Unitarity in conformal blocks and diagonal
full-boundary conformal field theory

Bin Gui
Tsinghua University

July 2023, Yasu Festa, Tokyo
Based on arXiv:2306.11856 and a story behind it



-
Unitary VOAs

@ Unitary vertex operator algebras (VOAs) are certain natural structures
appearing in unitary 2d conformmal field theory (CFT).

@ Roughly speaking, a unitary VOA is a collection of field operators
©(z) “acting on” an inner product vector space V. Each
©(2) = Xe7 Pnz "1 is holomorphic with respect to z € C*. The
field operators satisfy a “locality” condition. There is a 1-1
correspondence between ¢ and v = lim,_,g ¢(2){2 where Q is the
vacuum vector. So we write p(z) as Y (v,2) =, Y (v),z7 "L,



| always assume that V is “strongly-rational” (which implies that
Ve Irr(V), Irr(V) is finite, all V-modules are semi-simple, and Mod(V) is
a modular tensor category (Huang 08)). | assume that V is unitary, and
that each irreducible V-module admits a (necessarily unique up to
R~ o-multiplication) unitary structure.
o If (W,Yyy) is a unitary V-module, then the complex conjugate
W < W* admits a unitary V-module structure (W, Y57), called the
dual/contragredient module. We have a canonical antiunitary map
C:W—W,wew={|w)ye W*
@ There is a canonical unitary equivalence V ~ V. Identify V with V.
Then C: V — V is the PCT operator (fixing 2) which is closely
related to the modular operator in Tomita-Takesaki theory.



Conformal blocks and unitarity

e Conformal blocks are “chiral halves” of the correlation functions of
full (and boundary) CFT. (Or rather, correlation functions are
“doubles” of conformal blocks.) They are also crucial to the
construction of Mod(V) and the full-boundary CFTs extending V.

@ A hard question is to define natural inner products on the spaces of
conformal blocks. Solving this unitarity problem will imply the
unitarity of the MTC Mod(V).

@ The goal of this talk is to explain the geometric intuition behind the
unitary structures of conformal blocks. | will argue that the correct
way to understand this geometric picture of unitarity is through a
particular model of full-boundary CFT called diagonal CFT.
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Full-boundary (i.e. open-closed) CFT

@ We have a fixed state space X associated to closed strings S', state
space A associated to open strings S1= {el € S1: 0 <t < 7}, and
X@n A®" associated to St S S L L S

@ In general, A is a V-module and X is a V&® V-module. More precisely,
A is a non-local extension of V (a Frobenius algebra in Mod(V)), and
X is the center Z(A), which is a commutative Frobenius algebra in
Mod(V) X Mod(V)™V. (04-15. AQFT: Bischoff, Carpi, Kawahigashi,
Longo, Rehren. VOA: Huang, Kong. TQFT: Fjelstad, Fuchs, Runkel,
Schweigert.)

@ Diagonal CFT: A=V and X = (—B W W. (Note that
Welrr (V)
V&V < X.) Note that there is a canonical isomorphism of unitary

V ® V-modules X ~ X.



Worldsheet X and correlation function &4

Let X = (y%|Clxe) = (y1,--.,ym|C|z1,...,2zN) where C is a (possibly
disconnected) compact Riemann surface and z,.,yx are M + N distinct
marked points on C'. For each z;, choose a local coordinate 7;, i.e. an
injective holomorphic map from a neighborhood of z; to C such that
ni(z;) = 0. And choose p; for y;.
o It would be helpful to regard X as a compact Riemann surface > with
M + N boundary strings by removing each 7; *(D;) and uj_l(}D)l)
where Dy = {|z| < 1}. The circles around x, resp. yx are incoming

resp. outgoing closed strings.
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For each X we have (bounded) linear functional ®y : X®M @ X®N . C
(unique up to R-o-multiplication), called the correlation function.



Sewing property for correlation functions

If X = (yx|Clxs) and X’ = (2/,|C’'|tw) have M + N and N + L marked
points and local coordinated fiy, 7, and &, g, we can sew X and X’ to
get X#X' = (yx|C#C'|tey) with M + L marked points.

@ Sewing procedure: Remove small discs U; around x; and U/ around z for all 3,

and glue the remaining part by identifying p near U; and p’ near U} whenever

ni(p) = 1/& ().

g Y /e - 2@ e

(= " S
Sewing property: ®xuy : X®M @ X®L — C,a ® 8 —7? equals the
contraction ©x#Px (a® B)= Y, Px(a® e,)Px (€, ® B) where {e,} is a
“homogeneous” orthnormal basis of X®V. (Note that the canonical inner

product on X = @“\Neh-r(V) W ® W is given by that of W.)
arXiv:2306.11856 7/26
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Diagonal full CFT and conformal blocks

Recall X = PWRW and X = (yx|Clze) = (11, .-, ym|Clzy ..., xN).

