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Abstract

Let V be one of the following unitary strongly-rational VOAs: unitary WZW mod-
els, discrete series W -algebras of type ADE, even lattice VOAs, parafermion VOAs,
their tensor products, and their strongly-rational cosets.

Let AV be the conformal net associated to V in the sense of Carpi-Kawahigashi-
Longo-Weiner (CKLW). According to [Gui20], the ˚-functor FV

CWX : RepupV q Ñ

ReppAV q of Carpi-Weiner-Xu (CWX) can be defined and extended to a braided ˚-
functor pFV

CWX,W
V q implementing an isomorphism of braided C˚-tensor categories

RepupV q » RepfpAV q where RepupV q is the category of unitary V -modules, and
RepfpAV q is the category of dualizable (i.e. finite-index) AV -modules. The tensorator
WV , originally due to [Was98], is called the Wassermann tensorator.

In this paper, we show that if U is a (conformal) VOA extension of V (which is
automatically unitary [CGGH23]), then the CKLW net AU and the CWX functor FU

CWX

can be defined. (Namely, U is strongly local, and all unitary U -modules are strongly
integrable.) Moreover, identifying RepupV q with RepfpAV q via pFV

CWX,W
V q, we prove

three comparison results:

1. If P is the C˚-Frobenius algebra in RepupV q associated to U , and if B is the
conformal net extension of AV defined by P , then B “ AU .

2. The inverse of the canonical braided ˚-functor pFVOA,V
�q : Rep0pP q

»
ÝÑ

RepupUq (where Rep0pP q is the category of unitary dyslectic P -modules), com-
posed with the canonical one pFCN,N

bq : Rep0pP q
»

ÝÑ RepfpBq, is equal to the
CWX functor FU

CWX : RepupUq Ñ RepfpBq together with a tensorator.

3. This tensorator is equal to the Wassermann tensorator whenever the later can
be defined (e.g., when V is one of the following VOAs: unitary WZW models
and discrete series W -algebras of type ADE, even lattice VOAs, parafermions
VOAs of type ADE, their tensor products, their strongly-rational cosets, and
their VOA extensions).
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0 Introduction

This article deals with two types of problems about the relationship between unitary
extensions of VOAs and conformal nets in a uniform framework:
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• (Analytic problems) Strong locality and strong integrability.

• (Algebraic problems) Comparison of extensions and braided ˚-functors.

Let me introduce these two types of questions in turn.

0.1 Strong locality and strong integrability for unitary VOA extensions

0.1.1 Energy bounds and strong locality

Unitary vertex operator algebras (VOAs) and conformal nets are two seemingly dif-
ferent but conjecturally equivalent mathematical formulations of two-dimensional chiral
conformal field theories. A systematic study of the relationship between these two objects
was initiated by Carpi-Kawahigashi-Longo-Weiner [CKLW18]. In this work, the authors
showed that many familiar unitary VOAs V have an associated conformal net AV defined
on the Hilbert space completion H0 of V .

The construction of the CKLW net AV from a unitary VOA V belongs to the tradi-
tion of constructing a Haag-Kastler net from a Wightmann QFT. (See the Introduction of
[CKLW18] and the reference therein.) In this tradition, one of the biggest challenges in
constructing nets of algebras satisfying the Haag-Kastler axioms [Haag96] is to show that
two smeared operators localized in spacelike separated regions are strongly commuting.
In the present context, this means that if f P C8

c pIq and g P C8
c pJq where I and J are

disjoint (nonempty non-dense open) intervals of the unit circle S1, and if u, v P V , then
Y pu, fq and Y pv, gq commute strongly in the sense that the smallest von Neumann al-
gebra to which Y pu, fq is affiliated commutes with the one for Y pv, gq. Any unitary V
satisfying this property is called strong locality.

In [CKLW18], the treatment of strong locality is aided and simplified by another use-
ful analytic property called (polynomial) energy bounds. It says roughly that smeared
operators Y pv, fq (and their products) are bounded by p1 ` L0qr for some r ě 0 (depend-
ing on v but not on f ), where L0 ě 0 is the energy operator. (L0 is the restriction of L0 to
the subspace of vectors with finite L0-spectra.)

One of the most remarkable properties of energy bounds is that many important dense
subspaces of H8

0 “
Ş

rě0 Dp1`L0
r
q (called quasi-rotation invariant (QRI) spaces in our

paper, cf. Def. 2.6), including H8
0 itself, are cores for any linear combination of energy-

bounded smeared operators, cf. [CKLW18, Lem. 7.2]. This property plays a crucial role in
the proof of Thm. 8.1 of [CKLW18], which says that strong locality can be passed from a
generating set of (quasi-primary) field operators to all field operators. (See also [DSW86].)

Thanks to [CKLW18, Thm. 8.1] and the fact that field operators with linear en-
ergy bounds (i.e., they are “bounded by 1 ` L0”) satisfy strong locality (cf. e.g.
[GJ87, DF77, BS90]), any unitary VOA generated by linearly energy-bounded (quasi-
primary) fields (e.g. unitary affine VOAs, unitary Virasoro VOAs, Moonshine VOA,
their tensor products) are strongly local. Consequently, all subalgebras of them (notably
those obtained by coset construction and orbifold construction) are (energy-bounded and)
strongly local. Recently, this technique has been generalized to unitary vertex operator
superalgebras [CGH23].
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0.1.2 Strong locality for unitary VOA extensions

Unfortunately, the above technique does not apply to many important unitary VOAs.
To prove strong locality (and energy-bounds) for more examples, one has the following
two obvious options:

(1) Weaken the condition of linear energy bounds.

(2) Besides taking tensor products and taking subalgebras, show that other ways of
constructing new unitary VOAs from old ones also preserve (energy-boundedness
and) strong locality.

The first option was taken by Carpi-Tanimoto-Weiner: In [CTW22], the authors intro-
duced the notion of local energy bounds, and used it to prove that W3 algebras (which
are unitary by [CTW23]) are strongly local.

In this paper, we pursue the second direction: Starting from a unitary (energy-
bounded and) strongly local VOA V , let U be a unitary VOA extension of V . (In this
paper, we always assume that the extension has the same conformal vector as that of V .)
We want to study the strong locality of U .

Given that proving strong locality for all unitary VOAs currently appears hopeless,
establishing a general theorem on the strong locality of unitary VOA extensions is equally
unattainable, since every unitary VOA can be viewed as a unitary extension of a Virasoro
VOA. Therefore, we must impose additional restrictions on V .

Recently, Carpi and Tomassini proved in [CT23] that if the field operators of V acting
on U are energy-bounded, and if either (a) V “ UG for a compact group G of unitary
automorphisms of U , or (b) V is C2-cofinite, then U is energy-bounded. This powerful
result implies for instance that all unitary extensions of unitary affine VOAs are energy-
bounded. In view of [CT23], to study strong locality for a unitary energy-bounded ex-
tension U of V (where V is strongly local), it is natural to focus on the following two
cases:

(a) V “ UG for a compact group G of unitary automorphisms of U .

(b) V is C2-cofinite and rational.

In [Gui21a], we studied (a) in the special case that U is an even lattice VOA, and V
is the Heisenberg subalgebra of U . The result is that every even lattice VOA is (energy
bounded [TL04, Gui19c] and) strongly local, and it was generalized to all integer lattice
VOSAs in [CGH23]. Though we believe that it is worthwhile to study case (a) more
thoroughly, in this paper we consider case (b).

0.1.3 Categorical extensions and strong locality

We assume that the VOA V (which from now on is understood to be unitary and
of CFT-type) is strongly energy-bounded, i.e., the field operators of V are energy-
bounded when acting on any unitary V -module. We also assume that V is com-
pletely unitary, which means that V is C2-cofinite and rational, all V -modules are
unitarizable, and the canonical Hermitian structure on the category RepupV q of uni-
tary V -modules is positive-definite (i.e. unitary). So RepupV q is a unitary modular
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tensor category [Hua08b, Gui19b]. (For example, V can be any unitary affine VOA
[Gui19a, Gui19b, Gui19c, Gui21a, Ten19a, Ten19b, Ten24, Gui20].) Let U be a VOA exten-
sion of V , which is automatically a unitary VOA extension in a unique way by [CGGH23,
Thm. 4.7]. It follows that U is strongly energy-bounded [CT23] and completely unitary
[Gui22]. Finally, assume that V is strongly local.

Our strategy of studying the strong locality of U is the same as the treatment of even
lattice VOAs in [Gui21a]: we transform the problem about extensions to a problem about
subalgebras. As pointed out in the Introduction of [Gui21a], the complete unitarity of V
implies that the intertwining operators (i.e. charged operators) of V form the “universal”
extension of V containing U as a subtheory. This universal extension is called categori-
cal extension. The relationship between the categorical extension and the unitary VOA
extension U is similar to that between a free group and a general group. A group is
isomorphic to a free group modulo some relations. In the context of VOAs, the role of
these relations is played by C˚-Frobenius algebras (« Q-systems) in RepupV q, originally
introduced by Longo to understand type III subfactors [Lon94].

Thus, we view U as the categorical extension of V modulo the relations defined by
a (haploid commutative) C˚-Frobenius algebra P . Therefore, the strong locality of U
will follow from that of the categorical extensions V , where the latter means the “strong
braiding” of smeared intertwining operators. Thanks to [Gui20], under the assumption
that the intertwining operators involved are energy-bounded, the strong braiding follows
from the strong intertwining property, a special case of strong braiding much easier to
verify. It means roughly that if Y is an intertwining operator of V of type

`

Wk
WiWj

˘

(where

Wi,Wj ,Wk are unitary V -modules), then for each (homogeneous) v P V,wpiq P Wi and
each rf “ pf, argIq where f P C8

c pIq and argI is an arg-function of I , and g P C8
c pJq where

I X J “ H, then “Ypwpiq, fq intertwines Y pu, gq strongly”. (See Def. 4.11 for details.)
For example, if V is a unitary affine VOA of type ADE, then all intertwining opera-

tors of V are energy-bounded. Then, by the fact that V is generated by linearly energy-
bounded fields, the intertwining operators of V satisfy the strong intertwining property.
Thus, the categorical extension of V satisfies strong braiding. (See [Gui20, Sec. 2.7] for
details.) Therefore, all VOA extensions of V are strongly local.

0.1.4 Conditions I and II, and results on strong locality

Recall that V is always assumed to be completely unitary, strongly energy-bounded,
and strongly local. U is an (automatically unitary [CGGH23]) VOA extension of V .

Definition 0.1 (“ Def. 4.15). We say that V satisfies Condition I if every intertwining
operator is energy-bounded and satisfies the strong intertwining property. We say that V
satisfies Condition II (= Condition B of [Gui20]) if there is a set FV of unitary V -modules
tensor-generating RepupV q such that every intertwining operator of type

`

‚

Wi ‹

˘

(where
Wi P FV ) is energy-bounded and satisfies the strong intertwining property.

It is clear that Condition I implies Condition II. The primary reason for introducing
Condition I—despite not being able to verify it for all unitary affine VOAs—is that it is
preserved under (unitary) VOA extensions, unlike Condition II; see Thm. 0.8.
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Example 0.2. The following examples satisfy Condition I: All unitary affine VOAs of type
ADE, all even lattice VOAs, all discrete series W -algebras of type ADE (in the sense
of [ACL19]), all parafermion VOAs of type ADE (in the sense of [DR17]), their tensor
products, the C2-cofinite rational cosets of their C2-cofinite rational unitary subalgebras,
their (unitary) VOA extensions.

Example 0.3. The following examples satisfy Condition II: All VOAs satisfying Condition
I, all unitary affine VOAs, all parafermion VOAs, their tensor products, the C2-cofinite
rational cosets of their C2-cofinite rational unitary subalgebras.

Proof. See Exp. 6.19 and Thm. 6.18.

As explained above, if V satisfies Condition I, then U is strongly local. With the help
of Thm. 2.15 (proved in [Gui20, Sec. 1.6]), the categorical extension version of [CKLW18,
Thm. 8.1], we can weaken Condition I to Condition II:

Theorem 0.4 (Ă Thm. 6.2). If V satisfies Condition II, then U is strongly local.

Corollary 0.5. Any VOA extension of a tensor product of unitary affine VOAs and even lattice
VOAs is strongly local.

Among the examples covered in this corollary we have:

• All holomorphic VOAs with central charge c “ 24, except the moonshine VOA.1

The strong locality of such VOAs was first proved in [CGGH23, Thm. 5.5].

• The VOA VG,k associated to a compact connected Lie group G and k P H4
`pBG,Zq,

cf. [Hen17]. It is a simple current extension of a tensor product of unitary affine
VOAs and lattice VOAs, and they correspond almost bijectively to (connected but
non-necessarily simply-connected) chiral WZW models.

• The classification of extensions of unitary affine VOAs with small ranks is an im-
portant topic in the literature. See e.g. [CIZ87, Gan94, KO02, EP09, EM23, Gan23].

Corollary 0.6. Any unitary VOA with central charge c ă 1 is strongly local.

This is due to the fact that such VOA is a unitary extension of a unitary minimal model
Virasoro VOA, and that the latter is a type A discrete series W -algebra.

0.1.5 Strong intertwining property and strong integrability

Carpi-Weiner-Xu introduced the notion of strong integrability for any unitary mod-
ule pWi, Yiq (with energy-bounded Yi) of a strongly local VOA V (not necessarily satis-
fying Condition II), which means that there is a (necessarily unique) A-module pHi, πiq
such that for every (homogeneous) v P V , every interval I , and every f P C8

c pIq, we
have πi,IpY pv, fqq “ Ykpv, fq. If all unitary V -modules are strongly integrable, then the

1The strong locality of moonshine VOA was proved in [CKLW18].
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construction Wi ÞÑ Hi gives a fully-faithful ˚-functor from the C˚-category of unitary V -
modules to that of AV -modules. Cf. [CWX, Gui19b], or Thm. 4.24 for details. We call this
functor the CWX functor of V and denote it by

FV
CWX : RepupV q Ñ ReppAV q

The functor FV
CWX is a natural generalization of the construction of representations of loop

group conformal nets from (positive-energy highest weight) representations of affine Lie
algebras [GF93, Was98, TL04].

It was proved in [Gui19b] that the strong integrability follows from the strong inter-
twining property of sufficiently many intertwining operators. Returning to the setting
that V satisfies Condition II, we conclude that all unitary V -modules are strongly inte-
grable, and hence FV

CWX can be defined. See [Gui20, Thm. 2.4.2] or Thm. 4.29 for details.
Recall that U is a (unitary) VOA extension of V . Recall that Yi is energy-bounded

for every Wi P ObjpRepupV qq by (the proof of) [CT23]. Then, similar to the proof of
the strong locality of V , the strong locality of the categorical extension of V implies that
sufficiently many intertwining operators of U satisfy the strong intertwining property,
and that all intertwining operators satisfy the strong intertwining property if they are
energy-bounded. (Note that an intertwining operator of U is also one of V .) Thus, we
have:

Theorem 0.7 (Ă Thm. 6.2). Suppose that V satisfies Condition II. Then all unitary U -modules
are strongly integrable. Thus, we have the (fully-faithful) CWX functor FU

CWX : RepupUq Ñ

ReppAU q for U .

Theorem 0.8 (“ Cor. 6.5). Suppose that V satisfies Condition I. Then U also satisfies Condition
I.

Unfortunately, we cannot show that U satisfies Condition II if V does: The fact that
V has sufficiently many energy-bounded intertwining operators does not imply the same
property for U . (Thus, for example, we know that all extensions of type A,D,E unitary
affine VOAs satisfy Condition I and hence Condition II. But we do not know whether
all extensions of type B,C, F,G unitary affine VOAs satisfy Condition II.) However, the
above mentioned argument shows that the only obstacle lies in proving that sufficiently
many intertwining operators of U are energy-bounded. See Cor. 6.4 for details.

0.1.6 Equivalence of braided C˚-tensor categories

Assume that V satisfies Condition II, and let

RepV pAV q “ FV
CWXpRepupV qq (0.1)

which is a full replete subcategory of ReppAV q. Then we have an isomorphism of C˚-
tensor categories

FV
CWX : RepupV q

»
ÝÝÑ RepV pAV q (0.2)
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It was shown in [Gui20] that FV
CWX can be extended to a braided ˚-functor implementing

an isomorphism of braided C˚-tensor categories

pFV
CWX,W

V q :
`

RepupV q,�, ß
˘ »

ÝÝÑ
`

RepV pAV q,b,B
˘

(0.3)

where p�, ßq ” p�V , ß
V q is the braided C˚-tensor structure on RepupV q defined by

Huang-Lepowsky theory, and pb,Bq ” pbAV
, ßAV q is the braided C˚-tensor structure

on ReppAV q (restricted to RepV pAV q) defined by Connes fusion. For each Wi,Wj P

ObjpRepupV qq, set

Hi “ FV
CWXpWiq Hj “ FV

CWXpWjq Hi � Hj “ FV
CWXpWi � Wjq

Then WV is a natural unitary map associating to each Wi,Wj unitary AV -module mor-
phisms

WV
i,j : Hi � Hj

»
ÝÝÑ Hi b Hj

intertwining the associators, unitors, and braiding operators of RepupV q and RepV pAV q.
The tensorator WV is defined using smeared intertwining operators in the same spirit
as Wassermann’s computation of Connes fusion for loop group conformal nets [Was98].
Thus, we call WV the Wassermann tensorator for V .

Now, suppose that V satisfies Condition I. Then any VOA extension U also satisfies
Condition I and hence Condition II. Then we have a similar isomorphism of braided C˚-
tensor categories

pFU
CWX,W

U q :
`

RepupV q,�U , ß
U
˘ »

ÝÝÑ
`

RepU pAU q,bAU
,BAU

˘

However, if V only satisfies Condition II, then U is not known to satisfy Condition II
in general. So the Wassermann tensorator WU cannot be defined although we still have
FU

CWX by Thm. 0.7. Can FU
CWX : RepupV q

»
ÝÑ RepU pAU q be extended to a braided ˚-functor

implementing an isomorphism of braided C˚-tensor categories? We will address this
question in the next subsection.

0.2 Comparison of extensions and braided ˚-functors

0.2.1 C˚-Frobenius algebras

The notion of C˚-Frobenius algebras (or Q-systems) in a (braided) C˚-tensor category,
originally introduced by Longo in [Lon94], is a powerful tool for the study of unitary
extensions in 2d rational conformal field theory: If A is a conformal net, then haploid
commutatitive C˚-Frobenius algebras Θ in ReppAq correspond bijectively to finite-index
conformal net extensions BΘ of A, and we have a canonical isomorphism of braided C˚-
tensor categories

pFCN,N
bq :

`

Rep0pΘq,bΘ,BΘ
˘ »

ÝÝÑ
`

ReppBΘq,bBΘ
,BBΘ

˘

(0.4)
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where the source is the category of (unitary) dyslectic Θ-modules (together with the
canonical braided C˚-tensor structure), and the target is (as before) the category of BΘ-
modules whose braided C˚-tensor structure is defined by Connes fusion/DHR supers-
election theory. Cf. for example [LR95, EP03, BKL15, BKLR15, Gui21c]. (Our approach
here follows [Gui21c]. See Subsec. 3.1-3.3 for a detailed exposition.)

Similarly, if V is completely unitary, then haploid commutative C˚-Frobenius algebras
P in RepupV q correspond bijectively to (automatically unitary) VOA extensions of V , and
we have a canonical isomorphism of braided C˚-tensor categories

pFVOA,V
�q :

`

Rep0pP q,�P , ß
P
˘ »

ÝÝÑ
`

RepupUP q,�UP
, ßUP

˘

(0.5)

where the source is (as in (0.4)) the braided C˚-tensor category of (unitary) dyslectic P -
modules, and the target is (as in (0.3)) the Huang-Lepowsky braided C˚-tensor category
of unitary UP -modules. Cf. [KO02, HKL15, CKM24, Gui22, CGGH23]. (Here, our ap-
proach follows [Gui22]. See Subsec. 5.1 and 5.2 for details.)

0.2.2 Comparison of conformal net extensions

Assume that V satisfies Condition II. Recall from Subsec. 0.1.6 that the braided ˚-
functor pFV

CWX,W
V q implements an isomorphism pRepupV q,�, ßq » pRepV pAV q,b,Bq.

Thus, a haploid commutative C˚-Frobenius algebra P in RepupV q corresponds to one Θ
in RepV pAV q. Through this correspondence, an extension UP of V corresponds to an
extension BΘ of A :“ AV . Thus, it is natural to ask:

1⃝ Is BΘ isomorphic to AUP
, the CKLW net of UP ? 2

Let us recall the data P “ pWa, µ, ιq, where Wa P ObjpRepupV qq, µ P HomV pWa �
Wa,Waq, and ι P HomV pV,Waq is assumed for simplicity to be an isometry. Viewing
Ha “ FV

CWXpWaq as a Hilbert space, both BΘ and AUP
are conformal nets acting on Ha

(since UP equals Wa as vector space).
Here is a natural way to think about problem 1⃝: The actions of BΘ and AUP

on Ha,
when restricted to AV , are equal since they are given by the AV -module Ha. This means
that if we let Θ1 be the haploid commutative C˚-Frobenius algebra such that AUP

“ BΘ1 ,
then Θ and Θ1 are equal as objects of RepV pAV q. In many cases (e.g., V is a unitary c ă 1
Virasoro VOA, or a type A unitary affine VOA of small rank), the equality of Θ and Θ1

as objects implies that they are equivalent (and hence unitarily equivalent [CGGH23]) as
C˚-Frobenius algebras, cf. e.g. [Gan23] and the reference therein.

Unfortunately, at this moment, it is not known in general whether two C˚-Frobenius
algebras are isomorphic as algebras if they are isomorphic as objects. Therefore, in this
paper, we do not use this approach for problem 1⃝. Instead, we prove directly that BΘ

equals AUP
as conformal nets acting on Ha. We will explain the idea of the proof later.

For now, let me make two comments on this result:

Remark 0.9. Note that the braided C˚-tensor structure on ReppAV q can be defined ei-
ther using Connes fusion or using DHR superselection theory [FRS89, FRS92]. These
two structures are equivalent, cf. [Gui21a, Sec. 6]. However, to prove that BΘ is equal

2This question was communicated to me by Sebastiano Carpi.
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to (but not just isomorphic to) AUP
, we use Connes fusion. In fact, as suggested in

[Gui21a, Gui20], for the purpose of comparing the representation categories of VOAs
and conformal nets using smeared operators, it is more convenient to use Connes fusion
than DHR superselection theory.

Remark 0.10. The equality BΘ “ AUP
relies on our choice of Θ, which is the pushforward

of P to RepV pAV q via the braided ˚-functor pFV
CWX,W

V q. In particular, the Wassermann
tensorator WV is essential for the equation BΘ “ AUP

to hold. Defining Θ by a different
tensorator will only give BΘ » AUP

but not BΘ “ AUP
.

0.2.3 Comparison of braided ˚-functors

In this subsubsection, we make the identification
`

RepupV q,�, ß
˘

“
`

RepV pAV q,b,B
˘

(0.6)

via the braided ˚-functor pFV
CWX,W

V q. Then the haploid C˚-Frobenius algebra P in
RepupV q is identified with its pushforward Θ “ pFV

CWX,W
V qpP q in RepV pAV q. There-

fore, we also have a canonical identification
`

Rep0pP q,�P , ß
P
˘

“
`

Rep0
RepV pAV q

pΘq,bΘ,BΘ
˘

(0.7)

The subscript RepV pAV q in Rep0
RepV pAV q

pΘq emphasizes that Rep0
RepV pAV q

pΘq is the cate-

gory of dyslectic Θ-modules in RepV pAV q “ FV
CWXpRepupV qq (but not e.g. in ReppAV q).

Now, by (0.4) and (0.5), the braided ˚-functors pFCN,N
bq and pFVOA,V

�q give an iso-
morphism of braided C˚-tensor categories

`

RepupUP q,bUP
, ßUP

˘ »
ÝÝÑ

`

RepRepV pAV qpBΘq,bBΘ
,BBΘ

˘

(0.8)

where RepRepV pAV qpBΘq is the category of BΘ-modules whose restrictions to AV are ob-
jects in RepV pAV q.

Since we have BΘ “ AUP
, (0.8) gives an isomorphism of braided C˚-tensor categories

RepupUP q » RepRepV pAV qpAUP
q. Can we give this abstract isomorphism a more concrete

description? To understand the importance of this question, look at the following sce-
nario:

Example 0.11. According to [DMNO13, Appendix], we have a VOA extension V Ă U
of unitary affine VOAs where V is G2 level 3 and U is E6 level 1. Note that both V and
U satisfy Condition II. By (0.8), the abstract machinery of C˚-Frobenius algebras gives
a braided C˚-equivalence RepupUq » RepRepV pAV qpAU q implemented by a braided ˚-
functor. Is this braided ˚-functor equal to pFU

CWX,W
U q? In particular, forgetting the ten-

sorator, this question asks whether this functor corresponds to the construction of loop
group representations through exponentiating the corresponding affine Lie algebra rep-
resentations (as in [GF93, Was98, TL99] for example).

