are equivalent:

(1) x¨|¨y is a Hermitian form.

(2) For each v P V we have xv|vy P R.

Proof. (1)ñ(2): Obvious. (2)ñ(1): Let pu|vq “ xv|uy. Then p¨|¨q is a sesquilinear
form on V . Assuming (2), we have xv|vy “ pv|vq for all v P R. Therefore, by Prop.
20.3, we have xu|vy “ pu|vq “ xv|uy for all u, v. So (1) is true.

Definition 20.8. A sesquilinear form x¨|¨y on V is called positive semi-definite (or
simply positive), if xv|vy ě 0 for all v P V . If a positive sesquilinear form x¨|¨y on
V is fixed, we define

}v} “
a

xv|vy for all v P V (20.4)

A vector v P V satisfying }v} “ 1 is called a unit vector.

By Prop. 20.7, a positive sesquilinear form is Hermitian.

Definition 20.9. Let x¨|¨y be a positive sesquilinear form on V . By sesquilinearity,
we clearly have x0|0y “ 0. We say that x¨|¨y is an inner product if it is also non-
degenerate, i.e., if the only v P V satisfying xv|vy “ 0 is v “ 0. We call the pair
pV, x¨|¨yq (or simply call V ) an inner product space or a pre-Hilbert space .

Example 20.10. CN , equipped with the Euclidean inner product xu|vy “ vtu, is an
inner product space.

Example 20.11. Let X be a set. Then l2pX,Cq, together with the standard inner
product

xf |gy “
ÿ

xPX

fpxqgpxq (20.5)

(where the RHS converges by Thm. 12.33), is an inner product space.

Example 20.12. Let ´8 ă a ă b ă `8. Then Cpra, bs,Cq, together with the inner
product

xf |gy “

ż b

a

fg˚
“

ż b

a

fpxqgpxqdx (20.6)

is an inner product space.
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The gap between positive forms and inner products is not very big:

Proposition 20.13. Let x¨|¨y be a positive sesquilinear form on V . Let

N “ tv P V : }v} “ 0u (20.7)

Then N is a linear subspace of V . Moreover, there is an inner product p¨|¨q on the quotient
space V {N satisfying

pu`N |v `N q “ xu|vy for all u, v P V (20.8)

Proof. (20.8) suggests that if }v} “ 0, then xu|vy “ pu`N |v`N q “ pu`N |N q “

xu|0y “ 0 for all u P V . Motivated by this observation, let us prove

N “ tv P V : pu|vq “ 0 for all u P V u (20.9)

Then the linearity of N follows immediately from (20.9). Moreover, if we define
a function p¨|¨q on V {N by (20.8), then it is well-defined: If v`N “ v1`N , then
v ´ v1 P N . Thus, by (20.9), we have xu|v ´ v1y “ 0. So

pu`N |v `N q “ xu|vy “ xu|v1
y “ pu`N |v1

`N q

A similar argument shows that if u ` N “ u1 ` N then pu ` N |v ` N q “

pu1 `N |v `N q. This proves the well-definedness. It is easy to check that p¨|¨q is
sesquilinear and positive. If pv`N |v`N q “ 0, then xv|vy “ 0 and hence v P N .
This proves that p¨|¨q is non-degenerate.

Let us prove (20.9). Clearly }v} “
a

xv|vy “ 0 holds whenever xu|vy “ 0 for all
u. Conversely, suppose that }v} “ 0, i.e., xv|vy “ 0. Choose any u P V . Then for
each t P R we have

0 ď xu` tv|u` tvy “ }u}2 ` 2t ¨ Rexu|vy

where the RHS is a linear function of t. Any linear function which is always
ě 0 must be zero. So Rexu|vy “ 0. Similarly, Imxu|vy “ ´Rexiu|vy “ 0. So
xu|vy “ 0.

Example 20.14. Let ´8 ă a ă b ă `8 and V “ Rra, bs “ Rpra, bs,Cq (the
space of Riemann integrable complex functions on ra, bs). Then V has a positive
sesquilinear form defined by (20.6). Let N “ tf P V : xf |fy “ 0u. Then

N “ tf P V : f is zero outside a null subset of ra, bsu (20.10)

Thus, V “ V {N is the set of all f P Rra, bs such that f, g P Rra, bs are viewed as
the same element of V iff f “ g almost everywhere (i.e. tx : fpxq ‰ gpxqu is null).
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Proof. Let g “ |f |2. We want to show that
ş

g “ 0 iff ∆ “ tx P ra, bs : gpxq ą 0u
is null. Assume that

ş

g ą 0. Then f has a strictly positive lower Darboux sum
(recall Thm. 13.41). This implies that there exist c, d satisfying a ď c ă d ď b such
that pd ´ cq ¨ infξPrc,ds gpξq ą 0. So g ą 0 on rc, ds. So ∆ contains rc, ds, and hence is
not null.

Assume that
ş

g “ 0. By Lebesgue’s criterion 14.10, g is continuous outside a
null subset of ra, bs. Thus, it suffices to prove that gppq “ 0 for any p P ra, bs at
which g is continuous. Suppose that ε :“ gppq ą 0. Then by the continuity, there
is an interval I Ă ra, bs containing p with |I| ą 0 such that g ą ε{2 on I . Thus
g ě ε

2
¨ χI , and hence 0 “

ş

g ě ε
2
¨ |I|, impossible.

We close this section with an elementary but important fact. It says that linear
maps are determined by their associated sesquilinear forms.

Exercise 20.15. Suppose that S, T : U Ñ V are linear maps of inner product
spaces.

1. Prove that S “ T iff xSu|vy “ xTu|vy for all u P U, v P V .

2. Assume that U “ V . Prove that S “ T iff xSv|vy “ xTv|vy for all v P V .

20.2 Pythagorean and Gram-Schmidt

Unless otherwise stated, we fix an inner product x¨|¨y on a complex vector
space V so that V is an inner product space.

Definition 20.16. A set S of vectors of V are called orthogonal if xu|vy “ 0 for
any distinct u, v P V . An orthogonal set S is called orthonormal if }v} “ 1 for all
v P V .

Remark 20.17. We will also talk about an orthogonal resp. orthonormal family
of vectors peiqiPI . This means that xei|ejy “ 0 for any distinct i, j P I (resp. xei|ejy “
δi,j for any i, j P I).

In particular, two vectors u, v P V are called orthogonal when xu|vy “ 0. A
fundamental fact about orthogonal vectors is

Proposition 20.18 (Pythagorean identity). Suppose that u, v P V are orthogonal.
Then

}u` v}2 “ }u}2 ` }v}2 (20.11)

In particular,

}v} ď }u` v} (20.12)
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Proof. }u` v}2 “ xu` v|u` vy “ xu|uy ` xv|vy ` 2Rexu|vy “ xu|uy ` xv|vy.

Note that by applying (20.11) repeatedly, we see that if v1, . . . , vn P V are or-
thogonal, then

}v1 ` ¨ ¨ ¨ ` vn}
2
“ }v1}

2
` ¨ ¨ ¨ ` }vn}

2 (20.13)

Remark 20.19. Suppose that S is an orthonormal set of vectors of V . Then S
is clearly linearly independent. (If e1, . . . , en P S and

ř

i aiei “ 0, then aj “
ř

ixaiei|ejy “ x0|ejy “ 0.) Thus, by linear algebra, if S “ te1, . . . , enu is finite, then
one can find uniquely a1, . . . , an P C and u P V such that v “ a1e1 ` ¨ ¨ ¨ ` anen ` u
and that u is orthogonal to e1, . . . , en. The expressions of a1, . . . , an, u can be ex-
pressed explicitly:

Proposition 20.20 (Gram-Schmidt). Let e1, . . . , en be orthonormal vectors in V . Let
v P V . Then

v ´
n
ÿ

i“1

xv|eiy ¨ ei (20.14)

is orthogonal to e1, . . . , en.

Proof. This is a direct calculation and is left to the readers.

Remark 20.21. “Gram-Schmidt” usually refers to the following process. Let
v1, . . . , vn be a set of linearly independent vectors of V . Then there is an algo-
rithm of finding an orthonormal basis of U “ Spantv1, . . . , vnu: Let e1 “ v1{}v1}.
Suppose that a set of orthonormal vectors e1, . . . , ek in U have been found. Then
ek`1 is defined by rvk`1{}rvk`1}where rvk`1 “ vk`1 ´

řk
i“1xvk`1|eiy ¨ ei.

Combining Pythagorean with Gram-Schmidt, we have:

Corollary 20.22 (Bessel’s inequality). Let peiqiPI be a family of orthonormal vectors of
V . Then for each v P V we have

ÿ

iPI

|xv|eiy|
2
ď }v}2 (20.15)

In particular, the set ti P I : xv|eiy ‰ 0u is countable.

Proof. The LHS of (20.15) is limJPfinp2Iq

ř

jPJ |xv|ejy|
2. Thus, it suffices to that for

each J P finp2Iqwe have
ř

jPJ |xv|ejy|
2 ď }v}2. Let

u1 “
ÿ

jPJ

xv|ejy ¨ ej u2 “ v ´ u1
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(Namely, v “ u1`u2 is the orthogonal decomposition of v with respect to Spantej :
j P Ju.) By Gram-Schmidt, we have xu1|u2y “ 0. By Pythagorean, we have }u1}2 ď
}v}2. But Pythagorean (20.13) also implies

}u1}
2
“

ÿ

jPJ

|xv|ejy|
2

The last statement about countability follow from Pb. 5.3.

Theorem 20.23 (Cauchy-Schwarz inequality). For each u, v P V we have

|xu|vy| ď }u} ¨ }v} (20.16)

Proof. If v “ 0, then the inequality trivially holds. Assume v ‰ 0. Then }v} ‰ 0.
By dividing v by }v}, we assume }v} “ 1. Then tvu is a set of orthonormal vector.
By Bessel’s inequality, we have |xu|vy| ď }u}.

Remark 20.24. In the general case that x¨|¨y is a positive sesquilinear form, the
Cauchy-Schwarz inequality |xu|vy|2 ď xu|uy ¨ xv|vy still holds.

Proof. We use the notations in Prop. 20.13. Applying Thm. 20.23 to V {N , we
have |pu`N |v`N q|2 ď pu`N |u`N q ¨ pv`N |v`N q. This proves |xu|vy|2 ď
xu|uy ¨ xv|vy.

Corollary 20.25. V is a normed vector space if we define }v} “
a

xv|vy.

Proof. By Cauchy-Schwarz, we have

}u` v}2 “ }u}2 ` }v}2 ` 2Rexu|vy ď }u}2 ` }v}2 ` 2}u} ¨ }v} “ p}u} ` }v}q2

This proves the triangle inequality. The other conditions are obvious.

Corollary 20.26. The map x¨|¨y : V ˆ V Ñ C is continuous if V is equipped with the
norm topology.

Proof. For each u, u0, v, v0 P V such that }u´ u0} ď ε, }v´ v0} ď ε where 0 ă ε ă 1,
we have by Cauchy-Schwarz that

|xu|vy ´ xu0|v0y| ď |xu´ u0|vy| ` |xu0|v ´ v0y| ď εp}v0} ` 1q ` ε}u0}

Remark 20.27. Since V is a normed vector space, V is also a metric space with
dpu, vq “ }u ´ v} “

a

xu´ v|u´ vy. Now, the polarisation identity (Prop. 20.3)
says that for inner product spaces,

:::::::
norms

:::::::::::
determine

:::::::
inner

:::::::::
produts, and hence

::::::::
metrics

:::::::::::
determine

::::::
inner

:::::::::::
products. Therefore, if W is an inner product space, and

if T : V Ñ W is a linear isometry, then

xTu|Tvy “ xu|vy

for all u, v P V . In particular, if T is an isomorphism of normed vector sapces (i.e.,
T is a linear surjective isometry, cf. Def. 9.2), then T is an equivalence of inner
product spaces. In this case, we say that T is a unitary map, and say that V,W are
isomorphic inner product spaces (or that V,W are unitarily equivalent).
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20.3 Orthogonal decompositions

Fix an inner product space V . In the last section, we used Gram-Schmidt pro-
cess and Pythagorean inequality (20.12) to derive many useful inequalities. In
this section, we will have a deeper understanding of the geometry behind Gram-
Schmidt process and orthogonal projections.

Definition 20.28. Let U be a linear subspace of V . Let v P V . An orthogonal
decomposition of v with respect to U is an expression of the form v “ u ` w
where u P U and w K U (i.e. w is orthogonal to every vector of U ). Orthogonal
decompositions of v are unique if exist. We call u the orthogonal projection of v
onto U .

Proof of uniqueness. Suppose that v “ u1`w1 is another orthogonal decomposition.
Then u´ u1 equals w1 ´w. Let ξ “ u´ u1. Then ξ P U and ξ K U . So xξ|ξy “ 0, and
hence ξ “ 0. So u “ u1 and w “ w1.

Example 20.29. Let e1, . . . , en be orthonormal vectors of V . Let U “

Spante1, . . . , enu. Choose any v P V . Then by Gram-Schmidt, v “ u ` w is the
orthogonal decomposition if we let u “

řn
i“1xv|eiyei and w “ v ´ u.

The inequalities in the last section relies on the Pythagorean inequality }u} ď
}v} for an orthogonal decomposition v “ u ` w. In this section, we need an opti-
mization property about orthogonal decompositions:

Proposition 20.30. Let U be a linear subspace of V . Suppose that v P V has orthogonal
decomposition v “ u` w with respect to U . Then

}v ´ u} “ inf
ξPU
}v ´ ξ} (20.17)

Proof. Clearly “ě” holds. Choose any ξ P U . Then v ´ ξ “ v ´ u ` u ´ ξ “
w ` pu ´ ξq. Since u ´ ξ P U , we have w K u ´ ξ. Thus, by Pythagorean, we have
}w} ď }v ´ ξ}.

Corollary 20.31. Let e1, . . . , en be orthonormal vectors of V . For each v P V and
λ1, . . . , λn P C we have

}v}2 ´
n
ÿ

i“1

|xv|eiy|
2
“

›

›

›
v ´

n
ÿ

i“1

xv|eiyei

›

›

›

2

ď

›

›

›
v ´

n
ÿ

i“1

λiei

›

›

›

2

(20.18)

Proof. By Gram-Schmidt, we have orthogonal decomposition v “ u ` w where
w “

ř

ixv|eiyei. The Pythagorean identity }v}2 ´ }u}2 “ }w}2 proves the first
equality. Prop. 20.30 proves the “ď”.

We now give several applications of Cor. 20.31.
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Definition 20.32. A set S (or a family peiqiPI) of orthonormal vectors of V is called
an orthonormal basis of V if it spans a dense subspace of V .

Example 20.33. If X is a set, by Lem. 17.28, l2pXq has an orthonormal basis
pχtxuqxPX .

Example 20.34. If V is separable, then V has a countable orthonormal basis.

Proof. Let tv1, v2, . . . u be a dense subset of V where v1 ‰ 0. Then by Gram-
Schmidt (Rem. 20.21), we can find e1, e2, ¨ ¨ ¨ P V such that the set te1, e2, . . . u is
orthnormal (after removing the duplicated terms), and that Spantv1, . . . , vnu “
Spante1, . . . , enu for each n. Then te1, e2, . . . u clearly spans a dense subspace of
V .

We remark that there are non-separable and non-complete inner product
spaces that do not have orthonormal bases. See [Gud74].

Theorem 20.35. Suppose that peiqiPI is an orthonormal basis of V . Then for each v P V ,
the RHS of the following converges (under the norm of V ) to the LHS:

v “
ÿ

iPI

xv|eiy ¨ ei (20.19)

Proof. Note that for J P finp2Iq, the expression
›

›

›
v ´

ÿ

jPJ

xv|ejyej

›

›

›

2

“ }v}2 ´
ÿ

jPJ

|xv|ejy|
2

decreases when J increases. Thus, it suffices to prove that the infJPfinp2Iq of this
expression is 0. This follows immediately from Cor. 20.31 and the fact that we can
find J and pλjqjPJ in C such that }v ´

ř

jPJ λjej} is small enough.

Corollary 20.36 (Parseval’s identity). Suppose that peiqiPI is an orthonormal basis of
V . Then for each u, v P V we have

xu|vy “
ÿ

iPI

xu|eiy ¨ xei|vy (20.20)

In particular,

}v}2 “
ÿ

iPI

|xv|eiy|
2 (20.21)

Proof. By Thm. 20.35, u “ limJPfinp2Iq uJ where uJ “
ř

jPJxu|ejy ¨ ej . By the conti-
nuity of x¨|¨y : V ˆ V Ñ C (Cor. 20.26), we have

xu|vy “ lim
JPfinp2Iq

xuJ |vy “ lim
JPfinp2Iq

ÿ

jPJ

xu|ejy ¨ xej|vy “
ÿ

iPI

xu|eiy ¨ xei|vy
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Remark 20.37. In Hilbert’s original definition, an orthonormal basis peiqiPI (called
by Hilbert a complete orthogonal system of functions) is a set of orthonormal
vectors satisfying Parseval’s identity (20.20) for all u, v P V . Hilbert did not have
the topological understanding of orthonormal basis as in Def. 20.32 (i.e., a set of
orthonormal vectors spanning a dense subspace of V ). See [BK84, Sec. 8].

Corollary 20.38. Suppose that pexqxPX is an orthonormal basis of V . Then there is a
linear isometry

Φ : V Ñ l2pXq v ÞÑ
`

xv|exyqxPX (20.22)

whose range is dense in l2pXq.

Since l2pXq is complete (Thm. 12.32), it follows that Φ gives a Banach space
completion of V , cf. Def. 10.18.

Proof. Parseval’s identity shows that pxv|exyqxPX has finite l2-norm }v}. So the map
Φ defined by (20.22) is clearly a linear isometry.

20.4 Application to Fourier series

In this section, we apply the results about inner product spaces to the study of
Fourier series.

Let V “ Rr´π, πs “ Rpr´π, πs,Cq, the vector space of (strongly) Riemann
integrable complex valued functions on r´π, πs. For each f P V and n P Z, define
its n-th Fourier coefficient to be

pfpnq “
1

2π

ż π

´π

fpxqe´inxdx “
1

2π

ż π

´π

fe´n (20.23)

where enpxq “ einx. Then the Fourier series of f is
ÿ

nPZ

pfpnqen (20.24)

We view pf as a function on Z.
In Fourier analysis, one asks whether the Fourier series of f converges to f ,

and if so, in which sense does it converge? We have seen in Subsec. 13.1.4 that
(20.24) might not converge uniformly to f . We have also mentioned there that
(20.24) might be divergent at many points of r´π, πs, although in many cases it
converges pointwise to f (cf. Pb. 14.6). In this section, we will see that (20.24)
converges to f under the L2-norm. Another important result of this section is the
classification of all f whose Fourier modes are all 0.
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Let V be the vector space of all f P Rr´π, πs, where f, g P Rr´π, πs are equal
elements in V iff tx P r´π, πs : fpxq ‰ gpxqu is null. By Exp. 20.14, V is an inner
product space whose inner product x¨|¨y is defined by

xf |gy “
1

2π

ż π

´π

fg˚
“

1

2π

ż π

´π

fpxqgpxq (20.25)

It follows that

pfpnq “ xf |eny (20.26)

Proposition 20.39. ten : n P Zu is an orthonormal basis of V .

Proof. Clearly ten : n P Zu is an orthonormal set of vectors. By Stone-Weierstrass,
SpanS is l8-dense in CpS1q, the space of 2π-periodic continuous functions (cf.
Exp. 15.12). So SpanS is L2-dense in CpS1q. Indeed, for any f P CpS1q, pick
a sequence pfkqkPZ`

of elements in SpanS converging uniformly on r´π, πs to f .
Therefore limkÑ8

ş

|f ´ fk|
2 “ 0 by Cor. 13.21.

To show that SpanS is dense in V , it remains to prove that CpS1q is L2-dense
in V . Let S “ SpantχI : I is an interval in r´π, πsu. It is easy to see that each χI
can be L2-approximated by elements of CpS1q. Therefore, it suffices to prove that
S is L2-dense in V .

Let f P Rr´π, πs. We want to show that f can be L2-approximated by elements
of S. By considering the real part and the imaginary part separately, we assume
that f is real. Let M “ }f}l8 , which is finite. By the proof of Prop. 14.51 (or
by approximating

ş

f by upper Darboux sums, cf. Thm. 13.41), we can find a
sequence pfnq in S such that limn

şπ

´π
|f ´ fn| “ 0, and that |fn| ď M for all n.

Therefore
ż π

´π

|f ´ fn|
2
ď 2M

ż π

´π

|f ´ fn|

where the RHS converges to 0 as nÑ 8.

Corollary 20.40. Let f P Rr´π, πs. Then the following are equivalent

(1) Each Fourier coefficient pfpnq is 0.

(2) f is zero outside a null set.

Proof. This is immediate from Prop. 20.39 and the obvious fact that a vector in
an inner product space (equipped with an orthonormal basis) is zero iff its in-
ner product with any element in the orthonormal basis (or more generally, any
element in a densely-spanning subset) is zero.
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Theorem 20.41. Let f, g P Rra, bs. Then we have Parseval’s identity

1

2π

ż π

´π

fg˚
“

`8
ÿ

n“´8

pfpnqpgpnq (20.27)

where the RHS converges absolutely. In particular,

1

2π

ż π

´π

|f |2 “
`8
ÿ

n“´8

| pfpnq|2 (20.28)

Moreover, we have

lim
m,nÑ`8

ż π

´π

ˇ

ˇ

ˇ
f ´

n
ÿ

k“´m

pfpkqek

ˇ

ˇ

ˇ

2

“ 0 (20.29)

Proof. Immediate from Cor. 20.36 and Thm. 20.35.

The following result was mentioned in Subsec. 10.4.1.

Corollary 20.42. The space Cr´π, πs, under the inner product (20.25), has a Banach
space completion

Cr´π, πs Ñ l2pZq f ÞÑ pf (20.30)

The same is true if Cr´π, πs is replaced by V .

Proof. Prop. 20.39 implies that ten : n P Zu is also an orthonormal basis of
Cr´π, πs. Thus, the corollary follows from Cor. 20.38.

20.5 Problems and supplementary material

20.5.1 ‹ The Sobolev space HspS1q

For each s ě 0, and for each φ : ZÑ C, let

}φ}hs “
ÿ

nPZ

p1` n2
q
s
|φpnq|2 (20.31)

It is clear that }φ}h0 “ }φ}2, and that

s ď t ùñ }φ}hs ď }φ}ht

Define

hspZq “ tφ P CZ : }φ}hs ă `8u (20.32)

which is clearly a subset of l2pZq. Clearly hspZq Ą htpZq if s ď t.
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Problem 20.1. Prove that hspZq is a linear subspace of l2pZq, that hspZq has a well-
defined inner product described by

xφ|ψyhs “
ÿ

nPZ

p1` n2
q
sφpnqψpnq (20.33)

and that hspZq is complete under this inner product.

Let CpS1q be the set of complex continuous functions on S1, equivalently, con-
tinuous 2π-periodic functions on R. More generally, for each n P NY t8u, let

Cn
pS1
q “ t2π-periodic f P Cn

pRqu (20.34)

Equip CpS1q with the inner product xf |gy “ 1
2π

şπ

´π
fg˚. The norm determined by

this inner product is called the L2-norm. By Cor. 20.42, we have a Hilbert space
completion

Φ : CpS1
q Ñ l2pZq f ÞÑ pf (20.35)

Recall that enpxq “ einx.

Problem 20.2. Prove that l1pZq Ă ΦpCpS1qq, and that the linear injection

Φ´1 : l1pZq Ñ CpS1
q (20.36)

can be described by

Φ´1
pφq “

ÿ

nPZ

φpnqen (20.37)

where the RHS converges under the l8pS1q-norm (and hence under the L2-norm).

Problem 20.3. Let s ą 1
2
. Prove that hspZq Ă l1pZq.

Hint. Use Cauchy-Schwarz or Hölder’s inequality.

Definition 20.43. Let s ą 1
2
. Define

Hs
pS1
q

def
ùùù Φ´1

phspZqq (20.38)

According to Pb. 20.2 and 20.3, we have

Hs
pS1
q Ă Φ´1

pl1pZqq Ă CpS1
q (20.39)

and Φ restricts to a linear bijection

Φ : Hs
pS1
q

»
ÝÝÑ hspZq (20.40)
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whose inverse sends

φ ÞÑ
ÿ

nPZ

φpnqen

where the RHS converges uniformly. Define inner product x¨|¨yHs on HspS1q to be
the pullback of hs, i.e.

xf |gyHs “ x pf |pgyhs “
`8
ÿ

n“´8

p1` n2
q
s
pfpnqpgpnq (20.41)

Then HspS1q is a Hilbert space since hspZq is so. We call HspS1q a Sobolev space
of S1. Thus Φ is a unitary map.

Problem 20.4. Let k P Z`. Prove that CkpS1q Ă HkpS1q. Prove for each
f P C2kpS1q, g P HkpS1q that

xf |gyHk “
1

2π

ż π

´π

p1´ B2qkf ¨ g˚ (20.42)

where Bf “ f 1.

Hint. For each f P CkpS1q, prove by induction on k that

yf pkqpnq “ pinqk pfpnq (20.43)

Apply Parserval’s identity to
ş

|f pkq|2 and to the RHS of (20.42).

As an application, we obtain a useful criterion for the uniform convergence of
Fourier series:

Corollary 20.44. If f P C1pS1q, then
ř

nPZ
pfpnqen converges uniformly to f .

Proof. By Pb. 20.4 and (20.39), we have f P C1pS1q Ă H1pS1q Ă Φ´1pl1pZqq. Since
pf “ Φpfq and hence f “ Φ´1p pfq, by Pb. 20.2 (the description of Φ´1 on l1pZq),
ř

nPZ
pfpnqen converges uniformly to f .

Theorem 20.45. Let k P Z`. Then HkpS1q is the Hilbert space completion of C8pS1q

under the inner product defined by (20.42) for all f, g P C8pS1q.

Proof. Equip C8pS1qwith the inner product defined by (20.42). We know that

Φ : C8
pS1
q Ñ hkpZq f ÞÑ pf (20.44)

is a linear isometry. Since Φpenq “ δtnu, the range of Φ contains Spantχtnu : n P Zu.
From this it follows easily that the range is dense in hkpZq. Thus, Φ gives
a completion of C8pS1q. This is equivalent to saying that the inclusion map
C8pS1q ãÑ HkpS1q is a completion of C8pS1q (since (20.44) extends to a unitary
map Φ : HkpS1q Ñ hkpZq).
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Problem 20.5. Suppose that s ą 3
2
. Prove that the map of derivative B : C1pS1q Ñ

CpS1q, f ÞÑ f 1 restricts to

B : Hs
pS1
q Ñ Hs´1

pS1
q (20.45)

(Namely, each f P HspS1q is differentiable, and has derivative in Hs´1pS1q.) Prove
for each f P HspS1q that

Φpf 1
qpnq “ in pfpnq (20.46)

Hint. By Pb. 20.2, we have uniform convergence f “
ř

nPZ
pfpnqen where pf P

hspZq. Show that
ř

nPZ in
pfpnqen converges uniformly. Then use Thm. 11.33.

Theorem 20.46 (Sobolev embedding). If s ą 1
2
, then HspS1q Ă Crs´ 3

2
spS1q where

rs´ 3
2
s is the smallest integer ě s´ 3

2
.

Proof. Choose f P HspS1q. By (20.39) we have f P CpS1q. Thus the theorem is
proved when 1

2
ă s ď 3

2
. Suppose that s ą 3

2
. Let k “ rs´ 3

2
s. Then 1

2
ă s´ k ď 3

2
.

By Pb. 20.5, we have f 1 P Hs´1pS1q, f2 P Hs´2pS1q, . . . , and hence f pkq P Hs´kpS1q Ă

CpS1q. This proves f P CkpS1q.

Corollary 20.47. We have C8pS1q “
Ş

kPZ`
HkpS1q “

Ş

są 1
2
HspS1q.

Proof. By Pb. 20.4, Thm. 20.46, and the fact that HspS1q decreases as s increases.
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21 Hilbert spaces

Definition 21.1. An inner product space H is called a Hilbert space if it is com-
plete under the norm defined by }ξ} “

a

xξ|ξy.

Remark 21.2. Let H be a Hilbert space. Since a subset of a complete metric space
is complete iff it is closed (Prop. 3.27), the phrases “closed linear subspaces of H”
and “Hilbert subspaces of H” are synonymous.

Example 21.3. If H is a finite-dimensional inner product space, then H is a Hilbert
space.

Proof. Since H is spanned by finitely many vectors, by Gram-Schmidt process,
H has an orthonormal basis pexqxPX where X is a finite set. The canonical linear
isometry Φ : H Ñ l2pXq in Cor. 20.38 must be surjective. So H » l2pXq. Hence H
is complete.

Theorem 21.4. Let V be an inner product space. Then V has a Hilbert space comple-
tion, i.e., a Hilbert space H and a linear isometry Φ : V Ñ H with dense range.

Moreover, Hilbert space completions are unique up to unitary equivalences: If Ψ :
V Ñ K is another Hilbert space completion, then there is a unitary Γ : HÑ K such that
the following diagram commutes:

V

H K

Φ Ψ

Γ
»

(21.1)

When no confusion arises, we identify V with ΦpV q so that V can be viewed
as a dense inner product subspace of H.

Proof. Since V is a normed vector space, by Thm. 10.19, we have a Banach space
H (with norm } ¨ }H) and a linear isometry Φ : V Ñ H with dense range. We
assume WLOG that V is a normed vector subspace of H so that the norm } ¨ }H
restricts to that of V . Define a function x¨|¨yH : H ˆH Ñ C using the polarization
identity (20.3), i.e., for each ξ, η P H we set

xξ|ηyH “
1

4

ÿ

t“0,π
2
,π, 3π

2

}ξ ` eitη}2H ¨ e
it

Then x¨|¨yH restricts to the inner product x¨|¨y of V . Moreover, the function x¨|¨yH is
continuous (with respect to the norm } ¨ }H), and V ˆV is a dense subset of HˆH.
Therefore, as in the proof of Thm. 10.19, we can use the fact that x¨|¨y is an inner
product on V to prove that x¨|¨yH is a positive sesquilinear form on H, and we can
use the fact that the norm of V is defined by the inner product of V to prove that
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}ξ}2H “ xξ|ξyH. Therefore, x¨|¨yH is non-degenerate, i.e., an inner product, and this
inner product defines the complete norm }¨}H. It follows that H is a Hilbert space,
and hence a Hilbert space completion of V .

The uniqueness of Hilbert space completions (up to unitary equivalences) fol-
lows directly from that of Banach space completions, cf. Thm. 10.19.

21.1 Introduction: completeness, the most familiar stranger
What is familiar is what we are used to; and what we are used to is most
difficult to “know”—that is, to see as a problem; that is, to see as strange, as
distant, as “outside us”.

—- Friedrich Nietzsche (cf. [Nie, Sec. 355])

We introduced completeness at the beginning of last semester and applied it
to function spaces. It has allowed us to give a unified understanding of many
analytic problems, especially those related to uniform convergence: the uniform
convergence of series of functions, the commutativity of two limit processes and
its relationship with uniform convergence, etc.. In fact, the vast majority of Ba-
nach spaces we considered last semester were defined by the l8-norm.

From this perspective, it is perfectly natural to consider completeness for inner
product spaces. However, we refuse to take lightly the consideration of complete-
ness as natural for the following reasons:

• The notion of completeness was originally applied only to R. Historically,
however, the idea of applying completeness to function spaces was not en-
tirely inspired by the study of uniform convergence, since uniform conver-
gence is not too far from pointwise convergence.1 The apparently success-
ful application of l8-completeness to the problems of uniform convergence
does not justify the a priori value of completeness in the study of other norms
(such as the L2-norm). 2

• For inner product spaces, some analytic properties are equivalent to com-
pleteness. The most important one is the weak (or weak-*) compactness of
the unit ball.3 The main reason that the Hilbert space l2pZq was introduced
in history by Hilbert is due to this compactness rather than completeness.

1As a matter of fact, most results learned in the last semester can be formulated and proved
without introducing completeness to function spaces, as implied by history and by many analysis
textbooks.

2That l8 and L2 are both called “norms” is a result, not a starting point, of the observation in
history that different types of problems can be treated in a similar fashion.

3We have learned that l2pXq satisfies this property due to l2pXq » l2pXq˚ (cf. Thm. 17.30) and
Banach-Alaoglu, or more directly, by Pb. 17.5.
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21.1.1 The late-coming concept of completeness

The modern definition of Hilbert spaces as complete inner product spaces was
due to von Neumann [vNeu30] in late 1920s, many years after the introduction of
l2pZq by Hilbert and Schmidt (same person as the Schmidt in the Gram-Schmidt
process!4) to the study of integral equations in 1900s. We will see in this chapter
that all separable Hilbert spaces are isomorphic to CN or l2pZq, and that all Hilbert
spaces are isomorphic to l2pXq. Therefore, one can equivalently define a Hilbert
space to be an inner product space isomorphic to l2pXq for some set X . This is in-
deed closer to how people originally understood Hilbert spaces than the modern
definition.

As opposed to 1900s, by the time von Neumann gave Def. 21.1, the importance
of completeness in function spaces was fully recognized. In my opinion, there are
two main reasons for this change of viewpoint. The first one, which we will not
discuss in detail, is the application of Baire’s category theory (or its early version,
the gliding hump method) to the study of function spaces. In this course, we
will focus on the second reason:

::::
The

:::::::::::::::
completeness

:::
of

:
a
::::::::::
function

:::::::
spaces

:::
is

::::::::
closely

:::::::
related

:::
to

::::
the

:::::::::::
viewpoint

:::
of

::::::::::::::::
linear operators

::
as

::::::::::
opposed

:::
to

:::::::::::::::::::::::::::
sesquilinear/bilinear forms.

The emphasis on the linear operator perspective was due to F. Riesz:

(a) In 1913, Riesz gave a new (and improved) interpretation of the spectral the-
orem for bounded Hermitian forms, originally due to Hilbert. Instead of
working with bounded Hermitian forms, Riesz worked with bounded self-
adjoint operators. This allowed him to introduce the influential idea of func-
tional calculus, which remains the standard treatment of spectral theory to
this day.

(b) In 1918, Riesz studied eigenvalue problems of compact operators on CpXq.
His method is readily applied to compact operators on any Banach space,
thus generalizing Hilbert-Schmidt’s results for the Hilbert space l2pZq.

In the following, we explain why the idea of completeness in function spaces
is related to the viewpoint of linear operators.

21.1.2 Scalar-valued functions vs. vector-valued functions, compactness vs.
completeness, Hilbert vs. Riesz

Given inner product spaces U, V , a bounded linear map T : U Ñ V can also be
viewed as a continuous sesquilinear map

ωT : U ˆ V Ñ C pu, vq ÞÑ xTu|vy (21.2)

4Thus, the discovery of Gram-Schmidt process is not only for the purpose of solving linear
algebra problems. It has a deep background in analysis.
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In the special case that U “ V , T can be viewed as a continuous quadratic form

V ˆ V Ñ C v ÞÑ xTv|vy (21.3)

(Note that (21.3) completely determines (21.2) by the polarization identity (Prop.
20.3), and hence determines T .) This viewpoint, insisting on the study of scalar-
valued functions, was hold by people before Riesz, especially by Hilbert (and his
students). On the other hand, the viewpoint of vector-valued functions and linear
operators was emphasized by Riesz.

In Hilbert’s scalar-valued function viewpoint, completeness plays a very
marginal role (with very few exceptions, see Rem. 21.42), and emphasis was put
on the compactness. To empathize with this phenomenon, compare it with the
equivalence CpX,CpY qq » CpX ˆ Y q in Thm. 9.3 (where Y is compact): If we
take the viewpoint of CpX ˆ Y q, we put more emphasis on the compactness of Y .
However, if we take the viewpoint of CpX,CpY qq, we view CpY q as an abstract
Banach space V . Therefore, we forget about the compactness of Y and focus on
the completeness of V .

Therefore, the following three ideas are closely related:

(1) The completeness of function spaces.

(2) The study of linear maps between function spaces U Ñ V , as opposed to
the study of scalar-valued functions on U ˆ V .

(3) The operator norm on LpU, V q.

We have mentioned the relationship between (1) and (3) in Sec. 17.6. Here, let
me briefly explain why (1) and (2) are related by recalling two fundamental facts
learned before:

Suppose that U, V are normed vector spaces and U0 is a dense linear subspace
of V . To extend a bounded linear map T : U0 Ñ V to a bounded linear U Ñ V ,
one needs the completeness of V . (Cf. Prop. 10.28.) Given a net of bounded linear
maps pTαq from U to V satisfying supα }Tα} ă `8, to show that the pointwise
convergence of pTαq on U0 implies the pointwise convergence on U , one also needs
the completeness of V . (Cf. Prop. 17.19.)

We will appreciate the close connection among (1), (2), and (3) when we study
the spectral theorem for bounded self-adjoint operators in Sec. 27.5.

21.2 Key property 1: convergence of summing orthogonal vec-
tors

In this section, we fix a Hilbert space H.
Hilbert and Schmidt introduced l2pZq to the study of integral equations. As

we have mentioned, the main interesting analytic property for them is not com-
pleteness. Indeed, they mainly used the following conditions, both equivalent to
the completeness:
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1. If
ř

i |ai|
2 ă `8 and if peiqiPI is orthormal, then

ř

aiei converges.

2. The weak(-*) compactness of the closed unit ball.

(We will show the equivalence in Thm. 21.5 and Cor. 21.35.) In this section, we
study the first property. The second property will be studied in the next section.
The first property is indeed a direct consequence of the second one; see Thm.
21.34. Thus, one may also say that the second property is the main analytic prop-
erty used by Hilbert and Schmidt. In the next chapter, we will see how these two
properties are used to study integral equations.

Theorem 21.5. Let V be an inner product space. The following are equivalent.

(1) V is complete.

(2) For each orthonormal family peiqiPI in V , and for each paiqiPI in C satisfying
ř

iPI |ai|
2 ă `8, the discrete integral

ř

iPI aiei converges (under the norm of V ).

(3) V is isomorphic to l2pXq for some X .

Proof. (3)ñ(1): This is because l2pXq is complete, cf. Thm. 12.32.
(1)ñ(2): Since

ř

i |ai|
2 ă `8, by Rem. 5.43, for each ε ą 0 there exists J P

finp2Iq such that for all finite K Ă IzJ we have
ř

kPK |ak|
2 ă ε, and hence, by the

Pythagorean identity,
›

›

›

ÿ

kPK

akek

›

›

›

2

“
ÿ

kPK

|akek|
2
ă ε

By Rem. 5.43 again and the completeness of V , we see that
ř

iPI aiei converges.
(2)ñ(3): Assume (2). We first show that V has an orthonormal basis. By Zorn’s

lemma, we can find a maximal (with respect to the partial orderĂ) set of orthonor-
mal vectors, written as a family peiqiPI . The maximality implies that every nonzero
vector ξ P V is not orthogonal to some ei. (Otherwise, tei : i P Iu can be extended
to tei : i P Iu Y tξ{}ξ}u.)

Let us prove that peiqiPI is an orthonormal basis. Suppose not. Then U “

Spantei : i P Iu is not dense in X . Let ξ P XzU . By Bessel’s inequality, we have
ÿ

iPI

|xξ|eiy|
2
ă `8

Therefore, by (2),
ÿ

iPI

xξ|eiy ¨ ei (21.4)
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converges to some vector η P V . By the continuity of x¨|¨y, we see that xη|eiy “
xξ|eiy for all i, and hence

xξ ´ η|eiy “ 0 for all i P I (21.5)

Since η P U and ξ R U , we conclude that ξ ´ η is a nonzero vector orthogonal to
all ei. This contradicts the maximality of peiqiPI .

Now we have an orthonormal basis peiqiPI . By Cor. 20.38, we have a linear
isometry

Φ : V Ñ l2pIq ξ ÞÑ
`

xξ|eiy
˘

iPI

with dense range. If paiqiPI belongs to l2pIq, by (2), the discrete integral
ř

iPI aiei
converges to some ξ P V . Clearly Φpξq “ paiqiPI . This proves that Φ is surjective,
and hence is a unitary map. So V » l2pIq.

Condition (2) of Thm. 21.5 is the main subject of this section. From the above
proof, we see that this condition is an easy special case of the completeness. This
special case is often sufficient for applications without fully utilizing the com-
pleteness of l2pZq. (To understand how nontrivial the direction (2)ñ(1) is even in
the separable case, try to give a direct proof of it!)

In the following, we show that many well-known properties about Hilbert
spaces follow Thm. 21.5-(2). Recall that we have fixed a Hilbert space H.

Corollary 21.6. H has an orthonormal basis. Moreover, H is separable iff the orthonor-
mal basis can be chosen to be countable.

Proof. That H has an orthonormal basis follows from the proof of Thm. 21.5 or
from the fact that l2pXq has an orthonormal basis pχtxuqxPX . If X is countable,
then l2pXq has dense subset SpanQ`iQtχtxu : x P Xu (by Lem. 17.28) and hence is
separable. Conversely, we have proved in Exp. 20.34 that every separable inner
product space has a countable orthonormal basis.

Theorem 21.7. Let pexqxPX be an orthonormal basis of H. Then we have a unitary map

H »
ÝÝÑ l2pXq ξ ÞÑ

`

xξ|exy
˘

xPX
(21.6)

Proof. This is clear from the proof of Thm. 21.5.

Definition 21.8. If K is a linear subspace of H, we define its orthogonal comple-
ment

KK
“ tξ P H : xξ|ηy “ 0 for all η P Ku

It is clear that

KK
“ KK

(21.7)
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Proof of (21.7). If ξ P H is orthogonal to K, then ξ is clearly orthogonal to K. Con-
versely, if ξ is orthogonal to K, the continuity of η P H ÞÑ xξ|ηy implies that
ξ K K.

Definition 21.9. Let H1,H2 be Hilbert spaces. Consider the direct sum of vector
spaces H1 ‘H2. Namely, H1 ‘H2 equals H1 ˆH2 as a set, pξ, ηq is also written as
ξ ‘ η, and the linear structure is defined by pξ ‘ ηq ` pξ1 ‘ η1q “ pξ ` ξ1q ‘ pη ` η1q

and λpξ ‘ ηq “ λξ ‘ λη (where ξ, ξ1 P H1, η, η
1 P H2, λ P C), and the zero vector is

0‘ 0. Equip H1 ‘H2 with inner product defined by

xξ ‘ η|ξ1
‘ η1

y “ xξ|ξ1
y ` xη|η1

y

Then H1‘H2 is clearly a Hilbert space. We call H1‘H2 the (Hilbert space) direct
sum of H1,H2.

Remark 21.10. In Def. 21.9, we clearly have linear isometries

H1 Ñ H1 ‘H2 ξ ÞÑ ξ ‘ 0

H2 Ñ H1 ‘H2 η ÞÑ 0‘ η

with ranges H1 ‘ 0 and 0 ‘H2 respectively. It is clear that H1 ‘ 0 and 0 ‘H2 are
orthogonal complements of each other. We often identify H1 with H1 ‘ 0 and H2

with 0‘H2. Then H1 and H2 are Hilbert subspaces of H1‘H2, and are orthogonal
complements of each other.

Theorem 21.11. Let K be a closed linear subspace of H. Note that K and KK are both
Hilbert subspaces of H. Then there is a unitary map

Ψ : K ‘KK »
ÝÝÑ H ξ ‘ η ÞÑ ξ ` η (21.8)

Proof. It is a routine check that Ψ is a linear isometry. It remains to prove that Ψ
is surjective. This means that we need to write each ψ P H in the form ψ “ ξ ` η
where ξ P K, η P KK. Thus, the surjectivity of Ψ means that every ψ P H has an
orthogonal decomposition with respect to K (recall Def. 20.28).

Let ψ P H. By Cor. 21.6, K has an orthonormal basis peiqiPI . As in the proof of
(2)ñ(3) of Thm. 21.5, Bessel’s inequality implies that

ř

iPIxψ|eiy ¨ ei converges to
some vector ξ P K. Then one checks easily that η “ ψ ´ ξ is orthogonal to all ei,
and hence is orthogonal to K0 “ Spantei : i P Iu. Thus η K K by (21.7).

Remark 21.12. Due to Thm. 21.11, given a Hilbert subspace K, people often write

H “ K ‘KK (21.9)

Corollary 21.13. Let K be a closed linear subspace of H. Then every vector ψ P H has
an orthogonal decomposition with respect to K. Moreover, we have pKKqK “ K.

364



Proof. The existence of the orthogonal decomposition follows from Thm. 21.11.
Clearly K Ă pKKqK. By Thm. 21.11 (applied to KK instead of K), there is a unitary
KK‘ pKKqK Ñ H sending η‘ ξ ÞÑ η` ξ, and hence a unitary Γ : pKKqK‘KK Ñ H
sending ξ ‘ η ÞÑ ξ ` η. By Thm. 21.11 again, Γ restricts to the unitary map
Ψ “ (21.8). So we must have pKKqK ‘KK “ K ‘KK, and hence K “ pKKqK.

Corollary 21.14. Let V be a linear subspace of H. Then V is dense iff the only vector of
H orthogonal to V is 0.

This corollary gives a useful criterion for the density of linear subspaces.

Proof. Cor. 21.13 implies for every closed linear subspaces K1,K2 that

K1 “ K2 ðñ KK
1 “ KK

2 (21.10)

Therefore V “ H iff V
K
“ HK “ 0 iff (by (21.7)) V K “ 0.

Remark 21.15. The existence of orthogonal decompositions with respect to closed
linear subspaces (Thm. 21.11 or Cor. 21.13) is a key feature of Hilbert spaces that
is not satisfied by general inner product spaces. A different (and fancier) proof
can be found in many textbooks which proves the existence of the orthogonal
decomposition ψ “ ξ ` η by defining ξ to be the vector in K such that }ψ ´ ξ}
attains its minimum: the existence of such ξ relies on the completeness of H and
the parallelogram law

}u` v}2 ` }u´ v}2 “ 2}u}2 ` 2}v}2 (21.11)

cf. [Fol-R, Thm. 5.24] or [Rud-R, Thm. 4.11] for instance.5

The proof we give here is closer to Schmidt’s method in that we used the
Gram-Schmidt process instead of the parallelogram law. With this proof, we want
to convey the idea that the existence of orthogonal decompositions is a direct
consequence of the convergence of summing orthogonal vectors (condition (2) of
Thm. 21.5).

21.3 Key property 2: weak(-*) compactness of the closed unit
balls

We fix Hilbert spaces H,K in this section.

5The proof of the existence of this minimizing ξ makes use of the convexity of K and thus holds
for K being an arbitrary closed convex subset. Convexity in Banach spaces is a very important
topic, but its importance was not realized until long after the birth of Hilbert spaces and much
of F. Riesz’s work. We believe that introducing convexity (even if secretly introduced) at the first
encounter with Hilbert spaces is off-topic and distracting, because it hinders the understanding of
the roles played by the other central properties in Hilbert spaces, especially the analytic properties.
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Lemma 21.16. For each ξ P H, we have

}ξ} “ sup
ηPBHp0,1q

|xξ|ηy| (21.12)

Proof. Clearly “ě” holds by Cauchy-Schwarz. To prove “ď”, assume WLOG that
ξ ‰ 0. Then }ξ} “ xξ|ηy if we choose η “ ξ{}ξ}.

Recall that if T : V Ñ W is a linear map of normed vector spaces, its operator
norm is }T } “ supvPBV p0,1q }Tv}. Operator norms describe uniform convergence on
BV p0, 1q: If pTαq is a net of bounded linear operators V Ñ W , then limα }T ´Tα} “
0 iff Tα converges uniformly on BV p0, 1q to T .

We now show that in the case of Hilbert spaces, the operator norms of linear
maps can be translated to certain upper bounds about sesquilinear forms, which
are closer in spirit to Hilbert’s original understanding of “boundedness” (cf. Pb.
21.7 and Rem. 21.39).

Proposition 21.17. Let T : HÑ K be a linear map. Then

}T } “ sup
ξPBHp0,1q

ηPBKp0,1q

ˇ

ˇxTξ|ηy
ˇ

ˇ (21.13)

Proof. By Lem. 21.16, the RHS of (21.13) equals sup
ξPBHp0,1q

}Tξ} “ }T }.

Corollary 21.18. Let T : H Ñ K, and let pTαq be a net of linear maps H Ñ K. Define
their associated sesquilinear maps ωT , ωTα : H ˆKÑ C by

ωT pξ|ηq “ xTξ|ηy ωTαpξ|ηq “ xTαξ|ηy (21.14)

Then limα }T ´ Tα} “ 0 iff pωTαq converges uniformly on BHp0, 1q ˆBKp0, 1q to ωT .

21.3.1 Weak topology

We know that, contrary to the norm topology, the weak-* topology describes
poinwise convergence. Let us recall several basic facts about weak-* topology.

Recall from Def. 17.18 that if V is a normed vector space, the weak-* topol-
ogy of V ˚ is the unique topology such that a net pφαq in V ˚ converges to φ un-
der this topology iff limαxφα, vy “ xφ, vy for all v P V . It is more important to
study the weak-* topology on BV ˚p0, 1q (or on any bounded closed ball of V ˚):
By Banach-Alaoglu Thm. 17.21, the closed unit ball BV ˚p0, 1q is weak-* compact.
Moreover, the following elementary fact allows for a flexible characterization of
weak-* topology:

Lemma 21.19. Let V be a normed vector space. Assume that E Ă V spans a dense
subspace of V . Let pφαq be a net inBV ˚p0, 1q, and let φ P BV ˚p0, 1q. Then pφαq converges
weak-* to φ iff limαxφα, vy “ xφ, vy for all v P E.
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Proof. Immediate from Prop. 17.19.

The most relevant example of this chapter is l2pXq, which can be viewed as the
dual space of l2pXq through the Banach space isomorphism (cf. Thm. 17.30)

Ψ : l2pXq Ñ l2pXq˚ f ÞÑ x¨|f˚
y (21.15)

(Recall that f˚pxq “ fpxq. So xg|f˚y “
ř

xPX fpxqgpxq.) In this case, one can choose
E “ tχtxu : x P Xu. Then Lem. 21.19 says that for any net pfαq in l2pXq satisfying
}fα}l2 ď 1 and any f P l2pXq satisfying }f}l2 ď 1,

fα
weak-*
ÝÝÝÝÑ f ðñ lim

α
fαpxq “ fpxq for all x P X (21.16)

This is the content Thm. 17.31. In view of (21.16), the Banach-Alaoglu for l2pXq
says that any net pfαq in Bl2pXqp0, 1q has a subnet converging pointwise on X to
some f P Bl2pXqp0, 1q, which can be checked directly using the Tychonoff theorem.
(You were asked to give this direct proof in Pb. 17.5.)

It should be kept in mind that whenever talking about the weak-* topology
on a Banach space V , we should specify a normed vector space U and an isomor-
phism of Banach spaces Ψ : V Ñ U˚ so that V can be viewed as a dual Banach
space.

Definition 21.20. Let V be a normed vector space. The data pΨ, Uq (sometimes
simply written as U ) is called a predual of V if U is a Banach space, and if Ψ :
U Ñ V ˚ is an isomorphism of normed vector spaces. It is customary to write a
predual U of V as V˚.

Since we know that every Hilbert space H is isomorphic to l2pXq for some
X , the isomorphism (21.15) suggests that we can talk about the weak-* topology
of H, which should be the unique topology whose convergence ξα Ñ ξ means
that xξα|ηy Ñ xξ|ηy for all η. However, calling this topology a weak-* topology
is confusing. In fact, there is no

::::::::::
standard

:::::::
choice of isomorphism H Ñ H˚. The

isomorphism (21.15) relies on the antiunitary map f ÞÑ f˚.

Definition 21.21. A linear map of inner product spaces T : U Ñ V is called antiu-
nitary if it is an antilinear surjective isometry.

There is no canonical antiunitary operator on a Hilbert space: any antiunitary
operator, composed with a unitary one, is again antiunitary. However, we do
have a canonical antiunitary map HÑ H˚:

Theorem 21.22 (Riesz-Fréchet representation theorem). For any Hilbert space H,
the (operator) norm of the dual Banach space H˚ is induced by a unique inner product.
(So H˚ is a Hilbert space.) Moreover, we have an antiunitary map

Φ : HÑ H˚ ξ ÞÑ x¨|ξy (21.17)
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Proof. Define a linear map Φ by (21.17). By Thm. 21.5-(3), we assume WLOG
that H “ l2pXq. Then Φ is related to the Banach space isomorphism (21.15) by
Φpξq “ Ψpξ˚q. Since ξ ÞÑ ξ˚ is antiunitary, Φ must be an antilinear surjective
isometry. Define an inner product on H˚ by

xφ|µy “ xΦ´1µ|Φ´1ψy p@φ, µ P H˚
q (21.18)

Then this inner product induces the operator norm } ¨ } on H˚ because

}φ}2 “ }Φ´1φ}2 “ xΦ´1φ|Φ´1φy “ xφ|φy

where the first identity is due to the fact that Φ is an isometry. The uniqueness of
the inner product follows from the polarization identity (20.3).

Recall that any linear map T : HÑ K is determined by the expressions xTξ|ηy.

Corollary 21.23. For every T P LpH,Kq there is a unique bounded linear map T ˚ : KÑ
H (called the adjoint of T ) satisfying for all ξ P H, η P K that

xTξ|ηy “ xξ|T ˚ηy (21.19)

Moreover, we have }T } “ }T ˚}, and pT ˚q˚ “ T .

Proof. For each η P K, the linear map ξ P H ÞÑ xTξ|ηy P C is bounded since
|xTξ|ηy| ď }ξ} ¨ }T } ¨ }η}. Therefore, by Riesz-Fréchet, there is a unique ψ P H such
that xTξ|ηy “ xξ|ψy for all ξ P H. We let T ˚η “ ψ. This gives a map T ˚ : K Ñ H
satisfying (21.19) for all ξ P H, η P K. The formula (21.19) clearly shows that T ˚ is
linear, and that T ˚˚ “ T if T ˚ is bounded. That }T } “ }T ˚} (and in particular, the
boundedness of T ˚) follows from Prop. 21.17.

‹ Exercise 21.24. Recall that for every normed vector space V there is a canonical
bounded linear map V Ñ V ˚˚, v ÞÑ xv, ¨y which is a linear isometry by Hahn-
Banach Cor. 16.6. Now let V “ H. Show that this map H Ñ H˚˚ is equal to the
composition of the antiunitary maps H Ñ H˚ and H˚ Ñ H˚˚, both defined by
Riesz-Fréchet. Conclude that the canonical linear isometry HÑ H˚˚ is unitary.

Hint. You may prove it in a general fashion. But the easiest way to think about
this question is to assume WLOG that H “ l2pXq.

According to this exercise, we can view H as the dual space of H˚, and talk
about the weak-* topology of H. Indeed, it is more customary to call it weak
topology in this case:

Definition 21.25. For any normed vector space V , the weak topology of V is de-
fined to be the pullback of the weak-* topology of V ˚˚ through the canonical linear

368



isometry V Ñ V ˚˚. Convergence under the weak topology is called weak conver-
gence. Thus, weak topology is described by the condition that for every net pvαq
in V and every v P V ,

vα
weakly
ÝÝÝÝÑ v ðñ lim

α
xvα, φy “ xv, φy for all φ P V ˚ (21.20)

If pξαq is a net in H and ξ P H, then by Riesz-Fréchet,

ξα
weakly
ÝÝÝÝÑ ξ ðñ lim

α
xξα|ηy “ xξ|ηy for all η P H (21.21)

Remark 21.26. Assume that 1 ă p, q ă `8 and p´1`q´1 “ 1. The weak-* topology
on lppXq defined by the isomorphism lqpXq˚ » lppXq in Thm. 17.30 is clearly equal
to the weak topology of lppXq. Therefore:

We will not distinguish between weak topology
and weak-* topology for lppXqwhere 1 ă p ă `8.

Corollary 21.27. The closed unit ball BHp0, 1q of H is weakly compact. Moreover, H is
separable iff BHp0, 1q is weakly metrizable.

It follows that if H is separable, then BHp0, 1q is sequentially compact.

Proof. By Cor. 21.6, we may assume H “ l2pXq where X is countable if H is
separable. By Banach-Alaoglu and l2pXq » l2pXq˚, or by Pb. 17.5 and Thm. 17.31,
BHp0, 1q is weakly compact. By l2pXq » l2pXq˚ and Thm. 17.24, l2pXq is separable
iff Bl2pXqp0, 1q is metrizable under the weak(-*) topology.

‹ Remark 21.28. Assume that X is countable, say, X is t1, 2, . . . , nu or Z`. Then
explicit metrics of Bl2pXqp0, 1q can be found, e.g., d and δ defined by

dpf, gq “ sup
n
n´1

|fpnq ´ gpnq| δpf, gq “
ÿ

n

2´n
|fpnq ´ gpnq|

for each f, g P Bl2pXqp0, 1q. This is because, by Cor. 7.76, both d and δ induce the
pointwise convergence topology, and hence the weak topology on Bl2pXqp0, 1q by
Thm. 17.31. (Compare also Pb. 17.3 or Pb. 15.15.)

‹Remark 21.29. A normed vector space V is called reflexive if the canonical linear
isometry V Ñ V ˚˚ is surjective (and hence an isomorphism). A reflexive space
must be complete since V ˚˚ is complete by Thm. 17.35. By Thm. 17.30, if 1 ă p ă
`8 then lppXq is reflexive. In particular, every Hilbert space is reflexive.

If V is reflexive, the canonical isomorphism V » V ˚˚ allows us to view V as a
dual space of V ˚, and talk about its weak-* topology. This is clearly equal to the
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weak topology. If V is not reflexive, we do not view the weak topology of V as the
weak-* topology, since V might have a meaningful predual such that the weak-*
topology defined by this predual is different from the weak topology.

