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Abstract

LetV = @,,.y V(n) be a Cy-cofinite vertex operator algebra. We prove the conver-
gence of Segal’s sewing of conformal blocks associated to analytic families of pointed
compact Riemann surfaces and grading-restricted generalized V®~-modules (where
N = 1,2,...) that are not necessarily tensor products of V-modules, generalizing
significantly the results on convergence in [Gui23a].

We show that “higher genus pseudo-g-traces” (called pseudo-sewing in this arti-
cle) can be recovered from Segal’s sewing. Therefore, our result on the convergence of
Segal’s sewing implies the convergence of pseudo-sewing, and hence covers both the
convergence of genus-0 sewing in [HLZ12f] and the convergence of pseudo-g-traces
in [Miy04] and [Fio16].

Using a similar method, we also prove the convergence of Virasoro uniformiza-
tion, i.e., the convergence of conformal blocks deformed by non-automomous mero-
morphic vector fields near the marked points. The local freeness of the analytic
sheaves of conformal blocks is a consequence of this convergence. It will be used
in the third paper of this series to prove the sewing-factorization theorem.
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0 Introduction: towards the geometry of pseudo-g-traces

This paper is the second part of the series on conformal blocks associated to a Cs-
cofinite N-graded vertex operator algebra (VOA) V = @, _ V(n) and analytic families of
compact Riemann surfaces. The final goal of the series is to prove a sewing-factorization
theorem (SF theorem).

An outline of this theorem was presented in the Introduction of [GZ23]. In genus
0, this theorem encompasses the associativity of intertwining operators as proved by
Huang-Lepowsky-Zhang in [HLZ14, HLZ12a]-[HLZ12g]. In genus 1, we will show in
future paper that the SF theorem implies the modular invariance property studied in
[Zhu96, Miy04, AN13, Hua24]. In higher (i.e. arbitrary) genus, and when V is also ratio-
nal, the theorem specializes to the analytic version of the factorization theorem and the
(formal) sewing theorem proved by [DGT22], namely, Thm. 12.1 of [Gui23a].

0.1 Convergence of sewing conformal blocks

In this paper, we prove the convergence of sewing conformal blocks, which consti-
tutes half of the SF theorem. (The other half is that the sewing construction implements
an isomorphism of two spaces of conformal blocks: the space of conformal blocks before
sewing and the space of those after sewing.) The results proved in this paper are inter-
esting in their own right. Therefore, we have structured this paper in a way that it can be
read independently of the other parts of the series.

The sewing construction is the most fundamental operation in 2d conformal field the-
ory, as highlighted in Segal’s seminal works [Seg88, Seg04]. For a concise (and necessarily



incomplete) overview of the history behind the proof of convergence of sewing for ratio-
nal VOAs, we refer readers to the Introduction of [Gui23a].

In fact, the proof of convergence of sewing already played an important role in
the early history of VOAs. A notable feature of rational VOAs is that their characters
Tryg“ 21 (where M runs through all irreducibles of V) form a vector-valued modu-
lar form. More generally, Zhu proved in [Zhu96] the remarkable result that all v —
Try Y (v, 2)g=0 721 form an SL(2, Z)-invariant space. This modular invariance property
can be reformulated in the following way:

(1) Convergence of sewing. For 0 < |¢| < 1, the sewing construction v —
Try Yag (U (@), 1)¢%©) converges absolutely to a vacuum torus conformal block d,,.
(Here, U(«) is a change of coordinate operator expressed in terms of the Virasoro
operators.)

(2) Factorization. For each fixed ¢, every vacuum torus conformal block arises from the
sewing construction in (1). Moreover, this “factorization” process can be holomor-
phic with respect to q.

(3) Flat connections. The space of vacuum torus conformal blocks form a holomorphic
vector bundle together with a canonical modular-invariant (flat) connection V.

(4) Parallelism. The section ¢ — ¢, in (1) is parallel up to the projective term 57 where
cis the central charge. Namely, ¢V, &g = 574

A primary purpose of (3) and (4) is to ensure that the S and 7" matrices obtained by
modular transforming ¢~ 31 ¢, are “independent of ¢”.

The associativity of intertwining operators in [HLZ14, HLZ12a]-[HLZ12g] can be
phrased in a similar fashion, where V is not assumed to be rational:

(a) Convergence of sewing. The product Y;(wi,z1)Ya2(ws,22) resp. the iterate
V1(Va(we, 22 — z1)wr, 21) of intertwining operators (~ genus-0 three-pointed con-
formal blocks) converge absolutely on suitable domains to a genus-0 four-pointed
conformal block ¢, ., (with marked points 0, z1, 22, ).

(b) Factorization. For each fixed (suitable) z;, 22, every genus-0 conformal block with
marked points 0, z1, 22,0 can be factored into a product resp. an iterate of inter-
twining operators. Moreover, this factorization process can be holomorphic with
respect to z1, zo.

(c) Flat connections. The space of genus-0 four-pointed conformal blocks form a holo-
morphic vector bundle together with a canonical Mobius-invariant flat connection
V.

(d) Parallelism. The section (21, 22) — ¢, ., is parallel under V.

(c) and (d) ensure that the braiding and fusion matrices are “independent of 21, z2”.

We emphasize that factorization is the inverse process of sewing. Our SF theorem special-
izes to (1)+(2) in genus 1 and (a)+(b) in genus 0. The general theory related to (3)+(4) and
(c)+(d) will also be given in this paper.



0.2 Why do pseudo-g-traces appear in genus-1 but not in genus-0 ?

One of the most puzzling phenomena for irrational Ca-cofinite VOAs is that (a)-(d)
continue to hold, as indicated by the works of Huang-Lepowsky-Zhang; however, (2)
does not hold. Indeed, Miyamoto showed in [Miy04] that to achieve a factorization as
in (2), it is necessary to consider in (1) not only the standard g¢-traces, but also pseudo-
g-traces Tr§;Yar(U(a)v,1)¢™ ). We aim to give a conceptual explanation of the following
question: Why are pseudo-q-traces needed only in genus-1 but not in genus-0?

The permutation-twisted /untwisted correspondence obtained in [Gui2l] suggests
that sewing and factorization could be applied to higher genus Riemann surfaces even
without (explicitly) appealing to pseudo-g-traces. (Therefore, Segal’s sewing is sufficient
in finite logarithmic CFT!) That correspondence says roughly that if G is a subgroup of
Sy acting by permutation on V&V, then the genus-0 conformal blocks for G-twisted VOV -
modules correspond to conformal blocks for (untwisted) V-modules and branched cov-
erings of P!. Moreover, the sewing of the LHS corresponds to the sewing of the RHS.
Therefore:

¢ The convergence of products/iterates and the associativity of intertwining opera-
tors among G-twisted V®-modules' can be translated to the sewing-factorization
theorem for certain higher genus conformal blocks of untwisted V-modules via
branched coverings.

In fact, [Gui2l, Sec. 0.2] explains how the associativity of Zs-twisted intertwining op-
erators corresponds to the untwisted modular invariance. Although [Gui21] focuses on
V®N-modules that are tensor products of V-modules (or their direct sums), most results
in [Gui21] can be easily generalized to arbitrary V®V-modules.

0.3 Segal’s (ordinary) sewing suffices in arbitrary genus

In the Introduction of [GZ23], we have already presented the sewing construction
in arbitrary genus that ensures the factorization holds. (In fact, our SF theorem is deeply
inspired by the observation in Sec. 0.2.) Let us briefly recall its formulation. For simplicity,
instead of a family of Riemann surfaces, we consider a single fiber

X = (Clad|al,a?) = (Clay, ..., xn|a), ... a2, ... &)

where Cisa (possibly disconnected) compact Riemann surface, and ., =, = are distinct
marked points on C. We assume that each connected component of C' contains at least
one of z1,...,zyN. At each x;, x;, x;{ we associate an (analytic) local coordinate 7, {;, @;.
After choosing suitable ¢; > 0, one can sew X along each pair of points (x5, 27) via the
relation {;w; = ¢;. The result of sewing is a family of nodal curves with marked points
(and local coordinates)

X=(r:C— Blsi,...,sn)

! This holds at least when V is C.2-cofinite and G is solvable. In that case, (V¥ )G is C-cofinite [Miy15]. So
one can combine Huang-Lepowski-Zhang and [McR21] to prove the associativity for intertwining operators
of V¥ among G-twisted modules.



Here, B = D, := D, x ---Dep and D, = {q; € C : |gj| < ¢;}. The marked points
%, x] disappear after sewing, and the constant extension of z; gives the section ¢;.Let
D7, = D;; — {0}. Then X is a smooth family on D, := D/} x --- x D7,

Now, we choose a (grading-restricted) V®¥-module W associated simultaneously to
the marked points z, of X. Choose an V®F-module M associated to x!,, and associate the
contragredient module M’ to z.

We let 956* (W ® M ® M) be the space of conformal blocks associated to Xand W®
M ® M. Its elements are linear functionals

P:WMeM — C

satisfying certain invariance property under the action of sheaf of VOAs 7. Let L;(n) be
the Virasoro operator for the j-th component (cf. (1.1.3)). Let M = ), .cr M|y,] be the
decomposition of M with respect to the joint generalized eigenspaces of L;(0), ..., Lr(0).
Let q.L O qfl(o) . ~qéR(0). Then the sewing S of 1 (in the sense of Segal) is defined
by taking contraction in the usual sense (but not under a pseudo-trace), i.e.,

SP: W — C{qge}[logqe] = C{q1,...,qr}[logq, ... ,logqr]
SP(w) = Z Z P (we ®q.L°(0)m(A.,a) ® M(r,.0))

)\.G(CR aEQI,\.

where (m (5, o))acn,, is a (finite) basis of M(,,; with dual basis (173, a))ae,, - (Note that
L;(0) preserves each M, }.) See Subsec. 4.1.3 for the precise definition of S1.

Associate W also to the marked points ¢, (B) of X. Let 7;¥ (W) be the B-sheaf of confor-
mal blocks associated to X and W. Thus, on D7, a section of this sheaf is precisely a linear
map W — O(D[ ) whose restriction to each ¢, € D is a conformal block associated to W
and the fiber X,,. (See Rem. 3.1.1 for details.) A major result of this paper (Thm. 4.3.1)
is the generalization of the following theorem to the case that Xisa family of pointed
compact Riemann surfaces.

Theorem 0.3.1. Let ﬂé" (WRMEM'). Then S\ converges absolutely and locally uniformly
(a.lu.) on D to an element of HO(DX , 7 (W)) (i.e., a section of 73F (W) on D).

Now, when does the factorization hold in this setting? In other words, in which situa-
tion can every conformal block associated to X,, and W be obtained by sewing conformal
blocks associated to X and W@M®M’'? An answer has been provided in the Introduction
of [GZ23] and will be proved rigorously in the third part of the series:

e The factorization holds if the sewing of X is a disjoint sewing, namely, if C is a dis-
joint union of open subsets C’ L C” such that '/, ..., 2/; belong to C" and «7, ..., 2/,
belong to C”.

For example, in Sec. 0.1, the sewing in (a) is disjoint, any “branched covering” of (a) is
disjoint, but (1) is not a disjoint sewing.

Thus, we can address the question posed in Sec. 0.2: The reason that the sewing
construction v — TryYar(v, 1)¢“(® does not provide all vacuum torus conformal blocks
is that this type of sewing is a “self-sewing” rather than a disjoint sewing.
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There are two ways to achieve factorization for non-disjoint sewing. The first ap-
proach retains the sewing of conformal blocks but modifies the way of sewing compact
Riemann surfaces. The second approach does the opposite. More precisely:

(o) Transform the non-disjoint sewing of Riemann surfaces to a disjoint one, as shown
e.g. in Fig. 0.3.1. Then the ordinary sewing of conformal blocks (as in Segal’s work
[Seg88, Seg04]) is sufficient.

(B) Keep the sewing of Riemann surfaces. However, replace Segal’s (ordinary) sewing of
conformal blocks with pseudo-sewing (i.e. pseudo-g-trace).

(c=2 - (- =29

Figure 0.3.1 Transforming self-sewing to disjoint sewing

In Sec. 4.4, we will show that (3) arises naturally as a special case of (o). In future
work, we will show that in most typical cases, (o) and (3) are roughly equivalent. For
now, let me explain why the sewing in [Gui23a] is insufficient to achieve the factorization:
In that work, the V®"-module M is a tensor product of V-modules. As we will see in the
following section:

* The consideration of V®¥-modules that are not tensor products of V-modules (or
their direct sums) is closely related to the pseudo-trace construction.

0.4 A pseudo-trace End’(M) — C is a two-pointed genus-0 conformal block
associated to the V®?-submodule End’ (M) of M ®c M’

To illustrate the main idea behind the embedding (3) — («) mentioned above, let’s
examine the simplest case: Let Q and 21 be a 3-pointed resp. 2-pointed sphere with local
coordinates:

Q= (PY1,0,0;2 —1,1/2, 2) N = (PYoo,0;1/z, 2)

Here, z denotes the standard coordinate of C. Associate the vacuum module V to the
marked point 1 € Q. Let X be a V®2-module associated to the marked points (o0, 0) of

N. Its contragredient X' is associated to the marked points (o0, 0) of Q. Choose conformal
blocks

¢: VX - C T:X—>C

associated to Q and 91 respectively.

Let X be the sewing of  and 91 along two pairs of points: The first pair is (00g, con),
and the second pair is (Og, Oy).> See Fig. 0.4.1. Then X has base manifold B = D; x D;
where D; = {qg € C : |¢| < 1}. By Thm. 0.3.1, for each 0 < |¢1], |q2| < 1, Sg. (¢ ® 7T)
converges to a conformal block associated to V and the fiber X,, = X, 4.

Technically, this sewing does not satisfy our assumption in Sec. 0.3 that each component of Q119 contains
a marked point not intended for sewing. (Look at 91.) However, this minor issue can be easily circumvented
by propagating the conformal blocks. See Rem. 4.3.2.



Figure 0.4.1 Sewing 9 L1 N to get the torus X, 4,.

The factorization implies that any vacuum torus conformal block can be written as
Sq. (¢ ® T). We now explain how the pseudo-trace construction fits into our setting.

Let M be a V-module. If we let X be M ® M’ and let T : X ® X’ — C be the standard
pairing, then S,, (¢ ® T) is just the usual g-trace (where ¢ = ¢1¢2). However, we can let X
be a V®2-submodule of M ® M'.

The following procesure provides a major way to get V®2-submodules of M®M'. Let

End’(M) = (P Home (Mg, M)
A, ueC

where M is the weight-) generalized eigenspace. The canonical linear equivalence
End®(M) ~ M@ M’

makes End’(M) a V®2-module. Choose a unital subalgebra A of Endy(M)°. Then
End®(M) has a V®2-submodule

End% (M) := {T € End°(M) : (T'm)a = T'(ma) for all m € M, a € A}

We now assume that M is projective as a right A-module. Fix a symmetric linear
functional w : A — C. (Namely, w is linear and w(ab) = w(ba) for all a,b € A.) Through
the pseudo-trace construction in [Ari10], we obtain a symmetric linear functional

Tr* : End% (M) — C

The fact that T := Tr* is symmetric implies that it is a conformal block associated to 9t
and the V®2-module

X := End% (M)
Finally, the linear functional
¢: VM @M — C v@m' @m — Yy (v, )m,m")

is a conformal block associated to Q and V® M’ ® M. Using the fact that the vertex
operators of M commute with A, we see that ¢ descends to a linear map

¢ : V®Endy (M) — C

where End% (M) = D, rec Homa (M), My))* is the contragedient V®2-module of
End% (M). Thus one can define the sewing S(¢ ® Tr*) : V — C{q1, ¢2}[log q1,log ¢2],
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and by direct computation one sees that it has range in C{qi¢2}[log(gig2)]. If we let
v — Tr* (Y (v, 1)¢*(©)) denote the pseudo-g-trace construction as in [Miy04, AN13, Fiol6,
Hua?24], then as linear maps V — C{q}[log ¢] we have

T (Yia(—, 1)g"?) = S(¢ @ Tr)| (04.1)

q192=9

Thus, the pseudo-g-trace on the LHS is realized by the ordinary sewing of conformal
blocks on the RHS. In particular, the convergence of the ordinary sewing implies the con-
vergence of pseudo-g-traces. See Sec. 4.4 for the generalization of the above discussions
to arbitrary genus.

¢ Conclusion: The pseudo-g-traces can be recovered from Segal’s (ordinary) sewing.

0.5 Connections, local freeness, and the convergence of Virasoro uniformiza-
tion

Besides Thm. 4.3.1, in this paper, we also prove several results related to the con-
nections on the sheaves. These connections were already used in [Gui23a] to derive the
differential equations ensuring the convergence of sewing conformal blocks. In this pa-
per, we adopt the same method. The idea behind this method is to transform the sewing
to the uniformization of Riemann surfaces. Huang has already used this idea in [Hua97]
to study the convergence of sewing conformal blocks associated to spheres with non-
standard local coordinates.

Unlike [Gui23a], which takes a pragmatic view of these connections, this paper offers
a more thorough exploration of the topic for several reasons.

The parallelism of sewing up to a projective term

As suggested in Sec. 0.1, in genus-1, the SF theorem (including the convergence of
sewing) is insufficient to imply modular invariance. One also needs the flat connections
on the locally free sheaf of conformal blocks, and one needs to show that the sewing
is parallel under this connection up to a projective term. The general formula for the
projective term in arbitrary genus is given in Thm. 4.3.3. As we will show in a future
work, this formula accounts for the extra factor —g; appearing in the modular invariance
theorems.

Misunderstanding of the proof of analytic local freeness

Let us from now on assume that X = (7 : C — Blsi,...,sy) is a family of N-pointed
compact Riemann surfaces with local coordinate 7; at each ¢;(B). Associate a V®¥-module
M simultaneously to the marked points ¢, (5). A standard application of the connections
is to show that the sheaf of conformal blocks .7;¥ (W), as an O-module, is locally free.
(Namely, it is a (finite-rank) vector bundle on B.) As an application, the dimensions of
spaces of conformal blocks are topological invariants. See [TUY89, Uen97, Uen08, NT05,
DGT22] for instance.



We believe that the following aspect has not received sufficient attention in the lit-
erature: Almost all proofs of the local freeness of sheaves of conformal blocks only apply in the
algebraic setting but not in the complex analytic setting, the setting we take in our series of
papers. The algebraic local freeness is proved in the following way: First, it is proved that
the sheaf of coinvariants 7% (W) (whose dual sheaf is .7;*(W)) is coherent. Then, since
any coherent sheaf with a connection is locally free, it follows that 75 (W) is locally free,
and hence .7;¥ (W) is locally.

However, the above proof that .73 (W) is coherent relies heavily on the fact that B is
(locally) Noetherian. (See e.g. the proof of [NT05, Thm. 6.2.1].) Without the Noetherian
property for Op, one can only show that .73(W) is of finite type—that is, locally it has
an epimorphism from a free sheaf—but one cannot show that the sheaves of relations in
Tx(W) are of finite type, which is essential in defining coherent sheaves. Unfortunately,
complex manifolds rarely exhibit the Noetherian property, making it challenging to estab-
lish coherence as in the algebraic case. Consequently, the algebraic proof of local freeness
fails in the analytic setting.

Therefore, it is essential to give a correct proof of the local freeness for analytic fami-
lies, which we achieve in Thm. 3.3.1.

Convergence of Virasoro uniformization

A key step in proving the (analytic) local freeness of 7x(W) (and 73 (W)) is to prove
the convergence of Virasoro uniformization. The algebraic Virasoro uniformization is ex-
plicitly stated in [FBZ04, Ch. 17]. Roughly speaking, suppose that we have an N-pointed
compact Riemann surface ) = (C|z1,...,zn) with local coordinates 71, ...,ny, where
each 7, is defined on a disk U; centered at z;, and choose a meromorphic vector field
ti = hidp, where h; is a holomorphic function on U;\{z;} with finite poles at z;. In the
algebraic setting, these vector fields 1, .. ., ry generate the first order infinitesimal defor-
mation of ). Translating r; to the Virasoro operators, we obtain the first order infinitesi-
mal parallel transport of conformal block.