Let us summarize our questions:

10



2⃝ Suppose that V satisfies Condition II. Forgetting the tensorators, is the functor in
(0.8) equal to FUP

CWX?

3⃝ Suppose that both V and U satisfy Condition II. Is the braided ˚-functor (0.8) equal
to pFUP

CWX,W
UP q?

In this paper, we show that the answers to 1⃝, 2⃝, 3⃝ are all affirmative:

Theorem 0.12. Assume that V satisfies Condition II. Then, under the identifications (0.6) and
(0.7), we have AUP

“ BΘ, and we have a commutative diagram of ˚-functors

Rep0pP q

RepupUP q RepRepV pAV qpBΘq

»

FVOA FCN

»

F
UP
CWX

»

(0.9)

which can be extended to the following commutative diagram of braided ˚-functors when U also
satisfies Condition II:

`

Rep0pP q,�P , ß
P
˘

`

RepupUP q,�UP
, ßUP

˘ `

RepRepV pAV qpBΘq,bBΘ
,BBΘ

˘

»

pFVOA,V�q pFCN,Nbq

»

pF
UP
CWX,WUP q

»

(0.10)

This theorem is almost Thm. 6.11, the main comparison theorem of this article, with
the only difference being that the identifications (0.6) and (0.7) are not assumed in Thm.
6.11.

In fact, if V is one of the VOAs in Exp. 0.3, the commutative diagram (0.9) becomes

Rep0pP q

RepupUP q RepfpBΘq

»

FVOA FCN

»

F
UP
CWX

»

(0.11)

where RepfpBΘq is the category of dualizable (i.e. finite index) representations of BΘ. If V
is one of the VOAs in Exp. 0.2, then (0.10) becomes

`

Rep0pP q,�P , ß
P
˘

`

RepupUP q,�UP
, ßUP

˘ `

RepfpBΘq,bBΘ
,BBΘ

˘

»

pFVOA,V�q pFCN,Nbq

»

pF
UP
CWX,WUP q

»

(0.12)

See Cor. 6.16.
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0.3 Structure the article

In this paper, we present several closely related but slightly different comparison re-
sults, each serving a different purpose. The most useful one is Cor. 6.16. Accordingly, the
reader may view the proof of Cor. 6.16 as the main objective of this paper. Exp. 0.2 and
0.3 provide explicit examples where Cor. 6.16 is applicable. A more formal presentation
of these examples is provided in Exp. 6.19 and Thm. 6.18.

Cor. 6.16 addresses both the analytic problems of strong locality and strong integra-
bility, as well as the algebraic problem of comparing extensions and braided ˚-functors.
These two types of problems are treated in a unified way by Thm. 5.11, which roughly
states that the smeared intertwining operators of UP are affiliated with the categorical
extension of BΘ.

The notion of weak categorical extensions provides an abstract framework for the
smeared intertwining operators of VOAs. The relationship between weak categorical ex-
tensions and categorical extensions of conformal nets is similar to that between an algebra
of unbounded closed/closable operators and the von Neumann algebra generated by this
algebra. In this paper, to prove Them. 5.11, we first establish an abstract version, Thm.
3.22, formulated in terms of weak categorical extensions.

In Sections 1 and 2, we review the basic properties of categorical extensions and weak
categorical extensions. In Section 3, we describe the canonical braided ˚-functor from the
representation category of a haploid commutative C˚-Frobenius algebra Q in ReppAq (the
representation category of a conformal net A) to the representation category of the con-
formal net associated with Q, and we prove Thm. 3.22 mentioned above. An analogous
braided ˚-functor in the VOA setting is recalled in Section 4. In Section 5, we prove Thm.
5.11 (and its enhancement, Theorem 5.13) based on Theorem 3.22. Finally, Section 6 is
devoted to the proof of Corollary 6.16.
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1 Categorical extensions

1.1 Preliminaries

In the notation of a (densely defined) unbounded linear operator T : H1 Ñ H2, H1 and
H2 are Hilbert spaces, and the domain T is denoted by DpT q (which is a dense subspace
of H1).

An interval in the unit circle S1 means a nonempty nondense connected open subset
of S1. If I P J , we let I 1 be the interior of S1zI .

Let J be the set of intervals in S1. Let A be an irreducible local conformal covariant
net on S1, or a conformal net for short. The vacuum Hilbert space for A is denoted by H0.
The vacuum vector is noted by Ω. All representations (i.e. modules) of A are understood
to be separable and normal. Let ReppAq be the C˚-category of A-modules whose hom
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spaces are

HomApHi,Hjq “ tbounded linear T : Hi Ñ Hj such that
Tπi,Ipxq “ πj,IpxqT for all I P J , x P ApIqu

Define the universal cover G “ ČDiff`pS1q where Diff`pS1q is the group of the orientation
preserving diffeomorphisms of S1. For each I P J , let G pIq Ă G be the branch containing
1 of the inverse image of tg P Diff`pS1q : g has support in Iu under the covering map
G Ñ Diff`pS1q.

Let C be a full (C˚-)subcategory of ReppAq containing H0 and closed under taking
submodules and finite (orthogonal) direct sums. Choose a tensor ˚-bifunctor � on C ,
together with unitary associators pHi � Hjq � Hk Ñ Hi � pHj � Hkq and unitary unitors
H0 � Hi Ñ Hi,Hi � H0 Ñ Hi so that C becomes a C˚-tensor category. We identify the
domain and the codomain of each of these maps so that the associators and the unitors are
identity maps. (In this paper, we are mainly interested in the case where C “ RepV pAV q,
cf. Def. 4.26.)

An arg-valued interval is of the form rI “ pI, argIq where I P J and argI is an arg
function on I , i.e. a continuous function argI : I Ñ R such that argpeitq ´ t P 2πZ where
eit P I . The set of arg-valued intervals is denoted by rJ . If rI “ pI, argIq and rJ “ pJ, argJq

are arg-valued functions, we write

rI Ă rJ ô I Ă J and argJ |I “ argI

We say that rI and rJ are disjoint if I, J are disjoint; we say that rI is anticlockwise to rJ (or
equivalently, rJ is clockwise to rI), if argJ ă argI ă argJ `2π (in particular, I and J are
disjoint). We define the clockwise complement of rI “ pI, argIq to be

rI 1 “ pI 1, argI 1q where rI 1 is clockwise to rI (1.1)

Define the anticlockwise complement of rI “ pI, argIq such that

p‵rIq1 “ rI (1.2)

According to [Hen19], every A-module Hi is conformal covariant, which means that
there is a (necessarily unique) strongly continuous unitary representation Ui of GA on Hi

satisfying that for each I P J and each g P GApIq, noting that Upgq is defined according
to the definition of conformal nets and is in ApIq, we have

Uipgq “ πipUpgqq (1.3)

Here GA is the canonical central extension of G associated to A:

GA “ tpg, V q : g P G , V is a unitary on H0 representing Upgqu

GApIq “ the inverse image of G pIq under GA Ñ G

Since the projectively unitary representations of PSUp1, 1q is lifted in a unique way to a
(strongly continuous) unitary representation of ĆPSUp1, 1q [Bar54], ĆPSUp1, 1q is naturally
a subgroup of GA. See [Gui21a, Sec. 2.1] for details.
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Remark 1.1. Note that by [Car04, Thm. A.1], A contains a Virasoro subnet Virc for some
central charge c ě 0. It follows that we have a canonical equivalence of topological groups

GA » Gc
def

ùùù GVirc (1.4)

(See [Gui21c, Sec. 1] for a detailed explanation.) We identify GA with Gc throughout this
article.

Remark 1.2. The action of Diff`pS1q on J can be lifted continuously to an action of G of
rJ (by viewing each rI P rJ as an interval of the universal cover R of S1), and hence is lifted

to an action

Gc ñ rJ

For each A-module Hi and each I P J , we let

HipIq “ HomApI 1qpH0,HiqΩ (1.5)

where HomApI 1qpH0,Hiq is the set of bounded linear operators T : H0 Ñ Hi satisfying
Tx “ πi,IpxqT for all x P ApI 1q. Thus H0pIq “ ApIqΩ by Haag duality.

Recall that two closable operators A,B on a Hilbert space H are said to commute
strongly if tAu2 commutes with tBu2, where tAu2 is the smallest von Neumann algebra
that A (the closure of A) is affiliated with. (In other words, if we let A “ UH be the polar
decomposition where H is self-adjoint and U is a partial isometry, then tAu2 is the von
Neumann algebra generated by U and p1 ` Hq´1.) tBu2 is understood in a similar way.
When A is closed and B is bounded (and everywhere defined), then A commutes strongly
with B iff BA Ă AB and B˚A Ă AB˚, iff there is a core D for A such that B ¨ A|D Ă A ¨ B
and B˚ ¨A|D Ă A¨B˚. In particular, if A,B are both bounded, then they commute strongly
iff they commute adjointly (i.e. AB “ BA and AB˚ “ B˚A). See (for example) [Gui20,
Sec. 1.A] for more details.

Definition 1.3. Let P0,Q0,R0,S0 be pre-Hilbert spaces with completions P,Q,R,S re-
spectively. Let A : P Ñ R, B : Q Ñ S, C : P Ñ Q, D : R Ñ S be closable operators
whose domains are subspaces of P0,Q0,P0,R0 respectively, and whose ranges are in-
side R0,S0,Q0,S0 respectively. We say that the diagram of closable operators commutes
strongly

P0 Q0

R0 S0

C

A B

D

(1.6)

if the following holds: Let H “ P ‘ Q ‘ R ‘ S. Define unbounded closable operators
R,S on H with domains DpRq “ DpAq ‘ DpBq ‘ R ‘ S, DpSq “ DpCq ‘ Q ‘ DpDq ‘ S,
such that

Rpξ ‘ η ‘ χ ‘ ςq “ 0 ‘ 0 ‘ Aξ ‘ Bη p@ξ P DpAq, η P DpBq, χ P R, ς P Sq,

Spξ ‘ η ‘ χ ‘ ςq “ 0 ‘ Cξ ‘ 0 ‘ Dχ p@ξ P DpCq, η P Q, χ P DpDq, ς P Sq.
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Then (the closures of) R and S commute strongly.
When the four pre-Hilbert spaces are complete and the four closable operators are

bounded, and when (1.6) commutes strongly, we also say that (1.6) commutes adjointly,
since we have DA “ BC and D˚B “ AC˚.

Lemma 1.4. Let D be a self-adjoint positive (closed) operator on a Hilbert space H. Let H8 “
Ş

nPN DpDnq. Let A1, . . . , Am and B1, . . . , Bn be closable operators on H with common domain
H8. Suppose that for every 1 ď i ď m and 1 ď j ď n we have that AiH8 Ă H8 and
BjH8 Ă H8, and that there exists ε ą 0 such that eitDAie

´itD commutes strongly with Bj for
all t P p´ε, εq. Let A be a polynomial of A1, . . . , An, let B be a polynomial of B1, . . . , Bn, and
assume that A and B (with domain H8) are closable. Then A commutes strongly with B.

Proof. This is a standard technique in the literature. See for example [Gui21a, Lem. 4.17].

Strongly commuting operators are adjointly commuting:

Lemma 1.5. Let S, T be strongly commuting closed operators on a Hilbert space K. Let ξ P

DpST q X DpSq. Then ξ P DpTSq, and STξ “ TSξ.

It follows that if D0 is a common invariant domain of strongly commuting S, T , then
ST |D0 “ TS|D0 .

Proof. This is well-known and can be proved easily. See for example [Gui20, Prop. 1.A.5].

1.2 The tensorators associated to categorical extensions

Let us recall the definition of categorical extensions of A [Gui21a].

Definition 1.6. A closed and vector labeled categorical extension (or a categorical ex-
tension for short3) of A in C is a quintuple E “ pA,C ,�, ß,Hq associating to each rI P rJ ,
Hi,Hk P ObjpC q, and ξ P HipIq, bounded linear operators

Lpξ, rIq P HomApI 1qpHk,Hi � Hkq Rpξ, rIq P HomApI 1qpHk,Hk � Hiq

called the L operators and the R operators, satisfying the following conditions:

(a) (Isotony) If rI1 Ă rI2 P rJ , and ξ P HipI1q, then Lpξ, rI1q “ Lpξ, rI2q, Rpξ, rI1q “ Rpξ, rI2q

when acting on any Hk P ObjpC q.

(b) (Naturality) If Hi,Hj ,Hj1 P ObjpC q, rI P rJ , G P HomApHj ,Hj1q, ξ P HipIq, and
η P Hj , then

p1i � GqLpξ, rIqη “ Lpξ, rIqGη, pG � 1iqRpξ, rIqη “ Rpξ, rIqGη. (1.7)
3There are non-closed and non vector-labeled categorical extensions in [Gui21a]. In this paper, we only

consider closed and vector-labeled ones.
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(c) (State-field correspondence) For any Hi P ObjpC q, under the identifications Hi “

Hi � H0 “ H0 � Hi defined by the unitors, the relation

Lpξ, rIqΩ “ Rpξ, rIqΩ “ ξ (1.8)

holds for any rI P rJ , ξ P HipIq. It follows immediately that when acting on H0,
Lpξ, rIq equals Rpξ, rIq and is independent of argI .

(d) (Density of fusion products) If Hi,Hk P ObjpC q, rI P rJ , then the set LpHipIq, rIqHk

spans a dense subspace of Hi � Hk, and RpHipIq, rIqHk spans a dense subspace of
Hk � Hi.4

(e) (Locality) For any Hk P ObjpC q, disjoint rI, rJ P rJ with rI anticlockwise to rJ , and any
ξ P HipIq, η P HjpJq, the following diagram commutes adjointly.

Hk Hk � Hj

Hi � Hk Hi � Hk � Hj

Rpη, rJq

Lpξ,rIq Lpξ,rIq

Rpη, rJq

(1.9)

(f) (Braiding) The operation ß (called the braiding operator/operation) associates to
Hi,Hj a unitary linear map ßi,j : Hi � Hj Ñ Hj � Hi such that

ßi,jLpξ, rIqη “ Rpξ, rIqη (1.10)

whenever rI P rJ , ξ P HipIq, η P Hj .

When we want to stress that the left and right operators L,R depend on the choice of C
and �, we write them as L�, R�.

We say that E is conformal covariant if for every g P Gc, rI P rJ ,Hi P ObjpReppAqq, ξ P

HipIq, there exists a (necessarily unique) element denoted by gξg´1 P HipgIq satisfying

Lpgξg´1, grIq “ gLpξ, rIqg´1 Rpgξg´1, grIq “ gRpξ, rIqg´1 (1.11)

when acting on any Hj P ObjpReppAqq. (Recall Rem. 1.2 for the meaning of grI .) We say
that E is Möbius covariant if the above condition holds for all g P ĆPSUp1, 1q. (In this case,
we write gξg´1 as gξ if g P ĆPSUp1, 1q.)

Remark 1.7. Though we will not use this fact in this paper, we note that the braiding
operator ß is automatically a homomorphism of A-modules and makes pC ,�, ßq a braided
C˚-tensor category. See [Gui21a, Thm. 3.9].

From the fact that Lpξ, rIq, Rpξ, rIq intertwine the actions of ApI 1q, it is easy to see that
if x P ApIq, then

LpxΩ, rIq|Hk
“ RpxΩ, rIq|Hk

“ πk,Ipxq (1.12)
4Indeed, they are equal to the full space Hi � Hk and Hk � Hi respectively by the fact that ApIq is a type

III factor. See [Gui21a, Lem. 6.1].
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Theorem 1.8. There is a canonical (closed and vector labeled) conformal covariant categorical
extension

EConnes “ pA,ReppAq,bA,BA,Hq

defined by Connes fusion product. EConnes is called the Connes categorical extension. We

abbreviate bA to b and BA to B

when no confusion arises. Then

pReppAq,bA,BAq ” pReppAq,b,Bq

is a braided C˚-tensor category, called the Connes braided C˚-tensor category.

Proof. This is [Gui21a, Thm. 3.4, 3.5]. See [Gui21a] for details, and [Gui21b, Sec. A, B] for
a sketch of the construction.

Theorem 1.9. Let E “ pA,C ,�, ß,Hq be a categorical extension. Then E can be embedded
canonically into the Connes categorical extension EConnes “ pA,ReppAq,b,B,Hq. More pre-
cisely, this means the following:

There is a natural Ψ (called the tensorator associated to E ) associating to each Hi,Hj P

ObjpC q a unitary isomorphism of A-modules

Ψ “ Ψi,j : Hi � Hj Ñ Hi b Hj (1.13)

(where “natural” means Ψi1,j1pF � Gq “ pF b GqΨi,j for all F P HomApHi,Hi1q and G P

HomApHj ,Hj1q) such that

pid,Ψq : pC ,�, ßq Ñ pReppAq,b,Bq (1.14)

is a braided ˚-functor, i.e., for each Hi,Hj ,Hk P ObjpC q the following three statements are true:

(a) The following diagram commutes.

Hi � Hj � Hk pHi � Hkq b Hj

Hi b pHk � Hjq Hi b Hk b Hj

Ψi�k,j

Ψi,k�j Ψi,kb1j

1ibΨk,j

(1.15)

(b) The following two maps equal the identity map 1i : Hi Ñ Hi.

Hi » H0 � Hi
Ψ0,i
ÝÝÑ H0 b Hi » Hi, (1.16a)

Hi » Hi � H0
Ψi,0
ÝÝÑ Hi b H0 » Hi. (1.16b)

(c) The following diagram commutes.

Hi � Hj Hj � Hi

Hi b Hj Hj b Hi

Ψi,j

ßi,j

Ψj,i

Bi,j
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Moreover, for any rI P rJ ,Hi,Hj P ObjpC q, ξ P HipIq we have

Ψi,jL
�pξ, rIq|Hj “ Lbpξ, rIq|Hj (1.17a)

Ψj,iR
�pξ, rIq|Hj “ Rbpξ, rIq|Hj (1.17b)

Proof. This is [Gui21a, Thm. 3.10].

Remark 1.10. The braided ˚-functor (1.14) clearly restricts to an equivalence of braided
C˚-tensor categories pC ,�, ßq

»
ÝÝÑ p pC ,b,Bq where pC is the repletion of C , i.e., the full

C˚-subcategory of all Hi P ObjpReppAqq unitarily equivalent to some object in C . (In
particular, pC is closed under b.)

Remark 1.11. It is illuminating to write (1.17) as

Ψ ˝ E “ EConnes|C Ă EConnes (1.18)

Then Thm. 1.9 can be summarized by the elegant statement: for every categorical
extension E there is a natural unitary Ψ making (1.14) a braided ˚-functor such that
Ψ ˝ E “ EConnes|C .

It is easy to see that the converse is also true: Suppose that we have a braided ˚-
functor (1.14) where Ψ is natural and unitary, then Ψ˚˝EConnes|C is a categorical extension.
(Namely, (1.17) defines a categorical extension with L and R operators L�, R�.)

Remark 1.12. Since EConnes is conformal covariant, by Thm. 1.9, we see that any (closed
and vector-labeled) categorical extension is conformal covariant.

1.3 Left and right operators

Definition 1.13. For each Hi P ObjpReppAqq and I P J , we let Hpr
i pIq be the set of all

ξ P Hi such that the following densely defined linear map is closable (preclosed):

xΩ P ApI 1qΩ ÞÑ xξ P Hi (1.19)

Clearly HipIq Ă Hpr
i pIq.

Theorem 1.14. Let E “ pA,C ,�, ß,Hq be a categorical extension. Then there exist unique
operations L � and R� (or simply L ,R) associating to each Hi P ObjpC q, rI P rJ , ξ P Hpr

i pIq,
and each Hk P ObjpC q, closable operators

L pξ, rIq|Hk
: Hk Ñ Hi � Hk Rpξ, rIq|Hk

: Hk Ñ Hk � Hi

with common core HipI
1q such that the following conditions are satisfied for all Hi,Hj ,Hk,Hk1 P

ObjpC q:

(a) If ξ P HipIq, then L pξ, rIq “ Lpξ, rIq and Rpξ, rIq “ Rpξ, rIq (when acting on any object of
C ).

(b) (State-field correspondence) If rI P rJ and ξ P Hpr
i pIq, then L pξ, rIqΩ “ Rpξ, rIqΩ “ ξ.
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(c) (Isotony) If rI1 Ă rI2 P rJ , and ξ P Hpr
i pI1q, then L pξ, rI1q Ą L pξ, rI2q, Rpξ, rI1q Ą Rpξ, rI2q

when acting on Hk.

(d) (Naturality) If G P HomApHk,Hk1q, then for any rI P rJ , ξ P Hpr
i pIq, the following dia-

grams of closed operators commute strongly.

Hk Hk1

Hi � Hk Hi � Hk1

L pξ,rIq

G

L pξ,rIq

1i�G

Hk Hk � Hi

Hk1 Hk1 � Hi

Rpξ,rIq

G G�1i

Rpξ,rIq

(e) (Locality) For any disjoint rI, rJ P rJ with rJ clockwise to rI , and any ξ P Hpr
i pIq, η P Hpr

j pJq,
the following diagram commutes strongly.

Hk Hk � Hj

Hi � Hk Hi � Hk � Hj

Rpη, rJq

L pξ,rIq L pξ,rIq

Rpη, rJq

(1.20)

(f) (Braiding) For any rI P rJ , ξ P Hpr
i pIq, we have

ßi,jL pξ, rIq|Hj “ Rpξ, rIq|Hj . (1.21)

(g) (Möbius covariance) For any g P ĆPSUp1, 1q, rI P rJ , ξ P Hpr
i pIq, we have gξ P Hpr

i pgIq,
and

L pgξ, grIq “ gL pξ, rIqg´1, Rpgξ, grIq “ gRpξ, rIqg´1 (1.22)

when acting on Hj .

Proof. It was proved in [Gui20, Sec. 2] that L b and Rb exist for the Connes categorical
extension. Pulling back these operations using the unitary operation Ψ in Thm. 1.9, i.e.,
defining

L �pξ, rIq|Hk
“ Ψ´1

i,kL bpξ, rIq|Hk
R�pξ, rIq|Hk

“ Ψ´1
k,iR

bpξ, rIq|Hk
(1.23)

we obtain the L � and R� operations for E . (It is easy to see that they satisfy all the
axioms in the theorem. For example, the locality can be proved in the same way as in
[Gui20, Cor. 1.5.2].)

To prove the uniqueness, we only need the state-field correspondence and the locality
(among all the axioms): Choose any ξ P Hpr

i pIq and η P HjpI
1q. Recall that rI 1 is the

clockwise complement of rI . By state-field correspondence and (1.20) (setting Hk “ H0),
we get

L pξ, rIqη “ Rpη, rI 1qξ (1.24)

Since HpI 1q is a core for L pξ, rIq|Hj , we know that L pξ, rIq is uniquely determined. The
same can be said about R.
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Remark 1.15. In Thm. 1.14, the following intertwining property is satisfied: For any
Hi P ObjpC q, rI P rJ , ξ P HipIq, x P ApI 1q, the following diagrams commute strongly:

Hk Hk

Hi � Hk Hi � Hk

L pξ,rIq

πk,I1 pxq

L pξ,rIq

πi�k,I1 pxq

Hk Hk � Hi

Hk Hk � Hi

Rpξ,rIq

πk,I1 pxq πk�i,I1 pxq

Rpξ,rIq

This is due to condition (a) and the locality in Thm. 1.14, together with (1.12).

Definition 1.16. Let E “ pA,C ,�, ß,Hq be a categorical extension. Let Hi P ObjpC q. A
left operator of E with charge space Hi and localized in rI is an operation Lpx, rIq where x is
a formal element, rI P rJ , and for any Hk P ObjpC q we have a closed operator Lpx, rIq|Hk

:
Hk Ñ Hi � Hk satisfying

Lpx, rIq|Hk
“ L �pξ, rIq|Hk

(1.25a)

for some ξ P Hpr
i pIq independent of Hk.

Let Hj P ObjpC q. Similarly, a right operator with charge space Hj is an operation
Rpy, rJq where y is a formal element, rJ P rJ , and for any Hk P ObjpC q we have a closed
operator Rpy, rJq|Hk

: Hk Ñ Hk � Hj with core HkpJ 1q satisfying

Rpy, rJq|Hk
“ R�pη, rJq|Hk

(1.25b)

for some η P Hpr
j pJq independent of Hk.

Remark 1.17. The ξ resp. η making (1.25) true must be unique. Indeed, if we apply (1.25)
to the vacuum vector Ω, by the state-field correspondence in Thm. 1.14, we have

ξ “ Lpξ, rIqΩ η “ Rpξ, rJqΩ (1.26)

Remark 1.18. Thus, roughly speaking, left and right operators are almost the same as
those of the forms L pξ, rIq and Rpη, rJq. The only difference is that general left and right
operators are not vector-labeled. Thus, we call operators of the forms L pξ, rIq and Rpη, rJq

respectively vector-labeled left and right operators (or simply L and R operators) of E .

The following noteworthy example was used in the proof of [Gui20, Prop. 2.3.8].

