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Notations

N “ t0, 1, 2, . . . u, Z` “ t1, 2, 3, . . . u.
Unless otherwise stated, an unbounded operator T : H Ñ K (where H,K are

Hilbert spaces) denotes a linear map from a dense linear subspace DpT q Ă H to
H. DpT q is called the domain of T . We let T ˚ be the adjoint of T . In practice, we
are also interested in T ˚ defined on a dense subspace of its domain DpT ˚q. We
call its restriction a formal adjoint of T and denote it by T :.

Given a Hilbert space H, its inner product is denoted by pξ, ηq P H2 ÞÑ xξ|ηy.
We assume that it is linear on the first variable and antilinear on the second one.
(Namely, we are following mathematician’s convention.)

Whenever we write xξ, ηy, we understand that it is linear on both variables.
E.g. x¨, ¨y denotes the pairing between a vector space and its dual space.

If H,K are Hilbert spaces, we let

HompH,Kq “ tBounded linear maps H Ñ Hu EndpHq “ HompH,Hq (0.1)

If X is a set, the n-fold configuration space ConfnpXq is

ConfnpXq “ tpx1, . . . , xnq P X : xi ‰ xj if i ‰ ju (0.2)

Definition 0.1. A map of complex vector spaces T : V Ñ V 1 is called antilinear
or conjugate linear if T paξ ` bηq “ aTξ ` bTη for all ξ, η P V and a, b P C. If V
and V 1 are (complex) inner product spaces, we say that T is antiunitary if it is am
antiliear surjective and satisfies }Tξ} “ }ξ} for all ξ P V , equivalently,

xTξ|Tηy “ xξ|ηy ” xη|ξy (0.3)

for all ξ, η P V .
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1 Introduction: PCT symmetry, Bisognano-
Wichmann, Tomita-Takesaki

Algebraic quantum field theory (AQFT) is a mathematically rigorous ap-
proach to QFT using the language of functional analysis and operator algebras.
The main subject of this course is 2d algebraic conformal field theory (ACFT),
namely, 2d CFT in the framework of AQFT.

1.1

Let d P Z`. We first sketch the general picture of an p1 ` dq dimensional
Poincaré invariant QFT in the spirit of Wightman axioms. We consider Bosonic
theory for simplicity.

We let R1,d be the p1`dq-dimensional Minkowski space. So it is R1`d but with
metric tensor

ds2 “ pdx0
q
2

´ pdx1
q
2

´ ¨ ¨ ¨ ´ pdxd
q
2 (1.1)

Here x0 denotes the time coordinate, and x1, . . . , xd denote the spatial coordinates.
The (restricted) Poincaré group is

P`
p1, dq “ R1,d

¸ SO`
p1, dq

Here, R1,d acts by translation on R1,d. SO`
p1, dq is the (restricted) Lorentz group,

the identity component of the (full) Lorentz group Op1, dq whose elements are
invertible linear maps on R1,d preserving the Minkowski metric.

Remark 1.1. Any g P Op1, dq must have determinent ˘1. One can show that
SO`p1, dq is precisely the elements g P Op1, dq such that det g “ 1, and that g

:::::
does

:::
not

:::::::::
change

::::
the

::::::::::
direction

::
of

::::::
time (i.e., if v “ pv0, . . . , vdq P R1,d satisfies v0 ą 0, then

the first component of gv is ą 0). See [Haag, Sec. I.2.1].

Definition 1.2. We say that x “ px0, . . . , xdq,y “ py0, . . . , ydq P R1,d are spacelike
(separated) if their Minkowski distance is negative, i.e.,

px0 ´ y0q
2

ă px1 ´ y1q
2

` ¨ ¨ ¨ ` pxd ´ ydq
2

1.2

A Poincaré invariant QFT consists of the following data:

(1) We have a Hilbert space H.
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(2) There is a (strongly continuous) projective unitary representation U of
P`p1, dq on H. In particular, its restriction to the translation on the k-th
component (where k “ 0, 1, . . . , d) gives a one parameter unitary group
xk P R ÞÑ exppixkPkq where Pk is a self-adjoint operator on H.