For example, consider V “ l8pZq with predual l1pZq. The weak-* topology on
l8pZq defined by the predual l1pZq is different from the weak topology (which is
defined by elements of l8pZq˚), cf. Pb. 17.8.

21.3.2 Strong and weak convergence

The following proposition clarifies the relationship between norm and weak
convergence in Hilbert spaces:

Proposition 21.30. Let pξαq be a net in an inner product space V , and let ξ P V . The
following are equivalent:

(1) limα ξα “ ξ.

(2) pξαq converges weakly to ξ, and

lim
α
xξα|ξαy “ xξ|ξy (21.22)

Proof. By the (norm-)continuity of x¨|¨y we clearly have p1q ñ p2q. Assume (2).
Then

xξ ´ ξα|ξ ´ ξαy “ xξ|ξy ` xξα|ξαy ´ xξ|ξαy ´ xξ|ξαy

converges to xξ|ξy` xξ|ξy´ xξ|ξy´ xξ|ξy “ 0 by (21.22) and the weak convergence.
So (1) is true.

That (21.22) does not always hold means that the norm function } ¨ } is not
continuous under the weak topology:

Example 21.31. Suppose that penqnPZ`
is an orthormal sequence in an inner prod-

uct space V . Then limn en converges weakly to 0, for instance, by the fact that
ř

n |xξ|eny|
2 ă `8 for all ξ P H (which implies limnxξ|eny “ 0). However,

limn }en} “ 1 ‰ 0.

Prop. 21.30 will be used to prove Thm. 21.34, the main result of the next
section.

21.4 ‹ Key property 1 is a direct consequence of key property 2

In this starred section, we shall give a direct proof that an inner product space
V satisfies Condition (2) of Thm. 21.5 (the convergence of summing orthogonal
vectors) if BV p0, 1q is weakly compact. The word ”direct” means that the proof
will clearly show how weak compactness leads almost directly to the conclusion.
Let us begin the discussion by an easy observation:
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Remark 21.32. If W is a normed vector space and V is a linear subspace, then
we have a canonical linear map W ˚ Ñ V ˚, φ ÞÑ φ|V . It is easy to see (cf. Prop.
10.28) that this map is an isomorphism of Banach spaces if V is dense in W . In
particular, if V is an inner product space with completion H, there is a canonical
isomorphism V ˚ » H˚.

The following lemma tells us that given an inner product space V with com-
pletion H, the weak topology of BV p0, 1q can be described in terms of the vectors
of V but not necessarily of H or V ˚. Thus, you may take Lem. 21.33-(2) as the def-
inition of the weak compactness of BV p0, 1q if you want to invoke Occam’s razor.

Lemma 21.33. Let V be an inner product space. Let pvαq be a net in BV p0, 1q and
v P BV p0, 1q. Then the following are equivalent.

(1) pvαq converges weakly to v.

(2) limαxvα|wy “ xv|wy for all w P V .

Similar to Thm. 17.31, this lemma is not true if BV p0, 1q is replaced by V .

Proof. Let H be the Hilbert space completion of V . So V ˚ » H˚. By Riesz-Fréchet,
(1) means that limxvα|ξy “ xv|ξy for all ξ P H. Thus, one checks easily that (1)ô(2)
using the density of V in H.

Theorem 21.34. Let V be an inner product space. Suppose that the unit ball BV p0, 1q is
weakly compact. Then V satisfies condition (2) of Thm. 21.5.

Proof. Let peiqiPI be an orthonormal family of vectors in V . Let paiqiPI be in C
satisfying λ :“

ř

i |ai|
2 ă `8. By scaling paiqiPI , assume WLOG that λ “ 1. For

each J P finp2Iq, let vJ “
ř

jPJ ajej . Then }vJ}2 “
ř

jPJ |aj|
2. Therefore, pvJqJPfinp2Iq

is a net in BV p0, 1q, and limJPfinp2Iq }vJ}
2 “ 1.

Since BV p0, 1q is weakly compact, pvJq has a subnet pvJβq converging weakly
to some v P BV p0, 1q. In particular, }v}2 ď 1. For each i P I we have

xv|eiy “ lim
β
xvJβ |eiy “ lim

J
xvJ |eiy “ ai

Therefore, by Bessel’s inequality (Cor. 20.22), we have }v}2 ě
ř

iPI |ai|
2 “ 1. Thus

}v}2 “ 1 “ limβ }vJβ}
2. Therefore, by Prop. 21.30, we have limβ vJβ “ v. It is now

easily to see (e.g. by Prop. 5.35) that limJ vJ “ v, i.e.,
ř

iPI aiei converges to v.

Corollary 21.35. Let V be an inner product space. Then V is a Hilbert space iff BV p0, 1q
is weakly compact.

Proof. Cor. 21.27 implies “ñ”. Thm. 21.34 and 21.5 imply “ð”.
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21.5 Problems and supplementary material

Fix Hilbert spaces H,K.

21.5.1 Basic facts about Hilbert spaces

‹ Problem 21.1. Prove that any two orthonormal bases of H have the same cardi-
nality.

Hint. The case dimH ă `8 is obvious by linear algebra. In the case that either
one of the two orthonormal bases is infinite, use Thm. 16.7.

Problem 21.2. Assume that K is a closed linear subspace of H. Define a map
P : H Ñ H such that for each ξ P H, ξ “ Pξ ` p1 ´ P qξ is the orthogonal
decomposition with respect to K. (So Pξ P K and p1 ´ P qξ P KK.) Prove that P is
a bounded linear map, and P 2 “ P , P ˚ “ P . We call P the projection operator of
K.

‹ Problem 21.3. Let P P LpHq satisfying P 2 “ P and P “ P ˚. Prove that P pHq is
a closed linear subspace of H, and P is the projection operator of P pHq.

Recall Pb. 8.2 for the basic properties of lim sup and lim inf.

Problem 21.4. (Fatou’s lemma for Hilbert spaces) Prove that the norm function
ξ P H ÞÑ }ξ} P Rě0 is lower semicontinuous if H is equipped with the weak
topology. In other words, prove that if pξαq is a net in H converging weakly to ξ,
then lim infα }ξα} ě }ξ}.

Note. Give a general argument using the Cauchy-Schwarz inequality. Do not
identify H with l2pXq.

Remark 21.36. The reader may try to prove the following Fatou’s lemma for dual
Banach spaces (which is not difficult to prove): Let V be a normed vector space.
Then the map φ P V ˚ ÞÑ }φ} P Rě0 is lower semicontinuous, where V ˚ is equipped
with the weak-* topology.

Problem 21.5. Let peiqiPI be an orthonormal basis of H.

1. For each A P finp2Xq, let PA P LpHq be defined by PAξ “
ř

iPAxξ|eiyei. Prove
that lim

APfinp2Xq
PA converges pointwise to the identity operator.

2. Let T P LpH,Kq. Use part 1 to prove that for every ξ P H, the RHS of the
following equation converges to the LHS:

Tξ “
ÿ

iPI

xξ|eiyTei (21.23)
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21.5.2 Hilbert’s notion of boundedness

Let X, Y be sets.

Problem 21.6. Let T : l2pY q Ñ l2pXq be a bounded linear map. Prove that T is
uniquely determined by its matrix representation

K : X ˆ Y Ñ C Kpx, yq “ xTχtyu|χtxuy (21.24)

Prove that for each x P X , the RHS of the following converges to the LHS:

pTξqpxq “
ÿ

yPY

Kpx, yqξpyq (21.25)

Hint. Show that the RHS of (21.25) (together with its convergence) is equal to
limBPfinp2Y qxT pχBξq|χtxuy.

Let’s study the question of which8ˆ8matrices are the matrix representations
of bounded linear maps. We first consider the special case that l2pXq “ C, and
write K as a function f : Y Ñ C:

Exercise 21.37. Let f P CY . Prove that

}f}l2pY q “ sup
BPfinp2Y q

sup
gPBl2pY q

p0,1q

xfχB|gy (21.26)

In particular, we have f P l2pY q iff the RHS of (21.26) is finite.

Hint. Use Lem. 21.16 to prove
ÿ

yPB

|fpyq|2 “ sup
gPBl2pBq

p0,1q

xfχB|gy.

‹ Remark 21.38. There is indeed a stronger criterion:

f P l2pY q ðñ sup
BPfinp2Y q

xfχB|gy ă `8 for all g P l2pY q

You can think about how to prove it if you know Baire’s category theorem. (If you
want to know the answer directly, search for ”Banach-Steinhaus theorem”.)

Now, we consider the general case.

Problem 21.7. Let K : X ˆ Y Ñ C. For each A P finp2Xq, B P finp2Y q, define

MA,B “ sup
ψPBl2pXq

p0,1q

ξPBl2pY q
p0,1q

ˇ

ˇ

ˇ

ˇ

ÿ

xPA,yPB

Kpx, yqξpyqψpxq

ˇ

ˇ

ˇ

ˇ

(21.27)

Assume that M ă `8where

M “ sup
APfinp2Xq,BPfinp2Y q

MA,B (21.28)

In the following, lim
A,B

means lim
APfinp2Xq,BPfinp2Y q

.
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1. For each A P finp2Xq, B P finp2Y q, define

TA,B : l2pY q Ñ l2pXq ξ ÞÑ
ÿ

xPA,yPB

Kpx, yqξpyq ¨ χtxu (21.29)

Prove that }TA,B} “MA,B.

2. For each y P Y , prove that lim
A,B

TA,Bχtyu converges in l2pXq.

3. Prove that lim
A,B

TA,B converges pointwise on l2pY q to some bounded linear

T : l2pY q Ñ l2pXq

satisfying }T } “M .

4. Prove that K is the matrix representation of T , i.e., (21.24) is satisfied.

Hint. Part 2: Use Exe. 21.37. Part 3: Use Prop. 17.19 and the fact that tχy : y P Y u
spans a dense subspace of l2pY q.

Remark 21.39. If T : l2pY q Ñ l2pXq is a bounded linear map, then its matrix
representation K clearly satisfies (21.28) ă `8 by Prop. 21.17. Therefore, Pb. 21.7
gives a description of bounded linear maps l2pY q Ñ l2pXq in terms of an explicit
analytic condition on the matrix representations, and (21.28) gives an equivalent
definition of operator norms.

Indeed, the above definitions of bounded “linear maps” and their “operator
norms” (21.28) were introduced by Hilbert in an influential paper published in
1906, i.e., the fourth part (vierter Abschnitt) of [Hil12] (cf. also [Die-H, Sec. 5.2]).
If you compare them with the modern definitions of bounded linear maps and
operator norms in Sec. 10.6 (which are due to F. Riesz), you will notice two fea-
tures.

First, of course, Hilbert’s definition is more explicit and easier to calculate.
Through learning this definition, we know that mathematicians never invent ab-
stract definitions (such as those of Riesz) out of thin air.

The second and more important aspect is that Hilbert’s definitions are not re-
ally about linear operators (i.e. maps from l2pY q to l2pXq), but are about sesquilin-
ear forms. To illustrate this point, let’s start with some preparation.

Definition 21.40. For each linear map T : HÑ K, define a sesquilinear map

ωT : H ˆKÑ C ωT pξ, ηq “ xTξ|ηy (21.30)

Problem 21.8. Let ωp¨|¨q : H ˆKÑ C be sesquilinear. Define its norm

}ω} “ sup
ξPBHp0,1q

ηPBKp0,1q

|ωpξ|ηq| (21.31)
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Clearly }ω} is the smallest element in r0,`8s satisfying

|ωpξ|ηq| ď }ω} ¨ }ξ} ¨ }η} p@ξ P H, @η P Kq

We say that ω is bounded if }ω} ă `8. Prove that the following are equivalent.

(1) ω is bounded.

(2) There exists a (necessarily unique) T P LpH,Kq such that ω “ ωT .

(3) ω is continuous.

(4) ω is continuous at p0, 0q.

Hint. (1)ñ(2): Mimic the proof of Cor. 21.23. (4)ñ(1): Mimic the proof of Prop.
10.25.

Remark 21.41. Pb. 21.8 suggests that Riesz’s language of bounded linear maps
can be translated into Hilbert’s language of bounded sesquilinear forms, and vice
versa. Let us now translate Pb. 21.7 into the language of sesquilinear forms.

Hilbert’s goal is to find a general condition ensuring the existence of a
bounded form ω : l2pY q ˆ l2pXq Ñ C satisfying ωpχy|χxq “ Kpx, yq for all
x P X, y P Y . For each A P finp2Xq, B P finp2Y q, one defines the truncated form
ωA,B : l2pY q ˆ l2pXq Ñ C by

ωA,Bpξ|ψq “
ÿ

xPA,yPB

Kpx, yqξpyqψpxq

(Namely, ωA,B is defined to be ωTA,B
where TA,B “ (21.29).) One wants to find a

condition so that limA,B ωA,B converges pointwise to some continuous function ω
(which is clearly sesquilinear).

The condition found by Hilbert, namely M ă `8 in Pb. 21.7,
::
is

::
a

:::::::::::
condition

::
of

:::::::::::::::::
equicontinuity6: Clearly MA,B “ }ωA,B}. Thus, M ă `8 means that

supA,B }ωA,B} ă `8. This implies that pωA,BqAPfinp2Xq,BPfinp2Y q is an equicontinu-
ous family of functions when restricted to ∆R “ Bl2pY qp0, Rq ˆ Bl2pXqp0, Rq for
every R ą 0. Moreover, this family clearly converges pointwise on the dense sub-
set ∆RXE where E “ Spantχtyu : y P Y uˆSpantχtxu : x P Xu. Therefore, by Prop.
17.10, limA,B ωA,B converges pointwise on each ∆R to some continuous function.7

By considering all R, we get the desired function ω on l2pY q ˆ l2pXq.

‹ Remark 21.42. Soon after Hilbert’s work, in 1906, Hellinger and Toeplitz sim-
plified Hilbert’s boundedness condition by proving that supA,B }ωA,B} ă `8 iff
supA,B |ωA,Bpξ|ψq| ă `8 for all ξ P l2pY q, ψ P l2pXq. Similar to Rem. 21.38, this

6Recall that operator norms are also related to equicontinuity!
7This part is similar to the proof of Pb. 21.7-3, which uses Prop. 17.19, a special case of Prop.

17.10.
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result is nowadays proved using Baire’s category theorem (or its consequence,
the Banach-Steinhaus theorem). To my knowledge, this Hellinger-Toeplitz the-
orem (in its original form) is one of the very few theorems before Riesz’s work
that made full use of the completeness of l2pXq without adopting the viewpoint of
linear operators (cf. [Die-H, Sec. 6.4]).

21.5.3 Direct sums of Hilbert spaces

A tip for solving the problems in this subsection: Use cleverly Prop. 10.28 or
Prop. 17.19 or other “reduction to densely-spanning subsets” tricks to simplify
the proof. (We have already used such tricks in the solution of Pb. 21.7.)

Problem 21.9. Let pHiqiPI be a family of Hilbert spaces. Recall that elements of
ź

iPI

Hi are of the form ξ‚ “ pξiqiPI where ξi P Hi. Then
ź

iPI

Hi is a vector space

whose linear structure is defined componentwise. Define

à

iPI

Hi “

!

pξiqiPI P
ź

iPI

Hi :
ÿ

iPI

}ξi}
2
ă `8

)

(21.32)

equipped with the inner product

xξ‚|η‚y “ xpξiqiPI |pηiqiPIy “
ÿ

iPI

xξi|ηiy (21.33)

Prove that the rightmost term of (21.33) converges (absolutely). Prove that the
inner product space

À

iPI Hi is complete. (So
À

iPI Hi is a Hilbert space, called the
(Hilbert space) direct sum of pHiqiPI .) An element px‚q in

À

iPI Hi is also written
as ‘iPIξi.

Problem 21.10. Let pHiqiPI be a family of Hilbert spaces. For each i P I , choose
Ti P LpHiq. Assume that

sup
iPI
}Ti} ă `8 (21.34)

Prove that there is a unique bounded linear operator T on H :“
À

iPI Hi such that
for each ‘iξi P H,

T p‘iξiq “ ‘ipTiξiq (21.35)

We write T “ ‘iPITi and call it the direct sum of pTiqiPI . Prove that

p‘iTiq
˚
“ ‘ipT

˚
i q (21.36)
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Problem 21.11. Let pHiqiPI be a mutually orthogonal family of closed linear sub-
spaces of H. Assume that this family spans a dense subspace of H. Prove that
there is a unitary map

Φ :
à

iPI

Hi
»
ÝÝÑ H ‘iPI ξi ÞÑ

ÿ

iPI

ξi (21.37)

Hint. Once you have proved that Φ is a linear isometry, to prove that Φ is surjec-
tive, you only need to show that Φ has dense range. (Why?)

Problem 21.12. In Pb. 21.11, choose T P LpHq such that each Hi is T -invariant,
i.e., THi Ă Hi. Thus, the restriction of T to each Hi gives Ti P LpHiq. Clearly
supi }Ti} ď }T } ă `8. Prove that the following diagram commutes:

À

iPI Hi

À

iPI Hi

H H

‘iTi

»Φ Φ»

T

(21.38)

In other words, Φ implements a unitary equivalence of ‘iTi and T .
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22 The birth of Hilbert spaces

22.1 From the Dirichlet problems to integral equations

Around 1906, the Hilbert space l2pZq was introduced by Hilbert and Schmidt
to the study of integral equations. As mentioned in the previous chapter, the
main analytic properties of l2pZq attracting Hilbert and Schmidt are the two key
properties studied in Sec. 21.2 and 21.3 respectively: 1. The norm convergence
(equivalently, the weak convergence, by Prop. 21.30) of

ř

i aiei when
ř

i |ai|
2 ă

`8 and peiqiPI is orthonormal. 2. The weak compactness of the closed unit ball.

22.1.1 Dirichlet problems

The goal of this chapter is to learn how Hilbert and Schmidt used l2pZq and the
above mentioned properties to study integral equations. A main source of inte-
gral equations comes from solving the Poisson equation with Dirichlet bound-
ary condition:

• Let Ω be a compact region in RN with interior Ω and smooth boundary BΩ.1

Given good enough (say Cr, or C8) functions g on BΩ and φ on Ω, find good
enough u on Ω satisfying

´∆u|Ω “ φ u|BΩ “ g (22.1)

Here, ∆ is the Laplacian B21 ` ¨ ¨ ¨ ` B2N .

In the following, we abbreviate ´∆u|Ω to ´∆u.
The Tietze type extension gives a good rg on Ω with rg|BΩ “ g. Then (22.1)

becomes´∆pu´rgq “ φ`∆rg with pu´rgq|BΩ “ 0. Therefore, (22.1) can be reduced
to the special case

´∆u “ φ u|BΩ “ 0 (22.2)

By replacing Ω with a more general smooth compact manifold with (or without)
boundary, this problem, and also the Helmholtz equation

´∆u “ λu u|BΩ “ 0 (22.3)

have wide applications in differential geometry and in other types of differential
equations. (For example, let v “ vpt, x1, . . . , xNq, then the heat equation Btv “
∆v and the wave equation B2t v “ ∆v can be solved by v “

ř

j e
´λjtuj and v “

ř

j e
˘i
?
λjtuj where ´∆uj “ λjuj .)

1Technically speaking, Ω is a compact smooth n-dimensional submanifold of RN with bound-
ary
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22.1.2 Compact operators (i.e. completely continuous operators)

The following is roughly the modern treatment of the Dirichlet problem
(22.2): Let L2pΩq be the Hilbert space of Lebesgue integrable functions u : Ω Ñ C
satisfying

ş

Ω
|u|2 ă `8. The inner product is given by xu|vy “

ş

Ω
uv˚. One shows

that ´∆, defined on a suitable dense linear subspace of L2pΩq, has a bounded
inverse T P LpL2pΩqq satisfying xTξ|ξy ě 0 for all ξ P L2pΩq.2 (Namely, T is a
bounded positive operator.) Thus, the problem (22.2) has solution u “ Tφ in
L2pΩq. An analysis of regularity (with the help of Sobolev spaces) then shows that
u is good enough.

Moreover, one shows that T is a compact operator (equivalently, a completely
continuous operator, cf. Def. 22.3):

Definition 22.1. A linear map T : V Ñ W of Banach spaces is called compact if
T pBV p0, 1qq is precompact in W (under the norm topology).

According to the Hilbert-Schmidt theorem (to be learned in this chapter), T
has countably many eigenvalues λ1 ě λ2 ě ¨ ¨ ¨ ě 0 satisfying limn λn “ 0, and the
(normalized) eigenvectors of T form an orthonormal basis of L2pΩq. The regular-
ity analysis also shows that the eigenvectors of T are smooth. Thus, the eigen-
value problem (22.3) can be fully solved.

We refer the interested readers to [Eva, Ch. 6], [Tay] (especially Sec. 5.1), [Yu]
(especially Sec. 78-80) for a detailed study of this topic.

22.1.3 From Dirichlet problems to integral equations

In the days of Hilbert and Schmidt, the Dirichlet problem (22.1) was under-
stood in a different way by transforming it to a problem about integral equations.
It was in the process of solving these integral equations that the Hilbert space
l2pZq was discovered. In the following, I will sketch how to transform Dirichlet
problems to integral equations using “double layer potentials”. Cf. [Fol-P, Sec.
3C] (where all the statements are accompanied by detailed proofs), [Sim-O, Sec.
3.3], or [RN, Sec. 81]. A discussion of the history of this method can be found in
[Die-H, Sec. 2.5].

Set x “ px1, . . . , xNq. Without imposing the boundary condition u|BΩ, and as-
suming that the φ in ´∆u “ φ can be extended to a good function on RN with
compact support, then ´∆u “ φ has a solution

upxq “ pΦ ˚ φqpxq “

ż

RN

Φpx´ yqφpyqdy

2In the case that Ω is a compact manifold without boundary, ´∆ should be replaced by C ´ ∆
where C ą 0.
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where Φ, called the fundamental solution, is defined by

Φpxq “

$

’

&

’

%

´
1

2π
log }x} if N “ 2

1

pN ´ 2qσN´1 ¨ }x}N´2
if N ě 3

(22.4)

where σN´1 “ 2π
N
2 ΓpN{2q´1 is the volume of SN´1 “ tx P RN : }x} “ 1u. ∆Φ is

the delta function at 0. In particular, it is zero outside 0. Cf. [Eva, Sec. 2.2.1].
By replacing u with u ´ Φ ˚ φ, (22.1) is transformed to the harmonic equation

(with Dirichlet boundary condition)

´∆u “ 0 u|BΩ “ g (22.5)

Write ∇v “ pB1v, . . . , BNvq for each differentiable function v on subsets of RN . For
each y P BΩ we let ny be the outward pointing unit vector at y orthogonal to (the
tangent space of) BΩ at y. Define Gpx, yq for each x P RN , y P BΩ by

Gpx, yq “
@

p∇Φqpx´ yq,ny
D

“
xy ´ x,nyy

σN´1}x´ y}N
(22.6)

For each x P RN and continuous function f on BΩ, define pDfqpxq “
ş

BΩ
fpyqp∇Φqpx ´ yq ¨ dS where the RHS is a “surface integral of second type”,

i.e.

pDfqpxq “
ż

BΩ

Gpx, yqfpyqdy (22.7)

When x P BΩ, this is an improper integral, which converges because

Gpx, yq „ }x´ y}2´N (22.8)

when x P BΩ approaches y. (Note that
ş

U
}y}2´Ndy converges if U Ă RN´1 is a

bounded neighborhood of 0.)
Df is not continuous at the points of BΩ. However, if we define u : ΩÑ C by

upxq “

"

pDfqpxq if x P Ω
fpxq ` pDfqpxq if x P BΩ (22.9)

then u is continuous on Ω. Moreover, ∆u “ 0 on Ω since ∆Gpx, yq “ 0 when
x ‰ y. Therefore, the Dirichlet problem (22.5) can be solved if there exists a good
function f on BΩ such that f `Df |BΩ “ g.

To summarize, define an integral operator T on the space L2pBΩq of Lebesgue
square integrable functions by

pTfqpxq “

ż

BΩ

Gpx, yqfpyqdy (22.10)

The equation (22.5) has solution (22.9) if there is an (at least continuous) f : BΩÑ
C satisfying f`Tf “ g. The problem is then reduced to finding such f for a given
g.

380



22.1.4 Summary of the problem of integral equations

Given a function g on BΩ, we want to find a function f on BΩ satisfying

f ` Tf “ g (22.11a)

Moreover, we shall consider the case that N “ 2 and hence dim BΩ “ 1, which
is in line with history. Let us assume that BΩ has only one connected component
so that BΩ » S1. So we view f, g also as 2π-periodic functions with L2-norms

}f} “
b

1
2π

şπ

´π
|f |2 and }g} “

b

1
2π

şπ

´π
|g|2. Then

pTfqpxq “
1

2π

ż π

´π

Kpx, yqfpyqdy (22.11b)

where Kpx, yq “ Gpx, yq ¨ λpyqλpxq for some λ P C8pS1,Rq defined by the change
of variable from BΩ to S1 (similar to the function Φ1 in (13.31)).

Since G takes real values, so does K. (22.8) suggests that K is uniformly
bounded on S1 ˆ S1. Indeed, K is continuous (cf. [RN, Sec. 81]). However,
we will only need the weaker fact that K P L2pS1 ˆ S1q, i.e. 3

}K}L2 “
1

p2πq2

ż π

´π

ż π

´π

|Kpx, yq|2dydx ă `8 (22.12)

In finite-dimensional linear algebra, we know that a linear operator is surjec-
tive iff it is injective. If this is the case for 1 ` T , then solving p1 ` T qf “ g can be
reduced to the easier task of proving that ´1 is not an eigenvalue of T . However,
there are bounded linear operators on infinite dimensional function spaces that
are injective but not surjective: Consider the right translation operator on l2pNq,
which is the bounded linear operator sending each χtnu to χtn`1u.

To understand the behavior of T , and to solve other problems leading to inte-
gral equations, it turns out that we must have a good understanding of the eigen-
values and eigenvectors of T . As soon as we understand the eigenvalue problem
of T very well, we can prove the theorem of Fredholm alternative, which says
that Kerp1` T q “ 0 iff 1` T is surjective.

22.2 Discretizing the integral equations

Fix K P L2pS1 ˆ S1q. (The readers can assume for simplicity that K is continu-
ous, which is often the case when K is defined by the 2d Dirichlet problem as in
Subsec. 22.1.4.) Define the integral operator T sending each 2π-periodic function
f to Tf , where

pTfqpxq “
1

2π

ż π

´π

Kpx, yqfpyqdy (22.13)

3When N ą 2, we do not necessarily have }K}L2 ă `8. However, T is always a completely
continuous operator (equivalently, a compact operator) on L2pBΩq. See [Fol-P] Sec. 3.B, Prop. 3.11.
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K is called the kernel of T . Our goal is to understand the eigenvalues and eigen-
vectors of T .

Hilbert’s idea is to use Fourier series. Functions on S1 ˆ S1 have Fourier series
of the form

ř

m,n am,ne
ip´nx`myq in a similar way as functions on S1. Therefore, for

each m,n P Z, define the Fourier coefficient

pKpm,nq “ xTen|emy “
1

p2πq2

ż π

´π

ż π

´π

Kpx, yqeipnx´myqdxdy (22.14)

Then, by Thm. 20.35, we get f “
ř

n
pfnen and g “

ř

m pgmem, and hence

xTf |gy “
ÿ

m,n

pKpm,nq pfpnqpgpmq “ xpT pf |pgy

if we view pf, pg as in l2pZq and define a linear map pT : l2pZq Ñ l2pZq by

ppT pfqpmq “
ÿ

nPZ

pKpm,nq pfpnq (22.15)

By applying Parseval’s identity to K, we obtain
ř

m,n |
pKpm,nq|2 “

p2πq´2
ş ş

Kpx, yqdxdy (which is a finite number), and hence

pK P l2pZˆ Zq (22.16)

Thus, to understand the original integral equation, one must first understand the
equation

pf ` pK pf “ pg (22.17)

In fact, at this point, Hilbert did not have the notion of l2pZq and L2 yet. How-
ever, the idea of transforming the eigenvalue problem about T to that about the
matrix pK without introducing l2pZq is conceivable. After all, almost every mathe-
matical progress leaves some questions about rigor until the end.

Remark 22.2. Parseval’s identity 1
2π

şπ

´π
|f |2 “

ř

n |
pfpnq|2 is well-known by the

time Hilbert studied integral equations around 1906. However, Parseval’s iden-
tity is far from enough to motivate the notion of l2pZq: Unlike the completeness
of l2pZq or the weak compactness of Bl2pZqp0, 1q, Parseval’s identity is a property
about individual functions, not about the set of all functions and their interactions.

In the remaining sections, we will forget the original function K on S1 ˆ S1, as
Hilbert did, and focus on the matrix pK P l2pZˆZq. Thus, we will let K denote pK,
or denote a general function X ˆ Y Ñ C where X, Y are sets.
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22.3 Hilbert’s complete continuity

We fix Hilbert spaces H and K. Let X, Y be sets. For each linear map T : H Ñ

K we let

ωT : H ˆKÑ C ωT pξ|ηq “ xTξ|ηy (22.18)

In his important 1906 paper, Hilbert introduced two crucial analytic properties
about sesquilinear forms. The first one is boundedness (i.e., the condition M ă

`8 in Pb. 21.7), which is equivalent to the boundedness of linear maps between
Hilbert spaces. See Subsec. 21.5.2 for details. In particular, we have the obvious
fact

T P LpH,Kq ñ ωT is continuous (22.19)

The second condition is stronger than the first one (cf. [Hil12, p.147]): A
sesquilinear ω : H ˆ K Ñ C is called completely continuous if ω is weakly con-
tinuous when restricted to BHp0, 1q ˆ BKp0, 1q. It is easy to adapt this definition
to linear maps:

Definition 22.3. A linear map T : HÑ K is called completely continuous if ωT is
continuous on BHp0, 1qˆBKp0, 1qwhere BHp0, 1q and BKp0, 1q are equipped with
their weak topologies.

Thus, complete continuity means that if pξαq converges weakly in BHp0, 1q to
ξ and pηαq converges weakly in BKp0, 1q to η, then limαxTξα|ηαy “ xTξ|ηy.

Completely continuous sesquilinear forms are clearly continuous (i.e.,
bounded, cf. Pb. 21.8). Thus, it is not hard see:

Lemma 22.4. A completely continuous linear map T : HÑ K is bounded.

Proof. ωT is weakly continuous and hence continuous onBHp0, 1qˆBKp0, 1q. Since
BHp0, 1qˆBKp0, 1q is a neighborhood of p0, 0q in HˆK, the function ωT : HˆKÑ C
is continuous at p0, 0q. Thus, there exists ε ą 0 such that |ωT pξ|ηq| ď 1 whenever
}ξ} ď ε, }η} ď ε. Thus, whenever }ξ} ď 1, }η} ď 1, we have

|ωT pξ|ηq| “ ε´2
|ωT pεξ|εηq| ď ε´2

By Prop. 21.17, we have }T } ď ε´2 ă `8.

Example 22.5. Assume that H is an infinite-dimensional Hilbert space. Then its
identity operator 1 is not completely continuous. This is because ω1 is the inner
product function pξ, ηq P H ˆH ÞÑ xξ|ηy P C, which is not weakly continuous by
Exp. 21.31.
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Exercise 22.6. Show that a finite linear combination of completely continuous op-
erators is continuous. Show that the adjoint of a completely continuous operator
is completely continuous. Show that if T P LpH1,H2q and S P LpH2,H3q where
each Hi is a Hilbert space, and if one of T and S is completely continuous, then
ST : H1 Ñ H3 is completely continuous. In particular, the set of completely
continuous operators on H is a two-sided ideal of LpHq.

The easiest examples of completely continuous maps are finite-rank operators:

Definition 22.7. A linear map of vector spaces is said to have finite rank if its
range is finite-dimensional.

Proposition 22.8. Let T P LpH,Kq. The following are equivalent:

(1) T has finite rank.

(2) There exist finitely many vectors µ1, . . . , µn P H and η1, . . . , ηn P K such that for
all ξ P H,

Tξ “
n
ÿ

i“1

xξ|µiyηi (22.20)

Note that without assume that T is bounded, (1) does not imply (2).

Proof. “(2)ñ(1)” is obvious. Assume (1). Restrict the inner product of K to the
finite-dimensional V “ T pHq. By Gram-Schmidt, V is spanned by an orthonormal
set of vectors η1, . . . , ηn. Then, for each ψ P V we have (by Thm. 20.35) ψ “
řn
i“1xψ|ηiyηi. Therefore

Tξ “
ÿ

i

xTξ|ηiyηi “
ÿ

i

xξ|µiyηi

where µi “ T ˚ηi.

Example 22.9. If T P LpH,Kq has finite rank, then T is completely continuous.

Proof. By Prop. 22.8, and by linearity, it suffices to assume that T takes the form
Tξ “ xξ|µyη for some µ P H, η P K. Then ωT pξ|ψq “ xξ|µyxη|ψy is clearly weakly
continuous with respect to ξ and ψ.

In order to have nontrivial examples of completely continuous operators, we
need the following simple fact:

Theorem 22.10. Let pTαq be a net of completely continuous maps HÑ K. Assume that
T : HÑ K is linear and limα }T ´ Tα} “ 0. Then T is completely continuous.
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Proof. By Cor. 21.18, ωTα converges uniformly on BHp0, 1q ˆ BKp0, 1q to ωT . Since
the uniform limit of a net of continuous functions is continuous, we conclude that
ωT is weakly continuous on BHp0, 1q ˆBKp0, 1q.

Motivated by the above theorem, we make the following definition:

Definition 22.11. We say that a linear map T : H Ñ K is approximable if there
exists a net (equivalently, a sequence) of finite-rank operators pTαq in LpH,Kq such
that limα }T ´ Tα} “ 0. Approximable operators are clearly bounded.

Theorem 22.12. Let T : HÑ K. Then T is approximable iff T is completely continuous.

‹ Proof. Since finite-rank bounded linear operators are completely continuous, by
Thm. 22.10, approximability implies complete continuity. Conversely, assume
that T is completely continuous. Assume WLOG that H “ l2pY q and K “ l2pXq.
For each A P finp2Xq and B P finp2Y qwe set

TA,B : l2pY q Ñ l2pXq TA,Bξ “ χA ¨ T pχBξq (22.21)

which is a bounded linear map of finite rank. We claim that limA,B }T ´TA,B} “ 0.
By Cor. 21.18, we need to show that pωTA,B

qAPfinp2Xq,BPfinp2Y q converges uni-
formly on Ω “ Bl2pY qp0, 1q ˆBl2pXqp0, 1q to ωT . We equip Ω with the product weak
topology, which is compact by Cor. 21.27. Since each ωTA,B

is (weakly) continuous,
by Thm. 9.12 and Prop. 9.16, it suffices to prove that

lim
A,B,ξ1,η1

|ωT pξ
1
|η1
q ´ ωTA,B

pξ1
|η1
q| “ |ωT pξ|ηq ´ ωT pξ|ηq| “ 0

where ξ1 converges weakly to ξ and η1 converges weakly to η. Equivalently, it
suffices to prove that for each net pξi, ηiqiPI in Ω converging to pξ, ηq P Ω, we have

lim
A,B,i

|xpT ´ TA,Bqξi|ηiy| “ 0

Clearly limxTξi|ηiy “ xTξ|ηy since T is completely continuous. Note that
xTA,Bξi|ηiy “ xTχBξi|χAηiy. It remains to show that this expression also converges
to xTξ|ηy. Since T is completely continuous, it suffices to prove that limB,i χBξi
converges weakly to ξ and limA,i χAηi converges weakly to η.

By Thm. 17.31, we know for each y P Y that limi ξipyq “ ξpyq and hence
limB,i χBpyqξipyq “ ξpyq. By Thm. 17.31 again, we conclude that limB,i χBξi con-
verges weakly to ξ. The second (weak) limit can be proved in the same way.

Remark 22.13. Since the proof of the direction “ð” in Thm. 22.12 is slightly more
complicated (although the main idea is clear), we will not use this direction in the
future. But see Rem. 22.39 for an alternative proof.
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Remark 22.14. In the proof of Thm. 22.12 we have shown that if T : l2pY q Ñ l2pXq
is completely continuous, then

lim
APfinp2Xq,BPfinp2Y q

}T ´ TA,B} “ 0 (22.22)

In contrast, if T is only bounded, then it is easy to see that limA,B TA,B converges
pointwise to T .

22.4 Hilbert-Schmidt operators

Let X and Y be sets. Recall Pb. 21.6 for the basic facts about matrix represen-
tations.

Theorem 22.15. Let K P l2pX ˆ Y q. Then K is the matrix representation of a (neces-
sarily unique) completely continuous T : l2pY q Ñ l2pXq. Moreover, we have

}T } ď }K}l2 (22.23)

Such T is called a Hilbert-Schmidt operator. See Pb. 22.2 for the general
definition of Hilbert-Schmidt operators.

Lemma 22.16. Thm. 22.15 is true when X, Y are finite sets.

Proof. The only nontrivial part is }T } ď }K}l2 . By Prop. 21.17, it suffices to prove
for all f P Bl2pY qp0, 1q and g P Bl2pXqp0, 1q that |xTf |gy| ď }K}2. But

|xTf |gy| “
ˇ

ˇ

ˇ

ÿ

x,y

Kpx, yqfpyqgpxq
ˇ

ˇ

ˇ
“ |xK|Γy| ď }K}2 ¨ }Γ}2

where Γ : X ˆ Y Ñ C is defined by Γpx, yq “ fpyqgpxq. Since

}Γ}22 “
ÿ

x,y

|fpyq2gpxq2| “
ÿ

y

|fpyq|2 ¨
ÿ

x

|gpxq|2 ď 1

we have |xTf |gy| ď }K}2.

Proof of Thm. 22.15. For each Ω P finp2XˆY q, let KΩ : X ˆ Y Ñ C be KΩ “ KχΩ.
Let TΩ : l2pY q Ñ l2pXq be the finite rank operator whose matrix representation is
KΩ, namely,

TΩξ “
ÿ

px,yqPΩ

Kpx, yqξpyq ¨ χtxu (22.24)

Since K P l2pX ˆ Y q, we know that limΩ }K ´KΩ}2 “ 0, and hence pKΩqΩPfinp2XˆY q

is a Cauchy net in l2pX ˆ Y q. For each Ω,Γ P finp2XˆY q, since TΩ ´ TΓ has matrix
representation KΩ ´KΓ, by Lem. 22.16 we have

}TΩ ´ TΓ} ď }KΩ ´KΓ}l2
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Therefore limΩ,Γ }TΩ ´ TΓ} “ 0, i.e., pTΩq is a Cauchy net in Lpl2pY q, l2pXqq. By
Thm. 17.35, Lpl2pY q, l2pXqq is complete. So limΩ TΩ converges under the operator
norm to some T P Lpl2pY q, l2pXqq.

Clearly T has matrix representation K. Since each TΩ has finite rank, by Thm.
22.12, T is completely continuous. Finally, by Lem. 22.16, }TΩ} ď }KΩ}2 ď }K}2
for all Ω. Taking limΩ, we get }T } ď }K}2.

Remark 22.17. In the above proof, we have used the completeness of
Lpl2pY q, l2pXqq, which relies on the completeness of l2pXq. This seems contra-
dictory to our earlier statement that Hilbert and Schmidt did not rely on the
completeness of l2 spaces to study integral equations. In fact, there is no con-
tradiction since Hilbert took the sesquilinear form perspective: One can modify
the above proof by showing that for every R ą 0, ωTΩ converges uniformly on
Bl2pXqp0, Rq ˆ Bl2pXqp0, Rq to some function ω. This gives the desired completely
continuous sesquilinear form for T without using the completeness of l2 spaces.

22.5 Triumph of weak(-*) compactness: the Hilbert-Schmidt the-
orem

Fix a Hilbert space H. For each T P LpHq, let ωT : H ˆ H Ñ C be ωT pξ|ηq “
xTξ|ηy as usual.

Recall from linear algebra that λ P C is called an eigenvalue of T if there is a
nonzero ξ P H such that Tξ “ λξ. In this case, ξ is called the λ-eigenvector of T .

22.5.1 Self-adjoint operators and positive operators

Definition 22.18. Let T P LpHq. We say that T is self-adjoint if one of the follow-
ing conditions hold:

(1) T “ T ˚.

(2) xTξ|ηy “ xξ|Tηy for all ξ, η P H.

(3) The sesquilinear form ωT is a Hermitian.

(4) xTξ|ξy P R for all ξ P H.

Proof of equivalence. Since we always have xTξ|ηy “ xξ|T ˚ηy, the equivalence
(1)ô(2) is obvious. Recall that ωT is Hermitian iff ωT pξ|ηq “ ωT pη|ξq. But
ωT pη|ξq “ xTη|ξy “ xξ|Tηy, which equals xTξ|ηy for all ξ, η iff (2) is true. This
proves (2)ô(3). By Prop. 20.7, we have (3)ô(4).

Remark 22.19. Let T P LpHq. Assume that E Ă H spans a dense subspace of
H. By sesquilinearity, and by the continuity of x¨|¨y, T is self-adjoint iff xTξ|ηy “
xξ|Tηy for all ξ, η P E. Therefore:
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Example 22.20. Let X be a set. Let T P Lpl2pXqq. Let K : X ˆ X Ñ C be the
matrix representation of T , i.e., Kpx, yq “ xTχtyu|χtxuy for all x, y P Y . Then T is
self-ajoint iff Kpx, yq “ Kpy, xq for all x, y P Y .

Proof. This is because tχtxu : x P Xu spans a dense subspace, and Kpy, xq “

xTχtyu|χtxuy “ xχtxu|Tχtyuy.

Definition 22.21. Let T P LpHq. We say that T is positive and write T ě 0 if
xTξ|ξy ě 0 for all ξ P H. Positive operators are clearly self-adjoint. More generally,
if S, T P LpHq, we write

S ď T ðñ T ´ S ě 0 (22.25)

In other words, S ď T means xSξ|ξy ď xTξ|ξy for all ξ P H. Clearly “ď” is a partial
order on LpHq.4

Self-adjoint operators and positive operators are analogous to real-valued
functions and positive functions. We will make this analogy precise in the future.
At this point, let us see an example of the analogy:

Example 22.22. Suppose that T P LpHq is self-adjoint, and λ ě }T }. Then λ ` T
and λ´ T are positive, i.e., ´λ ď T ď λ.

Proof. Since xTξ|ξy ď }T } ¨ }ξ}2 ď λxξ|ξy, we get T ď λ. Similarly, ´T ď λ.

The following two basic facts will be used in the proof of the Hilbert-Schmidt
theorem:

Lemma 22.23. Suppose that T P LpHq is positive. Assume that ξ P H satisfies xTξ|ξy “
0. Then Tξ “ 0.

Proof. Our assumption is ωT pξ|ξq “ 0. Since the sesquilinear form ωT is posi-
tive, by Cauchy-Schwarz (cf. Rem. 20.24), for each η P H we have |ωT pξ|ηq|2 ď
ωT pξ|ξqωT pη|ηq “ 0 and hence xTξ|ηy “ 0. (Alternatively, one can use (20.9) to
show ωT pξ|ηq “ 0.) Therefore Tξ “ 0.

Definition 22.24. Let T P LpHq. We say that a linear subspace K Ă H is invariant
under T (or simply T -invariant) if TH Ă H.

Proposition 22.25. Let T P LpHq. Let K be a linear subspace of H. Suppose that K is
invariant under T and T ˚. Then so is KK.

In particular, if T is self-adjoint and K is T -invariant, then KK is T -invariant.

Proof. Let η P KK. Then xTη|Ky “ xη|T ˚Ky Ă xη|Ky “ 0 and xT ˚η|Ky “ xη|TKy Ă
xη|Ky “ 0. So Tη, T ˚η P KK.

Remark 22.26. Prop. 22.25 gives a simple method of decomposing the action of
T : If K is invariant under T, T ˚, then by Pb. 21.12, T is unitarily equivalent to the
“block diagonal operator” T |K ‘ T |KK .

4Note that if T ď S and S ď T , then ωT´Spξ|ξq “ 0 for all ξ. By the polarization identity (20.3),
we get ωT´S “ 0 and hence T “ S.

388



22.5.2 The Hilbert-Schmidt theorem

We first prove the Hilbert-Schmidt theorem for positive operators.

Theorem 22.27 (Hilbert-Schmidt theorem). Assume that T P LpHq is positive and
completely continuous. Then H has an orthonormal basis pe1, e2, . . . q Y pfjqjPJ , where
the countable family pe1, e2, . . . q is possibly finite, such that:

(a) Ten “ λnen for some λn P R, and Tfj “ 0.

(b) λ1 ě λ2 ě ¨ ¨ ¨ ą 0.

(c) If pe1, e2, . . . q is infinite, then limn λn “ 0.

Before proving this theorem, we give an interpretation:

Remark 22.28. In Thm. 22.27, write pe1, e2, . . . q as peiqiPI where I “ Z` or I “
t1, 2, . . . , Nu for some N P Z`. Let X “ I \ J . Let Φ : l2pXq Ñ H be the unitary
map sending each φ to

ř

xPX φpxqχtxu. Then we have a commutative diagram

l2pXq l2pXq

H H

pT

»Φ Φ»

T

(22.26)

where pT has matrix representation

diagpλ1, λ2, . . . , p0qjPJq (22.27)

i.e., for each i P I, j P J , we have pTχtiu “ λiχtiu and Tχtju “ 0. A similar descrip-
tion holds in Thm. 22.29.

Thm. 22.27 will be proved by finding e1, e2, . . . inductively. pfjqjPJ will be an
arbitrary orthonormal basis of KerpT q.

Proof of Thm. 22.27. We make our first simplification by noting that (b) can be
weakened to

(b’) λ1 ě λ2 ě ¨ ¨ ¨ ě 0.

Then, by moving those of e1, e2, . . . with 0-eigenvalue to the list pfjqj,PJ , the theo-
rem is proved. Moreover, we assume for simplicity that H is infinite dimensional;
the finite dimensional case will follow from a similar but easier proof.

Step 1. We first explain how to find λ1, e1. Let Ω “ BHp0, 1q. Since T is com-
pletely continuous, the function g : Ω Ñ Rě0 defined by gpξq “ ωT pξ|ξq “ xTξ|ξy
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is weakly continuous. By Cor. 21.27, Ω is weakly compact. Therefore, by the ex-
treme value theorem (Lem. 8.9), g attains its maximum λ1 “ gpe1q ě 0 at some
e1 P Ω. Since g attains its minimum at 0, it suffices to assume e1 ‰ 0. Since
gpe1{}e1}q “ }e1}

´2gpe1q ě gpe1q, by replacing e1 by e1{}e1}, we assume }e1} “ 1.
Since xTξ|ξy ď λ1 for any unit vector ξ P H, by (sesqui)linearity, we get

xTξ|ξy ď λ1xξ|ξy for all ξ P H (22.28)

This proves 0 ď T ď λ1.
Since xpλ1 ´ T qe1|e1y “ 0 and λ1´T ě 0, by Lem. 22.23, we get pλ1´T qe1 “ 0.

This finishes the construction of λ1 and e1.

Step 2. Suppose that we have found λ1 ě ¨ ¨ ¨ ě λn ě 0 and orthonormal
e1, . . . , en such that Tei “ λiei for all 1 ď i ď n, and that

xTξ|ξy ď λnxξ|ξy for all ξ P V K
n (22.29)

Here, Vn “ Spante1, . . . , enu, which is a finite-dimensional Hilbert subspace of H.
Clearly Vn is T -invariant. Therefore, by Prop. 22.25, V K

n is T -invariant. (Here
we have used T “ T ˚.) Clearly T |V K

n
ě 0. By the process in Step 1, there exists

a unit vector en`1 P V K
n such that Ten`1 “ λn`1en`1 for some λn`1 P Rě0, and

xTξ|ξy ď λn`1xξ|ξy for all ξ P V K
n . Since (22.29) holds for ξ “ en`1, we have

0 ď λn`1 ď λn.

Step 3. By the inductive process in Step 2, we obtain an (infinite) orthonormal
sequence penqnPZ`

satisfying that Ten “ λnen, that λ1 ě λ2 ě ¨ ¨ ¨ ě 0, and that
(22.29) holds for each n. We claim that limn λn “ 0. Suppose this is true. Let
K “ Spante1, e2, . . . u. By (22.29), for any vector ξ P KK we have xTξ|ξy “ 0, and
hence Tξ “ 0 by Lem. 22.23. 5 So T |KK “ 0. Thus, the proof is finished by
choosing pfjq to be an orthonormal basis of KK: By Thm. 21.11, an orthonormal
basis of H can be obtained by taking the union of one of K and one of KK.

Let us prove the claim. Let λ “ limn λn “ infn λn. So λ “ limnxTen|eny. Since
limn en converges weakly to 0 (cf. Exp. 21.31), and since T is completely continu-
ous, we have limnxTen|eny “ xT0|0y “ 0. So λ “ 0.

Thm. 22.27 can be easily generalized to self-adjoint completely continuous
operators by slightly weakening condition (b):

Theorem 22.29 (Hilbert-Schmidt theorem). Assume that T P LpHq is self-adjoint
and completely continuous. Then H has an orthonormal basis pe1, e2, . . . q Y pfjqjPJ ,
where the countable family pe1, e2, . . . q is possibly finite, such that:

(a) Ten “ λnen for some λn P R, and Tfj “ 0.

5Since KK is T -invariant, one can also use the polarization identity (20.3) (applied to T |KK :
KK Ñ KK) instead of Lem. 22.23 to conclude Tξ “ 0.
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(b) |λ1| ě |λ2| ě ¨ ¨ ¨ ą 0.

(c) If pe1, e2, . . . q is infinite, then limn λn “ 0.

Proof. As in the proof of Thm. 22.27, (b) can be weakened to |λ1| ě |λ2| ě ¨ ¨ ¨ ě 0.
One then produces orthonormal e1, e1

1, e2, e
1
2, . . . such that Ten “ µnen and Te1

k “

µ1
ke

1
k for each n, k, that µ1 ě µ2 ě ¨ ¨ ¨ ě 0 and µ1

1 ď µ1
2 ď ¨ ¨ ¨ ď 0, and that

xTξ|ξy ď µnxξ|ξy if ξ K te1, . . . , enu
µ1
kxξ|ξy ď xTξ|ξy if ξ K te1

1, . . . , e
1
ku

(To see this, one first finds e1 as in the proof of Thm. 22.27. Restricting´T to te1uK,
one finds e1

1. Restricting T to te1, e1
1u

K, one finds e2. Restricting ´T to te1, e1
1, e2u

K,
one finds e1

2. Repeat this procedure.)

Remark 22.30. The converse of Thm. 22.29 is also true: If T P LpHq has an or-
thonormal basis pe1, e2, . . . q Y pfj : j P Jq satisfying the description in Thm. 22.29,
then T is self-adjoint and completely continuous. In fact, by Rem. 22.28, it suffices
to prove:

Exercise 22.31. Let I “ Z` or t1, . . . , Nu. Let J be a set. Let X “ I \ J . Choose
pλiqiPI in Czt0u satisfying limi λi “ 0 if I “ Z`. Prove that there is a (necessarily
unique) completely continuous T P Lpl2pXqq satisfying Tχtiu “ λiχtiu for all i P I ,
and Tχtju “ 0 for all j P J . Prove that T “ T ˚ iff λi P R for all i P I .

Hint. Define T to be the limit (under the operator norm) of a sequence of finite-
rank operators. Then the complete continuity follows from Thm. 22.12.

Remark 22.32. Not all completely continuous operators are Hilbert-Schmidt: Ac-
cording to Exe. 22.31, we have a completely continuous operator on l2pZ`qwhose
matrix representation is diagp1, 1{

?
2, 1{

?
3, . . . q. It is not Hilbert-Schmidt, be-

cause
ř

n n
´1 “ `8.

Corollary 22.33 (Fredholm alternative). Let T P LpHq be self-adjoint and completely
continuous. Let λ P Rzt0u. Then one of the following two, and only one of them, is true:

(1) λ is an eigenvalue of T , i.e., Tξ “ λξ for some nonzero ξ P H.

(2) λ´ T is surjective.

In other words, λ´ T is surjective iff λ is not an eigenvalue.

Proof. Assume for simplicity that H is infinite dimensional. By Hilbert-Schmidt
Thm. 22.29, we may assume that H “ l2pXq where X “ Z` \ J and J is a set.
We assume that there is a sequence pλnqnPZ`

in R such that |λn| decreases to 0, and
that T has matrix representation diagpλ1, λ2, . . . , p0qjPJq.

If λ “ λn for some n, then clearly χtnu is not in the range of λ ´ T . So λ ´ T is
not surjective. Conversely, suppose that λ ‰ λn for all n. For each η P l2pXq, let
ξ : X Ñ R be defined by ξpnq “ pλ ´ λnq

´1ηpnq if n P Z`, and ξpjq “ λ´1ηpjq if
j P J . Then clearly ξ P l2pXq, and pλ´ T qξ “ η.
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22.6 Concluding remarks

22.6.1 On the proof of the Hilbert-Schmidt theorem

The proof of the Hilbert-Schmidt theorem in the last section, despite written in
the modern language, is very close to the proof in Hilbert’s 1906 paper, the fourth
part of his work [Hil12]. (Hilbert’s proof is located in p.148-150 of [Hil12].)

The two key properties in Ch. 21 are the only analytic properties6 used in the
proof of the Hilbert-Schmidt theorem. The key property 2, the weak compactness
of BHp0, 1q, is the most crucial one. In the proof of Thm. 21.11, we have used
this property to find the unit vector e1 maximizing the function gpξq “ xTξ|ξy
defined on BHp0, 1q. This method is heavily influenced by the method of varia-
tion, and is compatible with Hilbert’s sesquilinear form viewpoint (rather than
Riesz’s operator viewpoint). The subsequent vectors e2, e3, . . . are constructed
in the same way by restricting T to orthogonal complements of finite dimen-
sional subspaces. Hilbert used exactly the same method in his work!

::::
The

:::::::
weak

::::::::::::::
compactness

::
of

::::::::::::
Bl2pZqp0, 1q::

is
::::
the

:::::::
single

::::::
most

:::::::::::
important

:::::::
reason

:::::
that

::::::::
Hilbert

::::::::
spaces

:::::
were

::::::::::::
introduced

:::
in

:::::::::
history.

The key property 1, the convergence of summing orthogonal vectors, is used
to ensure the existence of the orthogonal decompositions (cf. the proof of Thm.
21.11). In the proof of Thm. 22.27, this property is used (and only used) to show
that e1, e2, . . . and an orthonormal basis pfjqjPJ of KK “ te1, e2, . . . u

K form an or-
thonormal basis of H. (Let us quickly recall the key point: It is obvious that
e1, e2, . . . and pfjq form an orthonormal family. To show that they are densely-
spanning, for each ξ P H, one sets η “

ř

nxξ|enyen, which converges by key
property 1. Then ξ ´ η P KK. Apply Thm. 20.35 to ξ ´ η. Then we have
ξ “ η `

ř

jxξ ´ η|fjyfj . So ξ is approximated by linear combinations of e1, e2, . . .
and pfjq.)

Indeed, Hilbert did not use key property 1 and orthogonal decomposition in
his proof. He did not need the vectors pfjqjPJ since his “Hilbert-Schmidt” theorem
is stated in the following form (cf. [Hil12, Satz 35]): There exist orthonormal
vectors e1, e2, . . . and λ1 ě λ2 ě ¨ ¨ ¨ ě 0 satisfying limn λn “ 0 and

ωT pξ|ξq “
ÿ

n

λnxξ|enyxen|ξy (22.30)

for all vectors ξ. That each en is a λn-eigenvector of T is a mere consequence of
this formula.

22.6.2 On the applicability of the Hilbert-Schmidt theorem

The Hilbert-Schmidt theorem lies at the heart of modern partial differential
equations. As mentioned in Subsec. 22.1.2, the inverse of´∆ (with boundary con-

6Here, by “analytic property” I mean any property about inner product spaces that is equiva-
lent to completeness, such as those described in Thm. 21.5.
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dition u|BΩ “ 0) is a completely continuous positive operator on L2pΩq. Therefore,
by the Hilbert-Schmidt theorem, the unbounded operator ´∆ have eigenvalues
0 ă λ1 ď λ2 ď ¨ ¨ ¨ converging to `8, and the eigenvectors (which can be proved
to be “good enough” such as Cr or C8) form an orthonormal basis of L2pΩq. With
the spectral analysis of ´∆, the Dirichlet problem (22.1) can be understood very
well.

However, this modern theory was also developed with the help of some other
theories that were not yet available at the time of Hilbert-Schmidt: distributions
and Sobolev spaces, unbounded closed operators, etc.. As we have mentioned in
Sec. 22.1, in the early days, the Dirichlet problem was studied in terms of their
associated integral equations of functions on BΩ. However, the Hilbert-Schmidt
theorem has very limited application to these integral equations. Let me explain
this in the following.

We have mentioned that the operator T in the integral equation (22.11), after
discretization by taking Fourier series, gives a bounded linear operator pT on l2pZq
whose matrix representation pK : Z ˆ Z Ñ C is l2-finite, i.e.

ř

m,n |
pKpm,nq|2 ă

`8. (See Sec. 22.2.) Therefore, pT is a Hilbert-Schmidt operator, and hence is
completely continuous by Thm. 22.15. Moreover, some elementary calculations
show that ´1 is not an eigenvalue of T , cf. [Sim-O, Thm. 3.3.9] or [RN, Sec. 81].
Therefore, if T is self-adjoint, the Fredholm alternative (Cor. 22.33) shows that for
each g P L2pBΩq there exists a (necessarily unique) f P L2pBΩq satisfying (22.11).
More precisely, one finds the Fourier series pf P l2pZq solving pf ` pT pf “ pg.