Example 1.19. Let rI P rJ . Then the left operators of E “ pA,C ,�, ß,Hq with charge space
H0 localized in rI are also the right operators of the same type, and vice versa. They are
precisely of the form

Lpx, rIq|Hi “ Rpx, rIq|Hi “ πi,IpXq (1.27)

for all Hi P ObjpC q where X is a closed operator on H with core HpI 1q, and X is affiliated
with ApIq.
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Remark 1.20. Recall that πi,IpXq is defined as follows: Let X “ UH be the polar decom-
position where U is the partial isometry and H is positive. Then πi,IpXq “ πi,IpUqπi,IpHq

where πi,IpHq is the unique positive operator on Hi such that p1 ` πi,IpHqq´1 “ πi,Ipp1 `

Hq´1q.

Proof of Exp. 1.19. Suppose that Lpx, rIq “ L pξ, rIq is a left operator where ξ P Hpr
0 pIq.

Then by (1.12) and the locality of E , for each yΩ P ApI 1qΩ “ H0pI 1q we have L pξ, rIqyΩ “

yL pξ, rIqΩ “ yξ. This implies yL pξ, rIq|H0pI 1q Ă L pξ, rIqy for all y P ApI 1q, and hence
that X “ L pξ, rIq|H0 is affiliated with ApIq. By locality again, for every η P HipI

1q, the
following diagram commutes strongly:

H0 H0

Hi Hi

X

Rpη,rI 1q Rpη,rI 1q

L pξ,rIq|Hi

Since the same is true when L pξ, rIq|Hi is replaced by πi,IpXq, by the density of fusion
product in E (or by choosing η such that Rpη, rI 1q is unitary, cf. [Gui21a, Lem. 6.1]), we
conclude L pξ, rIq|Hi “ πi,IpXq.

Conversely, let X be as described in Exp. 1.19. Since yX Ă Xy for all y P ApI 1q, it is
clear that ξ “ XΩ belongs to Hpr

0 pIq (since yΩ P H0pI 1q ÞÑ yξ has closure X). Since X and
L pξ, rIq both have core HpI 1q, and since L pξ, rIqyΩ “ yξ “ yXΩ “ XyΩ, we conclude
X “ L pξ, rIq|H0 . By the first paragraph, we conclude L pξ, rIq|Hi “ πi,IpXq. This proves a
half of (1.27). The other half (about right operators) can be proved in a similar way.

2 Weak categorical extensions

2.1 Preliminaries

Let ϱ : R Ñ ĆPSUp1, 1q be the one-parameter rotation group. For each Hi P

ObjpReppAqq, let L0 be the generator of the one-parameter unitary group Ui ˝ ϱ, i.e.
Ui ˝ ϱptq “ eitL0 . Then L0 ě 0 by [Wei06, Thm. 3.8]. We let

H8
i “

č

nPN
DpL0

n
q (2.1)

Definition 2.1. A densely defined linear operator T : Hi Ñ Hj is called smooth if H8
i Ă

DpT q, if H8
j Ă DpT ˚q, if TH8

i Ă H8
j , and if T ˚H8

j Ă H8
i . In particular, a smooth operator

is closable since T ˚ (whose domain is the set of all η P Hj such that ξ P Hi ÞÑ xTξ, ηy is
bounded) is densely defined.

Remark 2.2. By the general fact pA ` Bq˚ Ą A˚ ` B˚ and pABq˚ Ą B˚A˚ for densely
defined linear operators, it is obvious that products of smooth operators are smooth, and
that linear combinations of smooth operators are smooth. Elements in HomApHi,Hjq are
smooth since they intertwine the actions of ϱ by (1.3).
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Definition 2.3. For each Hi P ObjpReppAqq and I P J , we let

H8
i pIq “ tξ P HipIq : Lbpξ, rIq|Hj : Hj Ñ Hi b Hj is smooth @Hj P ObjpReppAqqu

Here Lb is the L operation of the Connes categorical extension EConnes. Then by the braid-
ing axiom (1.10), Rbpξ, rIq is also smooth, since the braiding operator B is smooth by Rem.
2.2. Define

A8pIq “ tx P ApIq : πi,Ipxq is smooth for every Hi P ObjpReppAqqu

Then by (1.12), we clearly have

H8
0 pIq “ A8pIqΩ

Remark 2.4. Suppose that E “ pA,C ,�, ß,Hq is a categorical extension, and Hi P

ObjpC q, ξ P H8
i pIq. Then L�pξ, rIq and R�pξ, rIq are smooth when acting on any object

of C because Lbpξ, rIq and Rbpξ, rIq are smooth, and because Ψ ˝ E Ă EConnes for some
tensorator Ψ, cf. Thm. 1.9.

Proposition 2.5. Let E “ pA,C ,�, ß,Hq be a categorical extension. Let Hi P ObjpC q, rI P rJ .
The following are true.

(a) For each ξ P HipIq, there is a sequence pξnqnPZ`
in H8

i pIq converging to ξ such that
supnPZ`

}Lpξn, rIq} ď }Lpξ, rIq}, and that Lpξn, rIq|Hk
converges ˚-strongly to Lpξ, rIq|Hk

for any Hk P ObjpC q.

(b) For each ξ P Hpr
i pIq and Hk P ObjpC q, the space H8

k pI 1q is a core for L �pξ, rIq|Hk
and

R�pξ, rIq|Hk
.

As a special case of part (a), A8pIq is strongly-˚ dense in ApIq.

Proof. When E is the Connes categorical extension, this was proved in Prop. 1.3.3 and
1.3.5 of [Gui20]. The general case can be proved by pulling back the left and right opera-
tors, cf. (1.23).

Definition 2.6. Let T : Hi Ñ Hj be a closable smooth operator with dense domain
DpT q “ H8

i . Then T ˚ sends H8
j into H8

i . A dense linear subspace D0 of H8
i is called

quasi-rotation invariant (QRI) if there exit δ ą 0 and a dense linear subspace Dδ Ă D0

such that ϱptqDδ Ă D0 for all t P p´δ, δq. We say that T is localizable if every dense and
QRI subspace of H8

i is a core for T . In particular, if T is localizable, then H8
i is a core for

T since H8
i is QRI. Unless otherwise stated, we assume that

a smooth localizable T : Hi Ñ Hj has domain DpT q “ H8
i

Remark 2.7. Suppose that a closable operator T : Hi Ñ Hj (with domain H8
i ) is smooth

and localizable. Let Hk P ObjpReppAqq and A P HomApHj ,Hkq. Then AT is also (closable
and) smooth and localizable: It is smooth since both A and T are smooth (cf. Rem. 2.2); it
is localizable since T is localizable and A is bounded.
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Definition 2.8. Consider the diagram

H8
i H8

j

H8
k H8

l

C

A B

D

(2.2)

where A : Hi Ñ Hk, B : Hj Ñ Hl, C : Hi Ñ Hj , D : Hk Ñ Hl are smooth closable oper-
ators with domains H8

i ,H8
j ,H8

i ,H8
k respectively. We say that (2.2) commutes adjointly

if DA “ BC on H8
i and CA˚ “ B˚D on H8

k .

2.2 Weak categorical extensions and their closures

Let pC ,�q be as in Sec. 1. We recall the definition of weak categorical extensions
introduced in [Gui20]. The main example considered in this paper is given by Thm. 4.38.

Definition 2.9. Let H assign, to each rI P rJ and Hi P ObjpC q, a set HiprIq such that
HiprI1q Ă HiprI2q whenever rI1 Ă rI2. A weak categorical extension E w “ pA,C ,�, ß,Hq

of A associates to any Hi,Hk P ObjpC q, rI P rJ , a P HiprIq, smooth and localizable opera-
tors

Lpa, rIq : Hk Ñ Hi � Hk

Rpa, rIq : Hk Ñ Hk � Hi

with common domain H8
k such that for any Hi,Hj ,Hk,Hk1 P ObjpC q and any rI, rJ, rI1, rI2 P

rJ , the following conditions are satisfied:

(a) (Isotony) If a P HiprI1q and rI1 Ă rI2, then Lpa, rI1q “ Lpa, rI2q, Rpa, rI1q “ Rpa, rI2q when
acting on H8

k .

(b) (Naturality) If G P HomApHk,Hk1q, the following diagrams commute5 for any a P

HiprIq.

H8
k H8

k1

pHi � Hkq8 pHi � Hk1q8

Lpa,rIq

G

Lpa,rIq

1i�G

H8
k pHk � Hiq

8

H8
k1 pHk1 � Hiq

8

Rpa,rIq

G G�1i

Rpa,rIq

(c) (Neutrality) Under the identifications Hi “ Hi �H0 “ H0 �Hi through the unitors,
for any a P HiprIq we have

Lpa, rIq|H8
0

“ Rpa, rIq|H8
0

(2.3)
5Note that they also commute adjointly and hence strongly since we have pF b Gq

˚
“ F˚

b G˚ for any
morphisms F,G in a C˚-tensor category.
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(d) (Reeh-Schlieder property) Under the identification Hi “ Hi � H0, the set
LpHiprIq, rIqΩ spans a dense subspace of Hi.

(e) (Density of fusion products) The set LpHiprIq, rIqH8
k spans a dense subspace of Hi �

Hk, and RpHiprIq, rIqH8
k spans a dense subspace of Hk � Hi.

(f) (Intertwining property) For any a P HiprIq and x P A8pI 1q, the following diagrams
commute adjointly:

H8
k H8

k

pHi � Hkq8 pHi � Hkq8

Lpa,rIq

πk,I1 pxq

Lpa,rIq

πi�k,I1 pxq

H8
k pHk � Hiq

8

H8
k pHk � Hiq

8

Rpa,rIq

πk,I1 pxq πk�i,I1 pxq

Rpa,rIq

(2.4)

(g) (Weak locality) Assume that rJ is clockwise to rI . Then for any a P HiprIq, b P Hjp rJq,
the following diagram commutes adjointly.

H8
k pHk � Hjq

8

pHi � Hkq8 pHi � Hk � Hjq
8

Rpb, rJq

Lpa,rIq Lpa,rIq

Rpb, rJq

(2.5)

(h) (Braiding) There is a unitary linear map ßi,k : Hi � Hk Ñ Hk � Hi (the braiding
operator) such that for any a P HiprIq and η P H8

k ,

ßi,kLpa, rIqη “ Rpa, rIqη (2.6)

(i) (Rotation covariance) For any a P HiprIq and g “ ϱptq where t P R, there exists an
element ga inside HipgrIq, 6 such that for any Hl P ObjpC q and η P H8

l , the following
two equivalent equations are true.

Lpga, grIqη “ gLpa, rIqg´1η (2.7a)

Rpga, grIqη “ gRpa, rIqg´1η. (2.7b)

If for each Hk P ObjpC q and g P ĆPSUp1, 1q we have gH8
k Ă gH8

k , and if the statements in
(i) are true for any g P ĆPSUp1, 1q, we say that E w is Möbius covariant.

Remark 2.10. In the above definition, for each a P HiprIq, the vector Lpa, rIqΩ (which equals
Rpa, rIqΩ by neutrality) is an element of Hpr

i pIq. See [Gui20, Prop. 1.4.5].

We let Lpa, rIq denote the operation associating to each Hk P ObjpC q the closed opera-

tor Lpa, rIq|Hk
: Hk Ñ Hi � Hk which is the closure of Lpa, rIq|Hk

. Rpa, rIq is understood in
a similar way.

6(Recall Rem. 1.2 for the meaning of grI .)
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Remark 2.11. Since A8pIq generates the von Neumann algebra ApIq (cf. Prop. 2.5), in the
intertwining property in Def. 2.9, each of the two diagrams in (2.4) commutes strongly
for all x P ApI 1q, not just for x P A8pI 1q.

Theorem 2.12. Let E w “ pA,C ,�, ß,Hq be a weak categorical extension. Then there is a unique
(closed and vector labeled) categorical extension E “ pA,C ,�, ß,Hq (called the closure of E w)
satisfying that for every Hi,Hk P ObjpC q, rI P rJ , a P HiprIq, by setting ξ “ Lpa, rIqΩ (which
equals Rpa, rIqΩ and is in Hpr

i pIq, cf. Rem. 2.10), we have for each Hk P ObjpC q that

Lpa, rIq
ˇ

ˇ

Hk
“ L pξ, rIq

ˇ

ˇ

Hk
Rpa, rIq

ˇ

ˇ

Hk
“ Rpξ, rIq

ˇ

ˇ

Hk
(2.8)

Thus, the closure of E w is the unique categorical extension E such that the closure of
every L resp. R operator is a left resp. right operator of E (Def. 1.16). The relationship
between E w and its closure is similar to that between a set of closed operators and the
von Neumann algebra generated by them.

Proof. Uniqueness: Choose any rI , and choose rJ clockwise to rI . Let Hi,Hj P ObjpC q. Let
η P HjpJq. Choose any a P HiprIq, and let ξ “ Lpa, rIqΩ. By the locality in Thm. 1.14 and the
boundedness of Rpη, rJq “ Rpη, rJq, we have that Rpη, rJqDpL pξ, rIq|H0q Ă DpL pξ, rIq|Hj q,
and that

Rpη, rJqLpa, rIqΩ “ Rpη, rJqL pξ, rIqΩ “ L pξ, rIqRpη, rJqΩ “ Lpa, rIqη

Therefore, Rpη, rJq|Hi is uniquely determined by vectors of the form Lpa, rIqΩ. By the Reeh-
Schlieder property in Def. 2.9, such vectors span a dense subset of Hi. So the R-operators
are unique. Similarly, the L-operators are unique.

Existence: By [Gui20, Thm. 1.5.1], there exists a natural unitary Ψ satisfying all the
descriptions in Thm. 1.9, except that (1.17) is replaced by

Ψi,jLpa, rIq|Hj “ L bpξ, rIq|Hj (2.9a)

Ψj,iRpa, rIq|Hj “ Rbpξ, rIq|Hj (2.9b)

for all a P HiprIq and ξ is set to be Lpa, rIqΩ. Then similar to the proof of Thm. 1.14 (cf.
also Rem. 1.11), the closure E can be defined by setting Lpξ, rIq|Hj “ Ψ´1

i,j L
bpξ, rIq|Hj and

Rpξ, rIq|Hj “ Ψ´1
j,i R

bpξ, rIq|Hj for each Hi,Hj P ObjpC q, rI P rJ , and ξ P HipIq.

2.3 Weak left and right operators

In the following, we fix a Möbius covariant weak categorical extension E w “

pA,C ,�, ß,Hq.

Definition 2.13. A weak left operator of E w with charge space Hi P ObjpC q is an op-
eration Apx, rIq, where x is a formal element, rI P rJ , and for any Hk P ObjpC q, there is
a smooth and localizable operator Apx, rIq : H8

k Ñ pHi � Hkq8 such that the following
conditions are satisfied:
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(a) If Hk,Hk1 P ObjpC q, G P HomApHk,Hk1q, then the following diagram commutes.

H8
k H8

k1

pHi � Hkq8 pHi � Hk1q8

Apx,rIq

G

Apx,rIq

1i�G

(2.10)

(b) For any Hl,Hk P ObjpC q, rJ P rJ clockwise to rI , and any b P Hlp rJq, the following
diagram commutes (non-necessarily adjointly).

H8
k pHk � Hjq

8

pHi � Hkq8 pHi � Hk � Hjq
8

Rpb, rJq

Apx,rIq Apx,rIq

Rpb, rJq

(2.11)

Definition 2.14. A weak right operator of E w with charge space Hj P ObjpC q is an op-
eration Bpy, rJq, where y is a formal element, rJ P rJ , and for any Hk P ObjpC q, there is
a smooth and localizable operator Bpy, rJq : H8

k Ñ pHk � Hjq
8, such that the following

conditions are satisfied:

(a) If Hk,Hk1 P ObjpC q, G P HomApHk,Hk1q, then the following diagram commutes.

H8
k pHk � Hjq

8

H8
k1 pHk1 � Hjq

8

Bpy, rJq

G G�1j

Bpy, rJq

(2.12)

(b) For any Hi,Hk P ObjpC q, rI P rJ anticlockwise to rJ , and any a P HiprIq, the following
diagram commutes.

H8
k pHk � Hjq

8

pHi � Hkq8 pHi � Hk � Hjq
8

Bpy, rJq

Lpa,rIq Lpa,rIq

Bpy, rJq

(2.13)

Recall Def. 1.16 for the meaning of left and right operators of E .

Theorem 2.15. Let E be the closure of E w. Assume that C is rigid, i.e., any object of C has a
dual object in C . If Apx, rIq is a weak left operator of E w with charge space Hi, then its closure is
a left operator of E , i.e., the operation Apx, rIq|Hk

: Hk Ñ Hi � Hk defines a left operator of E .
Similarly, the closure of a weak right operator of E w is a right operator of E .

Proof. This is [Gui20, Thm. 1.6.2], generalizing [CKLW18, Thm. 8.1] to the setting of
categorical extensions.
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3 C˚-Frobenius algebras and (weak) categorical extensions

Recall C described in Sec. 1. We fix a (closed and vector-labeled) categorical extension
E “ pA,C ,�, ß,Hq with braiding operation ß and with L and R operators L�, R�, abbre-
viated to L,R when no confusion arises. (Recall from Rem. 1.12 that E is automatically
conformal covariant.) Then pC ,�, ßq is braided C˚-tensor category, and is canonically
isomorphic to a braided C˚-tensor subcategory of pReppAq,b,Bq, the Connes braided
C˚-category for A. (Recall Thm. 1.9.)

3.1 Haploid commutative C˚-Frobenius algebras Q and their representation
categories

Recall the following definition:

Definition 3.1. A C˚-Frobenius algebra in C is a triple Q “ pHa, µ, ιq where Ha P ObjpC q,
µ P HomApHa � Ha,Haq, ι P HomApH0,Haq satisfy the following conditions:

• (Unit) µpι � 1aq “ 1a “ µp1a � ιq.

• (Associativity+Frobenius relation) The following diagram commutes adjointly.

Ha � Ha � Ha Ha � Ha

Ha � Ha Ha

1a�µ

µ�1a µ

µ

(3.1)

Q is called

• normalized if ι˚ι “ 1H0 ;

• commutative if µ ˝ ßa,a “ µ;

• haploid (or irreducible) if dimHomApH0,Haq “ 1.

Unless otherwise stated,
::
all

::::::::::::::
C˚-Frobenius

:::::::::
algebras

:::::::::::
considered

::
in

:::::
this

::::::
article

::::
are

:::::::::
assumed

::
to

:::
be

:::::::::::
normalized.

In the following, we fix a haploid commutative C˚-Frobenius algebra Q “ pHa, µ, ιq
in C .

Definition 3.2. A dyslectic (unitary) Q-module (in C ) denotes a pair pHi, µ
iq where Hi P

ObjpC q, µi P HomApHa � Hi,Hiq, and the following are satisfied:

• (Unit) µipι � 1iq “ 1i.

• (Associativity+Frobenius relation) The following diagram commutes adjointly.

Ha � Ha � Hi Ha � Hi

Ha � Hi Hi

1a�µi

µ�1i µi

µi

(3.2)
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• (Dyslectic condition) µi ˝ ßi,a “ µi ˝ ß´1
a,i .

If Hi and Hj are dyslectic Q-modules, a (homo)morphism of dyslectic Q-modules α :
Hi Ñ Hj means that α P HomApHi,Hjq, and that

µjp1a � αq “ αµi

We let

HomQpHi,Hjq “ tmorphisms of dyslectic Q-modules Hi Ñ Hju

The class of all dyslectic Q-modules, together with the morphisms defined above, is a
C˚-category (cf. [NY16, Sec. 6.1] or [Gui22, Prop. 2.24]). We let

Rep0C pQqRep0C pQqRep0C pQq “ the C˚-category of dyslectic Q-modules in C

Definition 3.3. Let Hi,Hj P ObjpC q. A (unitary) fusion product of Hi,Hj over Q denotes
a pair pHi �Q Hj , µi,jq where Hi �Q Hj (abbreviated to Hi�j or simply Hij) together with
µi�j ” µij P pHa � Hij ,Hijq is a dyslectic Q-module in C . Moreover, we have

µi,j P HomApHi � Hj ,Hi �Q Hjq (3.3)

and the following conditions are satisfied:

• (Intertwining property) The actions of Q on Hi,Hj ,Hij are invariant, i.e.,

µijp1a � µi,jq “ µi,jpµ
i � 1jq “ µi,jp1i � µjqpßa,i � 1jq

• (Universal property) If pHk, µ
kq P ObjpRep0C pQqq, and if α P HomApHi � Hj ,Hkq is

a type
`

k
i j

˘

intertwining operator of Q in the sense that

µkp1a � αq “ αpµi � 1jq “ αp1i � µjqpßa,i � 1jq

then there exists a unique rα P HomQpHi �Q Hj ,Hkq such that α “ rαµi,j .

• (Unitarity) The following diagram commutes adjointly:

Hi � Ha � Hj Hi � Hj

Hi � Hj Hi �Q Hj

1i�µj

pµi˝ßi,aq�1j µi,j

µi,j

(3.4)

(Note that the commutativity follows from the intertwining property of µij .)

Remark 3.4. Fusion products over Q always exist and are unique up unitaries: if pHi �Q

Hk, µi,jq and pHip�QHk, pµi,jq are both fusion products of Hi,Hj over Q in C , there there is
a (necessarily unique) unitary Φi,j P HomQpHi �Q Hk,Hip�QHkq (called the linking map
between the two systems) such that

pµi,j “ Φi,j ˝ µi,j (3.5)

See [Gui22, Sec. 3.1] for details.
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Theorem 3.5. Suppose that for each Hi,Hj P ObjpRep0C pQqq a fusion product Hi�QHj “ Hi,j

(with µi,j) is assigned. (We call such an assignment p�Q, µ‚,‹q (or simply call �) a system of
fusion products in Rep0C pQq.) Then

pRep0C pQq,�Q, ß
Qq

defined in the following way is a braided C˚-tensor category (called the braided C˚-tensor cat-
egory associated to p�Q, µ‚,‹q):

• If F P HomQpHi,H
riq and G P HomQpHj ,H

rjq, then F �Q G is the unique element in
HomQpHi �Q Hj ,H

ri �Q H
rjq satisfying

µ
ri,rjpF � Gq “ pF �Q Gqµi,j (3.6a)

• The (unitary) associator Ai,j,k P HomQ

`

pHi �Q Hjq �Q Hk,Hi �Q pHj �Q Hkq
˘

is
determined by

µi,jkp1i � µj,kq “ Ai,j,k ˝ µij,kpµi,j � 1kq (3.6b)

• The (unitary) unitors la,i P HomQpHa �Q Hi,Hiq and r :i,a: HomQpHi �Q Ha,Hiq are
determined by

µi “ liµa,i µißi,a “ riµi,a (3.6c)

• The (unitary) braiding operator ßQi,j P HomQpHi �Q Hj ,Hj �Q Hiq is determined by

µj,ißi,j “ ßQi,jµi,j (3.6d)

Proof. This is well-known. See e.g. Thm. 3.13 and 3.23 of [Gui22].

Remark 3.6. Given a system of fusion products of dyslectic Q-modules, we identify
pHi �Q Hjq �Q Hk with Hi �Q pHj �Q Hkq using the associator, and identify Hi,Ha �Q

Hi,Hi �Q Hi using the unitors. Then we have

µi “ µa,i µißi,a “ µi,a. (3.7)

Moreover, given the above identifications, we have:

Theorem 3.7. For any Hi,Hj ,Hk P ObjpRep0C pQqq, the following diagram commutes adjointly:

Hi � Hk � Hj Hi � pHk �Q Hjq

pHi �Q Hkq � Hj Hi �Q Hk �Q Hj

1i�µk,j

µi,k�1j µi,kj

µik,j

(3.8)

Proof. This follows from (3.10) and Thm. 3.14 of [Gui22].

Remark 3.8. Suppose that we choose two systems of fusion products associating to each
Hi,Hj P ObjpRep0C pQqq the fusion products pHi �Q Hj , µi,jq and pHip�QHj , pµi,jq respec-
tively. Then the unitary linking map Φ in Rem. 3.4 is natural, and pidRep0C pQq,Φq is a
braided ˚-functor implementing an isomorphism of the braided C˚-tensor categories

pidRep0C pQq,Φq : pRep0C pQq,�Q, ß
Qq

»
ÝÝÑ pRep0C pQq, p�Q,pß

Qq (3.9)

See Thm. 3.16 and 3.24 of [Gui22] for the proof and the details.
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3.2 The functor FCN : Rep0
C pQq Ñ RepC pBQq

Definition 3.9. A (normalized and irreducible) conformal net extension of A is a triple
pB,Ha, ιq (or simply B), where pB,Haq is an (irreducible local) conformal net, the Hilbert
space Ha is associated with an A-module structure pHa, πaq, ι P HomApH0,Haq satisfies
ι˚ι “ 1H0 , and the following conditions are satisfied:

(1) For each I P J we have πa,IpApIqq Ă BpIq.

(2) If ΩA and ΩB denote the vacuum vectors of A,B respectively, then ΩB “ ιΩA.

