Dual fusion products of modules of vertex operator algebras associated to compact Riemann surfaces

Bin Gui
Tsinghua University

Joint with Hao Zhang arXiv:2305.10180 June 2023

Conformal blocks

- We fix an \mathbb{N}-graded VOA $\mathbb{V}=\bigoplus_{n \in \mathbb{N}} \mathbb{V}(n)$. In this talk, we assume that \mathbb{V} is C_{2}-cofinite (i.e. $C_{2}(\mathbb{V})=\left\{Y(u)_{-2} v: u, v \in \mathbb{V}\right\}$ has finite codimention) for simplicity, although some discussions also apply to more general VOAs. By a \mathbb{V}-module, we always mean a grading restricted generalized \mathbb{V}-module (equivalently, a finitely generated admissible \mathbb{V}-module).
- Goal: develop a (geometric) theory for conformal blocks associated to modules of C_{2}-cofinite VOAs and compact Riemann surfaces, aiming at proving a sewing-factorization theorem.
- The above goal has more or less been achieved when the compact Riemann surfaces have genera 0 or 1 , or when \mathbb{V} is also rational (i.e. all \mathbb{V}-modules are completely reducible).

Conformal blocks

- An N-pointed compact Riemann surface with local coordinates is the data

$$
\mathfrak{X}=\left(C ; x_{1}, \ldots, x_{N} ; \eta_{1}, \ldots, \eta_{N}\right)
$$

where C is a (possibly disconnected) compact Riemann surface, x_{1}, \ldots, x_{N} are distinct points of C. Each η_{i} is a local coordinate at x_{i}, i.e. a biholomorphism from a neighborhood of x_{i} to an open subset of \mathbb{C} such that $\eta_{i}\left(x_{i}\right)=0$. We assume that each component of C contains one of the marked points x_{1}, \ldots, x_{N}.

- Let \mathbb{W} be a $\mathbb{V}^{\otimes N}$-module. A conformal block (Zhu, 94; E.Frenkel\&Ben-Zvi, 03) associated to \mathfrak{X} and \mathbb{W} is a linear functional $\phi: \mathbb{W} \rightarrow \mathbb{C}$ "invariant under the action of \mathbb{V} " (more precisely: invariant under a holomorphic bundle $\mathscr{V}_{\mathfrak{X}}$ on C associated to \mathfrak{X} and \mathbb{V}). The space of all such conformal blocks is denoted by $\mathscr{T}_{\mathfrak{X}}^{*}(\mathbb{W})$ and is finite-dimensional.

Examples of conformal blocks: genus 0

- Let $z \in \mathbb{C} \backslash\{0\}$. If $\mathbb{W}=\mathbb{W}_{2} \otimes \mathbb{W}_{1} \otimes \mathbb{W}_{3}^{\prime}$ where each \mathbb{W}_{i} is a \mathbb{V}-module, \mathbb{W}_{3}^{\prime} is the contragredient (dual) of \mathbb{W}_{3}, $\mathfrak{X}=\left(\mathbb{P}^{1} ; 0, z, \infty ; \zeta, \zeta-z, 1 / \zeta\right)$ where ζ is the standard coordinate of \mathbb{C}. Then an element of $\mathscr{T}_{\mathfrak{X}}^{*}(\mathbb{W})$ are precisely intertwining operators of type $\binom{\mathbb{W}_{3}}{\mathbb{W}_{1} \mathbb{W}_{2}}$ at z, and is often viewed as a linear map

$$
\mathbb{W}_{1} \otimes \mathbb{W}_{2} \rightarrow \overline{\mathbb{W}_{3}}=\left(\mathbb{W}_{3}^{\prime}\right)^{*} \quad w_{1} \otimes w_{3} \mapsto \mathcal{Y}\left(w_{1}, z\right) w_{2}
$$

