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Abstract

We introduce the notion of almost unital and finite-dimensional (AUF) algebras,
which are associative C-algebras that may be non-unital or infinite-dimensional, but
have sufficiently many idempotents. We show that the pseudotrace construction,
originally introduced by Hattori and Stallings for unital finite-dimensional algebras,
can be generalized to AUF algebras.

Let A be an AUF algebra. Suppose that G is a projective generator in the category
CohLpAq of finitely generated leftA-modules that are quotients of free leftA-modules,
and let B “ EndA,´pGqop. We prove that the pseudotrace construction yields an iso-
morphism between the spaces of symmetric linear functionals SLFpAq

»
ÝÝÑ SLFpBq,

and that the non-degeneracies on the two sides are equivalent.
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0 Introduction

In [Miy04], Miyamoto introduced the pseudo-q-trace construction for modules of ver-
tex operator algebras (VOAs), generalizing the usual q-trace. His primary motivation was
to address the failure of modular invariance for q-traces in the case of C2-cofinite but irra-
tional VOAs. While Zhu’s theorem in [Zhu96] establishes modular invariance for q-traces
in the rational setting, this result does not extend to the irrational case—unless q-traces
are replaced with pseudo-q-traces.

Miyamoto’s original approach is quite involved. Moreover, his dimension formula
for the space of torus conformal blocks is expressed in terms of higher Zhu algebras. This
presents two drawbacks: first, higher Zhu algebras are difficult to compute in practice;
second, their connection to the VOA module category is not transparent.

Later, Arike [Ari10] and Arike-Nagatomo [AN13] introduced a simplified version of
the pseudo-q-trace construction based on the idea of Hattori [Hat65] and Stallings [Sta65].
Below, we briefly outline this approach.

LetA be an algebra, and letB be a unital finite-dimensional algebra. LetM be a finite-
dimensional A-B bimodule, projective as a right B-module. By the projectivity, there is
a (finite) left coordinate system of M , namely, elements α1, . . . , αn P HomBpB,Mq and
qα1, . . . , qαn P HomM pM,Bq satisfying

ř

i αi ˝ qαi “ idM . Then the linear map

A Ñ B x ÞÑ
ÿ

i

qαi ˝ x ˝ αip1Bq

descends to a linear map A{rA,As Ñ B{rB,Bs which is independent of the choice of the
left coordinate system. Its pullback gives a linear map

SLFpBq Ñ SLFpAq ϕ ÞÑ Trϕ (0.1)

where SLFpAq is the space of symmetric linear functionals on A—that is, linear maps ψ :
A Ñ C satisfying ψpxyq “ ψpyxq for all x, y P A—and SLFpBq is the space of symmetric
linear functionals on B. The above map is called the pseudotrace construction. Note that
a typical choice of A is EndBpMq.

The pseudotrace construction is applied to the VOA setting as follows. Let V be an
N-graded C2-cofinite VOA with central charge c, and let M be a grading-restricted gen-
eralized V-module. Then M admits a decomposition M “

À

λPCMrλs into generalized
eigenspaces of Lp0q, where each Mrλs is finite-dimensional. Let EndVpMq be the algebra
of linear operators on M commuting with the action of V, which is necessarily unital and
finite-dimensional. Let B be a unital subalgebra of EndVpMqop. Assume that M is a pro-
jective right B-module, equivalently, each Mrλs is B-projective. Let ϕ P SLFpBq. Then for
v P V, the expression

TrϕpYMpv, zqqLp0q´ c
24 q “

ÿ

λPC
Trϕ

`

P pλqYMpv, zqqLp0q´ c
24P pλq

˘

(0.2)

converges absolutely for z P C and 0 ă |q| ă 1, and defines a torus conformal block. Here,
P pλq is the projection of M :“

ś

µPCMrµs onto Mrµs. Then each P pλqYMpv, zqqLp0q´ c
24P pλq
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is a linear operator on Mrλs commuting with the right action of B, and hence Trϕ can be
defined on it.

Based on this formulation, in [GR19, Conjecture 5.8], Gainutdinov and Runkel pro-
posed a conjecture that directly relates the space of torus conformal blocks of a C2-cofinite
VOA V to the linear structure of the category ModpVq of grading-restricted generalized
V-modules. Let G be a projective generator in ModpVq, and let B “ EndVpGq. Then G is
B-projective. The conjecture asserts that the linear map sending each ϕ P SLFpBq to (0.2)
defines an isomorphism between SLFpBq and the space of torus conformal blocks of V.

The purpose of this note is to establish results in the theory of associative algebras that
are essential for proving the Gainutdinov-Runkel conjecture. The actual resolution of the
conjecture will appear in the forthcoming paper [GZ25].

Our approach stems from recognizing a structural analogy between the Gainutdinov-
Runkel conjecture and a classical result in associative algebra: If A is a unital finite-
dimensional algebra and M is a projective generator in the category of finite-dimensional
left A-modules, then M is projective over B :“ EndApMqop, and the pseudotrace map
(0.1) is a linear isomorphism. This result was suggested in [BBG21, Sec. 2] and was
proved in [Ari10] in the special case that M “ Ae where e is a basic idempotent.

However, this classical result is not directly applicable to the Gainutdinov–Runkel
conjecture. We need to generalize it to a larger class of associative algebras than unital
finite-dimensional ones. In particular, we must consider infinite-dimensional algebras
that can be approximated, in a certain sense, by finite-dimensional (and possibly unital)
algebras. The need to consider infinite-dimensional associative algebras in the study of
irrational VOAs has also been recognized in recent years from different perspectives, such
as Huang’s associative algebra A8pVq introduced in [Hua24], and the mode transition
algebra introduced by Damiolini-Gibney-Krashen in [DGK25].