Unfortunately, in many cases T is not self-adjoint (since the real-valued func-
tion G in (22.6) does not satisfy Gpx, yq “ Gpy, xq). Therefore, although the
Hilbert-Schmidt theorem would later be proved to be an effective tool for study-
ing the Dirichlet problem, at the time of its inception, its relevance to the Dirichlet
problem was not significant. Hilbert restricted his study to self-adjoint operators
(more precisely, Hermitian forms), perhaps in view of the many other uses of in-
tegral equations, such as the Sturm-Liouville problem. (See e.g. [Sim-O, Sec. 3.2],
[Tes, Ch. 5], or [CL, Ch. 7] for a detailed discussion of the application of the
Hilbert-Schmidt theorem to the integral equations in Sturm-Liouville problem.)

Assuming self-adjointness, the original problem about integral equation can
be fully solved: Let K P CrpS1 ˆ S1q where r ě 0. Then we have a linear operator
T : CrpS1q Ñ CrpS1q defined by pTfqpxq “ 1

2π

şπ

´π
Kpx, yqfpyqdy. Assume that K

is symmetric, i.e. Kpx, yq “ Kpy, xq. In the following, we prove the Cr-Fredholm
alternative: If there is no non-zero f P CrpS1q satisfying f ` Tf “ 0, then for each
g P CrpS1q there exists f P CrpS1q such that f ` Tf “ g.
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22.6.3 ‹‹ Regularity of the solutions of integral equations

Define pK by (22.14), which is an element of l2pZ ˆ Zq. Equip CrpS1q with the
inner product xf |gy “ 1

2π

şπ

´π
fg˚. Then we have a commutative diagram

CrpS1q l2pZq

CrpS1q l2pZq

Ψ

T pT

Ψ

(22.31)

where Ψ is the map f ÞÑ pf (which is a linear isometry with dense range, cf. Cor.
20.42), and pT is defined by (22.15). Then Kpx, yq “ Kpy, xq implies that pKpm,nq “

pKpn,mq, and hence that pT is self-adjoint (cf. Exp. 22.20). Briefly speaking, (22.31)
asserts xTf “ pT pf where f P CrpS1q.

It can be proved that

pT
`

l2pZq
˘

Ă Ψ
`

Cr
pS1
q
˘

(22.32)

To see this, choose φ P l2pZq, and let fn “
řn
k“´n φpkqek. It is not hard to check

(using Hölder’s inequality) that the linear map T : CrpS1q Ñ CpS1q is bounded if
the source and the target are equipped respectively with the L2-norm and the l8-
norm. Thus limn Tfn converges uniformly on S1 to some g P CpS1q. By a similar
argument, one checks that limnpTfnq

pkq converges uniformly for all k ď r. Thus,
by Thm. 11.33, we see that g P CrpS1q. Using Parseval’s identity for continuous
functions on S1 ˆ S1, one checks that pg “ pTφ, i.e., Ψpgq “ pTφ. This proves (22.32).

We now show that if λ P Czt0u, a λ-eigenvector φ of pT corresponds to a λ-
eigenvector f P CrpS1q of T satisfying pf “ φ. Proof: Let φ P l2pZq and pTφ “ λφ.
By (22.32), there exists f P CrpS1q such that pTφ “ λ pf . So pf “ φ, and hence
xTf “ pT pf “ pTφ “ λφ “ λ pf , and hence Tf “ λf (since Ψ is injective). QED.

We now finish the proof. Suppose that there is no non-zero f P CrpS1q satisfy-
ing f ` Tf “ 0. By the above paragraph, there is no non-zero φ P l2pZq satisfying
φ ` pTφ “ 0. Choose any g P CrpS1q. By Fredholm alternative (Cor. 22.33), there
exists φ P l2pZq such that φ ` pTφ “ pg. By (22.32), there is f P CrpS1q such that
pTφ “ zg ´ f “ pg ´ pf . Thus pf “ φ, and hence pf ` xTf “ pf ` pT pf “ pf ` pTφ “ pg. So
f ` Tf “ g.

22.6.4 Toward measure theory

We have seen that the problem of finding an Cr-solution f of an integral equa-
tion f ` Tf “ g is solved by first finding its Fourier series pf , which is an element
of l2pZq solving the equation pf` pT pf “ pg. To solve the later equation, one uses only
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the fact that pK P l2pZ ˆ Zq, or more precisely, that pK is the matrix representation
of a completely continuous (self-adjoint) operator on l2pZq.

The lesson here is that even if we are ultimately interested in the Fourier se-
ries of functions in CrpS1q, i.e., the elements of ΨpCrpS1qq, at the outset, we must
consider all possible elements of l2pZq: If you remember, the proof of the Hilbert-
Schmidt theorem uses the weak-compactness of the closed unit ball of l2pZq. How-
ever, ΨpCpS1qq is a dense proper subspace of l2pZq, and its closed unit ball is there-
fore not weakly compact (by Thm. 21.35).

This lesson naturally leads to the question: What is the function-theoretic
meaning of an element φ P l2pZq that is not necessarily the Fourier series of a
continuous (or even Riemann-integrable) 2π-periodic function?

Lebesgue’s integral theory was invented in 1902. And it was F. Riesz and Fis-
cher who realized that Lebesgue integral gives a satisfying answer to the above
question. They showed in 1907 (a year after Hilbert’s seminal work [Hil12] intro-
ducing the l2-method to integral equations) that the linear isometry Ψ : CpS1q Ñ

l2pZq can be extended to a unitary map

Ψ : L2
pS1
q Ñ l2pZq

where L2pS1q is the space of 2π-periodic Lebesgue measurable complex functions
f satisfying

şπ

´π
|f |2 ă `8, and

pΨfqpnq “ pfpnq :“
1

2π

ż π

´π

fe´n

where enpxq “ einx, and the integral on the RHS is the Lebesgue integral. This
result is called the Riesz-Fischer theorem, as already mentioned in Sec. 10.4.

With this result, the proof of (22.32) becomes more straightforward: Let φ P
l2pZq. By Riesz-Fischer, φ “ pf for some f P L2pS1q. Using the commutativity of
limits and integrals (under certain assumptions) one sees that g P CrpS1q if g is
defined by the Lebesgue integral gpxq “ 1

2π

şπ

´π
Kpx, yqfpyq. Parseval’s identity

implies pg “ pT pf .
It will be our task in the next few chapters to study Lebesgue integrals, the

Riesz-Fischer theorem, and some of their generalizations.

22.7 ‹ Epilogue: Riesz’s compact operators

Let H,K be Hilbert spaces. Recall (22.18) for the meaning of ωT .
In the previous section, we have mentioned that many integral equations do

not have self-adjoint integral operators. When a completely continuous operator
T on a H is not self-adjoint, the Hilbert-Schmidt theorem does not hold. How-
ever, one can still expect that the Fredholm alternative is true. In fact, in Fred-
holm’s 1900 paper there was no “self-adjointness”. However, Fredholm’s original
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approach is quite complicated: Assuming that the function Kpx, yq in the integral
operator T “

şπ

´π
Kpx, yqfpyqdy is continuous, Fredholm used Riemann sums to

approximate the Riemann integral, studied the determinants of these summation
operators, and then passed to the integral operator T by taking limit. (See [Die-H,
Sec. 5.1] for a brief discussion. See [Lax, Ch. 24] and [Sim-O, Sec. 3.11] for a
detailed account of Fredholm’s approach in a modern language.)

Fredholm clearly did not have the idea of Hilbert spaces and completely con-
tinuous operators. Now, to study completely continuous operators that are not
necessarily self-adjoint, one needs to give an equivalent but different characteri-
zation of complete continuity.

Hilbert’s original definition of complete continuity (cf. Def. 22.3) is essentially
about sesquilinear forms, not about linear operators. Recall that T is completely con-
tinuous iff ωT : BHp0, 1q ˆ BKp0, 1q Ñ C is weakly continuous. To describe this
property in terms of the linear map T , the weak continuity on the second variable
BKp0, 1q, which is a property about the source, should be raised to the target. This
is achieved with the help of the following variant of Prop. 21.30.

Lemma 22.34. Let pξαqαPI be a net in BHp0, 1q, and let ξ P BHp0, 1q. Then the following
are equivalent.

(1) limα ξα “ ξ.

(2) pξαq converges weakly to ξ. Moreover, for every net pηβqβPJ in BHp0, 1q converging
weakly to η P BHp0, 1q we have

lim
αPI,βPJ

xξα|ηβy “ xξ|ηy (22.33)

Similar to Prop. 21.30, this lemma is also true when H is only an inner product
space, as you can see from the following proof.

Proof. Assume (1). Let pηβq converge weakly in BHp0, 1q to η. For each β P J ,
define a continuous function gβ : H Ñ C by gβpψq “ xψ|ηβy. Then gβ converges
pointwise to g : ψ P H ÞÑ xψ|ηy P C. Since supβ }ηβ} ă `8, pgβqβPJ is equicontinu-
ous. Therefore, by Thm. 9.12 (and noting Prop. 9.16), we get limα,β gβpξαq “ gpξq.
This proves (2).7

Assume (2). Then (1) follows directly from Prop. 21.30 by choosing J “ I and
ηα “ ξα for each α P I .

Proposition 22.35. Let T P LpH,Kq. The following are equivalent.

(1) T is completely continuous, i.e., ωT is weakly continuous on BHp0, 1q ˆBKp0, 1q.

7It is not hard to prove (1)ñ(2) directly. We leave such a direct proof to the readers as an
exercise.

396



(2) T : BHp0, 1q Ñ K is continuous if BHp0, 1q is equipped with the weak topology,
and if K is equipped with the norm topology.

Proof. (2) means that if pxαq is a net converging weakly in BHp0, 1q to ξ, then
Tξα converges in norm to Tξ. By Lem. 22.34 (applied to }T }´1Tξα), we see that
limα Tξα “ Tξ is equivalent to that limα,βxTξα|ηβy “ xTξ|ηy for every net pηβqβPJ

converging weakly in BKp0, 1q to η. This proves the equivalence.

Definition 22.36. A linear map of normed vector spaces T : V Ñ W is called
completely continuous if T is bounded, and if the restriction T : BV p0, 1q Ñ W is
continuous, where BV p0, 1q is given the weak topology, and W is given the norm
topology.

Def. 22.36 was introduced by F. Riesz in 1910 and was later applied by him to
lp spaces. However, this is not a good definition for Cr0, 1s because, unlike lppXq
(where 1 ă p ă `8), Cr0, 1s is not reflexive and (hence) its closed unit ball is not
weakly compact (cf. Thm. 17.54). In order to study integral equations on non-
necessarily reflexive function spaces such as Cr0, 1s, in 1918, Riesz introduced the
modern definition of compact operators (which he still called completely contin-
uous operators). Let us recall the definition:

Definition 22.37. Let T : V Ñ W be a linear map of normed vector spaces. We say
that T is a compact operator if T pBV p0, 1qq is precompact in W (under the norm
topology).

Note that if T is compact, then T is bounded. This is because every compact
set in a metric space, in particular T pBV p0, 1qq, is bounded.

Theorem 22.38. Let T : H Ñ K be linear. Then T is completely continuous iff T is
compact.

The following proof shows that this theorem is also true when H,K are only
normed vector spaces and BHp0, 1q is weakly compact. (By Thm. 17.54, the latter
condition is equivalent to that H is reflexive.)

Proof. Suppose that T is completely continuous. Since BHp0, 1q is weakly com-
pact, and since the range of a compact set under a continuous map is compact,
we conclude that T pBHp0, 1qq is norm-compact, and hence norm-precompact.8

Conversely, assume that T is compact. Let pξαq be a net in BHp0, 1q converging
weakly to ξ P BHp0, 1q. Since T is compact, Γ “ T pBHp0, 1qq is (norm-)compact.
Therefore, to show that limα Tξα “ Tξ, by Pb. 8.1, it suffices to prove that every
cluster point of pTξαq is Tξ. This is clear, since every cluster point of pTξαq is a
weak cluster point, which must be Tξ by Pb. 22.1.

8Note that we have actually proved that T pBHp0, 1qq is compact rather than just precompact.
In fact, for Hilbert spaces, the precompactness of T pBHp0, 1qq implies the compactness. However,
for a general non-reflexive Banach space, it is too restrictive to assume compactness.
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Def. 22.37 is the correct definition which allowed Riesz to prove the Fredholm
alternative for compact operators on Banach spaces (including integral operators
onCr0, 1s) in 1918. A discussion of this history, as well as the main ideas in Riesz’s
proof of Fredholm alternative, can be found in [Die-H, Sec. 7.1]. Riesz’s theory on
compact operators can be found in many textbooks on functional analysis, such
as [Lax, Ch. 21], [Rud-F, Ch. 4], [Sim-O, Sec. 3.3].

22.8 Problems and supplementary material

Let H,K be Hilbert spaces. Recall (22.18) for the meaning of ωT .

Problem 22.1. Let T P LpH,Kq. Prove that T is continuous if both H and K are
equipped with their weak topologies.

‹ Problem 22.2. Let peiq and pfjq be orthonormal bases of H,K respectively. Let
T P LpH,Kq. Define

}T }HS “

´

ÿ

i,j

|xTei|fjy|
2
¯

1
2

(22.34)

which is in r0,`8s. Prove that }T }HS is independent of the choice of bases. We
say that T is a Hilbert-Schmidt operator if }T }HS ă `8.

Problem 22.3. Let T P LpHq be positive. Prove that }T } ď 1 iff 0 ď T ď 1.

Hint. To prove “ð”, apply Cauchy-Schwarz to ωT .

‹ Problem 22.4. Let T P LpHq satisfy 0 ď T ď 1. Prove that T 2 ď T .

Hint. Use Cauchy-Schwarz to give an upper bound of |ωT pξ|Tξq|.

‹ Problem 22.5. Let penqnPZ`
be an orthonormal sequence in H. Let T : HÑ K be

completely continuous. Prove that limnÑ8 Ten “ 0.

Hint. By Pb. 22.1, limn Ten converges weakly to 0.

‹ Problem 22.6. Assume that H is infinite dimensional. Let T P LpH,Kq. Assume
that for each orthonormal sequence penqnPZ`

in H we have limnÑ8 Ten “ 0.

1. By mimicking the proof of the Hilbert-Schmidt Thm. 22.27, find a sequence
of orthonormal vectors penq in H such that, by setting V0 “ t0u and Vn “
Spante1, . . . , enu (where n ą 0), we have

}Ten`1} ě
1

2
}T |V K

n
}

for each n P N, where }T |V K
n
} is the operator norm of T |V K

n
: V K

n Ñ K.

2. Let Pn P LpHq be the projection operator onto Vn (cf. Pb. 21.2). Prove that
limn }T ´ TPn} “ 0. Conclude that T is approximable.

Remark 22.39. Pb. 22.5 and 22.6 give an alternative proof that any completely
continuous operator T : HÑ K is approximable.
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23 Measure spaces

23.1 Introduction

Starting from this chapter, we will study Lebesgue integrals, and study mea-
sure theory in general. We will be able to define

ş

RN f for a large class of functions
f : RN Ñ R called Lebesgue measurable functions. It is worth noting that when
Lebesgue introduced his integral theory in 1902, he was primarily concerned with
bounded measurable functions on a compact interval ra, bs Ă R. For example, the
dominated convergence theorem, one of the most important theorems in measure
theory, was first proved by Lebesgue for bounded measurable functions on ra, bs.

Only by knowing what were the earliest primary examples in history, and only
by knowing how the theory can be developed and applied to these crucial exam-
ples, can one comprehend the essence of the theory. Therefore, I will sometimes
give a more straightforward proof of an important special case of a theorem after
proving this theorem in full generality.

In the following, we sketch Lebesgue’s main idea of the construction of inte-
grals. A detailed account of the history can be found in [Haw, Sec. 5.1] and [Jah,
Sec. 9.6].

Let ´8 ă a ă b ă `8, and let f : pa, bq Ñ R be bounded, say ´M ` 1 ď
f ď M ´ 1 for some M ą 1.1 We know that Riemann integrals are defined by
partitioning the domain pa, bq. By contrast, the Lebesgue integra

şb

a
fdm is defined

by partitioning the codomain: Let tc0 ă c1 ă ¨ ¨ ¨ ă cnu be a partition of r´M,M s.
Let ξi P pci´1, cis. Then it is expected that

şb

a
fdm is approximated by the Lebesgue

sum
n
ÿ

i“1

ξi ¨mpEiq (23.1)

where Ei “ f´1pci´1, cis, and mpEiq is the “measure” of Ei. Thus, one can attempt
to define

şb

a
fdm to be the limit of the “Lebesgue sum” (23.1). In fact, since

ş

f
should be the area of the region below the graph of f , it is expect that if supi |ci ´
ci´1| ă ε, then

ˇ

ˇ

ˇ

ż b

a

fdm´
n
ÿ

i“1

ξi ¨mpEiq
ˇ

ˇ

ˇ
ď pb´ aqε

Therefore, in order to define the Lebesgue integral, one must first define the
Lebesgue measure mpEiq. Let me temporarily denote this value by m˚pEiq to re-
flect the fact (to be explained shortly) that not every subset of pa, bq can be assigned

1Lebesgue originally considered functions on ra, bs. For the simplicity of the following discus-
sion, we consider functions on pa, bq instead, which makes no essential difference to the develop-
ment of the theory.
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a measure. The construction is as follows. Suppose that E Ă pa, bq. Then

m˚
pEq “ inf

!

ÿ

nPZ`

|In| : I1, I2, . . . are intervals covering E
)

(23.2)

is called the outer Lebsgue measure of E. Clearly m˚pEq ď m˚pF q if E Ă F .
Unfortunately, it is not necessarily true that m˚pE Y F q “ m˚pEq ` m˚pF q

if F Ă pa, bq is disjoint from E. Indeed, it is not necessarily true that b ´ a “
m˚pEq ` m˚ppa, bqzEq. Consequently, if we use the Lebesgue sum to define the
integral, then it is not necessarily true that

şb

a
1 “

şb

a
χE `

şb

a
χpa,bqzE . In general, we

only have

m˚
pE Y F q ď m˚

pEq `m˚
pF q (23.3)

if E,F P pa, bq are disjoint. Thus, we must focus on a class M of subsets of pa, bq
satisfying certain nice properties. The elements in M will be called Lebesgue
measurable sets.

The most remarkable property about M is the countable additivity: If
E1, E2, ¨ ¨ ¨ P M are mutually disjoint, then

Ť

nEn P M, and m˚p
Ť

nEnq “
ř

nm
˚pEnq. Then the Lebesgue integral will be defined for Lebesgue measur-

able functions, e.g., bounded functions f : pa, bq Ñ R satisfying f´1pc, ds PM for
all c ă d.

::::
The

:::::::::::
powerful

:::::::::::
properties

:::::::::::::
concerning

:::::::::::::::::::::
limn

ş

fn “
ş

limn fn ::::
will

:::
be

:::::::::
proved

::
as

::::::
easy

:::::::::::::::
consequences

:::
of

::::
the

:::::::::::
countable

::::::::::::
additivity. Therefore, the construction of

Lebesgue measure satisfying countable additivity is the most central and difficult
part of the whole theory of Lebesgue’s integrals.

23.2 Measurable spaces and measurable functions

Definition 23.1. LetX be a set. A subset M of 2X is called a σ-algebra if it satisfies
the following conditions:

• H PM.

• If E PM then XzE PM.

• If we have countably many elements E1, E2, ¨ ¨ ¨ PM, then
Ť

nEn PM.

If M is a σ-algebra, we say that pX,Mq is a measurable space.

The second condition means that M is closed under complements. The third
condition means that M is closed under countable unions. Since p

Ť

nEnq
c “

Ş

nE
c
n,

we see that a σ-algebra is also closed under countable intersections.

Remark 23.2. In Def. 23.1-(3) it suffices to assume that M is closed under count-
ably infinite unions. This is because any finite union could be enlarged to a count-
ably infinite union by includingH.
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Exercise 23.3. If pMiqiPI is a family of σ-algebras on X , then
Ş

iPI Mi is a σ-algebra
on X .

Definition 23.4. Let E Ă 2X . By Exe. 23.3,

σpEq :“
č

M is a σ-algebra containing E

M (23.4)

is a σ-algebra on X . We call σpEq the σ-algebra generated by E. It is the smallest
σ-algebra containing E.

The most important σ-algebras in this course are Borel σ-algebras:

Definition 23.5. Let pX, TXq be a topological space. Recall that TX is the set of
open subsets of X . We let

BX :“ σpTXq (23.5)

and call BX the Borel σ-algebra of X . Elements of BX are called Borel sets.

Example 23.6. Let X be a topological space. Every closed subset of X is Borel
since it is the complement of an open set. ra, bq is Borel set of R since it equals
p´8, bq X ra,`8q

Definition 23.7. Let pX,Mq and pY,Nq be measurable sets. Let f : X Ñ Y be a
function. Then

f´1
pNq “ tf´1

pEq : E P Nu (23.6)

is clearly a σ-algebra on X . We say that f is measurable if f´1pNq Ă M, i.e., if
f´1pEq PM for each E P N.

Remark 23.8. If f : X Ñ Y and g : Y Ñ Z are measurable, then clearly g ˝ f :
X Ñ Z is measurable.

Definition 23.9. Let pX,Mq be a measurable space, and let pY, TY q be a topological
space. A map f : X Ñ Y is called measurable if f is measurable as a map
pX,Mq Ñ pY,BY q, i.e., f´1pEq PM for each Borel set E Ă Y .

Remark 23.10. The most important measurable functions X Ñ Y , where Y is a
topological space, are those such that Y “ R,Rě0,C. Note that R,C are equipped
with the Euclidean topologies, and Rě0 “ r0,`8s is equipped with its standard
topology (cf. Exp. 7.17), i.e., the unique topology such that any increasing bijec-
tion Rě0 Ñ r0, 1s is a homeomorphism.

Definition 23.11. Let f : X Ñ Y be a map of topological spaces. We say that f
is Borel measurable (or simply Borel) if f is measurable as a map of measurable
spaces f : pX,BXq Ñ pY,BY q.
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Checking that a map f is Borel using the original definition is difficult, since
Borel sets of the codomain could be very complicated. In the following, we will
see a very useful method of showing that a map is measurable.

Proposition 23.12. Let pX,Mq and pY,Nq be measurable spaces where N “ σpEq for
some E Ă 2Y . Then the following are equivalent.

(1) f is measurable, i.e., f´1pσpEqq ĂM.

(2) f´1pEq ĂM.

Proof. Clearly (1) implies (2). Assume (2). Then

K “ tE P 2Y : f´1
pEq PMu

is a σ-algebra containing E. So K contains σpEq. Thus, for each E P σpEq we have
E P K, i.e., f´1pEq PM. This proves (1).

Corollary 23.13. Let f : X Ñ Y be a map of sets. Let E Ă 2Y . Then

σpf´1
pEqq “ f´1

pσpEqq (23.7)

Proof. f´1pσpEqq is a σ-algebra on X , and it contains f´1pEq. Therefore f´1pσpEqq
contain the smallest σ-algebra containing f´1pEq. This prove “Ă”. Since f´1pEq is
contained in M :“ σpf´1pEqq, by Prop. 23.12, f´1pσpEqq is contained in M. This
proves “Ą”.

Corollary 23.14. Let pX,Mq be a measurable space. Let pY, TY q be a topological space.
Let f : X Ñ Y be a map. The following are equivalent:

(1) f is measurable, i.e., f´1pBY q ĂM.

(2) f´1pTY q ĂM.

(3) f´1tclosed subsets of Y u ĂM.

Proof. This follows from Prop. 23.12 and the fact that BY is generated by TY and
also by the set of closed subsets of Y .

Example 23.15. Every continuous map of topological spaces is Borel.

Proof. Immediate from Cor. 23.14.

Checking f´1pTY q Ă M is still not very easy. To make further simplification
we observe:

Proposition 23.16. Let pY, TY q be a second countable topological space. Let U be a basis
for the topology TY . Then σpUq “ BY . Consequently, a function f : pX,Mq Ñ Y is
measurable iff f´1pUq ĂM.
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Proof. Since U Ă TY , we clearly have σpUq Ă BY . If we can prove that σpUq Ą TY ,
then σpUq Ą σpTY q, finishing the proof.

Choose any open set O Ă Y . Then for each y P O there is a neighborhood
Uy P U of y contained inside O. Thus O “

Ť

yPO Uy. So U is a union of elements of
U . Since Y is second countable, the subset O is also second countable and hence
(by Cor. 8.31) Lindelöf. Therefore, O is a countable union of elements of U . This
proves O P σpUq.

Example 23.17. Let pX,Mq be a measurable space. Let Y be a separable (equiva-
lently, second countable) metric space. Then a map f : X Ñ Y is measurable iff
f´1pBY py, rqq PM for each y P Y, r ą 0. This is because the open balls of Y form a
basis for the topology of Y .

Example 23.18. We have

BR “ σtpa,`8s : a P Ru “ σtra,`8s : a P Ru
“σtr´8, aq : a P Ru “ σtr´8, as : a P Ru

Thus, for example, if f : X Ñ R where X is a measurable space, then f is
measurable iff f´1pa,`8s is measurable for all a P R.

Proof. Let M “ σtpa,`8s : a P Ru, which is clearly a subset of BR. Then ra,`8s P
M since ra,`8s “

Ş

nPZ`
pa´1{n,`8s. Taking complements and intersections, we

see r´8, bq P M and pa, bq P M. Therefore, M contains a basis for TR, and hence
contains BR. This prove the first relation. The other relations can be proved in the
same way.

Remark 23.19. Let f : pX,Mq Ñ pY, TY q. Suppose that Z is a subspace of Y
containing fpXq. Equip Z with the subspace topology TZ . Then f : X Ñ Y is
measurable iff f : X Ñ Z is measurable.

Proof. f : X Ñ Y is measurable iff f´1pUq is measurable for each U P TY . But
f´1pUq equals f´1pU X Zq, and the open subsets of Z are precisely of the form
U X Z.

Example 23.20. Let pX,Mq be a measurable space. Let A Ă X . Then χA : X Ñ R
is measurable iff χA : X Ñ t0, 1u is measurable iff χ´1

A p1q “ A and χ´1
A p0q “ XzA

are measurable iff A PM.

Proposition 23.21. Let pX,Mq be a measurable space. Let Y1, Y2 be second countable
topological spaces. Let f1 : X Ñ Y1 and f2 : X Ñ Y2 be functions. Then f1 _ f2 : X Ñ

Y1 ˆ Y2 is measurable iff f1 and f2 are both measurable.

Proof. Let f “ f1 _ f2. Let πi : Y1 ˆ Y2 Ñ Yi be the projection. Then fi “ πi ˝ f .
Thus, if f is measurable, since πi is continuous and hence Borel measurable, we
conclude that fi is measurable (cf. Rem. 23.8).
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Conversely, assume that f1, f2 are measurable. If V1 and V2 are open sub-
sets of Y1, Y2 respectively, then f´1

i pViq belongs to M, and hence f´1pV1 ˆ V2q “
f´1
1 pV1q X f

´1
2 pV2q belongs to M. Since subsets of the form V1 ˆ V2 form a basis for

the topology of Y1 ˆ Y2, by Prop. 23.16, f is measurable.

Corollary 23.22. Let pX,Mq be a measurable space. Let f, g : X Ñ C or f, g : X Ñ Rě0

be measurable. Then f ` g and fg are measurable functions from X to C or Rě0.

Recall Def. 1.36 for the definition of additions and multiplications in Rě0.

Proof. The multiplication map C ˆ C Ñ C is continuous, and the multiplication
map Rě0 ˆ Rě0 Ñ Rě0 is lower semicontinuous and hence Borel measurable (cf.
Exp. 23.67). By Prop. 23.21, f _ g is measurable. So its composition with the
multiplication map (i.e., fg) is measurable. The same argument shows that f ` g
is measurable.

The pointwise limit of a sequence of Riemann integrable functions is not nec-
essarily Riemann integrable. However, the following theorem shows that the
pointwise limit of a sequence of measurable functions is measurable. Thus,
for example, the Dirichlet function, which is the limit of fnpxq “ χAn where
An “ ta1, . . . , anu and Q X r0, 1s “ ta1, a2, . . . u, is not Riemann integrable (cf.
Exp. 13.15). But it is Borel measurable.

Theorem 23.23. Let X be a measurable space. Let pfnqnPZ`
be a sequence of measurable

functions X Ñ R. Then supn fn, infn fn, lim supn fn, and lim infn fn are measurable.

Proof. Let F “ supn fn. Then for each a P R, we have

F´1
r´8, as “

č

n

f´1
n r´8, as

where the RHS is measurable. Therefore, by Exp. 23.18, supn fn is measurable.
Similarly, infn fn is measurable.

For each n, let gn : X Ñ R be defined by gnpxq “ supkěn fkpxq. The first
paragraph shows that gn is measurable for each n, and hence lim supn fn “ infn gn
is measurable. Similarly, lim infn fn is measurable.

Corollary 23.24. Let X be a measurable space. Let Y be R or RN or CN . Let pfnq be a
sequence of measurable functions X Ñ Y converging pointwise to f : X Ñ Y . Then f
is measurable.

Proof. This is immediate from Thm. 23.23 and Prop. 23.21.

The pointwise limit of a net of measurable functions is not necessarily measur-
able:
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Example 23.25. Let pX,Mq be a measurable space such that M ‰ 2X , and that M
contains all finite subsets of X . (For example, let X be an uncountable set, and let
M be the set of all E Ă X such that either E or XzE is countable.) Let E P 2XzM.
Then pχAqAPfinp2Eq is a net of measurable functionsX Ñ R. However, its pointwise
limit χE is not measurable.

23.3 Measures and measure spaces

Definition 23.26. Let pX,Mq be a measurable space. A function µ : M Ñ r0,`8s
is called a measure if it satisfies the following conditions:

• µpHq “ 0.

• (Countable additivity) If we have countably many E1, E2, ¨ ¨ ¨ P M that are
pairwise disjoint, then µ

`
Ť

nEn
˘

“
ř

n µpEnq.

We call pX,M, µq (or simply call pX,µq) a measure space. If X is a topological
space and µ is defined on M “ BX , we call µ a Borel measure. If µpXq ă `8, we
say that µ is a finite measure.

Example 23.27. Let X be a nonempty set. Fix p P X . Define δp : 2X Ñ r0,`8s by
δppEq “ 1 if p P E, and δppEq “ 0 if p R E. Then δp is a measure on M, called the
Dirac measure.

Example 23.28. Let pX,Mq be a measurable space. Let pµiqiPI be a family of mea-
sures M Ñ r0,`8s. Then the sum

ř

i µi (sending each E P M to the discrete
integral

ř

iPI µipEq) is a measure on M.

Proof. Clearly
ř

i µi sends H to 0. That
ř

i µi satisfies the countable additivity
follows from Fubini’s theorem for discrete integrals (Thm. 5.50).

Example 23.29. Let X be a set. For each E Ă X , let µpEq “
ř

xPE 1. Namely, µpEq
is the cardinality of E when E is a finite set, and µpEq “ `8when E is not finite.
Then pX, 2X , µq is a measure space. µ is called the counting measure. It is easy to
see that µ “

ř

xPX δx.

Proposition 23.30. Let pX,M, µq be a measure space. The following are true.

(a) (Monotonicity) If E,F PM and E Ă F , then µpEq ď µpF q.

(b) If pEnqnPZ`
is an increasing sequence of elements of M, then µ

`
Ť

nEn
˘

“

limnÑ8 µpEnq.

(c) If pEnqnPZ`
is a decreasing sequence of elements of M, and if µpE1q ă `8, then

µ
`
Ş

nEn
˘

“ limnÑ8 µpEnq.

(d) (Countable subadditivity) If E1, E2, ¨ ¨ ¨ PM, then µ
`
Ť

nEn
˘

ď
ř

n µpEnq
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Proof. (a) µpF q “ µpE \ pF zEqq “ µpEq ` µpF zEq ě µpEq.
(b) Let F1 “ E1, and Fn “ EnzEn´1 if n ą 1. Then

µ
`

ď

n

En
˘

“ µ
`

ğ

n

Fn
˘

“
ÿ

n

µpFnq “ lim
n

`

µpF1q ` ¨ ¨ ¨ ` µpFnq
˘

“ lim
n
µpF1 Y ¨ ¨ ¨ Y Fnq “ lim

n
µpEnq

(c) Let Fn “ E1zEn. Then E1 is the disjoint union of E “
Ş

nEn and F “
Ť

n Fn
By (b), we have µpF q “ limn µpFnq. Equivalently, µpE1q ´ µpEq “ limn

`

µpE1q ´

µpEnq
˘

.
(d) We have µpE1 Y E2q “ µpE1q ` µpE2zE1q ď µpE1q ` µpE2q. By induction,

we get µpE1 Y ¨ ¨ ¨ Y Enq ď µpE1q ` ¨ ¨ ¨ ` µpEnq. Thus

µpE1 Y ¨ ¨ ¨ Y Ekq ď
ÿ

n

µpEnq

for each k. Apply limk to the LHS. Then (b) implies µp
Ť

Enq ď
ř

n µpEnq.

Definition 23.31. Let pX,M, µq be a measure space. A subset E Ă X is called a
µ-null set (or simply a null set) if E PM and µpEq “ 0. If P : X Ñ ttrue, falseu is
a property on X , we say that P is true µ-almost everywhere (or simply that P is
true µ-a.e.) if P is true outside a µ-null set.

Remark 23.32. By the countable subadditivity, a countable union of null sets is
null.

Definition 23.33. A measure space pX,µq is called complete if every subset of a
null set is measurable (and hence is null by the monotonicity).

A main advantage of completeness is the following property:

Proposition 23.34. Let pX,M, µq be a complete measure space. Let pY,Nq be a measur-
able space. If f, g : X Ñ Y are equal a.e. (namely, there is a null set outside of which f
and g are equal), and if f is measurable, then g is measurable.

Proof. Let X0 P M with null complement such that f |X0 “ g|X0 . Then for each
E P N, we have f´1pEqXX0 “ g´1pEqXX0. Since g´1pEqzX0 is a subset of Xc

0, by
the completeness, g´1pEqzX0 is measurable. So g´1pEq is measurable.

Definition 23.35. Let pX,M, µq be a measure space. If ν is a measure on a σ-
algebra N Ă 2X , we say that pN, νq is an extension of pM, µq and write pM, µq Ă
pN, νq, if M Ă N and ν|M “ µ.

Theorem 23.36. Let pX,M, µq be a measure space. Then there is a (necessarily unique)
smallest complete extension pM, µq of pM, µq. Moreover, the elements of M are precisely
of the form E Y F where E PM and F is a subset of a µ-null set in M, and µpE Y F q “
µpEq. We call pM, µq the completion of pM, µq.
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The phrase “smallest complete extension” means that pM, µq is a complete
measure on X extending pM, µq, and that every complete measure extending
pM, µq also extends pM, µq.

We clearly have an equivalent description of M: A subset G Ă X belongs to
M iff there exist A,B PM such that A Ă G Ă B and µpBzAq “ 0.

Proof. Define M to be the set of subsets of X of the form E Y F where E PM and
F is a subset of a µ-null set (in M), and let µpE Y F q “ µpEq. This is well-defined:
Suppose that E Y F “ E 1 Y F 1 where E,E 1 P M, and F, F 1 are subsets of null
sets A,A1 respectively. Then µpE Y F q ď µpE 1 Y A1q. Since A1zE 1 is null, we have
µpE 1 Y A1q “ µpE 1q. So µpEq ď µpE 1q. Similarly, µpE 1q ď µpEq.

Given sets E1 Y F1, E2 Y F2, . . . where En PM and Fn is inside a null set, then
Ť

nEn P M, and
Ť

Fn is inside a null set (Rem. 23.32). So M is closed under
countable unions. Let E PM and F be inside a null set A. Then pE Y F qc “ EczF
can be written as EczA union a subset of A. So M is closed under complements.
This proves that M is a σ-algebra. Using the countable additivity of µ, one checks
easily that µ is a measure.

If pN, νq is a complete measure on X extending pM, µq, then for each E P M
and F inside a null set in M, we have F P N by the completeness of ν. So E YF P
N. This proves M Ă N. Moreover, νpE Y F q “ νpEq ` νpF zEq “ νpEq since F zE
is ν-null. So νpE Y F q “ νpEq “ µpEq “ µpEq. This proves that ν extends µ.

23.4 The Lebesgue measure m on RN

Let N P Z`. In this section, we construct the Lebesgue measure mN on RN ,
which is the completion of a Borel measure. We writemN asmwhen no confusion
arises.

Recall Subsec. 15.8.2 for the definition of the Lebesgue measure mpUq of an
open set U Ă RN : It is the supremum of the multiple Riemann integral

ş

RN f
(cf. Def. 14.3) where f ranges over all elements of CcpU, r0, 1sq “ tf P CcpU,Rq :
fpXq Ă r0, 1su. It clearly satisfies the monotonicity: If U1 Ă U2 are open, then
mpU1q ď mpU2q.

Definition 23.37. For each E Ă RN , define the outer Lebesgue measure to be

m˚
pEq “ inf

␣

mpUq : U is an open set containing E
(

(23.8a)

Clearly m˚pUq “ mpUq when U is open. Clearly m˚pEq ď m˚pF q if E Ă F Ă RN .
Define the inner Lebesgue measure to be

m˚pEq “ sup
␣

m˚
pKq : K is a compact subset of E

(

(23.8b)

Clearly m˚pEq ď m˚pEq. A set E Ă RN is called m-regular if m˚pEq “ m˚pEq.
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From the definition, it is clear that compact sets are regular.
When Lebesgue introduced his integral theory in 1902, he focused on the

measures of bounded subsets of R. He defined a bounded measurable set to be
a bounded m-regular set. (Cf. [Haw, Sec. 5.1] and [Jah, Sec. 9.6].) This definition
should be modified for unbounded sets. At this moment, let use show that open
sets are regular.

Lemma 23.38. Any open subset U Ă RN is m-regular.

Proof. Let U be open. Then m˚pUq ď m˚pUq “ mpUq. We want to show m˚pUq ě
mpUq. Since mpUq “ supt

ş

f : f P CcpU, r0, 1squ, it suffices to show for each f P
CcpU, r0, 1sq that

ş

f ď m˚pUq. By the definition of m˚pUq, it suffices to find a
compact K Ă U such that

ş

f ď m˚pKq.
Let K “ Supppfq, which is a compact subset of U . Then m˚pKq is the infini-

mum ofmpV qwhere V is open and containsK. So we shall prove that
ş

f ď mpV q
for each open V Ă RN containing K. But this is obvious from the definition of
mpV q.

Theorem 23.39. m˚ is a measure on BRN . Its completion will be denoted by pM,mq and
called the Lebesgue measure on RN . Elements in M are called Lebesgue measurable
sets. Moreover, for each bounded set E PM we have mpEq ă `8.

Proof. That m˚ is a measure on BRN is an easy consequence of Thm. 23.53 (which
can be applied to the current situation, cf. Exp. 23.44), to be proved in the next
section. Suppose that E P M is bounded. Then E is contained in a bounded
open box U “ pa1, b1q ˆ ¨ ¨ ¨ ˆ paN , bNq. For each f P CcpRN , r0, 1sq, we have

ş

f ď
pb1´a1q ¨ ¨ ¨ pbN ´aNq ă `8. This proves mpUq ă `8, and hence mpEq ă `8.

There exist bounded subsets of RN that are not Lebesgue measurable. See
[Rud-R, Thm. 2.22].

23.5 A general method for constructing measures

Let pX, TXq be a Hausdorff topological space. Let µ : TX Ñ r0,`8s be a func-
tion. Throughout this section, we assume the following assumption.

Assumption 23.40. For each E Ă X , define the outer measure µ˚pEq and the
inner measure µ˚pEq to be

µ˚
pEq “ inf

␣

µpUq : U is an open subset of X containing E
(

(23.9a)

µ˚pEq “ sup
␣

µ˚
pKq : K is a compact subset of E

(

(23.9b)

Then the following conditions are satisfied:

(a) µpHq “ 0.
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(b) (Monotonicity) If U Ă V Ă X and U, V are open, then µpUq ď µpV q.

(c) (Countable subadditivity) For countably many open subsets U1, U2, . . . of X
we have µ

`
Ť

n Un
˘

ď
ř

n µpUnq.

(d) (Additivity) If U1, U2 are disjoint open subsets of X , then µpU1 Y U2q “

µpU1q ` µpU2q.

(e) (Regularity on open sets) If U Ă X is open, then µpUq “ µ˚pUq.

If µ : TX Ñ r0,`8s only satisfies (a,b,c,d), then µ is called a premeasure (cf.
[RF, Sec. 17.5]). We will not use this definition.

Exercise 23.41. The reason we assume only additivity but not countable additivity
in (d) is because the latter is automatic. More precisely, assuming (a,b,c), then
(d) is true iff for any countable pairwise disjoint open sets U1, U2, . . . we have
µp
Ť

n Unq “
ř

n µpUnq. Prove this fact. (We will not need this fact in the future.)

Remark 23.42. From the monotonicity of µ on TX , it is clear that µpUq “ µ˚pUq if
U is open, and µ˚ : 2X Ñ r0,`8s is monotone increasing. This shows µ˚pKq “
µ˚pKq if K is compact, and µ˚ : 2X Ñ r0,`8s is monotone increasing.

Definition 23.43. We say that E is µ-regular if µ˚pEq “ µ˚pEq. Note that com-
pact sets and open sets are clearly µ-regular. If E is µ-regular (e.g E is open or
compact), we write

µpEq “ µ˚
pEq “ µ˚pEq if E is µ-regular

We abbreviate “µ-regular” to “regular” when no confusion arises. (It has noth-
ing to do with regular topological spaces (defined in Def. 9.20).)

Example 23.44. Let X “ RN and µ “ m. Then m satisfies Asmp. 23.40: (a) and
(b) are obvious. (c) and (d) were discussed in Pb. 15.7. (A different proof will be
given in Thm. 25.21.) (e) was proved in Lem. 23.38.

Our goal is to show that µ˚ is countably additive on BX . In measure theory,
there is a common strategy of proving that the elements inside a σ-algebra satisfy
a property P . Let P : 2X Ñ ttrue, falseu be a property. Suppose that we can find
E Ă 2X such that every element in E satisfies P . Suppose that the set of all E Ă X
satisfying P is a σ-algebra. Then P is clearly true for every element of σpEq.

However, countable additivity is not a property about subsets of X , but a
property about pairwise disjoint sequences of subsets of X . Nevertheless, one
can show that µ is countably additive on a pairwise disjoint sequence of regular
subsets based on the following simple idea:

µ˚ satisfies countable subadditivity
µ˚ satisfies countable superadditivity

If µ˚ “ µ˚, then the countable additivity is true
(23.10)
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Therefore, since open sets are regular, if we can show that the class of regular sets
is a σ-algebra, then this class contains BX . Thus, our goal is accomplished.

As we will see, if µpXq ă `8, the class of regular sets is indeed a σ-algebra.
However, when µpXq “ `8, this statement is not true, so we must find an alter-
native to regular sets.

23.5.1 Countable subadditivity and countable superadditivity

In this subsection, we prove that µ˚ satisfies the countable subadditivity, and
µ˚ satisfies the countable superadditivity.

Proposition 23.45. µ˚ : 2X Ñ r0,`8s satisfies the following conditions:

(a) µ˚pHq “ 0.

(b) (Monotonicity) If E Ă F Ă X , then µ˚pEq ď µ˚pF q.

(c) (Countable subadditivity) For countably many subsets E1, E2, . . . of X we have
µ˚
`
Ť

nEn
˘

ď
ř

n µ
˚pEnq.

Proof. The first two conditions are obvious. Let us check the countable subad-
ditivity. Let E1, E2, ¨ ¨ ¨ Ă X . Assume WLOG that each µ˚pEnq is finite; other-
wise the countable subadditivity is obvious. Let ε ą 0. By the definition of µ˚,
each En is contained in an open set Un such that µpUnq ď µ˚pEnq ` ε{2n. Then
E “

Ť

nEn is contained in
Ť

n Un. By the countable subadditivity for open sets,
we have µp

Ť

n Unq ď
ř

n µpUnq ď
ř

n µ
˚pEnq ` ε. By the monotonicity, we have

µpEq ď
ř

n µ
˚pEnq ` ε. This finishes the proof, since ε can be arbitrary.

To establish the countable superadditivity for µ˚, we first need to prove the
additivity for compact sets:

Lemma 23.46. Suppose that K1, K2 are disjoint compact subsets of X . Then µpK1 Y

K2q “ µpK1q ` µpK2q.

Proof. By the (countable) subadditivity of µ˚, it remains to prove µ˚pK1 Y K2q ě

µ˚pK1q ` µ˚pK2q. By the definition of µ˚, it suffices to prove that for each open U
containing K1 Y K2 we have µpUq ě µ˚pK1q ` µ˚pK2q. We claim that there exist
disjoint open U1, U2 Ă U containing K1, K2 respectively. Then by condition (d) of
Asmp. 23.40, we get µpUq ě µpU1 Y U2q “ µpU1q ` µpU2q ě µ˚pK1q ` µ

˚pK2q.
The proof of the claim is a routine argument in point-set topology. Choose

any x P K1, y P K2. Since U is Hausdorff, there exist disjoint Vxy P NbhUpxq
and Wxy P NbhUpyq. Since K2 is compact, there exit y1, . . . , yn P K2 such that K2 is
contained inWx “ Wxy1Y¨ ¨ ¨YWxyn . Let Vx “ Vxy1X¨ ¨ ¨XVxyn . Then Vx andWx are
disjoint open subsets of U containing respectively x and K2. By the compactness
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of K1, there are x1, . . . , xm P K1 such that K1 is covered by U1 “ Vx1 Y ¨ ¨ ¨ Y Vxm .
Then U2 “ Wx1 X ¨ ¨ ¨ XWxm contains K2 and is disjoint from U1. 2

Proposition 23.47. µ˚ : 2X Ñ r0,`8s satisfies µ˚pEq ď µ˚pEq for all E Ă X .
Moreover, the following are true.

(a) µ˚pHq “ 0.

(b) (Monotonicity) If E Ă F Ă X , then µ˚pEq ď µ˚pF q.

(c) (Countable superadditivity) For countably many
:::::::
disjoint subsets E1, E2, . . . of

X we have µ˚

`
Ť

nEn
˘

ě
ř

n µ˚pEnq.

Proof. The monotonicity of µ˚ implies µ˚pEq ď µ˚pEq. (a) and (b) are obvious. To
prove (c), it suffices to prove µ˚

`
Ť

k Ek
˘

ě µ˚pE1q`¨ ¨ ¨`µ˚pEnq for all n, and hence
to prove µ˚pE1Y¨ ¨ ¨YEnq ě µ˚pE1q` ¨ ¨ ¨`µ˚pEnq. By induction on n, it suffices to
prove µ˚pE1 Y E2q ě µ˚pE1q ` µ˚pE2q. By the definition of µ˚, it suffices to prove
that for every compactK1 Ă E1 andK2 Ă E2 we have µ˚pE1YE2q ě µpK1q`µpK2q.
By Lem. 23.46, it suffices to prove µ˚pE1 Y E2q ě µpK1 YK2q. But this is obvious
from the definition of µ˚.

23.5.2 Criteria for µ-regularity

We now use the idea (23.10) to derive many criteria for µ-regularity.

Corollary 23.48. Let E1, E2, . . . be pairwise disjoint µ-regular subsets of X . Then
Ť

nEn is µ-regular, and

µ
´

ď

n

En

¯

“
ÿ

n

µpEnq (23.11)

Proof. Let E “
Ť

nEn. Then µ˚pEq ď µ˚pEq. Since µ˚pEnq “ µ˚pEnq, by Prop.
23.45 and 23.47 we have

µ˚
pEq ď

ÿ

n

µ˚
pEnq “

ÿ

n

µ˚pEnq ď µ˚pEq

This proves that µ˚pEq “ µ˚pEq, and that (23.11) is true.

Corollary 23.49. Let E Ă X satisfy µ˚pEq ă `8. Then E is µ-regular iff for every
ε ą 0 there exist a compact set K and an open set U such that K Ă E Ă U and
µpUzKq ă ε.

2An alternative proof when X is LCH: By Prop. 8.41, the open set W “ UzK2 is LCH. There-
fore, by Lem. 15.27, there is an open precompact subset U1 Ť W containing K1. Take U2 “ UzU1.
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Proof. Since µ˚pEq ă `8, we know that µ˚pEq “ µ˚pEq iff one can find open
U Ă E (satisfying µpUq ă `8) and compact K Ă E such that µpUq ´ µpKq is
small. Since U,UzK are open and K is compact, they are µ-regular. Therefore, by
Cor. 23.48, we have µpUq ´ µpKq “ µpUzKq. So µpUq ´ µpKq being small means
µpUzKq being small.

The following lemma is a special case of the main Thm. 23.53. But it can now
be proved easily using Cor. 23.49.

Lemma 23.50. Let E1, E2 be µ-regular subsets of X satisfying µpE1q ă `8 and
µpE2q ă `8. Then E1 Y E2, E1 X E2, E2zE1 are µ-regular.

Proof. It suffices to prove that E2zE1 is regular. Then, similarly, E1 X E2 “

E2zpE2zE1q is regular. By Cor. 23.48, E1YE2 “ E1\pE2zE1q is regular. (Note that
all the sets involved have finite µ˚-values.)

Choose any ε ą 0. By Cor. 23.49, there exist compactKi Ă Ei and open Ui Ą Ei
such that µpUizKiq ă ε{2. Then U2zK1 is open and contains E2zE1, and K2zU1 is
compact and is contained in E2zE1. Moreover,

pU2zK1qzpK2zU1q Ă pU2zK2q Y pU1zK1q (23.12)

since pU2zK1qzpK2zU1q “ U2XK
c
1XpK2XU

c
1q
c “ pU2XK

c
1XK

c
2qYpU2XK

c
1XU1q Ă

pU2zK2q Y pU1zK1q. (See also Fig. 23.1.) By the subadditivity of µ˚, we have
µ˚ppU2zK1qzpK2zU1qq ď µpU2zK2q ` µpU1zK1q ă ε. Therefore, by Cor. 23.49, E2zE1

is µ-regular.

Figure 23.1. The shaded areas are pU2zK1qzpK2zU1q and pU2zK2qYpU1zK1q respec-
tively.

23.5.3 Locally µ-regular sets

When µpXq ă `8, the results in Subsec. 23.5.2 imply easily that the set of µ-
regular sets form a σ-algebra Mµ containing all open sets (and hence containing
BX), and that µ is a measure on Mµ. However, when µpXq “ `8, µ-regular
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sets are not good enough. One easily checks that if µ is finite on compact sets
(e.g., µ is the Lebesgue measure), Cor. 23.49 fails for regular sets with infinite µ-
values. Therefore, one cannot prove that the µ-regular sets form a σ-algebra. In
fact, there is an example where µ˚pEq “ `8 and µ˚pEq “ 0 for some E P BX .
(See Rem. 26.18.) To overcome this difficulty, we consider the better notion of
local µ-regularity:

Definition 23.51. Let E Ă X . We say that E is locally µ-regular if µ˚pE X Ωq “
µ˚pE X Ωq for every open set Ω Ă X satisfying µpΩq ă `8.

The following proposition shows that when µpXq ă `8, the µ-regularity and
the local µ-regularity are equivalent.

Proposition 23.52. Assume that E Ă X satisfies µ˚pEq ă `8. Then E is µ-regular iff
E is locally µ-regular.

Proof. Assume that E is locally regular. Since µ˚pEq ă `8, there exists an open
Ω Ą E such that µpΩq ă `8. So E X Ω is regular. Hence E is regular. Conversely,
assume that E is regular. Let Ω Ă X be an open set satisfying µpΩq ă 8. Since Ω
is µ-regular, by Lem. 23.50, E X Ω is regular. So E is locally regular.

23.5.4 The main theorem

Theorem 23.53. Let µ : TX Ñ r0,`8s satisfy Asmp. 23.40. Let Mµ be the set of locally
µ-regular subsets of X . Then Mµ is a σ-algebra containing BX , and µ˚ is a complete
measure on Mµ. We denote the measure pMµ, µ

˚q by pMµ, µq.

According to the definition of pMµ, µq in Thm. 23.53, if E P Mµ then µ˚pEq “
µpEq (even though µ˚pEq and µ˚pEq are not necessarily equal when µ˚pEq “ `8).
The restriction pBX , µqwill be called a Radon measure if X is LCH and µ is finite
on compact sets. We will discuss Radon measures in detail in Ch. 25.

Proof. Step 1. We show that Mµ is a σ-algebra. Clearly H P Mµ. Let Ω P TX such
that µpΩq ă `8. We want to show that if E X Ω is regular then Ec X Ω is also
regular. We want to show that if E1, E2, ¨ ¨ ¨ Ă 2X are such that E1 X Ω, E2 X Ω, . . .
are regular, then p

Ť

nEnq X Ω is regular. By replacing E with E X Ω and En with
En X Ω, it suffices to prove:

(a) If E Ă Ω is regular, then ΩzE is regular.

(b) If E1, E2, . . . are regular subsets of Ω, then
Ť

nEn is regular.

By Lem. 23.50, (a) is true (since open sets are regular). Let E1, E2, ¨ ¨ ¨ Ă Ω be
regular. Let F1 “ E1 and Fn “ EnzpE1 Y ¨ ¨ ¨ Y En´1q if n ą 1. Then each Fn is
regular by Lem. 23.50. Therefore, by Cor. 23.48,

Ť

En “
Ů

n Fn is regular.
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Step 2. By Asmp. 23.40-(e), every open set is regular. Thus every open set is
also locally regular. Therefore, Mµ contains TX , and hence contains BX “ σpTXq.

Clearly µ˚pHq “ 0. To show that µ˚ is a measure on Mµ, we take mutually
disjoint E1, E2, ¨ ¨ ¨ P Mµ, and we shall show that µ˚pEq “

ř

n µ
˚pEnq where E “

Ť

nEn. If µ˚pEq “ `8, by the countable subadditivity, we have `8 “ µ˚pEq ď
ř

n µ
˚pEnq, and hence µ˚pEq “

ř

n µ
˚pEnq. So it suffices to assume µ˚pEq ă `8.

Therefore µ˚pEnq ă `8 for each n. By Prop. 23.52, En is regular. Therefore
µ˚pEq “

ř

n µ
˚pEnq by Cor. 23.48.

Finally, we need to prove that µ˚ is complete on Mµ. Let E P Mµ such that
µ˚pEq “ 0. Let F Ă E. Then µ˚pF q ď µ˚pEq “ 0 and hence µ˚pF q “ 0. So
µ˚pF q “ µ˚pF q “ 0. Therefore F is regular and has finite µ˚-value. So F PMµ by
Prop. 23.52.

Exercise 23.54. Why do we define µ on Mµ to be the restriction of µ˚ but not µ˚?

23.5.5 A relationship between Mµ and the completion of BX

By Thm. 23.36, pMµ, µq extends the completion of pBX , µq. Very often, we only
care about the completion of pBX , µq but not about the larger set Mµ. However,
the following proposition shows that in many cases (e.g. when X “ RN and
µ “ m), pMµ, µq is equal to the completion.

‹ Proposition 23.55. Assume that pBX , µq is σ-finite, i.e., X is a countable union of
elements of BX with finite µ-measures. Then pMµ, µq is the completion of pBX , µq.

‹ Proof. pMµ, µq extends the completion pM, µq. We want to show that Mµ Ă M.
Let E PMµ. Since X is σ-finite, we have X “

Ť

nAn where An P BX and µpAnq ă
`8. It suffices to prove that En :“ E X An belongs to M for each n. Note that
En P Mµ and µpEnq ă `8. Thus, by Cor. 23.49, for each k P Z` there exists a
compact Kk Ă En such that µpEnzKkq ă 1{k. By replacing Kk with K1 Y ¨ ¨ ¨ YKk,
we assume pKkq is increasing. Let F “

Ť

kKk, which is a Borel set. Then F Ă En
and EnzF is µ-null. Since pM, µq is complete, we see that EnzF belongs to M. So
En PM.

In general, pMµ, µq is larger than the completion pM, µq of pBX , µq. pMµ, µq
is called the saturation of pM, µq. More generally, the measure ν of a measure
space pY,N, νq is called saturated provided that a set E Ă Y belongs to N iff
E X A P N for every A P N such that νpAq ă `8. If a measure pN, νq is not
necessarily saturated, the smallest saturated measure extending pN, νq is called
the saturation of pN, νq.
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23.6 A discussion of measurable sets: from Jordan to Lebesgue
to Carathéodory

Let pX, TXq be a topological space, and assume that µ : TX Ñ r0,`8s satisfies
Asmp. 23.40.

23.6.1 Lebesgue’s outer measure and inner measure

Here, I will make some comparisons between our approach in Sec. 23.5 and
Lebesgue’s original method. We refer the readers to [Haw, Sec. 5.1] and [Jah, Sec.
9.6] for detailed discussions of Lebesgue’s approach.

In the 1902 paper where Lebesgue introduced his integral theory, he focused
on measurable subsets of ra, bs. For the convenience of the following discussion,
I will consider the bounded open interval pa, bq instead. For each E Ă pa, bq,
Lebesgue defined the outer measure m˚pEq by (23.2), i.e., the infinimum of the to-
tal sizes of intervals coveringE. It is not hard to see that his definition agrees with
ours, since any open subset of R is a countable disjoint union of open intervals (cf.
Pb. 8.14).