(3) The projective representation of Diff`pS1q on Ha (defined by the conformal net
B) commutes with ιι˚ and is pulled back by ι to the projective representation of
Diff`pS1q on H0.

We say that B is a conformal net extension of A in CCC if Ha P ObjpC q. We say that the
extension has finite index if rBpIq : πa,IpApIqqs is finite for some (and hence for all) I P J .

Remark 3.10. Let pB,Ha, ιq be a conformal net extension of A. We often identify H0 with
its image in Ha under ι, identify ApIq with πa,IpApIqq, and identify the vacuum vectors
of A and B via ι and denote both by Ω. Then A becomes a conformal subnet of B. In this
case, we simply write the extension as pB,Haq.

Remark 3.11. Recall from Subsec. 1.1 that A has a Virasoro subnet Virc determined by the
central charge c P Rě0, and that GA is identified with Gc “ GVirc in a canonical way. Now
suppose that pB,Haq is a conformal net extension of A. Then GB consists of pg, V q where
g P G and V is a unitary operator on Ha representing the projective action of g on Ha.
By the definition of conformal net extension, V |H0 represents the projective action of g on
H0. Thus, we have an isomorphism GB

»
ÝÑ GA defined by pg, V q ÞÑ pg, V |H0q. Therefore,

we can make the identifications

Gc “ GA “ GB

Definition 3.12. Let B be a conformal net extension of A in C . If pHi, πiq is a B-module
whose restriction to A gives an object in C , we say that Hi is a B-module in C . We let

RepC pBqRepC pBqRepC pBq “ the C˚-category of B-modules in C

Note that if C is full and replete, then RepC pBq is clearly also full and replete.

Theorem 3.13. There is a one-to-one correspondence between a haploid commutative C˚-
Frobenius algebra Q “ pHa, µ, ιq in C and a finite-index conformal net extension pBQ,Ha, ιq

of A in C . BQ is determined by the fact that for every rI P rJ ,

BQpIq “
␣

µL�pξ, rIq|Ha : ξ P HapIq
(

(3.10)

The unitary representation of Gc on the A-module Ha gives the projectively unitary representation
of Diff`pS1q associated to BQ.

We call BQ the conformal net extension associated to Q.
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Proof. See Thm. 2.6, 2.12, 5.7 of [Gui21c].

Theorem 3.14. There is a ˚-functor FCN inducing an isomorphism of C˚-categories

FCN : Rep0C pQq
»

ÝÝÑ RepC pBQq

pHi, µ
iq P ObjpRep0C pQqq ÞÑ pHi, πiq P ObjpRepC pBQqq

F P HomQpHi,Hjq ÞÑ F P HomBQ
pHi,Hjq

(3.11a)

where πi is determined the fact that for each rI P rJ and ξ P HapIq,

πi,I
`

µL�pξ, rI
˘

|Haq “ µiL�pξ, rIq|Hi ” µa,iL
�pξ, rIq|Hi (3.11b)

Thus, F and FCNpF q are the same map of Hilbert spaces Hi Ñ Hj .

Proof. See Main Theorem A in [Gui21c, Sec. 2].

Definition 3.15. For each haploid commutative C˚-Frobenius algebra Q in C and a sys-
tem of fusion products p�Q, µ‚,‹q in Rep0C pQq we define a braidedC˚C˚C˚-tensor structure on
RepC pBQqRepC pBQqRepC pBQq to be the image of Rep0C pQqRep0C pQqRep0C pQq under pFCN, idqpFCN, idqpFCN, idq.

More precisely: Recall by Thm. 3.5 that pRep0C pQq,�Q, ß
Qq is the braided C˚-tensor

category associated to p�Q, µ‚,‹q. The pushforward of this braided C˚-tensor structure to
RepC pBQq gives the desired C˚-tensor category

`

RepC pBQq,�Q, ß
Q
˘

Thus, the braided ˚-functor pFCN, idq (where FCN is described in Thm. 3.14) gives an iso-
morphism of braided C˚-tensor category

pFCN, idq :
`

Rep0C pQq,�Q, ß
Q
˘ »

ÝÝÑ
`

RepC pBQq,�Q, ß
Q
˘

where the natural map id means that for each objects X “ pHi, µ
iq and Y “ pHj , µ

jq of
Rep0C pQq we have

FCNpXq �Q FCNpY q “ FCNpX �Q Y q

Remark 3.16. Briefly speaking, if we identify the C˚-tensor category Rep0C pQq with
RepC pBQq, then the braided C˚-tensor structure on RepC pBQq is the same as the one
Rep0C pQq defined by the system of fusion products �Q. By Thm. 3.5, a different system of
fusion products defines a different but isomorphic C˚-tensor structure on RepC pBQq.

3.3 Categorical extension EQ associated to Q; the tensorator N� : Hi �Q Hj Ñ

Hi bBQ
Hj

In this subsection and the next one, we fix a haploid commutative C˚-Frobenius alge-
bra Q “ pHa, µ, ιq in C .

Lemma 3.17. For each Hi P ObjpRepC pBQqq and I P J , we have

HomApI 1qpH0,HiqΩ “ HomBQpI 1qpHa,HiqΩ

So HipIq can denote both sides unambiguously (recall (1.5)).
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Proof. [Gui21c, Lem. 5.8].

Theorem 3.18. Let p�Q, µ‚,‹q be a system of fusion products in Rep0C pQq which determines a
braided C˚-tensor category pRep0C pQq,�Q, ß

Qq as in Thm. 3.5. Let pRepC pBQq,�Q, ß
Qq be its

image under pFCN, idq, cf. Def. 3.15. Then there is a (closed vector-labeled) conformal covariant
categorical extension

EQ “ pBQ,RepC pBQq,�Q, ß
Q,Hq

determined by the following fact: If we let LQ, RQ denote the (bounded) L and R operators of EQ,
then for each Hi,Hk P ObjpRepC pBQqq, rI P rJ , and ξ P HipIq, we have

LQpξ, rIq|Hk
“ µi,k ˝ L�pξ, rIq|Hk

RQpξ, rIq|Hk
“ µk,i ˝ R�pξ, rIq|Hk

(3.12)

which are bounded linear maps Hk Ñ Hi �Q Hk and Hk Ñ Hk �Q Hi respectively.

One can write (3.12) as

EQ “ µ‚,‹ ˝ E (3.13)

Proof. See the proof of Main Theorem C in [Gui21c, Sec. 5]. Note that the conformal
covariance of EQ is automatic by Rem. 1.12.

Definition 3.19. The EQ in Thm. 3.18 is called the categorical extension associated to
Q, E , and p�Q, µ‚,‹q. Its vector-labeled left and right operators are written as L Qpξ, rIq

and RQpξ, rIq where ξ P Hpr
i pIq (cf. Rem. 1.18); when ξ P HipIq, we write them as

LQpξ, rIq, RQpξ, rIq.

Recall that L “ L� and R “ R� are the L and R operators of the categorical extension
E “ pA,C ,�, ß,Hq fixed at the beginning of this chapter. In the next corollary, we let
L

bBQ and R
bBQ be the L and R operators of the Connes categorical extension EBQ,Connes “

pBQ,ReppBQq,bBQ
,BBQ ,Hq for BQ (cf. Thm. 1.8).

Corollary 3.20. Let p�Q, µ‚,‹q be a system of fusion products in Rep0C pQq giving a braided C˚-
tensor category pRepC pBQq,�Q, ß

Qq (cf. Thm. 3.5 and Def. 3.15). Let FCN : Rep0C pQq Ñ

RepC pBQq be the ˚-functor in Thm. 3.14. Let

N� : H‚ �Q H‹ Ñ H‚ bBQ
H‹

be the tensorator associated to EQ “ pBQ,RepC pBQq,�Q, ß
Q,Hq (cf. Thm. 1.9), i.e., for each

Hi,Hj P ObjpRepC pBQqq, N�
i,j P HomBQ

pHi �Q Hj ,Hi bBQ
Hjq and N�

j,i P HomBQ
pHj �Q

Hi,Hj bBQ
Hiq are the unique unitary maps satisfying

N�
i,j ˝ µi,jL

�pξ, rIq|Hj “ L
bBQ pξ, rIq|Hj (3.14a)

N�
j,i ˝ µj,iR

�pξ, rIq|Hj “ R
bBQ pξ, rIq|Hj (3.14b)

Let pC be the repletion of C (Rem. 1.10). Then pFCN,N
�q is a braided ˚-functor, and

pFCN,N
�q : pRep0C pQq,�Q, ß

Qq
»

ÝÝÑ pRep
pC
pBQq,bBQ

,BBQq (3.15)

is an equivalence of braided C˚-tensor categories, which is also an isomorphism of braided C˚-
tensor categories when C “ pC .
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Proof. This is immediate from Thm. 3.14, 3.18, and 1.9.

Remark 3.21. Let EBQ,Connes be the Connes categorical extension for BQ. Then one can
write (3.14) as

N� ˝ µ‚,‹ ˝ E “ N� ˝ EQ “ EBQ,Connes

ˇ

ˇ

RepC pBQq
(3.16)

Suppose that pp�Q, pµ‚,‹q is another system of fusion products in Rep0C pQq which together
with Q,E give a categorical extension pEQ “ pBQ,RepC pBQq, p�Q,pß

Q,Hq. Then, similarly,
we have

pN� ˝ pµ‚,‹ ˝ E “ pN� ˝ pEQ “ EBQ,Connes

ˇ

ˇ

RepC pBQq

and hence N� ˝µ‚,‹ “ pN� ˝ pµ‚,‹. Thus, since pµ‚,‹ “ Φ ˝µ‚,‹ where Φ is the unitary linking
map from p�Q, µ‚,‹q to pp�Q, pµ‚,‹q (Rem. 3.4), we have

pN� ˝ Φ “ N� (3.17a)
pE Q “ Φ ˝ E Q (3.17b)

In the case that C is replete (and hence (3.15) is an isomorphism), if we identify the
C˚-categories Rep0C pQq and RepC pBQq via FCN, we can choose p�Q “ bBQ

and pµ‚,‹ “

N� ˝ µ‚,‹. Then Φ becomes N�, and hence pN� “ id. We conclude that there exists a
system pp�Q, pµ‚,‹q of fusion products in Rep0C pQq such that pN� “ id and p�Q “ bBQ

.

3.4 Weak categorical extensions associated to Q

Fix a haploid commutative C˚-Frobenius algebra Q “ pHa, µ, ιq in C . Recall Thm.
2.12 for the meaning of the closure of a weak categorical extension. Recall that the cate-
gorical extension E “ pA,C ,�, ß,Hq is fixed at the beginning of Sec. 3. The following
theorem is the key result that ensures the comparison theorems for VOA and conformal
net extensions.

Theorem 3.22. Let p�Q, µ‚,‹q be a system of fusion products in Rep0C pQq giving a braided C˚-
tensor category pRepC pBQq,�Q, ß

Qq (as described in Thm. 3.5 and Def. 3.15). Let E w “

pA,C ,�, ß,Hq be a weak categorical extension whose closure equals E “ pA,C ,�, ß,Hq. Then
there is a (necessarily unique) weak categorical extension

E w
Q “ pBQ,RepC pBQq,�Q, ß

Q,Hq (3.18)

associating to each Hi,Hj P ObjpRepC pBQqq, rI P rJ , a P HipIq smooth and localizable operators

LQpa, rIq : Hk Ñ Hi �Q Hk

RQpa, rIq : Hk Ñ Hk �Q Hi

(with domains H8
k ) defined by

LQpa, rIq|H8
k

“ µi,k ˝ Lpa, rIq|H8
k

RQpa, rIq|H8
k

“ µk,i ˝ Rpa, rIq|H8
k

(3.19)

Moreover, the closure of E w
Q equals EQ “ µ‚,‹ ˝ E , the categorical extension associated to Q, E ,

and p�Q, µ‚,‹q (cf. Def. 3.19).
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Note that E w and E w
Q have the same label set HipIq for each Hi P ObjpRepC pBQqq and

I P J .
In the following proof, symbols such as H8

i pIq are defined as in Def. 2.3 using A, not
using BQ. (There is no such ambiguity for the notation H8

i .)

Proof. Step 1. The LQ and RQ operations defined by (3.19) are smooth and localizable (cf.
Rem. 2.7). In particular, they are closable. Let us prove that E w

Q satisfies the axioms of a
weak categorical extension (cf. Def. 2.9). Choose Hi,Hk,Hk1 P ObjpRepC pBQqq. We leave
the verification of the intertwining property and the weak locality to the later steps.

Isotony: This is obvious.
Naturality: Let a P HipIq and G P HomQpHk,Hk1q We have a commutativity diagram

H8
k H8

k1

pHi � Hkq8 pHi � Hk1q8

pHi �Q Hkq8 pHi �Q Hk1q8

Lpa,rIq

G

Lpa,rIq

1i�G

µi,k µi,k1

1i�QG

(3.20)

where the first diagram commutes by the naturality of E w, and the second one commutes
due to (3.6a). Their composition gives the naturality of the LQ operators. Similarly, RQ

satisfies the naturality.
Braiding: For each η P H8

k , by (3.6d) we have

RQpa, rIqη “ µk,iRpa, rIqη “ µk,ißi,kLpa, rIqη “ ßQi,kµi,kLpa, rIqη “ ßQi,kL
Qpa, rIqη

Neutrality: This is due to the above braiding and the fact that ßQi,a is the identity map
if we identify Hi �Q Ha and Ha �Q Hi with Hi through the unitors in (3.6c):

ßQi,aµi,a
(3.6d)

ùùùùù µa,ißi,a
(3.6c)

ùùùùù µißi,a
(3.6c)

ùùùùù µi,a

Reeh-Schlieder + density of fusion products: These follow from the corresponding
properties of E w and the fact that µi,a, µi,k are surjective. (It is well-known that µi,kµ

˚
i,k is

a scalar, cf. for example [Gui22, Prop. 3.3].)
Rotation covariance: This follows from the corresponding property of E w and the fact

that µi,k intertwines the actions of the rotation group.

Sep 2. We now check that E w
Q satisfies the intertwining property. By Thm. 3.13, ele-

ments of BQpI 1q are precisely of the form

X “ µLpξ, ‵rIq|Ha (3.21)

where ξ P HapI 1q, and recall that ‵
rI is the anticlockwise complement of rI . By Thm. 3.14,

we have (recalling Rem. 3.6)

πk,I 1pµLpξ, ‵rIq|Haq “ µa,kLpξ, ‵rIq|Hk
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πk�Qi,I 1pµLpξ, ‵rIq|Haq “ µa,k�QiLpξ, ‵rIq|Hk�Qi

Thus, checking the intertwining property for RQ means proving that for every a P HiprIq

and any X “ (3.21), the following diagram of closable operators commutes strongly:

Hk pHk �Q Hiq

Hk pHk �Q Hiq

RQpa,rIq

µa,k˝Lpξ,‵ rIq µa,k�Qi˝Lpξ,‵ rIq

RQpa,rIq

(3.22)

By Prop. 2.5, there exists a sequence pξnqnPZ`
in H8

a pI 1q such that Lpξn,
‵
rIq|Hj converges

strongly-* to Lpξ, ‵rIq|Hj for each Hj P ObjpRepC pBQqq. It suffices to prove (3.22) when ξ
is replaced by each ξn. Thus, it suffices to prove that (3.22) commutes strongly for every
ξ P H8

a pI 1q. Note that in this case Lpξ, ‵rIq is bounded and smooth, and the same is true
for µa,‹ ˝ Lpξ, ‵rIq. Thus, it suffices to prove that (3.22) commutes adjointly.

Consider the diagrams

H8
k pHk � Hiq

8 pHk �Q Hiq
8

pHa � Hkq8 pHa � Hk � Hiq
8 pHa � pHk �Q Hiqq8

H8
k pHk � Hiq

8 pHk �Q Hiq
8

Rpa,rIq

Lpξ,‵ rIq

µk,i

Lpξ,‵ rIq Lpξ,‵ rIq

Rpa,rIq

µa,k

1a�µk,i

µa,k�1i µa,k�Qi

Rpa,rIq µk,i

(3.23)

By Thm. 2.12, the closure of Rpa, rIq is a right operator of E , and hence commutes strongly
with Lpξ, ‵rIq by the locality in Thm. 1.14. Thus, the upper left cell of (3.23) commutes
adjointly. The upper right and the lower left cells commute adjointly by the naturality
axioms in Def. 1.6 and 2.9, and by pµa,k � 1iq

˚ “ µ˚
a,k � 1i and p1a � µk,iq

˚ “ 1a � µ˚
k,i.

By Thm. 3.7, the lower right cell commutes adjointly. Thus, the largest rectangle (which
is just (3.22)) commutes adjointly.

We have finished proving that the RQ operators satisfy the strong intertwining
property. Combining this fact with the braiding axiom proved in Step 1, we see that the
LQ operators also satisfy the strong intertwining property.

Step 3. We now show that the closure of LQpa, rIq resp. RQpa, rIq is a left resp. right
operator of EQ. Then by Lem. 1.5 and the locality (satisfied by the left and right operators
of EQ) in Thm. 1.14, we immediately know that E w

Q satisfies the axiom of weak locality
in Def. 2.9, and hence that E w

Q is a weak categorical extension. It also follows from Thm.
2.12 that EQ is the unique closure of E w

Q .
Let us study LQpa, rIq; the treatment of RQpa, rIq is similar and hence omitted. Let

ξ “ LQpa, rIqΩ, which is in H8
i . Let us show that ξ P HQ,pr

i pIq in the sense of Def. 1.13, i.e.,
the linear map

Y Ω P BQpI 1qΩ ÞÑ Y ξ P Hi (3.24)
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is closable. In fact, since we have proved in Step 2 that LQpa, rIq satisfies the strong inter-
twining property, the closableness of (3.24) follows directly from [Gui20, Prop. 1.4.5]. We
present the proof below since it is short:

Choose any Y P BQpI 1q. By the intertwining property proved in Step 2, we have

Y ¨ LQpa, rIq|Ha Ă LQpa, rIqY |Ha . In particular, Y Ω is in the domain of LQpa, rIq. This

proves that (3.24) Ă LQpa, rIq|Ha . So (3.24) is closable since LQpa, rIq|Ha is closed.
It remains to prove for each Hj P ObjpRepC pBQqq that

LQpa, rIq|Hj “ L Qpξ, rIq|Hj (3.25)

For each Hk P ObjpRepC pBQqq and η P H8
j pI 1q, consider

H8
k pHk � Hjq

8 pHk �Q Hjq
8

pHi � Hkq8 pHi � Hk � Hjq
8 pHi � pHk �Q Hjqq8

pHi �Q Hkq8 ppHi �Q Hkq � Hjq
8 pHk �Q Hjq

8

Rpη,rI 1q

Lpa,rIq

µk,j

Lpa,rIq Lpa,rIq

Rpη,rI 1q

µi,k

1i�µk,j

µi,k�1j
µi,k�Qj

Rpη,rI 1q µi�Qk,j

(3.26)

where each of the four cells commutes adjointly by the same reasons for (3.23). Thus, the
largest rectangle commutes adjointly, i.e.,

H8
k pHk �Q Hjq

8

pHi �Q Hkq8 pHk �Q Hjq
8

RQpη,rI 1q

LQpa,rIq LQpa,rIq

RQpη,rI 1q

(3.27)

commutes adjointly. Setting Hk “ Ha, we get LQpa, rIqRQpη, rI 1qΩ “ RQpη, rI 1qLQpa, rIqΩ,
i.e.,

LQpa, rIqη “ RQpη, rI 1qξ

By the locality of left and right operators in EQ (cf. Thm. 1.14), we have
RQpη, rI 1qL Qpξ, rIq Ă L Qpξ, rIqRQpη, rI 1q. Thus η “ RQpη, rI 1qΩ is in the domain of
L Qpξ, rIq, and

L Qpξ, rIqη “ RQpη, rI 1qξ (3.28)

This proves that L Qpξ, rIq|Hj equals LQpa, rIq|Hj when restricted to H8
j pI 1q, a dense sub-

space of the domains of the two operators.
Note that H8

j pI 1q is QRI (recall Def. 2.6). (Choose any J P J compactly supported
in I 1, then H8

j pJq is a dense subspace of H8
j pI 1q, and ϱptqH8

j pJq Ă H8
j pI 1q for any t such

that ϱptqJ Ă I .) Thus, since LQpa, rIq|H8
j

is smooth and localizable (by Rem. 2.7), H8
j pI 1q

is a core for LQpa, rIq|H8
j

. This proves that “Ă” holds in (3.25).
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To finish proving (3.25), it remains to prove that H8
j pI 1q is a core for L Qpξ, rIq|Hj . Note

that we cannot directly use Prop. 2.5-(b), since H8
j pI 1q is defined using the smooth L and

R operators of A but not those of BQ. However, we can use Prop. 2.5-(a), which says in
part that for every η P HjpI

1q there is a sequence pηnq in H8
j pI 1q converging to η such that

Rpηn, rIq converges strongly to Rpη, rIq when acting on every object of C . It follows that
RQpηn, rIq|Hi “ µi,jRpηn, rIq|Hi converges strongly to RQpη, rIq|Hi “ µi,jRpη, rIq|Hi . Thus,
by (3.28) (with η replaced by ηn) we have

lim
n

L Qpξ, rIqηn “ lim
n

RQpηn, rI
1qξ “ RQpη, rI 1qξ

The existence of the limit on the LHS finishes the proof that H8
j pI 1q is a core for

L Qpξ, rIq|HjpI 1q. Therefore, H8
j pI 1q is a core for L Qpξ, rIq|Hj since HjpI

1q is so (cf. Thm.
1.14).

4 (Weak) categorical extensions associated to unitary VOAs

Throughout this paper, we assume that
::::
any

::::::
VOA

::
V

:::
is

::
of

::::::::::
CFT-type (i.e., V has L0-

grading V “
À

nPN V pnq where the weight-0 subspace V p0q is spanned by the vacuum
vector Ω). Moreover, we assume that

::::
V pnq

:::
is

::::::::::::::::::
finite-dimensional

::::
for

:::::
each

::::::
n P Z. All V -

modules are understood to be semisimple, i.e., they are finite direct sums of irreducible
(ordinary) V -modules. In particular, for any V -module W , the operator L0 is diagonaliz-
able. We assume that each L0-eigenspace of W is finite-dimensional. (This is automatic
when V is C2-cofinite, cf. [Buhl02].)

Recall that if a VOA V is self-dual (e.g. when V is unitary), C2-cofinite, and ratio-
nal, then the category ReppV q of (semisimple ordinary) V -modules is a modular tensor
category by [Hua08a, Hua08b]. See [DL14, CKLW18] for details about unitary VOAs.

4.1 Preliminaries

The goal of this subsection is to explain the concepts in Conditions I and II (cf. Def.
4.15).

Definition 4.1. We say that V is complete unitarity if the following conditions hold:

• V is CFT-type, C2-cofinite and rational.

• V is a unitary VOA. Moreover, every irreducible V -module (and hence every V -
module) is unitarizable, i.e., admits a unitary structure. (See [DL14, Gui19a] for the
definition of unitary V -modules.)

• The canonical non-degenerate sesquilinear forms on the spaces of unitary intertwin-
ing operators (defined in [Gui19b, Sec. 6]) are positive definite.

The most important property about complete unitarity is the following fact proved
in [Gui19b, Thm. 7.9] based on Huang-Lepowsky’s theory of vertex tensor categories
[HL95a, HL95b, HL95c, Hua95, Hua05a, Hua05b, Hua08a, Hua08b].
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Theorem 4.2. Let V be completely unitary. Let

RepupV q “ the C˚-category of unitary V -modules

whose hom space is

HomV pWi,Wjq “ tlinear map T : Wi Ñ Wj such that
TYipvqn “ YjpvqnT for all v P V, n P Zu

and whose ˚-structure is the adjoint. Then RepupV q, together with the tensor and braiding struc-
tures

�V “ � ßV “ ß

defined by Huang-Lepowsky’s vertex tensor category theory and the canonical inner products in
Def. 4.1, is a unitary modular tensor category. (In particular, RepupV q is a braided C˚-tensor
category, called the Huang-Lepowsky braided C˚-tensor category of V .)

Note that for each Wi,Wj P ObjpRepupV qq, every T P HomV pWi,Wjq is bounded
and T ˚ P HomV pWj ,Wiq can be defined. (To see this, restrict T to the (finitely many)
irreducible components of Wi and Wj .)

Unless otherwise stated, we identify pWi � Wjq � Wk with Wi � pWj � Wkq via the
associator, and identify V � Wi and Wi � V with Wi via the unitors.

Definition 4.3. Assume that V is completely unitary. Given a set of unitary V -modules
FV , we say that RepupV q is �-generated by FV if each irreducible unitary V -module is
(unitarily) equivalent to a submodule of W1 � ¨ ¨ ¨ � Wn for some W1, . . . ,Wn P FV .

For each (semisimple) unitary V -module Wi, we let

YWipv, zq “ Yipv, zq “
ÿ

nPZ
Yipvqnz

´n´1

denote the vertex operation of Wi. We refer the readers to [CKLW18] for the meaning of
energy-bounds.

