# Topics in Operator Algebras: Algebraic Conformal Field Theory

Bin Gui

Current page of writing

## Contents

| 1   | Introduction: PCT symmetry, Bisognano-Wichmann, Tomita-Takesaki | 3  |
|-----|-----------------------------------------------------------------|----|
| Ind | lex                                                             | 15 |
| Ref | ferences                                                        | 16 |

### **Notations**

 $\mathbb{N} = \{0, 1, 2, \dots\}, \mathbb{Z}_+ = \{1, 2, 3, \dots\}.$ 

Unless otherwise stated, an **unbounded operator**  $T : \mathcal{H} \to \mathcal{K}$  (where  $\mathcal{H}, \mathcal{K}$  are Hilbert spaces) denotes a linear map from a dense linear subspace  $\mathscr{D}(T) \subset \mathcal{H}$  to  $\mathcal{H}. \mathscr{D}(T)$  is called the **domain** of T. We let  $T^*$  be the adjoint of T. In practice, we are also interested in  $T^*$  defined on a dense subspace of its domain  $\mathscr{D}(T^*)$ . We call its restriction a **formal adjoint** of T and denote it by  $T^{\dagger}$ .

Given a Hilbert space  $\mathcal{H}$ , its inner product is denoted by  $(\xi, \eta) \in \mathcal{H}^2 \mapsto \langle \xi | \eta \rangle$ . We assume that it is linear on the first variable and antilinear on the second one. (Namely, we are following mathematician's convention.)

Whenever we write  $\langle \xi, \eta \rangle$ , we understand that it is linear on both variables. E.g.  $\langle \cdot, \cdot \rangle$  denotes the pairing between a vector space and its dual space.

If  $\mathcal{H}, \mathcal{K}$  are Hilbert spaces, we let

 $\operatorname{Hom}(\mathcal{H},\mathcal{K}) = \{ \text{Bounded linear maps } \mathcal{H} \to \mathcal{H} \} \qquad \operatorname{End}(\mathcal{H}) = \operatorname{Hom}(\mathcal{H},\mathcal{H}) \quad (0.1)$ 

If *X* is a set, the *n*-fold **configuration space**  $Conf^n(X)$  is

$$\operatorname{Conf}^{n}(X) = \{(x_{1}, \dots, x_{n}) \in X : x_{i} \neq x_{j} \text{ if } i \neq j\}$$

$$(0.2)$$

**Definition 0.1.** A map of complex vector spaces  $T : V \to V'$  is called **antilinear** or **conjugate linear** if  $T(a\xi + b\eta) = \overline{a}T\xi + \overline{b}T\eta$  for all  $\xi, \eta \in V$  and  $a, b \in \mathbb{C}$ . If V and V' are (complex) inner product spaces, we say that T is **antiunitary** if it is am antiliear surjective and satisfies  $||T\xi|| = ||\xi||$  for all  $\xi \in V$ , equivalently,

$$\langle T\xi|T\eta\rangle = \overline{\langle\xi|\eta\rangle} \equiv \langle\eta|\xi\rangle$$
 (0.3)

for all  $\xi, \eta \in V$ .

# 1 Introduction: PCT symmetry, Bisognano-Wichmann, Tomita-Takesaki

Algebraic quantum field theory (AQFT) is a mathematically rigorous approach to QFT using the language of functional analysis and operator algebras. The main subject of this course is 2d **algebraic conformal field theory (ACFT)**, namely, 2d CFT in the framework of AQFT.

### 1.1

Let  $d \in \mathbb{Z}_+$ . We first sketch the general picture of an (1 + d) dimensional Poincaré invariant QFT in the spirit of **Wightman axioms**. We consider Bosonic theory for simplicity.

We let  $\mathbb{R}^{1,d}$  be the (1+d)-dimensional **Minkowski space**. So it is  $\mathbb{R}^{1+d}$  but with metric tensor

$$ds^{2} = (dx^{0})^{2} - (dx^{1})^{2} - \dots - (dx^{d})^{2}$$
(1.1)

Here  $x^0$  denotes the time coordinate, and  $x^1, \ldots, x^d$  denote the spatial coordinates. The (restricted) **Poincaré group** is

$$\mathbf{P}^+(1,d) = \mathbb{R}^{1,d} \rtimes \mathrm{SO}^+(1,d)$$

Here,  $\mathbb{R}^{1,d}$  acts by translation on  $\mathbb{R}^{1,d}$ . SO<sup>+</sup>(1, *d*) is the (restricted) **Lorentz group**, the identity component of the (full) Lorentz group O(1, *d*) whose elements are invertible linear maps on  $\mathbb{R}^{1,d}$  preserving the Minkowski metric.

**Remark 1.1.** Any  $g \in O(1, d)$  must have determinent  $\pm 1$ . One can show that  $SO^+(1, d)$  is precisely the elements  $g \in O(1, d)$  such that  $\det g = 1$ , and that g does not change the direction of time (i.e., if  $\mathbf{v} = (v_0, \ldots, v_d) \in \mathbb{R}^{1,d}$  satisfies  $v_0 > 0$ , then the first component of  $g\mathbf{v}$  is > 0). See [Haag, Sec. I.2.1].

