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Notations

N=1{0,1,2,...}, Z, ={1,2,3,... }.

Unless otherwise stated, an unbounded operator 7' : H — K (where H, K are
Hilbert spaces) denotes a linear map from a dense linear subspace Z(1') < H to
H. 2(T) is called the domain of 7. We let T™* be the adjoint of 7'. In practice, we
are also interested in 7™ defined on a dense subspace of its domain (7). We
call its restriction a formal adjoint of 7" and denote it by 7.

Given a Hilbert space H, its inner product is denoted by (£, ) € H? — {&|n).
We assume that it is linear on the first variable and antilinear on the second one.
(Namely, we are following mathematician’s convention.)

Whenever we write (£, 7), we understand that it is linear on both variables.
E.g. (-,-) denotes the pairing between a vector space and its dual space.

If #, K are Hilbert spaces, we let

Hom(H, K) = {Bounded linear maps H — H} End(H) = Hom(#H,H) (0.1)
If X is a set, the n-fold configuration space Conf"(X) is
Conf"(X) = {(x1,...,2,) € X 1 2; # x;if i # j} (0.2)

Definition 0.1. A map of complex vector spaces T' : V' — V' is called antilinear
or conjugate linear if 7'(a¢ + bn) = aT¢ + bTn forall {,n e Vand a,be C. If V
and V"’ are (complex) inner product spaces, we say that 7" is antiunitary if it is am
antiliear surjective and satisfies ||7¢| = ||| for all { € V, equivalently,

(TE|Tn) = {(&n) = (|&) (0.3)
forall {,neV.



1 Introduction: PCT symmetry, Bisognano-
Wichmann, Tomita-Takesaki

Algebraic quantum field theory (AQFT) is a mathematically rigorous ap-
proach to QFT using the language of functional analysis and operator algebras.
The main subject of this course is 2d algebraic conformal field theory (ACFT),
namely, 2d CFT in the framework of AQFT.

1.1

Let d € Z,. We first sketch the general picture of an (1 + d) dimensional
Poincaré invariant QFT in the spirit of Wightman axioms. We consider Bosonic
theory for simplicity.

We let R be the (1 + d)-dimensional Minkowski space. So it is R*¢ but with
metric tensor

ds* = (dz®)? — (dz")* — - - — (dz?)? (1.1)

Here 2° denotes the time coordinate, and z', . .. , % denote the spatial coordinates.
The (restricted) Poincaré group is

P*(1,d) = RY x SO™(1,d)

Here, R acts by translation on R, SO*(1,d) is the (restricted) Lorentz group,
the identity component of the (full) Lorentz group O(1,d) whose elements are
invertible linear maps on R"“ preserving the Minkowski metric.

Remark 1.1. Any g € O(1,d) must have determinent +1. One can show that
SO*(1,d) is precisely the elements g € O(1, d) such that det ¢ = 1, and that g does
not change the direction of time (i.e., if v = (vy, ..., vq4) € R satisfies vy > 0, then
the first component of gv is > 0). See [Haag, Sec. 1.2.1].

Definition 1.2. We say that x = (zq,...,24),y = (vo,...,v4) € R are spacelike
(separated) if their Minkowski distance is negative, i.e.,

(o —v0)? < (1 —)* + -+ + (x4 — va)*

1.2

A Poincaré invariant QFT consists of the following data:

(1) We have a Hilbert space H.



(2) There is a (strongly continuous) projective unitary representation U of
P*(1,d) on H. In particular, its restriction to the translation on the k-th
component (where £ = 0,1,...,d) gives a one parameter unitary group
7¥ € R — exp(iz* P;) where P, is a self-adjoint operator on H.

(3) (Positive energy) The following are positive operators:

Py=0 (P)? = (P)? = —(P)*=0
The operator F, is called the Hamiltonian or the energy operator. P, ..., P,
are the momentum operators. (Py)* — (P;)? — - -+ — (P;)? is the mass.