The Virasoro operators tLnu act on each unitary VOA module Wi and satisfies
xLnw1|w2y “ xw1|L´nw2y. In particular, the closure of L0 is a self-adjoint positive op-
erator. Note also that L0 gives the grading Wi “

À

sPRě0
Wipsq where each weight-s

eigenspace Wipsq is finite-dimensional. Eigenvectors of L0 are called homogeneous vec-
tors.

Definition 4.4. If Wi is a unitary V -module, we let Hi be the Hilbert space completion of
the inner product space Wi. We let

H8
i “

č

nPN
DpL0

n
q (4.1)

More generally, a type
`

Wk
WiWj

˘

intertwining operator Y of V (where Wi,Wj ,Wk are
V -modules) is defined as in [FHL93], and is written as

Ypwi, zq “
ÿ

sPR
Ypwiqsz

´s´1

where wi P Wi, and each Ypwiqs is a linear map Wj Ñ Wk.
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Convention 4.5. If Y is a type
`

Wk
WiWj

˘

intertwining operator and T P HomV pWj ,Wlq, then

TY denotes the type
`

Wl
WiWj

˘

intertwining operator defined by

TYpwpiq, zqwpjq “
ÿ

sPR
T ˝ Ypwpiqqsw

pjqz´n´1

for all wpiq P Wi, w
pjq P Wj .

Definition 4.6. Given a type
`

Wk
WiWj

˘

intertwining operator Y , we call Wi,Wj ,Wk respec-
tively the charge space, the source space, and the target space of Y . We say that Y is
unitary resp. irreducible if Wi,Wj ,Wk are unitary resp. irreducible V -modules.

The condition of energy bounds for unitary intertwining operators was defined in
[Gui19a, Sec. 3.1] in the same spirit as that of [CKLW18]:

Definition 4.7. Let Y be a type
`

Wk
WiWj

˘

unitary intertwining operator. Let wpiq P Wi be

homogeneous. We say that Ypwpiq, zq is energy-bounded if there exist M,a, b ě 0 such
that for every s P R, wpjq P Wj we have

}Ypwpiqqsw
pjq} ď Mp1 ` |s|qb}p1 ` L0qawpjq}

We say that the intertwining operator Y is energy-bounded if Ypwpiq, zq is energy-
bounded for every homogeneous vector wpiq of the charge space.

Definition 4.8. We say that V is energy-bounded if the vertex operator Y for the vacuum
module V is energy-bounded. We say that V is strongly energy-bounded if for every uni-
tary V -module Wi (equivalently, for every unitary irreducible V -module Wi), the vertex
operator YWi “ Yi, as a unitary intertwining operator of type

`

Wi
VWi

˘

, is energy-bounded.

Definition 4.9. Let rI “ pI, argIq P rJ . A (smooth) arg-valued function supported in rI is
a pair rf “ pf, argIq where f P C8

c pIq. We let

C8
c prIq “ tsmooth arg-valued functions supported in rIu

If Y is an energy-bounded type
`

Wk
WiWj

˘

intertwining operator of V , for each homogeneous

w P Wi and rf P C8
c prIq, we define the smeared intertwining operator

Ypw, rfq “

ż

θPargIpIq

Ypwpiq, eiθqfpeiθq
eiθ

2π
dθ

D
`

Ypw, rfq
˘

“ H8
j

(4.2)

viewed a (densely-defined) unbounded smooth linear maps Hj Ñ Hk with dense domain
H8

j . (Cf. [Gui21a, Sec. 4.4] and [Gui19a, Ch. 3] for details.) For the vertex operator Yi for
a unitary V -module Wi, we write

Yipv, fq “ Yipv, rfq

since Yipv, rfq is independent of the arg-values.
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Remark 4.10. Let Y1pw1, rf1q, . . . ,Ynpwn, rfnq be smeared intertwining operators. Assume
that Wj is the source space of Yn and Wk is the target space of Y1. We understand the
product

Y1pw1, rf1q ¨ ¨ ¨Ynpwn, rfnq (4.3)

as a densely defined unbounded linear map Hj Ñ Hk with domain H8
j . It is the product

defined in the usual way if the target space of Yi equals the source space of Yi`1 (if 1 ď

i ă n); otherwise, it is zero. Moreover,

the product (4.3) is smooth and localizable

(recall Def. 2.6). The smoothness is obvious because each factor Yipwi, rfiq is smooth. The
localizablity of (4.3) follows from that of L0

n ([CKLW18, Lem. 7.2]); see [Gui20, Prop.
2.1.2] for more explanation.

Definition 4.11. Let Y be a type
`

Wk
WiWj

˘

intertwining operator. We say that Y satisfies

the strong intertwining property if for every homogeneous w P Wi, v P V , every rI P rJ ,
and every rf P C8

c prIq, g P C8
c pI 1q, the following diagram of closable smooth operators

commutes strongly:

H8
j H8

j

H8
k H8

k

Ypw, rfq

Yjpv,gq

Ypw, rfq

Ykpv,gq

(4.4)

Definition 4.12. We say that V is strongly local ([CKLW18]) if the vacuum vertex operator
Y p¨, zq (viewed as a type

`

V
V V

˘

intertwining operator) satisfies the strong intertwining
property.

Remark 4.13. Let Wi be a unitary module of a unitary VOA V . If we let Ui denote the uni-
tary representation of ĆPSUp1, 1q on Hi integrated from L0, L˘1, then for each g P ĆPSUp1, 1q

we have UipgqH8
i “ H8

i . Therefore, Uipgq is smooth.

Proof. This is due to the fact that ĆPSUp1, 1q is generated by the eitl0 , eitpl1`l´1q, etpl1´l´1q

(where l0, l˘1 are the standard generators of the Lie algebra of ĆPSUp1, 1q) and that
eitL0 , eitpL1`L´1q, etpL1´L´1q preserve H8

i by [TL99, Prop. 2.1]. In fact, Uipgq is smooth
for every g P Diff`pS1q; see [Gui20, Sec. 2.2] for more explanation.

Proposition 4.14. Let V be a unitary VOA. Let Y be an energy-bounded type
`

Wk
WiWj

˘

intertwin-

ing operator. Let wpiq P Wi be quasi-primary (resp. homogeneous) with L0w
piq “ dwpiq (d P R).

Then for every rI P rJ and rf P C8
c prIq, and for every g P ĆPSUp1, 1q (resp. every g “ eitL0 where

t P R), there is rfg,d P C8
c pgrIq depending only on rf, g, d such that

UkpgqYpwpiq, rfqUjpgq˚ “ Ypwpiq, rfg,dq (4.5)

where Uj and Uk are the unitary representations of ĆPSUp1, 1q on Hj ,Hk integrated from L0, L˘1.

Proof. See [Gui20, Prop. 2.2.2] for details and the explicit formula of rfg,d.
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4.2 Conditions I and II

Definition 4.15. We say that V satisfies Condition I if the following hold:

(a) V is completely unitary.

(b) Every irreducible unitary intertwining operator of V is energy-bounded and satis-
fies the strong intertwining property.

We say that V satisfies Condition II if the following hold:

(1) V is completely unitary, strongly energy-bounded, and strongly local.

(2) A set FV of unitary V -modules �-generating RepupV q is chosen.

(3) If Y is a unitary intertwining operator of V whose charge space belongs to FV and
whose source space and target space are irreducible, then Y is energy-bounded and
satisfies the strong intertwining property.

The irreducibilities assumed in I and II are redundant: see Rem. 4.17. Also, unlike in
[Gui20], we do not assume that the objects in FV are irreducible. While this relaxation
does not lead to any essential differences, it simplifies certain aspects of our discussion in
this paper.

Remark 4.16. Note that if V satisfies Condition I-(b), then V is automatically strongly
energy-bounded and strongly local. Thus,

Condition I ùñ Condition II

Moreover, it is clear that

Condition I ðñ Condition II

if every irreducible V -module is isomorphic to an object in FV

Remark 4.17. Let Wi be a unitary V -module with (finite orthogonal) irreducible decom-
position Wi “

À

aWi,a. Suppose that for every a, any irreducible unitary intertwining
operator with charge space Wi,a is energy-bounded resp. satisfies the strong intertwin-
ing property. Then any unitary intertwining operator with charge space Wi is energy-
bounded resp. satisfies the strong intertwining property.

Therefore, if V satisfies Condition II, then every unitary intertwining operator of V
with charge space in FV is energy-bounded and satisfies the strong intertwining prop-
erty; if V satisfies Condition I, then every unitary intertwining operator of V is energy-
bounded and satisfies the strong intertwining property.

Proof. The claim about energy bounds is obvious. The claim about the strong intertwining
property follows from Lem. 1.4. See [Gui20, Rem. 2.3.10] for details.

Remark 4.18. We have

Condition II in Def. 4.15 ðñ Condition B in [Gui20, Sec. 2.4]
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Proof. It is clear that “ñ” is true. Condition B seems weaker than Condition II in the
following aspects. First, in Condition B we assumed that V is E-strongly local where
E is a set of generating quasi-primary vectors. But this automatically implies that V is
energy-bounded by [CKLW18, Thm. 8.1]. Second, in Condition B, the “strong unitarity”
was assumed instead of the “complete unitarity” in Condition II. But Condition B implies
the complete unitarity by [Gui20, Thm. 2.4.1]. Third, the assumptions in Condition B of
the energy bounds and the strong intertwining property on the intertwining operators
are seemly weaker than those in Condition II; but they are in fact equivalent under the
other assumptions of Condition B due to [Gui20, Prop. 2.5.10].

Proposition 4.19. Suppose that V satisfies Condition II, and that every irreducible unitary in-
tertwining operator of V is energy-bounded. Then V satisfies Condition I.

Proof. [Gui20, Cor. 2.5.11].

The following theorem gives many examples of VOAs satisfying Condition I or II. We
refer the readers to [CKLW18, Sec. 5.4] for the basic properties about unitary subalgebras
and (unitary) coset subalgebras. If V is a unitary subalgebra of a unitary VOA U , we let
V c be the coset of V in U , and let V cc be the coset of V c in U .

Theorem 4.20. The following are true.

(1) V, V 1 are unitary VOAs satisfying Condition I (resp. II) if and only if the tensor product
unitary VOA V b V 1 satisfies Condition I (resp. II).

(2) Assume that U is a unitary VOA satisfying Condition I (resp. II). Assume that V is a
unitary subalgebra of U such that both V and V c are C2-cofinite and rational. Then V c

satisfied Condition I (resp. II).

Proof. (1): “ñ” follows from [Gui20, Thm. 2.6.8]. “ð” is a special case of the following
part (2) (by setting U “ V b V 1).

(2): Assume that U satisfies Condition II. By [CMSY24, Thm. 1.1], any (CFT-type)
unitary VOA extension of V is C2-cofinite and rational. Therefore, both V c “ V ccc and
V cc are C2-cofinite and rational. Therefore, by [Gui20, Thm. 2.6.5], V c satisfies Condition
II.

The claim about Condition I also follows by slightly adapting the proof of [Gui20,
Thm. 2.6.5]: If U satisfies Condition I, then in view of Rem. 4.16, the set FU in the proof of
Thm. 2.6.5 can be chosen to contain all irreducible unitary U -modules up to equivalence.
Then the FV c

defined as in that proof also contains all irreducible unitary V c-modules up
to equivalence. Therefore, V c satisfies Condition I.

4.3 The CKLW net AV and the CWX functor FV
CWX : Repu

pV q Ñ ReppAV q

Definition 4.21. Suppose that V is a unitary VOA. Let

H0 “ the Hilbert space completion of V

Let AV be the unique conformal net acting on H0 whose vacuum vector Ω equals that of
V , whose projective representation of Diff`pS1q is integrated from that of tLnu, and which
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satisfies that for every I P J , the von Neumann algebra AV pIq is generated by all Y pv, fq

where v P V is homogeneous and f P C8
c pIq. (Cf. [CKLW18].) We call AV the CKLW net

associated to V .

Definition 4.22. Let V be a strongly local VOA. We say that a V -module Wi is strongly
integrable ([CWX]) if the following are true:

• Wi is unitary. Moreover, the vertex operator Yip¨, zq, as a type
`

Wi
VWi

˘

intertwining
operator, is energy-bounded.

• There is a (necessarily unique) AV -module pHi, πiq such that for any homogeneous
v P V and any I P J , f P C8

c pIq,

πi,IpY pv, fqq “ Yipv, fq (4.6)

Recall Rem. 1.20 for the meaning of πi,IpY pv, fqq.

Remark 4.23. Suppose that V is strongly local with central charge c, and let Wi be a
strongly integrable V -module. Let AV be the CKLW net. Then the unitary representation
of Gc » GAV

on Hi (as described in Subsec. 1.1) is integrated from the unitary representa-
tions of the Virasoro subalgebra of V .

In particular, the action of ĆPSUp1, 1q on Hi inherited from that of Gc is integrated from
L0, L˘1, and the rotation group on Hi acts as eitL0 . Therefore, the definition of H8

i as in
Def. 4.4 agrees with that in (2.1).

Proof. See [Gui20, Prop. 2.3.6] or [Gui21a, Prop. 4.9].

Theorem 4.24 ([CWX], [Gui19b] Thm. 4.3). Let V be completely unitary and strongly local.
Assume that all unitary V -modules are strongly integrable. Then the ˚-functor

FV
CWX : RepupV q Ñ ReppAV q

pWi, Yiq ÞÑ pHi, πiq

T P HomV pWi,Wjq ÞÑ T P HomAV
pHi,Hjq

(where pHi, πiq is defined as in Def. 4.22), called the CWX functor, is a fully faithful ˚-functor.
Thus, FV

CWX implements an isomorphism of C˚-tensor categories from RepupV q to

C “ FV
CWXpRepupV qq (4.7)

a full replete C˚-subcategory of ReppAV q containing the identity object H0 and closed under
taking submodules and finite direct sums.

Thus we have

pHi, πiq “ FV
CWXpWi, Yiq or simply Hi “ FV

CWXpWiq (4.8)

Note that the repleteness of C is obvious: if an AV -module is unitary equivalent (via a
unitary U ) to some FV

CWXpWi, Yiq, then it is equal to FV
CWXpU´1Wi, U

´1YiUq. Also, it makes
sense to set FV

CWXpT q “ T since T P HomV pWi,Wjq must be bounded (since it is clearly so
when restricted to each irreducible component of Wi).
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Remark 4.25. The inverse functor

pFV
CWXq´1 : C Ñ RepupV q

can be written down explicitly. Indeed, if pWi, Yiq and pWj , Yjq are both sent by FV
CWX

to pHi, πiq, then by the full-faithfulness of FV
CWX, there is a unique T P HomV pWi,Wjq

that extends to 1Hi . So T is the identity map, which implies Wi Ă Wj and Yj |Wi “ Yi.
Switching Wi and Wj , we obtain Wi “ Wj and Yi “ Yj . Thus, we can define pFV

CWXq´1

by sending each FV
CWXpWi, Yiq to pWi, Yiq. The definition of pFV

CWXq´1 on Hom spaces is
obvious.

Definition 4.26. In the remaining part of this article, we always let

C “ RepV pAV q :“ FV
CWXpRepupV qq (4.9)

(which is a full and replete C˚-subcategory of ReppAV q), and let pC ,�, ßq be the image
of the Huang-Lepowsky braided C˚-tensor category pRepupV q,�, ßq under the braided
˚-functor pFV

CWX, idq, which is

pRepV pAV q,�, ßq ” pRepV pAV q,�V , ß
V q :“ pFV

CWX, idqpRepupV q,�, ßq (4.10)

In other words, we have an isomorphism of braided C˚-tensor categories:

pFV
CWX, idq : pRepupV q,�, ßq

»
ÝÝÑ pRepV pAV q,�, ßq (4.11)

where id is the identity tensorator. Thus, since Hi “ FV
CWXpWiq and Hj “ FV

CWXpWjq, we
have

FV
CWXpWi � Wjq “ Hi � Hj (4.12)

In particular, we see that Hi � Hj , as a Hilbert space, is the completion of the inner
product space Wi � Wj .

The strong intertwining property is closely related to the strong integrability due to
the following elementary fact:

Lemma 4.27. Let V be an energy-bounded VOA. Let Wi be a unitary V -module whose vertex
operator Yi is energy-bounded. Then the following are equivalent:

(1) Wi is strongly integrable.

(2) For each I P J there is a set AI of partial isometries H0 Ñ Hi such that
Ž

TPAI
RngpT q is

dense in Hi, and that for each T P AI , each homogeneous v P V , and each f P C8
c pIq, we

have

TY pv, fq Ă Yipv, fqT T ˚Yipv, fq Ă Y pv, fqT ˚ (4.13)

(3) For each I P J there is a set BI of closable operators H0 Ñ Hi (with dense domains in
H0) such that

Ž

TPBI
RngpT q is dense in Hi, and that for each T P BI , each homogeneous

v P V , and each f P C8
c pIq, the following diagram of closable operators commutes strongly:

H0 H0

Hi Hi

T

Y pv,fq

T

Yipv,fq

(4.14)
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Here, RngpT q is the range of T , i.e. T pDpT qq.

Proof. (1)ñ(2): Let πi be the representation of AV on Hi as in Def. 4.22. By the basic
property of normal representations of von Neumann algebras, there is a set AI of partial
isometries whose ranges spanning a dense subspace of Hi and satisfying Tx “ πi,IpxqT
and T ˚πi,Ipxq “ xT ˚ for all x P AV pIq. (Indeed, since AV pIq is a type III factor, AI can be
chosen to have only one element which is a unitary.) So (2) follows.

(2)ñ(3): Obvious.
(3)ñ(1): By replacing each T P BI with the partial isometry in the polar decompo-

sition of T , it suffices to assume that each T P BI is bounded (with domain H0). Then
by a standard argument using Zorn’s lemma (together will another application of po-
lar decomposition), one can find a set AI satisfying the statements in (2), and satisfying
moreover that T1T

˚
1 ¨ T2T

˚
2 “ 0 if T1, T2 P AI are distinct, and that

ř

TPAI
TT ˚ “ 1Hi .

Then the pullback of the AV pIq-representation p
À

AI
H0,

À

AI
π0,Iq to Hi via the isometry

ξ P Hi ÞÑ
À

TPAI
T ˚ξ gives a (normal) representation πi,I of AV pIq on Hi. The collection

pπi,IqIPJ gives the desired representation of AV on Hi making Wi strongly integrable.
(See [Gui19b, Prop. 4.7] for more details.)

Remark 4.28. From (2) and (3) of Lem. 4.27, it is clear that if Wi is an energy-bounded
module of a unitary VOA V , and if Wi “

À

aWi,a is an (orthogonal) decomposition of
Wi into unitary submodules, then Wi is strongly integrable if and only if every Wi,a is
strongly integrable.

Theorem 4.29. Suppose that V satisfies Condition II. Then all unitary V -modules are strongly
integrable. Thus Thm. 4.24 applies to V .

Proof. One checks that every unitary (and energy-bounded) V -module satisfies Lem.
4.27-(3) where BI can be constructed using products of partial isometries in the polar
decompositions of smeared intertwining operators localized in I 1 (with any argI 1). See
[Gui20, Thm. 2.4.2] for details. (Alternatively, one can define BI using (the closures of)
products of smeared intertwining operators localized in I 1, and then invoke Lem. 1.4 to
check that BI satisfies the assumption in Lem. 4.27-(3).)

Remark 4.30. Suppose that V satisfies Condition II. Then in Condition II-(3), FV can be
extended to FV YtV u. In other words, every intertwining operator Y with charge space V
satisfies the strong intertwining property. Indeed, we can write Y “ TYW1 where W1,W2

are unitary V -modules, and T P HomV pW1,W2q. By Thm. 4.29, W1 is strongly integrable.
Therefore, by [Gui20, Lem. 2.3.5], YW1 satisfies the strong intertwining property. There-
fore, by Lem. 1.4, Y satisfies the strong intertwining property.

Corollary 4.31. Assume that V satisfies Condition II. For each unitary type
`

Wk
WiWj

˘

intertwining

operator Y where Wi P FV Y tV u, each homogeneous wpiq P Wi, each rI P rJ , rf P C8
c prIq, and

each y P ApI 1q, the following diagram commutes strongly:

Hj Hj

Hk Hk

Ypwpiq, rfq

πj,I1 pyq

Ypwpiq, rfq

πk,I1 pyq

(4.15)
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Proof. By Thm. 4.29, all unitary V -modules are strongly integrable. Thus, by the strong
commutativity of (4.4) (and noting Rem. 4.30), we see that (4.15) commutes strongly if y
is replaced by Y pv, gq for each homogeneous v P V and g P C8

c pI 1q. Since all such closed
operators generate ApI 1q, the claim of the corollary follows easily.

4.4 Categorical extension EV associated to V ; the Wassermann tensorator WV :
Hi �V Hj Ñ Hi bAV

Hj

Let V be a completely unitary VOA. We now recall the intertwining operators ΓV and
∆V , which are called Li and Ri in [Gui21a, Sec. 4.2] and LV ,RV in [Gui20, Sec. 2.5]. All
details can be found in [Gui21a, Ch. 4].

Recall that �V “ � is the tensor ˚-bifunctor and ßV “ ß is the braiding in RepupV q. ΓV

associates to each Wi,Wj P ObjpRepupV qq a type
`Wi�Wj

Wi Wj

˘

intertwining ΓV p¨, zq satisfying

that for every Wk P ObjpRepupV qq and every type
`

Wk
WiWj

˘

intertwining operator Y there
is a unique T P HomV pWi � Wj ,Wkq such that

Ypwpiq, zqwpjq “ T ˝ ΓV pwpiq, zqwpjq (4.16)

for all wpiq P Wi, w
pjq P Wj . Clearly, such ΓV is unique up to multiplication by a unitary

endomorphism on the left. The actual expression of ΓV is not important. What is more
important is its relationship with the braided C˚-tensor structure of RepupV q, as described
below.

∆V associates to each Wi,Wj a type
`Wj�Wi

Wi Wj

˘

intertwining ∆V p¨, zq satisfying

∆V pwpjq, zqwpiq “ ßi,j ˝ ΓV pwpiq, zqwpjq (4.17)

for all wpiq P Wi, w
pjq P Wj . Under the identification pWi � Wjq � Wk “ Wi � pWj � Wkq

via the unitary associator, ΓV and ∆V satisfy the braiding relation

ΓV pwpiq, zq ¨ ∆V pwpjq, ζqwpkq “ ∆V pwpjq, ζq ¨ ΓV pwpiq, zqwpkq (4.18a)

pΓV q:pwpiq, zq ¨ ∆V pwpjq, ζqwpi,kq “ ∆V pwpjq, ζq ¨ pΓV q:pwpiq, zqwpi,kq (4.18b)

for each wpiq P Wi, w
pjq P Wj , w

pkq P Wk, w
pi,kq P Wi � Wk and each z, ζ P S1 equipped

with arg z, arg ζ such that arg z ´ 2π ă arg ζ ă arg z. Here,

pΓV q:pwpiq, zq “ ΓV pezL1pe´iπz´2qL0wpiq, z´1q:

is the adjoint intertwining operator of ΓV . See [Gui21a, Sec. 4.3] for details.
If F P HomV pWi,Wkq and G P HomV pWj ,Wlq, then for each wpiq P Wi, w

pjq P Wj we
have

pF � GqΓV pwpiq, zqwpjq “ ΓV pFwpiq, zqGwpjq (4.19a)

pG � F q∆V pwpiq, zqwpjq “ ∆V pFwpiq, zqGwpjq (4.19b)

Under the identifications V � Wi “ Wi “ Wi � V via the unitors, we have

ΓV pv, zqwpiq “ ∆V pv, zqwpiq “ Yipv, zqwpiq (4.20a)
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ΓV pwpiq, zqv “ ∆V pwpiq, zqv (4.20b)

for all wpiq P Wi, v P V .

Remark 4.32. We have the following smeared version of (4.18): If rJ P rJ is clockwise to
rI P rJ , and if f P C8

c prIq, g P C8
c p rJq, then the following diagram commutes adjointly (cf.

[Gui21a, Thm. 4.8]):

H8
k pHk � Hjq

8

pHi � Hkq8 pHi � Hk � Hjq
8

∆V pwpjq,gq

ΓV pwpiq,fq ΓV pwpiq,fq

∆V pwpjq,gq

(4.21)

provided that the four intertwining operators appeared in (4.21) are energy-bounded.
Similarly, the smeared version of (4.17), (4.19), and (4.20) hold provided that the inter-
twining operators involved are energy-bounded: one simply replaces z by rf P C8

c pIq.

Recall the following definition:

Definition 4.33. Let Wi be a V -module. A vector w P Wi is called quasi-primary if w
is homogeneous (i.e. it is an eigenvector of L0), and if L1w “ 0. We say that a subset
M Ă Wi generates Wi if the smallest subspace containing M and invariant under Y pvqn

(for all v P V, n P Z) is Wi.

Example 4.34. The set of quasi-primary vectors of Wi generate Wi. In fact, this is true
when Wi is irreducible, since the lowest weight vectors of Wi are quasi-primary. So this
is also true in general since Wi is semi-simple.