In our analytic setting, we can say more about the Virasoro uniformization. We can
even assume that h; relies holomorphically on another complex variable g. So each ; is
a non-autonomous vector field, which generates a non-autonomous holomorphic flow
q — fL on any compact subset of U; — {x;}. Assume that U; is large enough and r > 0 is
small enough such that, whenever |¢| < r, U; contains ﬁé on; 1(Dy). Then we can remove
Bé on; H(D1) from C, use the map 7; o (ﬁ;)_l to glue j} o n; 1 (S') with the boundary S!
of the standard closed disk D;, and replace x; and its local coordinates 7; with the new
marked point 0 € D; and its standard coordinate z. Then this gives a new N-pointed
compact Riemann surface 9), with local coordinates.? See Sec. 3.2 for more details.

With respect to the analytic deformation ) — 92),, a given conformal block 1 (asso-
ciated to 2) and a V®N-module W) is transformed to a new one . This transformation
is described by a differential equation involving Virasoro operators. See (3.1.6) (and also
(3.1.4b)). Initially, 1, is only a formal power series of gq. Our theorem on the convergence

*In the language of compact Riemann surfaces with boundaries and boundary parametrizations, this
process is as follows: At g, the Riemann surface with boundary is C' — |, 8; © 0, (Dy). The i-th boundary
parametrization, i.e, the analytic diffeomorphism 8; o n; *(S') — S', is chosen to be n; o (8:)~".



of Virasoro uniformization says that for |¢| < r, {p, converges absolutely to a conformal
block associated to ), and W.

In the special case that r; is autonomous (i.e. independent of ¢), 3’ is then an au-
tonomous flow, and 1, can be expressed as an exponential: Write

+00
ti= >, hignf (0.5.1)

k=—0
where h; j, € C is zero when k£ « 0. Then for each w € W we have

N +o

b(w) = dpo(e w)  where A= Y hipLi(k—1) (0.5.2)

i=1k=—00

(See Exp. 3.1.5.) To our knowledge, the convergence of such an exponential (for reason-
ably large |g|) has not been addressed before in the VOA literature. Therefore, we believe
it is valuable to explore this topic in the present paper. Interestingly, our proof of the con-
vergence of Virasoro uniformization shares many similarities with the proof convergence
for sewing conformal blocks.

Lie derivatives in sheaves of VOAs

The most challenging part of constructing the connection is to show that the connec-
tion V, originally defined on #%(W) = W ® Op, descends to .73 (W). (Note that 7% (W) is
the quotient of #% (W) by a suitable Op-submodule ¢#%.) The purely algebraic approach
in [FBZ04] does not suit our analytic framework optimally, so in this paper, we provide a
differential-geometric proof.

Let y be a vector field on B. To show that V, preserves ¢, we need to calculate
the commutator of V, and the action of the sheaf of VOA 7% (more precisely, the action
of 7x ®o, we/p) on #x(W). As we will see in Subsec. 2.3.2 (especially in (2.3.9)), this
commutator is computed using the Lie derivatives in %z ® we/g, generalizing the usual
Lie derivatives of tensor fields.

It is noteworthy that in the case of V being a unitary affine VOA associated to a simple
Lie algebra g, this Lie derivative structure is obscured. In fact, as shown in [TUY89], to
study the conformal blocks for such VOAs it suffices to use the subsheaf of 7% generated
by weight one vectors. This subsheaf is canonically isomorphic to g®c¢ ©¢/5, and hence its
tensor with w¢ 5 is canonically isomorphic to g&c O¢. Therefore, the usual (Lie) derivative
on O¢ is adequate for studying connections. For this reason, extending the treatment of
connections in [TUY89] to general C>-cofinite VOAs is far from straightforward.
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1 Preliminaries

1.1 Notations

If X is a complex manifold, then we denote the holomorphic tangent (resp. cotangent)
bundle as © x (resp. wx). We denote by Ox the sheaf of (germs of) holomorphic functions
on X. Then Ox(X) = O(X) is the space of holomorphic functions U — C. Suppose that
& is an Ox-module. For each z € X, the stalk of & at = is denoted by &. The fiber of & at
x is the C-vector space

Ely 1= En/Mx 26 (1.1.1)

wheremx, = {f € Ox, : f(z) = 0}.

In this article, if X is a complex manifold, and if & and .# are O x-modules, then £ ®.#
means & Qo % . In other words, ® means ®o,, but not (say) ®c.

If s¢ = (8i)ier is a collection in & (X'), we say that s, generates & if for each x € X, every
element of &, is a (finite) Ox ,-linear combination of elements of s,. This is equivalent
to saying that the Ox-module morphism @,.; Ox — & sending @i fi to Y, fisi is an
epimorphism.

We say that & is of finite type if each z € X is contained in a neighborhood U such
that &|y is generated by a finite subset of &(U). Clearly, if & is of finite type, then each
&y is finite dimensional.

e ForeachO <r < +4wandre = (r1,...,7N), let

D, ={zeC:|z| <7} D ={zeC:0<|z| <7} D,={zeC:|z|<r}

r

Dy, =Dy, x -+ x Dy Dy, =Dy x - x D,

* Suppose 7 : C — B is a holomorphic map of complex manifolds. For each £ c B,

Cp:=m Y(E)

* We fix an N-graded VOA V = @, V(n) with conformal vector ¢ € V(2) and
central charge c. We set V<" = @, _, V(k).

* On any weak V-module W, the vertex operator Yy (v, z) (often abbreviated to Y) is
written as Y (v, 2) = 3, Y (v),2 7" "L. More generally, if W is a weak V& -module
and v € V, we write

Yi(v,z) = ZK(U)nz_"_l =Y1® - ® 1T) ® -®1,2) (1.1.2)
" i-th
Li(n) = Yi(¢)u-1 (11.3)
Then L(n) = Y., L;(n) are the Virasoro operators of V&V on W.
* Consider the case that W is a grading-restricted (generalized) V®"-module (cf.

[Hua09]). Then each generalized eigenspace of L(0) is finite-dimensional and L;(0)-
invariant for all j. So we can write

W = (—B W[)\.] (1.1.4)
Ae€CHN
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where Wi, 1 = Wy, 3, is the (finite-dimensional) subspace of all w € W that is a
generalized \;-eigenvector of L;(0) for each i. Define the algebraic completion

W= ] Wp,
Ae€CN

For each p., \e € CV, we say pe < Ao whenever R(y;) < R(\;) forall 1 <i < N. Let

Wiag= @O Wy
,U«OE(CN7M0 <>\.

Py, = the projection W — W, ;  P<y, = the projection W — W, |

* Let W be a C-vector space. Let z, = (21, ..., zn) be (mutually commuting) variables.
Wiz ={ Y ans|
neeNN

Wlze] = { Z an,ze* : an, = 0 for sufficiently large ny, ..., ny}

neeNN

W((ze)) = { Z an,2* : apn, = 0 for sufficiently negative nq, . .. ,nN}

necZN

W{ze} = { Z an,2y* : apn, = 0 for sufficiently negative R(n1), ..., §R(nN)}

necCN

where all a,,, are in W. Note that W{z,} is a C((z,))-module.

Let X be a locally compact Hausdorff space. Let (f;)icr be a countable collection of
functions on X. We say that ), f; converges absolutely and locally uniformly (a.l.u.) on
X if each » € X is contained in a neighborhood U such that sup,c; X7 [ fi(y)| < +co.
This is equivalent to that for each compact K = X we have sup,c ey |fi(y)] < +c0.

1.2 Sewing a family of compact Riemann surfaces
1.2.1 The sewing construction

We revisit the construction of sewing families of compact Riemann surfaces. The set-
ting established in this subsection will be used throughout this paper. Our presentation
follows and generalizes the one presented in [Gui23a, Sec. 2]. In [Gui23a], the sewing was
restricted to a single pair of points, whereas here, we extend it to multiple pairs of points.
Much of the geometric construction in this section is well known. We provide detailed
explanations to establish the notations that will be used later.

Throughout this article, we fix a family of (N +2R)-pointed compact Riemann surfaces

%:(%5—)% giagil):(%g_)g‘gh7§NH§177§}%7C{/77§;—/{) (121)

S|

where N > 1and R > 0. So 7 is a proper surjective holomorphic submersion, and
each fiber C, = #1(b) (where b € B) has complex dimension 1. <,,<,,s, are sections of
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%:C — B*with mutually disjoint ranges. We always assume that
For each b € B, each connected component of Cy contains one of <1 (b), ...,y (b) (1.2.2)

which is stronger than (2-b) of [GZ23, Def. 1.7.1]. (The reason for assuming this is due to
(1.3.13).) We fix local coordinates &,, @, of X at ¢, c”. 5

Choose 71, -+ ,7r,p1," - ,pr > 0 and ne1ghborhoods Vi, VRV Vi of

§1(B), -+ ,sr(B),s{(B), - ,sp(B),onwhich &, -+ ,&gr, w1, - -, wg are defined, such that

(&, 7) V! 5D xB, (w,%): V! 5D, xB (1.2.3)

are biholomorphic maps for each 1 < i < R Moreover, we assume
a(B), - ,sn(B),V{, -, VE, V- |V} are disjoint. Identify

V/=D,, xB, V/'=D, xB (1.2.4)

via (1.2.3). Then &; (resp. w;) becomes the projection onto the D,,-component (resp. D,,, -
component), and 7 restricts to the projection onto B. We call r;, p; the sewing radii for
ShHhSi -

We sew ¥ along pairs of points ¢/, </ using £, . to get a family

X=(m:C—Bls)=(m:C— Blsi, -+ ,n) (1.2.5)

X is described as follows.
We shall freely switch the orders of Cartesian products. Set

B =Dy, xB=Dyp X% Dpppp x B (1.2.6)
Define also W; and its open subsets W/, W/ by
W; = D,, x D,, x HDW,J. x B (1.2.7a)
J#i
W/ =D} x Dy, x [ [ Dryp, x B (1.2.7b)
J#i
W/ =Dy, x D) x [ [ Dr,p, x B (1.2.7¢)
J#i
Then we can extend §;, @; and ¢; = §;w; constantly to
& Wiy — Dy, (zy,w, %) — 2z (1.2.8a)
w;: W; — D,, (z,w, %) — w (1.2.8b)
qi : Wi — Dy, p, (z,w, %) — zw (1.2.8¢)

4Namely, they are holomorphic maps B — C whose compositions with 7 are the identity map of 5.

°Suppose that < : B — C is a section. Then a local coordinate at g(B) means a (C-valued) holomorphic
function 1 on a neighborhood U of ¢(B) whose restriction to each fiber U, = %' (b) (where b € B) is univalent
(i.e. injective), and whose restriction to g(g) is zero.
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so that ¢; = §;w; still holds. Then we have open holomorphic embeddings

(&, @i, pr) : W; = Dy, x D, x HDW’J' x B (1.2.9a)
J#i
(&, qi,pr) - VVZ'/ — Dy; X Dr,p, % HDrjpj X g ~ Dy, X g X Dr.p. (1.2.9b)
J#
(@i, i pr) : W) — Dy, x Dy, % | [ Dryp; x B =Dy, x B x Dy, (1.2.9¢)
J#i

where pr denotes the projection onto the [ [._; Dy, x B-component. The image of (1.2.9b)

J#i
resp. (1.2.9¢) is precisely the subset of all (z;,b,p1,...,pr) € D, x B x D,,,, resp.
(wi, b,p1,...,pRr) € Dy, x B x Dy, ,, satisfying

Ipi] < |z <mi resp. Ipi] < |wi| < pi. (1.2.10)

% Z

So closed subsets F] < D,, x B x D,,p, and F' € D, x B x D, . can be chosen such that
we have biholomorphisms

(&, qi,pr) : W) = D, x Bx D,,,, — F! (1.2.11a)
(@i, qi,pr) : W' = D, x B x Dy.p. — F (1.2.11b)
By the identifications (1.2.4), we can write the above maps as
(&, qipr) : W] >V x Dyp, — F! < C x Dy, (1.2.12a)
(@i, qipr) : W) S V' X Dyppy = F < C x Dy, (1.2.12b)

In particular, we view F and F as closed subsets of C x D, ..
The complex manifold C is defined by

R
C=(WiueuWa)| (€ x Drup = | JF 0 F) [ ~ (1.2.13)
i=1
Here, the equivalence ~ is defined by identifying each subsets W/, W/ of W, with the
corresponding open subsets of C x D, ,, —|J, (F/ U F!') via the biholomorphisms (1.2.12).
7 : C — Bis defined as follows. The map

# xidp,,,, :C x Dyup, — B x Dy, =B
agrees with
gi : Wi =Dy, x Dp, x [ [ Dr,p, x B— Dr,p. x B=B
J#
when restricted to W/ and W/. These two maps give a well-defined surjective holomor-
phicmap 7 :C — B.
Extend ¢; constantly to B = B x D,,,, — C x D,,,,, whose image is disjoint from F

and F/ for 1 < i < R. So ¢; can be extended to sections of 7 : C — B, also denoted by ;.
This together w1th m:C — Bgives (1.2.5).
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Remark 1.2.1. If we choose local coordinates 7; defined on a neighborhood (72 of ¢ (l?) dis-
joint from VY, --- VL, V{ .. V], then n; can be extended constantly to neighborhoods
Ui :=U; x Dy, ,, of 6i(B), also denoted by 7;.

Definition 1.2.2. The set
= {z € C : 7 is not a submersion at z}

is called the critical locus of X. Write
R R R
w=||w  w=||w W= W (1.2.14)
i=1 i=1 i=1

It is not hard to see that 7 is a submersion outside W, and for each 7 we have
Win %= ({0} x {0}) x [[Drp, x B <Dy, xDp, x [ [Dryp, x B (1.2.15)
J#1i J#
Thus, we have

R
S=W-W oW =| |W— (W uw)) (1.2.16)

(2 7
i=1
It is clear that the discriminant locus A = 7(X) satisfies

def

A==7(%) ={(p1,...,PR,b) € Dyop, x B:p1-+-pr =0} = (Dy,p, — D},.) x B (1.2.17)

So A is the set of all b € B such that Cy is not smooth. If b € B — A, we set
Xp = (Cofsi(b), -+, on (b))
If the local coordinates 7, are chosen as in Rem. 1.2.1, we set
Xy := (Gl (d), -+ ,sn(B);mle,s -+ mnle,)-
More generally, if U is an open or a closed complex submanifold of B, we let
Xy = the restrictionof X toCy — U

Assumption 1.2.3. Throughout this article, unless otherwise stated, we always assume that
= (1.2.5) is the family obtained by sewing the smooth family X = (1.2.1) along pairs of points
Su, Sy using Eo, w,. Set divisors

Sx = §1(5> —+ -4 §N(B),
Sz =a(B) + - -+ v (B) + <{(B) + ¢{(B) + -+ + <x(B) + sjp(B).

Note that X is smooth if and only if R = 0, if and only if X = X IfE c B, we let Xg
denote the restriction of X to F, i.e.

Xp = (7:Cp — Bglale, ..., n|e)
If local coordinates 71, ..., nn of X at <1 (B), ..., sn(B) are chosen, we set
Xp = (7:Cg — Bglale,-...snlesmles, - avles)
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Let A, Y be the critical locus and discriminant locus of X. Then the union of non-
smooth fibers is therefore

Ca = 7T_1(A)

Recall that if & is a locally free O¢-module (i.e., a holomorphic vector bundle on C),
then & (eSx) denotes the sheaf of meromorphic sections of & with only possible poles at
Sx. If k € N, then &(kSx) denotes the sheaf of sections of &(eSx) whose orders of poles at
Sy are at most k.

1.2.2 The relative tangent and dualizing sheaf

Recall that Oz and O¢ are the sheaves of holomorphic tangent fields of B resp. C.
In this subsection, we recall the construction of O3(—1logA) and O¢(—logCa). These
are the sheaves of sections of O3 resp. ©¢ tangent to A resp. Ca. Then the differential
dm : ©¢ — m*0Op restricts to an O¢-module epimorphism

dm : O¢(—logCp) — 7" Op(—log A). (1.2.19)

Moreover, we will use (1.2.19) to construct a short exact sequence, which is crucial to the
definition of connections.

Assume B is a Stein manifold and is small enough to admit a coordinate 7, —
(71, ,7m) : B — C™. Let ¢; be the standard coordinate of Dy, for 1 < i < R. Then
(G, Te) becomes a coordinate of B.

Definition 1.2.4. O(—log A) is defined as the Oz-submodule of O generated freely by

Q1aq17 T 7QRaqR> a7'17 te 7aTm' (1220)

For simplicity, the pullback of (1.2.20) under = in 7*©p will also be denoted as

Q1aq17 e 7QRaqR7 a’l’u ) a7'm'
We now describe O¢(—log Ca) and the morphism (1.2.19) locally. Choose x € C.

Case 1. When z ¢ X, z can be regarded as a point (Z, p) of C x D, ,. disjoint from F/, EY
forall 1 < i < R. Choose a neighborhood U c C of ¥ together with n € O(U)
univalent on each fiber of U. Choose a neighborhood V' of p € D,,,, such that
U := U x V is disjoint from F/, F/ for all 1 < i < R. Write 7, o ¥ as 7. for short.
Extend 7 constantly to U so that 7 € O(U) is univalent on each fiber. Then (7, 7e, ¢e)
becomes a set of coordinates of U. O¢(—logCa)|y is then the Op-submodule of
Oc¢|u generated (automatically freely) by

Ons Oryy 5 Ory s @10gy, 5 QROg, - (1.2.21)

The restriction of (1.2.19) to U (which is also a restriction of dr : ©¢ — 7*0Og) sends
0Oy to 0 and keeps the other elements of (1.2.21).
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Case 2. When =z € %, by (1.2.16), we can find 1 < ¢ < R, such that W; is a neigh-
borhood of z. By (1.2.7a), (&, @i, q1, - ,Gi,- - ,qR,Te) is a set of coordinates of
W;. ©¢(—logCa)|w, is then the Ow,-submodule of O¢|w, generated (automatically
freely) by

528&7 wia‘wiv qlan T 7@7 e 7qRaqR) a‘l’lv R aTm' (1222)

As one can check, the restriction of (1.2.19) (which is also a restriction of dn : O¢ —
T*0g) to W; satisfies

dn(§i0¢,) = dn(w;i0m;) = qi0q; (1.2.23)
and keeps the other elements of (1.2.22).

Remark 1.2.5. To see (1.2.23), note that 7 pulls the cotangent vector dg; back to d(&;w;) =
§idw; + w;d&;. So the dual element g, Ldg; of qi0q; is pulled back to w;” Ldew; + & Ldg;. The
latter is the summation of the dual elements of w;0,, &0, .

Combining Case 1 and Case 2 together, we complete the description of O¢(—logCa)
and the morphism (1.2.19).

Definition 1.2.6. The kernel of (1.2.19) is called the relative tangent sheaf and is denoted
by ©¢/z. It is a line bundle, since in Case 1 resp. Case 2 above, O¢/z|u resp. O¢/slw, is
generated freely by the section

On resp. §i0¢g; — Wi0w,

The dual O¢c-module of O 5 is called the relative dualizing sheaf and is denoted by w¢ 5.
When b € B — A, we have canonical isomorphisms

Oc/sle, ~©c,  wessle, = we,

where O, (resp. wc,) is the holomorphic tangent (resp. cotangent) line bundle of the
Riemann surface C,.