The infinite-dimensional algebra required for the proof of the Gainutdinov-Runkel
conjecture is different from the above mentioned algebras. In [GZ25], we will show that
the end

E :“

ż

MPModpVq

M bC M1

a priori an object of ModpVb2q, carries a structure of an associative C-algebra that is com-
patible with its Vb2-module structure. This algebra E is an example of an almost unital
and finite-dimensional algebra1 (abbreviated as AUF algebra), meaning that E has a col-
lection of mutually orthogonal idempotents peiqiPI such that E “

ř

i,jPI eiEej where each
summand eiEej is finite-dimensional. (This sum is automatically direct.) In fact, E has
only finitely many irreducibles. We call such algebra strongly AUF.

The main result of this note is a generalization of the aforementioned isomorphism
between spaces of symmetric linear functionals to the setting of strongly AUF algebras.
More precisely, we prove that the pseudotrace construction defines a linear isomorphism
SLFpBq » SLFpAq where A is strongly AUF, M is a projective generator of the cate-
gory CohLpAq of coherent left A-modules (i.e., finitely generated left A-modules that are
quotients of free ones), and B “ EndApMqop. See Thm. 9.4. Moreover, we show that

1Here, “almost" modifies the entire phrase “unital and finite-dimensional", not just “unital".
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the symmetric linear functional on B is non-degenerate if and only if the corresponding
functional on A is non-degenerate. See Thm. 10.4.

Since the associative algebra structure on the end E will not be developed in this note,
we present some alternative examples of AUF algebras for illustration. Let UpVq be the
universal algebra of V as defined in [FZ92]. Let

UpVqreg “
à

λ,µPC
UpVqrλ,µs

where UpVqrλ,µs is the subspace of joint generalized-eigenvectors of the left and right
actions of Lp0q corresponding to the eigenvalues λ and µ respectively. The following
properties are shown in [MNT10]: Each UpVqrλ,µs is finite-dimensional. For each λ, µ, ν P

C one has

UpVqrλ,µsUpVqrµ,νs Ă UpVqrλ,νs

In particular, UpVqreg is a subalgebra of UpVq. Moreover, there is an increasing sequence
of idempotents p1nqnPZ`

such that UpVqreg “
Ť

n 1nUpVqreg1n. (See [MNT10, Sec. 2.6].)
Therefore, UpVqreg is AUF, since the family of orthogonal idempotents in the definition of
AUF algebras can be chosen to be p1n`1 ´ 1nqnPZ`

.
For a more elementary and concrete example, consider the following. LetB be a unital

finite-dimensional algebra. Let M be a right B-modules. Equip M with a grading

M “
à

iPI

Mpiq

where each Mpiq is finite-dimensional and is preserved by the right action of B. Let A be

End0BpMq :“ tT P EndpMq :pTmqb “ T pmbq for all m P M, b P B,
T |Mpiq “ 0 for all by finitely many i P Iu

Then A is clearly an AUF algebra, with the family of mutually orthogonal idempotents
given by the projections ei of M onto Mpiq.

In fact, any strongly AUF algebra arises from such a construction. More precisely, an
algebra is strongly AUF if and only if it is isomorphic to some End0BpMq, where M and B
satisfy the above conditions and, in addition, M is a projective generator in the category
of right B-modules. See Thm. 11.9.

Note that the relationship between End0BpMq and C2-cofinite VOAs is straightfor-
ward: If M P ModpVq is equipped with the grading

À

λPCMrλs given by the generalized
eigenspaces of Lp0q, and if B is a unital subalgebra of EndVpMqop such that M is pro-
jective as a right B-module, then each P pλqYMpv, zqqLp0q´ c

24P pλq appearing in (0.2) lies
End0BpMq. Therefore, the main result of this note on pseudotraces (Thm. 10.4) can be
applied to C2-cofinite VOAs. Details of this application will be presented in [GZ25].

1 Preliminaries

Throughout this note, algebras are associative, not necessarily unital, and over C. Let
N “ t0, 1, 2, . . . u and Z` “ t1, 2, . . . u. For any vector spaces V,W , we let HompV,W q “

HomCpV,W q be the space of linear maps V Ñ W , and let EndpV q “ HompV, V q.
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Let A be an algebra. Its opposite algebra is denoted by Aop. If M,N are left (resp.
right) A-modules, we let HomA,´pM,Nq (resp. Hom´,ApM,Nq) be the space of linear
maps M Ñ N intertwining the left (resp. right) actions of A.

An idempotent e P A is an element satisfing e2 “ e. If e, f P A are idempotent, we
write e ď f if ef “ fe “ e. Equivalently, f “ e ` e1 where e1 P A is an idempotent
orthogonal to e (i.e. ee1 “ e1e “ 0). We say that a nonzero idempotent e is primitive if the
only idempotent f satisfying f ď e is f “ 0 and f “ e.

In this section, we review some well-known facts about associative algebras. Since,
unlike many references, our algebras are not assumed to be unital, we include proofs for
the reader’s convenience.

Definition 1.1. Let u, v P A. We say that pu, vq is pair of partial isometries in A if the
following are true:

(a) p :“ vu and q :“ uv are idempotents.