@ The restriction of 5 : X®M @ X®N _, C to

(-@_W(L)le) ® (g%lw’) ® (éMJ) ® (é)lw’z) is 2@®¢* where

m n

0, (@Mj> ® (@WZ) — C are linear functionals called
j=1 i=1

conformal blocks (CB) associated to X and My, W,.

@ The rigorous definition of conformal blocks is due to Zhu (94) and
E.Frenkel&Ben-Zvi (04) and does not distinguish between incoming
and outgoing marked points.

° Y (M - - @My AUIR - @WN) = P(m1 @ - @my @ w1 @uN)
is called the conjugate CB of ¢. It is a CB associated to the complex
conjugate X* = (y;|C*|z¥) of X.




Correlation functions are CB on doubles of worldsheets

Take worldsheet X = ’;Aq‘ w‘ for example.

@ It is better to view the (restricted) correlation function
Dy = Z%w Y®1Y* as a CB for My @ My @ Wi ® M; @ My ® Wy and
the “double” ®(X) = X 1 X*. (So everything could be understood in terms

of CB!)
M W,
% m
£ L~ W,

I
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So what's good about CB?
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Important properties about CB

@ The decomposition ¢y = ZW/) @ ®¥* can be such that ¢, vary
holomorphically w.r.t. the moduli of X. It is realized canonically by
the Virasoro operators. (E.g. KZ equation if X has genus 0.)

@ The space CBy x(Mx ® W,) of conformal blocks has finite dimension
(called (higher genus) fusion rule) which is independent of the moduli
(i.e. the complex structure and the locations of marked points) of X.

@ Sewing theorem: We have a linear isomorphism
S: @ CBx(Wi@Wy®M QM) ®CBy(M; ® My ® Ws)

M ,Ma€lrr(V)
— CBxux (W1 ® Wy @ W3)
defined by contraction ¢ ® w2 — @1#w2. G is called the sewing
isomorphism.

My n W
W W, : W
(oD @
Wy Mo Mo , \A/LL

¥ * X# X’



CB unitarity < rigorous construction of diagonal full CFT

CB unitarity conjecture: There exist inner products on spaces of CB
satisfying several conditions including the (projective) unitarity of sewing
and moduli-variation. More precisely:

@ The sewing isomorphism & is (projectively) unitary.

@ The variation of CB w.r.t. the moduli of X does not change the inner
product of C' By (up to -R-) .
This conjecture should be formulated in the setting of diagonal CFT:

Physics suggests that we define &y = Z ©® " (where ONB

€ONB(CBy)
denotes orthonormal basis under this inner product). Then

@ Unitarity of sewing <= ®x #Px, = Py, 4x, (up to R_g) .
@ Unitarity of moduli-variation <= Varying ®x w.r.t. the moduli of X
by varying CB still gives a unique (up to -R-() correlation function.
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Worldsheets and their doubles in full-boundary CFT

Let ©(X) = (y1,...,ym|C, *|x1,...,zN) where yx, xo are distinct
incoming and outgoing marked points, equipped with local coordinates
lix, 7. The involution # : C' — C'is an anti-biholomorphism satisfying:

@ The (possibly empty) physical boundary E = {p € C : p* = p} is a real
curve giving C\E = Cy 1 C_ where *: C, — C_ is an
anti-biholomorphism of open subsets of C.

o = preserves the sets {yx} and {z.}. So z} = z;x, yi = y;+ for some
1<i*< N, 1<j*< M.

o 7;x equals 0} where 1/(p) = 1;(p*). Similarly, pij+ = p.

Let X be C, u FE together with all the marked points on it and their local
coordinates. Then X is viewed as a worldsheet of full-boundary CFT.
D(X) is the double of X. F is viewed as the lines swept by the boundaries
of open strings.
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Correlation functions on X are CB on the double D (X)

D(X) = XH4X* =
((chJ cloged
o H 0 « O\&
X m N m
MRS 7' M N “
& open epen

The state spaces are X = @ W ® W for x1,y; and V for x5, 9o. Restrict
X to W; @ W, for 21 and M; ® M for 3;. Then the correlation function
P : M QM @VRW; @W; ®V — Cis a CB for D(X).
@ The directions (in or out) of open strings do not affect ®y.
e Changing an incoming closed string (say x1) to outgoing one results
in multiplying the restricted ®x by the entry Sy w, > 0 of the
modular S-matrix. And 1/Sy v, if changing y; from out to in.