Remark 1.2.7. Similar to ©¢/z, we have a local description of the line bundle w¢ /3. 1f
U c C—Xisopenandne O(U) is univalent on each fiber, then

weyBlu is freely generated by dn

where dn is the dual element of the tangent field 0, (orthogonal to dr). If 1 € O(ﬁ) is also
univalent on each fiber, the transition function is

dn = (0un) - dp (1.2.24)

This describes we/z|c—s. One the other hand, we/s|w;, is generated freely by the element
of HO(W; — %, we /Blc—x) whose restrictions to W/ and W/ are

&ldg;  resp. — w; ldw; (1.2.25)

This section is well-defined since the two of (1.2.25) agree on W/ n W/ due to (1.2.24).
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Remark 1.2.8. By Def. 1.2.6 and the surjectivity of (1.2.19), we have a short exact sequence
of O¢-module

0 — O¢/p — Oc(—1logCa) A7, 7*0p(—log A) — 0. (1.2.26)

When X is a smooth family, (1.2.26) becomes
0 — B¢/ — O¢ > 165 — 0. (1.2.27)

1.3 Sheaves of conformal blocks and coinvariants for the sewn family

Recall [GZ23, Sec. 1.2] for the definitions of admissible V*-modules and finitely-
admissible V*¥-modules. Roughly speaking, an admissible V**-module W is one hav-
ing mutually commuting actions of N pieces of V, together with simultaneously diag-
onalizable operators L1(0),...,Ly(0) compatible with the actions of the N pieces of V.
Moreover, L. (0) gives an NV-grading W = @n.eny W(n,). If each W(n,) is finite dimen-
sional, then W is called finitely-admissible.

Remark 1.3.1. It is important to keep in mind that if V is Cy-cofinite, then a finitely-
admissible V*¥-module is equivalently a grading-restricted (generalized) V®~-module,
cf. [GZ23, Thm. A.2.6]. We will talk about grading-restricted V®"-modules instead of

finitely-admissible V*V when the choice of L.(0) is irrelevant. See e.g. Rem. 1.3.5.

Fix an admissible V*-module W. Associate W to ¢,. In [GZ23, Sec. 2.2], we have
defined sheaves of partial conformal blocks for families of (M, N)-pointed compact Rie-
mann surfaces. Specializing to M = 0, we obtain sheaves of conformal blocks as in [GZ23,
Sec. 1.7]. This notion can be generalized in a straightforward way to the family X obtained
by sewing X. The key ingredient is the generalization of sheaves of VOAs for smooth
families, as considered in [GZ23, Sec. 1.7], to the family X. Such sheaves of VOAs have
already been constructed in [DGT22] (in the algebraic setting) and [Gui23a, Sec. 5]. Let
us briefly recall its definition following [Gui23a] and [GZ23].

1.3.1 Sheaves of VOAs

Recall that G is the automorphism group of the set of local coordinates of C at 0.
Namely, the elements of G are f(z) = >,,,_, anz" Wherea, € C,a; # 0,and f(z) converges
absolutely for sufficiently small z. The group multiplication is defined by the composition
of functions. If X is a complex manifold, amap p : X — G is called a holomorphic family
of transformations if p can be viewed as a holomorphic function on a neighborhood of
X x {0} in X x C. Define

—1; <n
Af/x = h_r)n”f/x
neN

where each ”//35" is an O¢-module defined as follows. Since 7 : C — Y — B is a submersion,
the sheaf “/6?_"2 is defined as in [Gui23a, Sec. 5] and [GZ23, Sec. 1.6]. More precisely, if
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U = C—Yisopenand n € O(U) is univalent on each fiber U, = 7—1(b) n U (where b € B),
we have a trivialization (cf. [Gui23a, Eq. (2.5)] or [GZ23, Sec. 1.6]):

Uy(n) : V=" lv — V=" ®c Oy (1.3.1)
If 1 € O(U) is also univalent on each fiber, the transition function is
Up(MUy(1) ™" = U(e(nlp)) : V" ®c Oy — V=" @c Oy (1.3.2)
Here, o(n|p) : U — G is a holomorphic family such that for eachp € U,
o(n|p)p transforms the local coordinate (1 — p(p))le, ,, to (n —n(p))lc,, (1.3.3)

In other words,

o(nlm)p(z) = no (n, ™)~ (2 + ulp), 7 (p)) — n(p) (1.3.4)

And U(p(n|p)) associates to each p the change of coordinate operator U (o(n|p),) € Aut(V)
(restricting to Aut(V<")); more precisely, if we set &« = o(n|u),, and let ¢1,ca,--- € C be

the (necessarily unique) scalars such that a(z) = &/(0) - exp (Zn>0 cnz”H&z) z,thenon V

resp. V<™ we have

U(e) = ' (0)XO) . exp ( Z an(n)) (1.3.5)
n>0
The operator U(«) is due to Huang [Hua97]; U is a group homomorphism.
Remark 1.3.2. With abuse of notations, we also denote the tensor product of (1.3.1) and
the identity map of w5 by
Up(n) : V=" Quesslu — V=" Q¢ Ou Qc dn (1.3.6)
Namely, it sends v ® dn to U,(n)v Rc dn.

To define ”//f" near Y, it suffices to describe its restriction to each W;. Recall W; — ¥ =
W! o W/ by (1.2.16). Recall from [GZ23, Sec. 1.3] the change of coordinates

11 _
Va(t) = =5 Uly:) = IR0 (1.3.7)

Definition 1.3.3. ”I/;"\Wi is the (automatically free) Oy -submodule of ”I/f_”z lw,—x gener-

ated by the sections whose restrictions to W/ and W/" are

Up(€) 1M ) resp. Uy(wi) e CU(y1)v) (1.3.8)

7

where &;, @; are defined by (1.2.8) and v € V<™. This is well-defined (i.e. the two expres-
sions in (1.3.8) agrees on W/ n W/'). See [Gui23a] Sec. 5, especially Lemma 5.2.
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1.3.2 Sheaves of conformal blocks and coinvariants

Similar to [GZ23, Def. 2.2.4], we have a locally free Op-module #% (W) defined by the
trivialization

Une) : #Wx(W)|y — W®c Oy

associated 7, if 7, are local coordinates of Xy at ¢,(V') where V' < B is open. Readers
unfamiliar with this trivialization can assume throughout the paper that X admits local
coordinates 7, at ¢,(B), allowing #%(W) to be identified with W ®¢ Op. In fact, in this
paper, except for a very few places (such as Sec. 3.3), we assume that X has local coordi-
nates.

Similar to [GZ23, Def. 2.2.8], we also have the residue action of 7, (¥ ®w¢/z(#Sx)) on
#x (W) which is independent of the choice of local coordinates. Let us recall its definition
in the case that the local coordinates 7, have been chose.

Choose any connected open V' c B. Let U; < Cy be a neighborhood of ¢;(V') on which
n; is defined. For each n € Nand each o € H(U;, 7" ® we/p(#Sx)) and w e W®c O(V)
(where V' < B is open), we define the i-th residue action

o #; w = Resy,—oY;(Uy(n:)o, mi)w (1.3.9)

which is in W ®c O(V'). More precisely, note that the element U(n;)0 € H(U;, VS™ Q¢
we/p(*Sx)) is a finite sum Y, v; ® fidn; where v; € V<" and f; € HO(U;, Oy, (eS%)). Then
for each b € V, noting that fi|y, ~»—1(3) can be viewed as an element of C((7;)), we have

o xiwl, = 3 Resy,=oYi (01, m)w(®) - filusmm-rs) -
l

where the RHS is the residue of an element of W((n;))dn;.
Now, we define the residue action of each o € H°(V,m (% ® we/p(*Sx))) =
H°(Cv, V% ® we/p(#5%)) on each HO(V, #5x(W)) ~ W® O(V) to be

N
o-w= Z o %W (1.3.10)
i=1
Definition 1.3.4. Define the sheaf of coinvariants associated to X and W:
Wx(W)
T (V2 @ weyp(0Sx)) - #a(W)

The denominator on the RHS is the sheaf associated to the presheaf 73" on B defined
by

Tx(W) =

PV) = H(Cv, Vx Q¢ (95%)) - HO(V, #x(W)) (1.3.11)

for all open V' < B, where Spanc has been suppressed on the RHS. The dual sheaf of
Ix(W) is denoted by

TE(W) = (Zx(W))"

and called the sheaf of conformal blocks associated to X and W. An element of
H%(B, Z¥(W)) is called a conformal block associated to X and W.
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Remark 1.3.5. Both #%(W) and 7% (W) depend on the choice of L.(0) on W. However,
if X admits local coordinates 7, at ¢,(5) and if the identification #%(W) = W ®c Op via
U (n.) is assumed, then .75 (W) does not rely on the choice of L.(0). In that case, when V is
Cy-cofinite and W is a grading-restricted generalized V®V-module, there is no ambiguity
in talking about #% (W), 7% (W), 7 (W).

Theorem 1.3.6. Assume that X admits local coordinates ne at o(BB). Let V' < B be open, and let
¢ 2 Wx, (W) — Oy be an Oy-module morphism. Assume that B is Stein. Then ¢ belongs to
HO(V, 7 (W) if and only if & vanishes on the elements of 73" (B) (restricted to V).

Proof. The direction “=" is obvious. Let us prove “<”. Note that ¢ is a conformal block
iff for each b € V, ¢ vanishes on the stalk

() = ma (V2 @uwiys(05%)), - #a(W)y = | ma (V" @ weys(15%)),, - #a(W)y
ki JeN

where Spanc has been suppressed as usual. Since X admits local coordinates, we have
Wx(W) ~ W ®c Op. Therefore #5x (W), is generated by elements of HY(B, #%(W)). Since
V= @ we /B(1S%x) is a locally free Oc-module (of finite rank), by Grauert’s direct image
theorem, . (=" ® we /5(1S%)) is a coherent Op-module. Thus, by Cartan’s theorem A,
elements of H(B, m (7" ® we/(lSx))) generate (Vs ® we/B(1Sx)),. Therefore, if ¢
vanishes on _#"°(B), it must vanish on (_#y");. This proves “<". O
Remark 1.3.7. When W is a tensor product of grading-restricted V-modules, Thm. 1.3.6 is
simply [Gui23a, Thm. 6.3]. Note that in Thm. 1.3.6 we assumed the existence of 7,. This
condition is missing from [Gui23a, Thm. 6.3] and should be added. Therefore, we have
presented the proof of Thm. 1.3.6 above to illustrate how to use the existence of 7,.

The following theorem generalizes [Gui23a, Thm. 7.4]. Note that it was always as-
sumed in [Gui23a] that the base manifold has finitely many components. In particular,
[Gui23a, Thm. 7.4] assumes this condition.

Theorem 1.3.8. Assume that X is equipped with local coordinates 1, at c,(B). © Assume that B
(and hence B) has finitely many connected components. Assume that V is Ca-cofinite. Associate
a grading restricted VON -module W to ¢, (13). Then for each Stein open subset V < B,

V(W) (V)

o (v (1.3.12)
X

is a finitely generated O(V')-module.

Proof. This was proved in [Gui23a, Thm. 7.4] in the special case that R = 1, that V = B
is Stein, and that M is a tensor product of grading-restricted V-modules. However, it is
not hard to generalize the proof of [Gui23a, Thm. 7.4] to the present case. Instead of
reproducing the proof, we highlight some key points of the proof and the adaptions that
should be made.

®Here, we do not assume that 7. is obtained by constantly extending local coordinates of X as in Rem.
1.2.1.
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Similar to (7.2) of [Gui23a], we must show that for each F € N there exists ky € N such
that for each & > kg and each b € V, we have

H' (Cy, V=P @uwe, (kSx)) = 0 (1.3.13)

This follows from [Gui23a, Thm. 2.3], which shows that a b-dependent &, can be chosen
to rely only on the topology of the fiber X;, namely, the topology of C;, and the number
of elements of ¢;(b),...,sn(b) in each irreducible component of C;. Although [Gui23a,
Thm. 2.3] only deals with the case that the nodal curve C, has at most one node (i.e.
R = 1), the proof clearly also applies to nodal curves with arbitrary numbers of nodes
(i.e. arbitrary R). Moreover, [Gui23a, Thm. 2.3] assumes that each irreducible component
of C, contains at least one of ¢;(b),...,sy(b). This is ensured by our assumption (1.2.2).
Now, the assumption that B has finitely many components ensures that the fibers of X
have only finitely many different topologies. Thus, a uniform kg for all b € V' can be
found.

The generalization of [Gui23a, Thm. 7.4] to arbitrary R and Stein open V' < B has
been addressed. The generalization of the proof of [Gui23a, Thm. 7.4] to the case that
W is not necessarily a tensor product M; ® - -- ® My is straightforward, except that the
third paragraph of that proof (using a finiteness property of M; due to [Gui23a, Cor. 7.3])
should be modified. The correct way to modify can be found in the proof of [GZ23, Thm.
3.4.2], a variant of Thm. 1.3.8 which deals with partial conformal blocks but concerns a
tiber X; instead of a family X. O

Corollary 1.3.9. Assume that V is Cy-cofinite. Associate a grading restricted VON -module
W to ¢o(B). Then Fx(W) is a finite type Op-module. In particular, for each b € B we have
dim Z%(W)|, < 400, and the function b € B — dim Fx(W)|y is lower semicontinuous.

Proof. Since the finite type condition can be checked locally, we may assume that X admits
local coordinates 7, at ¢,(8), and B is connected and Stein. By Thm. 1.3.8, we can find
S1,-..,8n € #x(W)(B) generating the O(B)-module #x(W)(B)/_#x " (B). Since #x(W) ~
W ®c Op, the elements of #x(W)(B) generate the Og-module 7% (W), i.e., for each b € B,
every element of the stalk .7 (W), is an Op j-linear combination of elements of #x(W)(5).
Thus s1, ..., s, generate the Og-module 7% (W). This proves that 73 (W) is of finite type.
The rest of the corollary follows from the following Prop. 1.3.10. O

Proposition 1.3.10. Let X be a complex manifold. Let & be a finite-type O x-module. Then for
each x € X we have dim &|, < +0, and the rank function

R: X >N z — dim &),

is upper semicontinuous. Moreover, if R is also lower semicontinuous (and hence locally con-
stant), then & is locally free, i.e., it is a holomorphic vector bundle.

We warn the readers that in algebraic geometry, there is a similar proposition which
does not distinguish between coherent sheaves and finite type sheaves. This is because
the sheaves involved are automatically quasi-coherent and are over locally Noetherian
schemes, in which case coherence is equivalent to finite type. In our analytic setting, how-
ever, one must distinguish between coherence and finite type. Due to this subtlety, we
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provide a self-contained proof of Prop. 1.3.10 for the reader’s convenience, even though
this proposition is elementary and well-known.

Proof. Choose any = € X. Then z has a neighborhood U such that there exist s1,..., s, €
&(U) generating &'|; (i.e. generating &, for each y € U). In particular, s, generate &, and
hence spans the fiber &|,. Therefore, by removing some members of s, we may assume
that si|z, ..., syl form a basis of &|;. So n = dim &|,. Nakayama’s lemma implies that
S|z generate &|,.

Since & is of finite type, by shrinking U to a smaller neighborhood of = we can find
t1,...,tm € &(U) generating &|yy. Since each t;|,, is an Ox ,-linear combination of s, |;, by
further shrinking U, each t; is an O(U)-linear combination of s,. Thus s, generate &'|¢. In
particular, for each y € U, s1y, ..., sn|y span the fiber &|,. Thus dim &|, < n. This proves
that R is upper semicontinuous.

The above paragraph shows that we have an Oy-module epimorphism ¢ : Of —
&|y defined by (f1,..., fn) — fis1 + -+ + fusn. Now, suppose that R is constantly n
on U. Then for each y € U, since s.|, span &/|,, they form a basis of &|,. Therefore,
if V < Uisopenand fi,..., f, € OV) satisty fis; + -+ + fnsp, = 0in &(V), then

fiy)sily + -+ fu(y)snly = 0in &|,. Therefore fi(y) = --- = f,(y) = 0forall y € V. This
proves that s, is a free generator of &'|¢;. Thus &y is free. We have thus proved that if R
is locally constant then & is locally free. O

Remark 1.3.11. Assume that R = 0 and hence X = X is smooth. Recall that for each b € B,
Ix, (W) is the space of coinvariants associated to the fiber X;. By [GZ23, Prop. 2.2.12]
(see also [Gui23a, Rem. 6.5]), the restriction map Jx (W), — J%,(W) descends to a linear
isomorphism

Te(W)[p — Fx, (W)

Thus, if V is Cy-cofinite and W is a grading restricted V®"-module, then by Cor. 1.3.9, the
following three numbers are finite and equal:

dim % (W)], = dim J%, (W) = dim 75 (W) < +o©
The second half of Prop. 1.3.10 immediately implies:

Lemma 1.3.12. Assume that R = 0 and hence X = X is smooth. Assume that V is Cy-cofinite.
Associate a grading restricted VON -module W to s,(B). Assume that the rank function

R:B—-N b dim J%x(W)|, = dim Jx, (W) = dim Ty, (W)

is lower semicontinuous. Then Fx(W) is locally free. Hence 73 (W) is also locally free.

2 Connections

2.1 Lie derivatives in sheaves of VOAs

In this section, we assume that R = 0, and hence X = X is smooth (cf. Asmp. 1.2.3).
Choose a section ¢ of O¢(eSx) on U, where U is an open subset of C.
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Definition 2.1.1. We say that y is fiber-preserving if for each b € B, there exists a (necessar-
ily unique) y(b) € Og|, such that dr(x(p)) = y(b) for every p in the fiber U, = 7 1(b) n U.
Equivalently, in view of the map

dr: H*(U,0¢) — H°(U,7*0p)

induced by the O¢-module morphism dr : ©¢ — 7*0Op, there exists a (necessarily unique)
pe H(w(U),Op) such that dr(x) = *y.

The goal of this subsection is to define, for each fiber-preserving r, the Lie derivative
operator L,

Lo VEWU) — 45M(U) @.1.1)

Lie derivatives play an important role in defining the connection on the sheaf of coinvari-
ants and conformal blocks.

Definition 2.1.2. Let ¢ : Uy — U be a biholomorphic map, where Uy, U, are open subsets
of C and ¢(U;) = Us. We say ¢ is fiber-preserving if ¢ maps each fiber of U; onto a fiber
of Uy; equivalently, ((U1)r(z)) = (U2)rop(x) for each z € Us.

Let ¢ : Uy — U; be a fiber-preserving biholomorphic map. With abuse of notations,
we let ¢, denote the two pushforward maps

Px - OUl i OU27 f = f o (,0_1, (212a)
st VS"®c Oy, = VS"®c Oy, v—vop L (2.1.2b)

Definition 2.1.3. The pushforward V,(¢) of ¢ is a sheaf equivalence determined by

Vo(o) : "oy = V5" o,

(2.1.3)
Up(MVe() = ps - Up(n © ).
In other words, the following diagram commutes:
n Vo(#) n
7/3? |U1 9—%0> 7/3? |U2
Ug(nw)l lug(n) (21.4)

VS" ®c Ou, L, ysn ®c O,

Remark 2.1.4. The pushforward V,(y) is independent of the choice of 7. To see this,
choose another ;1 € O(Uz) univalent on each fiber. From the description of U (o(n|u)) after
(1.3.1), it is easy to see that, as automorphisms on VS" ®c¢ Oy,, we have

Ule(moplno ) =it Ule(nlp)) - s

(Quick proof: if we identify U; with U; via ¢ so that ¢ is the identity map, then both sides
equal U(o(n|p)).) Equivalently,

Uyg(n o )Up(po )" = @t - Up(mUy(p) ™" - . (2.1.5)
Then the independence of 7 follows from (2.1.3) and (2.1.5).
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Remark 2.1.5. V, is a groupoid homomorphism. More precisely: Itis clear that V,(id) = 1.
Suppose that ¢ : Uy — Uy is another fiber-preserving biholomorphic map. From the
commutative diagrams

Vo(¥)
7/x<n|UO Q—> 4//x<n|Ul 7/x<n|UQ

Uolroon) | o) | |ttt

VS @c Oy, —2 V" ®c Oy, —25 V<" ®c Oy,

Vo(¢)

we have V,(p 0 9) = V,(¢) o V,(¢). Therefore, we also have V,(p~ 1) = V,(p) L.