(b) u P qAp and v P pAq.

In this case, we also say that u is a partial isometry from p to q, and that v is a partial
isometry from q to p. We say that two idempotents are equivalent if there are partial
isometries between them.

Proposition 1.2. Let e, f P A be idempotents. Then an element of HomA,´pAe,Afq is precisely
the right multiplication of an element of eAf . In particular, we have an algebra isomorphism

EndA,´pAeqop » eAe

Proof. Clearly the right multiplication by some element of eAf yields an element of
HomA,´pAe,Afq. Conversely, suppose that T P HomA,´pAe,Afq. Let x “ T peq, which
belongs toAf . Since ex “ eT peq “ T peeq “ T peq “ x, we see that x P eAf . For each y P A,
we have T pyeq “ yT peq “ yx “ yex, which shows that T is the right multiplication by
x.

Corollary 1.3. Let e, f be idempotents in A. The following are equivalent:

(1) Ae » Af as left A-modules.

(2) There is a partial isometry from e to f .

Proof. (1)ñ(2): Let T P HomA,´pAe,Afq be an isomorphism with inverse T´1 P

HomA,epAf,Aeq. By Prop. 1.2, T and T´1 are realized by the right multiplications of
u P eAf and v P fAe respectively. Since TT´1 “ 1Af , we have vu “ f . Since T´1T “ 1Ae,
we have uv “ e.

(2)ñ(1): Let u P eAf and v P fAe such that uv “ e, vu “ f . Then the right multiplica-
tion of u on Ae has inverse being the right multiplication of v. So Ae » Af .

Corollary 1.4. Let e P A be an idempotent. Let M be a left A-submodule of Ae. The following
are equivalent.

(1) M is a direct summand of Ae.
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(2) M “ Af for some idempotent f ď e in A.

Proof. (2)ñ(1): Ae “ Af ‘Af 1 where f 1 “ e´ f is an idempotent.
(1)ñ(2): Let Ae “ M ‘ N . Let φ : Ae Ñ Ae be the projection on M vanishing on N .

Then φ P EndpAeq. By Prop. 1.2, φ is the right multiplication by some f P eAe. Since
φ ˝ φ “ φ, clearly f2 “ f . Moreover, M “ φpAeq “ pAeqf “ Af .

Corollary 1.5. Let e P A be an idempotent. The following are equivalent.

(1) Ae is an indecomposible left A-module.

(2) e is primitive.

Proof. This follows immediately from Cor. 1.4.

Lemma 1.6. Let M be a nonzero finitely-generated left A-module. Then M has a maximal proper
left A-submodule N . Consequently, there is an epimorphism of M onto an irreducible module.

Proof. Let ξ1, . . . , ξn generate M . Without loss of generality, we assume that ξ1 does not
belong to the submodule N0 generated by ξ2, . . . , ξn. By Zorn’s lemma, there is a left
submodule N ď M maximal with respect to the property that N0 Ă N and ξ1 ‰ N .
Let us prove that N is a maximal proper submodule. Let N ă K ď M . Then by the
maximality of N we must have ξ1 P K. So ξ1, . . . , ξn P M , and hence K “ M . So K is not
proper.

2 Almost unital algebras

In this section, we introduce the notion of almost unital algebras, which is weaker
than being almost unital and finite-dimensional.

Definition 2.1. We say that an algebra A is almost unital if the following conditions are
satisfied:

(a) For each x P A, there is an idempotent e P A such that x “ exe.

(b) For any finitely many idempotents e1, . . . , en P A there exists an idempotent e P A
such that ei ď e for all 1 ď i ď n.

Throughout this section, unless otherwise stated, A is assumed to be almost unital.

Definition 2.2. We say that a left A-module M is quasicoherent if one of the following
equivalent conditions hold:

(1) For each ξ P M we have ξ P Aξ.

(2) For each ξ P M there exists an idempotent e P A such that ξ “ eξ.

(3) M is a quotient module of
À

iPI Aei where each ei P A is an idempotent.

(4) M is a quotient module of a free left A-module A‘I .
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The category of quasicoherent left A-modules is denoted by QCohLpAqQCohLpAqQCohLpAq.

Proof of equivalence. (1)ñ(2): For each ξ P M , since ξ P Aξ, we have ξ “ aξ for some a P A.
Choose idempotent e P A such that a P eAe. Then eξ “ eaξ “ aξ “ ξ.

(2)ñ(1): Obvious.
(2)ñ(3): For each ξ P M , let eξ P A be an idempotent such that eξξ “ ξ. Then we

have a morphism
À

ξPM Aeξ Ñ M whose restriction to Aeξ sends each a P Aeξ to aξ.
Then ξ “ eξξ implies that ξ P Aeξξ, and hence ξ is in the range of this morphism. So this
morphism is surjective.

(3)ñ(4): This is obvious, since we have an epimorphism A Ñ Aei and hence an epi-
morphim

À

iPI A Ñ
À

iPI Aei.
(4)ñ(2): It suffices to show that A‘I satisfies the requirement of (2). Choose ξ “

paiqiPI P A‘I . Then there are only finitely many i P I such that ai ‰ 0. Since A is almost
unital, there exist idempotents ei P A (where i P I) such that ai “ eiaiei for all i P I . (If
ai “ 0, then we choose ei “ 0). Choose idempotent e P A such that ei ď e for all i P I .
Then ξ “ eξ.