Lemma 4.35. Let V be completely unitary. Let Wi,Wj be unitary V -modules. Assume that the
type

`Wi�Wj

Wi Wj

˘

intertwining operator wpiq P Wi ÞÑ ΓV p¨, zq|Wj is energy-bounded. Let Mi Ă Wi

be a subset of homogeneous vectors generating Wi. Then for each rI P rJ , the subspace

SpantΓV pwpiq, rfqwpjq : wpiq P Mi, w
pjq P Wj is homogeneous, rf P C8

c prIqu (4.22)

is dense in Hi � Hj (the Hilbert space completion of Wi � Wj , cf. Def. 4.26).

In fact, we do not need complete unitarity in full power. Instead, one can only assume
that V is unitary, C2-cofinite, rational, and that the type

`Wi�Wj

Wi Wj

˘

intertwining operator
involved in Lem. 4.35 is (unitary and) energy-bounded.

Proof. When Wi is irreducible, and especially when ΓV satisfies the strong intertwining
property, this lemma was proved in [Gui21a, Prop. 4.12]. However, we shall argue that
the strong intertwining property is not necessary.

Our starting point is the standard fact that, for any fixed z P Czt0u with chosen arg z,
any vector w P Wi � Wj satisfying

xΓV pwpiq, zqwpjq|wy “ 0 for all wpiq P Wi, w
pjq P Wj (4.23)
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is zero. (See [Gui19a, Prop. A.3] for details.) Therefore, any w P Wi � Wj satisfying

xΓV pwpiq, zqwpjq|wy “ 0 for all wpiq P Mi, w
pjq P Wj (4.24)

is zero. (To see this, it suffices to show that for each fixed w P Wi � Wj , the subspace
T of all wpiq P Wi satisfying xΓV pwpiq, zqwpjq|wy “ 0 for all wpjq P Wj is invariant under
all Y pvqn. Indeed, the Jacobi-identity for intertwining operators implies that the formal
Laurent series xΓV pY pv, ζ ´ zqwpiq, zqwpjq|wy (of ζ ´ z) and xΓV pwpiq, zqY pv, ζqwpjq|wy (of
ζ) are the expansions of the same rational function. Thus, if wpiq P T , then the latter series
is zero, and hence the former is also zero, which implies Y pvqnw

piq P T .) It follows (by
letting the test function rf converge to the δ-function at any given point of S1) that for any
fixed rI , any w P Wi � Wj orthogonal to (4.22) is zero.

Now, to show that (4.22) is dense, we let W be the subspace of all ξ P Hi �Hj orthog-
onal to (4.22). If we can show that W is rotation invariant, i.e., invariant under eitL0 for
all t P R, then for every ξ P W , the image of ξ under any spectral projection of L0 (which
must be an element of Wi �Wj) is inside W , and hence is 0 by the above paragraph. Then
we conclude W “ 0.

We now show that W is rotation invariant by a standard Reeh-Schlieder type argu-
ment. Choose any ξ P W . By Prop. 4.14, for every η P (4.22), there is δ ą 0 such that
xeitL0ξ|ηy “ 0 for all t P p´δ, δq. Since L0 ě 0, the function fpzq “ xeizL0ξ|ηy is holomor-
phic on H “ tz P C : Imz ą 0u and continuous on H. By the Schwarz reflection principle,
f can be extended to a holomorphic function on CzpRzp´δ, δqq, and hence f “ 0 on that
domain since f “ 0 on p´δ, δq. Thus f “ 0 on H by the continuity, and hence xeitL0ξ|ηy “ 0
for all t P R.

Lemma 4.36. Let V be energy-bounded. Let I P J . Then

WI “ SpantY pv1, f1q ¨ ¨ ¨Y pvn, fnqΩ : n P Z`, and v1, . . . , vn P V are quasi-primary,
I1, . . . , In P J are disjoint subintervals of I , fi P C8

c pIiq for all iu
(4.25)

and

VI “ SpantY pv, fqΩ : v P V is homogeneous, f P C8
c pIqu (4.26)

are dense in H0.

Proof. We prove the density of (4.25); the second one is similar. Our proof is similar to that
of [CKLW18, Thm. 8.1]: As in the proof of Thm. 4.35, by the Schwarz reflection principle
and Prop. 4.14, it suffices to prove that any v P V orthogonal to (4.25) is zero. In fact,
instead of assuming v P V , it suffices to assume v P H8

0 .
So let v P H8

0 be orthogonal to (4.25). Choose any n P Z` and any quasi-
primary v1, . . . , vn P V . Another application of the Schwarz reflection principle (ap-
plied to xeizL0Y pvn´1, fn´1q˚ ¨ ¨ ¨Y pv1, f1q˚v|Y pvn, fnqΩy) shows that v is orthogonal to
Y pv1, f1q ¨ ¨ ¨Y pvn, fnqΩ where f1, . . . , fn´1 are supported in mutually disjoint subinter-
vals of I , and fn is supported in any element of J . By linearity, v is orthogonal to
Y pv1, f1q ¨ ¨ ¨Y pvn´1, fn´1qY pvnqknΩ where f1, . . . , fn´1 are supported in mutually disjoint
subintervals of I and kn P Z. Applying the same argument repeatedly, we see that v is
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orthogonal to Y pv1qk1 ¨ ¨ ¨Y pvnqknΩ for all k1, . . . , kn P Z. Since this is true for all n, and
since the vectors of the form Y pv1qk1 ¨ ¨ ¨Y pvnqknΩ span V (cf. [CKLW18, Prop. 6.6]), we
conclude that v is orthogonal to V , and hence v “ 0.

Definition 4.37. Given arg-valued smooth functions rf, rg, we say that rf is anticlockwise
to rg (equivalently, rg is clockwise to rf ) if there exist rI, rJ P rJ with rJ clockwise to rI such
that rf P C8

c prIq, rg P C8
c p rJq.

Recall from Def. 4.26 that the braided C˚-tensor category pC ,�, ßq is

pRepV pAV q,�, ßq :“ pFV
CWX, idqpRepupV q,�, ßq

Theorem 4.38. Suppose that V satisfies Condition II in Def. 4.15. Let FV be as in Condition II.
For each Wi P ObjpRepupV qq and rI P rJ , let

HiprIqi1,...,in “ HomV pWi1 � ¨ ¨ ¨ � Win ,Wiq ˆ Wi1 ˆ ¨ ¨ ¨ ˆ Win ˆ C8
c prIqn (4.27a)

HiprIq “
ğ

nPZ`

Wi1
,...,WinPFV YtV u

HiprIqi1,...,in (4.27b)

For each a P HiprIqi1,...,in where

a “ pT,wpi1q, . . . , wpinq, rf1, . . . , rfnq (4.28)

we set for each Wj P ObjpRepupV qq that

Lpa, rIq
ˇ

ˇ

H8
j

“ pT � 1jq ˝ ΓV pwpi1q, rf1q ¨ ¨ ¨ΓV pwpinq, rfnq
ˇ

ˇ

H8
j

(4.29a)

Rpa, rIq
ˇ

ˇ

H8
j

“ p1j � T q ˝ ∆V pwpinq, rfnq ¨ ¨ ¨∆V pwpi1q, rf1q
ˇ

ˇ

H8
j

(4.29b)

if wpi1q, . . . , wpinq are quasi-primary and rfν`1 is clockwise to rfν for each ν “ 1, . . . , n ´ 1; oth-
erwise, we set Lpa, rIq “ 0 and Rpa, rIq “ 0. Then these data give a Möbius covariant weak
categorical extension

E w “ pAV ,Rep
V pAV q,�V , ß

V ,Hq ” pAV ,Rep
V pAV q,�, ß,Hq (4.29c)

Definition 4.39. The closure of E w in Thm. 4.38 is denoted by

EV “ pAV ,Rep
V pAV q,�, ß,Hq (4.30)

and is called the (closed) categorical extension associated to V . The tensorator

WV “ WV
i,j : Hi �V Hj Ñ Hi bAV

Hj

associated to EV (cf. Thm. 1.9) is called the Wassermann tensorator. So it is determined
by

WV ˝ EV “ EAV ,Connes

ˇ

ˇ

RepV pAV q
(4.31)

where EAV ,Connes is the Connes categorical extension for AV .
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EV and WV are independent of the choice of FV . More precisely:

Theorem 4.40. Let V satisfy Condition II. Suppose that we have another set rFV of unitary V -
modules satisfying the assumptions in Condition II (cf. Def. 4.15). Then the categorical extension
EV defined by FV is equal to the one defined by rFV . Therefore, the Wassermann tensorator WV

defined by FV is equal to the one defined by rFV .

Proof of Thm. 4.38. This theorem is similar to [Gui20, Thm. 2.5.4], except that the con-
struction of E w is slightly simplified. We need to check all the axioms in Def. 2.9. To
begin with, note that the L and R operators are smooth and localizable by Rem. 4.10 (and
2.7). Isonoty is obvious. Naturality: By (4.19). Neutrality: By (4.20).

By the density Lem. 4.35, the rotation covariance of smeared intertwining operators
(cf. Prop. 4.14), and the fact that smeared intertwining operators are localizable (Rem.
4.10), one shows by induction on n that for any Wi1 , . . . ,Win P FV ,

SpantΓV pwpi1q, rf1q ¨ ¨ ¨ΓV pwpinq, rfnqH8
j : wpi1q P Wi1 , . . . , w

pinq P Win

rf1, . . . , rfn P C8
c prIq, rfν`1 is clockwise to rfνu

is a QRI subspace of pHi1 � ¨ ¨ ¨�Hin �Hiq
8. (In particular, it is dense.) A similar property

holds if ΓV is replaced by ∆V . This implies the density of fusion products.
Choose rJ, rK Ă rI such that rK is clockwise to rJ . We use the notation in Lem. 4.36.

Then by the rotation covariance, WK is a QRI subspace of H8
0 . Therefore, since products

of smeared intertwining operators are localizable (Rem. 4.10),

SpantΓV pwpi1q, rf1q ¨ ¨ ¨ΓV pwpinq, rfnq ¨ WK : wpi1q P Wi1 , . . . , w
pinq P Win

rf1, . . . , rfn P C8
c p rJq, rfν`1 is clockwise to rfνu

is a dense subspace of Hi1 � ¨ ¨ ¨ � Hin . A similar property holds when ΓV is replaced
by ∆V . Therefore, since the last few of Wi1 , . . . ,Win in (4.27a) can be chosen to be V , we
conclude the Reeh-Schlieder property.

Intertwining property: By Cor. 4.31 and Lem. 1.4.
Weak locality: This follows from Rem. 4.32 and (4.20). See the proof of [Gui20, Thm.

1.7.4] (especially the commutative diagrams therein) for details.
Braiding: This follows from the naturality of ß (which implies ß˝ pT �1q “ p1�T q ˝ß)

and the following Lem. 4.41.
Möbius covariance: By Rem. 4.13 and Prop. 4.14.

Proof of Thm. 4.40. Let GV “ FV Y rFV . Let E w
FV and E w

GV be the weak categorical exten-
sions defined by FV and GV respectively as in (4.29c), and let EFV and EGV denote their
closures. Then E w

FV Ă E w
GV , i.e., every L resp. R operator of E w

FV is a L resp. R operator
of E w

GV , and hence its closure is a left resp. right operator of EGV . Therefore, EGV is a (and
hence the) closure of E w

FV , cf. Thm. 2.12. So EFV “ EGV . Similarly, E
rFV “ EGV .

Lemma 4.41. Let V and FV be as in Thm. 4.38. Let Wi1 , . . . ,Win P FV . Let wpi1q P

Wi1 , . . . , w
pinq P Win be homogeneous. Let rI P rJ and rf1, . . . , rfn P C8

c pIq such that rfk is
anticlockwise to rfk`1 for each k “ 1, . . . , n ´ 1. Then for each Wj P ObjpRepupV qq we have

∆V pwpinq, rfnq ¨ ¨ ¨∆V pwpi1q, rf1q
ˇ

ˇ

H8
j

“ ßi1�¨¨¨�in,jΓ
V pwpi1q, rf1q ¨ ¨ ¨ΓV pwpinq, rfnq

ˇ

ˇ

H8
j

(4.32)
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Proof. This follows from (4.19), Rem. 4.32, and the Hexagon axiom for ß. See (the proof
of) [Gui20, Prop. 1.7.3] for details.

When V satisfies Condition I, its categorical extension can be generated by a simpler
(though not Möbius covariant) weak categorical extension:

Theorem 4.42. Suppose that V satisfies Condition I in Def. 4.15. For each Wi P ObjpRepupV qq

and rI P rJ , let

HiprIq “ Wi ˆ V ˆ C8
c pIq ˆ C8

c pIq (4.33)

For each a P HiprIq where

a “ pwpiq, v, f, gq

we set for each Wj P ObjpRepupV qq that

Lpa, rIq|H8
j

“ ΓV pwpiq, fqYjpv, gq
ˇ

ˇ

H8
j

Rpa, rIq|H8
j

“ ∆V pwpiq, fqYjpv, gq
ˇ

ˇ

H8
j

(4.34)

if wpiq, v are homogeneous; otherwise, we set Lpa, rIq “ 0 and Rpa, rIq “ 0. Then these data
give a weak categorical extension E w. Moreover, the closure of E w is equal to EV , the categorical
extension associated to V (cf. Def. 4.39).

Proof. That (4.34) defines a weak categorical extension E w can be proved in the same way
as Thm. 4.40, except that one uses the density of (4.26) instead of (4.25) to conclude the
Reeh-Schlieder property.

Let rE w be the Möbius covariant weak categorical extension defined in Thm. 4.38 by
any FV . (For example, we let FV contain every irreducible module up to unitary isomor-
phisms.) By definition, its closure is EV . A similar algebraic computation shows that the
Lpa, rIq and Rpa, rIq in (4.34) are respectively weak left and right operators of rE w (cf. Def.
2.13 and 2.14). Thus, by Thm. 2.15, Lpa, rIq and Rpa, rIq left and right operators of EV . So
EV is a (and hence the) closure of E w. This finishes the proof.

Remark 4.43. Alternatively, one can show that EV is the closure of E w in the following
way without using Thm. 2.15. It is easy to check that E w Y rE w is a weak categorical
extension. So its closure is also a closure (and hence the closure) of both E w and rE w.
Thus, E w and rE w have the same closure.

5 (Weak) categorical extensions associated to unitary VOA ex-
tensions

5.1 The unitary VOA extension UP associated to the Haploid commutative C˚-
Frobenius algebra P

We fix a unitary VOA V with vertex operation Y V “ Y .
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Definition 5.1. A (normalized CFT-type) unitary VOA extension is a triple pU, Y U , ιq
(or simply U ), where pU, Y U q is a (CFT-type) unitary VOA, the inner product space U is
equipped with a unitary V -module structure

U “ Wa where pWa, Yaq P ObjpRepupV qq

Moreover, ι P HomV pV,Waq “ HomV pV,Uq satisfies ι˚ι “ 1V , and the following condi-
tions are satisfies:

(1) For each v P V , we have Yapvqn “ Y U pιvqn for all n P Z`, i.e.

Yapv, zq “ Y U pιv, zq

(2) ι sends the vacuum vector of V to that of U .

(3) ι sends the conformal vector of V to that of U .

Remark 5.2. In Def. 5.1, for each v1, v2 P V we have

Y U pιv1, zqιv2 “ Yapv1, zqιv2 “ ιY pv1, zqv2

Therefore, identifying V with ιpV q via V , a unitary VOA extension is equivalently a uni-
tary VOA U whose underlying inner product space contains V , and whose vertex opera-
tion restricts to that of V , whose vacuum vectors and conformal vectors are equal to those
of V .

Theorem 5.3. Assume that V is completely unitary. Then there is a one-to-one correspondence
between a haploid commutative C˚-Frobenius algebra P “ pWa, µ, ιq in RepupV q and a unitary
VOA extension pUP , Y

UP , ιq of V . Y UP is determined by

Y UP pu1, zqu2 “ µ ˝ ΓV pu1, zqu2 (5.1)

for all u1, u2 P UP .

Recall that µ P HomV pWabV Wa,Waq and ΓV is a type
`

WabV Wa

Wa Wa

˘

intertwining operator
of V .

Proof. The (injective) map P ÞÑ UP , where UP is a (not necessarily unitary) VOA exten-
sion of V is due to [HKL15, Thm. 3.2]. That UP is of CFT-type is due to Li’s classification
of vacuum-like vectors [Li94, Prop. 3.4]; see Thm. 4.5 or Prop. 11.2 of [Gui24] for a de-
tailed explanation. That UP is a unitary extension, as well as the surjectivity of P ÞÑ UP ,
is [Gui22, Thm. 2.21].

Remark 5.4. In fact, every haploid algebra in RepupV q has a unique unitary (i.e. C˚)
structure. It follows that every (CFT-type) VOA extension of V is unitary in a unique
way. See [CGGH23, Thm. 4.7] for details.
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5.2 The functor FVOA : Rep0
pP q Ñ Repu

pUP q and the tensorator V� : Wi �P

Wj Ñ Wi �UP
Wj

Let V be completely unitary. Recall that

pRepupV q,�, ßq ” pRepupV q,�V , ß
V q

is the Huang-Lepowsky braided C˚-tensor category (Thm. 4.2). Let P be a haploid C˚-
Frobenius algebra in RepupV q and let UP be its associated unitary VOA extension. Then
UP is completely unitary [Gui22, Thm. 3.30]. Then we also have the Huang-Lepowsky
braided C˚-tensor category of unitary UP -modules

pRepupUP q,�UP
, ßUP q (5.2)

As in Subsec. 4.4, for each Wi,Wj P RepupUP q we have UP -intertwining operators ΓUP

and ∆UP of UP of types
`Wi�UP

Wj

Wi Wj

˘

and
`Wj�UP

Wi

Wi Wj

˘

respectively related by

∆UP pwpiq, zqwpjq “ ßUP
i,j Γ

UP pwpiq, zqwpjq

for all wpiq P Wi, w
pjq P Wj .

Let

Rep0pP q “ Rep0RepupV qpP q

be the braided C˚-category of dyslectic unitary P -modules as in Def. 3.2. Recall from
Thm. 3.5 that any system (�P , µ‚,‹) of fusion products of dyslectic P -modules, where

µi,j P HomV pWi � Wj ,Wi �P Wjq

for each dyslectic modules Wi,Wj , determines a braided C˚-tensor structure on Rep0pP q.

Theorem 5.5. Let V be completely unitary. Let P be a haploid commutative C˚-Frobenius algebra
in RepupV q. Then UP is completely unitary.

Moreover, choose a system of fusion products p�P , µ‚,‹q in Rep0pP q giving a braided C˚-
tensor category

pRep0pP q,�P , ß
P q

as in Thm. 3.5 (satisfying the four conditions as in (3.6)). Then we have a braided ˚-functor
pFVOA,V

�q impletementing an isomorphism of braided C˚-tensor categories

pFVOA,V
�q :

`

Rep0pP q,�P , ß
P
˘ »

ÝÝÑ
`

RepupUP q,�UP
, ßUP

˘

Here,

FVOA : Rep0pP q Ñ RepupUP q

pWi, µ
iq P ObjpRep0pP qq ÞÑ pWi, Y

UP
i q P ObjpRepupUP qq

F P HomP pWi,Wjq ÞÑ F P HomUP
pWi,Wjq

(5.3)
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where Y UP
i is related to µi P HomV pUP � Wi,Wiq by the fact that for all u P UP , w

piq P Wi,

Y UP
i pu, zqwpiq “ µi ˝ ΓV pu, zqwpiq (5.4)

and the natural map V� associates to each objects Wi,Wj of Rep0pP q a unitary V�
i,j P

HomUP
pWi �P Wj ,Wi �UP

Wjq determined by

V�
i,j ˝ µi,jΓ

V pwpiq, zqwpjq “ ΓUP pwpiq, zqwpjq (5.5)

Note that in this theorem we also have

V�
j,i ˝ µj,i∆

V pwpiq, zqwpjq “ ∆UP pwpiq, zqwpjq (5.6)

since

∆UP pwpiq, zqwpjq “ ßUP
i,j Γ

UP pwpiq, zqwpjq “ ßUP
i,j V

�
i,jµi,jΓ

V pwpiq, zqwpjq

“V�
j,iß

P
i,jµi,jΓ

V pwpiq, zqwpjq “ V�
j,iµj,ißi,jΓ

V pwpiq, zqwpjq “ V�
j,iµj,i∆

V pwpiq, zqwpjq

where ßUP
i,j V

�
i,j “ V�

j,iß
P
i,j is because V� intertwines the braidings ßPi,j and ßUP

i,j (as required
by braided ˚-functors), and ßPi,jµi,j “ µj,ißi,j is due to (3.6d). Thus, in this way, (5.5) and
(5.6) are parallel to (3.14).

Remark 5.6. In Thm. 5.5, HomUP
pWi �P Wj ,Wi �UP

Wjq is the abbreviation of
HomUP

pFVOApWi �P Wjq,FVOApWiq �UP
FVOApWjqq. Alternatively, HomUP

pWi �P

Wj ,Wi �UP
Wjq can be understood by viewing Wi,Wj ,Wi �P Wj as an objects

`

RepupUP q,�P , ß
P
˘

:“ pFVOA, idq
`

Rep0pP q,�P , ß
P
˘

(5.7)

This is similar to our perspective in Cor. 3.20.

Proof of Thm. 5.5. By [Gui22, Thm. 3.30], V is completely unitary. By Sec. 2.5 and es-
pecially Thm. 2.30 of [Gui22], FVOA implements an isomorphism of C˚-categories. To
simplify the following discussion, we identify the C˚-categories Rep0pP q and RepupUP q

via FVOA. By (4.16), for each Wi,Wj P ObjpRepupUP qq, there is a unique morphism
νi,j P HomV pWi � Wj ,Wi �UP

Wjq such that

νi,j ˝ ΓV pwpiq, zqwpjq “ ΓUP pwpiq, zqwpjq

for all wpiq P Wi, w
pjq P Wj . By [Gui22, Thm. 3.29], p�UP

, ν‚,‹q is a system of fusion
products in Rep0pP q. By [Gui22, Thm. 3.30], the braided C˚-tensor structure on RepupUP q

associated to p�UP
, ν‚,‹q (in the sense of Thm. 3.5) is equal to pRepupUP q,�UP

, ßUP q, the
Huang-Lepowsky braided C˚-tensor category. Let

V�
‚,‹ : W‚ �P W‹ Ñ W‚ �UP

W‹

be the (unitary) linking map between the two systems, cf. Rem. 3.4. Namely, ν‚,‹ “

V� ˝ µ‚,‹. So (5.5) is satisfied. By Rem. 3.8, pid,V�q implements an isomorphism of
braided C˚-tensor categories

`

Rep0pP q,�P , ß
P
˘ »

ÝÝÑ
`

RepupUP q,�UP
, ßUP

˘

.
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Remark 5.7. The non-unitary version of Thm. 5.5 is due to [HKL15] (without addressing
the isomorphism of braided tensor structures) and [CKM24].

The following two remarks are parallel to Rem. 3.21.

Remark 5.8. The following fact proved in [Gui22, Thm. 3.29] and used in the proof of
Thm. 5.5 is worth noting: Identifying the C˚-categories Rep0pP q and RepupUP q via FVOA,
there is a system of fusion products in Rep0pP q such that �P “ �UP

and V� “ id, i.e., the
one p�UP

, µ‚,‹q satisfying

µi,jΓ
V pwpiq, zqwpjq “ ΓUP pwpiq, zqwpjq (5.8)

for all Wi,Wj P Obj0pP q.

Remark 5.9. Suppose that pp�P , pµ‚,‹q is another system of fusion products in Rep0pP q, and
that the natural unitary pV� : W‚p�PW‹ Ñ W‚ �UP

W‹ is defined for this system similar
to V�, i.e.

pV�
i,j ˝ pµi,jΓ

V pwpiq, zqwpjq “ ΓUP pwpiq, zqwpjq

for all Wi,Wj P ObjpRep0pP qq. From the proof of Thm. 5.5, it is clear that

pV�
i,j ˝ Φi,j “ V�

i,j (5.9)

where Φ : W‚ �P W‹ Ñ W‚p�PW‹ is the connecting map between the two systems of
fusion products (Rem. 3.4).