Choose a section ¢ of ©¢ on U, where U is an open subset of C. We let ¢t be the flow
generated by the vector field r. More precisely, if we choose any open precompact V' < U,
we can define the ¢* € Oryv (T x V), ((,p) — cpé (p) satisfying

wo(p) = D, (2.1.6a)
0coe(P)le=0 - 0 = x(p), (2.1.6b)

where T is an open subset of C containing 0. Note that (2.1.6a) implies that the pushfor-
ward V,(¢}) is the identity map on #;="|v. By the chain rule, (2.1.6b) is equivalent to that
for any f € Oy,

oc(f o pp)le=0 =t f- 2.1.7)

It is clear that if ¢ is fiber-perserving, then so is its flow gpé. Therefore, for each ¢, the
operator Vg(cpé) can be defined.

Definition 2.1.6. Let r € H°(U, ©¢) be fiber preserving. For any v € #;5"(U), we define
L e V.S"(U) as follows. For any precompact open subset V of U,

VQ(SDE)_l(,ULpZ(V)) —vly
¢

We would like to give an explicit formula of £;v, which will imply the convergence of
the limit (2.1.8). For that purpose, we need the following lemma.

Loy = 411_1)1(1) (2.1.8)

Lemma 2.1.7. Let T be an open subset of C containing 0. Let p : T — G, { — p¢ be a holomor-
phic family of transformations satisfying po(z) = z. Then for any v € VS™,

U (p)v]_y = —0U(p; ol _y = %(agpg’“)(on o) Lk = 1w (2.1.9)
k=1

where ocpl” (2) = d5ocpe(z) = 0% pe(2).

Proof. The first equality of (2.1.9) follows from U(p;) - U(pc)™! = id and U(py) = id.
Therefore, it suffices to show that the first term equals the third term of (2.1.9). Let
1,2, -+ € Oc(T) such that

pc(2) = pe(0) exp ( 2 ck(C)zkH&Z) (2).

k=1
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Since py(z) = z, and since ¢;(0), c2(0), . . . are uniquely determined by p, we have p;(0) =

land ¢1(0) = ¢2(0) = - - - = 0. Clearly p¢(2) equals
pe(0) (2 + Y () )
k=1
plus some polynomials of z multiplied by at least two terms among ¢ (¢), c2(¢), . ... This
observation, together with p((0) = 1, ¢;(0) = 0, implies
acPc(Z)’ = 0¢cp(0) ‘ ( > dcex(0) k“)
k>1

Therefore, when k > 2,

Lo ®

o) = e (0). (*)
Similarly, U (p¢)v = p(0)*©) exp (3421 cr(¢)L(k))v equals

pe(0) 0 (v + 3] (O L(k)o)
k=1
plus some vectors of V<" multiplied by at least two terms among ¢;(¢), c2(¢), . . ., and this
sum is a finite sum. Using again p{,(0) = 1, ¢;(0) = 0, we obtain
0 (pe)vle—n = AL O)LO|_ + (Y] acen(0)Lik)o)
k>1

Plugging (*) into this formula, we obtain (2.1.9). O

Remark 2.1.8. Assume the setting of Def. 2.1.6. Assume U is small enough such that there
is 7 € O(U) univalent on each fiber. Recall that R = 0 and so there are no g,-variables.
Assume that B is small enough to admit a set of coordinates 7, = (7i,..., 7). Denote
To o w also by 7, for simplicity. Then (7, 7.) is a set of coordinates of U. By Def. 2.1.1, we
can find y € H(7(U), ©p) such that (dr)(x) = 7*y. Write

b= gi(r)or, (2.1.10)
where g; € O(7.(U)). Then we can h € O((n, 7.)(U)) such that
r=h(n,7)0 + Y. gj(7e)0n, (2.1.11)

J=1

Proposition 2.1.9. Assume the setting of Def. 2.1.6. Then the limit in (2.1.8) is convergent.
Moreover, assume the setting of Rem. 2.1.8. Set u = Uy(n)v, which is an element of VS"Q@c O (U).
Then, in VS" ®@c O(U) we have

Uy(n)Lev = h(n, Te)Onu + 21 9j(7e)0ru — kE yaj;h(n, 7o) L(k — 1)u (2.1.12)
j= >1
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Proof. Choose any precompact open subset V of U. Let us show that the limit in
(2.1.8) converges to U,y(n) times the RHS of (2.1.12). Choose V, ¢* as above. We have
v = Uy(n) " tu. Then

U@(U)Vg(@Z)_l(v‘<pg(v)) = u@(my@(@z)_lug(n)_l(u‘wé(v))

2.1.3) _ _
Uy (NUy(n° &%) (¥0)x" (u

(1.3.2)

) U(o(nln o p)) (uo ¢f)ly

It is easy to see that the derivative over ¢ of the above expression at { = 0 equals (2.1.12).
Indeed, the first two terms of (2.1.12) come from the derivative of u o (pé. We shall show

that last term comes from the derivative of U (o(n|n o cpé)) We claim that for eachp € U,

dco(n o @ty (0)] .y = arh(n,m)|, (*)

Then, applying Lem. 2.1.7 to the family {( — o(n o gpé|n)p € G and noting o(n|n o 902) =
o(nogiln)~!, we get
oU(o(nln o $)),_g = U (e(n ot n))]._o = — kZl 555 (n,7e)L(k — 1).
>

which will complete the proof.
By (1.3.4),

o(n o @elmp(z) =no @t o (n,m) " (z +n(p), 7 (p)) —no g (p).

By (2.1.7), we have d;(n o Lpé)]C:O =1 = h(n,7.), and hence

dco(n o wplmp(2)| .y = Pz + n(p), 7e(p)) — h(n(p), 7e(p))
Eq. (») follows immediately from the above equation. O
In the following, we always assume the setting of Rem. 2.1.8.

Remark 2.1.10. Recall that ©¢ 3 is the relative tangent sheaf, cf. Def. 1.2.6. Choose any
ke Z. If ¢ : Uy — Us is a fiber-preserving biholomorphism, we have the pushforward
map

k k
P @(?/3|U1 - 9?/3|U2

(For each b, b’ € B such that ¢ sends the fiber (U;), = U; n 77 1(b) to (Ug)b/ 4 restricts to
the k-th tensor product of the differential map of tangent vectors @%F 1)y @®k ) This
allows us to define the Lie derivative £, on ©; /B‘U ifre H'(U,Oc¢) is f1ber—preserv1ng If

ve @?/%(U ), then for any precompact open subset V' of U we have

Luly o= lim (@2);1(V’@2(V)) —vly
-

¢—0 ¢
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If ¢ is written as (2.1.11), and if v = f 6%7"3 where f € O(U), then similar to the proof of
Prop. 2.1.9, we have

Lev = (h("’“)a”f + 2, 95(re)0n f = k- Oyh(n,7e) f) ok (2.1.13)
j=1

(This is because the change of coordinate formula for @?/kB is the same as that of the

line sub-bundle of #% generated by U, ( |U (for all possible open subset U < C and all
n € O(U) univalent on fibers) where v € V is a given vector satisfying L(0)v = kv and

L(1)v = L(2)v = --- = 0.) Specializing to k = —1 and dn = 05?(_1), we obtain the formula
for the Lie derivative on w¢ /.

Remark 2.1.11. If ¢ : U; — Uy is a fiber-preserving biholomorphism, we have pushfor-
ward maps V,(p) : %= v, = ¥&"|v, and (setting k = —1 in Rem. 2.1.10) ¢, : we/slu, —
we/B|u,- Their tensor product is denoted (with abuse of notation) by

Vo) : V=" @weyslu, — V4= @ weslus (2.1.14)

and also called the pushforward map. Therefore, if U < C is open and ¢ € H°(U, O¢) is
fiber-preserving, using the pushforward of the flow ¢ we can define the Lie derivative

Le: HOU, VS @uweys) — HO(U, 155" @ we) (2.1.15)

using (2.1.8). Its local expression is “the sum of the formulas (2.1.12) and (2.1.13)”: Let
vE “I/f" ®we/p(U). If ¢ is written as (2.1.11), and if the trivialization (1.3.6) sends v to

Uy(v) = udn
where u € VS" ®@c O(U), then in VS" ®c O(U) ®c dn we have

Uy(n)Lyv

- 2.1.16)
= (h(n, Te)Opt + 2 95(Te)Or;u — Z yﬁzh(n, To)L(k — 1)u + 0ph(n, 7e) - u) -dn (
j=1 k>1
Remark 2.1.12. Assume that U < C is open and ¢ € H°(U, ©¢(eS%)) is fiber-preserving.
(So r can be viewed as a fiber-preserving element of O¢(U — Sx) with finite poles at Sx.)

Then the Lie derivative in Rem. 2.1.11 gives rise to
Lo HY (U, V5" @uep(eSx)) — HO (U, S" ® weys(#Sx)) (2.1.17)

In fact, if we choose v € HO(U, 75" ® we/(#S%)), then v can equivalently be viewed
as an element of H'(U — Sx, 7" @ we,p) with finite poles at Sx. Then Lyv belongs to
H(U — Sx, 75" Queyp)- In the local expression (2.1.16), u and h(n, 7.) have finite poles
at Sx. Thus (2.1.16) implies that £,v has finite poles at Sx. Therefore Lv € H*(U, /=" ®
we/p(*Sx))-
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2.2 A commutator formula

In this section, we give a commutator formula, which will be used in defining the
connection V. As in the previous section, we assume that Xis smooth, i.e., R = 0 (cf.
Asmp. 1.2.3).S0X =X = (1:C — Blst, -+ ,sn).

Choose an open subset U < C such that there exists n € O(U) univalent on each fiber,
and that 7(U) admits coordinates 7, = (71,72, --). Write 7, o 7 as 7, for simplicity. We
shall define a morphism of O¢(U)-modules

L: 7% Quc/s(05x)(U) — Eno, (V2 (05x)|U) (2.2.1)
Fix the following identification

U=~ (n,7)(U) cC x B, n= zas the standard coordinate of C

‘ (2.2.2)
Yxlu ~ V®&c Ov, Y2 @uwesly = V®c weyslu,  vialy(n) = Vo(n).

Choose any udz = u(z,7.)dz € V®c we/p(e5x)(U), open subset V. U, and v = v(2,7,) €
V ®c Op(eSx)(V). Define the action of udz on v to be

Lug:v = (Lug:v)(2,7e) = Resc_.—oY (u((, 74), ¢ — 2)v(z, Ta)dC (2.2.3a)

where ( is another distinct standard coordinate of C. By (2.2.3a), it is easy to see

Lyg.v = 2 %Y(@?u(z,n))nv(z,n) (2.2.3b)

n=0

where the sum is finite by lower truncation property. By tensoring (2.2.3) with the identity
map of we /3, we get

L : %z @ we/p(¢5x)(U) — Entoy, (Vx @ weys (#5%) lv) (2.2.4)

whose local expression under 7 is

Lyg.vdz = (Resc_zon(u((,T.),( — z)v(zn‘.)d() dz

(2.2.5)
= Z Y (0%u(z 1 Te)),,0(2, Te)dz.
n>0
Now assume that B is small enough such that we have local coordinates 7, -- ,ny
at ¢1(B), -+ ,sn(B). Associate a finitely admissible V*¥-module W to c,. Fix 1 <i < N

and set n = n;. Let U = U; be a neighborhood of ¢;(8) on which 7; is defined. Fix the
identifications given in (2.2.2) and

Wx(W) ~W®e Op, vial(n.). (2.2.6)
Proposition 2.2.1. For any udz,vdz € V ®c we/p(95x)(U) and w € W @c O(B), we have

udz #; (vdz #; w) — vdz *; (udz *; w) = (Lyg,vdz) *; w. (2.2.7)
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Proof. Since residue actions can be defined fiberwise, it suffices to assume that B is a
single point. So we can suppress the symbol 7, and assume that U = n(U) is an open disk
centered at 7;(z;) = 0. Now w is a vector of W.

We view W as an admissible V-module with vertex operator Y;. Choose any v’ € W'.
By the duality property of admissible V-modules, there exists

f = f(2,¢) € Conf?(U — {0}). (2.2.8)
such that for each fixed z, the series expansions of f (with respect to ¢) near 0 and z are
a:(¢) = (W', Yi(v, 2)Yi(u, Qw) € C((¢)), (2.2.9a)
72(C = 2) = (W ViV (1, — =)o, 2)w € C((C — 2)), (2.2.9b)
and that for each fixed ¢, the series expansion of f (with respect to z) near 0 is
Be(z <w Yi(u,Q)Yi(v, z w> e C((2)). (2.2.90)

(This is well-known when u, v are constant sections and U = C. See [FHL93, Prop. 5.1.2]
or [Gui23b] Subsec. 7.13 and 9.4.)

Choose circles C,C, C3 < U centered at 0 with radii 1, r2, r3 respectively satisfying
r1 < ro < r3. For each z € Cy, choose a circle C(z) centered at z with radius less than
ro — 71 and r3 — 2. Then by Cauchy’s theorem in complex analysis, for each fixed z € Cy,

3€ fle 2m 3€ 27” fﬁf 27“ (2.2.10)

C(z)

Note that
, (2.2.9a) d¢ \ dz
(W', vdz #; (udz *; w)) Res.—o(Res¢c—oa:(¢)d() ( f(z, )71 i
i/ 27
Cy
, ' 4 (2.2.9¢) B dz \ d¢
(W' udz #; (vdz *; w) ) Res¢—o(Res.—oa(¢)d()dz = § ( %f(z, C)?>?
C3 C2
d¢ \ dz
“§($76950)5m
Cy Cs
' _(@29b) B _ gy dz
<w , (Lygzvdz) #; w> Res.—g(Res¢—.v.(¢ — 2)d()dz = ff ( j@ f(z,0) wi) 51
Ca C(2)
These identities, together with §C (22.10)£= = 0, prove
<w udz =; (vdz =; w > <w vdz #; (udz #; w > <w Lyq.vdz) #; w>. (2.2.11)
Since (2.2.11) holds for all w’ € W/, we get (2.2.7). O

Remark 2.2.2. If Uy,--- ,Un are disjoint neighborhoods of ¢i(B),- - ,sn(B) and o €
H(Uy v - Uy, 2 ®we/p(9Sx)), Prop. 2.2.1 tells us

o - (udz #; w) —udz #; (0 - w) = (Lyudz) *; w, (2.2.12)

where L, udz is understood as L, (udz). It is because *; commutes with *; when i # j.
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The following lemma is also useful when defining connections.

Lemma 2.2.3. For any vdz € V ®c we/p(Sx)(U) and w e W ®c O(B),
((0: + L(—1))vdz) = w = 0. (2.2.13)
where the partial derivative 0, is assumed to be perpendicular to dr.

Proof. It follows from
0;Yi(v,2) =Yi(0.v, 2) + Yi(L(—1)v, 2)
and Res,0,(---) - dz = 0. O

2.3 The differential operators V,
Recall (1.2.17) that A < B is the discriminant locus of B.

Definition 2.3.1. Let & be an Og-module. Let y € ©3(B). A differential operator V, on
& denotes a sheaf map & — & satisfying the Leibniz rule. In other words, for each open
U c Bwehaveamap V, : &(U) — &(U) satisfying Vy(fs) = (vf)-s + f - Vys for each
feO(U)and s e &U). Moreover, if V < U is open, then V(s]y/) = (Vys)|v.

If V, is a differential operator on &, then we also have a differential operator on &£V,
called the dual differential operator and also denoted by V,, defined by

<v0901 S> =9 <Q0a S> - <907 VUS> (231)

where p € &V (U) = Homp,, (17, Ov),n € O(U) and s € &7.

A connection (resp. logarithmic connection) V on & associates to each open U < B
and each ) € ©3(U) (resp. each yy € ©p(—log A)(U)) a differential operator V, on &
satisfying Vy|y = V,,, for each open V- c U, and Vy, = fV, for each f € O(U). O

nlv

The goal of this section is to define a logarithmic connection V on # (W), and show
that it descends to a connection on the sheaf of coinvariants 7% (W)|sz_a. The connec-
tion V on # (W) is important for our later proof of the convergence of sewing conformal
blocks. The definition of V on # (W) is well-known, cf. [TUY89, FBZ04, DGT21]. How-
ever, our (differential geometric) proof that V descends to 7% (W)|5_a is new and, in
particular, differs from the algebraic proof in [FBZ04].

Assumption 2.3.2. Throughout this section, we make the following assumptions.

(1) We assume that X = (1.2.1) has local coordinates 71, --- ,ny at the marked points
c1(B),- -+ ,sn(B) where each 7; is defined on a neighborhood Uj of ¢;(BB). We assume
thatUy,...,Un,V/,..., VL, V', ..., V§ are mutually disjoint. By constant extension,

7n; becomes local coordinates of X at the marked point ;(8) defined on U; = [71 X
Dy, ., cf. Rem. 1.2.1.

(2) We do not assume that B has a set of coordinates. However, if a set of coordinates
Te = (71,-+,7m) : B — C™ has been chosen, by abuse of notations, we write
(G, 7o) = (qe, Te) o 7 for simplicity. So (7;, ge, 7e) becomes a set of coordinate of Uj;.

31



2.3.1 The action of V,, on #%(W)

The map dr : O¢(—1logCa) — 1*Op(—1log A) (cf. (1.2.26)) gives rise to a map
H°(C,0c(—1ogCa + ¢Sx)) 5> HO(C, 7*Op(—log A)(sSy)) (2.3.2)

Choose y € H°(B,0p(—1log A)). Its pullback 7*y is in H°(C, 7*©p(—log A)) and hence
in H°(C, 7*Op(—1log A)(eS%)).

Definition 2.3.3. We say that ) € H%(C,O¢(—logCa + Sx)) is a lift of y if it is sent by
(2.3.2) to 7).

Remark 2.3.4. Suppose that B is a Stein manifold (and hence B is Stein). Then any 1y has
a lift. This is because (1.2.26) gives rise to a short exact sequence

0 — H°(B, m.O¢/p(e5%)) —H(B, m:O¢(—logCa + Sx))
D HO(B, i (705 (— log A) (e5x)) ) — 0.
namely, a short exact sequence
0— H°(C,O¢/p(eSx)) —=H"(C,0c(—logCa + #Sx))
I HO(C, 7 0p(—log A)(e5%)) — 0 (233
See [Gui23a, Sec. 11] the paragraph around (11.3).

Choose
pe H'(B,Op(—logA))  withalift §e H°(C,0¢(—logCa + ¢5%))

We shall define a differential operator V,, on % (W).
First consider the special case that B has coordinates 7, as in Asmp. 2.3.2-(2). Then U;
has a set of coordinates (7;, ge, 7o ). Write

m R
D= j(qe.7)0r, + Y fr(ge.7e) g, (2.3.4)
j r=1

j=1

where g;, fr € O((ge, 7s)(B)). Then we can find h; € O((n;, ge, 7 ) (U; — Sx)) such that

R

Blo, = hi(nis go, 7o) + Y. 95(00,7e)r, + O Fr(ge, 7e)00,, (2.3.5)
j=1 r=1

where nfhl-(m, qe, To) is holomorphic on U; for some k € N. Recall that c is the conformal

vector. Define
v(§) € HO(Uy U -+ U Uy, ¥x ® we/p(95%)) (2.3.6)
u@(nz)\’(ﬁ)‘w = hl(nla Go, T-)Cdﬁi
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Remark 2.3.5. It is easy to see that the definition of v() is independent of the coordi-
nates 7, of B. Thus, v(§) can be defined globally if B does not have a set of coordinates.
Therefore, in the following, we do not assume that B has a set of coordinates 7,.