(3) (Positive energy) The following are positive operators:

P0 ě 0 pP0q
2

´ pP1q
2

´ ¨ ¨ ¨ ´ pPdq
2

ě 0

The operator P0 is called the Hamiltonian or the energy operator. P1, . . . , Pd

are the momentum operators. pP0q
2 ´ pP1q

2 ´ ¨ ¨ ¨ ´ pPdq2 is the mass.

(4) We have a collection of (quantum) fields Q, where each Φ P Q is an
operator-valued function on R1,d. For each x P R1,d, Φpxq is a “linear op-
erator on H".

(5) (Locality) If x1,x2 P R1,d are
::::::::::
spacelike and Φ1,Φ2 P Q, then

rΦ1px1q,Φ2px2qs “ 0 (1.2)

(6) (*-invariance) For each Φ P Q, there exists Φ: P Q such that

Φpxq
:

“ Φ:
pxq (1.3)

Moreover, Φ:: “ Φ.

(7) (Poincaré invariance) There is a distinguished unit vector1 Ω, called the vac-
uum vector, such that

UpgqΩ “ Ω @g P P`
p1, dq

Moreover, for each g P P`p1, dq and Φ P Q, we have

UpgqΦpxqUpgq
´1

“ Φpgxq (1.4)

(8) (Cyclicity) Vectors of the form

Φ1px1q ¨ ¨ ¨ΦnpxnqΩ (1.5)

(where n P N, x1, . . . ,xn P R1,d are mutually spacelike, and Φ1, . . . ,Φn P Q)
span a dense subspace of H.

Remark 1.3. In some QFT, there is a factor (a function of x) before Φpgxq in the
Poincaré invariance relation (1.4). Similarly, there is a factor before Φ:pxq in the ˚-
invariance formula (1.3). We will encounter these more general covariance prop-
erty later. In this section, we content ourselves with the simplest case that the
factors are 1.

Remark 1.4. By the Poincaré invariance and the cyclicity, the action of P`p1, dq is
uniquely determined by Q by

UpgqΦ1px1q ¨ ¨ ¨ΦnpxnqΩ “ Φ1pgx1q ¨ ¨ ¨ΦnpgxnqΩ (1.6)
1A unit vector denotes a vector with length 1
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1.3

Technically speaking, Φpxq can not be viewed as a linear operator on H. It
cannot be defined even on a sufficiently large subspace of H. One should think
about smeared fields

Φpfq “

ż

R1,d

Φpxqfpxqdx (1.7)

where f P C8
c pR1,dq. (In contrast, we call Φpxq a pointed field.) Then Φpfq is

usually a closable unbounded operator on H with dense domain DpΦpfqq. More-
over, DpΦpfqq is preserved by any smeared operator Ψpgq. Therefore, for any
f1, . . . , fn P C8

c pR1,dq the following vector can be defined in H:

Φ1pf1q ¨ ¨ ¨ΦnpfnqΩ (1.8)

The precise meaning of cyclicity in Subsec. 1.2 means that vectors of the form (1.8)
span a dense subspace of H. Locality means that for f1, f2 P C8

c pR1,dq compactly
supported in

::::::::::
spacelike regions, on a reasonable dense subspace of H (e.g., the

subspace spanned by (1.8)) we have

rΦ1pf1q,Φ2pf2qs “ 0 (1.9)

The ˚-invariance means that

xΦpfqξ|ηy “ xξ|Φ:
pfqηy (1.10)

for each ξ, η in the this good subspace.

1.4

In the remaining part of this section, if possible, we also understand Φpxq as
a smeared operator Φpfq where f P C8

c pR1,dq satisfies
ş

f “ 1 and is supported
in a small region containing x. Thus, Φpxq can almost be viewed as a closable
operator. Hence the expression (1.5) makes sense in H.

We now explore the consequences of positive energy. As we will see, it implies
that Φ1px1q ¨ ¨ ¨ΦnpxnqΩ, a function of x‚, can be analytically continued.