Definition 2.3. A left A-module M is called coherent if it is quasicoherent and finitely-
generated. By the above proof of equivalence, it is clear that M is coherent iff M is a
quotient of

À

iPI Aei where I is a finite index set and ei P A is an idempotent. The category
of coherent left A modules is denoted by CohLpAqCohLpAqCohLpAq.

However, note that a coherent left A-module is not necessarily a quotient of A‘n

where n P Z`. Indeed, A is not necessarily finitely generated as a left A-module.

Remark 2.4. If M P QCohLpAq, then every submodule of M is quasicoherent, and every
quotient module of M is quasicoherent M . However, if M P CohLpAq, then a submodule
of M is not known to be coherent. Thus, QCohLpAq is an abelian category, while CohLpAq

is not known to be abelian.

Proposition 2.5. Let M P QCohLpAq. The following are equivalent.

(1) M is projective in the category of left A-modules.

(2) M is projective in QCohLpAq.

(3) M is a direct summand of
À

iPI Aei for some index set I and each ei P A is an idempotent.

Proof. (3)ñ(1): It is well-known that a direct summand of a projective module is projec-
tive. Thus, it suffices to prove that

À

iPI Aei is projective. Let Φ :
À

iPI Aei Ñ N be an
epimorphism where N is a left A-module. Let Γ : K Ñ N be an epimorphism. Let

ηi “ Φpeiq

Since Γ is surjective, there is ξi P K such that Γpξiq “ ηi. Define Ψ :
À

iPI Aei Ñ K to be
the morphism sending each aei P Aei to aeiξ. Then the following commute:

À

iPI Aei

K N

Φ
Ψ

Γ

aei

aeiξi aeiηi
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Note that ÞÑ holds since Γpaeiξiq “ aeiΓpξiq “ aeiηi, and

ÞÑ

holds since Φpaeiq “ Φpaeieiq “

aeiΦpeiq “ aeiηi.
(1)ñ(2): Obvious.
(2)ñ(3): Choose an epimorphism

À

iPI Aei Ñ M , which splits because M is projec-
tive. So M is a direct summand of

À

iPI Aei.

Proposition 2.6. Let M P CohLpAq. The following are equivalent.

(1) M is projective in the category of left A-modules.

(2) M is projective in QCohLpAq.

(3) M is projective in CohLpAq.

(4) M is a direct summand of
À

iPI Aei for some finite index set I and each ei P A is an
idempotent.

Therefore, there is no ambiguity when talking about projective coherent left A-
modules.

Proof. Clearly we have (1)ñ(2) and (2)ñ(3). By Prop. 2.5 we have (4)ñ(1). Assume (3).
By Rem. 2.4, there is an epimorphism

À

iPI Aei Ñ M such that I is finite, and that it splits
(because M is projective in CohLpAq). So (4) is true.

Remark 2.7. If M P QCohLpAq, clearly M is irreducible in QCohLpAq iff M is irreducible
in the category of leftA-modules; in this case we say thatM is irreducible. Note that even
if M P CohLpAq, its irreducibility is understood as in QCohLpAq but not as in CohLpAq.

Proposition 2.8. Let M be a left A-module. The following are equivalent.

(1) M P QCohLpAq and M is irreducible.

(2) M » Ae{N where e P A is an idempotent and N is a maximal (proper) left ideal of Ae.

(3) M » A{N where N is a maximal proper left A-submodule of A.

Proof. (1)ñ(2): Let M P QCohLpAq be irreducible. By Def. 2.2, M has an epimorphism Φ
from some

À

iAei where ei P A is an idempotent. The restriction of Φ to some Aei must
be nonzero, and hence must be surjective (since M is irreducible). It follows that M has
an epimorphism Ψ from Aei. Then N “ KerΨ is a maximal proper left A-submodule of
Aei, and M » Aei{N .

(1)ñ(3): In the above proof, M also has an epimorphism from
À

iA (since we have
an epimorphism A Ñ Aei). Thus, replacing Aei with Ai in the above proof, we are done.

(2),(3)ñ(1): Clearly M is irreducible. That M P QCohLpAq follows from Def. 2.2.

3 Projective covers

Let A be an algebra, not necessarily almost unital. In this section, we recall some basic
facts about projective covers. When A is unital, these results can be found in [AF92], for
example. In the non-unital case, one can reduce to the unital setting by considering the
unitalization of A. For the reader’s convenience, we include complete proofs.
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3.1 Basic facts

Definition 3.1. Let M be a left A-module. A left A-submodule K ď M is called superflu-
ous, if for any left A-submodule L ď M satisfying K ` L “ M we must have L “ M .

Remark 3.2. Obviously, we have an equivalent description of superfluous submodules:
Let π :M Ñ M{K be the quotient map. ThenK ď M is superfluous iff for any morphism
of left A-modules φ : N Ñ M such that π ˝ φ : N Ñ M{K is surjective, it must be true
that φ is surjective.

Definition 3.3. Let M be a left A-module. A projective cover of M denotes a left A-
module epimorphism φ : P ↠ M where P is a projective left A-module, and Kerφ is
superfluous in P .

The following property says that among the projective modules that have epimor-
phisms to M , the projective cover is the smallest one in the sense of direct summand.

Proposition 3.4. Let φ : P Ñ M be a projective cover of M . Let ψ : Q Ñ M be an epimorphism
where Q is projective. Then there is a morphism α : Q Ñ P such that the following diagram
commutes.