Definition 2.3.6. Identify
Wx(W) = W®e Op viaU(ne). (2.3.7)

The differential operator V,, : #5(W) — #5%(W) (which replies on § and 7,) is defined as
follows. For each open V < Band w e W®c O(V),

Vyw = y(w) —v(9) - w (2.3.8)

where v()) - w is the residue action of v(1) on w (Subsec. 1.3.2). In particular, V, restricts
to a differential operator on #5(W)|s_a.

Definition 2.3.7. Assume that B has a set of coordinates (71,...,7n). Recall that
4i0q.s---,qR0qp+ Ory» - - -, O, are a set of free generators of Op(—log(A)) (cf. Def. 1.2.4).
Assume that each of them has a lift so that we have differential operators

Vadg -V Vo, ,Va

‘IRaqR’ 1) ™™

(This is true e.g. when B is Stein, cf. Rem. 2.3.4.) We define the logarithmic connection
V on #%(W) to be the unique one extending the above differential operators. It clearly
restricts to a connection on #5(W)|z_a.

2.3.2 Descending V to F5 (W)

Theorem 2.3.8. Choose y € H°(B,Op3(—log A)) with a lift . Then the restriction of V to
Wx(W)|p—na descends to a differential operator on T (W)|g_a.

It follows that in the setting of Def. 2.3.7, V descends to a connection on 7% (W)|z_a.

Proof. Since X is smooth outside A, by replacing X with X|p_a, it suffices to assume that
R = 0 and hence X = X. (In particular, A = ¢J.) So there are no g,-variables. Assume the
identification (2.3.7). Choose an open subset V' < B, a section w € W ® O(V') and

vem (Y2 ® wc/B(oS};)) (V)=H° Cv, 7% ® WC/B(‘S}S))-
Let us show that [V, v] = Lyv when acting on w, i.e.,
Vy(v-w) =v- Vyw + Lyv - w. (2.3.9)

Then, since Ljv belongs to H 0 (CV, Ve Q@ue /B(on)) (cf. Rem. 2.1.12), V,, preserves the de-
nominator sheaf m, (¥ ® we/p(#Sx)) - #x(W) in the definition of J%x(W) (cf. Def. 1.3.4).
Then the theorem clearly follows.

It suffices to prove the theorem locally with respect to B. Therefore, we assume that 3
admits coordinates 7,, and that B = V. Make the following identifications via U, (7;):

Yxlv, =V®c Ov, Y2 Queslu, =V ®c Oy, dn;
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So v|y, = widn; for some u; € V®c Oy, (¢S%)(U;). By (2.3.4), (2.3.5), and R = 0, we have

y = ZgjaTj 9l = hioy, +Zgja7'j
j=1 J=1
where we have abbreviated ¢;(7,) to g; and h;(7;, 7e) to h;. Then by (2.3.8),
V(v #; w) = Vy(udn; #; w) Zgj (widn; #; w) — v(9) - ((uidn;) *; w)

(2.2.12)

19; ((ryus)dn; =5 w) + Y g ((widn) #; (0,w))

J J

— widn; *; (V(H) - w) — (Lygyuidn;) *; w

=v #; Vyw + Zgj ((8Tjul-)dm *; w) — (Lv(g)uidm) *; W (2.3.11)
j

where v *; Vyw = (u;dn;) #; (2.3.8) equals the sum of the second and the third terms of the
second last expression of (2.3.11). We claim that

(Lyuidn;) *; w = Zgj ((Oryug)dn; 5 w) — (L) uidng) *; w. (2.3.12)
J
where Lyu;dn; is the Lie derivative of u;dn;, cf. Rem. 2.1.11. If (2.3.12) can be proved, then

(2.3.9) follows immediately by summing up (2.3.11) overall 1 < ¢ < N.
By (2.3.6), we have v(9)|y, = hicdn;. Thus, by (2.2.5),

k=0

Now (2.1.16) reads

Lﬁ(uzdnz) = hié’muidm + Z gjé’Tjuidm — Z E@s h;- L(k‘ — 1)uidm + 8,7ihi - uidn;
j=1 k>1

So Ly uidn; + Lyuidn; equals

(L(—l) + am) (hiu)dn; + Z ;0 widn;
j=1

This, together with Lem. 2.2.3, proves (2.3.12). O

Remark 2.3.9. Assume that R = 0. Suppose that B is Stein (so that the lift fj always exists)
and have a set of coordinates 7,, the differential operator V, relies on the lift § and the
local coordinates 7,. Thus, the connection V on 7% (W) defined by Def. 2.3.7 relies not
only on the lifts and on 7., but also on the coordinates 7, (since V relies on the choice of
free generators 0., ..., 0., of Op).
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24 Dependence of V, on the lifty

In this section, we assume that R = 0. Hence X = X and A = (. We assume Asmp.
2.3.2. (In particular, the local coordinates 7, of X are chosen.)

Suppose that y € H(B, ©) has two lifts §,§ € H(C,O¢(#Sx)). Then 0 := § —§' is a
lift of the zero vector field 0. Since 0 is tangent to dr, we have

0 H°(C,0¢/5(2Sx))

(This also follows from (2.3.3) if B is Stein. Hence it holds for general B by gluing local
data.) Conversely, if  is a lift of y, and if 0 € H(C, Oc/p(#Sx)), then i := 1 + 0 is clearly
also a lift of y. Therefore, to study the dependence of V on the lift, it suffices to study the
action of H°(C, O¢/p(eSx)) on Fx(W).

Definition 2.4.1. Choose an open subset U — C and € O(U) univalent on each fiber. If
f € O(U) satisfies that 0, f is nowhere zero, then the Schwarzian derivative of f over
is defined to be

af  B30fN?

Sif =5 2lag)
n n

where the partial derivative 0, is defined with respect to (7, 7), i.e., it is annihilated by d=
and restricts to d/dn on each fiber.

(2.4.1)

Definition 2.4.2. An open cover (Uy,7q)acu Of C, where each open set U, is equipped
with a holomorphic function 7, € O(U,) univalent on each fiber, is called a projective
chart if for any «, 8 € 2, we have S;,;n, = 0 on U, n Ug. Two projective charts are called
equivalent if their union is a projective chart. A maximal projective atla (equivalently, an
equivalence class of projective charts) is called a projective structure.

Theorem 2.4.3. Suppose that BB is Stein. Then X has at least one projective structure.

Proof. See [Gui23a, Thm. B.2]. O

Definition 2.4.4. Let P be a projective chart on X. Choose an open subset U < C and
n € O(U) univalent on each fiber. One can check that for each (V, p1), (W, v) € P we have
Syp=S8yvonU nV nW. (See [Gui23a, Rem. 8.3].) Thus there is a unique

S,PeO(U)
such that S, P|y~v = S,u|u~v for each (V, ) € P.
Recall that c is the central charge of V.

Theorem 2.4.5. Suppose that X has a projective structure P. Choose an element 0 €
H°(B,m.O¢/5(e5%)). Let a; € HO(U;, O¢(Sx)) such that

0|y, = a;dy, (2.4.2)

Then the action of v(0) on #x(W)(B)/_# " (B) equals the multiplication by #(0) € O(B) where

~

N
C
#(0) = - > Resp, oSy, P - aidn; (2.4.3)
i=1
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Note that v(0) € HO(U; U --- U Un, %2 ® we/p(eSx)) is defined by (2.3.6), i.e.,
Uy (1:)v(0) |y, = asedn;. So it relies on 7.

Proof. When W is a tensor product of V-modules, this theorem was proved in [Gui23a,
Prop. 9.2]. The same argument applies to the current general case. O

Definition 2.4.6. We say that the local coordinates 7;,--- ,ny of X admit a projective
structure of X if there is a projective structure containing (U, m1),- -+, (Un,1N)-

Corollary 2.4.7. Assume that 1, --- ,nn admit a projective structure of X. Then for each v €
HY(B,©p) having a lift, the differential operator YV, is independent of the choice of lifts when
acting of Tx(W).

Proof. Thisis clear from Thm. 2.4.5 and the discussion at the beginning of this section. [

Corollary 2.4.8. Assume that ny,--- ,nn admit a projective structure of X. Then there is a
connection V on Fx(W) such that for each open V' < B, and for each vy € H°(V, Og) with lift
§ e H(Cy, Oc(eSx)), Vy is the differential operator on Tx(W)|y defined as in Def. 2.3.6.

Proof. Choose any Stein open set W < B admitting a set of coordinates 7,. We can use
Def. 2.3.7 and Thm. 2.3.8 to define a connection V¥ on 7% (W)|y (by first defining the
differential operator VY for each i using a lift 0,). Now, if y = 3}, g0, € H*(W,Op)
(where g; € O(W)), then V“;V is clearly equal to the differential operator defined by the
lift >, gzé; Therefore, by Cor. 2.4.7, V}V is also equal to the differential operator V,
defined by any other lift 1). Thus, if for any other Stein open set W’ with coordinates we
define V"' in a similar way, then VW = YW on W ~ W’. Therefore, by gluing these
locally defined connections, we get a (global) connection on .73 (W) satisfying the desired
requirement. O

2.5 Curvature and projective flatness

Assume again that R = 0. Assume Asmp. 2.3.2. Assume that B = B has a set of
coordinates 7o = (71,...,Tm)-

Our goal in this section is to calculate the curvature of the connections constructed in
Sec. 2.3. Choose 1,3 € H°(B, ©5) admitting lifts 9, 3. Then V,) and V, are defined in terms
of these lifts and 7,. Then [1),3] gives a lift of [v, 3] (cf. (2.5.3)). We use this lift (together
with n,) to define V|, ;j as in (2.3.8). Our goal is to calculate the curvature

R(9,3) = VyV; = V;Vy = Vi

on Jx(W) and on .7;*(W). (Note that V, on .7;¥(W) is defined by the dual differential
operator of Vy on Jx (W), cf. Def. 2.3.1.)
On U; we can write the lifts in the form of (2.3.5), namely

5|Ui = hi(ﬁiﬂ'o)am + Zgj(TO)aTj (2518)
J

3lu, = Ei(niy 1), + D 1i(70)én, (2.5.1b)
J
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since there are no variables g1, . .., gr. Thusy = >, g;(7)0r; and 3 = >, 1;(7%)0r;.

The following formula for R(y,3) is essentially Prop. 4.2.2-(2) of Ueno’s monograph
[Uen97] in the setting of affine Lie algebras. (See also Prop. 4.6 of [Uen(8].) We pro-
vide detailed calculations for the reader’s convenience. (They will also help the reader
understand how the geometric setting in [Uen97] and [Uen08] matches ours.)

Theorem 2.5.1. Let f € O(B) be

N

C

EZ Resy,—005 hi(ni, 7e) - ki(ni, 7a)d1i). (2.5.2)
=1

Then we have R(v,3) = — f on #x(W) and hence on T (W). Consequently, we have R(v,3) = f
on TF(W).

Proof. Let Y, Z € H°(J; U, ©c) be defined by Y = 3. gj(7.)0r, and Z = 3. 1;(7a)0r;.
Thus Y and vy (resp. Z and j3) are different elements although they have the same expres-
sion due to our convention of abbreviating 7; o 7 to 7;. Now (2.5.1) reads

5|Ui = hi(niﬂ—‘)am + Y|U¢ /5|Uz = ki(nivT')ani + Z|Ui (*)

(Thus, although n and Y have the same expression, Y is an element of H'( J, U;, ©¢)
and is not the same as v. Similarly, 3 € H°(J, Ui, ©¢).) By (2.3.8), we have Vs = ys —
i (hicdn;) #; s and Vs = 35 — > (kicdn;) #; s. So

VUV;,S =138 — UE(szdnz) * 8 — 2<thdnz) i3S+ Z sznz *q (ijdnj) *j5 8

Z 7]

Vavns—ws—ﬁz (hicdn;) =i S—Z (kicdn;) #; gs+2 sedn;) #; (hicdn;) *; s
7.7

Since Y, Z are orthogonal to dn;, we have
0((kicdn;) *i 5) — (kicdni) = s = (Yk;)cdn) #; s
3((hicdm;) %; s) — (hicdm;) %i 3s = ((Zk;)edn;) #; s

Clearly, if i # j, the #;-action of h;cdn; and the *j-action on kjcdn; on s commute. By
Prop. 2.2.1, the #;-action of [h;cdn;, kicdn;| on T (W) equals that of

(2.2.5) 1,
[hicdm, kicdm] = LhicdmkiCdni = 2 ﬁ(ﬁm hz)kzL(n - l)Cdm

n=0

— ik L(—1)edn; + 2(0y,hi)kiedn; + %(agihi)mdm.

since L(0)c = 2c, L(1)c = 0, L(2)c = L(2)L(—2)1 = jc. By Lem. 2.2.3, the action of the
above expression equals that of

— 0y, (haki)edn; + 2(0y ha)ksedn; + 1—02(5;”; hi)kiLdn;

= (Oy,hi)kicdn; — hi(Op, ki) edn; + TCQ(@%ihi)kildm
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Summing up the above calculations, we get

[Vy, Vils =[9,3]s = D (Vki)edn;) #i s + Z((Zhi)(?d??i) *; 8

)

(*)
+ (@ hi)kiedn;) #i s — Y (hi(On ki)edn;) +; s — fs
On the other hand, by (), the local expression of [1,3] on U; equals
[?)’,3]‘(]1. = (hzam/{z — kzémhz + Yk, — Zhi)&m. + [Y, Z]‘Ui (253)
Now, applying (2.3.8) to [v, 3] and its lift [1,3], we have (due to (2.5.3))
V[U,z]s = [1)73]8 — 2 ((hzé‘mkZ — kzamhz + Yki — Zhi)cdm) *; 8
which equals (x) + fs. Therefore R(1,3)s = —fs. O

3 Convergence of Virasoro uniformization and local freeness

Throughout this chapter, we always assume that V is Cs-cofinite, and W is a grading
restricted VO -module (equivalently, a finitely admissible V**¥-module) associated to the
marked points ¢, (53). We assume R = 0so that X = X = (7 : C — Bls1,...,sn) is smooth.
3.1 Convergence of formal parallel transports

In this section, we fix 0 < r < 400 and D, = {z € C : |z| < r}, and assume that

B = DT X Bo
where By is a complex manifold. Assume that X is equipped with local coordinates, i.e.
X=(m:C—>B|s1, -, SN;Ms---,1N) n; € O(U;)

where Uy, . .., Uy are mutually disjoint neighborhoods of ¢;(B), ..., sy (B).
Let Co = m~1({0} x Bp) so that

Xo = (mo: Co — Bolor,...,oN; 11, -, UN) (3.1.1)

a family of N-pointed compact Riemann surfaces with local coordinates. Here, o;, 1; are
the restrictions of ¢;, n; to X¢. Similarly, 7y is the restriction of .

We always let ¢ be the standard coordinate of D,.. Assume that By has a set of coordi-
nates 71, ..., 7. By constant extension, (¢,7.) = (¢,71,...,7m) is a set of coordinates of
B, i.e., it maps B biholomorphically to an open subset of C™*+1. As usual, we abbreviate
7j o7 and 7; o  to 7; when no confusion arises. Fix identifications

Yo (W) =W®c Op, via U(,u.) Wx(W) =W®c O via U(n.)
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Now 0, is an element of H 9D,,Op,). By constant extension, d, becomes an element
of H(B, ©p). Suppose that

0, has aliftx e H%(C,Oc(eS%)) (3.1.2)

(Recall Rem. 2.3.4 that the existence of ¢ is automatic when B is Stein.) By (2.3.5), we can
find h; € O((ns,q, 7e)(U; — Sx)) such that

tlu, = hi(ni, g, 7e) 0, + 04 (3.1.3)

So h; has finite poles at 7; = 0. The differential operator V5, on #%(W) is defined by the
lift ¢ as in Def. 2.3.6. Write

i(Mi,4q,Te) Z hi (g, Te)n where h; ;, € O((q, 7.)(B))
keZ

noting that h; ;, = 0 for sufficiently negative k. Then for each w € W ®c O(B) we have
Vo,w = dqw — A(q, Te)w e W®c O(B) (3.1.4a)

where
N
Alg,row =)’ Z k(@) Li(k—Dw € W®c O(B) (3.1.4b)
i=1keZ

Note that RHS of (3.1.4b) is a finite sum. We write

Alg,r)w = 3 Ag(rw- "

neN
where A,,(1e)w € W®c O(By).

Remark 3.1.1. Recall from [GZ23, Prop. 2.2.14] that we have an explicit description for
conformal blocks associated to X: An element ¢ € H(B, 7#(W)) is precisely an Op-
module morphism ¢ : W ®c Op — Op such that ¢|, € 73 (W) for each b € B.

Note that a morphism ¢ : W ®c O — O (i.e., an element { € H°(B, (W ®c Op)*))
is determined by its values {(w) at the constant sections w € W. Thus, a morphism

W ®c Op — Op is equivalent to a linear map W — O(B), and is also equivalent to an
O(B)-module morphism W ®c O(B) — O(B). Therefore:

e Anelement ¢ € H°(B, 7:¥(W)) is equivalently a linear map W — O(B) such that
d()[p € T3 (W) for each b € B.

A similar description holds for conformal blocks associated to Xy. O
We shall always view W as a subspace of W ®c O(B) by identifying w with w ® 1.

Definition 3.1.2. Fix an element ¢g € H(By, T (W), viewed as a linear map W —
O(Bp). The formal parallel transport of ¢g (with respect to the lift r, cf. (3.1.2)) is the
linear map

¢ : W — O(Bo)l[q]]
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extended O(By)[[g]]-linearly to

b - W®c OBo)[lgl] — OBo)[l4]] (3.1.5)
such that for each w € W we have
Qb (w) = —b(Alg m)w)  d(w)| _o = Po(w) (3.1.6)
where A(q, 7e)w = (3.1.4b).
Remark 3.1.3. By Def. 2.3.1, the first relation of (3.1.6) simply says for each w € W that
0qd(w) = b(Vo,w) (38.1.7)
By Leibniz’s rule, (3.1.7) also holds when w e W® O(B) =« W® O(By)[[q]]- So
(Vo, ) (w) =
for all w e W ® O(B), justifying the name “formal parallel transport”.

Remark 3.1.4. Formal parallel transports always exist and are unique. To see this, we
write any linear map ¢ : W — O(By)[[¢]] as

w) = " bn(w)g

neN

where ¢,, : W — O(By) is linear, extended O(By)-linearly to a linear map

dn 1 WRc O(By) — O(By)

Then condition (3.1.6) is equivalent to the following relations in O(By):
ndpn(w Z Apii(rw) — (ifn > 1), do(w) = ho(w)  (3.1.8)

The existence and uniqueness of (cT)n)neN satisfying (3.1.8) is clear.

Example 3.1.5. In Rem. 3.1.4, if each h;(7;,q, 7s) is independent of ¢ (and hence can be
written as 7 (1;, Te) = X1y hi k(7e)), then (3.1.6) can be solved by

d(w) = o (e 7 w) where A(,) Z D hig(re)Li(k — 1) (3.1.9)

i=1keZ

Lemma 3.1.6. Let oo € H(By, 7% (W)). Then the formal parallel transport ¢ is a for-
mal conformal block associated to X and W, namely, viewed as a map (3.1.5), & vanishes on
pre
5 (B) =(1.3.11).
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Proof. Choose w e #¢°(B) ¢ W® O(B). By Rem. 3.1.3 we have

=3 oo, = 3 Tovw)

neN neN

By the proof of Thm. 2.3.8 (more precisely, by (2.3.9)), Vi w € #°(B) foralln € N.
Thus V3 w |q o € % (Bo). Since o is a conformal block for Xy and hence vanishes on
pre(Bo) we have ¢(Vg w )‘q=0 = o ng‘q=0) = 0. So ¢p(w) = 0. O

Theorem 3.1.7. Let ¢pg € HO(By, T (W) with formal parallel transport ¢. Then for each
w € W, the formal power series ¢ (w) € O(By)[[q]] converges a.l.u. on D, x By = B. This defines
a linear map ¢ : W — O(B). Moreover, ¢ belongs to H°(B, 7# (W)).