(4) We have a collection of (quantum) fields 2, where each ® € 2 is an
operator-valued function on R**. For each x € R, ®(z) is a “linear op-
erator on H".

(5) (Locality) If x1, x, € R are spacelike and ®,, &, € 2, then

[@1(1’1), (I)Q(CCQ)] =0 (12)
(6) (*-invariance) For each ® € 2, there exists ® € 2 such that
d(x)F = of(x) (1.3)

Moreover, ' = &.

(7) (Poincaré invariance) There is a distinguished unit vector! ), called the vac-
uum vector, such that

U(g) Vge P (1,d)
Moreover, for each g € P (1,d) and ® € 2, we have
U(g)2(x)U(g)"" = @(gx) (14)
(8) (Cyclicity) Vectors of the form
Dy (x1) - -+ P ()2 (15)
(where n € N, x4, ..., x, € R are mutually spacelike, and ®4,...,®, € 2)

span a dense subspace of H.

Remark 1.3. In some QFT, there is a factor (a function of x) before ®(gx) in the
Poincaré invariance relation (1.4). Similarly, there is a factor before ®'(x) in the =-
invariance formula (1.3). We will encounter these more general covariance prop-
erty later. In this section, we content ourselves with the simplest case that the

factors are 1.

Remark 1.4. By the Poincaré invariance and the cyclicity, the action of P* (1, d) is
uniquely determined by 2 by

U(g)P1(x1) - -+ Pu(x0)2 = P1(gx1) - - - P9, )2 (1.6)

1A unit vector denotes a vector with length 1
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1.3

Technically speaking, ®(x) can not be viewed as a linear operator on #. It
cannot be defined even on a sufficiently large subspace of #. One should think
about smeared fields

B(f) = j B (x)f (x)dx (17)

where f € C*(RY). (In contrast, we call ®(x) a pointed field.) Then ®(f) is
usually a closable unbounded operator on H with dense domain Z(®(f)). More-
over, Z(®(f)) is preserved by any smeared operator U(g). Therefore, for any
f1,- -y o € CP(RY?) the following vector can be defined in H:

The precise meaning of cyclicity in Subsec. 1.2 means that vectors of the form (1.8)
span a dense subspace of H. Locality means that for fi, fo € C*(R"¢) compactly
supported in spacelike regions, on a reasonable dense subspace of H (e.g., the
subspace spanned by (1.8)) we have

[@1(f1)aq)2(f2)] =0 (1-9)

The *-invariance means that

(@(f)E|n) = &l (f)m) (1.10)

for each &, 1) in the this good subspace.

1.4

In the remaining part of this section, if possible, we also understand ®(x) as
a smeared operator ®(f) where f € C*(R") satisfies § f = 1 and is supported
in a small region containing x. Thus, ®(x) can almost be viewed as a closable
operator. Hence the expression (1.5) makes sense in H.

We now explore the consequences of positive energy. As we will see, it implies
that ®1(x;) - - - ,,(x,)f2, a function of x,, can be analytically continued.

The fact that P, > 0 implies that when ¢ > 0, ' is a bounded linear operator
with operator norm < 1. Therefore, if 7 belongs to

J = {Im7 > 0}

then ei™?0 = eiRem . o=Im7 jg bounded. Indeed, 7 € J — €™ is continuous, and is
holomorphic on IntJ.



Let ey = (1,0,...,0). Let xy,...,x, € R be distinct. By the Poincaré covari-
ance, the relation

eiTPoq)1<X1) S @n(xn)Q = (I)l(xl + 7—60) e (I)n(xn + TeO)Q (111)

holds for all real 7. Moreover, the LHS is continuous on J and holomorphic on
IntJ. This suggests that the RHS of (1.11) can also be defined as an element of H
when 7 € J.

1.5
We shall further explore the question: for which x; is in C? can
Dy (x1) - - - Py (x,)$2 be reasonably defined as an element of #?