P

Q M

φα

ψ

(3.1)

Moreover, for any such α, there is a left A-submodule P 1 ď Q such that Q “ kerα‘ P 1 and that
α|P 1 : P 1 »

ÝÑ P is an isomorphism.

By setting L “ kerα, it follows that (3.1) is equivalent to

P

L‘ P M

φ
0‘idP

0‘φ

(3.2)

Proof. The existence of α follows from that Q is projective and that φ is an epimorphism.
Moreover, since kerφ is superfluous and φ ˝ α is surjective, by Rem. 3.2, α is surjec-
tive. Therefore, since P is projective, the epimorophism α splits, i.e., there is a morphism
β : P Ñ Q such that α ˝ β : P Ñ P equals idP . One sees that P 1 “ βpP q fulfills the
requirement.

It follows that projective covers are unique up to isomorphisms:

Corollary 3.5. Let M be a left A-module with projective covers φ : P Ñ M and ψ : Q Ñ M .
Then there exists an isomorphism α : Q Ñ P such that (3.1) commutes.

Proof. By Prop. 3.5, there exists α such that (3.1) commutes. It remains to show that α is
an isomorphism. We assume that (3.1) equals (3.2). Since 0‘φ : L‘P Ñ M is a projective
cover, L ` kerpP q “ kerp0 ‘ φq is superfluous, and hence L is superfluous. Thus, since
L ` P equals Q “ L ‘ P , we must have Q “ P and hence L “ 0. So α “ 0 ‘ idP is an
isomorphism.
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3.2 Projective covers of irreducibles

Proposition 3.6. Suppose that φ : P Ñ M is a projective cover of an irreducible left A-module
M . Then P is indecomposible.

Proof. Suppose that P “ P 1 ‘ P 2. Then one of φ|P 1 , φ|P 2 (say φ|P 1) is nonzero. Since M
is irreducible, φ|P 1 : P 1 Ñ M must be surjective. So the map P 1 ãÑ P 1 ‘ P 2 φ

ÝÑ M is
surjective. Since kerφ is superfluous, by Rem. 3.2, P 1 ãÑ P 1 ‘ P 2 is surjective, and hence
P 2 “ 0.

Theorem 3.7. Let e P A be a primitive idempotent satisfying

dim eAe ă `8

Let K be any proper left A-submodule of Ae. Then K is superfluous. In other words, the quotient
map Ae Ñ Ae{K is the projective cover of Ae{K.

Proof. Step 1. Let φ : Ae Ñ Ae{K be the quotient map. Let L be a submodule of Ae.
Assume that N ` K “ Ae; in other words, if we let ι : N ãÑ Ae be the inclusion, then
φ ˝ ι : N Ñ Ae{K is surjective. Our goal is to show that N “ Ae.

Since Ae is projective and φ ˝ ι is surjective, there is a morphism α : Ae Ñ N such that
φ “ φ ˝ ι ˝ α. Let β “ ι ˝ α. Then the following diagram commutes:

Ae

N Ae Ae{K

α
β

φ

ι φ

(3.3)

To prove that ι is surjective, it suffices to show that β is surjective.

Step 2. Suppose that β is not surjective. Let us find a contradiction. Since β P

EndA,´pAeq, by Prop. 1.2, β is the right multiplication by some x P eAe. Let Rx :
eAe Ñ eAe be the right multiplication of x on eAe. Then Rx is not surjective. Other-
wise, there exists a P A such that Rxpeaeq “ e, i.e., eaex “ e. Then for each b P A, we have
be “ beaex “ βpbeaeq, contradicting the fact that β is not surjective.

It is well-known that if T is a linear operator on a finite-dimensional C-vector space
W , then W is the direct sum of generalized eigenspaces of T , and the projection operator
of W onto each generalized eigenspace is a polynomial of T . Therefore, Rx has only one
eigenvalue. Otherwise, there is a polynomial p such that ppRxq “ Rppxq is the projection
of eAe onto a proper subspace, and hence ppxq is an idempotent in eAe not equal to 0 or
e. This is impossible, since e is assumed to be primitive.

Therefore, Rx has a unique eigenvalue, which must be 0 since Rx is not surjective. By
linear algebra, Rx is nilpotent. Since Rxn “ pRxqn, it follows that x is nilpotent, and hence
β is nilpotent. By (3.3), we have φ “ φ ˝ β, and hence φ “ φ ˝ β “ φ ˝ β2 “ φ ˝ β3 “

¨ ¨ ¨ “ 0. This contradicts the fact that φ is a surjection onto a nonzero module, finishing
the proof.
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Corollary 3.8. Let e P A be a primitive idempotent satisfying dim eAe ă `8. Then Ae has a
unique proper maximal left A-submodule, denoted by radpAeqradpAeqradpAeq.

It follows from Thm. 3.7 that Ae is the projective cover of the irreducible Ae{radpAeq.

Proof. By Lem. 1.6, Ae has at least one proper maximal left A-submodule. Suppose that
K ‰ L are proper maximal leftA-submodules ofM . By the maximality, we haveK`L “

M . By Thm. 3.7, L is superfluous. So K “ M , impossible.

4 Left pseudotraces

Let A,B be algebras such that B is unital. Fix an A-B bimodule M . We do not assume
that MB is unital, i.e., 1B P B acts as the identity on M .

Definition 4.1. A left coordinate system of M denotes a collection of morphisms

αi P Hom´,BpB,Mq qαi P Hom´,BpM,Bq (4.1)

where i runs through an index set I such that the following conditions hold:

(a) For each ξ P M , we have qαipξq “ 0 for all but finitely many i P I , and
ř

iPI αi ˝

qαipξq “ ξ.