On the other hand, Lebesgue’s definition of inner measure is

m˚pEq “ b´ a´m˚
ppa, bqzEq (23.13)

If we generalize (23.13) to the setting of Sec. 23.5 where E is a subset of an open
Ω Ă X satisfying µpΩq ă `8, the inner measure of E should be defined by µpΩq´
µ˚pΩzEq. We now show that this definition is equal to our definition of µ˚pEq in
(23.9b):

Proposition 23.56. Let Ω be an open subset of X such that µpΩq ă `8. Let E Ă Ω.
Then

µ˚pEq “ µpΩq ´ µ˚
pΩzEq (23.14)

‹ Proof. Let F “ ΩzE. By the definition of µ˚, we have

µ˚
pF q “ inf

␣

µpV q : V is open in Ω and contains F
(

By Lem. 23.50, Γ :“ ΩzV is µ-regular, and µpΩq “ µpV q ` µpΓq. Therefore, µpΩq ´
µ˚pΩzEq equals the supremum of µpΓq where Γ is a closed subset of Ω contained
in E. Thus, proving (23.14) means proving

sup
␣

µpKq : K Ă E is compact
(

“ sup
␣

µpΓq : Γ is closed in Ω, and Γ Ă E
(

We clearly have “ď”. Since µpΓq “ µ˚pΓq, for each ε ą 0 there exists a compact
K Ă Γ such that µpKq ą µpΓq ´ ε. So “ě” is also true.

For a further generalization of this proposition, see Pb. 23.11.
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23.6.2 Subadditivity and superadditivity

As mentioned in the slogan (23.10), the countable additivity of µ on regular
sets follows directly from the fact that the outer measure µ˚ is countably subaddi-
tive, and the inner measure µ˚ is countably superadditive. This simple and intu-
itive idea is not new. It already appeared in Darboux integrals: Given a bounded
real-valued function f defined on R “ ra1, b1s ˆ ¨ ¨ ¨ raN , bN s, the upper Darboux
integral

ş

f and the lower Darboux integral
ş

f are defined in a similar way as in
Thm. 13.41, where the Darboux sums are defined by partitioning the box R into
smaller boxes. It is not hard to check that

ş

and
ş

satisfy respectively the subaddi-
tivity and the superadditivity:

ż

pf ` gq ď

ż

f `

ż

g

ż

pf ` gq ě

ż

f `

ż

g

(See also Pb. 15.9.) Thus, since f is Riemann integrable iff
ş

f “
ş

f ,
ş

and
ş

must
be linear on Riemann integrable functions.

In fact, before Lebesgue, Jordan had utilized this idea (subadditivity ` super-
additivity ñ additivity) to study measurable sets in 1892 (cf. [Jah, Sec. 9.4] and
[Haw, 4.1]): For each bounded E Ă RN , the outer content c˚pEq is defined to be
the infinimum of the total sizes of finitely many boxes covering E, and the inner
content c˚pEq is the supremum of the total sizes of finitely many disjoint boxes
contained in E. Jordan defined E to be measurable if c˚pEq “ c˚pEq. Using our
familiar language,

c˚
pEq “

ż

χE c˚pEq “

ż

χE (23.15)

and E is Jordan-measurable iff χE is Riemann integrable. c˚ and c˚ satisfy subad-
ditivity and superadditivity respectively, just as

ş

and
ş

do. So c˚ satisfies additiv-
ity on Jordan-measurable sets.

Example 23.57. Let E “ Q X r0, 1s. We know that mpEq “ 0. It is not hard to see
that c˚pEq “ 0 and c˚pEq “ 1. So E is not Jordan-measurable.

Compared to Jordan, an important improvement Lebesgue made is that he
extended the finite subadditivity and superadditivity to countable ones. He
achieved this goal by giving the better definition of outer measure. Recall that
the outer content c˚pEq is defined by the infinimum of the sizes of simple regions
(i.e., finite unions of boxes) covering E. The outer Lebesgue measure m˚pEq is
defined in a similar way, except that one allows for countable unions of boxes to
cover E. From the modern viewpoint (i.e., the viewpoint in Sec. 23.4 and 23.5),
m˚pEq is defined by covering E by arbitrary open sets, not just by simple regions.
The modern viewpoint is equivalent to the classical one due to the following ob-
servation:
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Exercise 23.58. Let Ω be an open subset of RN . Show that Ω is a countable union
of boxes R1 Y R2 Y ¨ ¨ ¨ where IntpRiq X IntpRjq “ H if i ‰ j. Here, a box denotes
a set I1 ˆ ¨ ¨ ¨ ˆ IN where each Ii is a bounded interval in R.

Hint. First treat the case that Ω is inside R “ r0, 1sN . In step k, partition R equally
into 2kN pieces, and take all subboxes inside Ω but not inside the subboxes taken
from step 1 to step k ´ 1. In the general case, consider ΩX R where R “ rn1, n1 `

1s ˆ ¨ ¨ ¨ ˆ rnN , nN ` 1s and n1, . . . , nN P Z.

23.6.3 The dilemma of µ-regular sets with possibly infinite measures.

We know that when µpXq ă `8, the µ-regular sets form a σ-algebra contain-
ing BX (Thm. 23.53 and Prop. 23.52). When µpXq “ `8, this statement cannot
be proved, so we must find alternatives to µ-regular sets.

The alternatives we gave in Sec. 23.5 are locally µ-regular sets, i.e., the sets E
such that E X Ω is µ-regular for any open µ-finite set Ω. Our treatment is similar
to that in Rudin’s book [Rud-R], except that Rudin considered those E such that
E X K is regular for any compact K Ă X . (Rudin assumed that X is LCH, and
µ is finite on compact sets.) See the proof of Thm. 2.14 in [Rud-R]. In particular,
Step III of the proof of that theorem is similar to Lem. 23.38, Step IV is similar to
Cor. 23.48, Step V is similar to Cor. 23.49, Step VI is similar to Lem. 23.50, Step
VII and IX are similar to Thm. 23.53, and Step VIII is similar to Prop. 23.52.

Another approach was introduced by Carathéodory in 1914 and is popular
among many textbooks (cf. [Fol-R, Sec. 1.4], [RF, Sec. 17.3], [Yu, Sec. 39]). Since
you may need to study this approach carefully in the future, I’ll explain below
how the approach of Carathéodory is related to those of Jordan and Lebesgue
based on regular sets. (At first glance, they look very different!)

23.6.4 ‹ Carathéodory measurable sets

The relationship between our approach (in Sec. 23.5) and Lebesgue’s approach
was already explained. Now, recall that a subset E of X is locally µ-regular iff
µ˚pΩ X Eq “ µ˚pΩ X Eq for all open Ω with finite µpΩq. By Prop. 23.56, we have
µ˚pΩX Eq “ µpΩq ´ µ˚pΩzEq. Therefore,

E is locally µ-regular
õ

µ˚
pΩX Eq ` µ˚

pΩzEq “ µpΩq if Ω Ă X is open and µpΩq ă `8

(23.16)

Here comes the magic:

Proposition 23.59. Let E Ă X . Then the following are equivalent.

(1) E is locally µ-regular.
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(2) E is Carathéodory µ˚-measurable, which means that for any A Ă X we have

µ˚
pAX Eq ` µ˚

pAzEq “ µ˚
pAq (23.17)

Proof. By (23.16), clearly (2) implies (1). Conversely, assume (1). To prove (23.17),
by the subadditivity of µ˚, it suffices to prove “ď”. This is obvious when µ˚pAq “
`8. So we assume WLOG that µ˚pAq ă `8. Since µ˚pAq is the infinimum of
µpΩq where Ω Ą A is open and µpΩq ă `8, it suffices to prove for such Ω that
µ˚pA X Eq ` µ˚pAzEq ď µpΩq. By the monotinicity of µ˚, it suffices to prove
µ˚pΩ X Eq ` µ˚pΩzEq “ µpΩq. But this follows from the fact that µ˚ is a measure
on the σ-algebra Mµ (cf. Thm. 23.53). (Alternatively, it follows directly from Lem.
23.50 and Cor. 23.48.)

The surprising part of the Carathéodory measurability is that we do not
assume A to be either open or compact or Borel or µ-regular. By contrast,
µ˚pA X Eq ` µ˚pAzEq is not necessarily equal to µ˚pAq or µ˚pAq when A is not
µ-regular. (It is equal to µpAq when A is µ-regular and µpAq ă `8. See Prop.
23.71.)

Example 23.60. LetE,F be subsets ofX such that there exist disjoint open subsets
U, V of X containing E,F respectively. Let A “ E Y F . Then µ˚pAq “ µ˚pEq `
µ˚pF q and µ˚pAq “ µ˚pEq ` µ˚pF q. (Cf. Pb. 23.10.) Assume that E,F have finite
outer measures and are not µ-regular, i.e., µ˚pEq ă µ˚pEq ă `8 and µ˚pF q ă
µ˚pF q ă `8. Then

µ˚pAq ă µ˚pAX Eq ` µ
˚
pAzEq ă µ˚

pAq

since the middle term is equal to µ˚pEq ` µ
˚pF q.

We now briefly discuss Carathéodory’s theory.

Definition 23.61. Let Y be a set. A function ν˚ : 2Y Ñ r0,`8s is called an (ab-
stract) outer measure if it satisfies the three conditions in Prop. 23.45, namely, it
satisfies ν˚pHq “ 0, the monotonicity, and the countable subadditivity (on sub-
sets of Y ). A set E Ă Y is called Carathéodory ν˚-measurable (or simply ν˚-
measurable) if for every A Ă Y we have

ν˚
pAX Eq ` ν˚

pAzEq “ ν˚
pAq (23.18)

The construction of Lebesgue measures (and more generally, measures on
Hausdorff spaces) using Carathéodory measurable sets is based on the following
key theorem.

Theorem 23.62. Let ν˚ be an (abstract) outer measure on a set Y . Then the set M of
Carathéodory ν˚-measurable sets form a σ-algebra, and the restriction of ν˚ to M is a
complete measure.
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Proof. See [Fol-R, Thm. 1.11].

Our main Thm. 23.53 follows easily from 23.62: Since µ satisfies (a,b,c) of
Asmp. 23.40, µ˚ is an abstract outer measure. By using (d,e) of Asmp. 23.40,
one can show that open sets are µ˚-measurable.3 Therefore, the set Mµ of
Carathéodory µ˚-measurable sets contains open subsets of X . Thus, by Thm.
23.62, Mµ is a σ-algebra containing BX , and µ˚ is a complete measure on Mµ.

The reason we use locally regular sets in our course instead of Carathéodory’s
approach is that the latter is very unintuitive. The intuition “subadditivity ` su-
peradditivityñ additivity”, which goes back to Lebesgue, Jordan, and even Dar-
boux, is very obscure in the proof of Thm. 23.62. One cannot interpret (23.18)
to mean that the outer measure ν˚pA X Eq of A X E equals the “inner measure”
ν˚pAq ´ ν˚pAzEq, because Exp. 23.60 tells us that µ˚pAq ´ µ˚pAzEq is often not
equal to the actual inner measure µ˚pA X Eq. On the other hand, the advantage
of Carathéodory’s approach is that Thm. 23.62 can be applied to more general
situations than Thm. 23.53. For example, it can be used to construct measures on
Hausdorff spaces not satisfying regularity (such as the Hausdorff measures, cf.
[Fol-R, Sec. 11.2]).

I believe that many people will have this confusion when they first see the
condition (23.18): Why consider an arbitrary set A instead of just a “good” set, for
example, an open set, a compact set, or a Borel set? How can one believe that a
definition as strong as Def. 23.61 would have nontrivial examples? The way to
understand the motivation behind a definition or a theorem is not to immerse one-
self in the technical details of the proof, but to clarify the genealogy of concepts. I
hope that the exposition in this section will help the reader to get a general idea
of how the concept of measurable sets evolved from its basic and intuitive form
to the abstract definition of Carathéodory.

23.7 Problems and supplementary material

23.7.1 Basic properties

Definition 23.63. Let pX,Mq be a measurable space. Let Y be a subset of X . Let

M|Y “ ι´1
pMq (23.19)

where ι : Y Ñ X is the inclusion map. In other words, M|Y “ tY X E : E P Mu.
Then M|Y is clearly a σ-algebra on Y , called the restriction of M to Y .

Exercise 23.64. Let pX,Mq and pY,Nq be measurable spaces. Let f : X Ñ Y be a
map. Let Z Ă Y . Let N|Z be the restriction of N to Z. Prove that f : pX,Mq Ñ
pY,Nq is measurable iff f : pX,Mq Ñ pZ,N|Zq is measurable.

3Sketch of the proof: Let E be open. First prove (23.17) when A is open. Then prove (23.17) for
any A by using a similar argument as in the proof of Prop. 23.59.
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Problem 23.1. Let Y be a topological space, and let Z be a subspace of Y
(equipped with the subspace topology). Prove BY |Z “ BZ .

Hint. Apply Cor. 23.13 to the inclusion map ι : Z Ñ Y .

Problem 23.2. Let pX,M, µq be a measure space with completion pM, µq. Let V
be a separable normed vector space, and let f : X Ñ V be M-measurable (i.e.,
for each U P BV we have f´1pUq P M). Prove that there exists A P M with
µpXzAq “ 0 such that fχA is M-measurable.

Problem 23.3. Let X and Y be topological spaces.

1. Let A P BX and B P BY . Prove that AˆB P BXˆY .

2. Let f : X Ñ r0,`8s be a Borel function. Prove that Rf is a Borel subset of
X ˆ R where

Rf “ tpx, yq P X ˆ R : 0 ď y ď fpxqu

Hint. 1. The inverse image of any Borel set under a continuous (and hence Borel)
map is Borel. 2. Realize Rf as the inverse image of a closed set under a Borel
map.

23.7.2 Lower and upper semicontinuity

Definition 23.65. Let X be a topological space. A function f : X Ñ R is called
lower semicontinuous if f´1pa,`8s is open for each a P R. We say that f is upper
semicontinuous if f´1r´8, aq is open for each a P R. By Exp. 23.18, semicontinu-
ous functions are Borel functions.

Problem 23.4. Let X be a topological space.

1. Let A Ă X . Prove that χA is lower semicontinuous iff A is open.

2. Let pfiqiPI be a family of lower semicontinuous functions X Ñ R. Let fpxq “
supiPI fipxq. Prove that f : X Ñ R is lower semicontinuous.

Recall Pb. 8.2 for the basic properties of lim sup and lim inf.

Problem 23.5. Let X be a topological space. Let f : X Ñ R. Prove that the
following are equivalent.

(1) f is lower semicontinuous.

(2) For each x P X and each net pxαq in X converging to x, we have
lim supα fpxαq ě fpxq.
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(3) For each x P X and each net pxαq in X converging to x, we have
lim infα fpxαq ě fpxq.

Remark 23.66. If X is a metric space, the three conditions in Pb. 23.5 are still
equivalent if we replace “each net pxαq” with “each sequence pxnq”.

Example 23.67. Recall Def. 1.36 for the meaning of summations and multipli-
cations in Rě0. Then the addition map pa, bq P Rě0 ˆ Rě0 ÞÑ a ` b P Rě0 is
continuous. Using Pb. 23.5-(3), one easily checks that the multiplication map
pa, bq P Rě0 ˆ Rě0 ÞÑ ab P Rě0 is lower semicontinuous. (It is continuous outside
pt0u ˆ Rě0q Y pRě0 ˆ t0uq.)

Remark 23.68. From Pb. 23.5-(3), it is clearly that an Rě0-linear combination of
lower semicotinuous functions X Ñ Rě0 is lower semicontinuous.

Problem 23.6. Let X be a compact topological space, and let f : X Ñ R be lower
(resp. upper) semicontinuous. Show that f attains its minimum (resp. maximum)
at some point of X .

23.7.3 ‹Weakly measurable functions

Let pX,Mq be a measurable space.

Definition 23.69. Let V be a normed vector space over F P tR,Cu, equipped with
the norm topology and the corresponding Borel σ-algebra BV . We say that a map
f : X Ñ V is weakly measurable if for every φ P V˚ “ LpV ,Fq the function
φ ˝ f : X Ñ F is measurable.

It is clear (from Rem. 23.8) that if f is measurable, then f is weakly measurable.

Exercise 23.70. Let V be a normed vector space. Let f : X Ñ V be a function.
Suppose that W is a linear subspace of V containing fpXq. Prove that f : X Ñ V
is weakly measurable iff f : X ÑW is weakly measurable.

Hint. Use Hahn-Banach Thm. 16.5.

Problem 23.7. Let V be a normed vector space over F P tR,Cu. Let f : X Ñ

V . Suppose that fpXq is separable (as a metric subspace of V). Prove that f is
measurable iff f is weakly measurable.

Hint. Let f : X Ñ V be weakly measurable. Use Exe. 23.70 to show that one can
assume WLOG that V is separable. Then, by Thm. 17.24 and 15.37, there exist
countably many elements φ1, φ2, . . . forming a weak-* dense subset of BV˚p0, 1q.
Prove that }v} “ supn |xφn, vy| for each v P V . (Hint: Show that v can be viewed
as a continuous function on BV˚p0, 1q.) Conclude that for each v P V , the function
x P X ÞÑ }fpxq ´ v} is measurable. Use this fact to show that f is measurable.
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Problem 23.8. Let Y be a metric space. Let pfnq be a sequence of measurable
functions X Ñ Y converging pointwise to f : X Ñ Y . Assume that fpXq is
separable. Prove that f is measurable.

Hint. First method: By Thm. 17.23, Y can be viewed as a metric subspace of a real
normed vector space V . Show that f : X Ñ V is weakly measurable.

Second method: First prove that for each y P Y , the function x P X ÞÑ

dpfpxq, yq is measurable. Conclude that the map f : X Ñ fpXq is measurable.

In fact, without assuming that fpXq is separable, the statement in Pb. 23.8 is
still true, although the proof is more technical. (See the end of Sec. 38 in [Yu].)

Problem 23.9. Let f : X Ñ l2pZ`q be a map. For each x P X , write fpxq “
pf1pxq, f2pxq, . . . q. Prove that f is measurable iff fn : X Ñ C is measurable for
each n P Z`.

23.7.4 ‹ Outer and inner measures

Let pX, TXq be a Hausdorff space. Let µ : TX Ñ r0,`8s and its associated
µ˚, µ˚ : 2X Ñ r0,`8s be as in Asmp. 23.40. Recall from Thm. 23.53 that µ˚ is
a measure on the Borel σ-algebra BX , and µ˚ is denoted by µ when restricted to
BX .

Problem 23.10. Let E and F be subsets of X . Assume that there are mutually
disjoint open subsets U, V Ă X such that E Ă U and F Ă V . Prove that µ˚pE Y
F q “ µ˚pEq ` µ˚pF q and µ˚pE Y F q “ µ˚pEq ` µ˚pF q.

Problem 23.11. Let E Ă X . Prove that

µ˚pEq “ sup
␣

µpAq : A P BX and A Ă E
(

if µ˚
pEq ă `8 (23.20a)

µ˚
pEq “ inf

␣

µpBq : B P BX and E Ă B
(

(23.20b)

Conclude that if Ω P BX satisfies µpΩq ă `8, then

µ˚pΩX Eq “ µpΩq ´ µ˚
pΩzEq (23.21)

This formula generalizes Prop. 23.56.

The following proposition further generalizes (23.21).

Proposition 23.71. Let A Ă X and E Ă X . Assume that µ˚pAq ă `8. Then

µ˚pAq ď µ˚pAX Eq ` µ
˚
pAzEq ď µ˚

pAq (23.22)

Proof. For each open U containing A and µpUq ă `8, we have µ˚pA X Eq `
µ˚pAzEq ď µ˚pU X Eq ` µ˚pUzEq where the RHS equals µpUq by (23.21). Tak-
ing infU , we get the second “ď” of (23.22). For each compact K Ă A, by (23.21),
we have µpKq “ µ˚pK XEq ` µ

˚pKzEq ď µ˚pAXEq ` µ
˚pAzEq. Taking supK , we

get the first “ď” of (23.22).
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24 Integrals on measure spaces

The goal of this chapter is to define the integral
ş

X
fdµ where pX,µq is a mea-

sure space, and f : X Ñ C is measurable. By considering Ref and Img sepa-
rately, it suffices to define

ş

X
fdµ when f : X Ñ R. We shall first define

ş

f when
f : X Ñ r0,`8s. Then we extend the integral to real functions.

24.1 Integrals of extended positive functions

Let pX,M, µq be a measure space. Recall Def. 1.36 for the addition and multi-
plication in Rě0 “ r0,`8s.

24.1.1 Integrals of simple functions

Definition 24.1. Let Y be a measurable space. A function f : X Ñ Y is called a
simple function if f is measurable and fpXq is a finite set. We let

SpX, Y q “ tsimple functions f P Y X
u (24.1)

If Y “ r0,`8s, a simple function f is called an (extended) positive simple func-
tion . This is equivalent to saying that f is of the form

f “
n
ÿ

i“1

aiχEi
(24.2)

where n P Z`, ai P r0,`8s, and Ei PM. Let

S`pXq “ SpX,Rě0q “ textended positive simple functions on Xu (24.3)

which is an Rě0-linear subspace of r0,`8sX .

Definition 24.2. For each f P S`pXq, define

ż

X

f ”

ż

X

fdµ “
n
ÿ

i“1

aiµpEiq (24.4)

if fpXq “ ta1, . . . , anu (where ai ‰ aj if i ‰ j) and Ei “ f´1paiq.

To show the linearity of
ş

X
, we need a lemma:

Lemma 24.3. Suppose that f “
řn
i“1 aiχEi

where ai P Rě0, Ei PM, and Ei XEj “ H
if i ‰ j. Then

ş

X
f “

ř

i aiµpEiq.

423



Proof. For each c P Rě0, we let Ic “ ti P N : 1 ď i ď n, ai “ cu. Then f´1pcq “
Ů

iPIc
Ei. Thus, by the additivity of µ,
ż

f “
ÿ

cPRě0

c ¨ µ
´

ğ

iPIc

Ei

¯

“
ÿ

c

ÿ

iPIc

c ¨ µpEiq “
ÿ

c

ÿ

iPIc

ai ¨ µpEiq “
ÿ

i

aiµpEiq

Proposition 24.4. The map
ş

X
: S`pXq Ñ Rě0 is Rě0-linear.

Proof. Let f, g P S`pXq. Clearly
ş

cf “ c
ş

f if c P Rě0. Write fpXq “ ta1 ă
¨ ¨ ¨ ă amu and gpXq “ tb1 ă ¨ ¨ ¨ ă bnu. Let Ei “ f´1paiq and Fj “ g´1pbjq. Since
X “

Ů

iEi “
Ů

j Fj , we have χEi
“

ř

j χEiXEj
and χFj

“
ř

i χEiXEj
, and hence

f ` g “
ř

i,jpai ` bjqχEiXFj
. Thus, by Lem. 24.3, we get

ż

pf ` gq “
ÿ

i,j

pai ` bjqµpEi X Fjq

By the additivity of µ, and by Ei “
Ů

j Ei X Fj , we have µpEiq “
ř

j µpEi X Fjq. So
ż

f “
ÿ

i

aiµpEiq “
ÿ

i,j

aiµpEi X Fjq

Similarly,
ş

g “
ř

i,j bjµpEi X Fjq. So
ş

f `
ş

g “
ř

i,jpai ` bjqµpEi X Fjq.

Corollary 24.5. If f, g P S`pXq and f ď g, then
ş

X
fdµ ď

ş

X
gdµ

Proof. One easily finds h P S`pXq such that f ` h “ g. So
ş

g “
ş

f `
ş

h ě
ş

f .

24.1.2 Integrals of measurable functions

Definition 24.6. For each measurable space pY,Nq, we let

LpX, Y q “ tmeasurable f P Y X
u (24.5)

Let L`pX,Mq ” L`pXq “ LpX,Rě0q. In other words,

L`pXq “ tmeasurable f P r0,`8sXu (24.6)

For each f P L`pXq, define the integral
ż

X

fdµ “ sup
!

ż

X

sdµ : s P S`pXq, s ď f
)

(24.7)
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Remark 24.7. It is easy to see that
ż

X

fdµ “ sup
!

ż

X

sdµ : s P SpX,Rě0q, s ď f
)

(24.8)

In other words, to define
ş

X
f , it suffices to consider positive simple functions

with finite values.

Remark 24.8. Let A P M. Let M|A be the restriction of M to A (cf. Def. 23.63).
Then M|A ĂM. So we can restrict µ to M|A so that pA,M|A, µq is a measure space.
If f P L`pXq, noting that fχA is measurable (Cor. 23.22), we clearly have

ż

A

f |AdµA “

ż

X

fχAdµ (24.9)

where µA : M|A Ñ Rě0 is the restriction of µ. We denote the two sides of (24.9) by
ż

A

f .

We now discuss the linearity of
ş

X
. Clearly

ş

X
cf “ c

ş

X
f if c P r0,`8q. It is

not hard to check that
ş

X
is supperadditive: Suppose that f, g P L`pXq. For each

simple functions s ď f and t ď g we have s ` t ď f ` g, and hence
ş

X
pf ` gq ě

ş

X
ps` tq “

ş

X
s`

ş

X
t. Therefore

ş

X
pf ` gq ě

ş

X
f `

ş

X
g.

This is not surprising, because the definition clearly suggests that
ş

X
is actually

a lower integral. When f is bounded and µpXq ă `8 (which is case that Lebesgue
considered in his 1902 paper), we can also define the upper integral

ż

X

fdµ “ inf
!

ż

X

tdµ : t P S`pXq, f ď t
)

(24.10)

which clearly satisfies the subadditivity
ş

X
pf ` gq ď

ş

X
f `

ş

X
g. Clearly

ş

X
f ď

ş

X
f . To show the Rě0-linearity of

ş

X
, it suffices to prove that

ş

X
f “

ş

X
f . By

scaling f , assume that fpXq Ă r0, 1s. For each k “ 1, . . . , n, let Ek “ f´1pk´1
n
, k
n
s.

Following Lebesgue’s idea of “partitioning the codomain” (cf. Sec. 23.1), define
the Lebesgue sums

sn “
n
ÿ

k“1

k ´ 1

n
χEk

tn “
n
ÿ

k“1

k

n
χEk

(24.11)

Then sn, tn P S`pXq, sn ď f ď tn, and
ş

X
ptn ´ snq ď µpXq{n. This proves that

ş

X
f ď

ş

X
f ` µpXq{n for any n, and hence

ş

X
f “

ş

X
f . The linearity of

ş

X
on

bounded positive measurable functions is thus established. It also shows that
ş

X
f can be understood as the limit of Lebesgue sums, just as Riemann integrals

are the limits of Riemann sums.

425



It is a subtle task to extend the additivity of
ş

X
to unbounded functions or to

functions f such that tx P X : fpxq ą 0u has infinite measures. (Consider for
example the case that f ` g “ χA for some A P M such that µpAq “ `8. It is
not so obvious why µpAq ď

ş

f `
ş

g is true.) In the following, we shall study the
additivity in a more modern way.

24.1.3 The monotone convergence theorem

Proposition 24.9. Let f P L`pXq. Then there is a sequence psnqnPZ`
in SpX,Rě0q such

that s1 ď s2 ď ¨ ¨ ¨ and that limn sn converges pointwise to f . (In particular, sn ď f .)

Proof. Choose a strictly increasing homeomorphism φ : r0,`8s
»
ÝÑ r0, 1s, and let

g “ φ ˝ f . Similar to (24.11), we let σn “
řn
k“1

k´1
n
χEk

where Ek “ g´1pk´1
n
, k
n
s.

Then 0 ď σn ă 1, and limn σn converges uniformly to g (since }g ´ σn}l8 ď 1{n).
The subsequence pσ2nqnPZ`

is increasing. Let sn “ φ´1 ˝σ2n . Then psnq satisfies the
requirement.

Remark 24.10. The above proof shows that if }f}l8 ă `8, one can choose an
increasing sequence psnq in SpX,Rě0q converging uniformly to f .

Before proving the linearity of
ş

X
, we first use Prop. 24.9 to give a fun proof of

an (almost) special case of Pb. 23.2.

Proposition 24.11. Let µ be a measure on M. Let pM, µq be the completion of pM, µq.
Let f be an M-measurable map from X to r0,`8s (resp. to C). There there exist A PM
with µpXzAq “ 0 such that fχA is M-measurable.

Proof. If f is a complex function, by considering Repfq and Impgq separately, we
assume WLOG that f is real. Since f “ f` ´ f´ where f` “ maxtf, 0u and
f´ “ maxt´f, 0u are M-measurable (by Thm. 23.23), by considering f` and f´

separately, it suffices to prove the corollary when f : X Ñ r0,`8s.
We first consider the case that f P S`pXq. By linearity, it suffices to assume

f “ χE where E P M. By Thm. 23.36, we have B Ă E Ă C where B,C P M and
µpCzBq “ 0. Set A “ B Y pXzCq and g “ χB. Then µpXzAq “ 0 and fχA “ χB is
M-measurable.

Now consider the general case. By Prop. 24.9, there is an increasing sequence
psnq of simple functionsX Ñ Rě0 converging pointwise to f . By the above special
case, for each n there exists An P M with µpXzAnq “ 0 such that snχAn is M-
measurable. Let A “

Ş

An. Then snχA “ snχAn ¨ χA is M-measurable. Since
psnχAq converges pointwise to fχA, by Thm. 23.23, fχA is M-measurable.

Theorem 24.12 (Monotone convergence theorem). Let pfnqnPZ`
be an increasing

sequence in L`pXq. Let f be the pointwise limit f “ limn fn, which is in L`pXq by Cor.
23.24. Then

ż

X

fdµ “ lim
n

ż

X

fndµ
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Proof. We clearly have “ě” since f ě fn implies
ş

f ě
ş

fn. To prove the other
direction, by Rem. 24.7, it suffices to choose any s P S`pXq satisfying s ď f and
s ă `8, and show that

ş

X
s ď limn

ş

X
fn. Since for any 0 ă γ ă 1 we have

γ
ş

X
s “

ş

X
γs, by replacing s with γs, we assume that spxq ă fpxq for any x P X

such that spxq ą 0.
The idea is to show that for sufficiently large n, we have fn ą s on a sufficiently

large region. Write s as a finite sum s “
ř

i aiχEi
where a1, a2, ¨ ¨ ¨ P Rą0, and

E1, E2, ¨ ¨ ¨ PM are mutually disjoint. For each i, let

Ei,n “ tx P Ei : fnpxq ą spxqu “ tx P Ei : fnpxq ą aiu

which is in M. Then fn ě
ř

i aiχEi,n
. Thus, by Def. 24.6, we have

ż

X

fn ě
ÿ

i

aiµpEi,nq

Clearly pEi,nqnPZ`
is increasing. Since f ą s on Ei, we have

Ť

nEi,n “ Ei. There-
fore, by Prop. 23.30-(b) (which is a consequence of the countable additivity of
µ), limn µpEi,nq “ µpEiq. So limn

ş

X
fn ě

ř

i aiµpEiq “
ş

X
s because the map

t P Rě0 ÞÑ ait is continuous.

The countable additivity of µ plays a crucial role in the above proof. Indeed,
Prop. 23.30-(b) can be viewed as a special case of the monotone convergence
theorem: If pEnq is an increasing family in M and E “

Ť

nEn, set f “ χE and
fn “ χEn , then

ş

f “ limn

ş

fn means precisely µpEq “ limn µpEnq.
We are now ready to prove:

Proposition 24.13. The map
ş

X
: L`pXq Ñ Rě0 is Rě0-linear.

Proof. Let f, g P L`pXq. By Prop. 24.9, there are increasing sequences psnq and
ptnq in S`pXq converging pointwise to f and g respectively. Then psn ` tnqnPZ`

is
increasing and converges pointwise to f`g. By the linearity of

ş

X
on S`pXq (Prop.

24.4), we have
ş

psn ` tsq “
ş

sn `
ş

tn. Taking limn and applying the monotone
convergence theorem, we have

ş

pf ` gq “
ş

f `
ş

g. That
ş

cf “ c
ş

f for all c P Rě0

can be proved in a similar way using Lem. 24.14.

Lemma 24.14. The multiplication map pa, bq P Rě0 ˆ Rě0 Ñ ab P Rě0 is left continu-
ous, i.e., if paiqiPI and pbjqjPJ are increasing nets in Rě0 converging to a, b respectively,
then limi,j aibj “ ab.

Proof. This is easy to check.

Corollary 24.15. Let A,B PM be disjoint. Let f P L`pXq. Then
ş

AYB
f “

ş

A
f `

ş

B
f

Proof.
ş

AYB
f “

ş

X
fχAYB “

ş

X
pfχA ` fχBq “

ş

X
fχA `

ş

X
fχB “

ş

A
f `

ş

B
f .
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24.1.4 Criteria for f “ 0 a.e. and f ă `8 a.e.

Proposition 24.16. Let f P L`pXq. The following are true.

(a) We have
ş

X
fdµ “ 0 iff f “ 0 a.e..

(b) Suppose that
ş

X
fdµ ă `8. Then f ă `8 a.e.. In other words, there is a null set

∆ Ă X such that fpxq ă `8 for all x P Xz∆.

Note that part (a) generalizes Exp. 20.14.

Proof. Proof of (a). Assume that
ş

X
f ą 0. By the definition of integrals, there is

a simple function ď f whose integral is positive. Thus, there exists E P M and
a P Rě0 such that aχE ď f , and that aµpEq “

ş

X
aχE ą 0. So µpEq ą 0 and a ą 0.

Thus f is non-zero on the non-null measurable set E.
Conversely, assume that

ş

X
f “ 0. For each n P Z`, let En “ f´1r1{n,`8s.

Then n´1χEn ď f and hence
ş

X
f ě

ş

X
n´1χEn “ n´1µpEnq. So µpEnq “ 0. So

E “
Ť

nEn is null, and f is zero outside E.
Proof of (b). Let I “

ş

X
f ă `8 and assume I ă `8. For each n P Z`,

let ∆n “ f´1rn,`8s. Then nχ∆n ď f , and hence nµp∆nq “
ş

X
nχ∆n ď I . So

µp∆nq ď I{n. Then f ă `8 outside ∆ “
Ş

n∆n where µp∆q ď µp∆nq ď I{n, and
hence µp∆q “ 0.

24.2 Integrals of complex functions

Let pX,M, µq be a measure space. In the last section, we have defined the
integral operator

ş

X
on L`pXq. Restricting to LpX,Rě0q, we have an Rě0-linear

map
ş

X
LpX,Rě0q Ñ Rě0. In this section, we extend this integral to L1pX,µq Ñ C

where

L1
pX,µq ” L1

pX,µ,Cq “ tf P LpX,Cq : }f}L1 ă `8u (24.12)

and

}f}L1 “

ż

X

|f |dµ (24.13)

is abbreviated to }f}1 when no confusion arises. A function f : X Ñ C is called
µ-integrable (or simply integrable) if it is in L1pX,µq.

We shall first extend the integral from L1pX,µ,Rě0q to L1pX,µ,Rq using a
purely algebraic method, where

L1
pX,µ,Rq “ tf P LpX,Rq : }f}L1 ă `8u

L1
pX,µ,Rě0q “ tf P LpX,Rě0q : }f}L1 ă `8u

Then we extend it to L1pX,µq by using Pb. 13.2.
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Remark 24.17. L1pX,µq is a C-linear subspace of CX .

Proof. Let f, g P L1pX,µq and a P C. Clearly
ş

|af | “ |a|
ş

|f | ă `8. Since |f ` g| ď
|f | ` |g|, we have

ş

|f ` g| ď
ş

p|f | ` |g|q “
ş

|f | `
ş

|g| ă `8.

Definition 24.18. Let V be an R-vector space. A subset K Ă V is called a convex
cone if K is an Rě0-linear subspace of V , i.e., for every u, v P K and a, b P Rě0 we
have au` bv P K.

Proposition 24.19. Let K be a convex cone in an R-vector space V . Let rV be a R-linear
map. Let Γ : K Ñ rV be an Rě0-linear map. Suppose that V “ SpanRK. Then Γ can be
extended uniquely to an R-linear map Λ : V Ñ rV .

Proof. The uniqueness is obvious. To prove the existence, note that any v P V can
be written as

v “ v`
´ v´

where v`, v´ P K. (Proof: Since V “ SpanRK, we have v “ a1u1 ` ¨ ¨ ¨ ` amum ´
b1w1 ´ ¨ ¨ ¨ ´ bnwn where each ui, wj are in K, and each ai, bj are in Rě0. One sets
v` “

ř

i aiui and v´ “
ř

j bjwj .) We then define Λpvq “ Γpv`q ´ Γpv´q.
Let us show that this gives a well-defined map Λ : V Ñ rV . Assume that

v “ w` ´w´ where w`, w´ P K. Then Γpv`q ´ Γpv´q “ Γpw`q ´ Γpw´q iff Γpv`q `

Γpw´q “ Γpv´q ` Γpw`q, iff (by the additivity of Γ) Γpv` `w´q “ Γpv´ `w`q. The
last statement is true because v` ´ v´ “ w` ´ w´ implies v` ` w´ “ v´ ` w`.

It is easy to see that Λ is additive. If c ě 0, then cv “ cv`´cv´ where cv`, cv´ P

K. So Λpcvq “ Γpcv`q ´ Γpcv´q, which (by the Rě0-linearity of Γ) equals cΓpv`q ´

cΓpv´q “ cΛpvq. Since ´v “ v´ ´ v`, we have Λp´vq “ Γpv´q ´ Γpv`q “ ´Λpvq.
Hence Λp´cvq “ cΛp´vq “ ´cΛpvq. This proves that Λ commutes with the R-
multiplication.

Theorem 24.20. The integral operator
ş

X
: L1pX,µ,Rě0q Ñ Rě0 can be extended

uniquely to a C-linear map
ż

X

: L1
pX,µq Ñ C f ÞÑ

ż

X

fdµ

Proof. K “ L1pX,µ,Rě0q is a convex cone in V “ L1pX,µ,Rq. Note that any f P V
can be written as f “ f` ´ f´ where

f`
pxq “ maxtfpxq, 0u f´

pxq “ maxt´fpxq, 0u (24.14)

Then f˘ are measurable (by Thm. 23.23), and f˘ P K since 0 ď f˘ ď f and (in
particular)

ş

f˘ ă `8. This proves that V “ SpanRK. Therefore, by Prop. 24.19,
ş

X
can be extended uniquely to an R-linear functional on L1pX,µ,Rq, i.e.,

ż

X

f “

ż

X

f`
´

ż

X

f´ (24.15)
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Since L1pX,µq is C-spanned by L1pX,µ,Rq (and hence by K), the extension of
ş

X
to L1pX,µqmust be unique. We now prove the existence. Let Λ : L1pX,µq Ñ R

be defined by Λpfq “
ş

X
Repfq, noting that Repfq P L1pX,µ,Rq. Then Λ is R-linear.

By Pb. 13.2, we have a C-linear map Φ : L1pX,µq Ñ C defined by

Φpfq “ Λpfq ´ iΛpifq “

ż

X

Repfq ´ i

ż

X

Repifq “

ż

X

Repfq ` i

ż

X

Impfq

Then Φ clearly extends
ş

X
: L1pX,µ,Rq Ñ R.

To summarize, the integral
ş

X
of f P L1pX,µq is defined by

ż

X

fdµ “

ż

X

Repfqdµ` i

ż

X

Impfqdµ (24.16)

Proposition 24.21. For each f P L1pX,µq we have
ˇ

ˇ

ˇ

ż

X

fdµ
ˇ

ˇ

ˇ
ď

ż

X

|f |dµ.

Proof. We first assume that f is real. Let f˘ be defined by (24.14). Then 0 ď f˘ ď

f . So 0 ď
ş

f˘ ď
ş

f . Hence, by (24.15), we have
ş

f ď
ş

|f |. Similarly,
ş

p´fq ď
ş

|f |.
So |

ş

f | ď
ş

|f |.
Now we consider the general case. We first note that

ˇ

ˇ

ˇ
Re

ż

X

f
ˇ

ˇ

ˇ
ď

ż

X

|f | (24.17)

(Namely, Re
ş

X
has operator norm ď 1 if L1pX,µq is equipped with the seminorm

} ¨ }L1 .) Indeed, by (24.16), for each f P L1pX,µq we have |Re
ş

X
f | “ |

ş

X
Repfq|,

which, by the first paragraph, is ď
ş

X
|Repfq| ď

ş

X
|f |.

The following argument is similar to that in the solution of Pb. 13.2-3. Choose
θ P R such that eiθ

ş

f P R. So
ş

eiθf P R. By (24.17), we have

ˇ

ˇ

ˇ

ż

X

f
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

X

eiθf
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
Re

ż

X

eiθf
ˇ

ˇ

ˇ
ď

ż

X

|eiθf | “

ż

X

|f |

Corollary 24.22. Let f, g P LpX,Cq. Assume that there is a measurable A Ă X such
that XzA is null, and that f |A “ g|A. Then f is integrable iff g is integrable. If they are
integrable, then

ş

X
f “

ş

X
g.

Proof. By Prop. 24.16 we have
ş

X
|f | “

ş

X
|f |χA “

ş

X
|g|χA “

ş

X
|g|. Thus

ş

|f | ă
`8 iff

ş

|g| ă `8. Suppose that
ş

|f | ă `8. Since f ´ g “ 0 a.e., by Prop. 24.16,
we have

ş

|f ´ g| “ 0. By Prop. 24.21, we get
ş

f ´
ş

g “ 0.
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Example 24.23. Let X be a set, equipped with the counting measure µ on the
σ-algebra 2X (cf. Exp. 23.29). Then for each f : X Ñ r0,`8s, we have

ÿ

xPX

fpxq “ sup
APfinp2Xq

ÿ

xPA

fpxq “

ż

X

fdµ (24.18)

Therefore, for each f P CX we have f P L1pX,µq iff
ř

xPX |fpxq| ă `8. Namely,

L1
pX,µq “ l1pXq (24.19)

The linear maps f P l1pXq ÞÑ
ř

xPX fpxq and f P L1pX,µq Ñ
ş

X
fdµ are equal,

since they are equal on the subset of all positive l1-functions (which spans l1pXq).

Proposition 24.24. Let f P Rra, bs “ Rpra, bs,Cq where ´8 ă a ă b ă `8. Then
the Riemann integral of f equals the Lebesgue integral:

ż b

a

fpxqdx “

ż

ra,bs

fdm (24.20)

Proof. By considering the real part and the imaginary part separately, it suffices
to assume that f is real. Let S be the set of real step functions on ra, bs, i.e., S “
SpanRtχrc,ds : a ď c ď d ď bu. Then (24.20) clearly holds when f P S.

Now pick any f P Rpra, bs,Rq. Since f is strongly Riemann integrable (Def.
13.12), for each ε ą 0, there is a partition of ra, bs into compact subintervals I1 Y
I2 Y ¨ ¨ ¨ such that

ř

i diamfpIiq ¨ |Ii| ă ε. Let

g “
ÿ

i

inf fpIiq ¨ χIi h “
ÿ

i

sup fpIiq ¨ χIi

Then g ď f ď h, and
şb

a
phpxq´gpxqqdx “

ř

i diamfpIiq¨|Ii| ă ε. Since g, h, h´g P S,
their Riemann integrals and Lebsgue integrals are equal. (In particular,

ş

ra,bs
ph ´

gqdm ă ε.) Since
ż b

a

gpxqdx ď

ż b

a

fpxqdx ď

ż b

a

hpxqdx

ż

ra,bs

gdm ď

ż

ra,bs

fdm ď

ż

ra,bs

hdm

we have |
şb

a
fpxqdx´

ş

ra,bs
fdm| ă 2ε.

24.3 The convergence theorems

Let pX,M, µq be a measure space.

Theorem 24.25. Assume that µpXq ă `8. Let pfαq be a net in L1pX,µq converging

uniformly to f : X Ñ C. Then f P L1pX,µq, and lim
α

ż

X

fαdµ “

ż

X

fdµ.
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Proof. For each n P Z`, there is αn such that }f ´ fαn}l8 ď 1{n. Thus pfαnq con-
verges uniformly to f . Hence f is measurable (by Cor. 23.24), and |f | ď |fα1 | ` 1.
So

ş

|f | ď
ş

|fα1 | ` µpXq ă `8. This proves f P L1pX,µq.
For each α, let λα “ }f´fα}l8 . Then

ş

|f´fα| ď
ş

λα “ λα¨µpXq. Since limα λα “
0, and since |

ş

f´
ş

fα| ď
ş

|f´fα| (by Prop. 24.21), we have limα |
ş

f´
ş

fα| “ 0.

24.3.1 The dominated convergence theorem

The following celebrated theorem was proved by Lebesgue in 1904. In fact,
in Lebesgue’s original theorem, instead of assuming |fn| ď g, the stronger con-
ditions that µpXq ă `8 and supn }fn}l8 ă `8 were assumed. Moreover, unlike
the following proof, Lebesgue’s original proof did not use the monotone conver-
gence theorem since the latter was proved by Beppo Levi in 1906. We will explain
Lebesgue’s original proof in Subsec. 24.4.2.

Theorem 24.26 (Dominated convergence theorem). Suppose that pfnq is a se-
quence in LpX,Cq converging pointwise to f : X Ñ C. Suppose that there exists
g P L1pX,µ,Rě0q such that |fn| ď g for all n. Then fn, f P L1pX,µq, and

lim
nÑ8

ż

X

fndµ “

ż

X

fdµ

Proof. By Cor. 23.24, f is measurable. Clearly fn, f ď g. So
ş

|fn|,
ş

|f | ď
ş

g ă `8.
Therefore fn, f P L1pX,µq. To show that limn

ş

fn “
ş

f , since |
ş

fn´
ş

f | ď
ş

|f´fn|
(by Prop. 24.21), it suffices to prove limn

ş

|fn ´ f | “ 0. Note that |fn ´ f | ď 2g.
Therefore, by replacing fn with |fn ´ f |, it suffices to assume

• pfnq is a sequence in L1pX,µ,Rě0q converging pointwise to 0, and there ex-
ists g P L1pX,µ,Rě0q such that |fn| ď g for all n.

We shall prove limn

ş

X
fn “ 0.

If pfnq is decreasing (i.e. f1 ě f2 ě ¨ ¨ ¨ ), then g ´ fn is increasing to g. Since
ş

g ă `8, and since the monotone convergence theorem implies that
ş

g ´
ş

fn
converges to

ş

g, we conclude limn

ş

fn “ 0.
In the general case, we let hnpxq “ supkěntfnpxqu. Then hn is measurable by

Thm. 23.23. Since limn hnpxq “ lim supn fnpxq “ 0, we conclude that phnq is a
decreasing sequence in L1pX,µ,Rě0q bounded by g and converging pointwise to
0. Therefore, by the above paragraph, we get limn

ş

hn “ 0. Since fn ď hn, we have
limn

ş

fn “ 0.

24.3.2 Applications of the dominated convergence theorem

Corollary 24.27. Let Y be a metric space. Let f : X ˆ Y Ñ C. Let y0 P Y . Assume that
the following conditions are satisfied:
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(a) For each y P Y , the function fp¨, yq : X Ñ C is in L1pX,µq.

(b) For each x P X , the function fpx, ¨q : Y Ñ C is continuous at y0.

(c) There exists g P L1pX,µ,Rě0q such that |fpx, yq| ď gpxq for all x P X, y P Y .

Then the map y P Y ÞÑ
ş

X
fpx, yqdµpxq is continuous at y0.

Proof. Choose any sequence pynq in Y converging to y0. Since |fp¨, ynq| ď g, and
since limn fp¨, ynq converges pointwise to fp¨, y0q, by the dominated convergence
theorem, we have limn

ş

fp¨, ynqdµ “
ş

fp¨, y0qdµ.

The following corollary generalizes Thm. 14.34.

Corollary 24.28. Let I “ ra, bs be a compact interval. Assume that f : X ˆ I Ñ C
satisfies the following conditions:

(a) For each t P I , the function fp¨, yq : X Ñ C is in L1pX,µq.

(b) For each x P X , the function fpx, ¨q : I Ñ C is differentiable.

(c) There exists g P L1pX,µ,Rě0q such that |BIfpx, tq| ď gpxq for all x P X, t P I .

Then t P I Ñ
ş

X
fpx, tqdµpxq is differentiable, and its derivative is

ş

X
BIfpx, tqdµpxq

where BIfp¨, tq : X Ñ C is in L1pX,µq.

Proof. Fix t0 P I . For any sequence in Iztt0u converging to t0, BIfp¨, t0q is the point-
wise limit of the measurable function hn “ pfp¨, tnq´fp¨, t0qq{ptn´ t0q onX , which
is measurable by Cor. 23.24. By the finite increment theorem (Cor. 11.29), we have
|hn| ď g. Thus hn P L1pX,µ,Rě0q. Since hn converges pointwise to BIfp¨, t0q, the
dominated convergence theorem shows that limn

ş

X
hndµ “

ş

X
BIfp¨, t0qdµ.

24.3.3 Fatou’s lemma

The dominated convergence theorem fails when pfnq is not bounded by a pos-
itive L1-function.

Example 24.29. Let fn : p0, 1q Ñ C be fn “ n ¨ χp0,1{nq. Then pfnq converges
pointwise to 0, but limn

ş

p0,1q
fndm “ 1.

Example 24.30. Equip Z with the counting measure. (Recall Exp. 24.23.) Let
pfnqnPZ`

be a sequence in Bl2pZqp0, 1q converging weakly to f P Bl2pZqp0, 1q. In
other words, pfnq converges pointwise to f as a sequence of functions on Z (cf.
Thm. 17.31). By Fatou’s lemma for Hilbert spaces (cf. Pb. 21.4), we know that
lim infn }fn}

2 ě }f}2, where the inequality can be strict (e.g. take fn “ χtnu and
f “ 0). Thus, gn “ |fn|2 converges pointwise to g “ |f |2, but

lim inf
n

ÿ

Z

gn ě
ÿ

Z

g

where the inequality could be strict.
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Motivated by the above two examples, we prove Fatou’s lemma for integrals,
which asserts that

ş

X
: L`pXq Ñ Rě0 is “lower semicontinuous” under sequential

pointwise convergence. (It is not true for nets of functions. See Rem. 24.33.)

Theorem 24.31 (Fatou’s lemma). Let pfnq be a sequence in L`pXq converging point-
wise to f : X Ñ Rě0. Then f P L`pXq, and

lim inf
nÑ8

ż

X

fndµ ě

ż

X

fdµ (24.21)

The idea of the proof is to find a sequence pgnq in L`pXq dominated by f
and converging pointwise to f such that gn ď fn. Then, when

ş

f ă `8, the
dominated convergence theorem implies lim

ş

gn “
ş

f , and hence (24.21) follows.
When

ş

f “ `8, this argument needs to be modified.

Proof. By Thm. 23.23 we have f P L`pXq and gn P L`pXq where gnpxq “
mintfnpxq, fpxqu. Note that 0 ď gn ď f , and pgnq converges pointwise to f . So
lim infn

ş

fn ě lim infn
ş

gn. Thus, it suffices to prove

lim inf
nÑ8

ż

X

gndµ ě

ż

X

fdµ (24.22)

If
ş

X
f ă `8, the dominated convergence theorem implies limn

ş

X
gn “

ş

X
f . So

(24.22) is true. Since we do not assume
ş

X
f ă `8, we need to find another

argument.
Let hn “ infkěn gk. Then hn P L`pXq by Thm. 23.23, and phnq converges

pointwise to lim infn gn “ f . Since h1 ď h2 ď ¨ ¨ ¨ , by the monotone convergence
Thm. 24.12, we get limn

ş

X
hn “

ş

X
f . Since gn ě hn, we get lim infn

ş

X
gn ě

limn

ş

X
hn. This proves (24.22). 1

Exercise 24.32. Although we proved the dominated convergence theorem and
Fatou’s lemma using the monotone convergence theorem, the latter theorem is an
immediate consequence of the first two. Explain the reason.

Remark 24.33. Equip L`pXq with the pointwise convergence topology (i.e., the
one inherited from r0,`8sX). Then the map

ş

X
: L`pXq Ñ Rě0 is not necessarily

lower semicontinuous. For example, take X “ r0, 1s and µ “ m. Then the net
tχAuAPfinp2Xq converges pointwise to 1. So lim infA

ş

X
χA “ 0 ă 1 “

ş

X
limA χA.

(Recall Pb. 23.5 for the equivalent definition of lower semicontinuity in terms of
nets.)

The following version of Fatou’s Lemma appears in many textbooks and is a
simple corollary of Thm. 24.31. We will not use this version in the future. (The
result orginally proved by Fatou is in the form (24.21), not in the form (24.23). See
[Haw, Ch. 6, Thm. 6.6].)

1This strategy of proving the commutativity of integrals and limits by reducing to monotonic
sequences of functions has been used in the proof of the dominated convergence Thm. 24.26.
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Corollary 24.34 (Fatou’s lemma). Let pfnq be a sequence in L`pXq. Then

lim inf
nÑ8

ż

X

fndµ ě

ż

X

lim inf
nÑ8

fndµ (24.23)

Proof. Let gn “ infkěn fn. Then gn converges pointwise to lim infn fn. By Thm.
24.31, we have

ş

X
limn gn ď lim infn

ş

X
gn where the RHS is ď lim infn

ş

X
fn since

gn ď fn.

Thm. 24.31 and Pb. 21.4 (see also Rem. 21.36) suggest that sequential point-
wise convergence is related to weak or weak-* convergence. We will discuss this
relationship in the future.

24.4 Problems and supplementary material

Let pX,M, µq be a measure space.

Problem 24.1. Let h P L`pXq “ L`pX,Mq, i.e., f is an M-measurable function
X Ñ Rě0. Prove that there is a unique measure ν on M such that

ż

X

fdν “

ż

X

fhdµ (24.24)

for all f P L`pXq. We write

dν “ hdµ (24.25)

Hint. Define ν : M Ñ r0,`8s to be νpEq “
ş

X
χEhdµ. Prove that ν is a measure.

First prove (24.24) when f is a simple function. Then prove (24.24) for any f P
L`pXq.

Problem 24.2. Let h, ν be as in Pb. 24.1. Let pM, µq be the completion of µ. Let
pN, νq be the completion of ν. Prove that M Ă N. Prove that dν “ hdµ on M.

24.4.1 ‹ Bochner integrals

Let V be a Banach space over F P tR,Cu. Recall that V˚ “ LpV ,Fq is the dual
space. Recall that LpX,Vq is the set of measurable functions X Ñ V .

Definition 24.35. A function f : X Ñ V is called weakly integrable if f is weakly
measurable (cf. Def. 23.69), and if there exists an element

ş

X
fdµ in V (often

abbreviated to
ş

X
f or

ş

f ) such that for every φ P V˚ we have
A

φ,

ż

X

fdµ
E

“

ż

X

φ ˝ fdµ (24.26)

Note that such vectors
ş

X
fdµ are unique because V˚ separates points of V by the

Hahn-Banach Cor. 16.6.
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Problem 24.3. Assume that f : X Ñ V is weakly integrable, and its absolute value
function |f | : X Ñ Rě0 is measurable. Prove

›

›

›

ż

X

fdµ
›

›

›
ď

ż

X

|f |dµ (24.27)

Hint. Use the Hahn-Banach Cor. 16.6.

Pb. 24.3 will be helpful in solving the following problems.

Problem 24.4. Let W be a Banach space. Let T P LpV ,Wq. Let f : X Ñ V . Prove
that if f is weakly measurable, then T ˝ f is weakly measurable. Prove that if f is
weakly integrable, then T ˝ f is weakly integrable, and

T

ż

X

fdµ “

ż

X

T ˝ fdµ (24.28)

Recall that V , as a topological space, is equipped with the Borel σ-algebra BV .
In the following, we let

LBpX,Vq “ tf P LpX,Vq : fpXq is a separable subset of Vu (24.29)

(Equivalently, LBpX,Vq is the set of weakly measurable f : X Ñ V with separable
fpXq. See Pb. 23.7.) A function f : X Ñ V is called Bochner measurable if
f P LBpX,Vq.2

Example 24.36. Suppose that X is a second countable LCH space and M “ BX .
Let f : X Ñ V be continuous. Then f is measurable. Since X is a union of
precompact open subsets, and since X is Lindelöf (by Cor. 8.31), X is a countable
union of precompact open subsets X “

Ť

n Un. Since fpUnq is a compact metric
subspace of V , it is separable (Thm. 8.34). Therefore fpXq is a countable union of
separable subsets, and hence is separable. This proves f P LBpX,Vq.

Problem 24.5. Solve the following problems.

1. Let f P VX have separable range fpXq. Prove that f P LBpX,Vq iff there is
a separable closed linear subspace W Ă V such that fpXq ĂW and that the
restriction f : X ÑW is measurable.

2. Prove that LBpX,Vq is an F-linear subspace of VX .

3. Let f P LBpX,Vq. Since f is measurable, it is weakly measurable, and |f | P
L`pXq. Define

}f}L1 ” }f}1 “

ż

X

|f |dµ (24.30)

2In fact, in the usual definition, a function f is called Bochner integrable if f P LpX,Vq, and if
fpXz∆q is separable for some null set ∆. Here, we do not bother with null sets.
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L1
pX,µ,Vq “

␣

f P LBpX,Vq : }f}L1 ă `8u (24.31)

Elements in L1pX,µ,Vq are called strongly integrable (or Bochner inte-
grable). Prove that L1pX,µ,Vq is a linear subspace of LBpX,Vq. Prove that
} ¨ }L1 is a seminorm on L1pX,µ,Vq, i.e., it satisfies

}cf}L1 “ |c| ¨ }f}L1 }f ` g}L1 ď }f}L1 ` }g}L1 (24.32)

for all f, g P L1pX,µ,Vq and c P F.

4. Let T P LpV ,Wq where W is a Banach space. Let f P LBpX,Vq. Prove that
T ˝ f P LBpX,Wq, and

}T ˝ f}L1 ď }T } ¨ }f}L1 (24.33)

Note. When you prove that LBpX,Vq is closed under addition, pay special at-
tention to the fact that Prop. 23.21 (i.e., f, g measurable ñ f _ g measurable) is
available only when the codomains of f, g are second countable.