Remark 1.5. We expect that the smeared fields should be defined on any F-
smooth vectors, i.e., vectors in ﬂk>0 9(PF). For each r > 0, since one can find
Ch.» = 0 such that A?** < C},,.¢* for all \ > 0, we conclude that

Rng(e ") = (™) ﬂ P2(PF) (1.12)
k=0

The above remark shows that ®(x;), viewed as a smeared operator localized
on a small neighborhood of x;, is definable on €20 ®,(x5)Q = Py((oey + x2)Q2
whenever Im{, > 0. Thus, heuristically, ((1,() — €“170®;(x;)el 2Py (x,) 02
should also be holomorphic on

{(¢1, &) € € : Im(y, ImGp > 0}

Repeating this procedure, we see that the holomorphicity holds for

eiCIPOCI)l(Xl)eiCQPO(I)Q (Xg) . ,eiCnPo(I)n(xn)Q
when Im¢; > 0. By Poincaré covariance, the above expression equals

Dy (x1 + G1€0)Pa(x2 + (C1 + C2)eo) - Pn(Xy + (G + - + (p)ep) 2
Therefore,
(Cla . ,Cn) —> CDl(Xl + Cleo) s (I)n<Xn + Cneo> € H (113)

should be holomorphicon {¢, € C": 0 < Im(; < --- < Im(,}.

By the locality axiom, the order of products of quantum fields can be ex-
changed. Thus, our expectation for a reasonable QFT includes the following con-
dition:

Conclusion 1.6. Let xy, . ..,x, € R Then (1.13) is holomorphic on
{(C1y ... C) €C* : ImG; > 0, and Im¢; # Im(; if i # j} (1.14a)
Moreover, since (1.13) is also definable and continuous on
{(C1y---,C) eR" i xq + (ye€4, ..., X, + (€0 are mutually spacelike} (1.14b)

we expect that the function (1.13) is continuous on the union of (1.14a) and (1.14b).
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1.6

We have (informally) derived some consequences from the positivity of F.
Note that since P, > 0, we have U(g)PU(g)~! = 0 for each g € SO*(1,d). Since
Py is the generator of the flow t € R — teg € RV < P*(1,d), U(g)PRyU(g)~" is the
generator of the flow

teR— g(teg)g™' =1t- geg (1.15)
Therefore, if gey = (ay, . .., a,), then
U(g)PoU(g)™" = agPy+ -+ + an Py (1.16)

Hence the RHS must be positive. But what are all the possible ge,?

Remark 1.7. One can show that the orbitof ey = (1,0,...,0) under SO* (1, d) is the
upper hyperbola with diameter 1, i.e., the set of all (ao, . . ., a,,) € R satisfying

a0 >0 (a0)?— (@) — (a)? =1 (117)

Thus ), a;P; > 0 for all such a,. What are the consequences of this positivity?

1.7
To simplify the following discussions, we set d = 2 and
t =2 r=x!
We further set
u=t—x v=t+ux (1.18)
so that
:u—;—v :B:—u;—v (1.19)
The Minkowski metric becomes
(dt)? — (dz)* = du - dv (1.20)
Then
(u,v) is spacelike to (u’,v") — (u—u)(v—2")<0 (1.21)
For each ® € 2, we write
B(u,v) = 0(t,x) = d(Y, LY (1.22)

272
We let H, and H; be the self-adjoint operators such that
Hy=PF,— P H =F+P
so that they are the generators of the flow ¢ — (¢, —t) and t — (¢, ).

Remark 1.8. Since R is an abelian group, we know that P, commutes with P;.
Hence H, commutes with H;.