The fact that P0 ě 0 implies that when t ě 0, etP0 is a bounded linear operator
with operator norm ď 1. Therefore, if τ belongs to

I “ tImτ ě 0u

then eiτP0 “ eiReτ ¨ e´Imτ is bounded. Indeed, τ P I ÞÑ eiτP0 is continuous, and is
holomorphic on IntI.
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Let e0 “ p1, 0, . . . , 0q. Let x1, . . . ,xn P R1,d be distinct. By the Poincaré covari-
ance, the relation

eiτP0Φ1px1q ¨ ¨ ¨ΦnpxnqΩ “ Φ1px1 ` τe0q ¨ ¨ ¨Φnpxn ` τe0qΩ (1.11)

holds for all real τ . Moreover, the LHS is continuous on I and holomorphic on
IntI. This suggests that the RHS of (1.11) can also be defined as an element of H
when τ P I.

1.5

We shall further explore the question: for which xi is in Cd can
Φ1px1q ¨ ¨ ¨ΦnpxnqΩ be reasonably defined as an element of H?

Remark 1.5. We expect that the smeared fields should be defined on any P0-
smooth vectors, i.e., vectors in

Ş

kě0 DpP k
0 q. For each r ą 0, since one can find

Ck,r ě 0 such that λ2k ď Ck,re
2rλ for all λ ě 0, we conclude that

Rngpe´rP0q ” DperP0q Ă
č

kě0

DpP k
0 q (1.12)

The above remark shows that Φ1px1q, viewed as a smeared operator localized
on a small neighborhood of x1, is definable on eiζ2P0Φ2px2qΩ “ Φ2pζ2e0 ` x2qΩ
whenever Imζ2 ą 0. Thus, heuristically, pζ1, ζ2q ÞÑ eiζ1P0Φ1px1qeiζ2P0Φ2px2qΩ
should also be holomorphic on

tpζ1, ζ2q P C2 : Imζ1, Imζ2 ą 0u

Repeating this procedure, we see that the holomorphicity holds for

eiζ1P0Φ1px1qe
iζ2P0Φ2px2q ¨ ¨ ¨ eiζnP0ΦnpxnqΩ

when Imζi ą 0. By Poincaré covariance, the above expression equals

Φ1px1 ` ζ1e0qΦ2px2 ` pζ1 ` ζ2qe0q ¨ ¨ ¨Φnpxn ` pζ1 ` ¨ ¨ ¨ ` ζnqe0qΩ

Therefore,

pζ1, . . . , ζnq ÞÑ Φ1px1 ` ζ1e0q ¨ ¨ ¨Φnpxn ` ζne0q P H (1.13)

should be holomorphic on tζ‚ P Cn : 0 ă Imζ1 ă ¨ ¨ ¨ ă Imζnu.
By the locality axiom, the order of products of quantum fields can be ex-

changed. Thus, our expectation for a reasonable QFT includes the following con-
dition:

Conclusion 1.6. Let x1, . . . ,xn P R1,d. Then (1.13) is holomorphic on

tpζ1, . . . , ζnq P Cn : Imζi ą 0, and Imζi ‰ Imζj if i ‰ ju (1.14a)

Moreover, since (1.13) is also definable and continuous on

tpζ1, . . . , ζnq P Rn : x1 ` ζ1e1, . . . ,xn ` ζne0 are mutually spacelikeu (1.14b)

we expect that the function (1.13) is continuous on the union of (1.14a) and (1.14b).
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1.6

We have (informally) derived some consequences from the positivity of P0.
Note that since P0 ě 0, we have UpgqP0Upgq´1 ě 0 for each g P SO`

p1, dq. Since
P0 is the generator of the flow t P R ÞÑ te0 P R1,d Ă P`p1, dq, UpgqP0Upgq´1 is the
generator of the flow

t P R ÞÑ gpte0qg
´1

“ t ¨ ge0 (1.15)

Therefore, if ge0 “ pa0, . . . , anq, then

UpgqP0Upgq
´1

“ a0P0 ` ¨ ¨ ¨ ` anPn (1.16)

Hence the RHS must be positive. But what are all the possible ge0?