- If \mathcal{Y}_{1} is of type $\binom{\mathbb{W}_{4}}{\mathbb{W}_{1} \mathbb{W}_{5}}$ at z_{1}, \mathcal{Y}_{2} is of type $\binom{\mathbb{W}_{5}}{\mathbb{W}_{2} \mathbb{W}_{3}}$ at z_{2}, where $0<\left|z_{2}\right|<\left|z_{1}\right|$, then $\mathbb{W}_{1} \otimes \mathbb{W}_{2} \otimes \mathbb{W}_{3} \rightarrow \overline{\mathbb{W}_{4}} \quad w_{1} \otimes w_{2} \otimes w_{3} \mapsto \mathcal{Y}_{1}\left(w_{1}, z_{1}\right) \mathcal{Y}_{2}\left(w_{2}, z_{2}\right) w_{3}$ defines an element of $\mathscr{T}_{\mathfrak{Y}}^{*}\left(\mathbb{W}_{3} \otimes \mathbb{W}_{2} \otimes \mathbb{W}_{1} \otimes \mathbb{W}_{4}\right)$ where $\mathfrak{Y}=\left(\mathbb{P}^{1} ; 0, z_{2}, z_{1}, \infty ; \zeta, \zeta-z_{2}, \zeta-z_{1}, 1 / \zeta\right)$. All conformal blocks on \mathfrak{Y} can be obtained in this way. (Huang-Lepowsky 95, Huang 05, Huang-Lepowsky-Zhang 07.)

Examples of conformal blocks: genus 1

- If \mathcal{Y} is of type $\binom{\mathbb{M}}{\mathbb{W} \mathbb{M}}$ at $z \in \mathbb{C}, 0<|q|<|z|<1$, then

$$
\mathbb{W} \mapsto \mathbb{C} \quad w \mapsto \operatorname{Tr} \mathcal{Y}(w, z) q^{L(0)}
$$

is an element of $\mathscr{T}_{\mathfrak{T}}^{*}(\mathbb{W})$. Here, $\mathfrak{T}=\left(\mathbb{T}^{1} ; z ; \zeta-z\right)$ where \mathbb{T}^{1} is the torus obtained by gluing the boundaries of the annulus $\{\gamma \in \mathbb{C}:|q| \leqslant|\gamma| \leqslant 1\}$ such that $e^{\mathbf{i} \theta}$ is glued with $q e^{\mathbf{i} \theta}$.

- If \mathbb{V} is $\left(C_{2}\right.$-cofinite and) rational, all conformal blocks of \mathfrak{T} arise in this way. This property is closely related to the so-called modular invariance property. (Zhu 96, Huang 05)
- If \mathbb{V} is not rational, the above trace construction is not enough to produce all conformal blocks on \mathfrak{T}. Instead, one needs to consider pseudo-traces. (Miyamoto 04, Arike-Nagatomo 13, Fiordalisi 15, Huang 23)

Sewing-factorization theorem

- Now let $\mathfrak{X}=\left(C ; x_{1}, \ldots, x_{N} ; y^{\prime}, y^{\prime \prime} ; \eta_{1}, \ldots, \eta_{N} ; \xi, \varpi\right)$ be $(N+2)$-pointed with distinct marked points $x_{1}, \ldots, x_{N}, y^{\prime}, y^{\prime \prime}$. Assume that each component of C contains some x_{i}. Associate \mathbb{W}_{i} to x_{i}, \mathbb{M} to y^{\prime}, and the contragredient module \mathbb{M}^{\prime} to $y^{\prime \prime}$. (So the $\mathbb{V}^{\otimes(N+2)}$-module $\mathbb{W}_{1} \otimes \cdots \otimes \mathbb{W}_{N} \otimes \mathbb{M} \otimes \mathbb{M}^{\prime}$ is associated to \mathfrak{X}.)
- Let $\phi \in \mathscr{T}_{\not{X}}^{*}\left(\mathbb{W} \bullet \otimes \mathbb{M} \otimes \mathbb{M}^{\prime}\right)$ where $\mathbb{W} \bullet=\bigotimes_{i=1}^{N} \mathbb{W}_{i}$. Let $q \in \mathbb{C} \backslash\{0\}$. If q is reasonably large, we can define the sewing of ϕ to be a linear functional $\mathcal{S}_{q} \phi: \mathbb{W} \bullet \rightarrow \mathbb{C}$ by taking contraction

$$
\mathcal{S}_{q} \phi\left(w_{\bullet}\right)=\phi\left(w_{\bullet} \otimes q^{L(0)}-\otimes-\right)
$$

The sewing theorem says that $\mathcal{S}_{q} \phi$ converges absolutely and is an element of $\mathscr{T}_{\mathcal{S}_{q} \mathfrak{X}}^{*}\left(\mathbb{W}_{\bullet}\right)$ where $\mathcal{S}_{q} \mathfrak{X}$ (N-pointed) is obtained by removing small discs centered at $y^{\prime}, y^{\prime \prime}$ and gluing the remaining annuli via the rule

$$
p^{\prime} \text { is identified with } p^{\prime \prime} \quad \Leftrightarrow \quad \xi\left(y^{\prime}\right) \varpi\left(y^{\prime \prime}\right)=q^{\prime}
$$