Examples

Let ¢ : z € P! > z € P! be the standard coordinate of C. Let W € Irr(V).
o Let D(P) = (i|PL, |0, 00) with local coordinates w = =D ¢ 1/¢,

C+l
and 2* = 1/z. Then @w* = @, (* = 1/(, (1/¢)* = (. So
W /
_ _ o shrmk JJ
Q(m) - and m strmgs :w/ The
W

correlation function ®g : VOWRW — Cis given by
P (v @ w1 @ W) = (Y (2Loe iy, i)wy |we)

—_——W

e D(A) = (P!, %|0,0) = [ﬁ*j with local coordinates ¢, 1/¢ and

—

* = 1/z is a thin annulus around the physical boundary S!. Then
Py : WR®W — C sends w; @ w3 to {wi|ws).



Inner products on spaces of CB

@j is the double of a full CFT worldsheet X. Recall
qp

2,*

that we want <I> = (—B @ ©® p*. Glue
M1, Ma€elrr(V) peONB(CBx (W1 @W2@M; ®Ma))
the four red circles with the blue circles of ©(2() Lt ©(2() where

~ OM W= W,
[ ﬁ . We get D(X)#D(A) = D(X) =
o B .

(where X is almost equal to X except that its outgoing strings (red) are
turned to physical boundaries (orange)). This implies the formula for @5,
which we now write in an amusing way:



w, PR

\ﬁ . N W= W,
= L and D(X)#D(A) =D (X) = . Define
a0 = o Ww

the fusion product

(%)

Xz (W1 ® Wa) = Dy, 11, M1 ® Mz ® CBx(W1 ® Wy @ My ® My)*

Then Tx : W1 @ Wo ® Xlx (W1 ® Wy) — C sending

w1 @ we ®m1 ®ma® ¢ to p(w; ® wa ®mi ®msy) is a CB associated to
X and can be viewed as a bounded linear map

Vx : Wi @ Wy — H(Xx (W1 ® W2)) where H(---) is the Hilbert space
completion of ---. Defining inner products on C By amounts to defining
unitary structures on the V® V-module [Xlx (W1 ® W5), which must
satisfy (Vx (w1 @ wa)|Vx(w] ® wh)) = Pz @uw2 ® wi @ wh).

@ What if there is another obvious way to compute ®37 Then this will tell us how to

define the unitary structure on [Xlx (W1 ® Ws)! Let's see an example:



Inner products on spaces of CB for trinions

o Let 0 < g < 1. Take D(P,) = (i P!, %|0, c0) with local coordinates
g lw = ;(<+1 ¢, 1/¢, and z* = 1/z. Then &g : VOWQRW — C
satisfies Py, (v @ w @ w') = Yyy(2loe Frgloy Hwlw’).

@ The sewing of two pieces of @(‘Bq) along the two i is D(R):

3 .lfwz —~
mﬂp@ Q (B = O 9(R)
W\ 'r\W’_

So @5 : W1 @ Wo ® Wi ® Wy — C equals the constraction

[ JR— 1 -
q)s_pq#q)gpq = (I)gpq(— Rwi ® w/l) . (I)mq(— QR wy ® w’2)
@ Choose arbitrary inner products on CB. By the sewing theorem,
there is a (bounded) A € Endy(Xln(W; ® Ws)) satisfying

{ p— \ —
(A~ V(w1 ®@ we)| Y (wy @ wy)) = Pop, (—~ Qw1 @w)) - P, (~ @ w2 @w)
arXiv:2306.11856 17 /26



ng Wl\s' 'K\"lz ~
oo = Y
Wl). .RW

[ J— 1 -
(A~ V(w1 @ wa) | Vr(w) @ wy)) = Py (— @wi Qwi) - Pop, (— @wa @wp)

o A€ Endy(Xn(W; ® Wa)) is invertible by the rigidity of Mod(V)
(Huang 08). It is not hard to show that A* = A.

@ If one can prove A > 0, then one can choose the unique unitary
structure on the module Xz (W1 ® Ws) such that A = 1. This gives
the desired inner products on spaces of CB for trinions. Since we
want the gluing isomorphism & to be projectively unitary, we can use
this to define the desired inner products on spaces of CB for all X.



W s W, W| VA '1/\"/2 _
o e o o = I
T < N <SR

[ I | -
(A V(w1 @ wa)[Yr(w] @ wy)) = P, (— Qw1 @) - Py, (— @w2 @wh)

@ That A > 0 is equivalent to the geometric positivity property:

[ 1
D B, (— @i @Wi;) - O, (— ®wa,; @) =0
ij=1
(
dense subspace of H(Xx(W; ® Wy)).)

@ When Wy or Wy is a simple current so that [Xlgy (W1 ® W) is
irreducible and hence A € R, the geometric positivity is easy to prove.
(Proof: If not, then A € R<g, so the above contraction is < 0 for all g.
But one computes that when ¢ — 0, it converges to a number > 0 .)

s (wl_j ®’u,'2,,,j) form a

See the arXiv paper for details of the proof.