**Definition 1.2.** We say that  $\mathbf{x} = (x_0, \dots, x_d), \mathbf{y} = (y_0, \dots, y_d) \in \mathbb{R}^{1,d}$  are **spacelike** (separated) if their Minkowski distance is negative, i.e.,

$$(x_0 - y_0)^2 < (x_1 - y_1)^2 + \dots + (x_d - y_d)^2$$

### 1.2

A Poincaré invariant QFT consists of the following data:

(1) We have a Hilbert space  $\mathcal{H}$ .

- (2) There is a (strongly continuous) projective unitary representation U of  $P^+(1,d)$  on  $\mathcal{H}$ . In particular, its restriction to the translation on the *k*-th component (where k = 0, 1, ..., d) gives a one parameter unitary group  $x^k \in \mathbb{R} \mapsto \exp(\mathbf{i}x^k P_k)$  where  $P_k$  is a self-adjoint operator on  $\mathcal{H}$ .
- (3) (Positive energy) The following are positive operators:

$$P_0 \ge 0$$
  $(P_0)^2 - (P_1)^2 - \dots - (P_d)^2 \ge 0$ 

The operator  $P_0$  is called the **Hamiltonian** or the **energy operator**.  $P_1, \ldots, P_d$  are the momentum operators.  $(P_0)^2 - (P_1)^2 - \cdots - (P_d)^2$  is the mass.

- (4) We have a collection of (quantum) fields  $\mathscr{Q}$ , where each  $\Phi \in \mathscr{Q}$  is an operator-valued function on  $\mathbb{R}^{1,d}$ . For each  $\mathbf{x} \in \mathbb{R}^{1,d}$ ,  $\Phi(x)$  is a "linear operator on  $\mathcal{H}$ ".
- (5) (Locality) If  $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^{1,d}$  are spacelike and  $\Phi_1, \Phi_2 \in \mathcal{Q}$ , then

$$[\Phi_1(x_1), \Phi_2(x_2)] = 0 \tag{1.2}$$

(6) (\*-invariance) For each  $\Phi \in \mathcal{Q}$ , there exists  $\Phi^{\dagger} \in \mathcal{Q}$  such that

$$\Phi(\mathbf{x})^{\dagger} = \Phi^{\dagger}(\mathbf{x}) \tag{1.3}$$

Moreover,  $\Phi^{\dagger\dagger} = \Phi$ .

 (7) (Poincaré invariance) There is a distinguished unit vector<sup>1</sup> Ω, called the vacuum vector, such that

$$U(g)\Omega = \Omega \qquad \forall g \in \mathcal{P}^+(1,d)$$

Moreover, for each  $g \in P^+(1, d)$  and  $\Phi \in \mathcal{Q}$ , we have

$$U(g)\Phi(\mathbf{x})U(g)^{-1} = \Phi(g\mathbf{x}) \tag{1.4}$$

(8) (Cyclicity) Vectors of the form

$$\Phi_1(\mathbf{x}_1)\cdots\Phi_n(\mathbf{x}_n)\Omega\tag{1.5}$$

(where  $n \in \mathbb{N}$ ,  $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^{1,d}$  are mutually spacelike, and  $\Phi_1, \ldots, \Phi_n \in \mathcal{Q}$ ) span a dense subspace of  $\mathcal{H}$ .

**Remark 1.3.** In some QFT, there is a factor (a function of **x**) before  $\Phi(g\mathbf{x})$  in the Poincaré invariance relation (1.4). Similarly, there is a factor before  $\Phi^{\dagger}(\mathbf{x})$  in the \*-invariance formula (1.3). We will encounter these more general covariance property later. In this section, we content ourselves with the simplest case that the factors are 1.

**Remark 1.4.** By the Poincaré invariance and the cyclicity, the action of  $P^+(1, d)$  is uniquely determined by  $\mathscr{Q}$  by

$$U(g)\Phi_1(\mathbf{x}_1)\cdots\Phi_n(\mathbf{x}_n)\Omega = \Phi_1(g\mathbf{x}_1)\cdots\Phi_n(g\mathbf{x}_n)\Omega$$
(1.6)

<sup>&</sup>lt;sup>1</sup>A unit vector denotes a vector with length 1

Technically speaking,  $\Phi(\mathbf{x})$  can not be viewed as a linear operator on  $\mathcal{H}$ . It cannot be defined even on a sufficiently large subspace of  $\mathcal{H}$ . One should think about **smeared fields** 

$$\Phi(f) = \int_{\mathbb{R}^{1,d}} \Phi(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$
(1.7)

where  $f \in C_c^{\infty}(\mathbb{R}^{1,d})$ . (In contrast, we call  $\Phi(\mathbf{x})$  a **pointed field**.) Then  $\Phi(f)$  is usually a closable unbounded operator on  $\mathcal{H}$  with dense domain  $\mathscr{D}(\Phi(f))$ . Moreover,  $\mathscr{D}(\Phi(f))$  is preserved by any smeared operator  $\Psi(g)$ . Therefore, for any  $f_1, \ldots, f_n \in C_c^{\infty}(\mathbb{R}^{1,d})$  the following vector can be defined in  $\mathcal{H}$ :

$$\Phi_1(f_1)\cdots\Phi_n(f_n)\Omega\tag{1.8}$$

The precise meaning of cyclicity in Subsec. 1.2 means that vectors of the form (1.8) span a dense subspace of  $\mathcal{H}$ . Locality means that for  $f_1, f_2 \in C_c^{\infty}(\mathbb{R}^{1,d})$  compactly supported in spacelike regions, on a reasonable dense subspace of  $\mathcal{H}$  (e.g., the subspace spanned by (1.8)) we have

$$[\Phi_1(f_1), \Phi_2(f_2)] = 0 \tag{1.9}$$

The \*-invariance means that

$$\langle \Phi(f)\xi|\eta\rangle = \langle \xi|\Phi^{\dagger}(f)\eta\rangle$$
 (1.10)

for each  $\xi$ ,  $\eta$  in the this good subspace.