Theorem 24.37. Let f P L1pX,µ,Vq. Then f is weakly integrable. The integral
ş

X
fdµ

(which is in V) is called the Bochner integral of f .

Problem 24.6. The goal of this problem is to prove Thm. 24.37. Let

S1
pX,µ,Vq “

!

n
ÿ

i“1

vi ¨ χEi
: n P Z`, vi P V , Ei PM, µpEiq ă `8

)

(24.34)

In other words, S1pX,µ,Vq is the set of all f P SpX,Vq such that
ş

X
|f |dµ ă `8.

1. Prove that any f P S1pX,µ,Vq is weakly integrable. (What is the explicit
expression of

ş

X
f ?)

2. Let f be defined by the pointwise limit f “
ř8

n“1 vn ¨χEn where v1, v2, ¨ ¨ ¨ P V ,
and E1, E2, ¨ ¨ ¨ PM are mutually disjoint. Prove that f P LBpX,Vq, and that

}f}L1 “

8
ÿ

n“1

µpEnq}vn} (24.35)

3. Prove that S1pX,µ,Vq is dense in L1pX,µ,Vq under the L1-seminorm.

4. Use Part 1 and 3 to prove that every f P L1pX,µ,Vq is weakly integrable.

Note: The completeness of V is only used in part 4.
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Hint. Part 2. Use Pb. 23.8 to show that f is measurable.
Part 3. For each k P Z`, let Ak “ |f |´1pr1{k, ksq and fk “ f ¨ χAk

. Show that
µpAkq ă `8 and fk P L1pX,µ,Vq. Show that it suffices to approximate each fk by
elements of S1pX,µ,Vq. To achieve this approximation, for each ε ą 0, write V as
a disjoint union of Borel sets whose diameters are ď ε.

Part 4. Pick a sequence psnq in S1pX,µ,Vq converging to f under the L1-
seminorm. Prove that p

ş

X
snqnPZ`

is a Cauchy sequence in V . Let
ş

X
fdµ be the

limit of this sequence, and show that it satisfies the requirement in Def. 24.35.

Theorem 24.38 (Dominated convergence theorem). Let pfnq be a sequence in
L1pX,Vq converging pointwise to f : X Ñ V . Suppose that there exists g P

L1pX,µ,Rě0q such that |fn| ď g for all n. Then f P L1pX,µ,Vq, and

lim
nÑ8

ż

X

fndµ “

ż

X

fdµ

Proof. The closure of a countable union of separable subsets of V is clearly sepa-
rable. Thus, since fpXq is contained in the closure of

Ť

n fnpXq, we conclude that
fpXq is separable. By Pb. 23.8, f is measurable. Thus f P LBpX,Vq. Clearly
|f | ď g. So f P L1pX,µ,Vq.

Since |f ´ fn| is measurable, and since |f ´ fn| ď 2g, by the dominated
convergence Thm. 24.26, we get limn

ş

X
|f ´ fn| “ 0. By Pb. 24.3, we have

}
ş

X
f ´

ş

X
fn} ď

ş

X
|f ´ fn|. Therefore limn }

ş

X
f ´

ş

X
fn} “ 0.

Exercise 24.39. Extend Cor. 24.27 and 24.28 to Bochner measurable functions.

24.4.2 Lebesgue’s proof of dominated convergence theorem

The purpose of this subsection is to present a proof of the dominated conver-
gence theorem that is similar to the original argument of Lebesgue.

Definition 24.40. Let pfnqnPZ`
be a sequence in LpX,Cq (resp. in L`pXq). Let

f P LpX,Cq (resp. f “ 0). We say that pfnq converges in measure to f if for every
ε ą 0, we have

lim
nÑ8

µptx P X : |fnpxq ´ fpxq| ě εuq “ 0 (24.36)

Do not use the monotone convergence theorem in your solutions to Pb. 24.7
and 24.8.

Problem 24.7. Let pfnq be a sequence in L`pXq. Consider the following condi-
tions:

(1) lim
n

ż

X

fndµ “ 0.
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(2) pfnq converges in measure to 0.

Prove that (1)ñ(2). Prove that (2)ñ(1) if µpXq ă `8 and supn }f}l8 ă `8.

Problem 24.8. Assume that µpXq ă `8. Let pfnq be a sequence in L`pXq con-
verging pointwise to 0.

1. Prove that pfnq converges in measure to 0 under the assumption that pfnq is
decreasing (i.e. f1 ě f2 ě ¨ ¨ ¨ ).

2. Without assuming that pfnq is decreasing, prove that pfnq converges in mea-
sure to 0 by applying part 1 to hnpxq “ supkěn fnpxq.

Note. Can you find the similarity between your solution of Pb. 24.8-1 and the
proof of limn µpEi,nq “ µpEiq in the proof of the monotone convergence Thm.
24.12?

In Sec. 24.3, we proved the dominated convergence theorem using the mono-
tone convergence theorem. In the following, we give an alternative proof using
convergence in measure. First, we prove a special case:

Theorem 24.41 (Bounded convergence theorem). Let pfnq be a sequence in LpX,Cq
converging pointwise to f : X Ñ C. Assume that µpXq ă `8 and M :“

supnPZ`
}fn}l8 is finite. Then fn, f P L1pX,µq, and lim

nÑ8

ż

X

fndµ “

ż

X

fdµ.

Proof. Since 0 ď |fn|, f ď M , we have fn, f P L1pX,µq. Similar to the first para-
graph of the proof of Thm. 24.26, by replacing fn with |fn´f |, it suffices to assume
that pfnq converges pointwise to 0. Then, by Pb. 24.8, pfnq converges in measure
to 0. By Pb. 24.7, we conclude limn

ş

X
fndµ “ 0.

We now use Thm. 24.41 to prove the dominated convergence theorem:

An alternative proof of Thm. 24.26. We are given a sequence pfnq in LpXq
bounded by g P L1pX,µ,Rě0q and converging pointwise to f . Let ν be the mea-
sure such that dν “ gdµ. Then νpXq “

ş

X
gdµ ă `8. Let hnpxq “ fnpxq{gpxq and

hpxq “ fpxq{gpxq if gpxq ‰ 0, and let hnpxq “ hpxq “ 0 if gpxq “ 0. It is easy to
see that hn, h are measurable. Clearly |hn| ď 1, and phnq converges pointwise to
h. Therefore, by the bounded convergence Thm. 24.41, we have limn

ş

X
hndν “

ş

X
hdν. Since hng “ fn and hg “ f , we get limn

ş

X
fndµ “

ş

X
fdµ.

Problem 24.9. Assume the setting of the dominated convergence Thm. 24.26,
i.e., we are given a sequence pfnq in LpX,Cq bounded by g P L1pX,µ,Rě0q and
converging pointwise to f . For each k P Z`, let

Ek “ g´1
r1{k, ks (24.37)

Prove that µpEkq ă `8 and limk

ş

X
|g ´ gχEk

| “ 0. Give another proof of
Thm. 24.26 by applying the bounded convergence Thm. 24.41 to the sequence
pfn|Ek

qnPZ`
in LpEk,Cq, where k is “large enough”.
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Note. The idea of passing from the finite-measure setEk to the whole setX would
be similar to that of solving Pb. 5.9.

Remark 24.42. The original theorem of dominated convergence theorem proved
by Lebesgue (in 1904) is the bounded convergence theorem. More precisely,
Lebesgue proved Thm. 24.41 where X is a compact interval ra, bs and µ “ m.

The idea of using convergence in measure to prove Thm. 24.41, presented
in this subsection, is almost identical to Lebesgue’s original idea: In the setting
of Thm. 24.41, assume WLOG that fn ě 0 and f “ 0. Then Lebesgue proved
limn

ş

fn “ 0 by proving that for each ε ą 0, the µ-measure of

En,ε “
!

x P X : sup
kěn

fkpxq ě ε
)

(24.38)

converges to 0. (In the language of this subsection, what Lebesgue proved is that
hn “ supkěn fk converges in measure to 0 as n Ñ 8.) See Sec. 5.1 (especially p.
128) of [Haw].

In fact, Lebesgue’s contribution to the convergence theorem is not primar-
ily in the realization that limn µpEn,εq “ 0 implies limn

ş

fn “ 0. In 1878, Kro-
necker already noticed that if pfnq is a uniformly bounded sequence of continu-
ous functions ra, bs Ñ Rě0, then limn

ş

fn “ 0 iff pfnq “converges in content”, i.e.,
limn c

˚pKn,εq “ 0 where c˚ is the outer content (cf. (23.15)) of

Kn,ε “ tx P X : fnpxq ě εu (24.39)

In 1897, Osgood showed that if pfnq converges pointwise to 0, then limn c
˚pKn,εq “

0. (Thus, combined with Kronecker’s result, one concludes limn

ş

fn “ 0.) The
consideration of (24.38) is implicit in Osgood’s argument. See [Haw, Sec. 4.4] for
details.

Since fn is continuous, Kn,ε is a closed subset of ra, bs and hence is compact.
Therefore, the finite covering property implies c˚pKn,εq “ mpKn,εq. Therefore,
if we look back at history from the perspective of measure theory, it is easy to
understand why limn c

˚pKn,εq “ 0 if pfnq converges pointwise to 0.
The real novelty of Lebesgue’s theory is that his convergence theorem applies

to a broader class of functions whose associated Kn,ε are not necessarily Jordan-
measurable, and therefore do not necessarily satisfy limn c

˚pKn,εq “ 0 when pfnq
converges pointwise to 0. (Consider for example fn “ |gn ´ g|where pgnq is a uni-
formly bounded sequence of continuous functions on ra, bs converging pointwise
to g. Then g is not necessarily continuous or Riemann-integrable.) Lebesgue de-
veloped a theory of measure m satisfying (most importantly) the countable addi-
tivity. Therefore, E1,ε Ą E2,ε Ą ¨ ¨ ¨ and

Ş

nEn,ε “ H imply limnmpEn,εq “ 0. (One
takes En,ε to be (24.38).) Thus, since Kn,ε Ă En,ε, one obtains limnmpKn,εq “ 0,
generalizing the arguments of Kronecker and Osgood.

From this observation, it seems fair to say that Lebesgue was not the first to
realize that the problem of proving limn

ş

fn “
ş

limn fn can be transform into
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proving that the measure/content of Kn,ε converges to 0 as n Ñ 8 (i.e., proving
the convergence in measure). However, Lebesgue was the first person to define
the correct measure that allowed this idea to be realized under very loose require-
ments.

Remark 24.43. Our proof of the dominated convergence Thm. 24.26 relies on the
linearity of

ş

X
, which in turn relies on the monotone convergence theorem proved

by Beppo Levi in 1906. (See [Haw, p. 161].) However, when µpXq ă `8, the
linearity of

ş

X
on bounded measurable functions can be established without using

the monotone convergence theorem. (See Subsec. 24.1.2.) Therefore, Lebesgue’s
proof of the bounded convergence Thm. 24.41 in 1904 clearly does not rely on the
theorem of Beppo Levi (in 1906).

We close this subsection by giving an application of convergence in measure.

Theorem 24.44 (Egorov’s theorem). Assume that µpXq ă `8. Let V be a normed
vector space. Assume that pfnq is a sequence in LpX,Vq converging pointwise to some
f P LpX,Vq. Then pfnq converges almost uniformly to f , which means that for every
δ ą 0 there exists A P M such that µpXzAq ă δ, and that pfnq converges uniformly on
A to f .

Problem 24.10. Prove Egorov’s theorem. (Hint: Let gnpxq “ supkěn }fpxq ´ fkpxq}.
Then pgnq converges in measure to 0. For each k P Z`, choose nk P Z` such that
Ak “ g´1

nk
pr0, 1{ksq is large enough. Let A “

Ş

nAn.)
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25 Positive linear functionals and Radon measures

The goal of this chapter is to study a class of Borel measures on LCH spaces
generalizing the Lebesgue measure on RN . Our starting point is an LCH space
pX, TXq and a linear functional Λ : CcpX,Rě0q Ñ Rě0 where

CcpX,Rě0q “ tf P CcpX,Rq : f ě 0u (25.1)

We use Λ to define a function µ : TX Ñ Rě0 in the same way that we define the
Lebesgue measures of open subsets of RN . Namely, for each U P TX we let

µpUq “ suptΛpfq : f P CcpU, r0, 1squ

(Recall that a compactly supported continuous function on U is equivalent to a
continuous function on X with compact support in U , cf. Rem. 15.19.) Then we
use Thm. 23.53 to extend µ to a measure on the Borel σ-algebra BX . Such measure
will be called a Radon measure.

In fact, we shall first define Radon measure to be a Borel measure satisfying
certain regular conditions, and then show that they correspond bijectively to lin-
ear functionals on CcpX,Rě0q.

25.1 Radon measures

Let pX, TXq be an LCH space with topology TX . Recall Rem. 15.20 for the
two equivalent descriptions of precompact subsets (and their closures) of an open
U Ă X . Recall that every open subset of an LCH space is LCH (cf. Prop. 8.41).

Definition 25.1. Let M Ă 2X be a σ-algebra containing BX . Let µ : M Ñ Rě0 be
a measure. Let E P M. We say that µ is outer regular on E (or that E is outer
µ-regular) if

µpEq “ inftµpUq : U Ą E,U is openu

We say that µ is inner regular on E (or that E is inner µ-regular) if

µpEq “ suptµpKq : K Ă E,K is compactu

We say that µ is regular onE (or thatE is µ-regular) if µ is outer regular and inner
regular on E.

Example 25.2. Assume that µ : TX Ñ r0,`8s satisfies conditions (a)-(e) in Asmp.
23.40. Define µ˚ : 2X Ñ r0,`8s by (23.9). Then by Thm. 23.53, µ˚ restricts to
a complete measure on Mµ containing BX , and pMµ, µq is defined to be pMµ, µ

˚q.
Then µ is clearly outer regular on any E P Mµ, and is inner regular on open sets
by condition (e) of Asmp. 23.40.
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For each E PMµ, the meaning of µ-regularity in Def. 23.43 clearly agrees with
the meaning in Def. 25.1: The former says µ˚pEq “ µ˚pEq, and the latter says
µ˚pEq “ µpEq (which is a tautology) and µ˚pEq “ µpEq. 1 However, Def. 25.1
cannot be applied to non-measurable sets, but Def. 23.43 can be applied to any
subset of X .

The inner regularity on open sets can also be described in the following way:

Lemma 25.3. Let µ be a measure on BX . Let U P TX . Then

sup
␣

µpKq : K Ă U,K is compact
(

“ sup
!

ż

X

fdµ : f P CcpU, r0, 1sq
)

(25.2)

Proof. Let A and B denote the LHS and the RHS. If f P CcpU, r0, 1sq, then K “

Supppfq is compact in U . So 0 ď f ď χK , and hence µpKq “
ş

X
χK ě

ş

X
fdµ. This

proves A ě B.
Conversely, let K Ă U be compact. By Urysohn’s lemma (Thm. 15.25), there

exists f P CcpU, r0, 1sq such that f |K “ 1. So χK ď f , and hence µpKq ď
ş

X
fdµ.

This proves A ď B.

In the definition of Radon measures, compact sets are assumed to have finite
measures. This property has an equivalent description:

Lemma 25.4. Let µ be a measure on BX . Then µpKq ă `8 for all compact K Ă X iff
ż

X

fdµ ă `8 for all f P CcpX,Rě0q.

Proof. Suppose that µpKq ă `8 for each compact K Ă X . Then for each f P
CcpX,Rě0q, letting K “ Supppfq and M “ }f}l8 , we have f ď MχK , and hence
ş

f ď
ş

MχK “ MµpKq ă `8. Conversely, assume that
ş

f ă `8 for every
f P CcpX,Rě0q. Let K Ă X be compact. By Urysohn’s lemma, there exists f P
CcpX, r0, 1sq such that f |K “ 1. So χK ď f , and hence µpKq “

ş

χK ď
ş

f ă
`8.

Definition 25.5. A Borel measure µ : BX Ñ Rě0 is called a Radon measure if the
following conditions are satisfied:

(a) µ is outer regular on Borel sets.

(b) µ is inner regular on open sets. Equivalently (by Lem. 25.3), for each open
U Ă X , we have

µpUq “ sup
!

ż

X

fdµ : f P CcpU, r0, 1sq
)

(25.3)

1Note that µ˚ is defined in terms of the outer measures µ˚pKq of compact sets K. But since
K P BX Ă Mµ, we know µ˚pKq “ µpKq.
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(c) µpKq ă `8 if K is a compact subset of X . Equivalently (by Lem. 25.4), for
each f P CcpX,Rě0qwe have

ż

X

fdµ ă `8 (25.4)

Example 25.6. A (finite) Rě0-linear combination of Radon measures on X is a
Radon measure.

Example 25.7. Suppose that µ : BX Ñ r0,`8s is a Radon measure. Let U be an
open subset of X (which is LCH by Prop. 8.41). Then the restriction of µ to BU is
clearly a Radon measure on U .

Example 25.8. Let x0 P X . The Dirac measure δx0 is Radon when restricted to BX .

Example 25.9. Assume that TX is the discrete topology, i.e., TX “ 2X . (So compact
sets are exactly finite sets.) The counting measure is Radon.

Example 25.10. The Lebesgue measurem on RN is Radon when restricted to BRN .
In fact, the outer and inner regularities were explained in Exp. 25.2. Since m is
finite on bounded measurable subsets (cf. Thm. 23.39), it is finite on compact sets.

In application, it is often more convenient to consider the completion of a
Radon measure:

Exercise 25.11. Assume that pM, µq is the completion of a Radon measure on X .
Show that µ is outer regular on any E PM.

One of the most important features of Radon measures is that they are deter-
mined by the integral of functions in CcpX,Rě0q.

Proposition 25.12. Let µ1, µ2 be Radon measures on BX . Suppose that for each f P

CcpX,Rě0q we have
ż

X

fdµ1 “

ż

X

fdµ2. Then µ1 “ µ2.

Proof. By (25.3), we have µ1pUq “ µ2pUq when U is open. By the outer regularity,
for each E P BX we must have µ1pEq “ µ2pEq.

25.2 Extending positive linear functionals from CcpX,Rě0q to
LSC`pXq

Fix an LCH space pX, TXq.

Definition 25.13. Let F P tR,Cu. A linear map Λ : CcpX,Fq Ñ F is called a
positive linear functional if ΛpCcpX,Rě0qq Ă Rě0.

Remark 25.14. There exist canonical bijections among:
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• Rě0-linear maps CcpX,Rě0q Ñ Rě0

• Positive linear functionals on CcpX,Rq.

• Positive linear functionals on CcpXq “ CcpX,Cq.

Proof. An Rě0-linear map Λ : CcpX,Rě0q Ñ Rě0 can be extended uniquely to a
linear map Λ : CcpX,Rq Ñ R due to Prop. 24.19. The latter can be extended to
a linear functional on CcpXq by setting Λpfq “ ΛpRefq ` iΛpImfq for all CcpXq.
(This is similar to the proof of Thm. 24.20. It is also the complexification of the
R-linear map f P CcpXq ÞÑ ΛpRefq P R, cf. Pb. 13.2.)

Remark 25.15. Let Λ : CcpX,Rě0q Ñ Rě0 be linear. Then Λ is (monotonically)
increasing, i.e., if f, g P CcpX,Rě0q and f ď g, then Λpfq ď Λpgq. This is because
g ´ f P CcpX,Rě0q and Λpgq “ Λpfq ` Λpg ´ fq ě Λpfq.

25.2.1 Toward the proof of the Riesz-Markov representation theorem

As mentioned at the beginning of this chapter, our goal is to construct a Radon
measure µ associated to a linear Λ : CcpX,Rě0q Ñ Rě0 in the same way that
we constructed the Lebesgue measure from the Riemann integrals of continuous
compactly supported functions on RN . Thus, Λ can be viewed as an “abstract Rie-
mann integral” on X . This correspondence between Λ and µ is called the Riesz-
Markov representation theorem.

There are two main difficulties in the proof of Riesz-Markov. The first one is
the construction of µ. But we have already studied this part in detail in Sec. 23.5.
The second one is to show that the Radon measure µ constructed from Λ satisfies

Λpfq “

ż

X

fdµ (25.5)

for all f P CcpX,Rě0q. In my opinion, a direct proof of (25.5) is usually very tech-
nical, and the idea of the proof is very isolated, making it difficult to connect with
the main ideas in measure theory. (The readers can make their own judgment by
reading Step X of the proof of Thm. 2.14 in [Rud-R, Ch. 2], or the last part of the
proof of Thm. 7.2 in [Fol-R, Ch. 7].)

The goal of this section is to prepare for a more conceptual proof of (25.5) for
f P CcpX,Rě0q. To motivate our proof, recall that in Prop. 24.24, we proved that
the Riemann integral of f equals the Lebesgue integral by sandwiching f between
step functions g and h, and show that the Riemann integrals of g and h agree with
their Lebesgue integrals. But step functions are usually not continuous functions.
Therefore, to generalize the proof of Prop. 24.24, we must first extend Λ to a
suitable larger class of positive functions.

Through laborious work, one can extend Λ to a large class of Borel measur-
able functions without resorting to measures. The value Λpfq of f in this class is
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called the Daniell integral of f . Then one constructs the Radon measure satisfy-
ing (25.5). This approach can be found e.g. in [HS, Sec. 9], [HR-1, Sec. 11], and
[Ped, Sec. 6.1]. (A systematic treatment of Daniell integrals, not necessarily in the
context of LCH spaces, can be found in [Roy, Ch. 16].)

We will partially adopt the idea of Daniell integrals, but will exclude many
irrelevant results so that the proofs are as concise and clear as possible. In par-
ticular, we will only extend Λ to positive lower semicontinuous functions. This
will be sufficient for the purpose of proving (25.5), because functions of the form
ř

i aiχUi
(where ai P Rě0 and Ui is open) will play the same role as that of step

functions in the proof of Prop. 24.24.
The method of extending Λ to semicontinuous functions was already used by

Riesz in [Rie14] to simplify his original proof of the “Riesz representation theorem
for Cpra, bs,Rq”, see Subsec. 25.7.3 for details. In [Rie13], a similar method was
used by Riesz to prove the spectral theorem for bounded self-adjoint operators,
cf. Sec. 27.7. Therefore, it is very valuable for us to study this method.

25.2.2 Extending positive linear functionals to LSC`pXq

In this subsection, we fix an Rě0-linear map Λ : CcpX,Rě0q Ñ Rě0.
Recall Subsec. 23.7.2 for the basic facts about lower semicontinuous functions.

By Rem. 23.68,

LSC`pXq “ tlower semicontinuous f : X Ñ Rě0u (25.6)

is an Rě0-linear subspace of r0,`8sX . It clearly contains CcpX,Rě0q as an Rě0-
linear subspace.

Definition 25.16. For each f P LSC`pXq, define

Λpfq “ suptΛphq : h P CcpX,Rě0q, h ď fu (25.7a)

Equivalently, noting that Ωf “ f´1p0,`8s is open (by the lower semicontinuity
of f ), define

Λpfq “ suptΛphq : h P CcpΩf ,Rě0q, h ď fu (25.7b)

This defines a map Λ : LSC`pXq Ñ Rě0 which (by Rem. 25.15) extends the
original map Λ : CcpX,Rě0q Ñ Rě0. We call this new Λ the canonical extension
of the original Λ. The extension Λ is clearly monotonically increasing, i.e., if f, g P
LSC`pXq and f ď g, then

Λpfq ď Λpgq

Proof of the equivalence. Let A and B denote respectively the RHS of (25.7a) and
(25.7b). We need to prove A “ B. Since CcpΩf ,Rě0q is naturally a subspace of
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CcpX,Rě0q (cf. Rem. 15.19), we have A ě B. To prove A ď B, we pick any
h P CcpX,Rě0q satisfying h ď f , and we shall prove that Λphq ď B.

For each ε ą 0, let hε “ ph´ εq` “ maxth´ ε, 0u. Then Suppphεq is the closure
of h´1pε,`8s, which is contained in the closed set h´1rε{2,`8s and hence in Ωf .
Therefore hε P CcpΩf ,Rě0q. To prove Λphq ď B, it suffices to prove

lim
εÑ0

Λph´ hεq “ 0

We shall prove this by using the fact that 0 ď h´hε ď εχK where K “ Suppphq. If
Λ were defined on χK and 0 ď ΛpχKq ă `8, then one could argue that Λph´hεq ď
εΛpχKq where the RHS converges to 0 as ε Ñ 0. Unfortunately, we do not know
whether χK is in the domain of Λ. To fix this issue, note that by Urysohn’s lemma,
there exists φ P CcpX, r0, 1sq such that φ|K “ 1. So h´ hε ď εφ, and hence

0 ď Λph´ hεq ď Λpεφq “ εΛpφq

where the RHS converges to 0 as εÑ 0.

Example 25.17. Let U Ă X be open. By (25.7b) we have

ΛpχUq “ sup
␣

Λpfq : f P CcpU, r0, 1sq
(

(25.8)

where the RHS will be the definition of the measure µpUq.

We shall prove that the canonical extension Λ is Rě0-linear using the same
strategy in Subsec. 24.1.3 where we proved that

ş

X
: L`pXq Ñ Rě0 is Rě0-linear.

Therefore, we first need to prove:

Theorem 25.18 (Monotone convergence theorem). Let pfαqαPI be an increasing net
of elements in LSC`pXq. (So fα ď fβ if α ď β.) Let f be the pointwise limit limα fα.
Then f P LSC`pXq, and

Λpfq “ lim
αPI

Λpfαq

The following proof is close in spirit to the proof of the monotone convergence
Thm. 24.12.

Proof. Since f is the pointwise supremum supα fα, by Pb. 23.5, we have f P

LSC`pXq. Since f ě fα, we clearly have Λpfq ě limα Λpfαq. To prove “ď”, by
(25.7b), it suffices to choose any g P CcpΩf ,Rě0q (where Ωf “ f´1p0,`8s) satisfy-
ing g ď f , and prove that Λpgq ď supα Λpfαq.

Since g ď f and f |K ą 0 where K “ Supppgq, we have γg|K ă f |K where
0 ă γ ă 1. By the linearity of Λ on CcpX,Rě0q, we have γΛpgq “ Λpγgq. Thus, it
suffices to prove that Λpγgq ď supα Λpfαq for each γ. Thus, by replacing g with γg,
it suffices to assume that g|K ă f |K .
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The proof will be finished by finding some α P I such that g|K ă fα|K (and
hence g ď fα). This follows from a standard compactness argument: For each
x P K, since gpxq ă fpxq, there exists αx P I such that gpxq ă fαxpxq. Since
g is continuous and fαx is lower semicontinuous, the function fαx ´ g is lower
semicontinuous (e.g. by Pb. 23.5-(3)). Therefore Ux “ tp P X : fαxppq ´ gppq ą 0u
is an open subset of X containing x. Since K is compact, there exist x1, . . . , xn P K
such that K Ă Ux1 Y ¨ ¨ ¨ Y Uxn . Since I is directed, there exists α P I that is
ě αx1 , . . . , αxn . Then fα ě fαxi

ą g on Uxi . Therefore fα|K ą g|K .

The following lemma is similar to Prop. 24.9.

Lemma 25.19. Let f P LSC`pXq and Ωf “ f´1p0,`8s. Then there is an increasing
net pfαq in CcpΩf ,Rě0q converging pointwise to f .

Proof. Let I be the set of all g P CcpΩf ,Rě0q such that g ď f . Then pI ,ďq is a
directed set, because if g1, g2 P I then maxtg1, g2u P I . Let us prove that the
(clearly increasing) net pgqgPI converges pointwise to f . Equivalently, we shall
prove for each x P X that fpxq “ supgPI gpxq.

It suffices to prove that for every ε ą 0 there exists g P I such that gpxq ě
fpxq ´ ε. Assume WLOG that A :“ fpxq ´ ε is ą 0. (Otherwise, one can simply
take g “ 0.) Since f is lower semicontinuous, U “ f´1pA,`8s is a neighborhood
of x in X . By Urysohn’s lemma, there exists g P CcpU,Rě0q such that 0 ď g ď A
and gpxq “ A. Then g P I .

Proposition 25.20. The canonical extension Λ : LSC`pXq Ñ Rě0 is Rě0-linear.

Proof. Choose any f, g P LSC`pXq. By Lem. 25.19, there exist increasing nets
pfαqαPI and pgβqβPJ in CcpX,Rě0q converging pointwise to f and g respectively.
Then pfα ` gβqpα,βqPIˆJ is increasing and converges pointwise to f ` g. By the
monotone convergence Thm. 25.18, we have

Λpfq ` Λpgq “ lim
α,β

Λpfαq ` lim
α,β

Λpgβq “ lim
α,β

Λpfα ` gβq “ Λpf ` gq

Choose an increasing sequence pcnq in Rě0 converging to c P Rě0. Then by Lem.
24.14 and Thm. 25.18, cΛpfq “ limα,n cnΛpfαq “ limα,n Λpcnfαq “ Λpcfq.

25.3 The Riesz-Markov representation theorem

Fix an LCH space pX, TXq.
Theorem 25.21 (Riesz-Markov representation theorem). For every Rě0-linear Λ :
CcpX,Rě0q Ñ Rě0 there exists a unique Radon measure µ : BX Ñ Rě0 such that

Λpfq “

ż

X

fdµ (25.9)

for all f P CcpX,Rě0q. Moreover, every Radon measure on X arises from some Λ in this
way.
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We call µ the Radon measure associated to Λ. Note that if (25.9) holds for all
f P CcpX,Rě0q, then for each f P CcpXq, since

ş

X
|f |dµ ă `8, the RHS of (25.9)

can be defined, and (25.9) holds true by the C-linearity.

Proof. The uniqueness follows from Prop. 25.12. Every Radon measure µ arises
from the Λ defined by Λpfq “

ş

X
fdµ for all f P CcpX,Rě0q. Note that Λpfq ă `8

by Lem. 25.4.
We now fix an Rě0-linear Λ : CcpX,Rě0q Ñ Rě0, and construct the Radon

measure µ satisfying (25.9).

Step 1. Extend Λ canonically to Λ : LSC`pXq Ñ Rě0 which is increasing (cf.
Def. 25.16) and Rě0-linear (by Prop. 25.20). For each U P TX , define

µpUq “ ΛpχUq

So µpUq “ sup
␣

Λpfq : f P CcpU, r0, 1sq
(

by Exp. 25.17. We need to check that
µ : TX Ñ r0,`8s satisfies conditions (a)-(e) in Asmp. 23.40. Clearly µpHq “
ΛpχHq “ Λp0q “ 0. The monotonicity of µ follows from that of Λ.

Conditions (c) and (d) can be proved in the same way as in Pb. 15.7. But
here we provide a different proof without using the partition of unity. Choose
countably many open sets U1, U2, . . . , and let U “

Ť

n Un. So χU ď
ř

n χUn . By the
monotone convergence Thm. 25.18 and the linearity of Λ, we have Λp

ř

n χUnq “
ř

n ΛpχUnq. Therefore

µpUq “ ΛpχUq ď Λ
´

ÿ

n

χUn

¯

“
ÿ

n

ΛpχUnq “
ÿ

n

µpUnq

This proves the countable subadditivity. If U1, U2 P TX are disjoint, then χU “
χU1 ` χU2 where U “ U1 Y U2. So

µpUq “ ΛpχUq “ ΛpχU1 ` χU2q “ ΛpχU1q ` ΛpχU2q “ µpU1q ` µpU2q

This proves the additivity. We have finished proving (c) and (d).
Finally, the µ-regularity on any open subset U Ă X (i.e., condition (e)) can be

proved in the same way as Lem. 23.38: Clearly µ˚pUq ď µpUq. To prove µ˚pUq ě
µpUq, it suffices to prove µ˚pUq ě Λpfq for each f P CcpU, r0, 1sq. Let K “ Supppfq,
which is in U . So µ˚pUq ě µ˚pKq. Clearly µ˚pKq ě Λpfq (since µpV q “ ΛpχV q ě
Λpfq for any open V containing K). Therefore µ˚pUq ě Λpfq.

We have finished proving that µ satisfies Asmp. 23.40. Therefore, by Thm.
23.53, the outer measure µ˚ : 2X Ñ Rě0 (defined by µ˚pEq “ inftµpUq : U P

TX , U Ą Eu) restricts to a measure on BX and is denoted by pBX , µq.
Since pBX , µq is defined to be pBX , µ

˚q, it is clear that µ is outer regular on Borel
sets. For each U P TX , we have proved that µpUq “ µ˚pUq, i.e., that µpUq can be
approximated by µ˚pKq where K Ă U is compact. Since µ˚pKq “ µpKq (because
µ is outer regular on Borel sets), µ is inner regular on any open set U . To prove
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that µ is Radon, it remains to prove that
ş

X
fdµ ă `8 for each f P CcpX,Rě0q.

This follows from
ş

X
fdµ “ Λpfq, to be proved in the next step.

Step 2. Let us prove (25.9) for every f P CcpX,Rě0q. In fact, we shall prove the
more general fact that (25.9) is true for all f P LSC`pXq.

First, note that if U is open, then ΛpχUq “ µpUq “
ş

X
χUdµ. Therefore (25.9)

holds whenever f “ χU . By linearity, and by the two monotone convergence
theorems (i.e., Thm. 24.12 and 25.18), Eq. (25.9) holds if f is the pointwise limit
f “

ř8

n“1 anχUn where an P Rě0 and Un P TX . We let S be the set of all such f .
Now we choose any f P LSC`pXq. To prove (25.9), by the two monotone

convergence theorems, it suffices to find an increasing sequence pfnqnPZ`
in S

converging pointwise to f .
Choose any ε ą 0. For each k P N, take Ek “ f´1pkε, pk ` 1qεs and E8 “

f´1p`8q. Motivated by the proof of Prop. 24.9, we define gε : X Ñ Rě0 to be the
pointwise limit

gε “
ÿ

kPN

kε ¨ χEk
`8 ¨ χE8

(25.10a)

so that Λpgεq can be viewed as an infinite Lebesgue sum. Then limεÑ0 gε converges
pointwise to f . Let fn “ g1{2n . Then pfnq is increasing and converges pointwise to
f . To finish the proof, it remains to show that gε P S (and hence fn P S ).

For each k P N, let Uk “ f´1pkε,`8s. Then Uk is open because f is lower
semicontinuous. One checks easily that

gε “
ÿ

kPZ`

ε ¨ χUk
(25.10b)

(See also Fig. 25.1.) This proves gε P S .

Figure 25.1. gε is the sum of all horizontal bars

Theorem 25.22. Choose an Rě0-linear Λ : CcpX,Rě0q Ñ Rě0, and let µ be the Radon
measure associated to Λ. Extend Λ canonically to Λ : LSC`pXq Ñ Rě0. Then for each

f P LSC`pXq we have Λpfq “
ż

X

fdµ.
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Proof. This was proved in Step 2 of the proof of Thm. 25.21.

Corollary 25.23 (Monotone convergence theorem). Let µ be a Radon measure on
BX . Let pfαqαPI be an increasing net in LSC`pXq. Let f be the pointwise limit limα fα.
Then f P LSC`pXq, and

ż

X

fdµ “ lim
αPI

ż

X

fαdµ

Proof. This follows immediately from Thm. 25.22 and the monotone convergence
Thm. 25.18.

For more traditional proofs of the Riesz-Markov representation theorem with-
out resorting to the canonical extension of Λ, see [Rud-R, Thm. 2.14] and [Fol-R,
Thm. 7.2]. See also [Fol-R, Prop. 7.12] for a direct proof of Cor. 25.23 without
extending Λ.

25.4 Regularity and Lusin’s theorem

In this section, we fix an LCH space pX, TXq, and let pM, µq be the completion
of a Radon measure on X .

Example 25.24. Let p P X , and let pM, µq be the completion of the Dirac Radon
measure pBX , δpq. Choose any E Ă X . If p R E, then E Ă Xztpu and Xztpu is null.
So E P M and E is null. If p P E, then E “ tpu \ pEztpuq where tpu is Borel and
Eztpu PM. So E PM and µpEq “ µptpuq “ 1. We conclude that pM, µq “ p2X , δpq.

25.4.1 Regularity=measurability for sets with finite (outer) measures

Theorem 25.25. Let E P M. Then µ is outer regular on E. Moreover, if µpEq ă `8,
then µ is inner regular on E.

Proof. Let µ˚ and µ˚ be as in (23.9). From the Riesz-Markov representation Thm.
25.21, we can assume that pBX , µq arises from some linear Λ : CcpX,Rě0q Ñ Rě0.
Now, recall that when we constructed the Radon measure µ from Λ (cf. Step 1 of
the proof of Thm. 25.21), we showed that µ|TX satisfies conditions (a)-(e) in Asmp.
23.40 so that we can apply Thm. 23.53 to show that pBX , µ

˚q is a measure, and we
defined pBX , µq to be pBX , µ

˚q.
Note that Thm. 23.53 says that pMµ, µ

˚q is a complete measure where Mµ

contains BX . Therefore pMµ, µ
˚q extends the completion pM, µq of pBX , µq (cf.

Thm. 23.36). Thus, for each E PM, we have µ˚pEq “ µpEq. This proves that E is
outer µ-regular. 2

2An alternative proof: Write E “ A Y B where A P BX and B is a subset of a Borel null set C.
Then use the fact that A and C are outer µ-regular (according to the definition of Radon measures).
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Assume that E P M satisfies µpEq ă `8. So µ˚pEq ă `8. Since E P Mµ, by
Prop. 23.52, we have µ˚pEq “ µ˚pEq and hence µpEq “ µ˚pEq. This means that
µpEq can be approximated from below by µ˚pKq where K Ă E is compact. Note
that µ˚pKq “ µpKq by the last paragraph. So µ is inner regular on E.

Example 25.26. From the proof of Thm. 25.25, if pBX , µq is a Radon measure,
and if we use Thm. 23.53 to construct a new Borel measure, then this new Borel
measure (which is the restriction of µ˚ to BX) is equal to the original one µ. We
now show that if µ is not Radon, the new measure might be different from µ.

We know that the counting measure is a Radon measure if X is equipped with
the discrete topology. Now, consider X “ R equipped with the Euclidean topol-
ogy. Let pBX , µq be the counting measure which is not Radon. Then the new
Borel measure constructed from Thm. 23.53 is pBX , µ

˚q and satisfies µ˚pEq “ `8
iff E ‰ H. So µ˚pEq ‰ µpEq if E is a finite set.

As an application of Thm. 25.25, we give a corollary similar to Cor. 23.49. (In
fact, it shows that if Mµ is as in the proof of Thm. 25.25, then for any E P finp2Xq
satisfying µ˚pEq ă `8, we have E PMµ iff E PM.) We first need a definition.

Definition 25.27. Let Y be a topological space. A subset E Ă Y is called a GδGδGδ set
(of Y ) if E is a countable intersection of open subsets of Y . E is called an FσFσFσ set
(of Y ) if Ec is a Gδ set, equivalently, if E is a countable union of closed subsets of
Y . E is called a σσσ-compact set if E is a countable union of compact sets.3 If Y is
Hausdorff, a σ-compact set is clearly Fσ in Y .

Note that the meanings of Gδ and Fσ depend on the ambient space Y , but the
meaning of σ-compactness does not.

‹ Exercise 25.28. Assume that the LCH space X is σ-compact (e.g. when X is
second countable, cf. Exp. 25.36). Prove that a subset E of X is σ-compact iff E is
an Fσ subset of X .

Corollary 25.29. Let E Ă X such that E is contained in an open set with finite µ-
measure. Then the following are equivalent.

(1) E PM.

(2) For every ε ą 0 there exist a compact set K Ă X and an open set U Ă X such that
K Ă E Ă U and µpUzKq ă ε.

(2’) There exist a σ-compact set A Ă X and a Gδ set B Ă X such that A Ă E Ă B and
µpBzAq “ 0.

3I wonder why σ-compact sets are not called Kσ sets, or why Gδ sets and Fσ sets are not called
δ-open sets and σ-closed sets.
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Note that the assumption that E is contained in a finite-measure open set sim-
ply means that µ˚pEq ă `8.

Proof. (1)ñ(2): This is clear from Thm. 25.25.
(2)ñ(2’): Assume (2). For each n P Z`, one can choose an open Un Ą E and

a compact Kn Ă E such that µpUnzKnq ă 1{n. Take A “
Ť

nKn and B “
Ş

n Un.
Since BzA Ă

Ş

npUnzKnq, we have µpBzAq ď µpUnzKnq ă 1{n for all n. Therefore
µpBzAq “ 0.

(2’)ñ(1): This follows immediately from the fact that A,B P BX and pM, µq is
the completion of pBX , µq.

One can also prove (2’)ñ(2) directly (by Prop. 23.30-(c)) without first proving
(2’)ñ(1). Therefore, the readers should regard (2) and (2’) as two ways of express-
ing the same fact. (But note that we do not have (2’)ñ(2) when µ˚pEq “ `8.)

Remark 25.30. Recall that from the definition of measure completion (cf. Thm.
23.36), we know that a set E Ă X belongs to M iff one can find Borel sets A,B
such that A Ă E Ă B and µpBzAq “ 0. Now, Cor. 25.29 tells us that if E P M
and µpEq ă `8, then A and B can be chosen to be Gδ and σ-compact, which are
much more explicit than general Borel sets.

Corollary 25.31. Let E Ă X . Then the following are equivalent.

(1) E PM, and µpEq “ 0.

(2) There is a Gδ set B containing E such that µpBq “ 0.

Proof. “(2)ñ(1)” is clear due to the completeness of µ. Assume (1). By Thm. 25.25,
for each n P Z` there is an open Un Ą E such that µpUnq ă 1{n. So E is contained
in the Gδ-set U “

Ş

n Un. Since µpUq ď µpUnq ă 1{n for all n, we have µpUq “
0.

25.4.2 Approximation by continuous functions

As an important application of Thm. 25.25, we prove Lusin’s theorem, which
says that any Radon-measurable function is “almost continuous” on any measur-
able subset with finite measure. This result will be used in the future to show that
CcpXq is dense in LppX,µq if 1 ď p ă `8 (cf. Thm. 27.17).

Recall that pM, µq is the completion of a Radon measure on X .

Theorem 25.32 (Lusin’s theorem). Let f : X Ñ C be measurable. Let A P M such
that µpAq ă `8. Then for every ε ą 0 there is a compact K Ă A such that µpAzKq ă ε,
and that f |K : K Ñ C is continuous.

It follows from the Tietze extension Thm. 15.22 that there exists g P CcpXq such
that g|K “ f |K , and that }g}l8pXq ď }f}l8pXq.
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Proof. By replacing f with fχA, we assume that f vanishes outside A.
Case 1: f “ χE where E P M and E Ă A. Let F “ AzE. By Thm. 25.25,

there exist compact K1 Ă E and K2 Ă F such that µpEzK1q ă ε{2 and µpF zK2q ă

ε{2. Let K “ K1 Y K2. Since K1 X K2 “ H, we have K1 “ KzK2 and K2 “

KzK1. SoK1, K2 are open subsets ofK. Therefore, since f |K1 and f |K2 are constant
functions, f |K is continuous by the local to global principle (Exe. 7.119). Clearly
µpAzKq ă ε.

Case 2: f is a simple functionX Ñ C vanishing outsideA. Then f “ a1f1`¨ ¨ ¨`
anfn where ai P C and fi is as in Case 1. Thus, by Case 1, there exists a compact
Ki Ă A with µpAzKiq ă ε{n such that fi|Ki

is continuous. So f is continuous on
K “ K1 X ¨ ¨ ¨ XKn, and µpAzKq ă ε.

Case 3: f P LpX,Cq vanishes outsideA, and }f}l8 ă `8. By considering Repfq
and Impfq separately, we assume that f is real. By considering f` “ maxtf, 0u
and f´ “ mint´f, 0u separately, we assume f ě 0. By Rem. 24.10, we can find an
increasing sequence of simple functions sn : X Ñ Rě0 converging uniformly to f .
Since sn ď f , sn vanishes outside A. Therefore, by case 2, there is a compact Kn Ă

A such that µpAzKnq ă ε{2n, and that sn|Kn is continuous. Let K “
Ş

nKn, which
is a compact subset of A satisfying µpAzKq ă ε. Since each sn is continuous on K,
and since psnq converges uniformly on K to f , we conclude that f is continuous
on K.

Case 4: the general case. For each n P Z`, let En “ f´1pn,`8q. Since
Ş

nEn “
H and µpE1q ď µpAq ă `8, we have limn µpEnq “ 0. Choose n such that µpEnq ă
ε{2. Let Fn “ AzEn. By Case 3, there exists a compactK Ă Fn such that µpFnzKq ă
ε{2, and that f |K is continuous. We have µpAzKq ă ε.

The converse of Lusin’s theorem is given in Pb. 25.2 and Rem. 25.53. The
readers should compare Lusin’s theorem and its converse with Lebesgue’s crite-
rion for Riemann integrable functions (Thm. 14.10).

25.5 Regularity beyond finite measures

Fix an LCH space pX, TXq, and let pM, µq be the completion of a Radon mea-
sure on X .

We have said that regularity for sets of infinite measures is not as useful as
regularity for sets of finite measures. (That’s why we introduced local regularity
in Subsec. 23.5.3.) But why do we need outer regularity for any measurable set
with possibly infinite measure (cf. Thm. 25.25)? Because it shows that the mea-
sure µ is determined by its values on open sets. Similarly, why do we need inner
regularity for open sets? Because it implies that µ on open sets is determined by
the integrals of functions in CcpX,Rě0q, cf. Lem. 25.3. The regularity on sets with
infinite measures is used to ensure certain uniqueness properties of the measures,
rather than approximating these sets with open sets or compact sets.
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If E P M and µpEq “ `8, we cannot find open U Ă E and K Ă E such that
µpUzKq is small. This is because µpKq is finite. Nevertheless, we shall show that
in many cases, if we replace K by closed sets, then such an approximation of E is
possible. The crucial condition is σ-finiteness:

Definition 25.33. Let pY,N, νq be a measure space. We say that ν is σ-σ-σ-finite on E if
E is a countable union of measurable subsets with finite ν-measures. We say that
ν is a σ-σ-σ-finite measure if ν is σ-finite on Y .

Note that any measurable subset of a σ-finite set is σ-finite.

Remark 25.34. The following conditions are equivalent.

(1) µ is a σ-finite measure on M.

(2) There exists an increasing sequence of open sets U1 Ă U2 Ă ¨ ¨ ¨ such that
X “

Ť

n Un and that µpUnq ă `8 for each n.

Proof. Clearly (2) implies (1). Assume (1). Then X “ E1 YE2 Y ¨ ¨ ¨ where En PM
and µpEnq ă `8. By Thm. 25.25, µ is outer regular on En. So we can find an open
Vn Ą En such that µpVnq ă `8. Take Un “ V1 Y ¨ ¨ ¨ Y Vn.

Example 25.35. If X is compact, then µ is finite, and hence is σ-finite.

Example 25.36. Assume that X is second countable. Then X is a countable union
of precompact open subsets. In particular, µ is σ-finite on X .

Proof. Since X is LCH, X is a union of precompact open sets. Since X is second
countable, X is Lindelöf (by Cor. 8.31). Therefore, X is a countable union of
precompact open sets (which have finite measures because µ is Radon).

We are ready to prove a variant of Cor. 25.29. In this course, the following
Thm. 25.37 will only be used in the proof of Thm. 25.38.

Theorem 25.37. Assume that µ is σ-finite (on X). Let E Ă X . Then the following are
equivalent.

(1) E PM.

(2) For every ε ą 0 there exist a closed set F Ă X and an open set U Ă X such that
F Ă E Ă U and µpUzF q ă ε.

Proof. (2)ñ(1): Similar to the proof of Cor. 25.29, (2) implies that there is an Fσ set
A and a Gδ set B such that A Ă E Ă B and µpBzAq “ 0. 4 Since A,B are Borel and
pM, µq is complete, we conclude E PM.

4We didn’t single out this property and call it (2’) because we will not use this property in the
future of this course, and also because without assuming µ˚pEq ă `8 as in Cor. 25.29, one cannot
prove (2’)ñ(2) directly without first proving (2’)ñ(1).
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(1)ñ(2): Let E P M. To prove (2), it suffices to find an open U containing E
such that µpUzEq ă ε{2. Then, a similar argument gives an open set V containing
Ec such that µpV zEcq ă ε{2. Write V “ XzF where F is closed. Then F Ă E Ă U
and µpEzF q ă ε{2. So µpUzF q ă ε.

Since every σ-finite measure is σ-finite on every measurable subset, we can
writeE as a countable unionE “

Ť

nEn whereEn PM and µpEnq ă `8. By Thm.
25.25, there exists an open Un containingEn such that µpUnq ă µpEnq`ε{2

n`1, and
hence µpUnzEnq ă ε{2n`1. Let U “

Ť

n Un. Then UzE Ă
Ť

npUnzEnq, and hence
µpUzEq ă ε{2.

We will only use Thm. 25.37 in the special case that X is second countable.
(Then the σ-finiteness of µ follows automatically.) So the readers may as well
assume this slightly stronger condition which was assumed in many previous
theorems.

25.6 A criterion for Radon measures

Theorem 25.38. Let X be a second countable LCH space. Let µ : BX Ñ r0,`8s be a
measure such that µpKq ă `8 for every compact subset K Ă X . Then µ is a Radon
measure.

Proof. By Lem. 25.4, we have
ş

X
fdµ ă `8 for every f P CcpX,Rě0q. Therefore,

we have an Rě0-linear map

Λ : CcpX,Rě0q Ñ Rě0 Λpfq “

ż

X

fdµ

By Riesz-Markov, there is a unique Radon measure λ on X satisfying

Λpfq “

ż

X

fdλ

for all f P CcpX,Rě0q. We shall prove µ “ λ.
We first prove that µpUq “ λpUq for any nonempty open U Ă X . Since λ

is inner regular on open sets, we know that λpUq is the supremum of
ş

fdλ “
Λpfq “

ş

fdµ for all f P CcpU, r0, 1sq. Suppose that we can prove that µ is inner
regular on open sets, then by Lem. 25.3, µpUq is also the supremum of

ş

fdµwhere
f P CcpU, r0, 1sq. This proves µpUq “ λpUq.

To prove that µ is inner regular on U , note that since U is LCH (cf. Prop. 8.41)
and second countable, by Exp. 25.36, U is a countable union of precompact open
subsets. Therefore, we have a sequence of compact subsets pKnq ofU whose union
is U . By replacing each Kn with K1 Y ¨ ¨ ¨ YKn we assume that pKnq is increasing.
Therefore µpUq “ limn µpKnq. This proves that µpUq can be approximated by the
measures of compact subsets. So µ is inner regular on U .
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Now we choose any E P BX . Since X is second countable and hence µ is σ-
finite (Exp. 25.36), by Thm. 25.37, for each ε ą 0 there exist an open U Ă X and a
closed F Ă X such that F Ă E Ă U and λpUzF q ă ε. So λpUzEq ă ε, and hence

λpUq ´ ε ď λpEq ď λpUq (25.11)

Since both U and UzF are open, we have µpUq “ λpUq and µpUzF q “ λpUzF q ă ε.
Therefore µpUzEq ă ε. Thus µpUq ´ ε ď µpEq ď µpUq, and hence

λpUq ´ ε ď µpEq ď λpUq (25.12)

Since (25.11) and (25.12) hold for every ε ą 0, we conclude λpEq “ µpEq.

Remark 25.39. The readers may wonder if there is a direct proof of Thm. 25.38
without appealing to linear functionals and Riesz-Markov. Note that part of the
above proof of Thm. 25.38 shows that every open set U is inner µ-regular. There-
fore, it remains to prove that every Borel set is outer µ-regular. A natural idea
is to prove that the set of µ-regular Borel sets form a σ-algebra. This idea actu-
ally works when µ is a finite measure, and also works when µpXq “ `8 if one
considers local µ-regular sets instead.

We will present such a proof in Subsec. 25.8.3, and we encourage the readers
to read through that subsection. This will help the readers understand why Thm.
25.38 can also be proved by the Riesz-Markov representation Thm. 25.21: It is
because the proof of Riesz-Markov relies on Thm. 23.53, and the proof of the
latter theorem is similar to the approach in Subsec. 25.8.3.

Example 25.40. Let X be a second countable LCH space. Let µ be a Radon mea-
sure on X . Let φ : X Ñ Rě0 be a Borel function such that

ş

K
φdµ ă `8 for every

compact K Ă X . Then the Borel measure ν defined by dν “ φdµ (cf. Pb. 24.1) is
finite on compact sets. Therefore, by Thm. 25.38, ν is Radon.

Example 25.41. LetX be a compact metric space. Then, by Thm. 8.34,X is second
countable. Therefore, by Thm. 25.38, a Radon measure on X is equivalently a
finite Borel measure.

25.7 Stieltjes integrals and Radon measures on ra, bs

Let ´8 ă a ă b ă `8. The original version of the Riesz-Markov representa-
tion was proved for X “ ra, bs by Riesz in 1909 without appeal to measure theory.
This Riesz representation theorem says that the (positive) linear functionals on
Cra, bs can be realized by Stieltjes integrals. In this section, we will explain how
this result follows from the Riesz-Markov representation theorem.
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25.7.1 Stieltjes integrals

Recall Subsec. 13.2.1 for the meaning of partitions and their refinements. The
set of partitions of ra, bs is denoted by Pra, bs. For simplicity, we define Stieltjes
integrals using Darboux sums instead of Riemann sums.

Let ρ : ra, bs Ñ Rě0 be increasing (i.e. ρpxq ď ρpyq if x ď y). Let f : ra, bs Ñ R
be bounded. For each partition

σ “
`

ta0 “ a ă a1 ă ¨ ¨ ¨ ă an “ bu
˘

of ra, bs, define the lower Darboux sum and the upper Darbox sum to be

Spf, σ, ρq “
n
ÿ

i“1

pinf fpai´1, aisq ¨ pρpaiq ´ ρpai´1qq (25.13a)

Spf, σ, ρq “
n
ÿ

i“1

psup fpai´1, aisq ¨ pρpaiq ´ ρpai´1qq (25.13b)

Clearly Spf, σ, ρq ď Spf, σ, ρq, and Spf, σ, ρq increases as σ is refined, and Spf, σ, ρq
decreases as σ is refined. Let

Apf, σq “ sup
i

diamfpai´1, ais (25.14)

Then

Spf, σ, ρq ´ Spf, σ, ρq ď Apf, σq ¨ pρpbq ´ ρpaqq (25.15)

Define the lower Darboux integral and the upper Darboux integral to be
ż b

a

fdρ “ sup
σPPra,bs

Spf, σ, ρq

ż b

a

fdρ “ inf
σPPra,bs

Spf, σ, ρq (25.16)

Clearly Spf, σ, ρq ď
şb

a
fdρ ď

şb

a
fdρ ď Spf, σ, ρq.

Definition 25.42. We say that a bounded function f : ra, bs Ñ R is Stieltjes inte-
grable with respect to ρ if the lower integral

şb

a
fdρ is equal to the upper integral

şb

a
fdρ. When these two values are equal, we denote them by

ż b

a

fdρ and call it the

Stieltjes integral of f with respect to ρ.

Theorem 25.43. Let ρ : ra, bs Ñ Rě0 be increasing. Then each f P Cpra, bs,Rq is
Stieltjes integrable with respect to ρ, and

Iρ : Cpra, bs,Rq Ñ R Iρpfq “ fpaqρpaq `

ż b

a

fdρ (25.17)

is a positive linear functional.
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The Stieltjes integral
şb

a
fdρ should be viewed as an integral on pa, bs rather than

on ra, bs. (This is compatible with the fact that
şb

a
fdρ `

şc

b
fdρ “

şc

a
fdρ, because

pa, cs “ pa, bs \ pb, cs if c ą b.) This is why we need the extra term fpaqρpaq in the
definition of Iρpfq.

Proof. Define Iρ, Iρ : Cpra, bs,Rq Ñ R by Iρpfq “ fpaqρpaq `
şb

a
fdρ and Iρpfq “

fpaqρpaq `
şb

a
fdρ. It is easy to check that Iρpcfq “ cIρpfq, Iρpcfq “ cIρpfq, Iρpf `

gq ě Iρpfq ` Iρpgq, Iρpf ` gq ď Iρpfq ` Iρpgq if f, g P Cpra, bs,Rq and c P Rě0.
Also Iρp´fq “ ´Iρpfq. The linearity of Iρ follows immediately if we can prove
Iρ “ Iρ, and the positivity is obvious.

Since f P Cpra, bs,Rq is continuous and ra, bs is compact, f is uniformly contin-
uous. Therefore, for each ε ą 0 there exists a partition σ such that Apf, ρq ď ε, and
hence Iρpfq ´ Iρpfq ď εpρpbq ´ ρpaqq by (25.15). This finishes the proof since ε can
be arbitrary.

Example 25.44. Let ρpxq “ x. For each f P Cpra, bs,Rq,
şb

a
fdρ is the Riemann

integral of f .

Example 25.45. Let c P ra, bs and ρ “ χrc,bs. Let f : ra, bs Ñ R be bounded and left
continuous at c. Then f is Stieltjes integrable with respect to ρ, and Iρpfq “ fpcq.

Example 25.46. If f is Stieltjes integrable with respect to ρ1, ρ2, then f is Stieltjes
integrable with respect to ρ “ k1ρ1 ` k2ρ2 (where k1, k2 P Rě0), and

Iρpfq “ k1Iρ1pfq ` k2Iρ2pfq

Example 25.47. Let tc1 ă ¨ ¨ ¨ ă cnu Ă ra, bs. Let ρ “ id `
řn
i“1 χrci,bs where id : x P

ra, bs ÞÑ x P R. Let f : ra, bs Ñ R be continuous. Then by the above examples, we
have

Iρpfq “
ż b

a

fdx`
n
ÿ

i“1

fpciq

25.7.2 The Riesz representation theorem

A function ρ : ra, bs Ñ R is called right continuous if for each p P ra, bs we
have limxÑp` fpxq “ fppq. This is equivalent to saying that for each p P ra, bs and
each sequence pxnq in rp, bs converging to p we have limn fpxnq “ fppq.