Figure 1.1. The coordinates u, v

1.8

The orbit of e, under SO*(1,1) is the unit upper hyperbola (2°)? — (z1)* =
1,2 > 0. Equivalently, it is uv = 1,u > 0. According to Subsec. 1.6, we conclude
that byHy + by H; > 0 for each by, by satisfying byb; = 1,by > 0 (equivalently, for
each by > 0,b; > 0). This implies

Hy>0 H >0 (1.23)

Therefore, similar to the argument in Subsec. 1.5 (and specializing to the special
case that x; = - - - = x,, = 0), the holomorphicity of

(C.’ ’Y.) L eiC1H0+i’Y1H1 &)1(O>eiC2Ho+i’72H1 &)2(0) o eiCnHoJri'YnHl &)n(())Q

on the region Im¢; > 0, Im~,; > 0, together with locality, implies:

Conclusion 1.9. Let ®,...,®, € 2. Then

~ ~

(U1, V1, .o U, V) — Pr(ug, v1) - DUy, v,)L2 (1.24)
is holomorphic on
{(te,vs) € C*™ : Tmu; > 0, Imov; > 0, Imu; # Imuj, Imv; # Imo; ifi # 5} (1.25a)
and can be continuously extended to
{(Ue,v0) € R*™ ¢ (u; — uj) - (v; —v;) < 0ifi # j} (1.25b)

Rigorously speaking, the above mentioned “continuity" of the extension
should be understood in terms of distributions. Here, we ignore such subtlety
and view pointed fields as smeared field in a small region.

1.9

We note that diag(—1, 1) is not inside SO* (1, 1), since it reverses the time di-
rection. Neither is diag(1,—1) in SO"(1, 1) because its determinant is negative.
Consequently, the QFT is not necessarily symmetric under the following opera-
tions:



* Time reversal ¢ — —z.
¢ Parity transformation z — —z.

e PT transformation (t,z) — (—t,—z), the combination of time and parity
inversions.

Mathematically, this means that the maps

(I)l(tlaxl)"'q)n(tnyxn)Q = (I)l(_tlaxl)(I)n(_tnaxn)Q
q)l(tl;ml)’"(I)’rz<tn7:l;n)§2 — @1(t1,—l‘1> q)n(tnu_xn)ﬁ
q)l<t17xl)"'q)n(tn7xn)9 — q)l(_tla_xl)q)n(_tna_xn)Q

(where (t1,21),...,(tn, ,) are mutually spacelike) are not necessarily unitary.
(Compare Rem. 1.4.) Simiarly, the QFT is not necessarily symmetric under
Charge conjugation ® — @', which means that the map

q)l(tlaxl)"'(Pn(tnamn)Q — ch(tnuxn)Tq)l(tlaxl)TQ
:q)l(tl, ZL’l) s @L(tn, ZEn)Q

is not necessarily (anti)unitary. However, as we shall explain, the combination of
PCT transformations is actually unitary, and hence is a symmetry of the QFT. This
is called the PCT theorem.

1.10

To prove the PCT theorem, we shall first prove that the PT transformation,
though not implemented by a unitary operator, is actually implemented by the
analytic continuation of a one parameter unitary group.

Definition 1.10. The one parameter group s — A(s) € SO (1, 1) defined by
A(s)(u,v) = (e °u, e’v) (1.26)

is called the Lorentz boost. Equivalently,

As) H _ {coshs sinhs} H 127)

x sinhs coshs| |z
Define the (open) right wedge )V and left wedge —)V by

W={(u,v)eR*:v>0,u<0}={(tz)eRM: -z <t<uz} (1.28)



Figure 1.2.