#### 1.4

In the remaining part of this section, if possible, we also understand  $\Phi(\mathbf{x})$  as a smeared operator  $\Phi(f)$  where  $f \in C_c^{\infty}(\mathbb{R}^{1,d})$  satisfies  $\int f = 1$  and is supported in a small region containing  $\mathbf{x}$ . Thus,  $\Phi(\mathbf{x})$  can almost be viewed as a closable operator. Hence the expression (1.5) makes sense in  $\mathcal{H}$ .

We now explore the consequences of positive energy. As we will see, it implies that  $\Phi_1(\mathbf{x}_1) \cdots \Phi_n(\mathbf{x}_n)\Omega$ , a function of  $\mathbf{x}_{\bullet}$ , can be analytically continued.

The fact that  $P_0 \ge 0$  implies that when  $t \ge 0$ ,  $e^{tP_0}$  is a bounded linear operator with operator norm  $\le 1$ . Therefore, if  $\tau$  belongs to

$$\mathfrak{I} = \{ \mathrm{Im}\tau \ge 0 \}$$

then  $e^{i\tau P_0} = e^{i\operatorname{Re}\tau} \cdot e^{-\operatorname{Im}\tau}$  is bounded. Indeed,  $\tau \in \mathfrak{I} \mapsto e^{i\tau P_0}$  is continuous, and is holomorphic on Int $\mathfrak{I}$ .

Let  $\mathbf{e}_0 = (1, 0, ..., 0)$ . Let  $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^{1,d}$  be distinct. By the Poincaré covariance, the relation

$$e^{\mathbf{i}\tau P_0}\Phi_1(\mathbf{x}_1)\cdots\Phi_n(\mathbf{x}_n)\Omega = \Phi_1(\mathbf{x}_1+\tau e_0)\cdots\Phi_n(\mathbf{x}_n+\tau e_0)\Omega$$
(1.11)

holds for all real  $\tau$ . Moreover, the LHS is continuous on  $\mathfrak{I}$  and holomorphic on Int $\mathfrak{I}$ . This suggests that the RHS of (1.11) can also be defined as an element of  $\mathcal{H}$  when  $\tau \in \mathfrak{I}$ .

#### 1.5

We shall further explore the question: for which  $\mathbf{x}_i$  is in  $\mathbb{C}^d$  can  $\Phi_1(\mathbf{x}_1) \cdots \Phi_n(\mathbf{x}_n)\Omega$  be reasonably defined as an element of  $\mathcal{H}$ ?

**Remark 1.5.** We expect that the smeared fields should be defined on any  $P_0$ -**smooth vectors**, i.e., vectors in  $\bigcap_{k\geq 0} \mathscr{D}(P_0^k)$ . For each r > 0, since one can find  $C_{k,r} \geq 0$  such that  $\lambda^{2k} \leq C_{k,r} e^{2r\lambda}$  for all  $\lambda \geq 0$ , we conclude that

$$\operatorname{Rng}(e^{-rP_0}) \equiv \mathscr{D}(e^{rP_0}) \subset \bigcap_{k \ge 0} \mathscr{D}(P_0^k)$$
(1.12)

The above remark shows that  $\Phi_1(\mathbf{x}_1)$ , viewed as a smeared operator localized on a small neighborhood of  $\mathbf{x}_1$ , is definable on  $e^{i\zeta_2 P_0}\Phi_2(\mathbf{x}_2)\Omega = \Phi_2(\zeta_2 \mathbf{e}_0 + \mathbf{x}_2)\Omega$ whenever  $\text{Im}\zeta_2 > 0$ . Thus, heuristically,  $(\zeta_1, \zeta_2) \mapsto e^{i\zeta_1 P_0}\Phi_1(\mathbf{x}_1)e^{i\zeta_2 P_0}\Phi_2(\mathbf{x}_2)\Omega$ should also be holomorphic on

$$\{(\zeta_1,\zeta_2)\in\mathbb{C}^2:\mathrm{Im}\zeta_1,\mathrm{Im}\zeta_2>0\}$$

Repeating this procedure, we see that the holomorphicity holds for

$$e^{\mathbf{i}\zeta_1 P_0} \Phi_1(\mathbf{x}_1) e^{\mathbf{i}\zeta_2 P_0} \Phi_2(\mathbf{x}_2) \cdots e^{\mathbf{i}\zeta_n P_0} \Phi_n(\mathbf{x}_n) \Omega$$

when  $\text{Im}\zeta_i > 0$ . By Poincaré covariance, the above expression equals

$$\Phi_1(\mathbf{x}_1+\zeta_1\mathbf{e}_0)\Phi_2(\mathbf{x}_2+(\zeta_1+\zeta_2)\mathbf{e}_0)\cdots\Phi_n(\mathbf{x}_n+(\zeta_1+\cdots+\zeta_n)\mathbf{e}_0)\Omega$$