The following lemma shows that ρ can be recovered from Iρ if ρ is right con-
tinuous.

Lemma 25.48. Let ρ : ra, bs Ñ Rě0 be increasing. Assume a ď c ă d ď b. Let
f P Cpra, bs, r0, 1sq such that f |ra,cs “ 1 and f |rd,bs “ 0. Then

ρpcq ď Iρpfq ď ρpdq (25.18)
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Therefore, if ρ is right continuous, and if pfnq is a sequence in Cpra, bs, r0, 1sq such that
f |ra,cs “ 1 and f |rc`1{n,bs “ 0, then

lim
nÑ8

Iρpfnq “ ρpcq (25.19)

Proof. Let σ1 “ ta, c, bu and σ2 “ ta, d, bu. Then Spf, σ1, ρq “ ρpcq ´ ρpaq and
Spf, σ2, ρq “ ρpdq ´ ρpaq. This proves ρpcq ´ ρpaq ď

şb

a
fdρ ď ρpdq ´ ρpaq, and hence

proves (25.18).
We now have ρpcq ď Iρpfnq ď ρpc` 1{nq. Let nÑ 8. Then the right continuity

of ρ implies (25.19).

Theorem 25.49 (Riesz representation theorem). We have a bijection from the set of
increasing right continuous functions ra, bs Ñ Rě0 to the set of positive linear functionals
on Cpra, bs,Rq defined by

ρ ÞÑ Iρ (25.20)

Proof. By Lem. 25.48, the map (25.20) is injective. Let us prove that (25.20) is
surjective. Choose any positive linear functional Λ : Cpra, bs,Rq Ñ R. By the
Riesz-Markov representation Thm. 25.21, there is a Radon measure µ on ra, bs
such that

ş

ra,bs
fdµ “ Λpfq for all f P Cpra, bs,Rq. Since ra, bs is compact, µ is a

finite measure. Define

ρµ : ra, bs Ñ Rě0 ρµpxq “ µpra, xsq (25.21)

Clearly ρµ is increasing. If pxnq is a decreasing sequence in rx, bs converging to x,
then

Ş

nPZ`
ra, xns “ ra, xs. Therefore µpra, xsq “ limn µpra, xnsq. This proves that

ρµ is right continuous. 5 Let us prove for each f P Cpra, bs,Rq that Iρµpfq “ Λpfq,
i.e., that

Iρµpfq “
ż

ra,bs

fdµ (25.22)

In the following, we write ρµ as ρ for simplicity.
Since f is uniformly continuous, for each ε ą 0 there is a partition σ “ ta0 ă

¨ ¨ ¨ ă anu of ra, bs such that Apf, σq (defined by (25.14)) satisfies Apf, σq ď ε. In
other words, if

mi “ inf fpai´1, ais Mi “ sup fpai´1, ais

then Mi ´mi ď ε for all i. Thus, we have (cf. (25.15))
`

fpaqρpaq ` Spf, σ, ρq
˘

´
`

fpaqρpaq ´ Spf, σ, ρq
˘

ď ε
`

ρpbq ´ ρpaq
˘

(25.23)

5If pxnq is an increasing sequence in ra, xq converging to x, then
Ť

nra, xns “ ra, xq. Thus, ρ
might not be left continuous because µpra, xqq and µpra, xsq are possibly different.
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Our goal is to find bounded Borel functions g, h : ra, bs Ñ R such that g ď f ď h
and

fpaqρpaq ` Spf, σ, ρq “

ż

ra,bs

gdµ fpaqρpaq ` Spf, σ, ρq “

ż

ra,bs

hdµ (25.24)

Then both
ş

ra,bs
fdµ and Iρpfq are between fpaqρpaq ` Spf, σ, ρq and fpaqρpaq `

Spf, σ, ρq. Therefore, by (25.23), the difference of
ş

ra,bs
fdµ and Iρpfq is bounded

by 2εpρpbq ´ ρpaqq. This finishes the proof since ε can be arbitrary.
Define

g “ fpaqχtau `

n
ÿ

i“1

mi ¨ χpai´1,ais h “ fpaqχtau `

n
ÿ

i“1

Mi ¨ χpai´1,ais (25.25)

Then clearly g ď f ď h. Since

µptauq “ ρpaq µppai´1, aisq “ ρpaiq ´ ρpai´1q

(25.24) is clearly satisfied.

25.7.3 The second proof of the Riesz representation theorem

Since the statement of the Riesz representation Thm. 25.49 does not involve
measures, one naturally wonders whether it is possible to prove this theorem
without resorting to measures. The answer is yes:

Second proof of Thm. 25.49. By Lem. 25.48, ρ ÞÑ Iρ is injective. By Prop. 25.20, Λ
can be extended (canonically) to an Rě0-linear map Λ : LSC`pra, bsq Ñ Rě0 which
is monotonically increasing (i.e. f ď g implies Λpfq ď Λpgq). Let

C1 “ tbounded lower semicontinuous f : ra, bs Ñ Rě0u

Then for each f P C1 we have f ď }f}l8 , and hence Λpfq ď }f}l8 ¨ Λp1q ă `8.
Therefore, we have an increasing Rě0-linear Λ : C1 Ñ Rě0. Let

C2 “ SpanRC1 “ tf
`
´ f´ : f˘

P C1u

Then by Prop. 24.19, Λ can be extended uniquely to an R-linear functional Λ :
C2 Ñ R.

This extension is increasing, i.e., if f, g P C2 and f ď g then Λpfq ď Λpgq. To
prove this, it suffices to prove Λphq ě 0 where h “ g´ f . Write h “ h`´h´ where
h˘ P C1. Then h` ě h´. Therefore, by the monotonicity of Λ : C1 Ñ Rě0 we have
Λph`q ě Λph´q, and hence Λphq ě 0.

For each x P ra, bs, the upper semicontinuous function χra,xs belongs to C2.
Therefore, we can define ρpxq “ Λpχra,xsq. Then ρ : ra, bs Ñ Rě0 is increasing. For
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each decreasing sequence pxnq in ra, bs converging to x, the increasing sequence
p1 ´ χra,xnsqnPZ`

converges pointwise to 1 ´ χra,xs. Therefore, by the monotone
convergence Thm. 25.18, we have limnpΛp1q ´ ρpxnqq “ Λp1q ´ ρpxq. This proves
that ρ is right continuous.

Finally, we show that Λ “ Iρ on Cpra, bs,Rq. As in the first proof, for each
ε ą 0, choose a partition σ “ ta0 ă ¨ ¨ ¨ ă anu of ra, bs such that diamfpai´1, ais ď ε
for all i. Let g, h be defined by (25.25). Then g ď f ď h and g, h P C2. Therefore,
by the monotonicity of Λ : C2 Ñ Rě0 proved above, we have Λpgq ď Λpfq ď Λphq.
By the definition of ρ, it is easy to see

fpaqρpaq ` Spf, σ, ρq “ Λpgq fpaqρpaq ` Spf, σ, ρq “ Λphq

Therefore, since Spf, σ, ρq ´ Spf, σ, ρq ď εpρpbq ´ ρpaqq, we conclude that |Iρpfq ´
Λpfq| ď 2εpρpbq ´ ρpaqq. Since ε is arbitrary, we get Iρpfq “ Λpfq.

Remark 25.50. The Riesz representation Thm. 25.49 was proved by Riesz in 1909
(cf. [Rie09, Rie11]) and also by Helly in 1912. Riesz’s originally proof is quite
complicated. In 1914, Riesz gave a simplified proof in [Rie14]. The second proof
we presented above is similar to the one in [Rie14]. Before that, in 1913, Riesz used
the same idea to prove the spectral theorem for bounded self-adjoint operators on
Hilbert spaces, cf. [Rie13]. We will discuss this topic in Sec. 27.7.

Riesz and Helly’s interest in this theorem is closely related to their interest
in the moment problem in Cpra, bs,Rq. As mentioned in Sec. 17.5, the early so-
lution of moment problems used a compactness argument which was later ab-
stracted into the Banach-Alaoglu theorem. Now, since positive linear function-
als on Cpra, bs,Rq take the explicit form of Stieltjes integrals with respect to in-
creasing functions, the readers may ask whether the Banach-Alaoglu theorem for
Cpra, bs,Rq˚ also takes an explicit form. The answer is yes: the explicit formulation
of the Banach-Alaoglu theorem for Cpra, bs,Rq˚ in terms of increasing functions is
called Helly’s selection theorem. We will explain this in detail in Subsec. 25.8.4.

25.7.4 Classification of Radon measures on ra, bs

In view of the bijection between positive linear functionals and Radon mea-
sures, the following corollary is more or less an equivalent formulation of the
Riesz representation Thm. 25.49.

Corollary 25.51. There is a bijection µ ÞÑ ρµ from the set of Radon measures on ra, bs to
the set of increasing right continuous functions ra, bs Ñ Rě0 such that

ρµ : ra, bs Ñ Rě0 ρµpxq “ µpra, xsq (25.26)
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The Radon measure µ is determined by ρµ by
ż

ra,bs

fdµ “ fpaqρµpaq `

ż b

a

fdρµ (25.27)

for each f P Cpra, bs,Rq.

Proof. Let Φ : ρ ÞÑ Iρ be the bijection in the Riesz representation Thm. 25.49. By
Riesz-Markov, Iρ can be identified with its associated Radon measure µρ. This
gives a bijection ρ ÞÑ µρ determined by

Iρpfq “
ż

ra,bs

fdµρ (25.28)

for all f P Cpra, bs,Rq.
Moreover, in the proof of Thm. 25.49, we have shown (cf. (25.22)) that

Iρµρ
pfq “

ş

ra,bs
fdµρ. This proves Iρ “ Iρµρ (by (25.28)), and hence ρ “ ρµρ . Thus,

µ ÞÑ ρµ is the inverse of the bijection ρ ÞÑ µρ. So µ ÞÑ ρµ is bijective. Eq. (25.27)
follows from (25.28).

Definition 25.52. Let ρ : ra, bs Ñ Rě0 be increasing and right continuous. Let
pM, µq be the completion of the Radon measure on ra, bs associated to ρ due to
Cor. 25.51. (So µ|Bra,bs

is the unique Radon measure satisfying µpra, xsq “ ρpxq
for all x P ra, bs.) We call µ the Lebesgue-Stieltjes measure associated to ρ. If
f : ra, bs Ñ Rě0 (resp. f : ra, bs Ñ C) is M-measurable (resp. pM, µq-integrable),
we say that f is Lebesgue-Stieltjes measurable (resp. integrable), and define the
Lebesgue-Stieltjes integral of f with respect to ρ to be

ż

ra,bs

fdρ :“

ż

ra,bs

fdµ

If f : ra, bs Ñ R is (bounded and) Stieltjes integrable, then f is Lebesgue-
Stieltjes integrable, and the Stieltjes integral

şb

a
fdρ satisfies

ż

ra,bs

fdρ “ fpaqρpaq `

ż b

a

fdρ (25.29)

where the LHS is the Lebesgue-Stieltjes integral. (Thus,
şb

a
fdρ should be under-

stood as
ş

pa,bs
fdρ). See Pb. 25.15.

25.8 Problems and supplementary material

Problem 25.1. Let pX, TXq be a topological space, and let pM, µq be a measure on
X such that BX ĂM. Define the support Supppµq of µ such that

XzSupppµq “
ď

UPTX ,µpUq“0

U
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In other words, x P X belongs to Supppµq iff every neighborhood V of x satisfies
µpVxq ą 0. Prove that µpXzSupppµqq “ 0 if one of the following is true:

(a) µ is inner regular on open sets.

(b) X is second countable.

Problem 25.2. Prove the converse of Lusin’s theorem: Let X be LCH, and let
pM, µq be the completion of a σ-finite Radon measure on X . Let f : X Ñ C
such that for every A P BX satisfying µpAq ă `8, and for every ε ą 0, there
exists a compact K Ă A such that µpAzKq ă ε and f |K is continuous. Then f is
M-measurable.

‹ Remark 25.53. Without assuming σ-finiteness, we have the following version of
Lusin’s theorem and its converse: A function f : X Ñ C satisfies the description
in Pb. 25.2 iff f is Mµ-measurable, where Mµ is defined by Thm. 23.53, i.e., the set
of allE Ă X such that µ is regular onEXΩ for each open Ω with finite µ-measure.
(Equivalently, Mµ is the saturation of M, cf. Subsec. 23.5.5. Note that if µ|BX

is
σ-finite then Mµ “M by Prop. 23.55.) We leave the proof to the readers.

25.8.1 ‹ Approximation by upper and lower semicontinuous functions

Let X be an LCH space, and let pM, µq be the completion of a Radon measure
on X .

Definition 25.54. For each topological space X (not necessarily LCH), we let

USCpX,Rě0q “ tupper semicontinuous f P r0,`8qXu (25.30)
USCcpX,Rě0q “ tf P USCpX,Rě0q : Supppfq is compactu (25.31)

(We do not let USC`pXq denote the RHS of (25.30) since, according to our usual
conventions, USC`pXq refers to the set of all upper semicontinuous f : X Ñ

r0,`8s.)

Problem 25.3. Let f : X Ñ r0,`8s be measurable. Prove that
ż

X

fdµ “ inf
!

ż

X

hdµ : h P LSC`pXq, h ě f
)

(25.32a)

Prove that if
ş

X
fdµ ă `8, then
ż

X

fdµ “ sup
!

ż

X

gdµ : g P USCcpX,Rě0q, g ď f
)

(25.32b)

Hint. Assume WLOG that
ş

f ă `8. (Why?) If f “ χE for some finite measure
E P M, use the µ-regularity. In general, write f “

ř

nPZ`
sn where each sn : X Ñ

Rě0 is simple. Approximate each sn from above and from below by some hn P
LSC`pXq and gn P USCcpX,Rě0q respectively. Take h “

ř8

n“1 hn and g “
řN
n“1 gn

for some large enough N .
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Remark 25.55. Lower semicontinuous functions are the function version of open
sets. Upper semicontinuous functions with compact supports are the function
version of compact sets. Therefore, Pb. 25.3 can be viewed as the function version
Thm. 25.25.

Problem 25.4. Let pfαqαPI be a decreasing net in USCpX,Rě0q converging point-
wise to f : X Ñ Rě0. Assume that there exists a measurable g : X Ñ Rě0 such

that
ş

X
gdµ ă `8, and that fα ď g for all α. Prove

ż

X

fdµ “ lim
α

ż

X

fαdµ.

Hint. By Pb. 25.3, assume WLOG that g P LSC`pXq.

Exercise 25.56. Let K be a compact subset of X . Use Pb. 25.4 to show that

µpKq “ inf
!

ż

X

fdµ : f P CcpX, r0, 1sq, f |K “ 1
)

(25.33)

by constructing a decreasing net in CcpX, r0, 1sq (bounded by some χU where U Ą
K is open and µpUq ă `8) converging pointwise to χK .

Note. It is not necessary to prove (25.33) using Pb. 25.4. You can try to find a
direct proof. However, the purpose of Pb. 25.4 is to let you know how (25.33) can
fit into a broader picture.

25.8.2 The dual space CcpXq˚

Let X be an LCH space.

Problem 25.5. Let Λ : CcpX,Rě0q Ñ Rě0 be Rě0-linear. By Rem. 25.14, Λ can be
extended uniquely to a C-linear map Λ : CcpXq Ñ C. Let µ be the Radon measure
associated to Λ. Prove that the following four numbers are equal:

suptΛpfq : f P CcpX,Rě0q, f ď 1u “ supt|Λpfq| : f P CcpX,Rq, |f | ď 1u

“ supt|Λpfq| : f P CcpXq, |f | ď 1u “ µpXq

These four identical numbers are called (unambiguously) the operator norm of Λ
and denoted by }Λ}.

Problem 25.6. Equip CcpX,Rq with the l8-norm. Let Λ : CcpX,Rq Ñ R be a
bounded linear map with operator norm M . Define Λ˘ : CcpX,Rě0q Ñ R sending
each f P CcpX,Rě0q to

Λ`
pfq “ sup

␣

Λphq : h P CcpX,Rě0q, h ď f
(

(25.34a)

Λ´
pfq “ sup

␣

´ Λphq : h P CcpX,Rě0q, h ď f
(

(25.34b)

Clearly p´Λq˘ “ Λ¯.

465



1. Prove that Λ` has range in Rě0, that Λ` : CcpX,Rě0q Ñ Rě0 is Rě0-linear,
and that }Λ`} ďM . (Replacing Λ with ´Λ, we see that Λ´ satisfies the same
property.)

2. Prove that

Λpfq “ Λ`
pfq ´ Λ´

pfq (25.35)

for all f P CcpX,Rě0q. This is called the Jordan decomposition of Λ.

Hint. 1. For f, g P CcpX,Rě0q, to prove Λ`pf ` gq ď Λ`pfq ` Λ`pgq, let h P

CcpX,Rě0q such that h ď f ` g. Let h1 “ minth, fu and h2 “ maxth´ f, 0u. Show
that 0 ď h1 ď f , 0 ď h2 ď g, and h “ h1 ` h2.

2. Prove Λ` Λ´ ď Λ`, and replace Λ with ´Λ.

‹ Problem 25.7. Let µ be a finite Radon measure on X . Let A P BX and B “ XzA.
Define a linear map Λ : CcpX,Rq Ñ R by

Λpfq “

ż

A

fdµ´

ż

B

fdµ

which is clearly bounded (with operator norm ď µpXq). Prove that for every
f P CcpX,Rě0qwe have

Λ`
pfq “

ż

A

fdµ Λ´
pfq “

ż

B

fdµ (25.36)

Hint. To prove Λ`pfq ě
ş

A
fdµ, find compactK Ă A and L Ă B such that µpAzKq

and µpBzLq are small. Multiply f by an Urysohn function associated to K and
XzL.

Theorem 25.57 (Riesz-Markov representation theorem). Any linear functional on
CcpXq defined by Λµ : f ÞÑ

ş

X
fdµ for some finite Radon measure µ is in CcpXq

˚.
Moreover, such linear functionals span CcpXq˚.

A similar classification of CcpX,Rq˚ is left to the readers.

Proof. If µ is Radon and µpXq ă `8, by Pb. 25.5, we know }Λµ} ă `8. So
Λµ P CcpXq

˚.
We now show that Λ P CcpXq˚ can be written as a finite sum

ř

i aiΛµi where
ai P C and µi is a finite Radon measure. For each f P CcpX,Rq, let Λ1pfq “ ReΛpfq
and Λ2pfq “ ImΛpfq. So Λi P CcpX,Rq˚, and Λ “ Λ1 ` iΛ2 on CcpX,Rq. By Pb.
25.6, there exist Rě0-linear Λ˘

i : CcpX,Rě0q Ñ Rě0 with finite operator norms
such that Λi “ Λ`

i ´Λ´
i on CcpX,Rě0q. So Λ “ Λ`

1 ´Λ´
1 ` iΛ`

2 ´ iΛ´
2 on CcpX,Rě0q

and hence on CcpXq by the C-linearity. By the Riesz-Markov representation Thm.
25.21, each of the four positive linear functionals is represented by the integral of
a Radon measure. The finiteness of these Radon measures is due to Pb. 25.5.
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Remark 25.58. Recall that if V is a normed vector space with dense subspace U ,
there is a canonical isomorphism of Banach spaces V˚ » U˚ (cf. Rem. 21.32).
Therefore, since C0pXq is the completion of CcpXq (cf. Pb. 15.5), the Riesz-Markov
Thm. 25.57 also characterizes the dual space of C0pXq.

25.8.3 ‹ An alternative proof of Thm. 25.38

Let X be a (not necessarily LCH) Hausdorff space. Let µ : M Ñ r0,`8s be a
measure where M is a σ-algebra containing BX . Define µ˚, µ˚ : MÑ r0,`8s by

µ˚
pEq “ inf

␣

µpUq : U is an open subset of X containing E
(

(25.37a)

µ˚pEq “ sup
␣

µpKq : K is a compact subset of E
(

(25.37b)

Clearly µ˚pEq ď µpEq ď µ˚pEq. Clearly µ˚pUq “ µpUq if U is open, and µ˚pKq “
µpKq if K is compact.

Note that the definition of µ˚pEq (using µpKq) is slightly different from that
in (23.9b) (using µ˚pKq), since we do not assume µ˚pKq “ µpKq. Therefore, you
cannot directly use the results proved in Sec. 23.5. (But you can use the methods
in that section.)

Recall from Def. 25.1 that a set E PM is µ-regular iff µ˚pEq “ µ˚pEq.

Exercise 25.59. Let E P M such that µ˚pEq ă `8. Prove that µ is regular on E
iff for each ε ą 0 there exist an open U Ą E and a compact K Ă E such that
µpUzKq ă ε.

Problem 25.8. Let E1, E2, ¨ ¨ ¨ P M be mutually disjoint. Suppose that µ is regular
on each En. Prove that µ is regular on E “

Ť

nEn, and µpEq “
ÿ

n

µpEnq.

Problem 25.9. Let E1, E2 P M be µ-regular with finite µ-measures. Prove that
E2zE1 is µ-regular.

We say that E P M is locally µ-regular if for each µ-regular open Ω Ă X
satisfying µpΩq ă `8, the set E X Ω is µ-regular. Let

Mµ
“ tE PM : E is locally µ-regularu (25.38)

Problem 25.10. Prove that Mµ is a σ-algebra.

We are ready to give an alternative proof of Thm. 25.38.

Theorem 25.60 (=Thm. 25.38). Let X be a second countable LCH space. Let µ be a
Borel measure on X which is finite on compact subsets. Then µ is a Radon measure.
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Proof. As in the proof of Thm. 25.38, we can find a countable increasing chain of
compact subsets K1 Ă K2 Ă ¨ ¨ ¨ of U such that U “

Ť

nKn. So µpUq “ limn µpKnq.
This proves thatU is inner regular, and hence is regular. In particular, Mµ contains
all open sets.

It remains to prove that every Borel set is outer regular. By Pb. 25.10, Mµ is a
σ-algebra. So Mµ contains any Borel set E. Let us prove that E is outer regular.

Since X is a countable union of open subsets, and since µ is finite on compact
sets, X is a countable union X “

Ť

Ωn where each Ωn is open and has finite µ-
measure. Since E P Mµ, we know that En :“ E X Ωn is µ-regular. Therefore, for
each ε ą 0 there is an open Un Ă X such that µpUnzEnq ă ε{2n. Let U “

Ť

n Un.
Since E “

Ť

nEn, we have UzE Ă
Ť

n UnzEn, and hence µpUzEq ă ε. Therefore
µpUq ď µpEq ` ε.

25.8.4 Stieltjes integrals and the Banach-Alaoglu theorem for Cpra, bs,Rq˚

Let ´8 ă a ă b ă `8. If ρ : ra, bs Ñ Rě0 is increasing, for each f : ra, bs Ñ C,
the Stieltjes integral

şb

a
fdρ is understood as

şb

a
Repfqdρ ` i

şb

a
Impfqdρ whenever it

can be defined. Recall that

Iρpfq “ fpaqρpaq `

ż b

a

fdρ

Problem 25.11. Let ρ : ra, bs Ñ Rě0 be increasing. Prove that Iρ : Cra, bs Ñ C has
operator norm

}Iρ} “ ρpbq

Lemma 25.61. Let I Ă R be an interval. Suppose that ρ : I Ñ R is increasing. Then ρ is
continuous outside countably many points. In particular, if I “ ra, bs, then ρ is Riemann
integrable on I .

Proof. Since I is a countable union of compact subintervals, by restricting ρ to
each compact subinterval, it suffices to assume I “ ra, bs.

For each x P I , let ρ´pxq, ρ`pxq be the left resp. right limit of ρ at x, i.e., ρ˘pxq “
limtÑx˘ ρptq. Then ρ´px1q ď ρ`px1q ď ρ´px2q ď ρ`px2q if x1 ă x2. Let ∆ be the
set of all x P I at which ρ is not continuous. Then x P ∆ iff ρ´pxq ă ρ`pxq. If
x1 ă ¨ ¨ ¨ ă xn are in ∆, then

řn
i“1pρ`pxiq ´ ρ´pxiqq ď ρpbq ´ ρpaq. It follows that

ÿ

xP∆

pρ`pxq ´ ρ´pxqq ď ρpbq ´ ρpaq ă `8

Therefore, by Pb. 5.3, ∆ is countable.

Corollary 25.62. Let I be an interval, and let ρ : I Ñ R be increasing. There there is an
increasing right continuous rρ : I Ñ R such that ρ equals rρ outside a countable subset of
I .
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Proof. Let rρpxq “ limtÑx` ρptq. Then rρ is right continuous, and rρpxq “ ρpxq if ρ is
continuous at x.

The following problem shows that the Stieltjes integral of a C1 function can be
calculated by a Riemann integral.

Problem 25.12. Let ρ : ra, bs Ñ Rě0 be increasing. Let g P C1ra, bs. (Namely, g :
ra, bs Ñ C is continuous and has continuous differentials.) Prove the integration
by parts

ż b

a

gdρ “ gpbqρpbq ´ gpaqρpaq ´

ż b

a

g1ρdx (25.39)

Hint. Assume WLOG that g P C1pra, bs,Rq. Let σ “ ta0 “ a ă a1 ă ¨ ¨ ¨ ă an “ bu
be a partition of ra, bs. By the summation by parts (cf. Pb. 4.2, and set gk “ gpakq,
f0 “ ρpaq, fi “ ρpaiq ´ ρpai´1qwhen i ą 0), we have

n
ÿ

k“1

gpakq
`

ρpakq ´ ρpak´1q
˘

“ ρpbqgpbq ´ ρpaqgpaq ´
n´1
ÿ

k“0

ρpakq
`

gpak`1q ´ gpakq
˘

Apply the mean value theorem to gpak`1q ´ gpakq.

Recall that m is the Lebesgue measure.

Problem 25.13. Let pρnqnPZ`
be a net of increasing functions ra, bs Ñ Rě0. Let

ρ : ra, bs Ñ Rě0. Assume that the following are true:

(1) supn ρnpbq ă `8.

(2) pρnq converges m-a.e. to ρ, and limn ρnpbq “ ρpbq.

Prove that pIρnq converges weak-* (in pCra, bsq˚) to Iρ. In other words, prove for
each f P Cra, bs that

lim
nÑ8

Iρnpfq “ Iρpfq

Hint. Use a density argument to reduce to the case that f is a polynomial. Then
use integration by parts and the dominated convergence theorem.

In Pb. 27.2, we will describe a similar relationship between pointwise (or a.e.)
convergence and the weak-* convergence in Lp spaces.

The following problem is Problem 13 from Chapter 7 of Rudin’s Principles
of Mathematical Analysis [Rud-P]. We shall see the background of this problem,
which was not given in Rudin’s book.

Theorem 25.63 (Helly’s selection theorem). Let pρnq be a sequence of increasing func-
tions ra, bs Ñ r0, 1s. Then pρnq has a subsequence converging pointwise to an increasing
ρ : ra, bs Ñ r0, 1s.

469



‹ Problem 25.14. Prove Helly’s selection Thm. 25.63.

Hint. Choose a subsequence pρnk
q converging pointwise on ra, bs X Q to an in-

creasing τ : ra, bsXQÑ r0, 1s. Extend τ to an increasing right continuous function
τ : ra, bs Ñ r0, 1s by τpxq “ lim

tÑx`,tPQXra,bs
τptq. Let ∆ be the (countable) set of all

x P ra, bs at which τ is not continuous. Prove that pρnk
q converges pointwise on

ra, bsz∆ to τ . Conclude that pρnk
q has a subsequence converging everywhere on

ra, bs.

Helly’s selection theorem is a prototype of the Banach-Alaoglu Thm. 17.21. In
a 1912 paper [Hel12], Helly proved this theorem and used it to study the moment
problem in Cpra, bs,Rq: Given c1, c2, ¨ ¨ ¨ P R and f1, f2, ¨ ¨ ¨ P Cpra, bs,Rq such that
there exists M P Rě0 satisfying

ˇ

ˇ

ˇ

n
ÿ

i“1

λici

ˇ

ˇ

ˇ
ďM

›

›

›

n
ÿ

i“1

λifn

›

›

›

l8
p@n P Z`, λ1, . . . , λn P Rq (25.40)

find a function of bounded variation ρ : ra, bs Ñ R such that, for all n,
ż b

a

fndρ “ cn (25.41)

A function of bounded variation (simply called a BV function) ρ : ra, bs Ñ R is a
function that can be written as ρ` ´ ρ´ where ρ`, ρ´ : ra, bs Ñ Rě0 are increasing.
See Sec. 17.5 for the relationship between the moment problems and the Banach-
Alaoglu theorem. (F. Riesz has also studied this problem in 1911. His interest
in the study of dual space of Cra, bs is clearly related to moment problems. See
[Die-H, Sec. 6.3] for a detailed history.)

Corollary 25.64 (Banach-Alaoglu theorem for Cpra, bs,Rq˚). The closed unit ball of
Cpra, bs,Rq˚ is weak-* sequentially compact.

Proof. Let pΛnq be a sequence in Cpra, bs,Rq˚ such that supn }Λn} ď 1. By Pb. 25.6,
each Λn has Jordan decomposition Λn “ Λ`

n ´Λ´
n where Λ˘

n is positive and }Λ˘
n } ď

1. By considering Λ˘
n separately, it suffices to assume that Λn is positive.

By the Riesz representation Thm. 25.49, for each n there is an increasing ρn :
ra, bs Ñ Rě0 such that Λnpfq “ Iρnpfq for all f P Cpra, bs,Rq. By Helly’s selection
Thm. 25.63, pρnq has a subsequence pρnk

q converging pointwise to an increasing
ρ : ra, bs Ñ Rě0. By Pb. 25.13, pΛnk

q converges weak-* to Iρ.

Another prototype of the Banach-Alaoglu theorem is the compactness of the
closed unit ball of l2pZ`q under the pointwise convergence topology, cf. Thm.
17.31 and Pb. 17.5. We have seen in Sec. 22.5 that it plays a crucial role in the
Hilbert-Schmidt theorem.
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Understanding how abstract theorems like the Banach-Alaoglu theorem
evolved from early explicit versions is important because it helps us under-
stand the nature of mathematical development. We have emphasized this point
throughout this course.

25.8.5 ‹ Lebesgue-Stieltjes integrals

Let ρ : ra, bs Ñ Rě0 be increasing and right continuous. Let µρ be the Lebesgue-
Stieltjes measure associated to ρ (cf. Def. 25.52), i.e., the completion of the unique
Radon measure whose value at each ra, xs equals ρpxq.

Problem 25.15. Let f : ra, bs Ñ R be a bounded function. Assume that f is Stieltjes
integrable with respect to ρ. Prove that f is µρ-measurable, and

ż

ra,bs

fdµρ “ fpaqρpaq `

ż b

a

fdρ

where
şb

a
fdρ is the Stieltjes integral.

Hint. To prove that f is µρ-measurable, use the lower and upper Darboux sums
to find bounded Borel functions g, h : ra, bs Ñ R satisfying g ď f ď h and

ş

ra,bs
ph´

gqdµρ “ 0. Show that f´g “ 0 µρ-a.e.. (Where is the completeness of µρ used?)

Problem 25.16. Assume that ρ has continuous derivative ρ1 P Cpra, bs,Rě0q. Let
pM,mq be the Lebesgue measure on ra, bs. Prove that every Lebesgue measurable
set is µρ-measurable. Prove that on M we have

dµρ “ ρpaqdδa ` ρ
1dm (25.42)

(cf. Pb. 24.1 for the notation), where δa is the Dirac measure associated to a.

Hint. By Pb. 24.2, it suffices to prove (25.42) on Bra,bs. Let ν be the Borel measure
on ra, bs such that dν “ ρpaqdδa`ρ

1dm. Show that ν is Radon. Show that it suffices
to prove

ş

ra,bs
fdµρ “

ş

ra,bs
fdν for any polynomial f . Prove this relation by using

integration by parts (Pb. 25.12).
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26 Theorems of Fubini and Tonelli for Radon mea-
sures

26.1 Products of Radon measures

Fix LCH spaces X1, . . . , XN . For each 1 ď i ď N , let Λi : CcpXi,Rě0q Ñ Rě0

be an Rě0-linear map, equivalently (cf. Rem. 25.14), a positive linear functional
Λ : CcpXiq Ñ C. Let pMi, µiq be the completion of the Radon measure associated to
Λi.

Our goal of this section and the next one is to prove the Fubini theorem for
integrals of Radon measures. In the special case thatN “ 2,Xi “ Rki , and pMi, µiq
is the Lebesgue measure mki , the theorem implies that

ż

Rk1ˆRk2

fpx1, x2qdm
k1`k2 “

ż

Rk1

ż

Rk2

fpx1, x2qdm
k2dmk1 (26.1)

for any f P L1pRk1 ˆ Rk2 ,mk1`k2q. However, to prove such a theorem for Radon
measures, the first task is to define the “product Radon measure” µ1 ˆ ¨ ¨ ¨ ˆ µN
on X1 ˆ ¨ ¨ ¨ ˆXN generalizing mk1`k2 . This will be achieved by defining the cor-
responding positive linear functional Λ1 b ¨ ¨ ¨ b ΛN .

Lemma 26.1. Let X be an LCH space, and let Λ : CcpXq Ñ C be a positive linear
functional. Then for each precompact open U Ă X , the restriction of Λ to CcpUq is
bounded (and hence continuous) with respect to the l8-norm.

Proof. Let µ be the associated Radon measure of Λ. Then for each f P CcpUq we
have |Λpfq| “ |

ş

fdµ| ď }f}l8 ¨ µpUq. So Λ|CcpUq has operator norm ď µpUq which
is finite because µ is finite on the compact set U .

Exercise 26.2. Use Urysohn’s lemma to give a direct proof of Lem. 26.1 without
using the associated Radon measure.

Hint. First show that the R-linear map Λ|CcpU,Rq has finite operator norm ď Λpφq
where φ P CcpX, r0, 1sq and φ|U “ 1.

Theorem 26.3. There exists a unique positive linear functional

Λ : CcpX1 ˆ ¨ ¨ ¨ ˆXNq Ñ C

satisfying that for each fi P CcpXiq, by viewing f1 ¨ ¨ ¨ fN as a functionX1ˆ¨ ¨ ¨ˆXN Ñ C
in the obvious way (i.e. sending px1, . . . , xNq to f1px1q ¨ ¨ ¨ fNpxNq), we have

Λpf1 ¨ ¨ ¨ fNq “ Λ1pf1q ¨ ¨ ¨ΛNpfNq (26.2)
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Proof. Uniqueness: Let Γ satisfy the same properties as Λ. Let X‚ “ X1ˆ¨ ¨ ¨ˆXN .
By Lem. 15.27, it is easy to see that CcpX‚q is the union of all CcpU‚q where U‚ “

U1 ˆ ¨ ¨ ¨ ˆ UN for some precompact open U1 Ă X1, . . . , UN Ă XN . Therefore, it
suffices to restrict Λ and Γ to each CcpU‚q and show that they are equal.

Let E “ tf1 ¨ ¨ ¨ fN : fi P CcpUiqu. Then Λ|E “ Γ|E . Note that SpanCE is clearly
a ˚-subalgebra of C0pU‚q vanishing nowhere and separating points of U‚. (This
is because CcpUiq vanishes nowhere and separates points of Ui, cf. Cor. 15.24.)
Applying the Stone-Weierstrass Thm. 15.49 to the LCH space U‚, we conclude
that SpanCE is dense in CcpU‚q (under the l8-norm). 1 Therefore, by Lem. 26.1,
we see that Λ equals Γ on CcpU‚q.

Existence: By induction on N , it suffices to assume N “ 2. Choose any f P
CcpX‚q, and let Ki be the projection of Supppfq to Xi. (So K1, K2 are compact,
and Supppfq Ă K1 ˆ K2.) For each net ppαqαPI converging in X1 to p, the net of
functions pfppα, ¨q|K2qαPI in CpK2q converges uniformly to fpp, ¨q|K2 due to Thm.
9.3. Therefore, by Thm. 24.25, we have

lim
α

ż

K2

fppα, ¨qdµ2 “

ż

K2

fpp, ¨qdµ2

And we can clearly replace the K2 under the integral with X2. This proves that
x1 P X1 ÞÑ

ş

K2
fpx1, ¨qdµ2 is a continuous function on X1 which clearly has com-

pact support in K1. Thus, we can define

Λpfq “

ż

X1

ż

X2

fpx, yqdµ2pyqdµ1pxq (26.3)

This defines a map Λ : CcpXq Ñ C which is clearly C-linear, positive, and satisfy-
ing (26.2).

Definition 26.4. The positive linear functional Λ in Thm. 26.3 is denoted by
Λ1 b ¨ ¨ ¨ b ΛN and called the tensor product of Λ1, . . . ,ΛN . The completion of
the associated Radon measure of Λ is denoted by µ1 ˆ ¨ ¨ ¨ ˆ µN and called the
Radon product of µ1, . . . , µN .

Remark 26.5. There is a definition of product measure µ1 ˆ ¨ ¨ ¨ ˆ µN for general
measure spaces pX1, µ1q, . . . , pXN , µNq. (See [Rud-R, Ch. 8] or [Fol-R, Sec. 2.5].)
Unfortunately, this product measure is in general not complete. However, when
each Xi is LCH and second countable and each µi is Radon, this product measure is
defined on a σ-algebra containing BX1ˆ¨¨¨ˆXN

, and its completion is equal to the
Radon product in Def. 26.4. Without assuming second countability, this statement
is not true.

1In fact, one can use the Stone-Weierstrass theorem for compact Hausdorff spaces since all
functions involved have compact supports.
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Exercise 26.6. Prove that

pΛ1 b Λ2q b Λ3 “ Λ1 b Λ2 b Λ3 “ Λ1 b pΛ2 b Λ3q

pµ1 ˆ µ2q ˆ µ3 “ µ1 ˆ µ2 ˆ µ3 “ µ1 ˆ pµ2 ˆ µ3q

Generalize these relations to tensor products of more than three positive linear
functionals, and Radon products of more than three Radon measures.

Example 26.7. Let mk be the Lebesgue measure of Rk. Then mk1`k2 , the Lebesgue
measure of Rk1`k2 “ Rk1 ˆ Rk2 , equals the Radon product of mk1 and mk2 .

26.2 Theorems of Fubini and Tonelli

In this section, we fix LCH spaces X and Y . Let pM, µq and pN, νq be the
completions of Radon measures on X and Y respectively. Let µˆ ν be the Radon
product of µ and ν (which is the completion of a Radon measure on X ˆ Y ).

Whenever the integrals can be defined, we adopt the abbreviations
ż

X

ż

Y

fdνdµ “

ż

X

ˆ
ż

Y

fpx, yqdνpyq

˙

dµpxq

ż

Y

ż

X

fdµdν “

ż

Y

ˆ
ż

X

fpx, yqdµpxq

˙

dνpyq

We let
ż

Y

fdν : x ÞÑ

ż

Y

fpx, yqdνpyq (26.4a)
ż

X

fdµ : y ÞÑ

ż

Y

fpx, yqdµpxq (26.4b)

whenever x P X and y P Y are such that the integrals on the RHS can be defined.

26.2.1 Tonelli’s theorem without σ-finiteness

Theorem 26.8 (Tonelli’s theorem). Let f P LSC`pXˆY q. Then the functions
ş

Y
fdν :

X Ñ Rě0 and
ş

X
fdµ : Y Ñ Rě0 are lower semicontinuous, and
ż

XˆY

fdpµˆ νq “

ż

X

ż

Y

fdνdµ “

ż

Y

ż

X

fdµdν (26.5)

Proof. We first consider the special case that f P CcpX ˆ Y q. By the definition of
Radon product, we know that

ş

XˆY
fdpµ ˆ νq equals pΛ1 b Λ2qpfq where Λ1,Λ2

are the positive linear functionals inducing µ, ν respectively. From the proof of
Thm. 26.3, we know that

ş

Y
fdν P CcpXq. Note that the second term of (26.5)
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defines a positive linear functional CcpXˆY q Ñ C sending f1f2 to Λ1pf1qΛ2pf2q “
ş

X
f1dµ ¨

ş

Y
f2dν where f1 P CcpXq and f2 P CcpY q. Therefore, by the uniqueness in

Thm. 26.3, this positive linear functional equals Λ. This proves the first equality
in (26.5) in the special case that f P CcpX ˆ Y,Rě0q. The second half of (26.5) can
be proved in the same way.

Now we consider the general case that f P LSC`pX ˆY q. By Lem. 25.19, there
is an increasing net pfαqαPI in LSC`pXq converging pointwise to f . We know
that p

ş

Y
fαdνqαPI is an increasing net in CcpX,Rě0q. Therefore, its pointwise limit

must be in LSC`pXq (by Pb. 23.4), and must be equal to
ş

Y
fdν by the monotone

convergence Cor. 25.23. Therefore,
ş

Y
fdν P LSC`pXq. By Cor. 25.23 again, and

by the special case already proved, we have
ż

XˆY

fdpµˆ νq “ lim
α

ż

XˆY

fαdpµˆ νq “ lim
α

ż

X

ż

Y

fαdνdµ “

ż

X

ż

Y

fdνdµ

This proves a half of the theorem. The other half can be proved in the same way.

Remark 26.9. Thm. 26.8 can be formulated (and proved) without the language
of measure theory: For each f P LSC`pX ˆ Y q, define Λ2pfq : X Ñ Rě0 sending
x ÞÑ Λ2pfpx, ¨qq. By using Lem. 26.1, it is easy to check that Λ2pfq P CcpX,Rě0q

if f P CcpX ˆ Y,Rě0q, and hence Λ2pfq P LSC`pXq in general (by Pb. 23.4). The
element Λ1pfq P LSC`pY q can be defined in the same way, and

pΛ1 b Λ2qpfq “ Λ1pΛ2pfqq “ Λ1pΛ2pfqq (26.6)

The key to the proof is (again) the monotone convergence theorem for nets, i.e.,
Thm. 25.18.

For example, take X “ Y “ R and let Λ1,Λ2 be both the Riemann integrals
of continuous compactly supported functions, extended canonically to positive
lower semicontinuous functions. Then, for each continuous function f : RˆRÑ
Rě0, the functions x P R ÞÑ

ş

R fpx, yqdy and y P R ÞÑ
ş

R fpx, yqdx from R to Rě0

(defined by improper Riemann integrals) are lower semicontinuous, and we have
Tonelli’s theorem for improper integrals

ż `8

´8

ż `8

´8

fpx, yqdydx “

ż `8

´8

ż `8

´8

fpx, yqdxdy (26.7)

Recall that in the last semester, we were only able to prove Fubini’s theorems for
the exchangeability of an improper integral and a definite integral. (See Thm.
14.32.) Now, we see that the exchangeability of two improper integrals for contin-
uous positive functions can be easily proved without using the heavy machinery
of measure theory and Lebesgue integrals. All we need is the method of extend-
ing positive linear functionals developed in Sec. 25.2.
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26.2.2 Fubini-Tonelli with σ-finiteness

Theorem 26.10 (Tonelli’s theorem). Assume that µ and ν are σ-finite. Let f P L`pXˆ
Y q. Then the following are true.

(a) fpx, ¨q P L`pY q for almost every x P X .

(b) Extend the function
ş

Y
fdν (originally defined a.e. on X) to X Ñ Rě0 in an

arbitrary way. Then
ş

Y
fdν P L`pXq.

(c) We have

ż

XˆY

fdpµˆ νq “

ż

X

ż

Y

fdνdµ (26.8)

It follows that y P Y ÞÑ fp¨, yq satisfies similar conditions, and hence
ż

X

ż

Y

fdνdµ “

ż

Y

ż

X

fdµdν.

Proof. Step 1. We let F be the set of all f P L`pXˆY q satisfying conditions (a,b,c).
We make the following observations:

(i) F is an Rě0-linear subspace of L`pX ˆ Y q.

(ii) By Thm. 23.23 and the monotone convergence Thm. 24.12, if pfnq is an
increasing sequence in F , then its pointwise limit is also in F .

Since µ, ν are σ-finite, by Rem. 25.34, there exist µ-finite open sets Ω1 Ă Ω2 Ă ¨ ¨ ¨ Ă

X whose union is X , and there exist ν-finite open sets O1 Ă O2 Ă ¨ ¨ ¨ Ă Y whose
union is Y . To show that each f P L`pX ˆ Y q belongs to F , by (ii), it suffices to
prove that fχΩnˆOn P F for each n.

Therefore, it suffices to choose any open Ω Ă X and O Ă Y satisfying
µpΩq ă `8 and νpOq ă `8, choose any f P L`pX ˆ Y q vanishing outside ΩˆO,
and prove that f P F .

Step 2. By Prop. 24.9, f is the pointwise limit of an increasing sequence of
simple functions in L`pX ˆ Y,Rě0q. Therefore, by (ii), it suffices to prove that
each simple f : X ˆ Y Ñ Rě0 vanishing outside Ω ˆ O belongs to F . By (i), it
suffices to assume that f “ χE where E Ă ΩˆO and E is pµˆ νq-measurable.

By Tonelli’s Thm. 26.8, if E Ă X is open then χE P F . Note that Thm. 26.8
also implies

pµˆ νqpΩˆOq “

ż

XˆY

χΩˆOdpµˆ νq “

ż

X

ż

Y

χΩˆOdνdµ “ µpΩqνpOq (26.9)

Since µpΩq ă `8 and νpOq ă `8, we have pµ ˆ νqpΩ ˆ Oq ă `8. Therefore,
by Thm. 23.23 and the dominated convergence Thm. 24.26, we have χE P F
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if E Ă Ω ˆ O is Gδ (since E is the intersection of a decreasing sequence of open
subsets of ΩˆO).

Now we consider the general case that E Ă ΩˆO and E is µˆ ν-measurable.
By the regularity Cor. 25.29, we can find a Gδ set B Ă Ω ˆ O such that E Ă B
and pµ ˆ νqpBzEq “ 0. Since χB P F , and since all the integrals involved for
χB are finite (since this is true for χΩˆO), if we can show that χBzE P F , then
χE “ χB ´ χBzE clearly belongs to F .

Step 3. Therefore, it suffices choose any E Ă Ω ˆ O such that E is pµ ˆ νq-
measurable and pµ ˆ νq-null, and prove χE P F . By Cor. 25.31, there is a Gδ set
A Ă Ω ˆ O such that pµ ˆ νqpAq “ 0 and E Ă A. We have proved in Step 2 that
χA P F . In fact, the proof in Step 2 actually shows (a’,b’,c) where

(a’) χApx, ¨q P L`pY q for all x P X .

(b’)
ş

Y
χAdν P L`pXq.

(They are true when A is open, due to Tonelli’s Thm. 26.8. By the dominated
convergence theorem, they are also true when A is Gδ in ΩˆO.)

Since (c) holds for χA, and since A is null, we have

0 “

ż

XˆY

χAdpµˆ νq “

ż

X

ż

Y

χAdνdµ (26.10)

By Prop. 24.16, the function x P X ÞÑ
ş

Y
χApx, ¨qdν is 0 outside a µ-null set ∆ Ă X .

By Prop. 24.16 again, for each x P Xz∆, the function χApx, ¨q on Y is 0 a.e.. Since
χE ď χA, we conclude that for each x P Xz∆, χEpx, ¨q is 0 a.e. on Y . (However,
when x P ∆, it is not known whether χEpx, ¨q is measurable.) This proves that
χE satisfies (a,b). Since χE ď χA, (26.10) clearly holds if A is replaced by E. This
proves that χE satisfies (c). Hence χE P F .

Corollary 26.11. Assume that µ and ν are σ-finite, and let f : XˆY Ñ C be measurable.

Then f P L1pX ˆ Y, µˆ νq iff
ż

X

ż

Y

|f |dνdµ ă `8 iff
ż

Y

ż

X

|f |dµdν ă `8.

Proof. Apply Tonelli’s Thm. 26.10 to |f |.

Example 26.12. Let X “ Y “ r0, 1s and µ “ ν “ m. Let A Ă r0, 1s be non-
measurable. Let E “ t0u ˆ A. Then E is an m2-null subset of r0, 1s2. So χE :
r0, 1s2 Ñ Rě0 is Lebesgue measurable. However, χEpx, ¨q : r0, 1s Ñ Rě0 is not
measurable when x “ 0. This shows that the phrase “for almost every x P X” in
statement (a) of Tonelli’s Thm. 26.10 cannot be replaced by “for every x P X”.

Theorem 26.13 (Fubini’s theorem). Assume that µ and ν are σ-finite. Let f P L1pXˆ
Y, µˆ νq. Then the following are true.

(a) fpx, ¨q P L1pY, νq for almost every x P X .
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(b) Extend the function
ş

Y
fdν (originally defined a.e. onX) toX Ñ C in an arbitrary

way. Then
ş

Y
fdν P L1pX,µq.

(c) We have

ż

XˆY

fdpµˆ νq “

ż

X

ż

Y

fdνdµ (26.11)

Proof. By considering Repfq and Impfq separately, it suffices to assume that f is
real. Apply Tonelli’s Thm. 26.10 to f˘ “ maxt˘f, 0u, and notice Prop. 24.16-(b)
(which is needed to prove that

ş

Y
f˘px, ¨qdν ă `8 for almost every x P X). We

leave the details to the readers.

Thm. 26.10 and Thm. 26.13 are often jointly referred to as the Fubini-Tonelli
theorem.

26.3 Discussion on Fubini-Tonelli

26.3.1 Some easy consequences

Let pM, µq and pN, νq be completions of Radon measures on LCH spaces X
and Y respectively. Let µˆ ν be the Radon product.

Proposition 26.14. Assume that µ and ν are σ-finite. Let A Ă X and B Ă Y be
measurable. Then AˆB is pµˆ νq-measurable, and

pµˆ νqpAˆBq “ µpAq ¨ νpBq (26.12)

Compare this proposition with the fact that if A,B are Borel, then A ˆ B is
Borel and hence measurable, cf. Pb. 23.3.

Proof. Eq. (26.12) follows immediately from Tonelli’s Thm. 26.10 once one can
prove thatAˆB is measurable. SinceX and Y can be written as countable unions
X “

Ť

nEn and Y “
Ť

k Fk where each En and Fk are measurable and have finite
measures, it suffices to prove that pAXEnq ˆ pB XFkq is measurable for each n, k.

In other words, it suffices to prove that A ˆ B is measurable under the extra
assumption that µpAq ă `8 and νpBq ă `8. By Cor. 25.29, for each ε ą 0 there
exist open sets U Ą A and V Ą B, and compact sets K Ă A and L Ă B, such that
µpUzKq ă ε and νpV zLq ă ε. Thus U ˆ V is open and contains A ˆ B, K ˆ L is
compact and is contained in AˆB. Moreover, since

pU ˆ V qzpK ˆ Lq “ ppUzKq ˆ V q Y pU ˆ pV zLqq

and since pUzKq ˆ V and pU ˆ pV zLqq are open and hence measurable, we have

pµˆ νqppU ˆ V qzpK ˆ Lqq ď µpUzKqνpV q ` µpUqνpV zLq ď εpµpUq ` νpV qq
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Moreover, when applying Cor. 25.29, we can choose U, V such that µpUq ď µpAq`
1 and νpV q ď νpBq ` 1. Thus, the open set pU ˆ V qzpK ˆ Lq has measure ď
εpµpAq ` νpBq ` 2q. Since ε is arbitrary, by Cor. 25.29, we conclude that A ˆ B is
measurable.

Example 26.15. The projection π : X ˆ Y Ñ X is continuous, and hence is Borel.
This does not imply that π is pµˆ νq-measurable (where X is equipped with the σ
algebra M). However, if µ and ν are σ-finite, then π is pµˆ νq-measurable because
for each A PM, the set π´1pAq “ Aˆ Y is measurable by Prop. 26.14.

Example 26.16. Assue that µ is σ-finite. Let f : X Ñ Rě0 be µ-measurable. Let Rf

be the region between the graph of f and the X-axis, i.e.,

Rf “
␣

px, yq P X ˆ R : 0 ď y ď fpxq
(

(26.13)

Then Rf is an pµ ˆ mq-measurable subset of X ˆ R (where m is the Lebesgue
measure), and

pµˆmqpRf q “

ż

X

fdµ (26.14)

Compare this example with Pb. 23.3.

Proof. It suffices to prove that Rf is measurable. Then (26.14) follows from
Tonelli’s Thm. 26.10. By Exp. 26.15, the projections π1 : X ˆ R Ñ X and
π2 : X ˆ R Ñ R are measurable. Therefore, Φ “ pf ˝ π1q _ π2 : X ˆ R Ñ R2

is measurable by Prop. 23.21. Since E “ tps, tq P R2 : 0 ď t ď su is closed,
Rf “ Φ´1pEq is measurable.

26.3.2 Other approaches to Fubini-Tonelli

We have mentioned in Rem. 26.5 that there is a general notion of product
measure space which (after completion) agrees with the Radon product when
the LCH spaces are second countable. The general definition is as follows. Sup-
pose that pX,M, µq and pY,N, νq are measure spaces. Let MbN be the σ-algebra
generated by all E ˆ F where E P M and F P N. Using Carathéodory’s Thm.
23.62, one can naturally construct a measure µpˆν : M b N Ñ r0,`8s satisfying
pµpˆνqpE ˆ F q “ µpEqνpF q.

Assuming that µ and ν are σ-finite, Tonelli’s Thm. 26.10 and Fubini’s Thm.
26.13 can be proved for pM b Nq-measurable functions on X ˆ Y with one im-
provement: the statement “for almost every x P X” in Thm. 26.13-(a) can be
replaced by “for every x P X”. However, pM b N, µpˆνq is in general not com-
plete. If we consider its completion instead, then we still need “for almost every
x P X” in Thm. 26.13-(a). The readers are referred to [Fol-R, Sec. 2.5] for details.
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Alternatively, one can first prove
ş

X

ş

Y
f “

ş

Y

ş

X
f for σ-finite measures, and

then define the measure on M bN by using pµpˆνqpAq “
ş

X

ş

Y
χA. This approach

was adopted by Rudin. See [Rud-R, Ch. 8]. Of course, this approach does not
define µpˆν when µ or ν is not σ-finite. But you won’t lose anything if you only
care about σ-finite measures.

When X, Y are LCH spaces and pM, µq, pN, νq are completions of Radon mea-
sures, the Radon product µ ˆ ν extends the completion of µpˆν when µ, ν are
σ-finite, and agrees with the completion of µpˆν when X, Y are second countable.
See [Fol-R, Sec. 7.4]. 2

In many approaches to the Fubini-Tonelli theorem, one uses either
Carathéodory’s theory (cf. [SS-R, Ch. 6, Sec. 3.1]), or monotone classes (cf.
[Rud-R]), or both (cf. [Fol-R], [Tao, Sec. 1.7], or [Yu, Sec. 44]). We used nei-
ther of these, but used regularity instead. It is clear that regularity runs through
our treatment of measure theory from beginning to end.

26.4 Failure of Tonelli’s theorem without LSC and σ-finiteness; a
Borel set not inner regular

We have proved two versions of Tonelli’s theorem, i.e., Thm. 26.8 and 26.10.
The first one assumes that the functions are lower semicontinuous, and the second
one assumes that X, Y are σ-finite. The readers should compare them with the
two monotone convergence theorems, i.e., Cor. 25.23 and Thm. 24.12. The first
one assumes lower semicontinuity but can be applied to nets. The latter can be
applied only to sequences.

::::
The

::::::::::::::
relationship

:::::::::
between

::
a
:::::::::

general
::::::::
Radon

::::::::::
measure

::::
and

::
a

::::::::
σ-finite

:::::
one

::
is

::::::::
similar

:::
to

::::
the

:::::::::::::
relationship

:::::::::
between

::
a
::::
net

:::::
and

::
a

:::::::::::
sequence.

In the following, let us see a class of (counter)examples that can be interpreted
both by the failure of Fubini-Tonelli without σ-finiteness and lower semicontinu-
ity, and by the failure of the monotone convergence theorem for nets of functions
without lower semicontinuity.

Let pM, µq be the completion of a Radon measure on an LCH space X . Let
Y be a set, equipped with the discrete topology 2Y , and let ν : 2Y Ñ Rě0 be the
counting measure. Then ν is a complete Radon measure on Y which is σ-finite iff
Y is countable.

For each E Ă X ˆ Y and y P Y , let Ey Ă X such that

Ey ˆ tyu “ E X pX ˆ tyuq (26.15)

It is clear that E is open iff each Ey is open. Tonelli’s Thm. 26.8 implies that if E is

2Folland used the word “Radon product” in a different way. Since Folland focused on Borel
measurable sets and functions, his Radon product is the Radon measure associated to Λ1 b Λ2

(defined on BXˆY ). Therefore, our Radon product is the completion of Folland’s Radon product.
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open then

pµˆ νqpEq “
ÿ

y

µpEq (26.16)

Let f : X ˆ Y Ñ Rě0. For each y P Y , define fy : X Ñ Rě0 be fypxq “ fpx, yq. It
follows from (26.15) that f is lower semicontinuous iff fy is lower semicontinuous
for each y P Y .

We now assume that µ is σ-finite and f is Borel. Consider the relation

ÿ

yPY

ż

X

fydµ “

ż

X

´

ÿ

yPY

fy

¯

dµ (26.17)

which holds by Tonelli’s Theorems if Y is countable or if f is lower semicontinu-
ous. Let I “ finp2Y q. For each α P I , let gα : X Ñ Rě0 be defined by gα “

ř

yPα fα.
Then (26.17) is equivalent to

lim
αPI

ż

X

gαdµ “

ż

X

´

lim
αPI

gα

¯

dµ (26.18)

which holds when f is lower semicontinuous by the monotone convergence Cor.
25.23. When Y “ Z`, pgαq has a subnet pgαnqnPZ`

where αn “ t1, . . . , nu. Since any
increasing net in Rě0 converges in Rě0, and since any of its subnet converges to
the same value, we see that (26.18) is equivalent to

lim
nÑ8

ż

X

gαndµ “

ż

X

´

lim
nÑ8

gαn

¯

dµ

which holds by the monotone convergence Thm. 24.12.
We now give an example where Y is uncountable, f is not lower semicontinu-

ous, and (26.17) fails (equivalently, (26.18) fails).