Theorem 1.11 (PT theorem). Let (uy, v1), ..., (U, v,) € W be mutually spacelike (i.e.
satisfying (u; — u;)(v; —v;) < 0if 1 # j), cf. Fig. 1.2. Let ®4,..., 0, € 2. Let K be the
self-adjoint generator of the Lorentz boost, i.e.,

U(A(s)) = &
Then ®1(x1) - - - ®,,(x,)S2 belongs to the domain of =™, and
e_WK(I)l(Xl) T (I)n(xn)Q = q)l(_xl) T én(_xn)Q (129)

—nK
7

Equivalently, &)1(u1, V1) &)n(un, v,,)$2 belongs to the domain of e and

e ™D (g, v1) Dy (U, 1) Q2 = By (—ug, —v1) -+ By~ —0,) (1.30)

Note that the requirement that (uy,v1), ..., (u,, v,) € W are spacelike means, after
relabeling the subscripts, that

O<ov; <--- <y, 0<—u <+ < —uy,

Proof. This theorem relies on the following fact that we shall prove rigorously in
the future:

* Let T' > 0 be a self-adjoint operator on H with Ker(7') = 0. Let r > 0. Then
¢ € H belongs to 2(T™) iff the function s € R — T'¢ € H can be extended to
a continuous function F' on

{zeC:—r <Imz <0}
and holomorphic on its interior. Moreover, for such £ we have F/(—ir) = T"¢.

In fact, the function F(z) is given by z — T*¢.
We shall apply this result to 7' = e * and r = 7. For that purpose, we must
show that the H-valued function of s € R defined by

™Dy (ur,v1) - Py (U, )2 = Py uy, €%vy) -+ - Dy (€ uy, €v,)S2
can be extended to a continuous function on

{zeC:0<Imz <7}

10



and holomorphic on its interior.
In fact, we can construct this H-valued function, which is

2 51(6_%1, evy) - &Dn(e_zun, e*v,)Q

noting that the conditions in Conc. 1.9 are fulfilled. In particular, the condition
0 < Im < 7 is used to ensure that, since u; < 0,v; > 0, we have Im(e *u;) > 0 and
Im(e*v;) > 0 as required by (1.25a). The value of this function at z = ir equals the
RHS of (1.30). Therefore the theorem is proved. O

1.11

Theorem 1.12 (PCT theorem). We have an antiunitary map © : H — H, called the
PCT operator, such that

O Py(x1) - Dp(x,)Q2 = By (—x1) -+ D (—x,) 02 (1.31)
forany ®4,...,®, € 2 and mutually spacelike x4, . .. ,X,.
Equivalently, © is defined by
O - Dy (ug, v1) -+ Py (Un, vy) = Py (—up, —v1)T e+ By (—t, —,)TQ (1.32)

Proof. The existence of an antilinear isometry O satisfying (1.32) is equivalent to
showing that (cf. (0.3))

@) B (0,)20T ) - ()
= () B ) O () B () )

if uy, ... u, are spacelike, and u}, . .. uj, are spacelike. (We do not assume that, say,
u; and u] are spacelike.)

It suffices to prove this in the special case that uy,...,u,,uj,...,u) are mutu-
ally spacelike. Then the general case will follow that both sides of the above re-
lation can be analytically continued to suitable regions as functions of uy, ..., u,.
For example, the fact that Hy, 4, > 0 implies that

ei(H0+i7H1&)1<u1> e (T)n(un)ﬂ = &)1(111 + (C, ’7)) e &)n<un + (Ca 7))9

is continuous on {(¢,v) € C? : Im¢ > 0,Imy > 0} and holomorphic on its interior.
SetT'; = \IJ; Then () is equivalent to

(@1(ur) - By (w) Ly () - T (w2 Q)
=(@1 () - By (—u) Ty (—u)) - T2 Q)
By the PT Thm. 1.11, this relation is equivalent to
(@1 () - By ()T () - T (w})202)
=Py (uy) - B (u) T () - T ()2 Q)

But this of course holds since e ™2 = by Poincaré invariance. O

(*)
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1.12
Combining the PT Thm. 1.11 with the PCT Thm. 1.12, we conclude that e~

is an injective positive operator, © is antinitary, and
Oe ™ AN = ATQ (1.33a)

where A is a product of spacelike separated field in W. The rigorous statement
should be that