5.3 Main theorem on smeared operators and (weak) categorical extensions as-
sociated to Q “ pFV

CWX, idqpP q

5.3.1 The setting

Let V satisfy Condition II in Def. 4.15. Let AV be the CKLW net of V . Recall
that pRepupV q,�, ßq is the Huang-Lepowsky braided C˚-tensor category of unitary V -
modules (Thm. 4.2) where, as usual, we have abbreviated �V to � and ßV to ß. Recall
from Def. 4.26 that pC ,�, ßq is chosen to be

`

RepV pAV q,�, ß
˘

:“ pFV
CWX, idq

`

RepupV q,�, ß
˘

Recall from Thm. 4.24 that RepV pAV q is a full replete C˚-subcategory of ReppAV q. As
usual, for each Wi P ObjpRepupV qq we write Hi “ FV

CWXpWiq. Let

EV “ pAV ,Rep
V pAV q,�, ß,Hq with L, R operators L�, R�

be the categorical extension associated V (Def. 4.39).
Let P “ pWa, µ, ιq be a C˚-Frobenius algebra in RepupV q. Let

Q “ pFV
CWX, idqpP q “ pHa, µ, ιq
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be the pushforward C˚-Frobenius algebra in RepV pAV q. Thus, by Thm. 3.13, Q gives a
conformal net extension BQ of AV determined by

BQpIq “ tµL�pξ, rIq|Ha : ξ P HapIqu (5.10)

Recall that Rep0pP q ” Rep0RepupV q
pP q and Rep0

RepV pAV q
pQq are respectively the C˚-

categories of dyslectic (unitary) P -modules (in RepupV q) and Q-modules in RepV pAV q.
Fix a system of fusion products p�P , µ‚,‹q in Rep0pP q. Its pushforward system in
Rep0

RepV pAV q
pQq via pFV

CWX, idq is denoted by p�Q, µ‚,‹q, i.e.

pFV
CWX, idq

`

�P , µ‚,‹

˘

“
`

�Q, µ‚,‹

˘

Then these two systems give braided C˚-tensor category structures on Rep0pP q and
Rep0

RepV pAV q
pQq (cf. Thm. 3.5) which are canonically isomorphic:

pFV
CWX, idq :

`

Rep0pP q,�P , ß
P
˘ »

ÝÝÑ
`

Rep0
RepV pAV q

pQq,�Q, ß
Q
˘

(5.11)

Recall from Def. 3.12 that RepRepV pAV qpBQq is the C˚-category of BQ-modules whose
restrictions to A are objects in RepV pAV q. By Recall from Def. 3.15 that

`

RepRepV pAV qpBQq,�Q, ß
Q
˘

“ pFCN, idq
`

Rep0
RepV pAV q

pQq,�Q, ß
Q
˘

(5.12)

where FCN is described in Thm. 3.14.
Let pRepupUP q,�UP

, ßUP q be the Huang-Lepowsky braided C˚-tensor category of uni-
tary UP -modules as in Thm. 4.2. Let

pFVOA,V
�q :

`

Rep0pP q,�P , ß
P
˘ »

ÝÝÑ
`

RepupUP q,�UP
, ßUP

˘

(5.13)

be as in Thm. 5.5.

Convention 5.10. For each pWi, µ
iq P ObjpRep0pP qq, when talking about the correspond-

ing unitary UP -module pWi, Y
UP
i q P ObjpRepupUP qq, the corresponding dyslectic Q-

module pHi, µ
iq P ObjpRep0

RepV pAV q
pQqq, and the corresponding BQ-module pHi, πiq P

ObjpRepRepV pAV qpBQqq, we understand that they are related by the functors

Rep0pP q Rep0
RepV pAV q

pQq

RepupUP q RepRepV pAV qpBQq

FV
CWX

»

FVOA » FCN»

pWi, µ
iq pHi, µ

iq

pWi, Y
UP
i q pHi, πiq

(5.14)

5.3.2 The main theorem

Assume the setting in Subsubsec. 5.3.1. Recall the intertwining operators ΓV ,∆V of V
and (similarly) ΓUP ,∆UP of UP (cf. Subsec. 4.4).
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Theorem 5.11 (Main Theorem). Assume that V satisfies Condition II. Let

EQ “ pBQ,RepRepV pAV qpBQq,�Q, ß
Q,Hq :“ µ‚,‹ ˝ EV

be the categorical extension associated to Q, EV , and p�Q, µ‚,‹q with L,R operators LQ, RQ (cf.
Def. 3.19). Let Wj P ObjpRepupUP qq. Assume that every unitary intertwining operator of
UP with charge space Wj is energy-bounded. Let wpjq P Wj be homogeneous. Let rJ P rJ , and
rg P C8

c p rJq. For each Wk P ObjpRepupUP qq, let

LQpy, rJq
ˇ

ˇ

Hk
“ pV�

j,kq´1 ˝ ΓUP pwpjq, rgq
ˇ

ˇ

Hk
(5.15a)

RQpy, rJq
ˇ

ˇ

Hk
“ pV�

k,jq
´1 ˝ ∆UP pwpjq, rgq

ˇ

ˇ

Hk
(5.15b)

which are closed operators with dense domains in Hk. Then LQpy, rJq and RQpy, rJq are respec-
tively left and right operators of EQ.

Note that by (5.5) and (5.6), we can rewrite (5.15) as

LQpy, rJq
ˇ

ˇ

Hk
“ pµj,kΓV qpwpjq, rgq

ˇ

ˇ

Hk
RQpy, rJq

ˇ

ˇ

Hk
“ pµk,j∆V qpwpjq, rgq

ˇ

ˇ

Hk
(5.16)

the smeared intertwining operators defined by the energy-bounded UP -intertwining op-
erators µj,kΓ

V and µk,j∆
V .7

Remark 5.12. In Thm. 5.11, if Wj is the vacuum UP -module Wa “ UP , then under the
identifications UP �UP

Wk “ Wk “ Wk �UP
UP via the unitors, we have V�

a,k “ 1k (cf.
(1.16)). Thus, by (4.20), the two equations in (5.15) become

LQpy, rJq
ˇ

ˇ

Hk
“ Y UP

k pu, rgq “ RQpy, rJq
ˇ

ˇ

Hk
(5.17)

Proof of Thm. 5.11. Step 1. We prove only that RQpy, rJq is a right operator; the treatment
of LQpy, rJq is similar. Let FV be as in Condition II. Let E w “ pAV ,Rep

V pAV q,�, ß,Hq

be the Möbius covariant weak categorical extension in Thm. 4.38. Let E w
Q “

pBQ,RepRepV pAV qpBQq,�Q, ß
Q,Hq be the weak categorical extension as in Thm. 3.22,

which is clearly also Möbius covariant. Thus, for each Wi,Wk P ObjpRep0pP qq and rI P rJ ,
and for each a “ pT,wpi1q, . . . , wpinq, rf1, . . . , rfnq in HiprIq as described in (4.27), we have

LQpa, rIq
ˇ

ˇ

H8
k

“ µi,kpT � 1jq ˝ ΓV pwpi1q, rf1q ¨ ¨ ¨ΓV pwpinq, rfnq
ˇ

ˇ

H8
k

(5.18a)

RQpa, rIq
ˇ

ˇ

H8
k

“ µk,ip1j � T q ˝ ∆V pwpinq, rfnq ¨ ¨ ¨∆V pwpi1q, rf1q
ˇ

ˇ

H8
k

(5.18b)

By Thm. 3.22, the closure of E w
Q is EQ.

If V satisfies Condition I, then ΓV ,∆V are always energy-bounded. Comparing (5.16)

with (5.18b), we see that RQpy, rJq equals RQpa, rJq for some a P Hjp rJq, and hence is a
right operator of EQ. However, we are only assuming that V satisfies Condition II. So we

7Note that it is not assumed that ΓV and ∆V are always energy bounded. So one cannot write µj,k ˝

ΓV
pwpjq, rgq|Hk since it is not known whether the V -intertwining operator ΓV

pwpjq, zq can be smeared.
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need more effort. In fact, we shall use the powerful Thm. 2.15.

Step 2. Let BQpy, rJq be the operation associating to each Wk P ObjpRep0pP qq the
smooth and localizable operator

BQpy, rJq
ˇ

ˇ

H8
k

“ pµk,j∆
V qpwpjq, rgq

ˇ

ˇ

H8
k

By Thm. 2.15, it suffices to prove that BQpy, rJq is a weak right operator of E w
Q . To

check Def. 2.14-(a), we choose any Wk1 P ObjpRep0pP qq and G P HomP pWk,Wk1q “

HomBQ
pHk,Hk1q. Then for each χ P H8

k we have

BQpy, rJqGχ “
`

µk1,j∆
V
˘

pwpjq, rgqGχ
(4.19)

ùùùùù
`

µk1,jpG � 1jq∆
V
˘

pwpjq, rgqχ

(3.6a)
ùùùùù

`

pG �Q 1jqµk,j∆
V
˘

pwpjq, rgqχ “ pG �Q 1jqB
Qpy, rJqχ

To check Def. 2.14-(b), we need to show that if rJ is clockwise to rI then BQpy, rJq

commutes with LQpa, rIq. Namly, for each Wk P ObjpRep0pP qq, we need to prove
`

µi�Qk,j∆
V
˘

pwpjq, rgq ¨ µi,kpT � 1kqΓV pwpi1q, rf1q ¨ ¨ ¨ΓV pwpinq, rfnq
ˇ

ˇ

H8
k

“µi,k�QjpT � 1k�QjqΓ
V pwpi1q, rf1q ¨ ¨ ¨ΓV pwpinq, rfnq ¨

`

µk,j∆
V
˘

pwpjq, rgq
ˇ

ˇ

H8
k

(5.19)

By Cor. 3.13 (or Prop. 3.12) of [Gui19a], it suffices to prove the following braiding relation:
If z1, . . . , zn, ζ P S1 are equipped with arg values such that arg z1 ą ¨ ¨ ¨ ą arg zn ą arg ζ ą

arg z1 ´ 2π, and if wpkq P Wk, then

µi�Qk,j∆
V pwpjq, ζqµi,kpT � 1kqΓV pwpi1q, z1q ¨ ¨ ¨ΓV pwpinq, znqwpkq

“µi,k�QjpT � 1k�QjqΓ
V pwpi1q, z1q ¨ ¨ ¨ΓV pwpinq, znqµk,j∆

V pwpjq, ζqwpkq
(5.20)

holds where both sides are linear functionals on Wi �Q Wj �Q Wk. (Note that these are
not ordinary products of linear operators. They should be understood in terms of analytic
continuation. We refer the readers to [Gui19a] Sec. 2.2 (especially the paragraph before
Thm. 2.8) for the precise meaning.)

Choose any wpkq P Wk. In view of [Gui19a, Prop. 2.11] (which says, roughly, that if
one has the braid relation Y1Y2 „ Y3Y4, then one also has the braid relation X1Y1Y2X2 „

X1Y3Y4X2 where X1 and X2 are products of intertwining operators), we are able to do the
following calculations:

µi�Qk,j∆
V pwpjq, ζqµi,kpT � 1kqΓV pwpi1q, z1q ¨ ¨ ¨ΓV pwpinq, znqwpkq

(4.19)
ùùùùùµi�Qk,jpµi,k � 1jqpT � 1k � 1jq∆

V pwpjq, ζqΓV pwpi1q, z1q ¨ ¨ ¨ΓV pwpinq, znqwpkq

(4.18)
ùùùùù

(3.8)
µi,k�Qjp1i � µk,jqpT � 1k � 1jqΓ

V pwpi1q, z1q ¨ ¨ ¨ΓV pwpinq, znq∆V pwpjq, ζqwpkq

Since p1i � µk,jqpT � 1k � 1jq “ T � µk,j “ pT � 1k�Qjqp1i1�¨¨¨�in � µk,jq, the above
expression equals

µi,k�QjpT � 1k�Qjqp1 � µk,jqΓ
V pwpi1q, z1q ¨ ¨ ¨ΓV pwpinq, znq∆V pwpjq, ζqwpkq
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(4.19)
ùùùùùµi,k�QjpT � 1k�QjqΓ

V pwpi1q, z1q ¨ ¨ ¨ΓV pwpinq, znqµk,j∆
V pwpjq, ζqwpkq

This finishes the proof.

With a little more effort, we can prove a stronger version of Thm. 5.11:

Theorem 5.13. Assume that V satisfies Condition II, and let EQ be as in Thm. 5.11. Choose
unitary UP -modules Wj1 , . . . ,Wjm ,Wj and S P HomUP

pWj1 �UP
¨ ¨ ¨ �UP

Wjm ,Wjq. As-
sume that every unitary intertwining operator of UP whose charge space is one of Wj1 , . . . ,Wjm

is energy-bounded. Let wpj1q P Wj1 , . . . , w
pjmq P Wjm be homogeneous. Let rJ P rJ and

rg1, . . . , rgm P C8
c p rJq. For each Wk P RepupUP q, let

LQpx, rJq
ˇ

ˇ

H8
k

“ pV�
i,kq´1pS �UP

1kq ˝ ΓUP pwpj1q, rg1q ¨ ¨ ¨ΓUP pwpjmq, rgmq
ˇ

ˇ

H8
k

(5.21a)

RQpy, rJq
ˇ

ˇ

H8
k

“ pV�
k,iq

´1p1k �UP
Sq ˝ ∆UP pwpjmq, rgmq ¨ ¨ ¨∆UP pwpj1q, rg1q

ˇ

ˇ

H8
k

(5.21b)

Then LQpx, rJq and RQpy, rJq are respectively left and right operators of EQ with charge spaces Hj .

Remark 5.14. In Thm. 5.13, we do not assume that rgµ`1 is clockwise to rgµ. Therefore,
unlike in Thm. 4.38, we do not necessarily have x “ y. So it is not necessarily true that
RQpy, rJq|H8

k
“ ßQj,kL

Qpx, rJq|H8
k

.

Proof of Thm. 5.13. By (3.17b) and (5.9), instead of proving Thm. 5.13 for every system
of fusion products p�P , µ‚,‹q, it suffices to prove it for one system. So we assume that
p�P , µ‚,‹q “ p�UP

, µ‚,‹q is such that V� “ id (cf. Rem. 5.8). Note that LQpx, rJq is smooth
and localizable by Rem. 4.10. Let E w

Q be as in Thm. 3.22. It is easy to check that a product
of weak left operators of E w

Q is again a weak left operator provided that it is smooth and
localizable. It is also easy to check that a weak left operator, multiplied by pS �UP

1q, is
again a weak left operator. Thus, by Thm. 5.11, LQpx, rJq is a weak left operator of E w

Q . By

Thm. 2.15, LQpx, rJq is a left operator of the closure of E w
Q (which equals EQ by Thm. 3.22).

The treatment of right operators is similar.

6 Applications of Thm. 5.11

6.1 Strong locality and strong integrability

Lemma 6.1. Let U be a unitary VOA extension of a unitary VOA V . Assume that U is C2-
cofinite. Assume that U , as a unitary V -module, is a finite direct sum of unitary irreducible
V -modules. Let pWi, Y

U
i q be an irreducible unitary U -module. Assume that Y U

i pv, zq is energy-
bounded for each homogeneous v P V . Then Y U

i is energy-bounded.

Proof. This is [CT23, Thm. 4.6] when Wi “ U . The general case can be proved in the same
way: Since U is C2-cofinite, by [Zhu96], the series Tr

`

Y U
i puqwtpuq´1q

2L0
˘

of q is absolutely
convergent on 0 ă |q| ă 1 for all homogeneous u P U . As in the proof of [CT23, Prop.
3.17], for every homogenoues u P U and 0 ă |q| ă 1 one concludes that Y U

i puqwtu´1q
L0 :

Wi Ñ Wi is norm-bounded. Using the same proof as for [CT23, Thm. 4.5], one shows that
Y U
i is energy-bounded.
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Theorem 6.2. Assume that V satisfies Condition II. Then every unitary VOA extension U of V
is strongly local, and every unitary U -module is strongly integrable.

Thus, we have the CKLW net AU and CWX functor FU
CWX : RepupUq Ñ ReppAU q.

Proof. By Thm. 5.3, we have U “ UP for some haploid C˚-Frobenius algebra P in
RepupV q. We assume the setting in Subsubsec. 5.3.1, where p�P , µ‚,‹q is chosen to sat-
isfy the requirement in Rem. 5.8 and hence V� “ id. Since V is strongly energy-bounded,
by Lem. 6.1, UP is strongly energy-bounded. Thus, for each homogeneous u1, u2 P UP

and each f P C8
c pIq, g P C8

c pI 1q (where I P J ), by Thm. 5.11 and Rem. 5.12, Y UP
‚ pu1, fq

is a left operator of EQ, and Y UP
‚ pu2, gq is a right operator of EQ. Thus, for each unitary

UP -module Wk, the closed operators Y UP
k pu1, fq and Y UP

k pu2, gq commute strongly by the
Locality of EQ (Thm. 1.14). This proves that UP is strongly local.

The locality of EQ also shows that for every right operator RQpy, rJq with charge space
Hk (where rJ P rJ is disjoint from I), the following diagram commutes strongly:

Ha Ha

Hk Hk

RQpy, rJq

Y UP pu1,fq

RQpy, rJq

Y
UP
k pu1,fq

Thus, by Lem. 4.27 and the density of fusion products (Def. 1.6), Wk is a strongly inte-
grable UP -module.

6.2 Condition I is preserved by unitary extensions

Theorem 6.3. Assume that V satisfies Condition II. Let U be a unitary VOA extension of V . Let
Wi be a unitary U -module such that any unitary intertwining operator of U with charge space Wi

is energy-bounded. Then every unitary intertwining operator of U with charge space Wi satisfies
the strong intertwining property.

Proof. As in the proof of Thm. 6.2, we let U “ UP , and assume �P “ �UP
and V� “ id.

By Thm. 5.11, for every homogeneous u P U,wpiq P Wi, any rI, rJ P rJ with rJ clockwise to rI ,

and any rf P C8
c prIq, g P C8

c pJq, we have that Y UP
‚ pu, gq and ΓUP pwpiq, rfq are respectively

left and right operators of EQ. Thus, the locality of EQ (Thm. 1.14) implies that for each
Wj P ObjpRepupUP qq, the intertwining operator ΓUP p¨, zq|Wj (of type

`Wi�UP
Wj

Wi Wj

˘

) satisfies
the strong intertwining property. Thus, by (4.16) and Lem. 1.4, every unitary intertwin-
ing operator of U with charge space Wi and source space Wj (which is the product of a
homomorphism and ΓUP p¨, zq|Wj ) satisfies the strong intertwining property.

Corollary 6.4. Assume that V satisfies Condition II and U is a unitary VOA extension of V .
Suppose that FU is a set of unitary U -modules �U -generating RepupUq, and that every unitary
intertwining operator of U whose charge space is in FU is energy-bounded. Then U satisfies
Condition II.
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Proof. By Thm. 5.5, U is completely unitary. By Lem. 6.1, U is strongly energy-bounded.
By Thm. 6.2, U is strongly local. By Thm. 6.3, every unitary intertwining operator of U
with charge space in FU satisfies the strong intertwining property. So U satisfies Condi-
tion II.

Corollary 6.5. Suppose that V satisfies Condition I. Then every unitary VOA extension of V
satisfies Condition I.

Proof. If U is a unitary VOA extension of V , then every unitary intertwining operator of
U is also a unitary intertwining operator of V , which is energy-bounded. So the present
corollary follows immediately from Cor. 6.4.

6.3 Some preliminary comparison theorems

We assume the setting described in Subsubsec. 5.3.1.

Theorem 6.6. Assume that V satisfies Condition II. Then we have

AUP
“ BQ

as conformal nets acting on the Hilbert space Ha. Moreover, the CWX functor FUP
CWX :

RepupUP q Ñ ReppBQq has image in RepRepV pAV qpAUP
q, and the following diagram commutes

Rep0pP q Rep0
RepV pAV q

pQq

RepupUP q RepRepV pAV qpBQq

FV
CWX

»

FVOA » FCN»

F
UP
CWX

»

(6.1)

where each of the four arrows is an isomorphism of C˚-categories.

Note that by Thm. 6.2, AUP
and FUP

CWX can be defined.

Proof. Choose any rI P rJ . By Thm. 5.11 and Rem. 5.12, for each homogeneous u P UP

and f P C8
c pIq, Y UP

‚ pu, fq is a right operator of EQ with charge space Ha localized in rI .
By Exp. 1.19, there exists a closed operator X on Ha with core HapI 1q such that for each

pHk, πkq P ObjpRepRepV pAV qpBQqq we have πk,IpXq “ Y UP
k pu, fq. Taking k “ a, we get

X “ Y UP pu, fq (and hence Y UP pu, fq is affiliated with BQpIq) and

πk,I
`

Y UP pu, fq
˘

“ Y UP
k pu, fq (6.2)

That Y UP pu, fq is affiliated with AUP
pIq for all u, f shows that AUP

pIq Ă BQpIq. By
Haag duality, we get AUP

pI 1q Ą BQpI 1q. By replacing I with I 1, we get AUP
pIq Ą BQpIq.

This proves AUP
“ BQ. To prove that (6.1) commutes, in view of (5.14), it suffices to prove

that FUP
CWXpWk, Y

UP
k q “ pHk, πkq. But this follows directly from (6.2)
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We now extend the identification of conformal net extensions in Thm. 6.6 to the iden-
tification of categorical extensions with the help of Thm. 5.13.

Setting 6.7. In addition to the setting in Subsubsec. 5.3.1, we let

EQ “ pBQ,RepRepV pAV qpBQq,�Q, ß
Q,Hq :“ µ‚,‹ ˝ EV (6.3)

be the categorical extension associated to Q, EV , and p�Q, µ‚,‹q (cf. Def. 3.19). Let

EUP
“ pAUP

,RepUP pAUP
q,�UP

, ßUP ,Hq (6.4)

be the categorical extension associated to UP (cf. Def. 4.39). Note that by Thm. 6.6, we
have AUP

“ BQ and

RepUP pAUP
q

(4.9)
ùùùù FUP

CWXpRepupUP qq “ RepRepV pAV qpBQq (6.5)

Theorem 6.8. Assume that both V and UP satisfy Condition II. Assume Setting 6.7. Then

EUP
“ V� ˝ EQ (6.6)

Thus, by our notations (cf. Rem. 1.11), if LQpx, rIq and RQpy, rIq are respectively left and
right operators of EUP

with charge space Hi localized in rI , then LUP px, rIq and RUP py, rIq

are respectively left and right operators of EUP
with charge space Hi localized in rI , where

for each Hk P ObjpRepRepV pAV qpBQqq we set

LUP px, rIq
ˇ

ˇ

Hk
“ V�

i,k ˝ LQpx, rIq
ˇ

ˇ

Hk
(6.7a)

RUP py, rIq
ˇ

ˇ

Hk
“ V�

k,i ˝ RQpy, rIq
ˇ

ˇ

Hk
(6.7b)

where

V�
‚,‹ : H‚ �P H‹ Ñ H‚ �UP

H‹ (6.8)

is the closure (i.e., the image under FUP
CWX) of V�

‚,‹ : W‚ �P W‹ Ñ W‚ �UP
W‹.

Proof. Let FUP be a �UP
-generating set of unitary UP -modules as described

in Condition II. Define a Möbius covariant categorical extension E w
UP

“

pAUP
,RepUP pAUP

q,�UP
, ßUP ,HUP q as in Thm. 4.38 using LUP pa, rIq,RUP pa, rIq de-

fined in a similar way as in (4.29). So EUP
is the closure of E w

UP
. By Thm. 5.13,

pV�q´1LUP pa, rIq and pV�q´1RUP pa, rIq are left and right operators of EQ localized in
rI with the charge space unchanged. Thus, LUP pa, rIq and RUP pa, rIq are left and right
operators of V�EQ, and hence V�EQ is the closure of E w

UP
. This proves EUP

“ V�EQ.

Finally, we give an equivalent formulation of Thm. 6.8 in terms of comparison of
tensorators.
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Setting 6.9. In addition to the settings in Subsubsec. 5.3.1 and Setting 6.7: We let
`

ReppBQq,bBQ
,BBQ

˘

be the Connes braided C˚-tensor category for BQ (cf. Thm. 1.8). Let

N� : H‚ �Q H‹ Ñ H‚ bBQ
H‹ (6.9a)

be the tensorator associated to EQ (cf. Cor. 3.20), i.e., it is determined by

N� ˝ EQ “ EBQ,Connes

ˇ

ˇ

Rep
RepV pAV q

pBQq
(6.9b)

where EBQ,Connes is the Connes categorical extension for BQ. Let

WUP : H‚ �UP
H‹ Ñ H‚ bBQ

H‹ (6.10a)

be the Wassermann tensorator for UP (cf. Def. 4.39), i.e., it is determined by

WUP ˝ EUP
“ EBQ,Connes

ˇ

ˇ

Rep
RepV pAV q

pBQq
(6.10b)

Theorem 6.10. Assume that both V and UP satisfy Condition II. Assume Setting 6.9. Then the
following diagram of braided ˚-functors commutes:

`

Rep0pP q,�P , ß
P
˘ `

Rep0
RepV pAV q

pQq,�Q, ß
Q
˘

`

RepupUP q,�UP
, ßUP

˘ `

RepRepV pAV qpBQq,bBQ
,BBQ

˘

pFV
CWX,idq

»

pFVOA,V�q » pFCN,N�q»

pF
UP
CWX,WUP q

»

(6.11)

Proof. By Thm. 6.8, we have

WUP ˝ V� ˝ EQ “ WUP ˝ EUP

(6.10b)
ùùùùù EBQ,Connes

ˇ

ˇ

Rep
RepV pAV q

pBQq

(6.9b)
ùùùùù N� ˝ EQ

Therefore WUP ˝ V� “ N�. (More precisely, we have WUP ˝ FUP
CWXpV�q “ N�.)