Example 26.17. Let X “ r0, 1s and µ is the Lebesgue measure m. Let Y “ r0, 1s,
equipped with the discrete topology and the counting measure (denoted by ν).
Define f : X ˆ Y Ñ Rě0 by fpx, yq “ δx,y. Namely, f is the characteristic function
χ∆ where ∆ is the diagonal line tpx, xq : x P r0, 1su. ∆ clear has open complement.
So ∆ is closed. Therefore f is upper semicontinuous (and hence is Borel). We have

ÿ

yPY

ż

X

fydm “
ÿ

yPY

0 “ 0 ‰ 1 “

ż

X

1dm “

ż

X

´

ÿ

yPY

fy

¯

dm

Moreover, the above two iterated integrals are not equal to
ş

XˆY
fdpm ˆ νq “

pmˆ νqp∆q. Let us prove that
ż

XˆY

fdpmˆ νq “ `8
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By the outer regularity (cf. Thm. 25.25), it suffices to prove that pmˆνq˚p∆q “ `8,
i.e., any an open set E containing ∆ has infinite measure. Let Ey be as in (26.15),
which is nonempty for each y. So mpEyq ą 0. Since Y is uncountable, we have
ř

ympEyq “ `8 by Pb. 5.3. So pmˆ νqpEq “ `8 by (26.16).

Remark 26.18. In Exp. 26.17, we proved that the closed set ∆ satisfies pm ˆ

νq˚p∆q “ pm ˆ νqp∆q “ `8. Note that every compact subset K of ∆ is a fi-
nite set (since its image under the projection X ˆ Y Ñ Y is compact and hence
finite). HenceK is pmˆνq-null. Therefore pmˆνq˚p∆q “ 0. This gives an example
of Borel subset with infinite Radon measure which is not inner regular.

Exercise 26.19. The condition
ş

XˆY
fdpµ ˆ νq ă `8 in Fubini’s Thm. 26.13 is

similar to the condition that |fn| ď g and
ş

g ă `8 in the dominated convergence
Thm. 24.26. Find a counterexample that can be explained by both perspectives.
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27 The marriage of Hilbert spaces and integral theory

Definition 27.1. Let V be a vector space over F P tR,Cu. A seminorm on V is a
function } ¨ } : V Ñ Rě0 satisfying:

• (Subadditivity) If u, v P V , then }u` v} ď }u} ` }v}.

• (Absolute homogeneity) If v P V and λ P F then }λv} “ |λ| ¨ }v}.

The relationship between seminorms and norms is similar to that between
positive sesquilinear forms and inner products. In particular, we have the follow-
ing generalization of Prop. 20.13.

Proposition 27.2. Let } ¨ } be a seminorm on V . Then N “ tv P V : }v} “ 0u is a linear
subspace of V . There is a canonical norm } ¨ }U on U “ V {N such that

}v `N }U “ }v} p@v P V q

Proof. It is easy to check that N is a linear subspace. If u ` N “ v ` N , then
v ´ u P N . So }v} ď }u} ` }v ´ u} “ }u}, and similarly }u} ď }v}. This proves that
} ¨ }U : U Ñ Rě0 is well-defined. We leave it to the readers to check that } ¨ }U is a
norm.

27.1 The definition of Lp spaces

Let pX,M, µq be a measure space.

27.1.1 The space LppX,µq where 1 ď p ă `8

We fix a number p satisfying 1 ď p ă `8.

Definition 27.3. For each f P LpX,Cq, define

}f}Lp ” }f}p “
´

ż

X

|f |pdµ
¯

1
p

(27.1)

In particular, we will not let }f}p denote }f}lp unless otherwise stated.

Theorem 27.4. Assume that f, g P LpX,Cq or f, g P L`pXq. We have Minkowski’s
inequality

}f ` g}p ď }f}p ` }g}p (27.2)

and, if 1 ă p, q ă `8 and p´1 ` q´1 “ 1, Hölder’s inequality
ˇ

ˇ

ˇ

ż

X

fgdµ
ˇ

ˇ

ˇ
ď }f}p ¨ }g}q (27.3)
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Proof. Since }f`g}p ď }p|f |`|g|q}p and |
ş

fg| ď
ş

|fg|, by replacing f, g with |f |, |g|,
it suffices to assume f, g P L`pXq. By Prop. 24.9, there exist increasing sequences
in SpX,Rě0q converging to f and g respectively. By the monotone convergence
theorem, it suffices to prove the two inequalities for elements in SpX,Rě0q.

Let’s prove Hölder’s inequality for f, g P S`pXq assuming that 1 ă p, q ă `8.
The proof of Minkowski’s inequality is similar and is left to the readers.

We assume WLOG that }f}p ¨ }g}q ă `8, otherwise, the inequality is obvious.
If }f}p “ `8, then }g}q “ 0. So

ş

|g|p “ 0. By Prop. 24.16, we have g “ 0 a.e.,
and hence fg “ 0 a.e.. So

ş

fg “ 0 by Prop. 24.16. Similarly, if }g}q “ `8, then
ş

fg “ 0. The inequality holds.
So we can assume that }f}p and }g}q are both finite. By Prop. 24.16, f ă `8

and g ă `8 outside a null set ∆. Replacing f, g with fχ∆c , gχ∆c , it suffices to
assume f, g P SpX,Rě0q. Write f and g as finite sums f “

ř

i aiχEi
and g “

ř

j bjχFj
where ai, bj P Rą0, E1, E2, ¨ ¨ ¨ P M are pairwise disjoint, and F1, F2, ¨ ¨ ¨ P

M are pairwise disjoint. Since aiχEi
ď f , we have apiµpEiq ď

ş

|f |p ă `8 and
hence µpEiq ă `8. Similarly, we have µpFjq ă `8. Let Gi,j “ Ei X Fj . So
f “

ř

i,j aiχGi,j
and g “

ř

i,j bjχGi,j
and fg “

ř

i,j aibjχGi,j
. By Hölder’s inequality

for finite sums (Thm. 12.31) we have
ż

X

fg “
ÿ

i,j

aibjµpGi,jq “
ÿ

i,j

aiµpGi,jq
1
p ¨ bjµpGi,jq

1
q

ď

´

ÿ

i,j

apiµpGi,jq

¯
1
p
¨

´

ÿ

i,j

bqjµpGi,jq

¯
1
q
“ }f}p ¨ }g}q

Definition 27.5. We let

LppX,µq “ tf P LpX,Cq : }f}p ă `8u (27.4)

Then, by Minkowski’s inequality, LppX,µq is a linear subspace of CX with semi-
norm } ¨ }p. Thus, by Prop. 27.2, LppX,µq is a normed vector space with norm
} ¨ }Lp “ } ¨ }p if we define

LppX,µq “ LppX,µq
L

tf P LppX,µq : }f}p “ 0u (27.5)

By Prop. 24.16, we have }f}p “ 0 iff f “ 0 a.e.. So

LppX,µq “ LppX,µq
L

tf P LpX,Cq : f “ 0 µ-a.e.u

In other words, elements in LppX,µq are measurable functions f : X Ñ C, and
two elements f, g are viewed as the same iff f “ g a.e..

Remark 27.6. The L2 norm on L2pX,µq is clearly induced by the inner product

xf |gy “

ż

X

fg˚dµ p@f, g P L2
pX,µqq (27.6)

where fg˚ is integrable by Hölder’s inequality. We shall always understand
L2pX,µq as an inner product space whose inner product is defined by (27.6).
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27.1.2 The space L8pX,µq

Definition 27.7. For each f P LpX,Cq, define

}f}L8 ” }f}8 “ inf
␣

a P Rě0 : µtx P X : |fpxq| ą au “ 0
(

(27.7)

(Note that the set inside the inf is nonempty since it contains `8.) Clearly

}f}L8 ď }f}l8

Unless otherwise stated, we will not let }f}8 denote }f}l8 .

We give some elementary facts about L8.

Proposition 27.8. Let f P LpX,Cq and λ “ }f}L8 . Then
␣

a P Rě0 : µt|f | ą au “ 0
(

“ rλ,`8s (27.8)

In particular, λ “ }f}L8 is the smallest number in Rě0 such that tx P X : |fpxq| ą λu
is null. Moreover, if we let

A “ t|f | ď λu

then XzA is null, and for any measurable B Ă A satisfying µpXzBq “ 0, we have

}fχB}l8 “ }f}L8 (27.9)

Proof. Let E “
␣

a P Rě0 : µt|f | ą au “ 0
(

. Clearly, if a P E and b ě a then
b P E. Therefore, E equals pλ,`8s or rλ,`8s. Pick a decreasing sequence panq in
E converging to λ. Then t|f | ą λu is the union of t|f | ą anu, which is null. This
proves λ P E, and hence E “ rλ,`8s.

That λ P E means that XzA is null. Let κ “ }fχB}l8 . Since |f |B| ď λ, we have
κ ď λ. The set t|f | ą κu is a measurable subset of XzB, which is null. Therefore,
κ belongs to E “ rλ,`8s, and hence κ ě λ.

Corollary 27.9. Choose countably many f1, f2, ¨ ¨ ¨ P LpX,Cq. There there exists A PM
such that µpXzAq “ 0 and }fnχA}l8 “ }fn}L8 for each n.

Proof. By Prop. 27.8, A “
Ş

nAn satisfies the desired property if we let An “
t|fn| ď λnu and λn “ }fn}L8 .

Proposition 27.10. Let f, g P LpX,Cq. The following are true.

(a) If f “ g a.e., then }f}L8 “ }g}L8 .

(b) We have f “ 0 a.e. iff }f}L8 “ 0.
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Proof. Suppose that f “ g a.e.. Then t|f | ą au is null iff t|g| ą au is null. So
}f}L8 “ }g}L8 .

In particular, if f “ 0 a.e., then }f}L8 “ }0}L8 “ 0. Conversely, if }f}L8 “ 0,
then by Prop. 27.8, tx P X : |fpxq| ą 0u is null. So f “ 0 a.e..

Thanks to Cor. 27.9, we can prove many properties of L8 with the help of l8.
Let us see some examples.

Proposition 27.11. Let pfnq be a sequence in LpX,Cq. Then the following are equivalent.

(1) lim
nÑ8

}fn}L8 “ 0.

(2) There exists A PM such that µpXzAq “ 0 and lim
nÑ8

}fnχA}l8 “ 0.

Proof. Assume (1). By Cor. 27.9, there exists A P M such that XzA is null and
}fn}L8 “ }fnχA}l8 . Thus (2) holds. Assume (2). By Prop. 27.10 we have }fn}L8 “

}fnχA}L8 ď }fnχA}l8 . So (1) is true.

Proposition 27.12. For every a P C and f, g P LpX,Cq we have

}f ` g}L8 ď }f}L8 ` }g}L8 }af}L8 “ |a| ¨ }f}L8

Proof. By Cor. 27.9, there exists A P M with null complement such that }f}L8 “

}fχA}l8 , }g}L8 “ }gχA}l8 , and }f ` g}L8 “ }pf ` gqχA}l8 . Therefore

}f ` g}L8 “ }fχA ` gχA}l8 ď }fχA}l8 ` }gχA}l8 “ }f}L8 ` }g}L8

Similarly, let B P M with null complement such that }af}L8 “ }afχB}l8 and
}f}L8 “ }fχB}l8 . Then

}af}L8 “ }afχB}l8 “ a}fχB}l8 “ a}f}L8

Remark 27.13. Hölder’s inequality clearly holds when p “ 1, q “ `8. Namely, if
f, g P LpX,Cq, since |fg| ď |f | ¨ }g}8 a.e., we have

ş

|fg| ď
ş

|f | ¨ }g}8, i.e.

}fg}L1 ď }f}L1 ¨ }g}L8

Definition 27.14. We let

L8
pXq “ tf P LpX,Cq : }f}l8 ă `8u

Then, by Prop. 27.10 and 27.12, we can define the normed vector space

L8
pX,µq “ L8

pXq{tf P L8
pXq : f “ 0 a.e.u (27.10)

with the (well-defined) norm } ¨ }L8 .
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Theorem 27.15. L8pX,µq is a Banach space.

Proof. Let pfnq be a Cauchy sequence in L8pX,µq. Choose fn P L8pXq represent-
ing the corresponding element in L8pX,µq. Then limm,nÑ8 }fm ´ fn}L8 “ 0. By
Cor. 27.9, there is A P M with null complement such that }pfm ´ fnqχA}l8 equals
}fm ´ fn}L8 , and hence converges to 0. By the completeness of l8pXq, pfnχAqnPZ`

converges uniformly to some f P l8pXq. By Cor. 23.24, f P L8pXq. Thus

}f ´ fn}L8 “ }pf ´ fnqχA}L8 ď }pf ´ fnqχA}l8pXq “ }f ´ fn}l8pAq Ñ 0

where Prop. 27.10 is used in the first equality.

Exercise 27.16. Let 1 ď p ď `8. Let µ be the completion of µ. Use Pb. 23.2 or
Prop. 24.11 to prove that the map

LppX,µq Ñ LppX,µq f ÞÑ f

is an isomorphism of normed vector spaces.

27.2 Approximation in Lp spaces

In this section, we provide two useful dense subspaces of an Lp space.

27.2.1 Approximation by continuous functions

Theorem 27.17. Let X be LCH. Let µ be the completion of a Radon measure on X . Let
1 ď p ă `8. Then CcpXq is dense in LppX,µq. More precisely, the (non-necessarily
injective) map f P CcpXq ÞÑ f P LppX,µq has dense range.

Note that by Exe. 27.16, the theorem will be no different if we deal with the
original Radon measure rather than its completion.

Proof. Let f P LppX,µq. We shall show that f can be approximated by elements of
CcpXq.

We first consider the special case that M “ }f}l8 ă `8 and that f is zero
outside some A P M such that µpAq ă `8. By the regularity Thm. 25.25, A is
contained in an open set with finite measure. By replacingAwith this larger open
set, we may assume that A is open.

By Lusin’s Thm. 25.32, for every ε ą 0, there is a compact K Ă A such that
µpAzKq ă ε and f |K is continuous. Since A is open and hence is LCH (cf. Prop.
8.41), by the Tietze extension Thm. 15.22, there exists g P CcpXq compactly sup-
ported in A such that g|K “ f |K and }g}l8 ďM . Thus |f ´ g| ď 2M , and hence

ż

X

|f ´ g|p “

ż

AzK

|f ´ g|p ď p2Mqp ¨ µpAzKq ď p2Mqp ¨ ε
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Therefore }f ´ g}p ď 2M ¨ ε
1
p . Since ε can be arbitrary, we conclude that f can be

approximated by elements of CcpXq.
Now we treat the general case. Let En “ tx P X : 1{n ď |fpxq| ď nu. Then pEnq

is increasing and
Ť

nEn “ X . Moreover, since n´1χEn ď |f |, we have n´pµpEnq ď
}f}pp and hence µpEnq ă `8. Since |f ´ fχEn | ď |f | and

ş

|f |p ă `8, we have
limn

ş

|f´fχEn |
p “ 0 by the dominated convergence theorem. By the above special

case, fχEn can be approximated by elements of CcpXq. This finishes the proof.

Note that CcpXq is in general not dense in L8pXq becasue the uniform limit of
a sequence of continuous functions is continuous.

27.2.2 Applications of continuous function approximation

Definition 27.18. Fix any θ P R. A subsetE Ă S1 is called Lebesgue measurable if
it is of the form exppiF qwhere F is a Lebesgue measuarble subset of rθ´π, θ`πq.
In that case, we defined the Lebesgue measure mpEq to be mpF q. It is easy see
that this definition is independent of the choice of θ. Since pS1,mq is equivalent to
pr´π, πq,mq, the Lebesgue measure on S1 is the completion of a Radon measure.

Corollary 27.19. Let en P Cr´π, πs be defined by enpxq “ einx. Let 1 ď p ă `8.
Then penqnPZ spans a dense linear subspace of Lppr´π, πs, m

2π
q. In particular, penqnPZ is

an orthonormal basis of L2pr´π, πs, m
2π
q.

Proof. Clearly Lppr´π, πs, m
2π
q can be identified naturally with LppS1, m

2π
q »

Lppr´π, πq, m
2π
q. By Thm. 27.17, CpS1q is dense in LppS1, m

2π
q. By Stone-Weierstrass,

V “ Spanten : n P Zu is l8-dense in CpS1q. Therefore V is Lp-dense in CpS1q since

}f}pp “
1

2π

ż

r´π,πs

|f |pdm ď }f}pl8

shows that l8-convergence implies Lp-convergence. Therefore, V is dense in
Lppr´π, πs, m

2π
q.

It is obvious that penq is an orthonormal sequence in L2pr´π, πs, m
2π
q. There-

fore, the density proved above shows that penq is an orthonormal basis of
L2pr´π, πs, m

2π
q.

Corollary 27.20 (Riemann-Lebesgue). Let f P L1pR,mq. Then

lim
tÑ`8

ż

R
fpxqeitxdm “ lim

tÑ´8

ż

R
fpxqeitxdm “ 0 (27.11)

Proof. By Thm. 27.17, for each ε ą 0 there exists g P CcpRq such that }f ´ g}L1 ď ε.
Then |

ş

Rpf ´ gqe
itxdm| ď ε. Therefore, if we can show that limtÑ˘8

ş

R ge
itxdm “ 0,

then lim suptÑ˘8

ş

R fe
itxdm ď ε for all ε ą 0, finishing the proof.

That limtÑ˘8

ş

R ge
itxdm “ 0 follows from the Riemann-Lebesgue lemma for

Riemann integrals, Thm. 14.52. But we can also prove it without using the method
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of Riemann integrals. Since
ş

gpxqeitxdx “
ş

λgpλxqeitλxdx (where λ P Rą0), by
replacing g with gpλxq, it suffices to assume that Suppg Ă r´π, πs and prove

lim
tÑ˘8

ż π

´π

gpxqeitxdx “ 0 (27.12)

In fact, we can prove this for every g P CpS1q. By Stone-Weierstrass, it suffices to
prove this relation if g : x P r´π, πs ÞÑ einx for some n. Then

şπ

´π
gpxqeitxdx can be

calculated using the fundamental theorem of calculus, and one easily checks that
it converges to 0 as tÑ ˘8.

27.2.3 The separability of Lp spaces

The following theorem is a further application of Thm. 27.17.

Theorem 27.21. LetX be a second countable LCH space. Let pM, µq be a Radon measure
(or its completion) on X . Let 1 ď p ă `8. Then LppX,µq is separable.

In the next section, we will see that LppX,µq is complete. Therefore, if X is sec-
ond countable LCH, then the Hilbert space L2pX,µq has a countable orthonormal
basis (Cor. 21.6) and hence is isomorphic to l2pZq or l2pt1, . . . , nuq (Thm. 21.7).

Proof. Step 1. We consider the special case that X is compact (and second count-
able). Then µpXq ă `8. By Thm. 27.17, CpXq is dense in LppX,µq. Therefore,
it suffices to prove that CpXq is separable under the Lp-seminorm, i.e., there is a
countable subset E Ă CpXq such that for each f P CpXq there is a sequence pfnq
in E satisfying limn }f ´ fn}p “ 0. Since

}f ´ fn}
p
p “

ż

X

|f ´ fn|
pdµ ď }f ´ fn}

p
l8 ¨ µpXq

it suffices to find a countable E Ă CpXq which is l8-dense in CpXq. But we have
already proved this before: Thm. 15.37 says that a compact Hausdorff space is
second countable iff its space of continuous functions is (l8-)separable.

Step 2. We consider the general case. Since X is second countable, X is Lin-
delöf. Therefore, X is a countable union of precompact open subsets. So X is
σ-compact, i.e., we have compact K1, K2, ¨ ¨ ¨ Ă X such that X “

Ť

nKn. By re-
placing Kn with K1 Y ¨ ¨ ¨ YKn we assume K1 Ă K2 Ă ¨ ¨ ¨ Ă X .

The restriction µn :“ µ|BKn
is a finite Borel measure on the second countable

compact Hausdorff space Kn. Therefore, µn is a Radon measure on Kn by Thm.
25.38. Thus, by Step 1, LppKn, µnq has a countable dense subset En. Note that we
can view LppKn, µnq as a subset of LppX,µq. So E “

Ť

n En is a countable subset of
LppX,µq.

Let us prove that E is dense in LppX,µq. Choose any f P LppX,µq. By Prop.
24.11, we may assume that f is Borel. So each fχKn is Borel. The dominated
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convergence theorem implies that limn }f ´ fχKn}
p
p “ 0. Since En is dense in

LppKn, µnq, the Borel function f |Kn : Kn Ñ C can be Lp-approximated by elements
of En. So fχKn : X Ñ C can be approximated by elements of En. Thus f can be
approximated by elements of E .

Remark 27.22. In the above proof, we have used the criterion Thm. 25.38 to show
that µ restricts to a Radon measure on the second countable compact setKn. Since
Thm. 25.38 is a deep result, one may wonder if Thm. 27.21 can be proved without
using Thm. 25.38. The answer is yes. We sketch such a proof below.

First, consider the special case that µpXq ă `8. By Thm. 27.17, CcpXq is
dense in LppX,µq. By Pb. 15.14, CcpXq is l8-separable, and hence is Lp-separable
(by the finiteness of µpXq). Therefore LppX,µq is separable. Second, consider the
general case. Since X is second countable, we can write X as a countable union
X “

Ť

n Un where U1 Ă U2 Ă ¨ ¨ ¨ are open and precompact subsets of X . So
µpUnq ă `8. The restriction µn “ µ|BUn

is Radon. (This is easy to check by using
the openness of Un, and does not rely on the second countability. So Thm. 25.38 is
not needed here.) Therefore, LppUn, µnq is separable. Similar to Step 2 of the proof
of Thm. 27.21, one concludes that LppX,µq is separable.

Remark 27.23. The importance of Thm. 27.21 has been discussed in Rem. 17.27:
Let pX,µq be a measure space. Assume that LppX,µq is separable (where 1 ď p ă
`8). Then, equivalently, the closed unit ball of the dual space LppX,µq˚ is weak-
* metrizable by Thm. 17.24. A deep theorem originally due to Riesz (cf. Thm.
27.34) says that LppX,µq˚ is naturally isomorphic to LqpX,µqwhere p´1` q´1 “ 1.
(In the case that p “ 1, one should assume that µ is σ-finite.) Thus, when LppX,µq
is separable, we can use sequences (rather than nets) to study the weak-* topology
and the weak-* compactness of norm-bounded subsets of LqpX,µq.

27.2.4 Approximation by simple functions

Thm. 27.17 can only be applied to (completions of) Radon measures. For a
general measure space, we have the following approximation:

Theorem 27.24. Let pX,M, µq be a measure space. Let 1 ď p ď `8. Then

LppX,µq X SpX,Cq (27.13)

is a dense subset of LppX,µq.

Remark 27.25. The set (27.13) has an explicit description: If 1 ď p ă `8, a func-
tion f : X Ñ C belongs to (27.13) iff f is equivalent to a finite sum g “

ř

i aiχEi

where ai P C and each Ei PM has finite measure. The word “equivalent” means
that f “ g a.e.. If p “ `8, then f belongs to (27.13) iff f is equivalent to an
element of SpX,Cq.
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Proof of Thm. 27.24. By approximating Repfq and Impfq separately, we can assume
that f is real. By considering f` and f´ separately, we assume f ě 0. By Prop.
24.9, there is an increasing sequence psnq in SpX,Rě0q converging pointwise to f .
Therefore, when p ă `8, we have limn }f ´ sn}

p
p “ 0 by the dominated conver-

gence theorem (since |f ´ sn|
p ď |f |p). If p “ `8, by Prop. 27.8, we can replace f

with an equivalent function whose l8-norm is finite. Then, by Rem. 24.10, we can
assume that psnq converges uniformly to f . This proves limn }f ´ sn}L8 “ 0.

In Pb. 27.2 and 27.4, we will give applications of Thm. 27.24 to the study of
weak-* convergence in Lp spaces.

27.3 The Riesz-Fischer theorem

Let pX,M, µq be a measure space.
In this section, we shall show that LppX,µq is complete. Recall how to prove

that lppXq is complete (cf. Thm. 12.32): Let pfnq be a Cauchy sequence in lppXq. We
first show that for each x P X , pfnpxqq is a Cauchy sequence, and hence converges
to some fpxq. Then we show that

ř

X |f ´ fn|
p is small for large enough n. In

particular, }f}lp ď }f ´fn}lp`}fn}lp ă `8. Thus f P lppXq and limn }f ´fn}lp “ 0.
Our proof of the completeness of LppX,µqwill follow a similar strategy, except

for the following difference: If pfnq is a Cauchy sequence in LppX,µq, we cannot
show that pfnq converges a.e.. But as a fallback, we can prove that pfnq has an a.e.
convergent subsequence.

Theorem 27.26 (Riesz-Fischer theorem). Let 1 ď p ă `8. Then LppX,µq is a
Banach space. Moreover, if pfnq is a sequence in LppX,µq, f is in LppX,µq, and limn }f´
fn}p “ 0, then pfnq has a subsequence converging a.e. to f .

It follows that L2pX,µq is a Hilbert space under the inner product (27.6).

Proof. Step 1. Let pfnq be a Cauchy sequence in LppX,µq. We claim that pfnq has a
subsequence pgkq “ pfnk

q converging pointwise outside a null set ∆.
Suppose the claim is true. Let g : X Ñ C be defined by gpxq “ limk gkpxq if

x P Xz∆, and gpxq “ 0 if x P ∆. Then g is measurable. Since pgkq is Lp-Cauchy, for
each ε ą 0 there exists K P Z` such that for each k, l ě K we have }gk ´ gl}p ď ε.
By Fatou’s lemma (Thm. 24.31), we get

ż

X

|gk ´ g|
p
ď lim inf

l

ż

X

|gk ´ gl|
p
ď εp

for all k ě K. In particular, }g}p ď }g ´ gk}p ` }gk}p ă `8. This proves that
g P LppX,µq and that pgkq converges to g in Lp. Therefore, pfnq converges in Lp to
g since pfnq is Lp-Cauchy (cf. Thm. 3.23).

If pfnq converges in Lp to f P LppX,µq, then f and g are the same elements in
LppX,µq. So }f ´ g}p “ 0, and hence f “ g a.e.. This proves that the subsequence

491



pgkq converges to f a.e..

Step 2. Let us prove the claim. Since pfnq is Cauchy, for each k P Z` there is
nk P Z` such that }fn ´ fm}p ď 2´k for all m,n ě nk. By increasing the value of
each nk we assume n1 ă n2 ă ¨ ¨ ¨ so that pgkq “ pfnk

q is a subsequence of pfnq, and

}gk`1 ´ gk}p ď 2´k

Let g0 “ 0. We shall show that
ř

kPNpgk`1 ´ gkq converges absolutely a.e.. Then
this series converges a.e., and hence pgkq converges a.e..

Let hk “ |gk`1´gk|. LetH “
ř

kPN hk which is a measurable functionX Ñ Rě0.
We shall show that H ă `8 a.e.. By Prop. 24.16, it suffices to prove that }H}pp ”
ş

X
Hp is finite. Let k P N. By Minkowski’s inequality, we have }h0 ` ¨ ¨ ¨ ` hk}p ď

}h0}p ` ¨ ¨ ¨ ` }hk}p ď 1 ` 2´1 ` ¨ ¨ ¨ ` 2´k ď 2. Thus, by Fatou’s lemma (or by the
monotone convergence theorem), we have

}H}pp ď lim inf
k

}h1 ` ¨ ¨ ¨ ` hk}
p
p ď 2p

Remark 27.27. The use of Fatou’s lemma in the proof of Thm. 27.26 is very typical:
If pfnq is a sequence of measurable functions converging pointwise to f , one can
use the Lp-norms of pfnq to give an upper bound for the Lp-norm of f .

Remark 27.28. Thm. 27.26 clearly also holds when p “ `8. Indeed, we have
proved in Thm. 27.15 that L8pX,µq is complete. If pfnq is a sequence converging
in L8pX,µq to f P L8pX,µq, then by Prop. 27.11, pfnq converges uniformly to
f outside a null set. In particular, pfnq converges a.e. to f . There is no need to
choose a subsequence.

Corollary 27.29 (Riesz-Fischer). Let en P CpS1q be defined by enpxq “ einx. Then we
have a unitary map

L2
`

r´π, πs,
m

2π

˘ »
ÝÝÑ l2pZq f ÞÑ pf (27.14)

where pf : ZÑ C is the Fourier series of f , i.e.,

pfpnq “
1

2π

ż

r´π,πs

fe´ndm (27.15)

Proof. L2pr´π, πs, m
2π
q is a Hilbert space by Thm. 27.26 and has an orthonormal

basis penqnPZ by Cor. 27.19. Therefore, by Thm. 21.7, (27.14) defines a unitary
map.

492



Remark 27.30. Cor. 27.29 is in fact the original theorem proved by Riesz and by
Fischer in 1907. At that time, it was already known that penq is an orthonormal
basis of L2r´π, πs. (This was proved by Fatou in 1906, and Fatou’s lemma was
proved in the same paper as an auxiliary result. See [Haw, Ch. 6]. 1) Therefore,
to show that the map (27.14) is unitary, it remains to prove one the following
(clearly) equivalent conditions:

(1) If φ P l2pZq, then there exists f P L2r´π, πs such that 1
2π

ş

fe´n “ φpnq for all
n.

(2) If pfnq is a sequence in L2r´π, πs such that limm,nÑ8

ş

|fm ´ fn|
2 “ 0, then

there exists f P L2r´π, πs such that limn |f ´ fn|
2 “ 0.

Note that (1) simply says that the map (27.14) is surjective, and (2) simply says
that L2r´π, πs is complete. Riesz proved (1). (Indeed, he formulated his theorem
in a slightly more general fashion, although he reduced the problem to proving
(1).) Fischer proved (2). (It is noteworthy that the vague idea of completeness
in L2 spaces already appeared in Fischer’s treatment.) Both of them are different
from the proof we have given for Thm. 27.26. See [Ber65, Sec. IV.3] and [Haw,
Ch. 6] for a detailed account of the relevant history.

27.4 Introduction to dualities in Lp spaces

Let pX,M, µq be a measure space.

Proposition 27.31. Let 1 ď p, q ď `8 and p´1 ` q´1 “ 1. Assume that µ is σ-finite if
p “ `8, q “ 1. Then there is a linear isometry

Ψ : LppX,µq Ñ LqpX,µq˚ f ÞÑ Ψpfq (27.16a)

such that for each g P LqpX,µq, we have

xΨpfq, gy “

ż

X

fgdµ (27.16b)

where fg is integrable by Hölder’s inequality.

Proof. Let f P LppX,µq. Hölder’s inequality shows that |xΨpfq, gy| ď }f}p ¨ }g}q.
Therefore Ψpfq is bounded and has operator norm }Ψpfq} ď }f}p. In particular,
if f “ 0 in LppX,µq, then Ψpfq “ 0. Thus, we may assume that }f}p ą 0, and we
shall prove that }Ψpfq} “ }f}p.

1Fatou’s idea was to first show that if f P L2r´π, πs, then limrÑ1´

ř

n r
n
pfpnqen converges a.e.

to f . (A proof of this result can be found in [SS-R, Ch. 4 Sec. 3].) Then Fatou’s lemma can be
applied to show that }f}22 ď

ř

n | pfpnq|2. This, together with Bessel’s inequality, implies Parseval’s
identity. The latter is equivalent to that tenu is an orthonormal basis.
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Case 1: 1 ă p ă `8. Similar to the proof of Thm. 12.33, we let g : X Ñ C be
g “ f

|f |
¨ |f |p´1 on

Ωf “ tx P X : fpxq ‰ 0u

and let g “ 0 on Ωc
f . Then g is measurable, and one checks that }g}qq “

ş

|f |pq´q “
ş

|f |p “ }f}pp. So g P LqpX,µq. Moreover,

xΨpfq, gy “

ż

|f |p “ }f}pp “ }f}p ¨ }f}
p´1
p “ }f}p ¨ }g}q

Since }g}q ą 0, we must have }Ψpfq} ě }f}p.
Case 2: p “ 1, q “ `8. Let g : X Ñ C be defined by g “ f

|f |
on Ωf (which is not

null since
ş

|f | ą 0), and g “ 0 on Ωc
f . So }g}8 “ 1. And xΨpfq, gy “

ş

|f | “ }f}1 “
}f}1 ¨ }g}8. So again }Ψpfq} ě }f}p.

Case 3: p “ `8, q “ 1, and µ is σ-finite. We know 0 ă }f}8 ă `8, and we
want to prove }Ψpfq} ě }f}8. Let us prove that if 0 ă a ă }f}8 then }Ψpfq} ě a.
The reason for considering such a is that by the definition of }f}8, the set

A “ tx P X : |fpxq| ą au

is not null. Let us first consider the special case that µpAq ă `8. 2 Let g be
f{|f | on A, and g “ 0 on Ac. Then }g}1 “ µpAq ă `8 and hence g is a nonzero
element of L1pX,µq. Moreover, xΨpfq, gy “

ş

A
|f | ě aµpAq “ a}g}1. This proves

}Ψpfq} ě a.
Now we consider the case µpAq “ `8. Since µ is σ-finite, A is a countable

union of finite-measure subsets. So there exists a measurable B Ă A such that
0 ă µpBq ă `8. Let g “ f{|f | on B and g “ 0 on Bc. Then the same argument as
above proves }Ψpfq} ě a.

Example 27.32. Let M “ 2X and µ : M Ñ Rě0 be µpHq “ 0 and µpEq “ `8

if E Ă X is nonempty. Then L8pX,µq is nontrivial, but L1pX,µq “ 0. So the
canonical map Ψ : L8pX,µq Ñ L1pX,µq˚ is not an isometry.

Corollary 27.33. Let 1 ď p, q ď `8 and p´1 ` q´1 “ 1. Assume that µ is σ-finite if
p “ `8, q “ 1. Let f P LppX,µq. Then f “ 0 a.e. iff

ş

X
fgdµ “ 0 for all g P LqpX,µq.

Proof. Let Ψ be the linear isometry in Prop. 27.31. Then f “ 0 a.e. iff }f}p “ 0 iff
Ψpfq “ 0.

Theorem 27.34 (Riesz representation theorem for Lp spaces). Assume that 1 ă
p ď `8 and p´1` q´1 “ 1. (So 1 ď q ă `8.) Moreover, assume that if p “ `8 then µ
is σ-finite. Then the canonical linear isometry Ψ : LppX,µq Ñ LqpX,µq˚ in Prop. 27.31
is surjective, and hence is an isomorphism of Banach spaces.

2When proving a result about σ-finite measures, it is always a good idea to first prove it for
finite measures.
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Proof. When p “ q “ 2, by Riesz-Fischer, L2pX,µq is a Hilbert space. Therefore,
the theorem follows from the Riesz-Fréchet representation Thm. 21.22. If p ‰ 2,
the proof is more difficult and will not be given in the notes. See [Fol-R, Sec. 6.2]
or [Rud-R, Ch. 6] for a proof. 3

Although we will not prove Thm. 27.34 for p ‰ 2, we can make the following
definition:

Definition 27.35. Let 1 ă p ď `8 and 1 ď q ă `8 satisfy p´1 ` q´1 “ 1. Assume
that if p “ `8 then µ is σ-finite. If pfαq is a net in LppX,µq and f P LppX,µq, we

say that pfαq converges weak-* to f if lim
α

ż

X

fαgdµ “

ż

X

fgdµ for all g P LqpX,µq.

If pgαq is a net in LqpX,µq and g P LqpX,µq, we say that pgαq converges weakly to

g if lim
α

ż

X

fgαdµ “

ż

X

fgdµ for all f P LppX,µq.

Remark 27.36. Let 1 ď p ď `8, and assume that µ is σ-finite if p “ `8. Then
the weak convergence in LppX,µq was defined when p P r1,`8q, the weak-* con-
vergence in LppX,µq was defined when p P p1,`8s, and the two notions agree
when p P p1,`8q. Due to Thm. 27.34, if p P r1,`8q, the weak convergence in
LppX,µq defined by Def. 27.35 is induced by the weak topology (cf. Def. 21.25). If
p P p1,`8s, and if we fix the predual (cf. Def. 21.20) Ψ : LppX,µq

»
ÝÑ LqpX,µq˚ so

that LppX,µq is viewed as the dual space of LqpX,µq (where p´1 ` q´1 “ 1), then
the weak-* convergence in Def. 27.35 is induced by the weak-* topology.

Of course, one can talk about weak convergence in L8pX,µq. According
to Def. 21.25, a net pfαq in L8pX,µq converges weakly to f P L8pX,µq if
limαxfα, φy “ xf, φy for all φ P L8pX,µq˚. Then pfαq must converge weak-* to
f (if µ is σ-finite). However, weak-* convergence does not imply weak conver-
gence in L8pX,µq, since L8pX,µq˚ may contain more elements than L1pX,µq, cf.
Pb. 17.8.

27.5 The spectral theorem for bounded self-adjoint operators

Fix a Hilbert space H.
In 1906, Hilbert established the spectral theorem for bounded Hermitian forms

(» bounded self-adjoint operators) on Hilbert spaces (cf. the fourth part of
[Hil12]). Hilbert’s method is no longer used today. In this section, we will study
the spectral theorem based on Riesz’s method of functional calculus introduced
in his seminal paper [Rie13, Ch. V]. Besides the crucial roles played by spectral
theorem in the mathematical theory of quantum mechanics, there are several im-
portant reasons for studying the spectral theorem and Riesz’s method:

3In [Rud-R], Rudin assumed that µ is σ-finite for all p.
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• [Rie13] is one of the most important papers that mark the shift in the study of
function spaces from the perspective of sesquilinear/quadratic forms (due
to Hilbert) to the viewpoint of linear operators.4 It shows us how some
important modern mathematical ideas were born and evolved.

• Riesz’s treatment of spectral theorem is an important application of the
Riesz representation Thm. 25.49. Moreover, it provides a deep application
(probably the first in history) of the operator norm on LpHq by using it as
an

::::::::::::::::
equicontinuity condition, not just a continuity condition. Its significance

should be compared with Riesz’s application (in [Rie10]) of the operator
norm on Lpra, bs˚ (as an equicontinuity condition) to the weak(-*) compact-
ness and the moment problems, cf. Ch. 17.

• Riesz’s treatment incorporates ideas with very different backgrounds and
origins: (1) Classification of dual spaces (originating in moment problems).
(2) Integral theory, especially Stieltjes integrals. (3) Hilbert spaces and their
bounded linear operators (originating in integral equations and differential
equations). Therefore, Riesz’s spectral theorem is one of the culminations of
his work.

However, we will first present the spectral theorem in its modern and rep-
resentation theoretic form, which was due to Segal [Seg51] and further promoted
by Halmos [Hal63]. After that, we will explain how this modern viewpoint is
related to Riesz’s integral theoretic version of spectral theorem. The proof of the
representation theoretic version of spectral theorem integrates the Riesz-Markov
representation theorem, the Riesz-Fischer theorem, the density of CpXq in L2pXq,
while retaining Riesz’s crucial idea of functional calculus.

27.5.1 The spectral theorem

The Hilbert-Schmidt theorem implies that if T P LpHq is self-adjoint and com-
pletely continuous, then H is spanned by the eigenvectors of T . This statement is
clearly not true without assuming complete continuity, as we now see below.

Definition 27.37. Let pX,µq be a measure space. Let f P L8pX,µq. Define the
multiplication operator

Mf : L
2
pX,µq Ñ L2

pX,µq g ÞÑ fg (27.17)

Then Mf P LpL
2pX,µqq, and clearly }Mf} ď }f}L8 .

4Another paper is Riesz’s 1918 paper [Rie18] studying compact operators on Cra, bs (where
´8 ă a ă b ă `8) entirely from the viewpoint of linear operators. Since V “ Cra, bs is not
reflexive, a bounded sesquilinear form V ˆ V ˚ Ñ C only gives a bounded linear map V Ñ V ˚˚

but not necessarily V Ñ V . Therefore, the method of sesquilinear forms completely fails.
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Example 27.38. Let µ be a Radon measure on a compact interval ra, bs. Let x P
L8pra, bs, µq denote the identity map t P ra, bs ÞÑ t P C. Let λ P C. Then λ is an
eigenvalue of Mx iff λ P ra, bs and µtλu ą 0. Consequently, if µ is the Lebesgue
measure m, then Mx has no eigenvalues.

Proof. Suppose that λ P ra, bs and µtλu ą 0. Then χtλu is an λ-eigenvalue of Mx.
Conversely, suppose that λ is an eigenvalue. Choose a nonzero g P L2pra, bs, µq
such that Mxg ´ λg “ 0. Then

ş

ra,bs
|px ´ λqg|2dµ “ 0. By Prop. 24.16, we get

px´ λqg “ 0 a.e..
If λ R ra, bs, then x´ λ is nonzero everywhere on ra, bs, and hence g “ 0 a.e. on

ra, bs. This is impossible, since we assume that g is nonzero in L2pra, bs, µq.
Therefore, we have λ P ra, bs. Then x ´ λ is nonzero on ra, bsztλu, and hence

g “ 0 a.e. on ra, bsztλu. If µtλu “ 0, then g “ 0 a.e. on ra, bs, impossible. So
µtλu ą 0.

The above example shows that the traditional meaning of diagonalization (i.e.,
that H has an orthonormal basis whose elements are eigenvectors of T ) should be
extended. We should view the traditional diagonalization as discrete, and regard
the multiplication operator Mf as “continuously diagonal”. That the traditional
diagonal operator can be viewed as a special case ofMf is clear from the following
example:

Example 27.39. Let peiqiPI be an orthonormal basis of H. Assume that T P LpHq
satisfies Tei “ λiei where λi P R and supi |λi| ă `8. Let µ be the counting
measure on I . (So L2pX,µq “ l2pXq.) Let f P L8pI, µq “ l8pIq be defined by
fpiq “ λi. Let Φ : H »

ÝÑ l2pIq be the canonical unitary map (cf. Thm. 21.7). Then T
is unitarily equivalent to Mf via Φ, i.e., ΦTΦ´1 “Mf .

We now state the main spectral theorem for self-adjoint operators. Recall Sub-
sec. 21.5.3 for the basic facts about direct sums and invariant subspaces. Recall
that if T P LpHq is self-adjoint, then ´}T } ď T ď }T } (Exp. 22.22).

Theorem 27.40. Let T P LpHq be self-adjoint. Let x : R Ñ R be the identity map.
Choose ´8 ă a ď b ă `8 such that

a ď T ď b (27.18)

Then there exist a family pµiqiPI of Radon measures on ra, bs and a unitary map U : H »
ÝÑ

À

iPI L
2pra, bs, µiq such that

UTU´1
“
à

iPI

Mx (27.19)

If H is separable, then I can be chosen to be countable.

497



In other words, for each ‘iξi P
À

i L
2pra, bs, µiq, we have

UTU´1
p‘iξiq “ ‘ixξi (27.20)

‹ Remark 27.41. If pXiqiPI is a family of LCH spaces and each Xi is equipped
with a Radon measure µi, then the disjoint union X “

Ů

iXi (equipped with the
disjoint union topology, cf. Exp. 7.68) can be equipped with the unique Radon
measure µ whose restriction to X is µi. (Proof: First define its associated positive
linear functional.) Then we have a unitary map

Φ :
à

iPI

L2
pXi, µiq

»
ÝÑ L2

pX,µq (27.21)

(Proof: First define Φ on the dense subspace V of finite direct sums of elements in
CcpX‚, µ‚q, which is a linear isometry. By Prop. 10.28, Φ can be extended to a linear
isometry

À

i L
2pXi, µiq Ñ L2pX,µq. The range of this map contains CcpXq, and

hence is dense in L2pX,µq by Thm. 27.17. So Φ is surjective because
À

i L
2pXi, µiq

is complete.)
Now let Xi “ ra, bs and let µi be as in Thm. 27.40. Let Ψ “ ΦU , which is a

unitary map H »
ÝÑ L2pX,µq. Then we have

ΨTΨ´1
“Mf (27.22)

where f : X Ñ R is defined by sending each x P ra, bs (where ra, bs is any of the
cardpIq components) to x P R. Then f P CpX,Rq X l8pX,Rq.

27.5.2 Proof of the spectral Thm. 27.40

Let A be a (complex) unital ˚-algebra (cf. Def. 15.4).

Definition 27.42. A unitary representation of A on H is defined to be a linear
map π : A Ñ LpHq satisfying

πpabq “ πpaqπpbq πp1q “ 1H πpa˚
q “ πpaq˚ (27.23)

for all a, b P A . In other words, a representation is a unital ˚-homomorphism
from A to LpHq.

If Ω P H is such that the linear subspace

πpA qΩ “ tπpaqΩ : a P A u

is dense in H, we say that π is a cyclic representation, and that Ω is a cyclic vector.
If K is a closed linear subspace of H, and if K is A -invariant, then π restricts to

a unital ˚-homomorphism

π|K : A Ñ LpKq a ÞÑ πpaq|K (27.24)

We call π|K a (unitary) subrepresentation of π.
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Note that πpaq˚ is the adjoint of the bounded linear operator πpaq, and πpaqπpbq
is the composition of the operators πpaq and πpbq.

Definition 27.43. Let pH, πq and pH1, π1q be two unitary representations of A . If
U : HÑ H1 is a unitary map satisfying

Uπpaq “ π1
paqU (27.25)

for all a P A , then U is called a unitary equivalence of representations, and pH, πq
and pH1, π1q are called unitarily equivalent.

Example 27.44. Let µ be a Radon measure on a compact Hausdorff spaceX . Then
pM,L2pX,µqq is a cyclic representation of CpXq, where

M : CpXq Ñ LpL2
pX,µqq f ÞÑMf (27.26)

and Mf is the multiplication operator of f . The constant function 1 P L2pX,µq is
a cyclic vector since, by Thm. 27.17, tMf1 : f P CpXqu is dense in L2pX,µq. M is
called the multiplication representation.

Example 27.45. Let T P LpHq be self-adjoint. Let Crxs be the unital ˚-algebra
whose linear structure and multiplication are the usual ones for polynomials, and
whose ˚-structure is defined by

pa0 ` a1x` ¨ ¨ ¨ ` anx
n
q

˚
“ a0 ` a1x` ¨ ¨ ¨ ` anx

n (27.27)

where a0, . . . , an P C. For each p P Crxs, if ppxq “ a0 ` a1x` ¨ ¨ ¨ ` anx
n, let

ppT q “ a0 ` a1T ` ¨ ¨ ¨ ` anT
n

Then we have a unitary representation

πT : Crxs Ñ LpHq f ÞÑ fpT q (27.28)

We call this representation the polynomial functional calculus with respect to T .

By the above example, we can transform the study of spectral theory to the
study of unitary representations of Crxs. Moreover, the study of arbitrary unitary
representations can be reduced to the study of cyclic representations:

Proposition 27.46. Let π : A Ñ LpHq be a unitary representation of a unital ˚-algebra
A . Then there is a family pHiqiPI of unitary subrepresentations of π satisfying the follow-
ing conditions:

(a) Each Hi is a cyclic representation of A .

(b) This family is pairwise orthogonal, i.e., Hi K Hj if i ‰ j.
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(c) SpaniPIHi is dense in H

Moreover, if H is separable, then I can be chosen to be countable.

Proof. By Zorn’s lemma, we can choose a maximal family pHiqiPI of nonzero sub-
representations satisfying (a) and (b). Let V “ SpaniPIHi. To show that V is dense
in H, by Cor. 21.14, it suffices to prove that VK “ 0.

By assumption, for each a P A , V is invariant under πpaq and πpaq˚ “ πpa˚q.
Therefore, by Prop. 22.25, VK is πpaq-invariant. Thus, VK is a subrepresentation.
If VK is nonzero, we can choose a nonzero Ω P VK. Then the family pHiqiPI , to-
gether with cyclic representation πpA qΩ, form a larger family contradicting the
maximality of pHiqiPI . This proves that pHiqiPI satisfies (c).

Since each Hi is nonzero and hence contains a nonempty set of orthonormal
basis, if I is uncountable, then H will have an uncountable orthonormal basis,
and hence H » l2pXq for some uncountable set X . We leave it to the readers to
check that l2pXq is not separable.

Remark 27.47. Let pHiqiPI be a pairwise orthogonal family of subrepresentations
of π : A Ñ LpHq spanning a dense subspace of H. By Pb. 21.12, we have a unitary
map Φ : HÑ

À

iPI Hi, and for each a P A we have

ΦπpaqΦ´1
“ ‘iπ|Hi

paq (27.29)

We denote the representation on the RHS by
À

iPI π|Hi
and call it the direct sum

of the family of unitary representations pHiqiPI . Then Prop. 27.46 says that every
unitary representation is unitarily equivalent a direct sum of cyclic representa-
tions.

Compared to Crxs, it is easier to study the cyclic representations of Cra, bs:

Theorem 27.48. Let X be a compact Hausdorff space. Let π : CpXq Ñ LpHq be a cyclic
representation with cyclic vector Ω. Then there is a Radon measure µ on X and a unitary
equivalence U of representations satisfying

U : pH, πq Ñ pL2
pX,µq,Mq UΩ “ 1 (27.30)

where M : f P CpXq ÞÑMf P LpL
2pX,µqq is the multiplication representation.

Proof. Define linear functional

Λ : CpXq Ñ C f ÞÑ xπpfqΩ|Ωy (27.31)

If f ě 0, let g “
?
f . Then g˚ “ g and f “ g˚g. So Λpfq “ xπpgq˚πpgqΩ|Ωy “

}πpgqΩ} ě 0. So Λ is positive. Therefore, by the Riesz-Markov representation
Thm. 25.21, there is a Radon measure µ on X such that

xπpfqΩ|Ωy “

ż

X

fdµ (27.32)
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for all f P CpXq. Therefore, for each f, g P CpXqwe have

xπpfqΩ|πpgqΩyH2 “ xf |gyL2pX,µq (27.33)

since LHS“ xπpg˚fqΩ|Ωy “
ş

X
g˚fdµ “ xf |gy.

Define a map

U : πpCpXqqΩÑ L2
pX,µq πpfqΩ ÞÑ f

We first check that U is well-defined: Suppose that πpfqΩ “ πpf 1qΩ. Then by
(27.33), we have xf |gy “ xf 1|gy. Since CpXq is dense in L2pX,µq (Thm. 27.17), we
get f “ f 1 as elements of L2pX,µq, finishing checking the well-definedness.

Clearly U is linear, and (27.33) shows that U is an isometry. By the Riesz-
Fischer Thm. 27.26, L2pX,µq is complete. Therefore, by Prop. 10.28, U can be
uniquely extended to a bounded linear map U : H Ñ L2pX,µq. Since }Uξ} “
}ξ} for each ξ in the dense subspace πpCpXqqΩ, by the continuity of U , we have
}Uξ} “ }ξ} for each ξ P H. So U is a linear isometry. Therefore, UpHq is a complete
linear subspace of L2pX,µq because H is complete. In particular, UpHq is a closed
subspace of L2pX,µq. Since UpHq contains all continuous functions (forming a
dense subspace of L2pX,µq), we must have UpHq “ L2pX,µq. This proves that U
is unitary.

Finally, we check that Uπpfq “ MfU for all f P CpXq. By the density of
πpCpXqqΩ in H, it suffices to check that Uπpfqξ “ MfUξ if ξ “ πpgqΩ and g P
CpXq. We compute that

Uπpfqξ “ UπpfqπpgqΩ “ UπpfgqΩ “ fg “Mfg “MfUπpgqΩ “MfUξ

This proves that U is a unitary equivalence of representations.

Remark 27.49. We have mentioned in Subsec. 21.1.2 that the operator viewpoint
(rather than the sesquilinear form viewpoint) is closely related to the complete-
ness (rather than compactness) in Hilbert spaces. The readers should notice the
important role played by the completeness of L2pX,µq (due to the Riesz-Fischer
Thm. 27.26) in the above proof. Without knowing this completeness, we cannot
extend U from πpCpXqqΩ to H. (Choose a sequence πpfnqΩ in πpCpXqqΩ converg-
ing to a given ξ P H. In order to define Uξ as the limit of UπpfnqΩ, i.e., the limit of
the Cauchy sequence pfnq in L2pX,µq, we need the completeness of L2pX,µq.)

It remains to extend the polynomial functional calculus p ÞÑ ppT q to a unitary
representation of Cra, bs. This is not an easy task. It relies on the following deep
theorem to be proved in the next section. This theorem is a variant of the (so
called) spectral mapping theorem.

Theorem 27.50. Let T P LpHq be self-adjoint. Choose ´8 ă a ď b ă `8 such that
a ď T ď b. Then, for each p P Crxs, we have

}ppT q} ď }p}l8ra,bs (27.34)
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In other words, if Crxs is equipped with the l8ra, bs-seminorm 5, the polynomial func-
tional calculus πT : Crxs Ñ LpHq with respect to T has operator norm ď 1 .

Corollary 27.51. Let T P LpHq be self-adjoint. Choose ´8 ă a ď b ă `8 such that
a ď T ď b. Then the polynomial functional calculus πT : Crxs Ñ LpHq with respect to
T can be extended to a unitary representation

πT : Cra, bs Ñ LpHq f ÞÑ fpT q (27.35)

with operator norm ď 1. We call πT the continuous functional calculus with respect
to T .

The completeness of LpHq (under the operator norm) plays an important role
in the following proof.

Proof. Note that Crxs is dense in Cra, bs by the Weierstrass approxiation Thm.
14.45. Since πT : Crxs Ñ LpHq is a bounded linear map, and since LpHq is com-
plete (Thm. 17.35), by Prop. 10.28, this linear map can be extended (uniquely)
to a bounded linear map πT : Cra, bs Ñ LpHq with operator norm ď 1. Since
πT pfgq “ πT pfqπT pgq and πT pf

˚q “ πT pfq
˚ hold for any f, g P Crxs, by a den-

sity argument, they hold for all f, g P Cra, bs. This proves that πT is a unitary
representation.

Proof of Thm. 27.40. By Cor. 27.51, the polynomial functional calculus πT can
be extended to the continuous functional calculus πT : Cra, bs Ñ LpHq. By Prop.
27.46 (and Rem. 27.47), pH, πT q is unitarily equivalent to a direct sum of cyclic rep-
resentations pHi, πiq of Cra, bs. By Thm. 27.48, each pHi, πiq is unitarily equivalent
to the multiplication representation pM,L2pra, bs, µiqq for some Radon measure µi
on ra, bs. Therefore, πT is unitarily equivalent to a direct sum of multiplication
representations. In particular, T “ xpT q is unitarily equivalent to a direct sum of
Mx.

27.6 Riesz’s proof of Thm. 27.50

Let H be a Hilbert space, let T P LpHq be self-adjoint, and let ´8 ă a ď b ă
`8 such that a ď T ď b. Let πT : Crxs Ñ LpHq be the polynomial functional
calculus p ÞÑ ppT q. Our goal of this section is to prove Thm. 27.50 saying that πT
has operator norm ď 1.

There are several different proofs of this theorem. In some modern textbooks,
this theorem is proved by first extending πT to a holomorphic functional calcu-
lus: when f is a holomorphic function on a neighborhood of ra, bs in C, then fpT q
is defined to be fpT q “

ű

γ
fpzqpz ´ T q´1 dz

2iπ
where γ is an anticlockwise curve in

the domain of f surrounding ra, bs. Other textbooks prove this by first proving the

5It is a norm when a ă b.
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spectral mapping theorem and the spectral radius formula. Both methods involve
many deep ideas, the motivations and historical origins of which would require
many pages to explain.

The proof we shall give in this section is very similar to Riesz’s original method
in [Rie13, Sec. 86-88]. Unfortunately, it is difficult to find this brilliant and elegant
approach in modern textbooks. (Even Riesz himself did not use this method in
his textbook [RN].) However, I believe it is worth learning this method because
the idea behind it is extremely simple and straightforward, much more so than
any modern approach I’ve seen.

Riesz’s idea is as follows. Assume for simplicity that H is separable. For each
f P Crxs, let Cf “ }f}l8ra,bs.

1. First, assume that H is finite dimensional. Then T can be diagonalized, say
T » diagpλ1, . . . , λnq. Then a ď λi ď b, and hence |fpλiq| ď Cf . For each
f P Crxs we have fpT q » diagpfpλ1q, . . . , fpλnqq. Then clearly }fpT q} ď
supi |fpλiq| ď C, finishing the proof.

2. Now we don’t assume that dimH ă `8. However, if T has finite rank, then
step 1 implies }fpT q} ď Cf .

3. Finally, we don’t assume that T has finite rank. However, we can assume
that H “ l2pZ`q. Let Tn “ χt1,...,nuTχt1,...,nu. Then Tn P LpHq is self-adjoint
and has finite rank. Therefore, by Step 2, we have }fpTnq} ď Cf . Finally,
using the fact that supn }Tn} ă `8 and pTnq converges pointwise to T , one
shows that fpTnq converges pointwise to fpT q. This proves }fpT q} ď Cf .

Let us present the detailed proof of Thm. 27.50. We do not assume that H is
separable.

Lemma 27.52. Let pAαq be a net in LpHq satisfying supα }Aα} ă `8. Assume that
pAαq converges pointwise to A P LpHq. Let pξβq be a net in H converging pointwise to
ξ P H. Then lim

α,β
Aαξβ “ Aξ.