Sewing-factorization theorem

- Assume that \mathbb{V} is C_{2}-cofinite and rational. A version of factorization theorem (as the converse of sewing theorem) says that every element of $\mathscr{T}_{\mathcal{S}_{q} \mathfrak{E}}^{*}\left(\mathbb{W}_{\bullet}\right)$ arises from $\mathscr{T}_{\mathfrak{x}}^{*}\left(\mathbb{W} \bullet \otimes \mathbb{M} \otimes \mathbb{M}^{\prime}\right)$ via sewing.

Theorem (Sewing-factorization theorem, rational version)
Let \mathbb{V} be (C_{2}-cofinite and) rational. Let \mathcal{E} be a (necessarily finite) set of representatives of equivalence classes of simple \mathbb{V}-modules. Then

$$
\begin{gathered}
\mathfrak{S}_{q}: \oplus_{\mathbb{M} \in \mathcal{E}} \mathscr{T}_{\mathfrak{X}}^{*}\left(\mathbb{W} \bullet \otimes \mathbb{M} \otimes \mathbb{M}^{\prime}\right) \rightarrow \mathscr{T}_{\mathcal{S}_{q}}^{*}\left(\mathbb{W}_{\bullet}\right) \\
\oplus_{\mathbb{M}} \phi_{\mathbb{M}} \mapsto \sum_{\mathbb{M}} \mathcal{S}_{q} \phi_{\mathbb{M}}
\end{gathered}
$$

is well defined (i.e. the RHS converges absolutely to an element of $\left.\mathscr{T}_{\mathcal{S}_{q} \mathfrak{X}}^{*}\left(\mathbb{W}_{\bullet}\right)\right)$ and is a linear isomorphism.

Sewing-factorization theorem

This final version of rational sewing-factorization theorem was proved by Damiolini-Gibney-Tarasca in 2022 (for the part that the domain and the codomain of \mathfrak{S}_{q} have the same dimension) and G. in 2023 (for the part that \mathfrak{S}_{q} is well-defined and injective). But the proofs of its preliminary versions took more than 30 years and have been one of the central problems in the history of VOA theory:

- \mathbb{V} is affine VOA of positive integer level: Tsuchiya-Ueno-Yamada (89), for sufficiently small q.
- Arbitrary (C_{2}-cofinite and) rational \mathbb{V}, self-sewing a 3 -pointed sphere: Zhu (96). This is very close to the modular invariace property.
- Arbitrary rational \mathbb{V}, self-sewing $a \geqslant 4$-pointed sphere: Huang (05). This result is crucial to the solution of Verlinde conjecture and the proof of the rigidity and modularity of the category $\operatorname{Mod}(\mathbb{V})$ of V-modules.

Sewing-factorization theorem

- Arbitrary rational \mathbb{V}, sewing two (or more) spheres to get a sphere: Huang-Lepowsky (95), Huang (05). This is crucial to the construction of the braided tensor category $\operatorname{Mod}(\mathbb{V})$, especially in the proof of associativity and the pentagon and hexagon axioms. Also, in this case, Nagatomo-Tsuchiya (05) proved independently that the domain and the codomain of \mathfrak{S}_{q} have the same dimension.
- Some relevant results: $\operatorname{dim} \mathscr{T}_{\mathscr{X}}^{*}\left(\mathbb{W}_{\bullet}\right)$ is finite (Abe-Nagatomo 03) and depends only on the topology (but not the complex structure) of \mathfrak{X} (Damiolini-Gibney-Tarasca 22). Here, \mathbb{V} is not assumed rational.

Irrational sewing-factorization

- From now on, we do not assume that our C_{2}-cofinite $\mathrm{VOA} \mathbb{V}$ is rational. Then only a half of the previous sewing-factorization theorem holds: \mathfrak{S}_{q} is well-defined and injective. It is not surjective, above all because it is not enough to consider sewing along simple \mathbb{V}-modules \mathbb{M} and \mathbb{M}^{\prime}.
- Now we drop the assumption that \mathbb{M} is simple, and ask whether the factorization property holds, namely, whether every element of $\mathscr{T}_{\mathcal{S}_{q}}^{*}\left(\mathbb{W}_{\bullet}\right)$ equals $\mathcal{S}_{q} \phi$ for some $\phi \in \mathscr{T}_{\mathfrak{X}}^{*}\left(\mathbb{W} \bullet \otimes \mathbb{M} \otimes \mathbb{M}^{\prime}\right)$ and some \mathbb{V}-module \mathbb{M}.
- Surprisingly, the answer depends: Yes if sewing two spheres and get a new sphere (Huang-Lepowsky-Zhang's tensor product theory 07). No if one is sewing a sphere to get a torus (the pseudo-trace theory).