W s W W, s .1/\"/1 »
o (o = L o
w2 < W, w, N .\Wx

n { ]
Geo. Pos.: Z CIJ%(—@wl,i@W,j) ~<I>ng(—®w27i®W7j) =0
ij=1

@ When W1, Wy are not simple currents, the above method fails.

@ There is a version of algebraic positivity (G. 19) defined by certain
brading/fusion matrices for intertwining operators (conformal blocks
associated to (o0|P!|0, 2) with local coordinates 1/¢,(,¢ — z). This
positivity was proved for many well known examples, e.g. all WZW
models (G., Tener 19), using methods from subfactors.

@ It was proved in the arXiv paper that the algebraic and the geometric
positivities are equivalent.

@ Subfactor methods do not apply directly to many simple current
examples (e.g. cyclic orbifolds of a unitary holomorphic VOA). So
these two methods complement each other.



Conjectures

@ Give a rigorous construction of unitary diagonal full-boundary CFT.

The CB unitarity conjecture will be its consequence.
clesed closed

« O\&
Take X = m for example. Recall X = W@ W.

L ofen open

Recall V~V and X~ X. Then ¢ : X®VRX®V — C gives a
bounded linear map between the Hilbert space completions

Ty : H(X)@H(V) - H(X) ® H(V) whose source and target are resp.
the Hilbert space for the incoming and outgoing strings.

o Conjecture: T is completely positive in the following sense:
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Complete positivity

@ Let M be a von Neumann algebra acting on a Hilbert space H with
cyclic separating vector €. Let J be the modular operator. Then the
natural cone H* = {zJxQ : x € H} is a convex cone and is self dual
in the sense that for each £ € H we have (£|H?) = 0 iff £ € HE.
(Connes 74, Haagerup 75. Cf. Takesaki's book 1X.1)

e For (M, H;, ;) where i = 1,2, we understand H; ® Hz as
(M1 ®@ Ma, H1 @ Ha, 1 @ Q2).

@ The VN algebra of the Hilbert space M,,(C) is the left multiplication
matrices. €2 is 1.

o We say that a bounded linear T': H1 — Hs is positive if T’HE c ’Hg
We say that 7" is completely positive if
T®1:H1 & M,(C) - He ® M,(C) is positive for all n.



Let A be the conformal net for V defined by

A(I) = VN{Y (v, f) :v eV, f e CP(I)} where I = S! is an open interval
(Carpi-Kawahigashi-Longo-Weiner 18).

Take ST =St~ {a+bi:b>0}. Recall X = Py WE® W and hence
H(X) = @y HW) QH(W).

o Take (A(S1),H(V),Q) and (P B(H(W)) ® 1, H(X), Q). Here
Qe = (—BW SV,W Zl qLOewﬂ- ®ew,; where 0 < ¢ < 1 and {ewﬂ‘} is a
homogeneous ONB of W. (The standard cone is independent of the choice of
q.) We conjecture the complete positivity of T%.

Dol < m Aoull “m
()

neV



Let A be the conformal net for V defined by
A(I) = VN{Y (v, f) : v eV, f e CP(I)} where I = S! is an open interval
(Carpi-Kawahigashi-Longo-Weiner 18). H(X) = @y H(W) @ H(W).

o Take (A(SL),H(V),Q) and (D B(H(W)) ® 1, H(X), Q). Here
Q= By Svw X, qLOewyi ®ew,; where 0 < ¢ <1 and {ey} is a
homogeneous ONB of W. We conjecture the complete positivity of
Tx.

Why this conjecture?

o The closed cone (H(X) ® M, (C))" is generated by (i.e. has dense

subset Z.-spanned by) >3, w; @ W; ® e;,; where W € Irr(V) and

“~

~ X X .
wi,w;j € W. Take R = m( . Then the complete positivity of
T : H(X) — H(X) is equivalent to the geometric positivity

n { ]
> P, (— @wii @Wi;) - o, (— ® wa; ®TW5) > 0.
i,j=1



Why this conjecture?

° 7—[(X)u is generated by w ® w where w € W. Take £ = v ® U where
v €V for simplicity.
Fix v € S1. Take ®(X) = (o0|PL, #|7,7) with coordinates

<X
1/¢,¢ = 7,¢ —7 and 2* = Z. Then X = m . Then Ty
£

\
defined on H(X) satisfies

Tj{(f) = Y(U,W)Y(@’W)Q = Y(’l},’y)Y(U,’y)Q
understood in terms of analytic continuation. By
Bisognano-Wichmann property, we have

which has formal similarity with 2J2 in the definition of (V)"



Happy birthday, Yasu!