Remark 1.7. One can show that the orbit of e0 “ p1, 0, . . . , 0q under SO`
p1, dq is the

upper hyperbola with diameter 1, i.e., the set of all pa0, . . . , anq P R1,d satisfying

a0 ą 0 pa0q
2

´ pa1q
2

´ ¨ ¨ ¨ ´ panq
2

“ 1 (1.17)

Thus
ř

i aiPi ě 0 for all such a‚. What are the consequences of this positivity?

1.7

To simplify the following discussions, we set d “ 2 and

t “ x0 x “ x1

We further set

u “ t ´ x v “ t ` x (1.18)

so that

t “
u ` v

2
x “

´u ` v

2
(1.19)

The Minkowski metric becomes

pdtq2 ´ pdxq
2

“ du ¨ dv (1.20)

Then

pu, vq is spacelike to pu1, v1
q ðñ pu ´ u1

qpv ´ v1
q ă 0 (1.21)

For each Φ P Q, we write

rΦpu, vq :“ Φpt, xq “ Φ
`u ` v

2
,

´u ` v

2

˘

(1.22)

We let H0 and H1 be the self-adjoint operators such that

H0 “ P0 ´ P1 H1 “ P0 ` P1

so that they are the generators of the flow t ÞÑ pt,´tq and t ÞÑ pt, tq.

Remark 1.8. Since R1,d is an abelian group, we know that Pi commutes with Pj .
Hence H0 commutes with H1.
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Figure 1.1. The coordinates u, v

1.8

The orbit of e0 under SO`
p1, 1q is the unit upper hyperbola px0q2 ´ px1q

2 “

1, x0 ą 0. Equivalently, it is uv “ 1, u ą 0. According to Subsec. 1.6, we conclude
that b0H0 ` b1H1 ě 0 for each b0, b1 satisfying b0b1 “ 1, b0 ą 0 (equivalently, for
each b0 ą 0, b1 ą 0). This implies

H0 ě 0 H1 ě 0 (1.23)

Therefore, similar to the argument in Subsec. 1.5 (and specializing to the special
case that x1 “ ¨ ¨ ¨ “ xn “ 0), the holomorphicity of

pζ‚, γ‚q ÞÑ eiζ1H0`iγ1H1
rΦ1p0qeiζ2H0`iγ2H1

rΦ2p0q ¨ ¨ ¨ eiζnH0`iγnH1
rΦnp0qΩ

on the region Imζi ą 0, Imγi ą 0, together with locality, implies:

Conclusion 1.9. Let Φ1, . . . ,Φn P Q. Then

pu1, v1, . . . , un, vnq ÞÑ rΦ1pu1, v1q ¨ ¨ ¨ rΦpun, vnqΩ (1.24)

is holomorphic on

tpu‚, v‚q P C2n : Imui ą 0, Imvi ą 0, Imui ‰ Imuj, Imvi ‰ Imvj if i ‰ ju (1.25a)

and can be continuously extended to

tpu‚, v‚q P R2n : pui ´ ujq ¨ pvi ´ vjq ă 0 if i ‰ ju (1.25b)

Rigorously speaking, the above mentioned “continuity" of the extension
should be understood in terms of distributions. Here, we ignore such subtlety
and view pointed fields as smeared field in a small region.

1.9

We note that diagp´1,˘1q is not inside SO`
p1, 1q, since it reverses the time di-

rection. Neither is diagp1,´1q in SO`
p1, 1q because its determinant is negative.

Consequently, the QFT is not necessarily symmetric under the following opera-
tions:
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• Time reversal t ÞÑ ´x.

• Parity transformation x ÞÑ ´x.

• PT transformation pt, xq ÞÑ p´t,´xq, the combination of time and parity
inversions.