Irrational sewing-factorization

- Key observation: whether the factorization property holds or not depends not on the genus, but on the geometry of sewing.
- In 2021 I proved (arXiv:2111.04662) that there is a 1-1 correspondece between (a) conformal blocks associated to permutation-twisted $\mathbb{V}^{\otimes n}$-modules and a pointed sphere with local coordinates \mathfrak{P} (b) conformal blocks associated to (untwisted) \mathbb{V}-modules and a (possibly disconnected) n-fold branched covering \mathfrak{X} of \mathfrak{P}.
- Moreover, I showed that at least when \mathbb{V} is rational, the sewing-factorization in (a) corresponds to that in (b). From the proof, it is clear that even if \mathbb{V} is irrational, one can translate the sewing-factorization in (a) (i.e. the permutation-twisted Huang-Lepowsky-Zhang's theory) to (b) to obtain an irrational sewing-factorization theorem for certain higher genus case.

Irrational sewing-factorization

- The permutation twisted/untwisted correspondence translates genus-0 sewing-factorization theorem to higher genus ones for disjoint sewing:

Self-sewing and disjoint sewing

Figure 0.1.1 Self-sewing and disjoint sewing

- Since the factorization property does not hold for self-sewing, we shall only consider disjoint sewing.

Conformal blocks

But we shall consider disjoint sewing along several pairs of points: Fix

$$
\mathfrak{X}=\left(y_{1}^{\prime}, \ldots, y_{M}^{\prime}\left|C_{1}\right| x_{1}, \ldots, x_{N}\right) \quad \mathfrak{Y}=\left(y_{1}^{\prime \prime}, \ldots, y_{M}^{\prime \prime}\left|C_{2}\right| \varkappa_{1}, \ldots, \varkappa_{K}\right)
$$

\mathfrak{X} is viewed as having N-incoming points and M outgoing points, and \mathfrak{Y} similarly. Choose local coordinates $\eta_{i}, \mu_{k}, \xi_{j}, \varpi_{j}$ at each $x_{i}, \varkappa_{k}, y_{j}^{\prime}, y_{j}^{\prime \prime}$. Then we can sew \mathfrak{X} and \mathfrak{Y} along the M pairs of points $\left(y_{j}^{\prime}, y_{j}^{\prime \prime}\right)$ $(1 \leqslant j \leqslant M)$ using reasonably large parameters $q_{1}, \ldots, q_{M} \neq 0$ and get

$$
\mathfrak{X} \# \#_{\bullet} \mathfrak{Y}=\left(\mathcal{C}_{q_{\bullet}} \mid x_{1}, \ldots, x_{N}, \varkappa_{1}, \ldots, \varkappa_{K}\right)
$$

with local coordinates $\eta_{1}, \ldots, \eta_{N}, \mu_{1}, \ldots, \mu_{K}$.

Dual fusion products

$$
\mathfrak{X}=\left(y_{1}^{\prime}, \ldots, y_{M}^{\prime}\left|C_{1}\right| x_{1}, \ldots, x_{N}\right) \quad \mathfrak{Y}=\left(y_{1}^{\prime \prime}, \ldots, y_{M}^{\prime \prime}\left|C_{2}\right| \varkappa_{1}, \ldots, \varkappa_{K}\right)
$$

Associate a $\mathbb{V} \otimes N^{-}$-module \mathbb{W} to the incoming points x_{\bullet}. of \mathfrak{X}. Note that if a $\mathbb{V}^{\otimes M}$-module \mathbb{X} is associated to y_{\star}^{\prime}, then we can define the space of conformal blocks $\mathscr{T}_{\mathfrak{X}}^{*}(\mathbb{W} \otimes \mathbb{X})$ in the same way as before.