Proof. Since the properties to be proved can be checked locally (with respect to By), by
shrinking By, we assume that By is Stein and connected. So B is also Stein and connected.
Therefore, by Thm. 1.3.8, we can find finitely many elements s, s2, - - - € W® O(B) gener-
ating WRO(B) mod _#{"(B). Fix s € CV such that s1, 53, - - - € W[,,,J®O(B). Since each
s; is an O(B)-linear combination of elements of W, |, one has that W ,,| generates the
O(B)-module W® O(B) mod 7y (B).

Choose any Ae > ji.. Since W is grading-restricted and V®V is Cy-cofinite, Wicad
is finite dimensional. Let (e;);es be a (finite) basis of W|c,,;. By Rem. 3.1.3, we have
Ogd(ei) = d(Va,ei). Since Wic,,| generates W ® O(B) mod _#Y™(B), we can find Q; ; €
O(B) such that

Vo,ei = Y Qije; mod ZE°(B) (3.1.10)

jedJ
foralli,j € J. Thus, by Lem. 3.1.6,

Qg (ei) = d(Va,ei) = O Qi jb(ey). (3.1.11)

jed

By (3.1.11), as an element of O(By)[[q]]”, f := @jcsd(e;) is a formal solution of the differ-
ential equation J,f = Qf where  is a C’*”-valued holomorphic function on B. There-
fore, by [Gui23a, Thm. A.1], ¢(w) converges a.l.u. on B whenever w = ¢;, and hence
whenever w € WK PWE Since Ao > ., is arbitrary, ¢(w) converges a.l.u. for all w e W.

By Op-linear extension, we can view ¢ as an Og-module morphism ¢ : W®Op — Op
(cf. Rem. 3.1.1). By Lem. 3.1.6, ¢ vanishes on _#y"°(B). Therefore, by Thm. 1.3.6, ¢ is a
conformal block associated to X and W. O

3.2 Virasoro uniformization by non-autonomous flows

In this section, we explain how Thm. 3.1.7 can be interpreted from the perspective
of Virasoro uniformization. The material of this section will not be used elsewhere in
the series of papers. However, it might have potential applications in the future. It also
provides a differential geometric background for the construction of V on .7;¥ (W) compa-
rable to the algebraic geometric background in [FBZ04] Sec. 17.3 (especially Rem. 17.3.3).
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An open annulus denotes a set of the form {z € C: r; < |z] < r3} where 0 < r; < ro.
For each r > 0 we let rS' = {z € C : |z| = r}. Consider a family of N-pointed compact
Riemann surfaces with local coordinates

Xo = (m0:Co — Bolo1, ..., oN; p1, -5 UN)
where Bj is a connected open subset of C"™ with standard coordinates 7o = (71, ..., 7m).
We abbreviate 7; o mg to 7; as usual. Let Uy g, . . . , Uy o be mutually disjoint neighborhoods

of 01(By) ...,on(Bp) such that p; € O(U; o), and that
(ki 7o) (Ui o) = Dp; x Bo

for some p1,...,py > 0.
Fix r > 0 and

B = 'Dr X Bo
For each i, choose a Laurent series in O(B)((z)):

(2,4, Te) Z hi 1:(q, 7e)2 converging a.l.u. on Dz: x B
keZ

So it is the expansion of an element of O(D,;, x B) with finite poles at {0} x B. Fix
0<r <p;
By the basics of differential equations, after making r smaller, for each i we can find
B'e O(A" x B) where A’ is an open annulus containing r;S*
satisfying the following properties. (We write 3'(z, ¢, 7.) as ﬂq . (2))
(1) For each (q,7.) € Bwe have
! (A DY (3.2.1)
Moreover, for each (z,q,7.) € A’ x B, we have
0Bra(2) = h(Byr(2),a,m) By (2) =2 (322)
(Thus, when ¢ = 0, (3.2.1) reads A’ D))
(2) For each (q,7.) € B, we have 0 ¢ ﬁém (riSl).

Note that (3.2.2) simply says that when 7, is fixed, ¢ € D, — f. ., is the non-autonomous
flow generated by the time-dependent (i.e. g-dependent) vector field h;0.. (More pre-
cisely, if ¢ — afm. is the (autonomous) flow in C x C generated by h;0, + J,, then
g .(2,0) = (8, .. (2),q).) Therefore, the basic properties of autonomous flows implies:

q,Te

(3) For each (¢,7.) € B, the map f. ., : A" — C is injective (and hence is a biholomor-
phism onto an open subset of C).
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For each (¢,7.), let T | denote the oriented simple closed curve 3 ., : r;S' — C. By
the Jordan curve theorem, P' — I}, has exactly two components

PL-Ti . =Q . u

q;Te q;Te q,Te

where w0 € (NZfN.. Define
O' ={(z,q,7) P! xB:z € szm} O'={(z,¢,7)eP' xB:z¢€ sz} (3.2.3)

Remark 3.2.1. O and O’ are open subsets of P* x B. Moreover, for each (¢,7,) € B we
have 0 € Qfm_ (i.e. 0 is inside Ffm.)'

Proof. The continuity of 3¢ implies that O U O is open. The function

i 1 dg¢
W: (2,¢,74) €O U O T

is continuous and takes values in N. So it must be locally constant. For each (¢, 7.) €
B, W(-,q,7.) is constant on Qyr, and on € . Since W(w,q,7.) = 0, we have
W(-,q, T°)|ﬁé,n = 0. Since 0 ¢ Ty ., for all (¢,7.) € B, and since W(0,0,7,) = 1, we
have W(0,¢,7.) = 1 for all ¢. So W(-,¢q,7a)|o; = = 1. It follows that O' = W~1(1) and
O = W=1(0). Thus O’ and O° are open. Since W(0, ¢,7,) = 1, we have 0 Q.. O
Remark 3.2.2. According to Rem. 3.2.1, for each z € A" — r;St, the subset of all (¢,7,) € B

such that 3} ., (z) is inside (resp. outside) I', _, is an open subset of 13, and hence is also
closed, and must be either ¢ or B. Therefore, for each z € A* we have

lz| <1 — 7. () is inside Ffm. forall (¢,7) € B (3.2.4)

lz| > 7 — ;T_ (z) is outside Fﬁm- forall (¢q,7e) € B o
Definition 3.2.3. We now construct a family X = (7 : C — B|s1,...,SN: M1, ---,1N),
called the Virasoro uniformization of X, by the non-autonomous flows gL ..., BN (or

by hi,...,hy). B has already been defined. For each (¢, 7.) € B, let
Ri = ﬁé,n (‘AZ> Y QZ

q;Te q,Te

Then the fiber C, ., is defined by (setting ¢; = inf{|2| : z € A’})

N N
C(;:T. = 7T()_1(7—-)\ U :uz'_l(ﬁ&‘) C(;T- = |_| Rflv""
=1 =1
Cqﬂ'. = (Cg‘r. o C;To)/ ~

where the gluing ~ is given by the following biholomorphism between open subsets of
Ct.andC, .:
q,Te q,Te

b0 iy H(re) o (AY) = B (AY)

q,Te
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(One needs (3.2.4) to show that C, ;, is (sequentially) compact Hausdorff.) Assembling
these fibers together, one gets C. The map 7 : C — B is defined by sending each C, -, to
(4, 7).

Recall that 0 belongs to Qfm. (Rem. 3.2.1). Then g; is defined such that ¢;(q, 7.) is
0eR: ... Let

q,Te"

U= |J Rin.

(g,7e)EB

which is open in C and contains ;(8). The local coordinate n; € O(Uj;) at ¢;(B) is defined

such that its restriction to Ry, ., is the standard coordinate z — 2. (Therefore, its restriction

tomy H(7a) O i H(AY) < Cf L is i = B, o i) O

Remark 3.2.4. Now one can define a lift r € H°(C, ©¢(#Sx)) of 0, as follows. On the open

subset C* := U C,.. of C, the vector field ¢ is d,. In particular, on the open subset
(q,70)EB

U (75 1 (Te) N i '(AY)) of C* and under the coordinate system (;, g, 7.), the vector

(q Te )
tield ris d,. Using (3.2.2) and the change of variable formula for tangent vectors, one easily

shows that under the coordinate system (7; = ﬁé,r. ofti, ¢, Te) onehast = hi(n;, q, 7e)0n, +0q
on this open set. Thus, the construction of ¢ is finished if we define r on U Rfm. (under

(Q7T')
the standard coordinates (z, ¢, 7)) to be hi(z, ¢, 7e) 0. + 04.

The above construction shows that r satisfies (3.1.3) in Sec. 3.1, ie. 1|y, =
hi(ni,q,Te)0n, + 04. Therefore, we have shown that the non-autonomous Virasoro uni-
formization gives rise to a family X and a lift ¢ of J; as in Sec. 3.1. Identify By with
{0} x By in D, x By = B. Then the family X, in Sec. 3.1 is the restriction of X to By.
Choose ¢g € H°(By, T (W)). Let ¢ be its formal parallel transport (Def. 3.1.2), called the
Virasoro uniformization of ¢g. Then Thm. 3.1.7 says that the Virasoro uniformization of do
converges a.l.u. to a conformal block associated to X and W.

Remark 3.2.5. Intuitively, the fiber X, ;, is obtained from X, -, by changing each of the
local coordinates 4i; to the parametrization 53,7. o it;. Therefore, the formula (3.1.6) (equiv-
alently, (3.1.8)) for ¢ can be viewed as the change of parametrization formula for con-
formal blocks. In particular, if each (3 is autonomous (i.e., h; is independent of ¢), Exp.
3.1.5 shows that ¢ can be expressed as the exponential of a sum of Virasoro operators. See
[Gui23b] (especially Sec. 13) for more discussions on this topic.

3.3 Local freeness for smooth families

We emphasize that in this section, unless otherwise stated, X is not assumed to have
local coordinates 7, at ¢, ().

Theorem 3.3.1. The Op-module Fx(W) is a locally free. Hence 7¥ (W) is locally free.
Therefore, if we consider the stalk map T¥ (W), — I3 (W) defined by the restriction maps
HOV, ZF(W)) — T3 (W) (for all open V' 5 b) sending each & : W — O(V') to ¢(-)|y, then by
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Rem. 1.3.11, this stalk map descends to a linear isomorphism
T (W), — T, (W)
Consequently, the function b € B — dim 3 (W) is locally constant.

Note that the second paragraph describes how the space of conformal blocks 73" (W)
can be viewed canonically as the fiber of the vector bundle .77 (W) at b.

Proof. By Lem. 1.3.12, it suffices to prove that the rank function R : b € B — dim .73 (W)
is locally constant. Thus we may assume that B is the open ball B, = {1, € C™ : |1,| < r}
and prove that R(a.) = R(0) for each ae = (a1,...,am) € B;. Since ¢ € D, /g, — (- e
parametrizes a closed 1-dimensional submanifold of B, containing a., it suffices to prove
that R is constant on this Riemann surface. Therefore, it suffices to prove that R is locally
constant under the assumption that dim B = 1.

We want to prove that each point of B has a neighborhood on which R is constant.
Thus we may assume that X has local coordinates 7, at <.(3), that B = Dy,, and prove
that R(p) = R(0) for each p € D,. Let ¢ be the standard coordinate of B. Then by
Rem. 2.3.4, d, has a lift x. Fix p € D,. By Thm. 3.1.7, for each { € 335"0 (W), we have
Fy € H(D,, 7 (W)) satisfying the differential equation (3.1.6) (defined by r) with initial
condition F\|,—9 = . Similarly, let D,(p) = {# € C : |z — p| < r}, then for each
w e 7 (W) we have Gw € H O(D,(p), 73 (W)) satisfying the same differential equation
(3.1.6) but with initial condition Gw|4—, = w.

Define linear maps

Fy: T3 (W) — ffp (W) resp. Gy : ﬂx*p (W) — 73 (W)

by Fpb = F|, resp. Gow = Gwlo. Then for each w € 7 (W), clearly F(Gow) €
HO(D,, 7(W)) and Gw € H*(D,(p), 73 (W)) satisfy the same differential equation and
the same initial condition at ¢ = 0. So the series expansions of F'Gow and Gw at 0 both
satisfy (3.1.8), and hence are equal. So FGyw equals Gw on D, n D,(p), and hence at p.
This shows F,Gow = Gw|, = w. Thus F,Gy = id. A similar analysis for GF,\p and F'{
shows that GoF), = id. So F), is a linear isomorphism, and hence R(p) = R(0). O

Corollary 3.3.2. Let (C;x1,...,xN) be an N-pointed compact Riemann surface. Associate W
to x,. Then the finite number dim F ¢, (W) depends only on the topology of (C; x.), namely,
the number of components of C, the topology of each component of C, and the subset of all i €
{1,..., N} such that x; is contained in a given component.

Thus, dim .7¥ (W) is independent of the complex structure of C, the position of each
x; (as long as it is always on the same component), and the local coordinates at x..

Proof. All N-pointed compact Riemann surfaces (with certain extra structures) that have
the same topology as (C;z,) form a family X whose base manifold is a product of Te-
ichmtiller spaces 7, and hence is connected. Therefore, by Thm. 3.3.1, all fibers of X
have the same dimension of space of conformal blocks. ]
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3.4 Application: Nx(W) for a smooth family X

The goal of this section is to establish the existence of dual fusion products of W along
a family of compact Riemann surfaces, generalizing the corresponding result from [GZ23]
for a single compact Riemann surface. The results of this section will be needed in the
third paper of the series to prove the sewing-factorization for families.

We consider a setting different from Asmp. 1.2.3. Choose a family of (A, N)-pointed
compact Riemann surfaces with local coordinates (recall Def. 2.2.1 in [GZ23])

X = (T*;Q*‘W:C—)B

GoiMe) = (T1, -, Tar; 01, - ,QM‘W;CHB‘%... LSN)-

where M, N > 0. Assume that for each b € B, each connected component of C;, intersects
one of ¢1(B),...,sn(B).

Recall that V is Cs-cofinite. Associate the grading restricted V®V-module W to the
incoming marked points ¢, (B). When B is a single point, we have proved in [GZ23, Thm.
3.5.5] that W has a dual fusion product along X in the following sense:

Definition 3.4.1. Assume that B is a single point. A dual fusion product denotes a pair
(Nx (W), J) where Nx(W) is a grading restricted V®M-module associated to 7.(3), and
Je T (W ®@Ng(W)) satisfying the universal property:

e For each ¢ € 73¥ (W ® M) (where M is a grading restricted V®¥-module associated
to 7. (B)) there exists a unique 7' € Homyeum (M, Nx(W)) such that ¢ = Jo (1y ®T)

We abbreviate (Nx (W), J) to Kx(W) when no confusion arises. The contragredient V&M -
module of Ny (W) is denoted by X]x (W) and called the fusion product of W along X.

Example 3.4.2. When M = 0, then V®¥ = C. A grading restricted C-module is under-
stood as a finite-dimensional C-vector space. Thus, if B is a single point, then

(7% (W), ]) is a dual fusion product of W along X
where J € 7 (W ®c J3F (W)) is defined by
ITWRHW) -C  w®d— dw)

Equivalently, noting the linear isomorphism 73 (W ® 735 (W)) ~ 75 (W) ®c Fx(W), then
I1=>,6:® &' where (¢;) is a (finite) basis of T (W) with dual basis (%) in T(W).

Remark 3.4.3. Assume that B is a single point, and let (Nx (W), J) be a dual fusion prod-
uct. Then J: W ®@ Nx(W) — C is partially injective in the sense that

{€eNx(W) : J(w®E) =0 for all w e W} (3.4.1)

is zero. There is an equivalent formulation of this injectivity. Recall (1.1) for the meaning
of Pc),. Note that ] gives rise to a linear map

FrW - Me(W) =e(W) weI(w®-)

Then for each A, € CM, the map Pc, o J* : W — Xlx(W)[<,,] is surjective.
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Proof that (3.4.1)= 0. Assume that M := (3.4.1) is not zero. Let 71,75 : M — Nx (W) be
respectively the inclusion map and the zero map. ThenJo (1®71) = Jo (1®715) = 0, but
Ty # Tb. This contradicts the uniqueness part in Def. 3.4.1. O

We now generalize Def. 3.4.1 to the case that X is a family.

Definition 3.4.4. The dual fusion product of W along X is a pair (Nx (W), 1) where Nx (W)
is a grading restricted V®"-module, I € H°(B, 7 (W®Kx(W))), such that for each b € B,
the pair (Nx(W),1|) is a dual fusion product of W along X;. The contragredient V&M -
module of Nx(W) is denoted by X]x (W) and called the fusion product of W along X.

The following proposition will be a special case of the sewing-factorization theorem
for families to be proved in the third paper of this series.

Definition 3.4.5. Let W, W5 be V®N-modules such that Homyen (W, W) < +00 (e.g.
when Wy, W, are grading restricted). Then for each complex manifold X, the holomor-
phicity of each map X — Homye~ (W1, W) can be defined in the obvious way as a
vector-valued holomorphic function.

Proposition 3.4.6. Let (Nx (W), 1) be a dual fusion product of W along X. Then for each grading
restricted VEM -module M and each ¢ € HO(B, 73¥ (W ® M), there exists a unique holomorphic
map b € B — Tj, € Homyen (M, Nx(W)) such that |, = 3|y o (1 ® Tp) for each b € B.

Proof. The uniqueness is obvious. As for the existence, consider the linear map
¥ : Homyen (M, Ny (W) — H'(B, ZFH(W@M)) S+—Jo(1®S5)
which (by Def. 3.4.4) restricts to a linear isomorphism
¥y : Homyen (M, Nx(W)) — T, (WOM)  S—1Tpo(1®5)

for each b € B. Therefore, if Si,...,S, are a basis of Homyewm (M, Nx(W)), then
Ulp(S1), ..., ¥[p(Sy) are a basis of F3¢ (W ® M). This shows that ¥(S51),...,¥(S,) are
a free generator of the Oz-module 7;*(W ® M), i.e., the Og-module morphism O} —
I (W@ M) sending each (fi,..., f) to 3; f;¥(S)) is an isomorphism. Thus ¢ can be
uniquely written as ;7 f;¥(S;) where f; € O(B). The existence of T follows from set-
ting Ty, = 35; f;(b).S; for each b. O

Corollary 3.4.7. Let (Nx(W),J) and (Rx(W),J) be dual fusion products of W along X. Then
there exists a unique holomorphic map b € B — &, € Homyeun (Nx(W),Nx(W)) such that for
each b € B, we have that 1|, = 1|, o (1 ®@ @), and that &y is a VO -module isomorphism.

We call @ the canonical isomorphism from (Rlx(W),J) to (Mx(W), J).

Proof. The existence and uniqueness of ¢ satisfying the desired properties, except that @,
is bijective, is clear from Prop. 3.4.6. Similarly, there is a unique ¥ : Nx(W) — Rlx(W)
satisfying all the properties of a canonical isomorphism except that U is bijective. Thus
o =Jp o (1 ® (P 0 ¥y)), which shows that @, o U, = 1. Similarly ¥;, o ®, = 1. Therefore
Py, is bijective. O
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When dim B > 0, a dual fusion product does not necessarily exist. However, the
following theorem shows that the existence holds locally. Therefore, using the canonical
isomorphisms in Cor. 3.4.7, one can glue all N, (W) ®c Oy together (for all open V' < B
such that a dual fusion product N, (W) exists for W along Xy/) and get a bundle of dual
fusion products. (More precisely, it is an infinite-rank locally free Op-module.) We will
not explore this topic further in this paper.