(b) For each x P A (viewed as an element of End´,BpMq), we have x ˝ αi “ 0 and
qαi ˝ x “ 0 for all but finitely many i P I .

Remark 4.2. M is a projective right B-module iff there exists pαi, qαiqiPI of the form (4.1)
satisfying condition (a).

Proof. Suppose that there exists pαi, qαiqiPI such that (a) holds. Define morphisms of right
B-modules

Φ : B‘I Ñ M ‘i bi ÞÑ
ÿ

i

αipbiq

Ψ :M Ñ B‘I ξ ÞÑ ‘iqα
ipξq

Then (a) implies that Φ ˝ Ψ “ idM . Thus, M is a direct summand of B‘I , and hence is
projective as a right B-module.

Conversely, assume M is projective as a right B-module. Then we have an epimor-
phism Φ : B‘I Ñ M and a morphism Ψ : M Ñ B‘I such that Φ ˝ Ψ “ idM . For each
i P I , let ιi : B Ñ B‘I be the inclusion map of B into the i-th direct summand, and
πi : B

‘I Ñ B be the projection map onto the i-th direct summand. Set

αi “ Φ ˝ ιi qαi “ πi ˝ Ψ

Then pαi, qαiqiPI satisfies (a).

11



Definition 4.3. Assume thatM has a left coordinate system pαi, qαiqiPI . Define theBBB-trace
function

TrB : A Ñ B{rB,Bs x ÞÑ
ÿ

iPI

qαi ˝ x ˝ αi

where the RHS, originally an element of End´,BpBq » B,2 is descended to B{rB,Bs.

Lemma 4.4. The definition of TrB is independent of the choice of left coordinate systems.

Proof. Suppose that pβj , qβjqjPJ is another left coordinate system of the A-B bimodule M .
Let Ix Ă I and Jx Ă J be finite sets such that qαi ˝ x “ 0, x ˝ αi “ 0 for any i P IzIx, and
that qβj ˝ x “ 0, x ˝ βj “ 0 for any j P JzJx. Then

ÿ

iPIx

qαi ˝ x ˝ αi “
ÿ

iPIx,jPJ

qαi ˝ x ˝ βj ˝ qβj ˝ αi “
ÿ

iPIx,jPJx

qαi ˝ x ˝ βj ˝ qβj ˝ αi

Since each qαi ˝ x ˝ βj and qβj ˝ αi are in End´,BpBq » B, the RHS above equals
ÿ

iPIx,jPJx

qβj ˝ αi ˝ qαi ˝ x ˝ βj “
ÿ

jPJx

qβj ˝ x ˝ βj

in B{rB,Bs.

Proposition 4.5. TrB is symmetric, i.e., TrBpxyq “ TrBpyxq for any x, y P A. Therefore, TrB

descends to a linear map A{rA,As Ñ B{rB,Bs.

Proof. Let x, y P A. Let I0 Ă I be a finite set such that qαi ˝ x “ qαi ˝ y “ 0 and x ˝ αi “

y ˝ αi “ 0 for all i P IzI0. Then

TrBpxyq “
ÿ

iPI0

qαi ˝ x ˝ y ˝ αi “
ÿ

i,jPI0

qαi ˝ x ˝ αj ˝ qαj ˝ y ˝ αi

and similarly

TrBpyxq “
ÿ

i,jPI0

qαj ˝ y ˝ αi ˝ qαi ˝ x ˝ αj

The two RHS’s are equal in B{rB,Bs, noting that qαi ˝ x ˝ αj and qαj ˝ y ˝ αi are both in
End´,BpBq » B.

Definition 4.6. Let ϕ : B Ñ C be a symmetric linear functional (SLF), i.e., a linear map
satisfying ϕpabq “ ϕpbaq for all a, b P B. The (left) pseudotrace associated to ϕ (and M ),
denoted by TrϕTrϕTrϕ, is defined to be

Trϕ “ ϕ ˝ TrB : A Ñ C (4.2)

It is an SLF on A.

Thus, for each x P A we have

Trϕpxq “
ÿ

iPI

ϕpqαi ˝ x ˝ αip1Bqq (4.3)

2This isomorphism relies on the fact that B is unital.
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5 AUF algebras and projective covers of irreducibles

Definition 5.1. An algebra A is called almost unital and finite-dimensional (AUF) if
there is a family of mutually orthogonal idempotents peiqiPI such that the following con-
ditions hold:

(a) For each i, j P I we have dim eiAej ă `8.

(b) A “
ř

i,jPI eiAej . (That is, for each x P A one can find a finite subset I Ă I and a
collection pxi,jqi,jPI such that x “

ř

i,jPI eixi,jej .)

Note that (b) automatically impies A “
À

i,jPI eiAej .

It is illuminating to view an element x P A as an I ˆ I matrix whose pi, jq-entry is
eixej .

Remark 5.2. Each AUF algebra A is almost unital.

Proof. For each x1, ¨ ¨ ¨ , xn P A, we can find a subset I0 Ă I such that x P e1Ae1, where
e1 “

ř

iPI0
ei. By choose n “ 1 and x1 “ x P A, we see x “ e1xe1. By choosing idempotents

xi “ ei P A, we see ei ď e1 for all 1 ď i ď n.

Lemma 5.3. In Def. 5.1, one can assume moreover that each ei is primitive (in A).