Theorem (G.-Zhang 23)
There is a unique (up to equivalence) pair $\left(\square_{\mathfrak{X}}(\mathbb{W}), \beth\right)$ where $\square_{\mathfrak{X}}(\mathbb{W})$ is a $\mathbb{V}^{\otimes M}$-module and $\beth \in \mathscr{T}_{\mathfrak{X}}^{*}\left(\mathbb{W} \otimes \square_{\mathfrak{x}}(\mathbb{W})\right)$ satisfying the universal property: For each $\mathbb{V}^{\otimes M}$-module \mathbb{X} and $\Gamma \in \mathscr{T}_{\mathfrak{X}}^{*}(\mathbb{W} \otimes \mathbb{X})$ there is a unique morphism $T: \mathbb{X} \rightarrow \square_{\mathfrak{X}}(\mathbb{W})$ such that $\Gamma=\beth \circ(\mathbf{1} \otimes T)$. In particular,

$$
\operatorname{dim} \operatorname{Hom}_{\mathbb{V} \otimes M}\left(\mathbb{X}, \triangle_{\mathfrak{X}}(\mathbb{W})\right)=\operatorname{dim} \mathscr{T}_{\mathfrak{X}}^{*}(\mathbb{W} \otimes \mathbb{X})
$$

Dual fusion products

- $\left(\square_{\mathfrak{X}}(\mathbb{W}), \beth\right)$, or simply $\square_{\mathfrak{X}}(\mathbb{W})$, is called the dual fusion product of \mathbb{W} along \mathfrak{X}. The previous theorem actually holds in a more general setting without assuming \mathbb{V} to be C_{2}-cofinite.
- Assuming that \mathbb{V} is C_{2}-cofinite, if $\mathfrak{P}=\left(\infty\left|\mathbb{P}^{1}\right| 0, z\right)$ and $\mathbb{W}=\mathbb{W}_{1} \otimes \mathbb{W}_{2}$ where \mathbb{W}_{i} is a \mathbb{V}-module, our $\triangle_{\mathfrak{P}}(\mathbb{W})$ agrees with Huang-Lepowsky-Zhang's $P(z)$-dual fusion product $\mathbb{W}_{1} \nabla_{P(z)} \mathbb{W}_{2}$. If \mathfrak{X} is $\mathfrak{Q}=\left(0, \infty\left|\mathbb{P}^{1}\right| z\right)$, our $\nabla_{\mathfrak{Q}}(\mathbb{W})$ agrees with Li's regular representation of \mathbb{W}. If \mathbb{V} is not C_{2}-cofinite, there is a small difference.
- Our definition of $\Delta_{\mathfrak{X}}(\mathbb{W})$ as a vector space is due to Liang Kong and Hao Zheng. Elements of $\nabla_{\mathfrak{x}}(\mathbb{W})$ are called partial conformal blocks. Our construction and verification of the $\mathbb{V} \otimes M$-module structure on $\nabla_{\mathfrak{x}}(\mathbb{W})$ relies on a method called the propagation of partial conformal blocks.

Irrational sewing-factorization theorem

$$
\mathfrak{X}=\left(y_{1}^{\prime}, \ldots, y_{M}^{\prime}\left|C_{1}\right| x_{1}, \ldots, x_{N}\right) \quad \mathfrak{Y}=\left(y_{1}^{\prime \prime}, \ldots, y_{M}^{\prime \prime}\left|C_{2}\right| \varkappa_{1}, \ldots, \varkappa_{K}\right)
$$

Let \mathbb{W} and \mathbb{M} be modules of $\mathbb{V}^{\otimes M}$ and $\mathbb{V}^{\otimes K}$. Let $\left(\nabla_{\mathfrak{X}}(\mathbb{W}), \beth\right)$ and $\left.\left(\nabla_{\mathfrak{Y}}(\mathbb{M}),\right\rceil\right)$ be dual fusion products. Let $\boxtimes_{\mathfrak{Y}}(\mathbb{M})$ be the contragredient of $\nabla_{\mathfrak{V}}(\mathbb{M})$, called the fusion product of \mathbb{M}. Let $L_{i}(n)$ be the Virasoro operator of the i-th tensor component.