Mathematically, this means that the maps

Φ1pt1, x1q ¨ ¨ ¨Φnptn, xnqΩ ÞÑ Φ1p´t1, x1q ¨ ¨ ¨Φnp´tn, xnqΩ

Φ1pt1, x1q ¨ ¨ ¨Φnptn, xnqΩ ÞÑ Φ1pt1,´x1q ¨ ¨ ¨Φnptn,´xnqΩ

Φ1pt1, x1q ¨ ¨ ¨Φnptn, xnqΩ ÞÑ Φ1p´t1,´x1q ¨ ¨ ¨Φnp´tn,´xnqΩ

(where pt1, x1q, . . . , ptn, xnq are mutually spacelike) are not necessarily unitary.
(Compare Rem. 1.4.) Simiarly, the QFT is not necessarily symmetric under
Charge conjugation Φ ÞÑ Φ:, which means that the map

Φ1pt1, x1q ¨ ¨ ¨Φnptn, xnqΩ ÞÑ Φnptn, xnq
:

¨ ¨ ¨Φ1pt1, x1q
:Ω

“Φ:

1pt1, x1q ¨ ¨ ¨Φ:
nptn, xnqΩ

is not necessarily (anti)unitary. However, as we shall explain, the combination of
PCT transformations is actually unitary, and hence is a symmetry of the QFT. This
is called the PCT theorem.

1.10

To prove the PCT theorem, we shall first prove that the PT transformation,
though not implemented by a unitary operator, is actually implemented by the
analytic continuation of a one parameter unitary group.

Definition 1.10. The one parameter group s ÞÑ Λpsq P SO`
p1, 1q defined by

Λpsqpu, vq “ pe´su, esvq (1.26)

is called the Lorentz boost. Equivalently,

Λpsq

„

t
x

ȷ

“

„

cosh s sinh s
sinh s cosh s

ȷ „

t
x

ȷ

(1.27)

Define the (open) right wedge W and left wedge ´W by

W “ tpu, vq P R2 : v ą 0, u ă 0u “ tpt, xq P R1,1 : ´x ă t ă xu (1.28)
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Figure 1.2.

Theorem 1.11 (PT theorem). Let pu1, v1q, . . . , pun, vnq P W be mutually spacelike (i.e.
satisfying pui ´ ujqpvi ´ vjq ă 0 if i ‰ j), cf. Fig. 1.2. Let Φ1, . . . ,Φn P Q. Let K be the
self-adjoint generator of the Lorentz boost, i.e.,

UpΛpsqq “ eisK

Then Φ1px1q ¨ ¨ ¨ΦnpxnqΩ belongs to the domain of e´πK , and

e´πKΦ1px1q ¨ ¨ ¨ΦnpxnqΩ “ Φ1p´x1q ¨ ¨ ¨Φnp´xnqΩ (1.29)

Equivalently, rΦ1pu1, v1q ¨ ¨ ¨ rΦnpun, vnqΩ belongs to the domain of e´πK , and

e´πK
rΦ1pu1, v1q ¨ ¨ ¨ rΦnpun, vnqΩ “ rΦ1p´u1,´v1q ¨ ¨ ¨ rΦnp´un,´vnqΩ (1.30)

Note that the requirement that pu1, v1q, . . . , pun, vnq P W are spacelike means, after
relabeling the subscripts, that

0 ă v1 ă ¨ ¨ ¨ ă vn 0 ă ´u1 ă ¨ ¨ ¨ ă ´un

Proof. This theorem relies on the following fact that we shall prove rigorously in
the future:

› Let T ě 0 be a self-adjoint operator on H with KerpT q “ 0. Let r ą 0. Then
ξ P H belongs to DpT rq iff the function s P R ÞÑ T isξ P H can be extended to
a continuous function F on

tz P C : ´r ď Imz ď 0u

and holomorphic on its interior. Moreover, for such ξ we have F p´irq “ T rξ.

In fact, the function F pzq is given by z ÞÑ T zξ.
We shall apply this result to T “ e´K and r “ π. For that purpose, we must

show that the H-valued function of s P R defined by

eiπsrΦ1pu1, v1q ¨ ¨ ¨ rΦnpun, vnqΩ “ rΦ1pe
´su1, e

sv1q ¨ ¨ ¨ rΦnpe´sun, e
svnqΩ

can be extended to a continuous function on

tz P C : 0 ď Imz ď πu
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and holomorphic on its interior.
In fact, we can construct this H-valued function, which is

z ÞÑ rΦ1pe´zu1, e
zv1q ¨ ¨ ¨ rΦnpe´zun, e

zvnqΩ

noting that the conditions in Conc. 1.9 are fulfilled. In particular, the condition
0 ă Im ă π is used to ensure that, since ui ă 0, vi ą 0, we have Impe´zuiq ą 0 and
Impezviq ą 0 as required by (1.25a). The value of this function at z “ iπ equals the
RHS of (1.30). Therefore the theorem is proved.