A=01(f1) - Pulfn)
where ¢,,...,®, € 2, and f; € C*(0;) where Oy,...,0,, < W are open and
mutually spacelike. If we let &7 ()V) be the #-algebra generated by all such A, then
by the Poincaré invariance, for each g € P*(1, d) we have
Ulg) W)U(g)~" = o (gWV)

In particular, since for the Lorentz boost A we have A(s)WW = W, we therefore
have

Ko (W)e ™5 = o7/ (W) (1.33b)
for all s € R. Since the PT transformation sends W to —W, the definition of ©
clearly also implies

0d (W) = o (-W) (1.33¢)

Note that since W is local to —W, we have [/ (W), «/(—W)] = 0. Therefore,
©.47 (V)0 is a subset of the (in some sense) commutant of <7 (W).

1.13

The set of formulas (1.33) is reminiscent of the Tomita-Takesaki theory, one of
the deepest theories in the area of operator algebras. The setting is as follows.

Let M be a von Neumann algebra on a Hilbert space H. Namely, M is a
+-subalgebra of End(#) closed under the “strong operator topology". (We will
formally introduce von Neumann algebras in a later section.) Let 2 € H be a unit
vector. Assume that (2 is cyclic (i.e. M) is dense) and separating (i.e., if x € M
and 22 = 0 then z = 0) under M. Then the Tomita-Takesaki theorem says that
the linear map

S MQ — MQ ) — 2*0

is antilinear and closable. Denote its closure also by S, and consider its polar

decomposition S = JAz where A is a positive closed operator, and .J is an antiu-
nitary map. Then A is injective, we have J ' = J* = J, and

AP MA™S = M JMJT = M’
where M’ is the commutant {y € End(H) : zy = yz (Yo € M)}.We call A and J
respectively the modular operator and the modular conjugation.

12



1.14

To relate the Tomita-Takesaki theory to QFT, one takes M to be A()WV), the
von Neumann algebra generated by </ (W). Note that the elements of </ (W)
are typically unbounded operators, whereas those of (W) are bounded. Thus,
the meaning of “the von Neumann algebra generated by a set of closed/closable
operators” should be clarified. This is an important notion, and we will study it
in a later section.

To apply the setting of Tomita-Takesaki, one should first show that the vacuum
vector is cyclic and separating under 2(WV). This is not an easy task, although it is
relatively easier to show that Q is cyclic and separating under 7 (W). Moreover,
we have

Theorem 1.13 (Bisognano-Wichmann). Let A and J be the modular operator and the
modular conjugation of (A(W),2). Then J = © and Az = K,

Since (1.33c¢) easily implies OA(W)O~! = A(—W), together with JMJ ! = M’
we obtain

AW) = A(=W) (1.34)

a version of Haag duality.

One of the main goals of this course is to give a rigorous and self-contained
proof of the PCT theorem, the Bisognano-Wichmann theorem, and the Haag du-
ality for 2d chiral conformal field theories.

1.15

For a general odd number d > 0, the above results should be modified as
follows. Let K be the generator of the Lorentz boost

cosh s sinh s
sinhs coshs

A(s) = 1

0

1

Let A(ir) = diag(—1,—1,1,...,1), which does not belong to P* (1, d) since it re-
verses the time direction (although it has positive determinant). Then the PT Thm.
1.11 should be modified by replacing (1.29) with

eiﬂK(I)l(Xﬁ "' (I)n(xn)Q = CI)1<A<i7T)X1) e (I)n(A(iTr)Xn)Q (135)

Let p = diag(1,1,—1,...,—1), which has determinant 1 (since d is odd) and
hence belongs to SO™ (1, d). Then the PCT Thm. 1.12 still holds verbatim. Let

W = {(ag,...,a,) e R" : —a; < ag < a,} (1.36)

13



Then the Bisognano-Wichmann theorem says that e~ ™*

of (A(W),?), and OU (p) is the modular conjugation.
We refer the readers to [Haag, Sec. V.4.1] and the reference therein for a de-
tailed study:.

is the modular operator

14
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