Proof. Let peiqiPI be as in Def. 5.1. For each i P I, since eiAei is a finite-dimensional left
eiAei-module, it is a finite direct sum of indecomposible left eiAei-submodules. By Cor.
1.4 and 1.5, we have a finite direct sum eiAei “

À

kPKi
eiAfi,k where pfi,kqkPKi

is a finite
family of mutually orthogonal idempotents in eiAei, that

ř

k fi,k “ ei, and that each fi,k
is primitive in eiAei. Clearly fi,k is also primitive in A. Replacing peiqiPI by pfi,kqiPI,kPKi

does the job.

In the remaining part of this section, we always assume that A is AUF.

Remark 5.4. For each idempotents e, f P A, we have

dim eAf ă `8

Indeed, one can find a finite set I0 Ă I such that e, f P e1Ae1 where e1 “
ř

iPI0
ei. Then

dim e1Ae1 ă `8, and hence dim eAf ă `8.
It follows that each idempotent e P A has a (finite) orthogonal primitive decomposi-

tion e “ ε1 ` ¨ ¨ ¨ ` εn. This follows from a decomposition of the finite-dimensional left
eAe-module eAe into indecomposible submodules.

Recall Rem. 2.7 about irreducibility.

Theorem 5.5. The following are true.

1. For each primitive idempotent e P A, let radpAeq be the unique proper maximal left submod-
ule of Ae (cf. Cor. 3.8). Then Ae Ñ Ae{radpAeq gives a projective cover of the irreducible
coherent module Ae{radpAeq.
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2. Any irreducible M P QCohLpAq is isomorphic to Ae{radpAeq for some primitive idempo-
tent e P A.

3. Let e, f be primitive idempotents. Then the following are equivalent:

(1) Ae » Af as left A-modules.

(2) Ae{radpAeq » Af{radpAfq as left A-modules.

(3) e » f , i.e., there is a partial isometry (in A) from e to f .

Proof. Part 1 was already proved, cf. Thm. 3.7. (Note that Thm. 3.7 and its consequences
are applicable since dim eAe ă `8 by Rem. 5.4.)

Part 2: By Prop. 2.8, M has an epimorphism Ψ from A. Let peiqiPI be as in Def. 5.1
such that each ei is primitive (Lem. 5.3). Then A »

À

iAei as left A-modules. The
restriction of Ψ to some Aei must be nonzero, and hence must be surjective. Therefore
M » Aei{radpAeiq.

Part 3: (1)ñ(2) is obvious. (2)ñ(1) follows from the uniqueness of projective covers
(Cor. 3.5). (1)ô(3) follows from Cor. 1.3.

Corollary 5.6. Let P P CohLpAq. The following are equivalent.

(1) P is projective and indecomposible.

(2) P is the projective cover of an irreducible M P QCohLpAq, which (by Thm. 5.5) is isomor-
phic to Ae for some primitive idempotent e P A.

Proof. (2)ñ(1): This follows from Prop. 3.6.
(1)ñ(2): By Lem. 1.6, P has an epimorphism to an irreducible, which (by Thm. 5.5)

is of the form Ae{radpAeq where e P A is a primitive idempotent. We know that Ae is its
projective cover. Since P is projective, by Prop. 3.4, Ae is a direct summand of P . Since P
is indecomposible, we must have P “ Ae.

6 Pseudotraces and generating idempotents of strongly AUF al-
gebras

Let A be AUF. In this section, we show that if e P A is a generating idempotent, any
SLF ψ on A can be recovered from ψ|eAe via the pseudotrace construction.

Definition 6.1. An idempotent e P A is called generating if every irreducible M P

QCohLpAq has an epimorphism from Ae.

Proposition 6.2. Let e P A be an idempotent. Let e “ ε1 ` ¨ ¨ ¨ ` εn be an orthogonal primitive
decomposition (cf. Rem. 5.4). The following are equivalent:

(1) e is generating.

(2) Any primitive idempotent of A is isomorphic to εi for some i.

(3) Any irreducible M P QCohLpAq is isomorphic to Aεi{radpAεiq for some i.
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Proof. (1)ñ(3): Each irreducible M P QCohLpAq has an epimorphism from Ae “ Aε1 ‘

¨ ¨ ¨ ‘ Aεn, and hence an epimorphism from some Aεi. By Cor. 3.8, the kernel of this
epimorophism is radpAεiq. Therefore, we have Aεi{radpAεiq » M .

(3)ñ(1): Obvious.
(2)ô(3): Immediate from Thm. 5.5.

Corollary 6.3. Let e, f P A be idempotents such that e ď f and e is a generating idempotent of
A. Then e is a generating idempotent of fAf .

Proof. Let p be any primitive idempotent of fAf . Then p is a primitive idempotent of
A. By Prop. 6.2, if we let e “ ε1 ` ¨ ¨ ¨ ` εn be an orthogonal primitive decomposition,
then there exist 1 ď i ď n and u P εiAp, v P pAεi such that uv “ εi and vu “ p. So p is
isomorphism in fAf to εi. By Prop. 6.2, we conclude that e is generating in fAf .

Corollary 6.4. The following are equivalent.

(1) A has a generating idempotent.

(2) QCohLpAq has finitely many equivalence classes of irreducible objects.

(3) A has finitely many isomorphism classes of primitive idempotents.

If one of these conditions holds, we say that A is strongly AUF.