1.11

Theorem 1.12 (PCT theorem). We have an antiunitary map Θ : H Ñ H, called the
PCT operator, such that

Θ ¨ Φ1px1q ¨ ¨ ¨ΦnpxnqΩ “ Φ1p´x1q
:

¨ ¨ ¨Φnp´xnq
:Ω (1.31)

for any Φ1, . . . ,Φn P Q and mutually spacelike x1, . . . ,xn.

Equivalently, Θ is defined by

Θ ¨ rΦ1pu1, v1q ¨ ¨ ¨ rΦnpun, vnq “ rΦ1p´u1,´v1q
:

¨ ¨ ¨ rΦnp´un,´vnq
:Ω (1.32)

Proof. The existence of an antilinear isometry Θ satisfying (1.32) is equivalent to
showing that (cf. (0.3))

xrΦ1pu1q ¨ ¨ ¨ rΦnpunqΩ|rΨ1pu
1
1q ¨ ¨ ¨ rΨkpu1

kqΩy

“xrΨ1p´u1
1q

:
¨ ¨ ¨ rΨkp´u1

kq
:Ω|rΦ1p´u1q

:
¨ ¨ ¨ rΦnp´unq

:Ωy
(‹)

if u1, . . .un are spacelike, and u1
1, . . .u

1
k are spacelike. (We do not assume that, say,

u1 and u1
1 are spacelike.)

It suffices to prove this in the special case that u1, . . . ,un,u
1
1, . . . ,u

1
k are mutu-

ally spacelike. Then the general case will follow that both sides of the above re-
lation can be analytically continued to suitable regions as functions of u1, . . . ,un.
For example, the fact that H0, H1 ě 0 implies that

eiζH0`iγH1
rΦ1pu1q ¨ ¨ ¨ rΦnpunqΩ “ rΦ1pu1 ` pζ, γqq ¨ ¨ ¨ rΦnpun ` pζ, γqqΩ

is continuous on tpζ, γq P C2 : Imζ ě 0, Imγ ě 0u and holomorphic on its interior.
Set Γj “ Ψ:

j . Then (‹) is equivalent to

xrΦ1pu1q ¨ ¨ ¨ rΦ1punqrΓ1pu1
1q ¨ ¨ ¨ rΓkpu1

kqΩ|Ωy

“xrΦ1p´u1q ¨ ¨ ¨ rΦ1p´unqrΓ1p´u1
1q ¨ ¨ ¨ rΓkp´u1

kqΩ|Ωy

By the PT Thm. 1.11, this relation is equivalent to

xrΦ1pu1q ¨ ¨ ¨ rΦ1punqrΓ1pu
1
1q ¨ ¨ ¨ rΓkpu1

kqΩ|Ωy

“xe´πK
rΦ1pu1q ¨ ¨ ¨ rΦ1punqrΓ1pu1

1q ¨ ¨ ¨ rΓkpu1
kqΩ|Ωy

But this of course holds since e´πKΩ “ Ω by Poincaré invariance.
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1.12

Combining the PT Thm. 1.11 with the PCT Thm. 1.12, we conclude that e´πK

is an injective positive operator, Θ is antinitary, and

Θe´πKAΩ “ A:Ω (1.33a)

where A is a product of spacelike separated field in W . The rigorous statement
should be that

A “ Φ1pf1q ¨ ¨ ¨Φnpfnq

where Φ1, . . . ,Φn P Q, and fi P C8
c pOiq where O1, . . . , On Ă W are open and

mutually spacelike. If we let A pWq be the ˚-algebra generated by all such A, then
by the Poincaré invariance, for each g P P`p1, dq we have

UpgqA pWqUpgq
´1

“ A pgWq

In particular, since for the Lorentz boost Λ we have ΛpsqW “ W , we therefore
have

eisKA pWqe´isK
“ A pWq (1.33b)

for all s P R. Since the PT transformation sends W to ´W , the definition of Θ
clearly also implies

ΘA pWqΘ´1
“ A p´Wq (1.33c)

Note that since W is local to ´W , we have rA pWq,A p´Wqs “ 0. Therefore,
ΘA pWqΘ is a subset of the (in some sense) commutant of A pWq.