Therefore,

$$(\zeta_1, \dots, \zeta_n) \mapsto \Phi_1(\mathbf{x}_1 + \zeta_1 \mathbf{e}_0) \cdots \Phi_n(\mathbf{x}_n + \zeta_n \mathbf{e}_0) \in \mathcal{H}$$
(1.13)

should be holomorphic on  $\{\zeta_{\bullet} \in \mathbb{C}^n : 0 < \operatorname{Im} \zeta_1 < \cdots < \operatorname{Im} \zeta_n\}.$ 

By the locality axiom, the order of products of quantum fields can be exchanged. Thus, our expectation for a reasonable QFT includes the following condition:

**Conclusion 1.6.** Let  $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^{1,d}$ . Then (1.13) is holomorphic on

$$\{(\zeta_1, \dots, \zeta_n) \in \mathbb{C}^n : \operatorname{Im}\zeta_i > 0, \text{ and } \operatorname{Im}\zeta_i \neq \operatorname{Im}\zeta_j \text{ if } i \neq j\}$$
(1.14a)

Moreover, since (1.13) is also definable and continuous on

 $\{(\zeta_1, \dots, \zeta_n) \in \mathbb{R}^n : \mathbf{x}_1 + \zeta_1 \mathbf{e}_1, \dots, \mathbf{x}_n + \zeta_n \mathbf{e}_0 \text{ are mutually spacelike}\}$ (1.14b) we expect that the function (1.13) is continuous on the union of (1.14a) and (1.14b).

We have (informally) derived some consequences from the positivity of  $P_0$ . Note that since  $P_0 \ge 0$ , we have  $U(g)P_0U(g)^{-1} \ge 0$  for each  $g \in SO^+(1, d)$ . Since  $P_0$  is the generator of the flow  $t \in \mathbb{R} \mapsto t\mathbf{e}_0 \in \mathbb{R}^{1,d} \subset P^+(1,d), U(g)P_0U(g)^{-1}$  is the generator of the flow

$$t \in \mathbb{R} \mapsto g(t\mathbf{e}_0)g^{-1} = t \cdot g\mathbf{e}_0 \tag{1.15}$$

Therefore, if  $g\mathbf{e}_0 = (a_0, \ldots, a_n)$ , then

$$U(g)P_0U(g)^{-1} = a_0P_0 + \dots + a_nP_n$$
(1.16)

Hence the RHS must be positive. But what are all the possible  $ge_0$ ?

**Remark 1.7.** One can show that the orbit of  $\mathbf{e}_0 = (1, 0, ..., 0)$  under SO<sup>+</sup>(1, d) is the upper hyperbola with diameter 1, i.e., the set of all  $(a_0, ..., a_n) \in \mathbb{R}^{1,d}$  satisfying

$$a_0 > 0$$
  $(a_0)^2 - (a_1)^2 - \dots - (a_n)^2 = 1$  (1.17)

Thus  $\sum_i a_i P_i \ge 0$  for all such  $a_{\bullet}$ . What are the consequences of this positivity?

### 1.7

To simplify the following discussions, we set d = 2 and

$$t = x^0 \qquad x = x^1$$

We further set

$$u = t - x \qquad v = t + x \tag{1.18}$$

so that

$$t = \frac{u+v}{2}$$
  $x = \frac{-u+v}{2}$  (1.19)

The Minkowski metric becomes

$$(dt)^2 - (dx)^2 = du \cdot dv$$
 (1.20)

Then

$$(u, v)$$
 is spacelike to  $(u', v') \iff (u - u')(v - v') < 0$  (1.21)

For each  $\Phi \in \mathscr{Q}$ , we write

$$\widetilde{\Phi}(u,v) := \Phi(t,x) = \Phi\left(\frac{u+v}{2}, \frac{-u+v}{2}\right)$$
(1.22)

We let  $H_0$  and  $H_1$  be the self-adjoint operators such that

$$H_0 = P_0 - P_1 \qquad H_1 = P_0 + P_1$$

so that they are the generators of the flow  $t \mapsto (t, -t)$  and  $t \mapsto (t, t)$ .

**Remark 1.8.** Since  $\mathbb{R}^{1,d}$  is an abelian group, we know that  $P_i$  commutes with  $P_j$ . Hence  $H_0$  commutes with  $H_1$ .



Figure 1.1. The coordinates u, v

The orbit of  $\mathbf{e}_0$  under  $\mathrm{SO}^+(1,1)$  is the unit upper hyperbola  $(x^0)^2 - (x_1)^2 = 1, x^0 > 0$ . Equivalently, it is uv = 1, u > 0. According to Subsec. 1.6, we conclude that  $b_0H_0 + b_1H_1 \ge 0$  for each  $b_0, b_1$  satisfying  $b_0b_1 = 1, b_0 > 0$  (equivalently, for each  $b_0 > 0, b_1 > 0$ ). This implies

$$H_0 \ge 0 \qquad H_1 \ge 0 \tag{1.23}$$

Therefore, similar to the argument in Subsec. 1.5 (and specializing to the special case that  $\mathbf{x}_1 = \cdots = \mathbf{x}_n = 0$ ), the holomorphicity of

$$(\zeta_{\bullet},\gamma_{\bullet})\mapsto e^{\mathbf{i}\zeta_{1}H_{0}+\mathbf{i}\gamma_{1}H_{1}}\widetilde{\Phi}_{1}(0)e^{\mathbf{i}\zeta_{2}H_{0}+\mathbf{i}\gamma_{2}H_{1}}\widetilde{\Phi}_{2}(0)\cdots e^{\mathbf{i}\zeta_{n}H_{0}+\mathbf{i}\gamma_{n}H_{1}}\widetilde{\Phi}_{n}(0)\Omega$$

on the region  $\text{Im}\zeta_i > 0$ ,  $\text{Im}\gamma_i > 0$ , together with locality, implies:

**Conclusion 1.9.** Let  $\Phi_1, \ldots, \Phi_n \in \mathscr{Q}$ . Then

$$(u_1, v_1, \dots, u_n, v_n) \mapsto \widetilde{\Phi}_1(u_1, v_1) \cdots \widetilde{\Phi}(u_n, v_n)\Omega$$
 (1.24)

is holomorphic on

$$\{(u_{\bullet}, v_{\bullet}) \in \mathbb{C}^{2n} : \operatorname{Im} u_i > 0, \operatorname{Im} v_i > 0, \operatorname{Im} u_i \neq \operatorname{Im} u_j, \operatorname{Im} v_i \neq \operatorname{Im} v_j \text{ if } i \neq j\}$$
(1.25a)

and can be continuously extended to

$$\{(u_{\bullet}, v_{\bullet}) \in \mathbb{R}^{2n} : (u_i - u_j) \cdot (v_i - v_j) < 0 \text{ if } i \neq j\}$$
(1.25b)

Rigorously speaking, the above mentioned "continuity" of the extension should be understood in terms of distributions. Here, we ignore such subtlety and view pointed fields as smeared field in a small region.

### 1.9

We note that  $diag(-1, \pm 1)$  is not inside  $SO^+(1, 1)$ , since it reverses the time direction. Neither is diag(1, -1) in  $SO^+(1, 1)$  because its determinant is negative. Consequently, the QFT is not necessarily symmetric under the following operations:

- Time reversal  $t \mapsto -x$ .
- **Parity transformation**  $x \mapsto -x$ .
- **PT transformation**  $(t, x) \mapsto (-t, -x)$ , the combination of time and parity inversions.

Mathematically, this means that the maps

$$\begin{array}{cccc} \Phi_1(t_1, x_1) \cdots \Phi_n(t_n, x_n) \Omega & \mapsto & \Phi_1(-t_1, x_1) \cdots \Phi_n(-t_n, x_n) \Omega \\ \Phi_1(t_1, x_1) \cdots \Phi_n(t_n, x_n) \Omega & \mapsto & \Phi_1(t_1, -x_1) \cdots \Phi_n(t_n, -x_n) \Omega \\ \Phi_1(t_1, x_1) \cdots \Phi_n(t_n, x_n) \Omega & \mapsto & \Phi_1(-t_1, -x_1) \cdots \Phi_n(-t_n, -x_n) \Omega \end{array}$$

(where  $(t_1, x_1), \ldots, (t_n, x_n)$  are mutually spacelike) are not necessarily unitary. (Compare Rem. 1.4.) Simiarly, the QFT is not necessarily symmetric under **Charge conjugation**  $\Phi \mapsto \Phi^{\dagger}$ , which means that the map

$$\Phi_1(t_1, x_1) \cdots \Phi_n(t_n, x_n) \Omega \quad \mapsto \quad \Phi_n(t_n, x_n)^{\dagger} \cdots \Phi_1(t_1, x_1)^{\dagger} \Omega$$
$$= \Phi_1^{\dagger}(t_1, x_1) \cdots \Phi_n^{\dagger}(t_n, x_n) \Omega$$

is not necessarily (anti)unitary. However, as we shall explain, the combination of PCT transformations is actually unitary, and hence is a symmetry of the QFT. This is called the PCT theorem.

#### 1.10

To prove the PCT theorem, we shall first prove that the PT transformation, though not implemented by a unitary operator, is actually implemented by the analytic continuation of a one parameter unitary group.

**Definition 1.10.** The one parameter group  $s \mapsto \Lambda(s) \in SO^+(1,1)$  defined by

$$\Lambda(s)(u,v) = (e^{-s}u, e^{s}v) \tag{1.26}$$

is called the Lorentz boost. Equivalently,

$$\Lambda(s) \begin{bmatrix} t \\ x \end{bmatrix} = \begin{bmatrix} \cosh s & \sinh s \\ \sinh s & \cosh s \end{bmatrix} \begin{bmatrix} t \\ x \end{bmatrix}$$
(1.27)

Define the (open) **right wedge** W and **left wedge** -W by

$$\mathcal{W} = \{(u, v) \in \mathbb{R}^2 : v > 0, u < 0\} = \{(t, x) \in \mathbb{R}^{1, 1} : -x < t < x\}$$
(1.28)



Figure 1.2.