Theorem 3.4.8. Assume that B = D, x By where By is a Stein manifold and 0 < r < +o0. Let
Xo = (123 04|m0 : Co — Bolse; 1)

be the restriction of X to By ~ {0} x By as in (3.1.1). Assume that W has a dual fusion product
(N, (W), Jo) along Xo. Then W has a dual fusion product (Nx(W), 1) along X.

Proof. Let g be the standard coordinate of D,.. Consider d, as a constant vector field on B.
Set Nx (W) = Nx, (W). Since By and D, are Stein, B is Stein. So by Rem. 2.3.4, ¢, has a lift,
by which one can define the differential operator V;, on #%(W), 7x(W), 73 (W). There-
fore, since Jo € H(By, 7 (W ® Nx(W))), by Thm. 3.1.7, the formal parallel transport
1 of Jy converges a.l.u. to an element of H%(B, 7 (W @ Nx(W))). In other words, J can
be viewed as a linear map W — O(B) whose restriction to each (p,b) € B is a conformal
block associated to W and X, ;.

We want to show that for each (p,b) € B, (Nx(W), J|(, 1)) is a dual fusion product of W
along X, ;). For that purpose, it suffices to assume that By is a single point, say {0}. Then
B = D, x {0} ~ D,. Therefore, p € D, denotes a general element of B. By Thm. 3.3.1, for
each grading restricted V®-module M associated to 7.(B), 73 (W ® M) is a (finite-rank)
holomorphic vector bundle on D,.. Then V,, defines an (obviously flat) connection V on
T (W ®@M), and 1 is parallel under this connection if Ml = Nx(W).

Choose any ¢, € F3 (W ®M). Let o € 73 (W @ M) be the parallel transport of
¢, (under V) to 0. Since (Nx(W),Jo) is a dual fusion product along X, there exists T" €
Homyea (M, Nx(W)) such that g =Jpo (1 ®T) =Jo (1 ®T)|p. Since ] is parallel under
V and T intertwines the actions of V&M it is clear that Jo (1®T) € H°(B, 7#(W®M)) is
parallel under V. So J|, o (1 ® T') and ¢,, are both the parallel transport of ¢ to p. Thus
Apo(1®T) = bp.

On the other hand, if S € Homyg (M, Nx(W)) also satisfies 3|, o (1 ® S) = ¢,, then
¢y is the parallel transport of |, o (1 ® S) to 0, and hence ¢y = Ijp o (1 ® S). Similarly
b0 = oo (1®T), which shows T' = S because (Nx (W), Jp) is a dual fusion product. This
finishes the proof that (Nx (W), 1|,) is a dual fusion product of W along X,,. O

Corollary 3.4.9. Suppose that B is an open polydisk, i.e., it is of the form Dy, x --- x D, < C™
where m € N. Then there exists a dual fusion product (Nx (W), J) of W along X.

Proof. This follows immediately from Thm. 3.4.8 and from induction on m. O

4 Convergence of sewing conformal blocks

In this chapter, we continue to assume Asmp. 1.2.3, and use freely the notations in
Subsec. 1.2.1. In particular,

X=(m:C—Ble)=(m:C— Bls, - ,sn)
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is obtained by sewing the family
X=®:C—Blafd,d) = F:C— Bla,-- el s choeds - <h)

satisfying (1.2.2). Assume that X has local coordinates 7., &, @, at < (B), <. (B), </(B), and
extend 7, constantly to local coordinates of X at ¢,(B) (also denoted by 7,), cf. Asmp.
2.3.2.

We always assume that V = @, V(n) is a Ca-cofinite VOA, and W is a grading-
restricted V®N-module associated to ¢, (B) and also to ¢, (B). Let M be a grading-restricted
V®E-module with (automatically grading-restricted) contragredient M. Associate M, M/

~.

to (B) and ¢/ (B) respectively. We use U(1s, &, w.) and U(n, ) to make the identifications

Wi (WOMEM)=WMeM ®&c O  #%(W)=W®c Op (4.0.1)

4.1 Sewing conformal blocks
411 The decomposition L;(0) = L;(0)s + L;(0)n

Recall the grading Ml = ), ccr M|y,), cf. (1.1.4). Since M is grading-restricted, by the
first part of the proof of [GZ23, Thm. A.2.6], there exists a finite subset E = C' such that

M= & My, and dim My, < +oo for each A, (4.1.1)
Xe€EE+NE

For each 1 < j < R, we let L;(0)s € End(M) be defined such that LJ-(O)S‘M[A = Aj, and
let Lj(O)n = Lj(O) — Lj(O)S.
Since for eachv e Vand 1 < 4,j < R and n € Z we have on M that

[L;(0), Yi(v)n] = [L;(0)s, Yi(v)n] = 6i;Yi((L;j(0) —n — 1)v)n

we see that L;(0), € Endyer(M) when L;(0), acts on M. In particular, we have
[L;(0)n, Li(0)] = 0. So L;(0), preserves each generalized eigenspace of L;(0), i.e.

[Lj(0)n, Li(0)s] =0  and hence  [L;(0)n, Li(0)y] =0
Thus My,; is L; (0)y-invariant. Therefore, on the finite-dimensional space M.
L (O)|M[>\.] =L (O)S|M[A.] L (O)H|M[A.]

is the (unique) Jordan-Chevalley decomposition of Lj(O)]MD - Hence Lj(O)n‘M[A ] is

nilpotent. Since M is finitely-generated as a V®f-module ([Hua09]), it follows that

L;(0), is nilpotent on M (4.1.2)
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4.1.2 The element q.L'(O) » ®< of (M ® M'){qe}[log qe]

We treat q1,...,qr and logqi, . .., log ¢r as mutually commuting and independent for-
mal variables. Each A € End(M) acts on (M®@M'){g.} resp. (M®M’'){q. }[log ¢« ]| by acting
on the coefficient before each power of ¢, and log ¢.. Define

r@<e (M @M)* OG@«m @m) ={(m',m)

for all m € M,m’ € M'. For each A € End(M) such that A® € End(M') exists (i.e.
(Am,m’) = (m, A'm”) for all m € M, m’ € M'), we have a linear map

A (MOM) — (M QM) (A)(m ®m) = p(A'm’ @ m)
for each ¢ € (M/ ® MI)*. We set
PR Ale = A r R

Note that M® M’ is canonically a subspace of (M’ @ M)*. Consider P,,, the projection
of M onto M), . Then one checks easily that

Py, »QA T« = Z m(x,,aq) ®At7\ﬁ()\.’a) eMeM (4.1.3)

OéGQ[)\.
where (M), ))ac,, is any (finite) basis of M, | with dual basis (1, a))aca,, -

Definition 4.1.1. For each A € End(M) such that A* € End(M’) exists, define

@V @Ate= Y gl P @A e (MOM){g}
Ae€CH

where ¢)* = q{‘l e qER. Thus, its evaluation with each m’ @ m e M/ ® M is
(A GE Oty — (1O Er Ot s
Definition 4.1.2. Define a linear map
@' MM - MeM)lge] ¢ (mem) = (@ " mem)

where

Li(0)%  Lp(0)kn
1<0)n R(O)n m

Le(On, ki .. kg .
g"""m = (logq)™ - (log qr)™® P~ =

keeNF
By (4.1.2), the order of power of each log ¢; in qr *©np has an upper bound independent
of the choice of m € M. Thus, we can define
0" (M@ M) {ga} — (MOM'){g. Hloga.]

o (0)n 414
o Y @) el #14)
Xe€CE Xe€CE

Finally, for each A € End(M) such that A* € End(M’) exists, define
qf/-(O) > ®At< e (M ® M'){q.}[log q.] q.LO(O) > ®14t< — q.Lo(O)n (q.Lo(O)S > ®At < )

In particular, v *, @« is an element of (M ®M'){qe}[log g ]

50



Note that by (4.1.3) we have

A L.(0) » e = 2 q:\° Z Aqu-(o)nm()\.’a) ®7’\fl()\.7a) (415a)
)\.E(CR OLEQ[A.

L (0) » QA = Z Z qL (O)Hm ) ®Atm(/\.,a) (4.1.5b)
AeCE aed,y,

Remark 4.1.3. Since L;(0), € Endyer (M), the map (4.1.4) intertwines the action of Y;(v),,
foreachl <i <R, UeV n e Z.

Remark 4.1.4. By (4.1.1), each M is a finite direct sum of submodules that are L,(0)s-
simple. Now assume that M is Le(0)s-simple, i.e., the set £ in (4.1.1) can be chosen to be
a single point set {x,}. Define

L;(0) = L;(0)s — ; (4.1.6)

So the eigenvalues of Ej(o) are in N. Then L,(0) makes M a finitely-admissible V*f-
module.

4.1.3 Sewing conformal blocks

For each ¢ € 7 (W@MQM')(B) and w € W, define

SP(w) = p(w® ¢= D »@4) € O(B){g.}[log ). (4.1.7)
S is called the sewing of 1y along pairs of points L (B),<!(B). Write
Shw) = Y Sh(w)n,1.q0* (loggs)" (4.1.8)

ne€CR [,eNE

Then SV : W — O(B){q.}[log g.] can be extended in an obvious way to an OB)[[¢.]]-
module morphism

S¥ - W@ O(B)[[a.]] - O(B){g.}[log g.] (4.19)
In particular, Sy can be defined on W ® O(B).

Definition 4.1.5. We say S converges a.l.u. if for each w € W and each compact subsets
K < Band Q < DX, there exists C > 0 such that

ST S (w)ne i (B)] - a7 < C

necCR

TepPe’

holds forany b € K, qo = (q1,--- ,qr) € Q, and [, € NF.

Note that the a.L.u. convergence of S is slightly stronger than the condition that for
each w € W, the series of functions Y, ¢ j,enr SW(w)n, 1. ¢ (10g ¢o)'* converge a.l.u. on

B-A=Dx, xB.
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4.2 The sewing of a conformal block is a formal conformal block

If1<k<R, weset do\k = ((ha s Qk—159k+1, - - >qR)'

Proposition 4.2.1. Let </ be a unital commutative C-algebra. For any w e V, 1 < k < R and
[ € D[k, @k, qo\i]], the following elements of (M @ M’ ® o7 ){qs }[log q.] are equal:

d,

. & e (4.2.1)
=Res, =0 Q.L°(0) >®YM',k(w;€(O)U(Y1)U,Wk) < 'f(;i,wk, Q.\k)?k

Resg, —o Yk (& ", &) » @« -f(fk,g VAok) 5

Remark 4.2.2. Using (4.1.5), one easily sees that

Yok (6P u,)gr* @ s @0 € (MOM)((€)){g.}[log g0
0" > @i (o QU ) € (MOM)((wr)){gs}[10g ]

Multiplying these two elements respectively by
f(gr 2 . “quk) € ((&)le]]  and f(%, @k qok) € ((@n))[[ge]]

they become elements of

(MM ® #)((6)){ge}[logqe] ~ resp. (MM ® o)((wk)){qe}[log ¢o]
Thus, the residues in (4.2.1) make sense.

Proof of Prop. 4.2.1. Without loss of generality, we assume M is L, (0)s-simple. When L, (0)
is replaced by L.0)and R = 2, Eq. (4.2.1) holds in M ® M’ ® «7)[[qs]] by Step 1 of the
proof of [GZ23, Prop. 2.3.10]; for general R the proof is similar. Since Ej(O) and L;(0)s
differ by a scalar, Eq. (4.2.1) holds in (M ® M’ ® &/ ){q.} when L, (0) is replaced by L. (0)s.

Multiplying both sides of this result by the map g = (4.1.4) and noting Rem. 4.1.3,
we obtain (4.2.1). (See also the proof of [Gui23a, Lem. 10.2].) O

Proposition 4.2.3. If Y € H° (B, TEWOM® M), then S\ is a formal conformal block, i.e.,
S\ = (4.1.9) vanishes on 73" (B) (defined in (1.3.11)).

When B is a single point, this proposition becomes a special case of [GZ23, Prop.
2.3.10]. Although the following proof is similar to the one of [GZ23, Prop. 2.3.10], we
have included it here because the setting and the notations in the proof will be useful for
the discussions in the third paper of our series.

Proof. Step 1. Choose v € H(C, ¥x ® we/p(*Sx)). We claim that outside the nodes we
have power series expansion

v = Z Un qo® where v,,, € H° (C~, Y% ®W5/§(°S§E)) (4.2.2)

neeNE
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We use freely the notations in Subsec. 1.2.1. Choose a precompact open subset UofC
disjoint from ¢, (B) and ¢ (B) Choose small enough €., k. such that U x D,,, is an open

subset of C x Drope — Ul 1(F’ U F"). Then 7 : C — B, when restricted to U x D,,,
becomes equals 7 x id : U x Deoke — B x De.r,- Thus v|y, p..., can be viewed as a

global section of 74 1, ®ws,p  ep.,., (*5%), and hence an element in H(U, % ®

wa /B(°S ))[[ge]]- The coefficient before g defines vy,

i7 which are clearly compatible for

different U. Therefore, by considering all such U, we obtain a section Up, Oof V3@uws /§(°S5e)

onC — U, (si(B) u ! (B)).

To f1n1sh proving (4.2.2), it remains to prove that each v,, has finite poles at ¢/ (B) and
¢/ (B) for each i. By the description of ¥4 and wp /5 in Def. 1.3.3 and Rem. 1.2.7, v|w, 5 is
a finite sum of elements whose restrictions to W, (resp. W/”) under trivializations U, (&;)
(resp. Uy(ww;)) are

f (& ai/&i, Q.\i)fiL(O)U' 5 resp. - f(qz‘/wi,wu(].\i)wiL(O)U(Yl)u- g (4.2.3)

where u € Vand f € O(W;). (Here, we have suppressed the local coordinates 7, of B
in the parentheses of f. The choice of 7, is clearly irrelevant.) By taking power series
expansion of (4.2.3), we see the term before ¢J* has poles of orders at most n; + 1 at & = 0
(resp. w; = 0). So is vy, .

Step 2. By Prop. 4.2.1 and (4.2.3), in (M ® M’ ® O(B)){q.}[log ¢.] we have

N (om0 @ v @<+ > @, < )i =0 4.2.4)

neeNE

Since vy, € HO(C, 7 ® wy /5(5% )) and 1 is a conformal block, we have

Y(on 0@ Vs @« +w@un, - ¢ Vv @« +w @V r@ua, ) =0 (425)
Therefore, for each w € W we have

Shw-w)= Y Glva, - w@a" @ r@«)g
neeNE

424
20 Y Y(on 0@ s @« +w@uvn, - ¢V > @« +w @ gl » @y, - <)

necNE

which equals 0 by (4.2.5). Since any element of _#;"°(B) is an O(B)-linear combination of
such v - w, we conclude that S vanishes on _7"(B). O
4.3 Convergence of sewing conformal blocks

The following theorem specializes to [Gui23a, Thm. 13.1] in the special case that M is
a tensor product of grading-restricted V-modules. In fact, the proof for that special case
applies almost directly to the present general situation. However, in [Gui23a], the proof
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of Thm. 13.1 was only outlined in Sec. 13, with the detailed proof provided solely for the
case that R = 1 in Sec. 11. Therefore, we now provide the detailed proof of Thm. 4.3.1 for
arbitrary R and arbitrary grading-restricted V¥ -module M.

Theorem 4.3.1. Let p € H°(B, TH(W @M@ M')). Then S converges a.l.u. (in the sense of
Def. 4.1.5) to a linear map W — O(B — A), which belongs to H*(B — A, 7#(W)) (cf. Rem.
3.1.1).

Recall that A = (1.2.17) is the discriminant locus of X, and hence B— A = DX x B.

TepPe

Proof. Step 1. The theorem can be proved locally with respect to 5. Thus, we may assume
that B is an open ball in C"* with standard coordinates 7,. Therefore, by Thm. 2.4.3, X has
a projective structure P. We abbreviate each 7; o 7 to 7;. Moreover, once we can prove the
a.lL.u. convergence, then the fact that S\ belongs to H(B — A, 7#(W)) will follow from
Prop. 4.2.3 and Thm. 1.3.6.

Fix 1 < k < R. By Rem. 2.3.4, we have a lift §j € H%(C,O¢(—1logCa + #S%)) for q0q,
and use 1 to define the differential operator V5, , cf. Def. 2.3.6. Let

o

Choose _any precompact open subset U < C —T equipped with a fiberwise univalent
n e (’)(U) We can find a sufficiently small sub—polydlsk D.,x. < D,,,, such that U x
Deso = De,, x U is an open subset of C x D, ,, — i, (F/ U F!'). (We will freely switch
the order of product of manifolds.) After extending n constantly to a fiberwise univalent
function on U := D, X U, asin (2.3.5), we have

9 = h(qe,n,Te)0y + qrlg, (4.3.1a)

where h € O((ge,n,7.)(U — Sx)) has finite poles at (ge,7,7s)(Sx) = Deyra x (1, 76)(S5)-
Write

PRERCEAA (4.3.1b)
neeNE
where each h,,, € O((n,7.)(U — S%)) has finite poles at (1, 7 ) (S%), and set
Br, = (1, 7)0y € HO(U,045(053)) (4.3.1¢)

Then t)n is independent of the choice of 1, and hence can be extended to an element of
HO (C INCH /B(
fiber, extended constantly to U. So d,,u = 0 for 1 < j < R, and hence (4.3.1a) 1mpl1es
Yl = h(qe,n,Te) - Oppt - Oy + 10, - Note that 0y is constant over ¢.. So if we define §,
using 11, then 9, = hy, (77, Te) * Opft - 0, Which coincides with (4.3.1c¢).