Consequently, if pAαq and pBβq are nets in LpHq converges pointwise to A,B P
LpHq respectively, and if supα }Aα} ă `8, then limα,β AαBβ converges pointwise
to AB.

Proof. The fact that C “ supα }Aα} is finite implies that pAαq is an equicontinuous
family of functions H Ñ H. Therefore, the lemma follows easily from (3)ñ(1) of
Thm. 9.12 (together with Prop. 9.16). But we can also check it directly:

}Aξ ´ Aαξβ} ď }Aξ ´ Aαξ} ` }Aαξ ´ Aαξβ} ď }Aξ ´ Aαξ} ` C}ξ ´ ξβ}

where the RHS converges to 0.
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Corollary 27.53. Let pAαq be a net in LpHq satisfying supα }Aα} ă `8. Assume that
pAαq converges pointwise to A P LpHq. Let f P Crxs. Then limα fpTαq converges
pointwise to fpT q. In particular, }fpT q} ď supα }fpTαq}.

Proof. If fpTαq converges pointwise to fpT q, then for each ξ P H, we have by Lem.
27.52 that

lim
α
pxfqpTαqξ “ lim

α
TαfpTαqξ “ TfpT qξ

Therefore, a proof by induction on the degree of the polynomial f P Crxs implies
that fpTαq converges pointwise to fpT q for all f P Crxs. Let C “ supα }fpTαq}.
Then }fpT qξ} “ limα }fpTαqξ} ď C}ξ}. This proves }fpT q} ď C.

Remark 27.54. The readers should notice the crucial role played by the condition
supα }Aα} ă `8 in the proof of Cor. 27.53. As the proof of Lem. 27.52 suggests,
::::
this

:::
is

::
a

:::::::::::
condition

:::
of

::::::::::::::::
equicontinuity

::::::::
which

:::::::::
ensures

::::
the

::::::::::::::
convergence

:::
of

:::::::::
double

::::::
limits.

Proof of Thm. 27.50. Fix f P Crxs and let Cf “ }f}l8ra,bs. We need to show that
}fpT q} ď Cf . Recall that T is self-adjoint.

Let peiqiPI be an orthonormal basis of H. For each J P finp2Iq, let PJ be the
projection of H onto VJ “ Spantej : j P Ju, namely, for each ξ P H we have

PJξ “
ÿ

jPJ

xξ|ejyej

Then limJPfinp2Xq PJξ “ ξ by Thm. 20.35. Therefore, limJ PJTPJ converges point-
wise to T by Lem. 27.52. Since PJ is self-adjoint (Pb. 21.2), TJ :“ PJTPJ is also
self-adjoint since pPJTPJq˚ “ P ˚

J T
˚P ˚

J “ PJTPJ . Clearly }TJ} ď }T } and hence
supJ }TJ} ă `8. Therefore, to prove }fpT q} ď Cf , by Cor. 27.53, it suffices to
prove }fpTJq} ď Cf .

Note that H » VJ
À

V K
J and TJ |V K

J
“ 0. Thus, TJ is unitarily equivalent to

pTJ |VJ q‘0 on VJ
À

V K
J . Let SJ “ TJ |VJ which is an element of LpVJq. Then fpTJq is

unitarily equivalent to fpSJq ‘ 0. Therefore, it suffices to prove that }fpSJq} ď Cf .
Since dimVJ ă `8, by (e.g.) Thm. 22.29, SJ is unitarily equivalent to the

diagonal matrix diagpλ1, . . . , λnq where λk P R for each 1 ď k ď n. Note that
a ď T ď b implies that

a}ξ}2 ď xTξ|ξy ď b}ξ}2

for all ξ P H, and hence for all ξ P VJ . So a ď SJ ď b. Therefore λk P ra, bs.
Combining this fact with fpSJq » diagpfpλ1q, . . . , fpλnqq, we get }fpST q} ď Cf .
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27.7 The birth of functional calculus: Riesz 1913

Let H be a Hilbert space. Let T P LpHq be self-adjoint and a ď T ď b where
´8 ă a ď b ă `8.

As mentioned in Sec. 21.1, historically, the research on Hilbert spaces has
shifted from the perspective of sesquilinear/quadratic forms to the perspective
of linear operators. Accompanying this shift is a transition from an emphasis on
compactness to a focus on completeness. Our spectral Thm. 27.40 was presented
entirely in the spirit of linear operators. The readers have also seen that complete-
ness has played an important role in the proof of Thm. 27.40:

(1) In the proof of Thm. 27.48, to extend the linear isometry U : πpCpXqqΩ Ñ

L2pX,µq to the closure H, the completeness of L2pX,µq is needed.

(2) To extend the polynomial functional calculus Crxs Ñ LpHq to the continu-
ous functional calculus Cra, bs Ñ LpHq, the completeness of LpHq is needed.
(Cf. Cor. 27.51.)

In contrast, the weak compactness of BHp0, 1qwas never used.
F. Riesz proved his spectral theorem for bounded self-adjoint operators in

Ch. V of [Rie13]. This great article made an extremely important contribution
(probably the first important contribution) to the shift in perspective mentioned
above by introducing the powerful functional calculus. However, any article that
presents brand new ideas must still retain a considerable amount of traditional
views. Therefore, we can see in [Rie13] that Riesz still often adopted the view-
point of quadratic forms rather than that of linear operators. The transitional
nature of this great text means that completeness plays a very ambiguous role in
the text. (In particular, the Riesz-Fischer theorem was not used.)

In the following, I will make some comments on [Rie13], especially on Ch. V
where the spectral theorem was proved. As we shall see, Riesz’s original treat-
ment of the spectral theorem is very close to his proof in [Rie14] (and also our sec-
ond proof in Subsec. 25.7.3) of the Riesz representation Thm. 25.49:

::::
The

:::::::::::
extension

::
of

::::::::::::
functional

:::::::::
calculus

::::::
from

:::::::::::::
polynomials

:::
to

::
a

:::::::
larger

:::::
class

:::
of

:::::::::::
functions

::
is

::::::::
similar

:::
to

:::
the

:::::::::::
extension

:::
of

:::::::::::
integrals

::::::
from

::
a

::::::::
smaller

::::::
class

:::
of

::::::::::
positive

::::::::::
functions

:::
to

:::
a

:::::::
larger

::::::
class.

27.7.1 The roles of the linear operator perspective and the operator norm on
LpHq

In [Rie13, Sec. 75,88], Riesz proved the following parallel to Thm. 27.50.

Theorem 27.55. Let f P Rrxs. Let α “ inf fpra, bsq and β “ sup fpra, bsq. Then
α ď fpT q ď β.
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Riesz’s proof is almost identical to the proof we gave for Thm. 27.50, i.e.,
by finding a net/sequence pTαq of finite rank self-adjoint operators satisfying
supα }Tα} ă `8 and converging pointwise to T , then showing fpTαq converges
pointwise to fpT q. The linear operator perspective is essential to this theorem
and its proof. Moreover, as pointed out in Rem. 27.54, the operator norm on LpHq
plays a crucial role in the proof of this theorem because supα }Tα} ă `8, as a
condition of equicontinuity, ensures the convergence of double limits.

Oddly enough, Riesz’s operator viewpoint almost ended here. In the rest of
the proof of spectral theorem, Riesz mostly adopted the viewpoint of quadratic
forms because it was consistent with his familiar approach to moment problems.
This attachment to old ideas resulted in Riesz hardly making any evident use of
the completeness of H or LpHq in his treatment of spectral theorem, even though
he proved in Ch. IV the completeness of LpHq in order to show that 1 ´ T is
invertible if }T } ă 1.

27.7.2 Riesz’s continuous functional calculus

Although Riesz’s Thm. 27.55 is similar to our Thm. 27.50 (saying that πT :
Crxs Ñ LpHq is a bounded linear map), Thm. 27.55 does not use the language of
operator norms, even though operator norms were introduced by Riesz. (This is
another example that truly innovative work inevitably retains a great deal of old
ideas.)

Riesz’s key viewpoint behind Thm. 27.55 can be revealed by looking at its
special case (explicitly pointed out in [Rie13, Sec. 88]):

Corollary 27.56. Let f P Rrxs. Suppose that f |ra,bs ě 0. Then fpT q ě 0. Consequently,
if f, g P Rrxs and fpxq ď gpxq for all x P ra, bs, then fpT q ď gpT q.

Note that one can choose g to be the constant Cf “ }f}l8ra,bs to conclude 0 ď
fpT q ď Cf (if f |ra,bs ě 0).

The readers should compare this corollary with the notion of positive linear
functionals. Here, the crucial fact conveyed in Riesz’s paper is

πT : f ÞÑ fpT q is a “positive” linear map (27.36)

Consequently,
:::::
Riesz

::::::::::::
extended

::::
the

:::::::::::::
functional

::::::::::
calculus

::::::
from

:::::::::::::::
polynomials

::::
to

::::::::::::
continuous

:::::::::::
functions

:::
by

:::::::
using

::::
the

::::::::::::
positivity

::
of

::::
πT , not by using the bounded-

ness of πT and the completeness of LpHq. 6 This process is similar to the (modern)
idea of extending integrals from a smaller class of functions to a larger class that
we learned before:

6In [Die-H, Sec. 7.2], Dieudonné interpreted Riesz’s method of extension as using the com-
pleteness of LpHq. This is misleading.
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(a) Given a measure space pX,µq, we first define the integral on S`pXq, and then
extend it to L`pXq by approximation. This approximation can be mono-
tonic: If f P L`pXq, then there is an increasing sequence psnq in S`pXq con-
verging pointwise to f . Then

ş

f equals limn

ş

sn. See Sec. 24.1.

(b) Given an LCH X and a linear Λ : CcpX,Rě0q Ñ Rě0, we extend Λ to
LSC`pXq Ñ Rě0 by approximation. This approximation can be monotonic:
If f P LSC`pXq, there is an increasing net pfαq converging pointwise to f .
Then Λpfq equals limα Λpfαq. See Sec. 25.2.

Note that positivity and monotonicity are crucial to both of the above exten-
sions. After all, Lebesgue’s theory is distinguished from Riemann’s theory by its
heavy reliance on the posivity of the codomains. This explains why the Riemann
integral can be easily defined for vector-valued functions, whereas the general-
ization of Lebesgue’s approach to the Bochner integral is more painful (cf. Sub-
sec. 24.4.1): A general normed vector space does not have a positivity structure.
Therefore,

:::
the

::::::::::::::::::
straightforward

:::::::::::::::::
generalization

:::
of

:::::::::::::
Lebesgue’s

::::::::
theory

:::
to

:::::::::
infinite

:::::::::::::
dimensional

:::::::::::::
codomains

::
is

::::
not

::::
the

::::::::::
Bochner

:::::::::
integral

::::
but

::::
the

:::::::::
spectral

::::::::::
theorem

::::
for

::::::::::::
self-adjoint

:::::::::::
operators,

:::::::
since

::::
the

::::::
latter

:::::
has

::
a

::::::::
natural

:::::::::::
positivity

::::::::::
structure, i.e., the

one defined by the positive operators. 7

In [Rie13, Sec. 90-92], Riesz used an idea similar to (a) and (b) to prove the
following analogue of Cor. 27.51.

Theorem 27.57. The polynomial functional calculus πT : Rrxs Ñ LpHq can be extended
to a unital homomorphism πT : Cpra, bs,Rq Ñ LpHq such that any element of the range
is self-adjoint. Moreover, πT is positive in the sense that fpT q ě 0 if f P Cpra, bs,Rě0q.

Riesz’s main idea of the proof is as follows. For each f P Cpra, bs,Rě0q, pick
a sequence of polynomial ppnq in Rrxs converging uniformly to f on ra, bs such
that p1pxq ď p2pxq ď ¨ ¨ ¨ for all x P ra, bs. 8 By Cor. 27.56, for each ξ P H,
the sequence pxpnpT qξ|ξyqnPZ`

is increasing in r0, Cf s (where Cf “ }f}l8ra,bs), and
hence converges to a number ď Cf . This defines the quadratic form

ωfpT qpξ|ξq :“ lim
n
xpnpT qξ|ξy (27.37)

By the polarization identity, ωfpT qpξ|ηq can be defined. This in turn gives a self-
adjoint fpT q P LpHq.

7Riesz later proposed to develop the Lebesgue integral theory by extending the integral from
the class of step functions to larger classes by using monotonic approximation, cf. [RN]. I guess
this idea was motivated by (or at least closely related to) his treatment of spectral theorem in
[Rie13].

8Proof: By Weierstrass approximation, for each n, there is pn P Rrxs such that the l8ra, bs-
distance between f ´ 1{n and pn is ď 10´n. Then one checks easily that ppn|ra,bsq is increasing.
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27.7.3 Riesz’s semicontinuous functional calculus

In fact, Riesz established the functional calculus on a larger class of functions
([Rie13, Sec.90,91]): Since any f P LSCpra, bs,Rě0q is the limit of an increasing
sequence in Cpra, bs,Rq (compare this with Lem. 25.19), f is also the limit of a
sequence of polynomials ppnq positive and increasing (with respect to n) on ra, bs.
Therefore, the above method gives fpT q for each f P C1 where

C1 “ tbounded lower semicontinuous f : ra, bs Ñ Rě0u (27.38)

The map f ÞÑ fpT q is again linear, and is also multiplicative (i.e. pfgqpT q “
fpT qgpT q).

We modern people can understand Riesz’s method in the following way,
which is similar to the method used in Sec. 24.1 and 25.2: For each f P C1, define
fpT q P LpHq to be the positive operator determined by

xfpT qξ|ξy “ sup
␣

xppT qξ|ξy : p P Rrxs, p|ra,bs ď f
(

(27.39)

Then, similar to Thm. 25.18, we can prove a monotone convergence theorem,
namely, if pfnq is an increasing sequence in C1 converging pointwise to f P C1,
then

xfpT qξ|ξy “ lim
n
xfnpT qξ|ξy P Rě0 (27.40)

Therefore, similar to Prop. 25.20, since the polynomial functional calculus is lin-
ear and multiplicative, with the help of the monotone convergence theorem, one
shows that f P C1 ÞÑ fpT q P LpHq is linear and multiplicative; the operator per-
spective is used here. 9

What Riesz did next amounts to defining

C2 “ SpanRC1 “ tf
`
´ f´ : f˘

P C1u (27.41)

so that C1 is a spanning convex cone in C2. It is clear that C2 is a unital R-algebra
since C1 is a unital Rě0-algebra. Therefore, by Prop. 24.19, the lower semicon-
tinuous functional calculus can be extended to a linear f P C2 ÞÑ fpT q P LpHq.
Since f P C1 ÞÑ fpT q is increasing (i.e., if f1 ď f2 then f1pT q ď f2pT q), we see that
fpT q is positive if f P C2 and f ě 0. (This is very similar to our second proof of
the Riesz representation Thm. 25.49.) Finally, using the fact that f P C1 ÞÑ fpT q
is multiplicative, an easy algebraic argument shows that f P C2 ÞÑ fpT q is also
multiplicative. Therefore, Riesz essentially obtained the following theorem on
C2-functional calculus.

9Let pfnq, pgnq be increasing sequences of real polynomials converging pointwise to f, g. Then
xpfmgnqpT qξ|ηy “ xfmpT qgnpT qξ|ηy “ xgnpT qξ|fmpT qηy. Taking limm, we get xpfgnqpT qξ|ηy “

xgnpT qξ|fpT qηy. Taking limn, we get xpfgqpT qξ|ηy “ xgpT qξ|fpT qηy “ xfpT qgpT qξ|ηy.
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Theorem 27.58. The polynomial functional calculus πT : Rrxs Ñ LpHq can be extended
to a (linear) unital homomorphism πT : C2 Ñ LpHq such that any element of πT pC2q is
self-adjoint. Moreover, πT is positive in the sense that fpT q ě 0 if f P C2 and f ě 0.

We remark that in the setting of our spectral Thm. 27.40, we have

fpT q “ U´1
`

‘iMf

˘

U (27.42)

Note that the RHS above can also be defined for every bounded Borel f : ra, bs Ñ
R. Therefore, our Thm. 27.40 actually implies a stronger theorem on Borel func-
tional calculus, namely, Thm. 27.58 holds if C2 is replaced by the unital R-algebra
of bounded Borel functions ra, bs Ñ R.

27.7.4 Riesz’s spectral theorem

For each λ P ra, bs, the function χra,λs is positive upper semicontinuous and
hence is in C2. Therefore, Riesz obtained a positive operator

Epλq “ χra,λspT q (27.43)

Then χra,λs ¨ χra,λs “ χra,λs implies Epλq2 “ Epλq, and hence Epλq is a projection
operator (cf. Pb. 21.3). These projections play the role of eigenvectors in the
traditional diagonalization: In the finite dimensional case, Epλq is the projection
onto the subspace spanned by eigenvectors whose corresponding eigenvalues are
ď λ; thus, the eigenvalues can be recovered from these projections.

With these preparations, Riesz proved in [Rie13, Sec. 94] his spectral theo-
rem in a similar way to our second proof of the Riesz representation theorem in
Subsec. 25.7.3:

Theorem 27.59. There is an increasing right continuous map E : λ P ra, bs ÞÑ Epλq
such that each Epλq is a projection, that E is right continuous (i.e. limλÑλ`

0
Epλq con-

verges pointwise to Epλ0q), and that for each f P Cpra, bs,Rq we have

fpT q “ fpaqEpaq `

ż b

a

fpλqdEpλq (27.44)

The word “increasing” means that if λ ď λ1, then the range ofEpλq is contained
in that of Epλ1q. (In that case, Epλ1q ´ Epλq is the projection onto the relative or-
thogonal complement.) The integral

şb

a
fpT qdEpλq in (27.44) should be understood

as an operator-valued Stieltjes integral. Since f is continuous,
şb

a
fpT qdEpλq can

be defined to be the limit of Riemann-Stieltjes sums, i.e.,
n
ÿ

i“1

fpξiqpEpaiq ´ Epai´1qq

where ta0 ă ¨ ¨ ¨ ă anu is a partition of ra, bs and ξi P pai´1, ais.
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27.7.5 Integral theory vs. unitary representation theory

I believe that the best name for Riesz’s spectral Thm. 27.59 is the Riesz repre-
sentation theorem for the continuous functional calculus, since (27.44) is close
in form and spirit to the formula

Λpfq “ fpaqρpaq `

ż b

a

fpλqdρpλq (27.45)

in the Riesz representation Thm. 25.49. This is also clear from the proofs: Recall
that in our second proof of the Riesz representation theorem in Subsec. 25.7.3,
we first extended Λ to the set C1 of bounded lower semicontinuous functions.
(This part was done in Sec. 25.2.) Then, we extended Λ to C2, and related Λ to
Stieltjes integrals. Similarly, to prove the spectral Thm. 27.59, Riesz first extended
πT : f ÞÑ fpT q to C1, 10 then to C2, and finally related πT to quadratic-form valued
Stieltjes integrals.

To summarize, unlike our proof of the modern spectral Thm. 27.40 which uses
the Riesz-Markov theorem as a black box, Riesz’s proof of his spectral theorem
uses ideas and perspectives from Thm. 25.49 rather than just the conclusion.

In contrast to Riesz’s integral theoretic approach, our spectral Thm. 27.40
should be viewed as a unitary representation theory for T or for Cra, bs. Riesz’s
spectral theorem is closer to the viewpoint of quadratic/sesequilinear forms than
ours. On the other hand, our Thm. 27.40 fully exhibits the spirit of linear operators
and makes full use of the completeness of H and LpHq. The disadvantage of the
viewpoint of quadratic/sesquilinear forms is clear: it can only deal with the linear
structure of linear operators but not the ring structure.

Nevertheless, although some of Riesz’s ideas in [Rie13] are not so modern, by
studying this work, we can understand how the ideas we take for granted to-
day were incubated and grew in the work of a great mathematician. We can also
understand how the various very different theories developed by a great math-
ematician have a common core. The growth and vitality of mathematical ideas
cannot be grasped merely by reading texts written entirely in modern language.

27.8 Problems and supplementary material

We assume Riesz’s representation Thm. 27.34 for Lp spaces, although its full
proof is not given in the notes.

‹ Problem 27.1. Let 1 ď p ă `8 and pX,M, µq is a σ-finite measure space. Let
p´1`q´1 “ 1. Let f : X Ñ C be measurable. Prove that f P LppX,µq iff

ş

X
|fg|dµ ă

`8 for all g P LqpX,µq.
10In fact, Riesz first extended πT to the set of upper semicontinuous functions.
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Hint. To prove “ð”, choose an increasing sequence pEnq of measurable sets
whose union is X such that µpEnq ă `8 and }fχEn}l8 ă `8 for all n. Prove
supn }fχEn}p ă `8.

27.8.1 The weak-* topology of Lp spaces

Let pX,M, µq be a measure space. Let 1 ď p, q ď `8 and p´1 ` q´1 “ 1.

Exercise 27.60. Let pfnq be a sequence in LppX,µq. Assume that pfnq converges a.e.
to f : X Ñ C. Assume that there exists g P LppX,µq such that limn }fn ´ g}p “ 0.
Prove that f “ g a.e. using the Riesz-Fischer Thm. 27.26.

Assume that p ą 1. Assume that µ is σ-finite if p “ `8, q “ 1.Then we
have a canonical isomorphism of Banach spaces LppX,µq » LqpX,µq˚ (cf. Thm.
27.34). By Rem. 21.36, the norm function } ¨ }p is lower weak-* semicontinuous on
LppX,µq. Namely, if pfαq is a net in LppX,µq converging weak-* to f P LppX,µq,

then lim
α

ż

X

|fα|
pdµ ě

ż

X

|f |pdµ. A comparison of this inequality with Fatou’s

lemma (Thm. 24.31) suggests that there is a close relationship between pointwise
convergence and weak-* convergence. We now study this relationship. The fol-
lowing problem is close in spirit to Pb. 25.13.

Problem 27.2. Assume that p ą 1, and µ is σ-finite if p “ `8, q “ 1. Let pfnq
be a bounded sequence in LppX,µq. (“Bounded” means supn }fn}p ă `8.) Let
f : X Ñ C be measurable.

1. Assume f P LppX,µq. Prove that pfnq converges weak-* to f iff for each
A PM satisfying µpAq ă `8 we have

lim
nÑ8

ż

A

fndµ “

ż

A

fdµ (27.46)

2. Assume that pfnq converges a.e. to f . Prove that f P LppX,µq. Use part 1 to
prove that pfnq converges weak-* to f .

3. Let m be the Lebesgue measure. Construct a sequence pfnq in L1pr0, 1s,mq
satisfying that supn }fn} ď 1, that pfnq converges pointwise to 0, and that
pfnq does not converge weakly to 0.

4. Construct a sequence pgnq in L2pr0, 1s,mq such that supn }gn} ă `8, that pgnq
converges weakly to 0, and that pgnq does not converge a.e. to 0.

Hint. 1. Use the density of simple functions in LqpX,µq (Thm. 27.24).
2. Case 1 ă p ă `8: Use Fatou’s lemma to prove f P LppX,µq. Use con-

vergence in measure (cf. Pb. 24.8, or use Egorov’s Thm. 24.44) and Hölder’s
inequality to prove (27.46).
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Now we assume that µ is a Radon measure (or its completion) on an LCH
space X . By Thm. 27.17, we know that if 1 ď p ă `8, then CcpXq is Lp-dense in
L8pX,µq. This is not true when p “ `8. However, we shall show that CcpXq is
weak-* dense in L8pX,µq. To prove this result, we need some preparation.

Definition 27.61. Let V be a vector space over F P tR,Cu. Let S be a set of linear
functional V Ñ F separating points of V (i.e., if v P V satisfies xv, φy “ 0 for all
φ P S then v “ 0). Then V can be viewed as a subset of FS. The σpV,SqσpV,SqσpV,Sq-topology
on V is defined to be the subspace topology inherited from the product topology
of FS. Therefore, if pvαq is a net in V and v P V , then pvαq converges under σpV,Sq
to v iff

lim
α
xvα, φy “ xv, φy p@φ P Sq (27.47)

Moreover, by the definition of product topology in terms of basis (cf. Def. 7.71),
we know that the sets

Vv0,A,ε “ tv P V : |xv ´ v0, φy| ă ε for all φ P Au (27.48)

(where v0 P V , A P finp2Sq, and ε P Rą0) form a basis for the σpV,Sq-topology.

Example 27.62. Let V be a normed vector space. Then the σpV, V ˚q-topology is
the weak topology on V . The σpV ˚, V q-topology is the weak-* topology on V ˚.

Problem 27.3. Let V be a normed vector space. Let E Ă V and S Ă V ˚. Suppose
that S is bounded (i.e. supφPS }φ} ă `8), and SpanE is norm-dense in V . Prove
that E separates points of V ˚. Prove that the σpV ˚, V q-topology and the σpV ˚, Eq-
topology are equal when restricted to S.

Note. The content of this problem is not very new; compare it with Prop. 17.19
(setting W “ F). Note that Thm. 17.31 is a special case of this problem.

‹ Problem 27.4. Let µ be a σ-finite Radon measure (or its completion) on an LCH
space X .

1. Let S0 Ă S Ă L8pX,µq. Assume that S is L8-bounded. Prove that S0

is weak-* dense in S iff for any f P S, any finitely many Borel subsets
A1, . . . , An Ă X with finite measures, and every ε ą 0, there exists g P S0

such that |
ş

Ai
f ´

ş

Ai
g| ă ε for all 1 ď i ď n.

2. Prove that BCcpXqp0, 1q is weak-* dense in BL8pX,µqp0, 1q. Conclude that, in
particular, CcpXq is weak-* dense in L8pX,µq.

3. Assume that X is second countable. Prove that for each f P L8pX,µq there
exists a sequence pfnq in CcpXq such that supn }fn}l8pXq ď }f}L8 and that pfnq
converges weak-* in L8pX,µq to f .
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Hint. 1. Use the basis (27.48) and the density of simple functions (Thm. 27.24).
2. Use part 1, Lusin’s theorem, and the Tietze extension Thm. 15.22.
3. L1pX,µq is separable (Thm. 27.21). Therefore, the weak-* topology on

BL8pX,µqp0, 1q is (compact and) metrizable, cf. Thm. 17.24.

‹ Exercise 27.63. In part 3 of Pb. 27.4, give a more explicit construction of pfnq
without citing the big Thm. 17.24, and without first proving part 2.

More precisely: Choose a sequence of Borel sets A1, A2, ¨ ¨ ¨ Ă X with finite
measures such that χA1 , χA2 , . . . span a dense subspace of L1pX,µq. (Why can we
do so?) For each n, find fn such that |

ş

Ai
f ´

ş

Ai
fn| is small for all 1 ď i ď n. Show

that pfnq converges weak-* to f .
If X is ra, bs, R, or RN , can you give a more explicit choice of A1, A2, . . . ?

27.8.2 ‹ Lp spaces and Fubini-Tonelli

Let 1 ď p ă `8. Let X, Y be LCH spaces. Let µ, ν be the completions of σ-
finite Radon measures on X, Y respectively. Let µ ˆ ν be the Radon product (cf.
Def. 26.4).

Problem 27.5. Let

A “ SpanCtfg : f P LppX,µq, g P LppY, µqu

Prove that A Ă LppX ˆY, µˆ νq, and that A is a dense linear subspace of LppX ˆ
Y, µˆ νq.

Note. It is a non-trivial fact that a measurable function on X can be viewed as
a measurable function on X ˆ Y . This fact relies on the fact that the projection
X ˆ Y Ñ X is measurable, cf. Exp. 26.15.

Hint. Use (e.g.) Stone-Weierstrass to show that Spantfg : f P CcpXq, g P CcpY qu is
l8-dense in CcpX ˆ Y q.

The following problem aims to interpret Minkowski’s integral inequality from
the perspective of vector-valued integrals/Bochner integrals. To begin with, note
that for each measurable f : X ˆ Y Ñ C, by Tonelli’s Thm. 26.8, the function

x P X ÞÑ }fpx, ¨q}LppY q “

´

ż

Y

|fpx, yq|pdνpyq
¯

1
p
P Rě0 (27.49)

can be defined for almost every x. Extend this function to the whole domain X ,
which is measurable by Tonelli’s Thm. 26.8.

Problem 27.6. Let q satisfy p´1 ` q´1 “ 1. Assume that f : X ˆ Y Ñ C is measur-
able, and

ż

X

}fpx, ¨q}LppY qdµpxq ă `8 (27.50)
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In particular, by Prop. 24.16, }fpx, ¨q}LppY q ă `8 for almost every x. Replacing f
by χAˆY where A Ă X is a measurable set with null complement, we assume that
}fpx, ¨q}LppY q ă `8 for every x.

1. Prove that for a.e. y P Y , the function fp¨, yq : x P X ÞÑ fpx, yq is µ-
integrable. Prove that the function

ş

X
fdµ (sending y P Y to

ş

X
fp¨, yqdµ)

is ν-measurable, and is in LppY, νq.

2. Let φ : X Ñ LppY, νq such that for each x P X , φpxq and fpx, ¨q are the same
element in LppY q. Prove that φ is weakly integrable and its integral

ş

X
φdµ

equals
ş

X
fdµ, cf. Def. 24.35. In other words, prove for each g P LqpY, νq that

ż

X

xφpxq, gy “
A

ż

X

fdµ, g
E

(27.51)

3. By Pb. 24.3, we have }
ş

X
φdµ} ď

ş

X
}φpxq}dµpxq. Use this fact to conclude

Minkowski’s integral inequality
ˆ
ż

Y

ˇ

ˇ

ˇ

ˇ

ż

X

fpx, yqdµpxq

ˇ

ˇ

ˇ

ˇ

p

dνpyq

˙
1
p

ď

ż

X

ˆ
ż

Y

ˇ

ˇfpx, yq
ˇ

ˇ

p
dνpyq

˙
1
p

dµpxq (27.52)

4. Assume that Y is second countable. Prove that φ is Bochner integrable (cf.
Pb. 24.5).

Hint. Part 1. For each g P LqpY, νq, apply Fubini’s theorem to fpx, yqgpyq to show
that fp¨, yqgpyq is µ-integrable for a.e. y P Y , and y P Y ÞÑ

ş

X
fp¨, yqgpyqdµ is ν-

integrable. By choosing g to be suitable characteristic functions, show that fp¨, yq
is µ-integrable for a.e. y P Y , and

ş

X
fdµ is ν-measurable. The same conclusions

hold for |f |. For each g P LqpY, νq, prove
ş

Y
|
ş

X
fpx, yqdµpxq| ¨ |gpyq|dνpyq ă `8.

Conclude from Pb. 27.1 that
ş

X
fdµ belongs to LppY, νq.

Part 2. Use Fubini’s theorem.
Part 4. By Thm. 27.21, LppY, νq is separable. So φ is measurable iff φ is weakly

measurable (cf. Pb. 23.7).

27.8.3 Essential ranges and spectra

Let pX,M, µq be a measure space.

Definition 27.64. Let Y be a measurable space. Let φ : X Ñ Y be measurable.
The pushforward measure φ˚µ : NÑ r0,`8s is defined by

pφ˚µqpEq “ µpφ´1
pEqq p@E P Nq (27.53)

Then we have
ż

Y

fdφ˚µ “

ż

X

pf ˝ φqdµ
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for all f “ χE where E P N, and hence for all f P L`pY q by the monotone
convergence theorem.

Remark 27.65. If the σ-algebra of a set Y is not assigned and φ : X Ñ Y is an
arbitrary map, we let φ˚µ be defined on the pushforward σ-algebra

φ˚M “ tE P 2Y : φ´1
pEq PMu (27.54)

Example 27.66. The Lebesgue measure on S1 (together with its σ-algebra) is the
pushforward of the Lebesgue measure on rθ ´ π, θ ` πq.

Recall Pb. 25.1 for the meaning of support of a measure.

Definition 27.67. Let Y be a topological space. Let φ : X Ñ Y be measurable.
The essential range Rngesspφq of φ (with respect to the measure µ) is defined to be
Supppφ˚µq, which is clearly a subset of the closure φpXq.

Problem 27.7. Let f P LpX,Cq. Prove that }f}L8 is the supremum of the essential
range of |f | : X Ñ Rě0.

‹ Problem 27.8. Let H be a Hilbert space. Let T P LpHq. Prove that KerpT ˚q “

ImpT qK. Conclude that T ˚ is injective iff T has dense range.

Hint. A subspace of H is dense iff any vector orthogonal to this subspace must be
zero (Cor. 21.14).

Recall Def. 27.37 for the meaning of multiplication operators.

Problem 27.9. Solve the following problems.

1. Assume that µ is σ-finite. Prove that there exists a measurable h : X Ñ

p0,`8q such that the measure ν : M Ñ r0,`8s defined by dν “ hdµ is
finite.

2. Let h P LpX,Rě0q such that tx P X : hpxq “ 0u is µ-null. Define a measure
ν : MÑ r0,`8s by dν “ hdµ. Prove that E PM is µ-null iff E is ν-null. Use
this to show:

(a) The essential range of φ in Def. 27.67 defined by µ is equal to the one
defined by ν, and hence that

L8
pX,µq “ L8

pX, νq (27.55)

(b) If pM, µq and pxM, µq are the completions of pM, µq and pM, νq respec-
tively, then M “ xM.
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‹ 3. Let h, ν be as in Part 2. Prove that there is a unitary map

U : L2
pX, νq Ñ L2

pX,µq ξ ÞÑ
?
hξ (27.56)

For each f in L8pX,µq (equivalently, in L8pX, νq), letMµ
f andMν

f denote the
multiplication operators on L2pX,µq and L2pX, νq respectively. Prove that

UM ν
fU

´1
“Mµ

f pon L2
pX,µqq (27.57)

‹ Problem 27.10. Assume that µ is σ-finite. Let H “ L2pX,µq. Let f : X Ñ R
be bounded and measurable. Let T “ Mf P LpHq be the multiplication operator,
i.e., Tg “ fg for all g P H. Let Rngesspfq be the essential range of f , which is a
bounded subset of R. Let λ P C.

1. Suppose that λ R Rngesspfq. Prove that λ´ T is invertible in LpHq, i.e., there
is S P LpHq such that pλ´ T qS “ Spλ´ T q “ 1.

2. Prove that µpf´1pλqq ą 0 iff λ is an eigenvalue of T . (Note that if µpf´1pλqq ą
0, then λ P Rngesspfq Ă R. So λ´ T is self-adjoint, and hence λ´ T does not
have dense range by Pb. 27.8.)

3. Suppose that λ P Rngesspfq and µpf´1pλqq “ 0. Prove that λ ´ T is not
surjective. (But note that λ´ T has dense range by Part 2 and Pb. 27.8.)

Hint. Part 1: Prove that Mpλ´fq´1 is a bounded linear map. Part 2: Generalize the
proof of Exp. 27.38. Part 3: By Pb. 27.9, it suffices to assume that µ is finite. Let

En “ tx P X : pn` 1q´1
ď |fpxq ´ λ| ă n´1

u

Let αn “
1

n2µpEnq
if µpEnq ą 0, and αn “ 0 if µpEnq “ 0. Let ξ “

ř

n

?
αnχEn .

Prove that ξ P H. If g P H and pλ ´ T qg “ ξ, then pλ ´ fqg “ ξ. Then χEng “
pλ ´ fq´1?αnχEn . Prove that }χEng}L2 ě 1 if µpEnq ą 0. Prove that there are
infinitely many n such that µpEnq ą 0. Conclude that g cannot be in L2pX,µq.

‹ Remark 27.68. Let H be a separable Hilbert space, let T P LpHq be self-adjoint,
and let λ P C. Continuing the story in Ch. 22, we ask if for every η P H, the
“integral equation”

λξ ´ Tξ “ η (27.58)

has a solution ξ P H, i.e., if λ ´ T is surjective. Moreover, we ask how the surjec-
tivity is related to the injectivity of λ´T . (In concrete integral equation problems,
it is often easier to check that λ is not an eigenvalue of T than to show that λ ´ T
is surjective; see Subsec. 22.6.2 and the reference therein.)
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By Rem. 27.41, T is unitarily equivalent to the multiplication operator Mf on
L2pX,µq where µ is a Radon measure on a second countable LCH space X and
f P CpX,Rq X l8pX,Rq. Define the spectrum of T to be

SppT q “ tλ P C : λ´ T is not invertible in LpHqu (27.59)

Then, by Pb. 27.10, we have

SppT q “ Rngesspfq (27.60)

Therefore, if λ P CzR, then λ R SppT q. Moreover, if λ P R, then one and only one
of the following there cases happens:

(1) λ R SppT q. In particular, λ is not an eigenvalue, and λ´ T is surjective.

(2) λ is an eigenvalue, and λ´ T does not have dense range.

(3) λ is not an eigenvalue, λ´ T has dense range but is not surjective.

These three cases correspond respectively to the three cases in Pb. 27.10, i.e.,

(1) λ R Rngesspfq.

(2) µpf´1pλqq ą 0. In particular, λ P Rngesspfq.

(3) λ P Rngesspfq and µpf´1pλqq “ 0.

The set of λ satisfying (2) resp. (3) is called the point spectrum resp. continuous
spectrum of T . Thus, if T has nonempty continuous spectrum, the Fredholm
alternative (Cor. 22.33) does not hold for T .

From the above three cases, it is clear that for each λ P C, the map λ ´ T is
surjective iff λ R SppT q. This suggests that SppT q is useful for the study of the
“integral equation” (27.58).
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Index
1-form, 539
Cr 1-form, 543
Cr-compatible, 527, 528
Cr-diffeomorphism, 519
Cr-map/function, 528
Cr-structure, 528
Cr-vector field, 542
Fσ set, 452
Gδ set, 452
B-manifold, 557
B-submanifold, 561
σ-algebra, 400
σ-algebra generated by E, 401
σ-compact, 452
σ-finite, 455
σpV,Sq-topology, 512
*-algebra, 264
*-subalgebra, 264
a.e., 406
Abelian algebra, 264
Absolute convergence of improper inte-

gral, 248
Absolute convergent series, 66
Absolute convergent series over Z, 88
Absolute function |f |, 57
Absolutely (Riemann) integrable, 248
Absolutely convergent discrete inte-

gral, 85
Abstract outer measure, 418
Accumulation point of a subset, 108
Adjoint operator, 368
Algebra, 264
All but finitely many xn, 31
Almost everywhere=a.e., 406
Almost uniform convergence, 441
Antiderivative, 185
Antilinear map, 264, 343
Antiunitary map, 367
Approximable, 385
Archimedean property, 17

Arzelà-Ascoli (AA) theorem, 306
Atlas, 526, 557
Banach algebra, 318
Banach space, 56
Banach space completion, 173
Banach-Alaoglu theorem, 309
Basis for topology, 102
Binomial coefficient, 8
Binomial formula, 67
Bochner integrable, 436
Bochner integral, 437
Bolzano-Weierstrass theorem, 50
Borel 1-form, 543
Borel σ-algebra, 401
Borel function/map, 401
Borel measure, 405
Borel set, 401
Borel vector form, 542
Boundary BM , 558
Bounded convergence theorem, 439
Bounded function, 57
Bounded interval, 20
Bounded linear functional, 185
Bounded linear map, 177
Bounded metric, 34
Bounded sequence, 34
Bounded sesquilinear form, 375
Bounded subset, 34
BV function, 470
Canonical extension of positive linear

functionals on CcpX,Rě0q, 446
Carathéodory measurable, 418
Cardinality cardpAq, 20
Cauchy net, 83
Cauchy sequence, 53
Cauchy’s MVT, 197
Cauchy-equivalent, 83
Cauchy-Schwarz inequality, 349
Chain rule, 182
Chain rule for maps of manifolds, 540
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Chain rule in RN , 336
Characteristic function, 24
Chart, 527, 557
Closed map, 114
Closed subset, 54, 110
Closure, closure point, 106
Cluster point of a net, 127
Cluster point of a sequence, 48
Cofinal subset, 79
Common refinement, 222
Commutative algebra, 264
Commutative diagram, 16
Compact operator, 397
Compact space, 132
Complete measure space, 406
Complete metric space, 53
Completely continuous, 383, 397
Completion of measure, 406
Completion of metric space, 167
Completion of normed vector spaces,

173
Complex variable, 70
Complexification of real linear func-

tionals, 235
Connected component, 131
Connected topological space, 123
Continuity, 112
Continuous functional calculus, 502
Continuous spectrum, 517
Contraction, 320
Contraction theorem, 320
Convec hull, 217
Convergence in R, 42
Converges in measure, 438
Convex combination, 212
Convex cone, 429
Convex set, 188
Convex triple, 210
Convolution, 254
Coordiante on a manifold with bound-

ary, 557
Coordinate on a manifold, 528

Cotangent bundle, 539, 560
Cotangent map F ˚, 546
Cotangent vectors, 539
Countable, 22
Countable additivity, 405
Countable subadditivity, 405, 410
Countable superadditivity, 411
Countably compact, 133
Countably infinite, 22
Counting measure, 405
Cyclic representation and cyclic vector,

498
Daniell integral, 446
Darboux integrals, 235
Dense subset, 108
Derivative, 179
Diagonal method, 61
Diffeomorphism, 519
Differentiable, 179
Differentiable on RN , 335
Differential manifold, 527
Differential of a map, 539
Differential structure, 528
Dimension of a manifold, 527
Dimensional of a manifold with bound-

ary, 558
Dini’s theorem, 160
Diract measure, 405
Direct set, 76
Direct sum of bounded linear operators,

376
Direct sum of unitary representations,

500
Directed set of neighborhoods of a

point, 103
Directional derivative ∇vf , 338
Dirichlet kernel, 262
Dirichlet’s test, 73
Discrete integral, 84
Disjoint union, 23
Disjoint union of topological spaces,

115
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Disjoint union topological space, 116
Distance function dp¨, Eq, 39
Dominated convergence theorem, 432
Dominated convergence theorem for

Bochner integrals, 438
Double limit, 78
Double net, 76
Double sequence, 76
Dual (Banach) space, 185
Dual basis, 535
Egorov’s theorem, 441
Eigenvalue, 387
Eigenvector, 387
Embedding of B-manifolds, 562
Embedding of manifolds, 547
Endpoints of an interval, 20
Equicontinuous at a point, 150
Equicontinuous, pointwise, 150
Equidimensional, 527
Equivalence relation, 15
Equivalent metrics, 31
Equivalent norms, 178
Essential range Rngesspφq, 515
Euclidean metric, 30
Euclidean norm, 56
Euclidean topology, 103
Euler’s formula, 202
Eventually, 60, 77
EVT=Extreme value theorem, 47, 133
Exponential function, 72
Extension of measure, 406
Fatou’s lemma, 434
Fatou’s lemma for Hilbert spaces, 372
Field, 98
Field extension, 18
Finer partition, 222
Finite intersection property, 132
Finite measure, 405
Finite rank operator, 384
Finite-increment theorem, 188
Finite-increment theorem on RN , 341
First countable, 128

Fixed point, 320
Fourier series, 261
Fréchet-Kolmogorov theorem, 321
Fredholm alternative, 391
Frequently, 60, 77
FTC=fundamental theorem of calculus,

230
Fubini’s theorem for discrete integrals,

86
Fubini’s theorem for improper inte-

grals, 250
Fubini’s theorem for Radon measures,

477
Fubini’s theorem for Riemann integrals,

239, 289
Fubini-Tonelli theorem, 478
Function of bounded variation, 470
Functionals, 26
Gauss function, 256
Gauss integral, 256
Goldstine’s theorem, 327
Gram-Schmidt, 348
Graph of a map, 533
Gronwall’s inequality, 236
Hölder conjugate, 212
Hölder’s inequality, 213, 483
Hahn-Banach extension theorem, 297
Hahn-Banach separation theorem, 328
Heine-Borel theorem, 62
Hermitian form, 344
Higher order finite-increment theorem,

204, 217
Hilbert cube, 147
Hilbert space, 358
Hilbert space completion, 358
Hilbert space direct sums, 364, 376
Hilbert-Schmidt operator, 386, 398
Hilbert-Schmidt theorem, 389, 390
Homeomorphism, 114
Implicit function theorem, 532
Improper integral, 246
Increasing and decreasing, 32
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Indexed family of sets, 13
Infinimum, 19
Inner Lebesgue measure m˚, 407
Inner measure, 408
Inner product, 345
Inner product space, also called pre-

Hilbert space, 345
Integrable, i.e., µ-integrable, 428
Integration by parts, 231
Integration by parts for Stieltjes inte-

grals, 469
Interior, 109
Interior IntM , 558
Interior point, 36, 109
Interval, 20
Interval rx, ys in a real vector space, 188
Invariant subspace, 388
Inverse function theorem, 519, 550
Involution, 264
Inward-pointing vector, 560
Isometric metric spaces, 41
Isometry and isometric isomorphism,

41
Isomorphism, 19
Isomorphism of normed vector

spaces/Banach spaces, 148
Iterated limit, 81
IVP=Intermediate value property, 123
Jacobian determinant, 336
Jacobian matrix, 335
Jensen’s inequality, 211
Jordan decomposition, 466
L’Hôpital’s rule, 197
Lagrange multipliers, 552
Lagrange’s MVT, 184
Landau symbols o,O, 202
Large enough=sufficiently large, 77
Laurent series, 96
LCH=Locally compact Hausdorff, 145
Lebesgue measurable set, 408
Lebesgue measure, 408
Lebesgue number, 165

Lebesgue number lemma, 165
Lebesgue sum, 399, 425
Lebesgue’s criterion for strong Rie-

mann integrability, 243
Lebesgue-Stieltjes integral, 463
Lebesgue-Stieltjes measure, 463
Left and right limit, 122
Leibniz rule, 181, 194
Leibniz rule for functions on manifolds,

545
Length of a curve, 233
Limit inferior and superior, 48, 143
Limit of a function, 119
Lindelöf space, 132
Linear functional, 185
Linear maps, 16
Lipschitz constant, 37
Lipschitz continuous, 37, 329
Local extreme point, 551
Local extremum, 183
Local maximum/minimum, 183
Local parametrization, 528
Locally µ-regular, 413
Locally connected, 131
Locally uniform convergence, 145
Lower semicontinuous, 420
Lusin’s theorem, 453
Matrix representation, 16, 373, 535
Maximal atlas, 528, 557
Maximal element in a partially ordered

set, 292
Measurable function/map, 401
Measurable space, 400
Measure, 405
Measure space, 405
Metric space, 29
Metric subspace, 31
Metrizable topological space, 103
Minkowski’s inequality, 213, 483
Minkowski’s integral inequality, 514
Monotone convergence theorem, 426
Monotone convergence theorem for
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positive linear functionals, 447
Monotone convergence theorem for

Radon measures, 451
Monotonic, 33
Moore-Osgood theorem, 157
Multiplication operator Mf , 496
Multiplication representation

pL2pX,µq,Mq, 499
MVT=mean value theorem, 183
Neighborhood basis, 128
Neighborhood=open set containing the

point, 103
Net pxαqαPI , 76
Net-compact, 133
Norm, 55
Norm topology, 103, 308
Normal topological space, 129
Normed algebra, 318
Normed vector space, 56
Null set, µ-null set, 406
Null set, Lebesgue, 243, 287
Nullstellensatz for CpX,Rq, 286
One-point compactification, 284
Open cover, 132
Open map, 114
Open set, 36, 103
Open set of a metric spaces, 101
Open submanifold, 529
Operator norm, 176
Ordered field, 17
Ordered field extension=ordered sub-

field, 18
Orthogonal, 347
Orthogonal complement, 363
Orthogonal decomposition and or-

thonal projection, 350
Orthonormal, 347
Orthonormal basis, 351
Oscillation at a point, 244
Oscillation on a partition, 224
Oscillation on a subset, 223
Outer Lebesgue measure m˚, 407

Outer measure, 408
Outer regular, 442
Outward-pointing vector, 560
Parametrization, 528, 557
Parametrization (in discrete integrals),

89
Parseval’s identity, 351
Partial derivative, 179
Partial sum, 65
Partition of an interval, 222
Partition of unity in LCH spaces, 274
Path in a topological space, 124
Path-connected space, 124
Peano’s existence theorem, 333
Picard-Lindelöf theorem, 330
Point spectrum, 517
Pointwise bounded, 303
Pointwise convergence, 58, 117
Pointwise convergence topology, 116
Pointwise equicontinuous, 64
Polarization identity, 344
Poset=partially ordered set, 14
Positive linear functional, 444
Positive operator, 388
Positive sesquilinear form, 345
Positive simple function, 423
Power series, 70
Power set 2X , 13
Precompact subset, 145, 270
Predual, 367
Premeasure, 409
Preorder, and preordered set, 76
Product manifold, 528
Product map, 38
Product preordered/directed set, 76
Product space, 23
Product topological space, 116
Product topology, 116
Projection, 372
Pullback metrics, 42
Pullback of 1-form, 546
Pullback of a cotangent vector, 546
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Pullback of functions, 278
Pushforward σ-algebra, 515
Pushforward measure, 514
Pythagorean identity, 347
Quotient Banach space, 324
Quotient sets, 15
Radius of convergence, 70
Radon measure, 443
Radon measure associated to Λ, 449
Radon product, 473
Ratio test, 70
Real number, 19
Real part of a C-linear functional, 235
Refinement of a partition, 222
Reflexive Banach space, 369
Reflexive Banach spaces, 327
Regular (measure), 442
Regular topological space, 82, 155
Remainder of Taylor expansion, 203
Restriction of σ-algebra, 419
Riemann integrable, 222, 288, 290
Riemann integral, 222
Riemann sum, 222
Riemann-Lebesgue lemma, 260
Riesz representation theorem for

Cpra, bs,Rě0q, 460
Riesz-Fischer theorem, 173, 491
Riesz-Fréchet representation theorem,

313, 367
Riesz-Markov representation theorem,

448
Riesz-Markov representation theorem

for CcpXq, 466
Right continuous, 459
Rolle’s MVT, 183
Root test, 69
Saturated measure, 414
Saturation of a measure, 414
Schröder-Bernstein theorem, 21
Second countable, 140
Self-adjoint operator, 387
Seminorm, 483

Separable, 140
Separates points, 146
Sequentially compact, 47
Series in Rě0, 65
Series in a Banach space, 65
Series over Z, 88
Sesquilinear form, 344
Simple function, 423
Smooth functions, 195
Smooth functions, RN , 339
Smooth manifold, 527
Smooth map/function, 529, 555, 558
Smooth structure, 528, 557
Smooth submanifold with boundary,

561
Sobolev space HspS1q, 356
Spectrum of a bounded linear operator,

517
Squeeze theorem, 33, 38, 44, 79
Step function, 259
Stieltjes integral, 458
Strictly increasing and strictly decreas-

ing, 32
Strictly monotonic, 33
Strong Riemann integrability, 225
Strongly integrable, 437
Subadditivity, 45, 55
Subalgebra, 264
Subalgebra generated by..., 265
Subcover, 132
Subfield, 18
Submanifold, 524, 530
Submersion, 548
Subnet, 79
Subsequence, 35
Subspace topology, 104
Sufficiently large, 32, 77
Summation by parts, 73
Summation of measures, 405
Support Supppfq, 94
Support of a measure, 463
Supremum, 19
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SW theorem, compact complex version,
266

SW theorem, compact real version, 265
SW theorem, LCH complex version, 286
SW theorem, LCH real version, 285
SW=Stone-Weierstrass, 265
T3 spaces, 302
Tagged partition, 222
Tangent bundle, 537, 560
Tangent cone, 559
Tangent space, 537, 560
Tangent vectors, 537
Taylor expansion, 203
Taylor series, 206
Taylor’s theorem, integral form, 232
Taylor’s theorem, Lagrange form, 205
Taylor’s theorem, Peano form, 203
Tensor product of positive linear func-

tionals, 473
Tietze extension theorem, 270
Tonelli’s theorem, 474, 476
Topological space, 102
Topologically equivalent metrics, 41
Topology generated by the basis, 104
Topology of I˚ “ IYt8Iuwhere I is an

index set, 130
Topology of R, 104
Topology of a metric space, 101
Totally ordered subset, 292
Transpose of a linear map, 536
Triangle inequality, 29
Tychonoff theorem, 267
Tychonoff theorem, countable version,

61, 144
Uniform convergence, 58, 118
Uniform convergence metric, 63, 118
Uniform convergence of series of func-

tions, 68
Uniform convergence topology, 118
Uniformly continuous, 163
Uniformly equicontinuous, 166
Unit vector, 345

Unital ˚-homomorphism, 498
Unital algebra, 264
Unital Banach algebra, 318
Unitarily equivalent, 349
Unitary equivalence of operators, 377
Unitary equivalence of unitary repre-

sentations, 499
Unitary maps, 349
Unitary representation of unital ˚-

algebras, 498
Upper and lower Darboux integrals,

235
Upper and lower Darboux sums, 234
Upper bound, 19
Upper half space Hn, 555
Upper semicontinuous, 420
Urysohn function of a metric space, 128
Urysohn’s lemma for LCH spaces, 271
Vanish nowhere, 285
Vector field, 537
Vector spaces, 16
Weak convergence, 369
Weak topology, 327, 368
Weak-* compact, 309
Weak-* topology, 308
Weak/weak-* convergence in Lp

spaces, 495
Weakly integrable, 435
Weakly measurable, 421
Weierstrass approximation theorem,

257
Well defined, 17
Young’s inequality, 212
Zero set Zpfq, 524
Zorn’s lemma, 292

AzB, 10
A “ ClXpAq, closure, 107
Ac, the complement of A, 11

BXpx, rq “ Bpx, rq and BXpx, rq “

Bpx, rq, 29
BX , 401
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C8, 195
C, the set of complex numbers, 12
C0pX,Vq, 285
CcpX, V q, 253
CcpX, r0, 1sq, 271
C8
c , 254

CcpXq “ CcpX,Cq, 343
CcpX,Rě0q, 442
CnpX, V q, 195
cotangent space, 560
Cr on RN , 339
CrpM,Nq, 528
CpXq “ CpX,Cq, 343
CpX, Y q, the set of continuous functions

X Ñ Y . See Conv. 3.45 also, 59

dν “ hdµ, 435
dpx,Eq, 39
dpE,F q, 40
dF , the differential of the map, 539
df , the differential of the function f , 543
diampAq, 223

qei, dual basis, 535
ez “ exppzq, 72

F ˚, the cotangent map, 546
F ˚ω, the pullback of the form ω, 546
Fˆ “ Fzt0u, 8
|f |, 57
f |E , the restriction of f to E, 12
f˚pxq “ fpxq, 265
f˚dY : pullback metric, 42
finp2Xq, 76
pfpnq, 261
f pnq, 180
fn Ñ f , 58
Fnˆm, the set of nˆm matrices, 16
FrSs, 265
f ă X , 271

Hn, 555

Iěβ , 77

|I| “ b´ a if I “ rb´ as, 221
i “

?
´1, 8

idA, 13
inf E, 19
IntXpAq “ IntpAq, 109
IntM , 558

Jacf , the Jacobian matrix, 335
Jpfq, the Jacobian determinant, 336

L8pX,µq, 486
l8, 57
l8pX, V q, 57
L1 norm }f}L1 “ }f}1, 428
L1-seminorm, 259
} ¨ }l1 “ } ¨ }1, 95
l1,8, 190
L1pX,µq “ L1pX,µ,Cq, 428
L1pX,µ,Rě0q, 428
l1pX, V q, 95
limαPI xα ” limα xα, 78, 105
limpÑx fppq, 119, 121
limtÑx´ and limtÑx` , 122
lim inf, lim sup, 48, 143
ln,8, 195
log, 126
L8 (semi)norm, 485
Lp (semi)norm, 483
LppX,µq, 484
LppX,µq, 484
lppXq “ lppX,Cq, 343
lppX, V q and lp norm, 214
LSC`pXq, the set of lower semicontinu-

ous X Ñ r0,`8s, 446
LpV,W q,LpV q, 177
L`pXq “ LpX,Rě0q, 424
LpX, Y q, 424

BM , 558

N “ t0, 1, 2, . . . u, 10
NbhXpxq “ Nbhpxq, 103
nX “ t1, . . . , nuX , 25
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PpIq, the set of partitions of I , 222
PNbhXpxq, 113

Q, the field of rational numbers, 16
QpIq, the directed set of tagged parti-

tions, 222

Rě0 “ r0,`8q, 9
R “ r´8,`8s “ RY t´8,`8u, 20
Rě0 “ r0,`8s, 9
Rpra, bs, V q, 222, 246
R1pI, V q, 248
RcpRN ,Rq, 288

Spf, σ, ξ‚q, 222
sin, cos, 192
Sn, 534
SpanpCcpX,RqVq, 277
supE, 19
Supppfq, 94, 253
Suppµ, the support of measure µ, 463
S`pXq “ SpX,Rě0q, 423
SpX, Y q, 423

T ˚M,T ˚
pM , 539, 560

TpM,TM , 537, 560
T`
p M , 559
T t, the transpose of T , 536
TX “ the topology of X , 9

USCpX,Rě0q, USCcpX,Rě0q, 464

V ˚, 185
V X as a vector space, 57
V rxs, 256

Xpfq, 543
xi, the coordinate function, 518

Y X , the set of functions X Ñ Y , 23

Z` “ t1, 2, . . . u, 10
Zpfq, the zero set of f , 524
Ť, 270
`

α
n

˘

, 8

Ů

αPA Aα, the disjoint union, 23
Ž

αPA fα, 130
xφ, vy ” xv, φy :“ φpvq, 185
χA, the characteristic function of A, 24
δx,y, δyx, 8
ε-dominated, 227
γ1, the derivative of a path γ in a mani-

fold, 537, 559
ωpf, xq, 244
ωT , the sesquilinear map for T , 383
Bφi “ B

Bφi , 538
π, the number pi, 201
ś

αPA fα, 130
ś

iPI Xi, 23
σpEq, 401
σ ă σ1, 222
φ˚M, the pushforward σ-algebra, 515
φ˚µ, the pushforward measure of µ un-

der φ, 514
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