6.4 The main comparison theorem

In this subsection, we reformulate the comparison Thm. 6.6 and 6.10 in a more acces-
sible way. For that purpose, we need a setting different from that in Subsubsec. 5.3.1. The
difference is mainly due to choosing a different braided C˚-tensor structure on RepV pAV q

(i.e. the one defined by Connes fusion).
In the following subsubsection, we lay out the assumptions required for our main

comparison Thm. 6.11. For the reader’s convenience in locating the relevant definitions,
the four categories involved in this theorem are highlighted in bold, and the four braided
˚-functors are enclosed in boxes.
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6.4.1 The setting

Let V satisfy Condition II. Again, we let AV be the CKLW net of V , and let
pRepupV q,�, ßq be the Huang-Lepowsky braided C˚-tensor category of unitary V -
modules (Thm. 4.2). Note that the C˚-subcategory

RepV pAV q :“ FV
CWXpRepupV qq (6.12)

of ReppAV q is clearly full and replete. Thus, by the tensorator H‚ � H‹ Ñ H‚ b H‹,
RepV pAV q is clearly closed under Connes fusion b “ bAV

. Thus, the Connes braided
C˚-tensor category for AV (Thm. 1.8) restricts to

`

RepV pAV q,b,B
˘

”
`

RepV pAV q,bAV
,BAV

˘

By Thm. 1.9, we have an isomorphism of braided C˚-tensor categories

pFV
CWX,W

V q :
`

RepupV q,�, ß
˘ »

ÝÝÑ
`

RepV pAV q,b,B
˘

(6.13)

where WV : H‚ � H‹ Ñ H‚ b H‹ is the Wassermann tensorator for V (cf. Def. 4.39), i.e.,
it is determined by

WV ˝ EV “ EAV ,Connes

ˇ

ˇ

RepV pAV q
(6.14)

where EAV ,Connes is the Connes categorical extension for AV whose L and R operators are
denoted by Lb, Rb.

Let P “ pWa, µ, ιq be a haploid commutative C˚-Frobenius algebra in RepupV q. Let

Θ “ pFV
CWX,W

V qpP q “ pHa,m, ιq

be the pushforward of P in RepV pAV q (and hence in ReppAV q). Thus, Ha is FV
CWXpWaq as

an AV -module, and m : Ha bHa Ñ Ha is related to µ : Wa �Wa Ñ Wa (or more precisely,
related to the continuous extension µ : Ha � Ha Ñ Ha) by

m “ µ ˝ pWV
a,aq´1 (6.15)

Then (6.13) is lifted to an isomorphism of C˚-categories

rFV
CWX : Rep0pP q

»
ÝÝÑ Rep0

RepV pAV q
pΘq

where the target is the category of dyslectic Θ-modules in RepV pAV q. rFV
CWX can be explic-

itly described as follows: For each pWi, µ
iq P ObjpRep0pP qq,

rFV
CWXpWi, µ

iq “ pHi,m
iq where mi “ µi ˝ pWV

a,iq
´1 : Ha b Hi Ñ Hi (6.16)

and action of rFV
CWX on the morphisms is the identity map.8

Let p�P , µ‚,‹q and pbΘ,m‚,‹q be systems of fusion products in Rep0pP q and
Rep0

RepV pAV q
pΘq respectively. Our discussion of (unitary) linking map in ensures that

8Since WV is natural, for each Wi,Wi1 P ObjpRep0
pP qq, an element T P HomV pWi,Wi1 q belongs to

HomP pWi,Wi1 q if and only if its closure T : Hi Ñ Hi1 belongs to HomΘpHi,Hi1 q.
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for each Wi,Wj P ObjpRep0pP qq, there is a unitary map ĂWV
i,j : Hi �P Hj Ñ Hi bΘ Hj

intertwining the actions of P and Θ such that the following diagram commutes

Hi � Hj Hi b Hj

Hi �P Hj Hi bΘ Hj

WV
i,j

»

µi,j mi,j

ĂWV
i,j

»

(6.17)

Then, similar to Rem. 3.8, we have an isomorphism of braided C˚-tensor categories

prFV
CWX,

ĂWV q :
`

Rep0pP q,�P , ß
P
˘ »

ÝÝÑ
`

Rep0
RepV pAV q

pΘq,bΘ, ß
Θ
˘

(6.18)

where pRep0pP q,�P , ß
P qpRep0pP q,�P , ß
P qpRep0pP q,�P , ß
P q and pRep0

RepV pAV q
pΘq,bΘ, ß

ΘqpRep0
RepV pAV q

pΘq,bΘ, ß
ΘqpRep0

RepV pAV q
pΘq,bΘ, ß

Θq are the braided C˚-tensor cate-
gories associated to p�P , µ‚,‹q and pbΘ,m‚,‹q respectively (cf. Thm. 3.5).

Let BΘ be the conformal net extension of AV associated to Θ (cf. Thm. 3.13), i.e., for
each rI P rJ we have

BΘpIq “
␣

mLbpξ, rIq|Ha : ξ P HapIq
(

(6.19)

Let pRepRepV pAV qpBΘq,bBΘ
,BBΘqpRepRepV pAV qpBΘq,bBΘ
,BBΘqpRepRepV pAV qpBΘq,bBΘ
,BBΘq be the Connes braided C˚-tensor category of BΘ-

modules whose restrictions to AV are objects in RepV pAV q. By Cor. 3.20, we have an
isomorphism of braided C˚-tensor categories

pFCN,N
bq :

`

Rep0
RepV pAV q

pΘq,bΘ, ß
Θ
˘ »

ÝÝÑ
`

RepRepV pAV qpBΘq,bBΘ
,BBΘ

˘

(6.20)

where FCN is defined in a similar way as in Thm. 3.14, i.e.,

FCNpHi,m
iq “ pHi, π

1
iq

where π1
i,IpmLbpξ, rIq|Haq “ miLbpξ, rIq|Hi p@rI P rJ ,@ξ P HapIqq

(6.21)

9 and the action of FCN on the morphism spaces is id; Nb is determined by

Nb ˝ m‚,‹ ˝ EAV ,Connes

ˇ

ˇ

RepV pAV q
“ EBΘ,Connes

ˇ

ˇ

Rep
RepV pAV q

pBΘq
(6.22)

where EBΘ,Connes is the Connes categorical extension for BΘ.
Finally, we let pRepupUP q,�UP

, ßUP qpRepupUP q,�UP
, ßUP qpRepupUP q,�UP
, ßUP q be the Huang-Lepowsky braided C˚-tensor cate-

gory for UP . Let

pFVOA,V
�q :

`

Rep0pP q,�P , ß
P
˘ »

ÝÝÑ
`

RepupUP q,�UP
, ßUP

˘

(6.23)

be as in Thm. 5.5.
9We will see in Thm. 6.11 that π1

i equals the πi in (5.14)
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6.4.2 The main comparison theorem

Assume the setting in Subsubsec. 6.4.1. If UP satisfies Condition II, let

WUP : H‚ �UP
H‹ Ñ H‚ bAUP

H‹

be the Wassermann tensorator for UP (cf. Def. 4.39). Then Thm. 6.6 and 6.10 can be
rewritten as follows.

Theorem 6.11 (Main comparison theorem). Assume that V satisfies Condition II. Then we
have

AUP
“ BΘ

as conformal nets acting on the Hilbert space Ha, and the following diagram commutes

Rep0pP q Rep0
RepV pAV q

pΘq

RepupUP q RepRepV pAV qpBΘq

rFV
CWX

»

FVOA » FCN»

F
UP
CWX

»

(6.24)

Moreover, if UP also satisfies Condition II, then (6.24) can be extended to a commutative diagram
of braided ˚-functors

`

Rep0pP q,�P , ß
P
˘ `

Rep0
RepV pAV q

pΘq,bΘ,BΘ
˘

`

RepupUP q,�UP
, ßUP

˘ `

RepRepV pAV qpBΘq,bBΘ
,BBΘ

˘

prFV
CWX,ĂWV q

»

pFVOA,V�q » pFCN,Nbq»

pF
UP
CWX,WUP q

»

(6.25)

Recall that by Cor. 6.5, if V satisfies Condition I, then both V and UP satisfy Condition
II. Then Thm. 6.11 applies to this case.

Proof. We use the notations in Subsubsec. 5.3.1. In (6.19), we have

mLbpξ, rIq|Ha

(6.15)
ùùùùù µ ˝ pWV

a,aq´1Lbpξ, rIq|Ha

(6.14)
ùùùùù µL�pξ, rIq|Ha (6.26)

Thus, by (5.10), we have

BΘ “ BQ

By Thm. 6.6, we get BΘ “ AUP
.
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Consider the following diagram

`

Rep0
RepV pAV q

pQq,�Q, ß
Q
˘ `

Rep0
RepV pAV q

pΘq,bΘ,BΘ
˘

`

RepRepV pAV qpBQq,bBQ
,BBQ

˘ `

RepRepV pAV qpBΘq,bBΘ
,BBΘ

˘

p♣,ĂWV q

»

pFCN,N�q » pFCN,Nbq»

“

(6.27)

The two braided C˚-categories in the second row are identical since BQ “ BΘ. The left
vertical arrow of (6.27) equals the right vertical arrow of (6.11). ♣ is the ˚-functor sending
each pHi, µ

iq to pHi,m
iq where mi “ µi ˝pWV

a,iq
´1 as in (6.16), and acting on the morphism

spaces as the identity. So the first row of (6.11), composed with the first row of (6.27),
equals the first row of (6.25). We claim that the diagram (6.27) commutes. Then the
composition of (6.1) (in Thm. 6.6) with (6.27) proves that (6.24) commutes; when UP also
satisfies Condition II, the composition of (6.11) (in Thm. 6.10) with (6.27) proves that (6.25)
commutes.

Choose any pWi, µ
iq P ObjpRep0pP qq. Then pHi, µ

iq P ObjpRep0
RepV pAV q

pQqq is sent by

♣ to pHi,m
iq, and then sent by FCN to the BΘ-module pHi, π

1
iq where for each rI P rJ , ξ P

HapIq we have (by (6.21))

π1
i,IpmLbpξ, rIq|Haq “ miLbpξ, rIq|Hi

On the other hand, pHi, µ
iq P ObjpRep0

RepV pAV q
pQqq is sent by the left vertical arrow of

(6.27) to pHi, πiq where (by Thm. 3.14)

πi,IpµL�pξ, rIq|Haq “ µiL�pξ, rIq|Hi

By (6.26) and by

miLbpξ, rIq|Hi

(6.16)
ùùùùù µi ˝ pWV

a,iq
´1Lbpξ, rIq|Hi

(6.14)
ùùùùù µiL�pξ, rIq|Hi (6.28)

we have π1
i “ πi. So (6.27) commutes as a diagram of functors.

Finally, let us take care of the tensorators in (6.27). Choose any Wi,Wj P Rep0pP q. We
need to show that the following diagram commutes:

Hi �P Hj Hi �Θ Hj

Hi �BΘ
Hj Hi �BΘ

Hj

ĂWV
i,j

»

N�
i,j » Nb

i,j»

“

(6.29)

(More precisely, we want to prove N� “ Nb ˝ ♣pĂWV q, and we recall that ♣ acts as the
identity on morphisms.) We compute that

Nb ˝ ĂWV ˝ EQ
(6.3)

ùùùù Nb ˝ ĂWV ˝ µ‚,‹ ˝ EV
(6.17)

ùùùùù Nb ˝ m‚,‹ ˝ WV ˝ EV
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(6.14)
ùùùùùNb ˝ m‚,‹ ˝ EAV ,Connes|RepV pAV q

(6.22)
ùùùùù EBΘ,Connes

ˇ

ˇ

Rep
RepV pAV q

pBΘq

By (6.9b), the rightmost term above equals N� ˝EQ. This proves N� “ Nb ˝ĂWV . So (6.29)
commutes.

Corollary 6.12. Assume that V satisfies Condition II, and let U be a unitary VOA extension of
V . Then the CWX functor FU

CWX : RepupUq
»
ÝÑ RepRepV pAV qpAU q can be extended to a braided

˚-functor implementing an isomorphism of braided C˚-tensor categories:

pFU
CWX, ?q :

`

RepupUq,�U , ß
U
˘ »

ÝÝÑ
`

RepRepV pAV qpAU q,bAU
,BAU

˘

where the RHS is the Connes braided C˚-tensor category of AU -modules whose restrictions to AV

are objects of RepV pAV q.

Proof. This is immediate from the first half of Thm. 6.11 and

`

Rep0pP q,�P , ß
P
˘ `

Rep0
RepV pAV q

pΘq,bΘ,BΘ
˘

`

RepupUP q,�UP
, ßUP

˘ `

RepRepV pAV qpBΘq,bBΘ
,BBΘ

˘

prFV
CWX,ĂWV q

»

pFVOA,V�q » pFCN,Nbq» (6.30)

if we let U “ UP . (Note that this Corollary can also be proved by Thm. 6.6 using a similar
argument.)

6.5 Surjectivity of the CWX functors

In this subsection, we enhance our main comparison Thm. 6.11 to Cor. 6.16 and
provide examples that Cor. 6.16 can be applied. For each conformal net A, we let

RepfpAq “ the category of dualizable A-modules

i.e., the category of all A-modules which have dual objects in ReppAq. Then RepfpAV q is
a rigid braided full C˚-tensor subcategory of RepupV q.

Recall that if V satisfies Condition II and U “ UP , then RepV pAV q :“ FV
CWXpRepupV qq,

and RepRepV pAV qpAU q is the category of AU -modules whose restrictions to AV are objects
of RepV pAV q.

Theorem 6.13 ([Gui20], Thm. 2.7.1). Assume that V satisfies Condition II, and let U be a
unitary VOA extension of V . Then AV is completely rational if and only if AU is so.

Proof. Let U “ UP . Then AUP
is a finite-index extension of AV . So the complete rationality

of the two nets are equivalent by [Lon03, Thm. 24].

Theorem 6.14. Assume that V satisfies Condition II. Then RepV pAV q is a full replete subcate-
gory of RepfpAV q, and RepRepV pAV qpAU q is a full replete subcategory of RepfpAU q. Moreover,
consider the conditions
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(1) RepV pAV q “ RepfpAV q

(2) RepRepV pAV qpAU q “ RepfpAU q

Then we have (1)ñ(2). We have (2)ñ(1) when AV is completely rational (equivalently, AU is
completely rational, cf. Thm. 6.13). In other words, consider the conditions

(a) The functor FV
CWX : RepupV q Ñ RepfpAV q is (essentially) surjective.

(b) The functor FU
CWX : RepupUq Ñ RepfpAU q is (essentially) surjective.

Then we have (a)ñ(b). In view of Cor. 6.12, we have (b)ñ(a) when AV is completely rational
(equivalently, AU is completely rational).

We clearly have (1)ô(a) and (by Cor. 6.12) (2)ô(b). If (1) or (a) is satisfied, we simply
say that V has surjective CWX functor. Then (2) and (b) both mean that U has surjective
CWX functor. It is also clear that V has surjective CWX functor if and only if RepupV q and
RepfpAV q have the same number of irreducibles.

Proof. Let U “ UP . Recall that AUP
“ BΘ by Thm. 6.11. Clearly RepV pAV q and

RepRepV pAV qpAUP
q are full replete subcategories of ReppAV q and ReppAUP

q respectively.
Since RepV pAV q is isomorphic to RepupV q as braided C˚-tensor categories, and since ev-
ery object in RepupV q is dualizable (by [Hua08b]), RepV pAV q is rigid. So RepV pAV q Ă

RepfpAV q.
By Cor. 3.20, the braided C˚-tensor category Rep0pΘq ” Rep0ReppAV q

pΘq is canonically
isomorphic to ReppAUP

q. Under this isomorphism, RepRepV pAV qpAUP
q and RepfpAUP

q

become Rep0
RepV pAV q

pΘq and Rep0,fpΘq (the category of dualizable dyslectic Θ-modules)
respectively. Therefore, condition (2) is equivalent to

Rep0
RepV pAV q

pΘq “ Rep0,fpΘq (6.31)

Therefore, if (1) holds, then (2) is equivalent to that Rep0
RepfpAV q

pΘq “ Rep0,fpΘq, i.e., that

for each object pHi,m
iq of Rep0pΘq we have

Hi is dualizable as an AV -module iff pHi,m
iq is dualizable (6.32)

But this is well-known, cf. [KO02, Thm. 1.15], [NY16, Sec. 6], [Gui22, Thm. 3.18].
(Alternatively, one can directly show that an AUP

-module pHi, πiq is dualizable iff it
is dualizable as an AV -module. This is equivalent to that, for any fixed I P J , the
subfactor πi,IpAUP

pIqq Ă πi,IpAUP
pI 1qq1 has finite index iff πi,IpAV pIqq Ă πi,IpAV pI 1qq1

has finite index, which is true since AUP
is a finite-index extension of AV . See

[Lon89, Lon90, Kos98, BDH14]). Thus, we have proved (1)ñ(2), equivalently, (a)ñ(b).
Assuming that AV (and hence AUP

) is completely rational, the direction (b)ñ(a) fol-
lows from the same proof as that of [Gui20, Thm. 2.7.2] by showing that the global dimen-
sion of RepupUP q divided by that of RepupV q equals the global dimension of RepfpAUP

q

divided that of RepfpAV q.
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Remark 6.15. Thm. 6.14 generalizes [Gui20, Thm. 2.7.2] in that U is not assumed to satisfy
Condition II, and that the complete rationality of AV or AU is not assumed in the proof
of (1)ñ(2) and (equivalently) (a)ñ(b).

Corollary 6.16. Assume the setting in Subsubsec. 6.4.1. Assume that V satisfies Condition II
and has surjective CWX functor. Then we have

AUP
“ BΘ

as conformal nets acting on the Hilbert space Ha, and the following diagram commutes

Rep0pP q Rep0
RepfpAV q

pΘq

RepupUP q RepfpBΘq

rFV
CWX

»

FVOA » FCN»

F
UP
CWX

»

(6.33)

Moreover, if UP also satisfies Condition II, then (6.33) can be extended to a commutative diagram
of braided ˚-functors

`

Rep0pP q,�P , ß
P
˘ `

Rep0
RepfpAV q

pΘq,bΘ,BΘ
˘

`

RepupUP q,�UP
, ßUP

˘ `

RepfpBΘq,bBΘ
,BBΘ

˘

prFV
CWX,ĂWV q

»

pFVOA,V�q » pFCN,Nbq»

pF
UP
CWX,WUP q

»

(6.34)

Proof. This is clear from Thm. 6.11 and 6.14.

In the remainder of this subsection, we present examples to which Cor. 6.16 applies.
To simplify the discussion, we introduce the following definition:

Definition 6.17. We say V satisfies Condition I+ (resp. II+) if V satisfies Condition I
(resp. II), if AV is completely rational, and if V has surjective CWX functor.

Note that Condition I+ clearly implies Condition II+.

Theorem 6.18. The following are true.

(1) V, V 1 are unitary VOAs satisfying Condition I+ (resp. II+) if and only if the tensor product
unitary VOA V b V 1 satisfies Condition I+ (resp. II+).

(2) Assume that U is a unitary VOA extension of V . If V satisfies Condition I+, then U
satisfies Condition I+. If V satisfies Condition II+ and U satisfies Condition II, then U
satisfies Condition II+.

(3) Assume that U is a unitary VOA satisfying Condition I+ (resp. II+). Assume that V
is a unitary subalgebra of U such that both V and the coset VOA V c are C2-cofinite and
rational. Then V c satisfies Condition I+ (resp. II+).
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Proof. We only prove the complete rationality and the surjectivity of CWX functors, since
the claims about Conditions I and II follow from Thm. 4.20. (Note that in (2), if V satisfies
I, then by Cor. 6.5, U satisfies I.)

(1): We can assume that V, V 1, V bV 1 all satisfy Condition I (resp. II). By [CKLW18, Cor.
8.2], we have AV bV 1 » AV b AV 1 . Therefore, by [Lon03, Lem. 25], AV bV 1 is completely
rational if and only if both AV and AV 1 are completely rational.

Let us assume AV ,AV 1 ,AV bV 1 are completely rational, and study the equivalence of
the surjectivities of CWX functors. Since every irreducible representation of a completely
rational conformal net has finite index ([LX04]), each of V, V 1, V b V has surjective CWX
functor iff the VOA and its CKLW net have the same number of irreducibles. By [FHL93,
Thm. 4.7.4], the number of irreducibles of V b V 1 is the multiplication of the numbers
of the irreducibles of V and V 1. By Cor. 14 and Lem. 27 of [KLM01], the number of
irreducibles of AV b AV 1 is the multiplication of the numbers of the irreducibles of AV

and AV 1 . This finishes the proof of (1).
(2): This follows from Thm. 6.13 and 6.14.
(3): As explained at the beginning of [Gui20, Sec. 2.6], U is naturally a unitary VOA

extension of V b V c. Therefore, by Thm. 6.13, AV bV c is completely rational. By Thm.
6.14, V b V c has surjective CWX functor. Therefore, as argued for (1), AV c is completely
rational, and V c has surjective CWX functor. Therefore, V c satisfies Condition I+ (resp.
II+).

Example 6.19. The following examples satisfy Condition II+:

(a) All unitary affine VOAs. All even lattice VOAs. All discrete series W -algebras of
type ADE (in the sense of [ACL19]). All parafermion VOAs (in the sense of [DR17]).

The following examples satisfy Condition I+:

(b) All unitary affine VOAs of type ADE. All even lattice VOAs. All discrete series
W -algebras of type ADE. All parafermion VOAs of type ADE.

Proof. See [Gui20, Sec. 2.7].

The combination of Exp. 6.19 and Thm. 6.18 yields a vast collection of examples where
Cor. 6.16 are applicable, cf. Exp. 0.2 and 0.3.

References

[ACL19] Arakawa, T., Creutzig, T., & Linshaw, A. R. (2019). W-algebras as coset vertex algebras. Inven-
tiones mathematicae, 218(1), 145-195.

[BDH14] Bartels, A., Douglas, C.L. and Henriques, A., 2014. Dualizability and index of subfactors. Quan-
tum topology, 5(3), pp.289-345.

[BKL15] Bischoff, M., Kawahigashi, Y., & Longo, R. (2015). Characterization of 2D rational local conformal
nets and its boundary conditions: the maximal case. Doc. Math. 20, 1137–1184 (2015)

[BKLR15] Bischoff, M., Longo, R., Kawahigashi, Y., & Rehren, K. H. (2015). Tensor categories of endomor-
phisms and inclusions of von Neumann algebras. Cham: Springer (2015)

[BS90] Buchholz, D., & Schulz-Mirbach, H. (1990). Haag duality in conformal quantum field theory.
Reviews in Mathematical Physics, 2(01), 105-125.

71



[Bar54] Bargmann, V. (1954). On unitary ray representations of continuous groups. Annals of Mathemat-
ics, 1-46.

[Buhl02] Buhl, G. (2002). A spanning set for VOA modules. Journal of Algebra, 254(1), 125-151.
[CGGH23] Carpi, S., Gaudio, T., Giorgetti, L.,& Hillier, R. (2023). Haploid algebras in C˚-tensor categories

and the Schellekens list. Communications in Mathematical Physics, 1-44.
[CGH23] Carpi, S., Gaudio, T., & Hillier, R. (2023). From vertex operator superalgebras to graded-local

conformal nets and back. arXiv preprint arXiv:2304.14263.

[CIZ87] Cappelli, A., Itzykson, C., & Zuber, J. B. (1987). The ADE classification of minimal and A
p1q

1 con-
formal invariant theories. Communications in Mathematical Physics, 113, 1-26.

[CKLW18] Carpi, S., Kawahigashi, Y., Longo, R. and Weiner, M., 2018. From vertex operator algebras to
conformal nets and back (Vol. 254, No. 1213). Memoirs of the American Mathematical Society

[CKM24] Creutzig, T., Kanade, S., & McRae, R. Tensor categories for vertex operator superalgebra exten-
sions. Mem. Amer. Math. Soc. 295 (2024), no. 1472, vi+181 pp.

[CMSY24] Creutzig, T., McRae, R., Shimizu, K., & Yadav, H. (2024). Commutative algebras in Grothendieck-
Verdier categories, rigidity, and vertex operator algebras. arXiv preprint arXiv:2409.14618.

[CWX] Carpi, S., Weiner, M. and Xu, F., From vertex operator algebra modules to representations of
conformal nets. In preparation.

[CT23] Carpi, S., & Tomassini, L. (2023). Energy bounds for vertex operator algebra extensions. Letters
in Mathematical Physics, 113(3), 59.

[CTW22] Carpi, S., Tanimoto, Y., & Weiner, M. (2022). Local energy bounds and strong locality in chiral
CFT. Communications in Mathematical Physics, 390(1), 169-192.

[CTW23] Carpi, S., Tanimoto, Y., & Weiner, M. (2023). Unitary representations of the W3-algebra with c ě 2.
Transformation Groups, 28(2), 561-590.

[Car04] Carpi, S. (2004). On the representation theory of Virasoro nets. Communications in mathematical
physics, 244(2), 261-284.
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