*S3)). To see this, suppose we have another 1 € O(U) univalent on each

Step 2. In this step, we calculate ;> on each Vi, Vj'. Our result (4.3.8) will imply

Un. € HO(C Gc/lg('S )) (4.3.2)
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i.e., that 9., has finite poles at I. We use the notations in Asmp. 2.3.2. By the description
of dm in Subsec. 1.2.2, foreach 1 < i < N and 1 < j < R, we can write

6/|Uz = hi(q.’ n’ia T‘)a’m‘ + kaaqk (433a)
Dlw, = a’ (&5, @}, 4e\j> Te)Ej0¢; + U (§5, @), 4o\ j> To) 0y + (1 — 051 )q0g,  (4.3.3b)

where it € O((qe,1i,7e)(U — Sx)) has finite poles at (ge,7,7.)(Sx), and o/, v’ € O(W;)
(where W = (1.2.7a) has standard coordinates (;, @;, qa\j, Te)) satisty

al +b =4y (4.3.4)
The tangent vectors 0¢;, 0w;, 0y, are defined using the coordinates (§;, @;, ¢a\;; Te)-

When restricted to W] = (1.2.7b) resp. W} = (1.2.7c) and using the coordinates
(€554j/€j5 Qe\j» o) TESP.  (qj/0j, @j, qe\j, Te) to define the tangent vectors 0, d,, resp.
Ow; > O, Eq. (4.3.3b) becomes

9w = @’ (&5, 45/&5 Qo j> To)E50¢; + A0y, (4.3.5a)
ﬁ’W]” = bj(Qj/wjv Wi, qo\ja TO)wjan- + qkaqk (435b)
which are calculated from the change of coordinate formula for tangent vectors
O; = Og; + wj0g / { O; = W;jlq, "
7 on W; J J on W/
{ awj =& aq]‘ ! é)Wj = awj + & aq]’ !
due to q; = fjw]'. Write
aj (gja Wi e\js 7_0) = Z a?ﬂ,n(Qo\jv TO)&TW;Z

m,neN

bj(§]7 Wis qe\j> To) = Z bj,ﬁm(q.\j, T.)f;nwy

m,neN

Then the RHS below converge a.l.u. on W; to the LHS:

a’j (fja qj/gja QO\j7 7—0) = Z a{+n’n(q.\j7 To)féqy (436a)
n=0,l>—n
bj (QJ/wjv Wi e\js T.) = Z bin,l—&-m (q.\j7 T.)?ﬂéq]m (436]3)

m=0,l=>—m

By substituting (4.3.6) into (4.3.5), we obtain

~ j I+1
U|WJ’ = Z a‘l7+n,n(qo\j7 T°)§j+ q_;laﬁj + qkaqk
n=0,l=>—n

~ j I+1
U|WJ// = Z bin,H-m(QO\ja T‘)ijr

m=0,l=—m

q;n aw]' + Qk: an

Write

. . e
a‘ljJrnJ'?nj (q.\], T.> - Z a‘lj+nj7nj,n.\j (T.)qo\jJ (437a)

Mo\ j eNE-1
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b‘leJ"Fnj (q.\]’ T.) = Z b7]1j,l+nj,n.\] ( ) .\]\J (4-3.7b)

N4\ ENF-L
Then in H(V] — S ,©¢/3) resp. HO(V) — S5, O¢5) we have
B, Vi = > a?;nj,nj,n,\j (ro)€ o, (4.3.8a)
[=Z—n;
b, v = l; O iy, (T) @5 0, (4.3.8b)
>-n;

where 0¢; resp. g, are with respect to the coordinates ({j,7.) resp. (w;,7.) of V] resp.
V' (cf. (1.2.4)). So 9. has poles of orders at most n; — 1 at §J’(l§) and cj”(g)

Step 3. By (4.3.2), B, is a lift of the zero tangent field of B. Therefore
v(hr) € Ho(ffl U-ruOyuVi oV u-u ViU Vi, V5 ®wc/3(oS )
v(§) e HO(Uy U -+~ U Uy, Y5 ® weyp(95%))

can be defined by (2.3.6). The goal of this step is to prove (4.3.9).
Note (4.3.1) for the relation between ) and §;.,. Choose any w € W ¢ W ® O(B). By

Def. 2.3.6, in W ® (O(B)[[¢.]]) we have
Vg w = —vBw =— > v(iy,w- ¢l
neeNE

Therefore, by Thm. 2.4.5,in (WM QM ® O(B 5)){ge }[log go] we have

VEE ) w @V s @« +w @ vHL ) r @ « 4w @ ¢ » v (HiE, )+

=#(ﬁfl.)-w®q. -(0) » ® <« + an element of /pre( ){q.}[logq,]

Note that #(,) € O(B). Since V vanishes on I3 (1), in O(B){gs }[log q.] we have
Y @ (we v @« tw @ @viy,) «)

neeNFE

—SU(Vgo,w) + Y, #(r,)q0 - Sh(w)

neeNE

(4.3.9)

Step 4. Let us prove in (M@ M' ® O(B 5)){ge }[log g] that
S (vEL)ae s @« +ql P s @v(it,) <) = L) » @4 (4.3.10)

neeNFE
This will imply that for each w € W, we have in O(B){q. }[log ¢.] that
005 SP(w) = Y(w @ grdg ga* ¥ > ®4) = Y(w @ Li(0)ga*” » ®4)

S b (wevE ) s @« twe @ r@viHl) <)
neeNE (4.3.11)

SY(Vga,w)+ Y. #@r)a - Sh(w)

neeNFE

(4.3.10)

(4.3.9)
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To prove (4.3.10), note that by (4.3.8), the j-th residue actions *; of v(ﬁﬁ) on M, M’ are

] I+1
Resgj:o Z angnj ;M5 ,no\j (T.)YM7-7 (c7 5.7 )§j+ dg]
lZ*TLj
j I+1
Reswj:() Z bgv,j,l+nj,n.\j (T.)YM/’]' (C, wj)ijr dw]-

lZ—’nj

These formulas, together with (4.3.7), show that the LHS of (4.3.10) equals

R
D) D Reseo ) afy, (4 )0 Yiay (e, &) s @« 6

n; =0 j=1 I=—n;

L, I+1
+ Z Z Resw]—O Z n],l-i-n] QQ\]7TO)q]JQo © ’@YM/,]‘(C,W]‘) < wj+ dw]'

nJ/OJ 1 I=—n;

(4.3.6)

Z Resg,—o @’ (&7, 4;/€7, 4o\ 7o) Vi (e, €)as ) » @ « &
j=1

R
+ ) Rese;—0 ¥ (gj/@), @j, u; r)ge" " @i j(c, ;) « widw;
7j=1

This result, together with a’ + b/ = 4, and the formula

Rese, -0 Yia (€26, €050 » @ « (61, 05/62 a0 7) é?
—Resm,—0 ¢o"") » @Yir j(wlc, @;) « '(Qj/wj'ywjvq.\jm)ci:jj
(due to Prop. 4.2.1 and the fact that &/ (y;)c = c), implies (4.3.10).
Step 5. In this step, we prove that
gei= Y, #(n)di € OB)[[g]] (4.3.12)

neeNE

belongs to O(B). Recall (1.2.4) that V/ = D,, x Band V} = D, x B. Define hi,_ from h' as
in (4.3.1). By Thm. 2.4.5 and (4.3.8), we have

#05) = 5( 2 Aimet Y, Binet Y, Cin)

1<j<R 1<j<R 1<i<N

where

Ajane = Z Resg, —0 S¢, P (&, 70) 'ag+nj,nj7n.\j (T‘)S;‘dej

I=— —n;j
I+1
Bj,n. - Z Resw] =0 SWJP(wJ’T') ’ bZI]J“F”J? -\7(T.)wj dwj
I=—n;
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Ci,n. = Res’h':O SﬁiP(niv T') ’ h121. (nia T')dni

Choose anticlockwise circles ~; inside D,; and +/ inside D, around the origins with
radii 0 < €; <r; resp. 0 < € < p;. Let

= 59 4; Se,P(&j,7e) - 0 (&5, 45/55, dajs o) - E5dE; (4.3.14a)
1
Bj =5 " Se; P, 7a) - V) (q5/0), @, a5 o) - widew; (4.3.14b)
J
CZ' = RGSm:OSmP(ﬁz‘> To) : hz (qc> i, T’)dni (4314C)

where in (4.3.14a) and (4.3.14b) we assume that |¢;|/p; < €] resp. |g;|/r; < €] (cf. (1.2.10)).
Clearly C; € O(B). It is not hard to see that the definitions of A;, B; are consistent
for different choices of ¢}, ¢j. Therefore, by choosing e}, €; sufficiently close to 7, p;
respectively, Eq. (4.3.14a) and (4.3.14b) define A;, B; € O(B). Itis also not hard to see that
Dine Ajne@d*s 2on. Bindal*, 2. Cin.ge® converge alu. on B to Aj, B;, C; respectively.
(See the proof of [Gui23a, Prop. 11.12].) Note that the factor 5~ for (4.3. 14a) and (4.3.14b)
is missing in Prop. 11.12 and also in (13.8) of [Gui23a].) Thus gr converges a.l.u. to an

element of O(B), i.e., 5 ( Dicj<rdi t 2i<i<r Bi + 2Zi<isn C’i)

Step 6. This final step is similar to the proof of Thm. 3.1.7. By Thm. 1.3.8, we can find
finitely many elements s1, s, - € W ® O(B) generating W ® O(B) mod _#y"°(B). Fix
pte € CN such that s1, 59, -+ € Wi¢,,] ® O(B). Thus W] generates the O(B)-module
W® O(B) mod /pre( ).

Choose any A, > p.. Let (ej);es be a basis of the (finite-dimensional) vector space
Wi<y,)- By (4.3.11) in Step 4, foreachi e Jand 1 < k < R we have

Qkaqsﬂ)(ei) = Sll)(vqk&’qk ei) + gk - Slp(ez)

where g, € O(B) by Step 5. Since W), generates the O(B)-module W ® O(B) mod
% (B),and since V,, 5, ¢; € WRO(B ) (cf Def. 2.3.6), we can find Qf ; € O(B) such that

L k . pre
quaqkez = 2 Q;;e; mod _Zy (B)
jed

for all ¢, j € J. Therefore, by Prop. 4.2.3,

Gl SW(ei) = D SU(es) + gi - S(es)

jed

Thus, as an element of O(B)[[¢.]][log ¢s]”, f := @jesSW(e;) is a formal solution of the
differential equation of the system of differential equations g0, f = A¥f (for all 1 <
k < R) where A* is the C”*7-valued holomorphic functions on B whose i x j-th entry is
ij + 0;,jgk. Therefore, by [Gui23a, Thm. A.1], S\(w) converges a.l.u. whenever w = ¢;,
and hence whenever w € Wi, Since Ae > . is arbitrary, S{(w) converges a.l.u. for all
we W. t
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Remark 4.3.2. Recall that (1.2.2) is always assumed in this article, i.e, each connected
component of each fiber X; of X intersects at least one of the incoming marked points
6o (B). However, Thm. 4.3.1 often holds under a weaker condition:

Instead of (1.2.2), assume that we can add some incoming marked points (i.e. sections)

o1,...,0k suchthat oy (g )ye s OK (B ) are mutually dls]omt and are also dls]omt from each
«(B) and V/and V/, and each component of each X, intersects one of o, (B). Then Thm.
43.1 holds O

Proof. Let X' = (7 : C — Blss, 04 5., <)) be the new family obtained from X by adding o,.
Associate the vacuum module V to each o}. By the propagation of conformal blocks (cf.
[GZ23, Sec. 2.5]), there exists an element

W e H(B, 7H(WR VK @ M@ M)
Ww@1®K@mem') =Pp(w@mem)
for all w € W, m € M, m’ € M. Then X’ satisfies (1.2.2). We sew X’ and get X’. By Thm.

4.3.1, the sewing Sup converges a.l.u. to a conformal block associated to X’ outside the
discriminant locus A. Thus

S (w) = Sup(w ® 19K)

converges a.l.u.; the limit is a conformal block associated to X outside A, again by the
propagation of conformal blocks. O

The following Thm. 4.3.3 says roughly that the sewing of a conformal block is parallel
“in the direction of sewing” up to a projective term that can be calculated explicitly. In
a future paper, we will use Thm. 4.3.3 to explain the appearance of —g; in the modular
invariance formulas in [Zhu96, Miy04, Hua24].

Theorem 4.3.3. Let y € H°(B, THW@M@M')). Assume that B is an open subset of C™
with standard coordinates 7,. Fix 1 < k < R, assume that § € H°(C,O¢(—logCa + ¢S%)) is
a lift of q.0q, (cf. Def. 2.3.3). We usey) to define Vg0, on T3 (W) being the dual of Vg, 5, on

T(W) defined by Def. 2.3.6. Assume that P is a projective structure on X. Foreach1 < j < R
and 1 <i < N, let /b, WJ be defined by (4.3.3), and let A;, B;, C; be defined by (4.3.14). Let

(2A+ZB+ZC>

1<j<R 1<j<R 1<i<N
(which is in O(B)). Then S € H(B — A, 7#(W)) satisfies
Vo, SO = g1 - S

We repeat that 1 exists due to Rem. 2.3.4, and that B exists due to Thm. 2.4.3. Recall
Def. 2.3.1 for the meaning of dual differential operators.

Proof. This is clear from the proof of Thm. 4.3.1, especially Eq. (4.3.11) and Step 5. O
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4.4 Application: convergence of higher genus pseudo-g-traces

In this section, we assume for simplicity that R = 1. We write ¢{,¢{ as ¢/,¢”. Write
r1 =7, p1 = p. Associate a grading restricted VON _module W to g.(B) Thus B = D, x B.
Choose a grading restricted V-module M with contragredient M'. Associate M’ and M to
¢'(B) and <" (B) respectively. W is also associated to the marked points ¢, (B) of the sewn
family X. Recall from the beginning of this chapter that the local coordinates 7,,&1 =
¢, @1 = w (at o (B), < (B), <" (B)) are chosen, and the identifications (4.0.1) are assumed.

4.4.1 The pseudo-trace Tr* on End (M)

Note that dim Endy(M) < +0o0. We fix a unital C-subalgebra A of Endy(M)°" such
that M is projective as a right A-module. We fix a symmetric linear functional (SLF) w on
A. Namely,

w:A—C

is a linear map satisfying w(ab) = w(ba) for all a, b € A.
As usual, End 4 (M) denotes the set of linear maps 7' : M — M satisfying (I'm)a =
T(ma) for all m € M, a € A. We let

End’(M) := | ] End(M = {T € End(M) : T = P<,TP<) for some ) € C}
AeC
End’ (M) := End’(M) n End (M) = | ] Enda(M
AeC

Since each M is finite-dimensional, by the pseudo-trace (also called Hattori-Stallings
trace) construction (cf. [Aril0] and the reference therein), w defines canonically an SLF
Tr* on Enda(M<y)), restricting to the one on End a(M|,j) whenever Ru < R\. We thus
obtain an SLF

Tr* : End% (M) — C
called the pseudo-trace of w on End%(M). (In fact, the results in this section hold more

generally when Tr” is replaced by any SLF on EndY% (M). Thus, one can forget about the
fact that it arises from w.) Recall that M is the algebraic completion of M.

4.4.2 The pseudo-sewing S“¢ of a conformal block ¢

Definition 4.4.1. Let ¢ € HO(B, 95;‘ (WM ®M)). So ¢ can be viewed as a linear map
WM ®M — O(B). Define a map ¢! by

$* : B — Homg (W, Homge (M, M))
such that for each b € 5 and w € W, the linear map q)g(w) € Hom (M, M) satisfies

d)ﬁb(w) : M —» M <d)2(w)m, my=dw@m ® m)|b (4.4.1)
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for all m € M, m' € M. We say that ¢ commutes with A if for each b € B,w e W and
A, it € C, the following linear map

Py o ¢f(w) o P, : My, — My (4.4.2)
commutes with the action of A (and hence belongs to End’ (M)).

In the following, we fix ¢ € H 0(B, ﬂg (W®@M ®M)) commuting with A. Tr* can be
defined on (4.4.2). Recall that L(0), preserves each M, (because it commutes with L(0)).
Note that qL(O) and P, commute with A. Thus, for each b € B ,we W, we can define

SUo(w)|, == Z T (qL(O)P,\ o d)g(w) o P,)
A,ueC

= > T (MO Py o df(w) o Py)
AeC

(4.4.3)

which is in C{g}[log ¢]. This gives a linear map

~.

S“¢: W — O(B){g}[logq]  w > T (w)

We call S“¢ the pseudo-sewing (or the pseudo-g-trace) of ¢ with respect to w.
The a.l.u. convergence of S ¢ is understood as in Def. 4.1.5. In Nthe rest of this section,
our goal is to prove the following theorem. Recall B — A = D}, x B.

Theorem 4.4.2. S¥¢ converges a.l.u. to a linear map W — O(B— A), which belongs to H° (B —
A, ZFW)) (cf. Rem. 3.1.1).
4.4.3 Tr¥ is a conformal block associated to the V®2-module EndY (M)

Recall (1.3.7) for the meaning of U(v). Notice the linear isomorphism

MM = End’M) m@m —m-(m/,-)

Pushing forward the V®2-module structure of M ® M’, we see that End’ (M) is a grading-
restricted V®2-module whose module structure is determined by the fact that for each
veV,T e End’(M), the following relation holds in End® (M)[[2%1]]:

Y(o®1,2)T =Yy(v,2)oT  Y(1Qu,2)T =T o YuU(y:)v, 2z ") (4.4.4)
Clearly End (M) is a (grading-restricted) V®2-submodule of End®(M).
Remark 4.4.3. Define a 2-pointed sphere with local coordinates
N = (P!0,0;1/z,2)

where z denotes the standard coordinate of C. Let X be a grading restricted V®2-module.
Let { : X — C be a linear map. Then clearly 1 belongs to .7 (X) iff for each v € V and
x € X, the following relation holds in C[[z*1]]:

DY U @127 )y) = (Y (1 ®v,2)x) (4.4.5)

This description is independent of whether X is associated to (0,00) or (0,0) (since
Uyz-1)U(Yz) = id).
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Proposition 4.4.4. Let N x B be the constant extension of Wby B, i.e., it is the family of 2-pointed
spheres with local coordinates

N x B = (P xB— Blo,0;1/z 2)

where P! x B — B is the projection onto the g—component, and 0, o0 mean the constant sections
b— (0,b) and b — (00, b).

Associate End’ (M) to the marked points (o0, 0) where the first component (i.e. Y (— ®1, z))
is associated to co and the second one (i.e. Y (1 ® —,z)) is associated to 0. Then the linear
functional Tr* : End% (M) — C, viewed as a linear map Tr* : End% (M) — O(B) by enlarging
the codomain, is an element of HO (B, ﬁg’:xg(End%(M))).

Proof. Since the property of being a conformal block can be checked pointwise (cf. Rem.
3.1.1), it suffices to prove that Tr* : End%(M) — C belongs to Zf(End%(M)). This, in
view of (4.4.4) and (4.4.5), is equivalent to proving that in C[[2*!]] we have

Tr¥ (Ya(v, 2) o T) = Tr*(T o Y(v, 2))

for each v € Vand T € EndY%(M). Take A € C such that T = P<,TP<,. Then the above
equation becomes

Tr¥(P<yYiu(v, 2) P< o T) = Tr*(T o P<,Yir(v, 2) P<))

which holds because Tr* is an SLF and P<)Yy(v, ) P<y belongs to End’ (M)[2+1]. O

4.4.4 ¢ is a conformal block associated to W ®c End% (M)’

Let b € Band w € W. For each A i€ C, themap Py o qu(w) o P, = (4.4.2) belongs to
the weight-(\, i) subspace

End (M) ] = P 0 End% (M) o P, = Hom 4 (M}, M)
of End’ (M). Therefore, cbg can be viewed as a linear map

bp : W — Endq (M) = [] End (M)},
A,ueC

Thus ¢, can be viewed as a linear functional W ® End% (M)’ — C, where

End) (M) = @ Hom (M), Mpy)*
A,peC

is the contragredient V®2-module of End (M). Clearly ¢ is still a conformal block asso-
ciated to X. Thus:

Proposition 4.4.5. ¢ is naturally an element of H° (B, TEW® End% (M)")).
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4.4.5 Reducing pseudo-sewing to (ordinary) sewing

Let := X U (M x B). We sew 9 along two pairs of marked points. The first pair is
(¢',00) with sewing radii r, 1. The second pair is (¢”,0) with sewing radii p, 1. The result
of sewing (cf. Subsec. 1.2.1) gives a family ) with base manifold D, x D, x B.

By Prop. 4.4.4 and 4.4.5,

~.

¢ ®Tr¥ : W® End) (M)’ ® End% (M) — O(B)
is a conformal block associated to 9). Its sewing is

S(d®TH?) : W — O(B){g1, g2} [log g1, log g2]

w — Z Trw(qlL(O)PAd)ﬁ(w)PuQQL(D)) (4.4.6)
A,ueC

The RHS of (4.4.6) is clearly in O(B){q1q2}[log(q1¢2)], i-e., it is of the form f(q1¢2) for some
f e O(B){q}[logq].

Theorem 4.4.6. As linear maps W — O(B){q}[log q] we have

S = S(d@Tr)|

q192=¢

Proof. This is clear from (4.4.3) and (4.4.6). O

Proof of Thm. 4.4.2. By Thm. 4.3.1 and Rem. 4.3.2, S(¢ ® Tr*) converges a.l.u. on D) x
D x Bto a conformal block associated to ) outside its discriminant locus. Therefore, by

Thm. 4.4.6, S“¢ converges a.L.u. on Dy, x B.

Moreover, for each fixed g € Dy, we find ¢1 € D), g2 € D, such that ¢ = q1g2. Then
for each b € B, the fiber X, ) is canonically equivalent to 2 4, 4,)- Thus S“®| 4 is a
conformal block associated to X3 ). Since the property of being a conformal block can be
checked pointwise (cf. Rem. 3.1.1), we conclude that $¥¢ is a conformal block associated

to X outside A = {0} x B. This finishes the proof of Thm. 4.4.2. O
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