1.13

The set of formulas (1.33) is reminiscent of the Tomita-Takesaki theory, one of
the deepest theories in the area of operator algebras. The setting is as follows.

Let M be a von Neumann algebra on a Hilbert space H. Namely, M is a
˚-subalgebra of EndpHq closed under the “strong operator topology". (We will
formally introduce von Neumann algebras in a later section.) Let Ω P H be a unit
vector. Assume that Ω is cyclic (i.e. MΩ is dense) and separating (i.e., if x P M
and xΩ “ 0 then x “ 0) under M. Then the Tomita-Takesaki theorem says that
the linear map

S : MΩ Ñ MΩ xΩ ÞÑ x˚Ω

is antilinear and closable. Denote its closure also by S, and consider its polar
decomposition S “ J∆

1
2 where ∆ is a positive closed operator, and J is an antiu-

nitary map. Then ∆ is injective, we have J´1 “ J˚ “ J , and

∆isM∆´is
“ M JMJ “ M1

where M1 is the commutant ty P EndpHq : xy “ yx p@x P Mqu.We call ∆ and J
respectively the modular operator and the modular conjugation.

12



1.14

To relate the Tomita-Takesaki theory to QFT, one takes M to be ApWq, the
von Neumann algebra generated by A pWq. Note that the elements of A pWq

are typically unbounded operators, whereas those of ApWq are bounded. Thus,
the meaning of “the von Neumann algebra generated by a set of closed/closable
operators" should be clarified. This is an important notion, and we will study it
in a later section.

To apply the setting of Tomita-Takesaki, one should first show that the vacuum
vector is cyclic and separating under ApWq. This is not an easy task, although it is
relatively easier to show that Ω is cyclic and separating under A pWq. Moreover,
we have

Theorem 1.13 (Bisognano-Wichmann). Let ∆ and J be the modular operator and the
modular conjugation of pApWq,Ωq. Then J “ Θ and ∆

1
2 “ e´πK .

Since (1.33c) easily implies ΘApWqΘ´1 “ Ap´Wq, together with JMJ´1 “ M1

we obtain

ApWq
1

“ Ap´Wq (1.34)

a version of Haag duality.
One of the main goals of this course is to give a rigorous and self-contained

proof of the PCT theorem, the Bisognano-Wichmann theorem, and the Haag du-
ality for 2d chiral conformal field theories.

1.15

For a general odd number d ą 0, the above results should be modified as
follows. Let K be the generator of the Lorentz boost

Λpsq “

¨

˚

˚

˚

˚

˚

˝

cosh s sinh s
sinh s cosh s

0

0

1
. . .

1

˛

‹

‹

‹

‹

‹

‚

Let Λpiπq “ diagp´1,´1, 1, . . . , 1q, which does not belong to P`p1, dq since it re-
verses the time direction (although it has positive determinant). Then the PT Thm.
1.11 should be modified by replacing (1.29) with

e´πKΦ1px1q ¨ ¨ ¨ΦnpxnqΩ “ Φ1pΛpiπqx1q ¨ ¨ ¨ΦnpΛpiπqxnqΩ (1.35)

Let ρ “ diagp1, 1,´1, . . . ,´1q, which has determinant 1 (since d is odd) and
hence belongs to SO`

p1, dq. Then the PCT Thm. 1.12 still holds verbatim. Let

W “ tpa0, . . . , anq P R1,d : ´a1 ă a0 ă a1u (1.36)

13



Then the Bisognano-Wichmann theorem says that e´πK is the modular operator
of pApWq,Ωq, and ΘUpρq is the modular conjugation.

We refer the readers to [Haag, Sec. V.4.1] and the reference therein for a de-
tailed study.

14
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