**Theorem 1.11 (PT theorem).** Let  $(u_1, v_1), \ldots, (u_n, v_n) \in W$  be mutually spacelike (i.e. satisfying  $(u_i - u_j)(v_i - v_j) < 0$  if  $i \neq j$ ), cf. Fig. 1.2. Let  $\Phi_1, \ldots, \Phi_n \in \mathcal{Q}$ . Let K be the self-adjoint generator of the Lorentz boost, i.e.,

$$U(\Lambda(s)) = e^{\mathbf{i}sK}$$

Then  $\Phi_1(\mathbf{x}_1) \cdots \Phi_n(\mathbf{x}_n) \Omega$  belongs to the domain of  $e^{-\pi K}$ , and

$$e^{-\pi K} \Phi_1(\mathbf{x}_1) \cdots \Phi_n(\mathbf{x}_n) \Omega = \Phi_1(-\mathbf{x}_1) \cdots \Phi_n(-\mathbf{x}_n) \Omega$$
(1.29)

Equivalently,  $\widetilde{\Phi}_1(u_1, v_1) \cdots \widetilde{\Phi}_n(u_n, v_n) \Omega$  belongs to the domain of  $e^{-\pi K}$ , and

$$e^{-\pi K}\widetilde{\Phi}_1(u_1, v_1)\cdots\widetilde{\Phi}_n(u_n, v_n)\Omega = \widetilde{\Phi}_1(-u_1, -v_1)\cdots\widetilde{\Phi}_n(-u_n, -v_n)\Omega$$
(1.30)

Note that the requirement that  $(u_1, v_1), \ldots, (u_n, v_n) \in W$  are spacelike means, after relabeling the subscripts, that

$$0 < v_1 < \dots < v_n \qquad 0 < -u_1 < \dots < -u_n$$

*Proof.* This theorem relies on the following fact that we shall prove rigorously in the future:

\* Let  $T \ge 0$  be a self-adjoint operator on  $\mathcal{H}$  with  $\operatorname{Ker}(T) = 0$ . Let r > 0. Then  $\xi \in \mathcal{H}$  belongs to  $\mathscr{D}(T^r)$  iff the function  $s \in \mathbb{R} \mapsto T^{\mathbf{i}s} \xi \in \mathcal{H}$  can be extended to a continuous function F on

$$\{z \in \mathbb{C} : -r \leqslant \mathrm{Im} z \leqslant 0\}$$

and holomorphic on its interior. Moreover, for such  $\xi$  we have  $F(-ir) = T^r \xi$ .

In fact, the function F(z) is given by  $z \mapsto T^{z}\xi$ .

We shall apply this result to  $T = e^{-K}$  and  $r = \pi$ . For that purpose, we must show that the  $\mathcal{H}$ -valued function of  $s \in \mathbb{R}$  defined by

$$e^{i\pi s}\widetilde{\Phi}_1(u_1,v_1)\cdots\widetilde{\Phi}_n(u_n,v_n)\Omega = \widetilde{\Phi}_1(e^{-s}u_1,e^{s}v_1)\cdots\widetilde{\Phi}_n(e^{-s}u_n,e^{s}v_n)\Omega$$

can be extended to a continuous function on

$$\{z \in \mathbb{C} : 0 \leqslant \mathrm{Im} z \leqslant \pi\}$$

and holomorphic on its interior.

In fact, we can construct this  $\mathcal{H}$ -valued function, which is

$$z \mapsto \overline{\Phi}_1(e^{-z}u_1, e^zv_1) \cdots \overline{\Phi}_n(e^{-z}u_n, e^zv_n)\Omega$$

noting that the conditions in Conc. 1.9 are fulfilled. In particular, the condition  $0 < \text{Im} < \pi$  is used to ensure that, since  $u_i < 0, v_i > 0$ , we have  $\text{Im}(e^{-z}u_i) > 0$  and  $\text{Im}(e^z v_i) > 0$  as required by (1.25a). The value of this function at  $z = i\pi$  equals the RHS of (1.30). Therefore the theorem is proved.

#### 1.11

**Theorem 1.12 (PCT theorem).** We have an antiunitary map  $\Theta : \mathcal{H} \to \mathcal{H}$ , called the **PCT operator**, such that

$$\Theta \cdot \Phi_1(\mathbf{x}_1) \cdots \Phi_n(\mathbf{x}_n) \Omega = \Phi_1(-\mathbf{x}_1)^{\dagger} \cdots \Phi_n(-\mathbf{x}_n)^{\dagger} \Omega$$
(1.31)

for any  $\Phi_1, \ldots, \Phi_n \in \mathscr{Q}$  and mutually spacelike  $\mathbf{x}_1, \ldots, \mathbf{x}_n$ .