Theorem (G.-Zhang, 24)

Let \mathbb{V} be C_{2}-cofinite. There is a well-defined linear isomorphism

$$
\begin{aligned}
& \Psi_{q_{\bullet}}: \operatorname{Hom}_{\mathbb{V} \otimes M}\left(\boxtimes_{\mathfrak{Y}}(\mathbb{M}), \boxtimes_{\mathfrak{X}}(\mathbb{W})\right) \rightarrow \mathscr{T}_{\mathfrak{X} \#_{\bullet} \mathfrak{Y}}^{*}(\mathbb{W} \otimes \mathbb{M}) \\
&\left.T \mapsto \mathcal{S}_{q_{\bullet}}((\beth \circ T) \otimes\rceil\right)
\end{aligned}
$$

where
$\left.\left.\mathcal{S}_{q \bullet}((\beth \circ T) \otimes\rceil\right)(w \otimes m)=\beth(w \otimes T(-)) \cdot\right\rceil\left(m \otimes q_{1}^{L_{1}(0)} \cdots q_{M}^{L_{M}(0)}-\right)$

Irrational sewing-factorization theorem

$$
\mathfrak{X}=\left(y_{1}^{\prime}, \ldots, y_{M}^{\prime}\left|C_{1}\right| x_{1}, \ldots, x_{N}\right) \quad \mathfrak{Y}=\left(y_{1}^{\prime \prime}, \ldots, y_{M}^{\prime \prime}\left|C_{2}\right| \varkappa_{1}, \ldots, \varkappa_{K}\right)
$$

Let \mathbb{W} and \mathbb{M} be modules of $\mathbb{V}^{\otimes M}$ and $\mathbb{V}^{\otimes K}$. Let $(~ \triangle \mathfrak{X}(\mathbb{W}), \mathbb{J})$ and $\left.\left(\square_{\mathfrak{Y}}(\mathbb{M}),\right\rceil\right)$ be dual fusion products. Let $\boxtimes_{\mathfrak{Y}}(\mathbb{M})$ be the contragredient $\mathbb{V}^{\otimes M}$-module of $\nabla_{\mathfrak{Y}}(\mathbb{M})$, called the fusion product of \mathbb{M}. Equivalent to the previous theorem, we have:

Corollary (G.-Zhang, 24)

Let \mathbb{V} be C_{2}-cofinite. There is a well-defined linear isomorphism

$$
\begin{gathered}
\Psi_{q_{\bullet}}: \mathscr{T}_{\mathfrak{X}}^{*}\left(\mathbb{W} \otimes \boxtimes_{\mathfrak{Y}}(\mathbb{M})\right) \rightarrow \mathscr{T}_{\mathfrak{X} \# q_{\bullet} \mathfrak{Y}}^{*}(\mathbb{W} \otimes \mathbb{M}) \\
\psi \mapsto \mathcal{S}_{q_{\bullet}}(\psi \otimes T)
\end{gathered}
$$

where $\left.\left.\mathcal{S}_{q_{\bullet}}(\psi \otimes\rceil\right)(w \otimes m)=\psi(w \otimes-) \cdot\right\rceil\left(m \otimes q_{1}^{L_{1}(0)} \cdots q_{M}^{L_{M}(0)}-\right)$

Genus 1 sewing-factorization theorem

Let \mathbb{W} be a \mathbb{V}-module. Recall that $\mathfrak{Q}=\left(0, \infty\left|\mathbb{P}^{1}\right| z\right)$ and the $\mathbb{V}^{\otimes 2}$-module $\nabla_{\mathfrak{Q}}(\mathbb{W})$ is Li's regular representation. $\boxtimes_{\mathfrak{Q}}(\mathbb{W})$ is its contragredient.

Corollary

Let $0<|q|<|z|<1, \mathfrak{T}=\left(\mathbb{T}^{1} \mid z\right)$ where \mathbb{T}^{1} is the torus obtained by gluing the boundaries of the annulus $\{\gamma \in \mathbb{C}:|q| \leqslant|\gamma| \leqslant 1\}$ such that $e^{\mathrm{i} \theta}$ is glued with $q e^{\mathrm{i} \theta}$. The local coordinate at z is $\zeta-z$ where ζ is the standard coordinate of \mathbb{C}. Then we have isomorphisms

$$
\operatorname{Hom}_{\mathbb{V} \otimes 2}\left(\boxtimes_{\mathfrak{Q}}(\mathbb{W}), \square_{\mathfrak{Q}}(\mathbb{V})\right) \simeq \operatorname{Hom}_{\mathbb{V} \otimes 2}\left(\boxtimes_{\mathfrak{Q}}(\mathbb{V}), \square_{\mathfrak{Q}}(\mathbb{W})\right) \simeq \mathscr{T}_{\mathfrak{T}}^{*}(\mathbb{W})
$$

defined by sewing.
Question: Prove that the above theorem is equivalent to the pseudo-trace version of modular invariance theorem by Miyamoto, Arike-Nagatomo, and Huang. This will give a geometric interpretation of pseudo-traces.