Equivalently,  $\Theta$  is defined by

$$\Theta \cdot \widetilde{\Phi}_1(u_1, v_1) \cdots \widetilde{\Phi}_n(u_n, v_n) = \widetilde{\Phi}_1(-u_1, -v_1)^{\dagger} \cdots \widetilde{\Phi}_n(-u_n, -v_n)^{\dagger} \Omega$$
(1.32)

*Proof.* The existence of an antilinear isometry  $\Theta$  satisfying (1.32) is equivalent to showing that (cf. (0.3))

$$\langle \widetilde{\Phi}_{1}(\mathbf{u}_{1}) \cdots \widetilde{\Phi}_{n}(\mathbf{u}_{n}) \Omega | \widetilde{\Psi}_{1}(\mathbf{u}_{1}') \cdots \widetilde{\Psi}_{k}(\mathbf{u}_{k}') \Omega \rangle$$

$$= \langle \widetilde{\Psi}_{1}(-\mathbf{u}_{1}')^{\dagger} \cdots \widetilde{\Psi}_{k}(-\mathbf{u}_{k}')^{\dagger} \Omega | \widetilde{\Phi}_{1}(-\mathbf{u}_{1})^{\dagger} \cdots \widetilde{\Phi}_{n}(-\mathbf{u}_{n})^{\dagger} \Omega \rangle$$

$$(\star)$$

if  $\mathbf{u}_1, \ldots, \mathbf{u}_n$  are spacelike, and  $\mathbf{u}'_1, \ldots, \mathbf{u}'_k$  are spacelike. (We do not assume that, say,  $\mathbf{u}_1$  and  $\mathbf{u}'_1$  are spacelike.)

It suffices to prove this in the special case that  $\mathbf{u}_1, \ldots, \mathbf{u}_n, \mathbf{u}'_1, \ldots, \mathbf{u}'_k$  are mutually spacelike. Then the general case will follow that both sides of the above relation can be analytically continued to suitable regions as functions of  $\mathbf{u}_1, \ldots, \mathbf{u}_n$ . For example, the fact that  $H_0, H_1 \ge 0$  implies that

$$\widetilde{\Phi}_{i}^{\mathbf{i}\zeta H_{0}+\mathbf{i}\gamma H_{1}}\widetilde{\Phi}_{1}(\mathbf{u}_{1})\cdots\widetilde{\Phi}_{n}(\mathbf{u}_{n})\Omega=\widetilde{\Phi}_{1}(\mathbf{u}_{1}+(\zeta,\gamma))\cdots\widetilde{\Phi}_{n}(\mathbf{u}_{n}+(\zeta,\gamma))\Omega$$

is continuous on  $\{(\zeta, \gamma) \in \mathbb{C}^2 : \operatorname{Im} \zeta \ge 0, \operatorname{Im} \gamma \ge 0\}$  and holomorphic on its interior. Set  $\Gamma_i = \Psi_i^{\dagger}$ . Then ( $\star$ ) is equivalent to

By the PT Thm. 1.11, this relation is equivalent to

 $\square$ 

But this of course holds since  $e^{-\pi K}\Omega = \Omega$  by Poincaré invariance.

Combining the PT Thm. 1.11 with the PCT Thm. 1.12, we conclude that  $e^{-\pi K}$  is an injective positive operator,  $\Theta$  is antinitary, and

$$\Theta e^{-\pi K} A \Omega = A^{\dagger} \Omega \tag{1.33a}$$

where A is a product of spacelike separated field in W. The rigorous statement should be that

$$A = \Phi_1(f_1) \cdots \Phi_n(f_n)$$

where  $\Phi_1, \ldots, \Phi_n \in \mathcal{Q}$ , and  $f_i \in C_c^{\infty}(O_i)$  where  $O_1, \ldots, O_n \subset W$  are open and mutually spacelike. If we let  $\mathscr{A}(W)$  be the \*-algebra generated by all such A, then by the Poincaré invariance, for each  $g \in P^+(1, d)$  we have

$$U(g)\mathscr{A}(\mathcal{W})U(g)^{-1} = \mathscr{A}(g\mathcal{W})$$

In particular, since for the Lorentz boost  $\Lambda$  we have  $\Lambda(s)W = W$ , we therefore have

$$e^{\mathbf{i}sK}\mathscr{A}(\mathcal{W})e^{-\mathbf{i}sK} = \mathscr{A}(\mathcal{W}) \tag{1.33b}$$

for all  $s \in \mathbb{R}$ . Since the PT transformation sends W to -W, the definition of  $\Theta$  clearly also implies

$$\Theta \mathscr{A}(\mathcal{W})\Theta^{-1} = \mathscr{A}(-\mathcal{W}) \tag{1.33c}$$

Note that since  $\mathcal{W}$  is local to  $-\mathcal{W}$ , we have  $[\mathscr{A}(\mathcal{W}), \mathscr{A}(-\mathcal{W})] = 0$ . Therefore,  $\Theta \mathscr{A}(\mathcal{W})\Theta$  is a subset of the (in some sense) commutant of  $\mathscr{A}(\mathcal{W})$ .

#### 1.13

The set of formulas (1.33) is reminiscent of the Tomita-Takesaki theory, one of the deepest theories in the area of operator algebras. The setting is as follows.

Let  $\mathcal{M}$  be a von Neumann algebra on a Hilbert space  $\mathcal{H}$ . Namely,  $\mathcal{M}$  is a \*-subalgebra of End( $\mathcal{H}$ ) closed under the "strong operator topology". (We will formally introduce von Neumann algebras in a later section.) Let  $\Omega \in \mathcal{H}$  be a unit vector. Assume that  $\Omega$  is **cyclic** (i.e.  $\mathcal{M}\Omega$  is dense) and **separating** (i.e., if  $x \in \mathcal{M}$  and  $x\Omega = 0$  then x = 0) under  $\mathcal{M}$ . Then the **Tomita-Takesaki theorem** says that the linear map

$$S: \mathcal{M}\Omega \to \mathcal{M}\Omega \qquad x\Omega \mapsto x^*\Omega$$

is antilinear and closable. Denote its closure also by S, and consider its polar decomposition  $S = J\Delta^{\frac{1}{2}}$  where  $\Delta$  is a positive closed operator, and J is an antiunitary map. Then  $\Delta$  is injective, we have  $J^{-1} = J^* = J$ , and

$$\Delta^{\mathbf{i}s}\mathcal{M}\Delta^{-\mathbf{i}s}=\mathcal{M}\qquad J\mathcal{M}J=\mathcal{M}'$$

where  $\mathcal{M}'$  is the commutant  $\{y \in \text{End}(\mathcal{H}) : xy = yx \ (\forall x \in \mathcal{M})\}$ . We call  $\Delta$  and J respectively the **modular operator** and the **modular conjugation**.

To relate the Tomita-Takesaki theory to QFT, one takes  $\mathcal{M}$  to be  $\mathfrak{A}(\mathcal{W})$ , the von Neumann algebra generated by  $\mathscr{A}(\mathcal{W})$ . Note that the elements of  $\mathscr{A}(\mathcal{W})$  are typically unbounded operators, whereas those of  $\mathfrak{A}(\mathcal{W})$  are bounded. Thus, the meaning of "the von Neumann algebra generated by a set of closed/closable operators" should be clarified. This is an important notion, and we will study it in a later section.

To apply the setting of Tomita-Takesaki, one should first show that the vacuum vector is cyclic and separating under  $\mathfrak{A}(W)$ . This is not an easy task, although it is relatively easier to show that  $\Omega$  is cyclic and separating under  $\mathscr{A}(W)$ . Moreover, we have

**Theorem 1.13 (Bisognano-Wichmann).** Let  $\Delta$  and J be the modular operator and the modular conjugation of  $(\mathfrak{A}(W), \Omega)$ . Then  $J = \Theta$  and  $\Delta^{\frac{1}{2}} = e^{-\pi K}$ .

Since (1.33c) easily implies  $\Theta \mathfrak{A}(W) \Theta^{-1} = \mathfrak{A}(-W)$ , together with  $JMJ^{-1} = M'$  we obtain

$$\mathfrak{A}(\mathcal{W})' = \mathfrak{A}(-\mathcal{W}) \tag{1.34}$$

a version of **Haag duality**.

One of the main goals of this course is to give a rigorous and self-contained proof of the PCT theorem, the Bisognano-Wichmann theorem, and the Haag duality for 2d chiral conformal field theories.

#### 1.15

For a general odd number d > 0, the above results should be modified as follows. Let *K* be the generator of the **Lorentz boost** 

$$\Lambda(s) = \begin{pmatrix} \cosh s & \sinh s & 0 \\ \sinh s & \cosh s & 0 \\ \hline & & 1 \\ 0 & & \ddots \\ & & & 1 \end{pmatrix}$$

Let  $\Lambda(i\pi) = \text{diag}(-1, -1, 1, ..., 1)$ , which does not belong to  $P^+(1, d)$  since it reverses the time direction (although it has positive determinant). Then the PT Thm. 1.11 should be modified by replacing (1.29) with

$$e^{-\pi K} \Phi_1(\mathbf{x}_1) \cdots \Phi_n(\mathbf{x}_n) \Omega = \Phi_1(\Lambda(\mathbf{i}\pi)\mathbf{x}_1) \cdots \Phi_n(\Lambda(\mathbf{i}\pi)\mathbf{x}_n) \Omega$$
(1.35)

Let  $\rho = \text{diag}(1, 1, -1, \dots, -1)$ , which has determinant 1 (since *d* is odd) and hence belongs to SO<sup>+</sup>(1, *d*). Then the PCT Thm. 1.12 still holds verbatim. Let

$$\mathcal{W} = \{ (a_0, \dots, a_n) \in \mathbb{R}^{1,d} : -a_1 < a_0 < a_1 \}$$
(1.36)

Then the **Bisognano-Wichmann theorem** says that  $e^{-\pi K}$  is the modular operator of  $(\mathfrak{A}(W), \Omega)$ , and  $\Theta U(\rho)$  is the modular conjugation.

We refer the readers to [Haag, Sec. V.4.1] and the reference therein for a detailed study.

# Index

Antiunitary, 2 Bisognano-Wichmann theorem, 13 Configuration space, 2 Haag duality, 13 Locality, 4 Lorentz boost, 13 Lorentz boost  $\Lambda$ , 9 Lorentz group SO<sup>+</sup>(1, *d*), 3 Parity transformation, 9 PCT operator, 11 Poincaré group P<sup>+</sup>(1, *d*), restricted, 3 Smeared field, 5 Spacelike (separated), 3 Time reversal, 9

antilinear, 2

 $\operatorname{Conf}^n(X)$ , 2

PCT, **11** 

# References

- [Gui-S] Gui, B. (2021). Spectral Theory for Strongly Commuting Normal Closed Operators. See https://binguimath.github.io/
- [Haag] Haag, G. Local quantum physics. Fields, particles, algebras. 2nd., rev. and enlarged ed. Berlin: Springer-Verlag (1996)

YAU MATHEMATICAL SCIENCES CENTER, TSINGHUA UNIVERSITY, BEIJING, CHINA. *E-mail*: binguimath@gmail.com