Proof. (1)ñ(2): Immediate from Prop. 6.2.
(2)ô(3): Immediate from Thm. 5.5.
(2)ñ(1): Let M1, . . . ,Mn P QCohLpAq exhaust all equivalence classes of irreducibles.

Let peiqiPI be as in Def. 5.1. For each 1 ď k ď n, by Prop. 2.8, Mk has an epimorphism
from A. Since A “

À

iPIAei, it follows that Mk has an epimorphism from Aeik for some
ik P I. If we assume at the beginning that M1, . . . ,Mn are mutually non-isomorphic, then
ei1 , . . . , eik must be distinct, and hence mutually orthogonal. So e “ ei1 ` ¨ ¨ ¨ ` ein is a
generating idempotent.

Theorem 6.5. Assume that A is strongly AUF, and let e P A be a generating idempotent. Then
the A-peAeq bimodule Ae has a left coordinate system. In particular, by Rem. 4.2, Ae is a projec-
tive right eAe-module.

The following construction of left coordinate system is important and is motivated by
[Ari10, Lem. 3.9].

Proof. Let peiqiPI be as in Def. 5.1. By Lem. 5.3, we can assume that each ei is primitive.
Let e “ ε1 ` ¨ ¨ ¨ ` εn be an orthogonal primitive decomposition of e. By Prop. 6.2, there
are partial isometries ui, vi such that

viui “ εki uivi “ ei

ui P eiAεki vi P εkiAei

where ki P t1, . . . , nu. In particular ui P eiAe and vi P eAei. Let

αi P End´,eAepeAe,Aeq qαi P End´,eAepAe, eAeq
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αipexeq “ ui ¨ exe qαipxeq “ vi ¨ xe

One checks easily that pαi, qαiqiPI is a left coordinate system.

The proof of [Ari10, Thm. 3.10] can be easily adapted to prove the following theorem.

Theorem 6.6. Assume that A is strongly AUF, and let e P A be a generating idempotent. Then
there is a linear isomorphism

SLFpAq
»

ÝÝÑ SLFpeAeq ψ ÞÑ ψ|eAe

whose inverse is given by

SLFpeAeq
»

ÝÝÑ SLFpAq ϕ ÞÑ Trϕ

Here, Trϕ is the pseudotrace on A with respect to ϕ and the A-(eAe) bimodule Ae.

Proof. Let ui, vi, αi, qαi be as in the proof of Thm. 6.5. For any ϕ P SLFpeAeq, let us compute
Trϕ. Let x P A, viewed as an element of End´,eAepAeq. Then qαi ˝ x ˝ αi P End´,eAepeAeq
equals (the left multiplication by) vixui. Then

Trϕpxq “
ÿ

iPI

ϕpvixuiq (6.1)

Note that the RHS is a finite sum since ui “ eiui, and since and xei “ 0 for all but finitely
many i.

To show that Trϕ|eAe “ ϕ, we compute

Trϕpexeq “
ÿ

i

ϕpviexeuiq “
ÿ

i

ϕpviexe ¨ euiq

Since viexe, eui P eAe, and since ϕ is SLF, we have

Trϕpexeq “
ÿ

i

ϕpeui ¨ viexeq “
ÿ

i

ϕpeeiexeq “ ϕpexeq

Finally, let ψ P SLFpAq. Then for each x P A,

Trψ|eAepxq “
ÿ

i

ψ|eAepvixuiq “
ÿ

i

ψpvixuiq “
ÿ

i

ψpuivixq “
ÿ

i

ψpeixq “ ψpxq

This proves Trψ|eAe “ ψ.

7 Projective generators of strongly AUF algebras

Let A be an AUF algebra.

Remark 7.1. A left A-module M is coherent if and only if M is a quotient module of
pAeq‘n where n P Z` and e P A is an idempotent.
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Proof. “ð" is obvious. Conversely, let M P CohLpAq. By Def. 2.3, M is a quotient module
ofAp1‘¨ ¨ ¨‘Apn where each pi is an idempotent. By Rem. 5.2, one can find an idempotent
e P A which is ě p1, . . . , pn. Then M is a quotient module of pAeq‘n.

Remark 7.2. By Rem. 7.1, if M P CohLpAq and x P A, then dimxM ă `8.

Proof. Suppose that M has an epimorphism from N :“ pAeq‘n where e P A is an idem-
potent. Then dimxM ď dimxN . Let f P A be an idempotent such that x “ fxf . Then
xAe Ă fAe, and hence

dimxN “ n dimxAe ď n dim fAe ă `8

7.1 Basic facts

Definition 7.3. Let S and T be classes of objects in CohLpAq. We say that S generates
T if each object of T is a quotient of a finite direct sum of objects in S .

Definition 7.4. We say that M P CohLpAq is a generator (of CohLpAq) if it generates every
object of CohLpAq, i.e., every N P CohLpAq is a quotient module of M‘n for some n P Z`.
A generator which is also projective is called a projective generator.

Example 7.5. Let peiqiPI be as in Def. 5.1. Then S :“ tAei : i P Iu generates CohLpAq.

Proof. By the proof of Rem. 5.2, for any idempotent e P A one can find a finite set I0 Ă I
such that e ď

ř

iPI0
ei. Therefore, S generates eachAe, and hence (by Rem. 7.1) generates

CohLpAq.

Proposition 7.6. Let M P CohLpAq be projective. The following are equivalent.

(1) M is a projective generator.

(2) Each irreducible N P CohLpAq has an epimorphism from M .

Proof. (1)ñ(2): Obvious.
(2)ñ(1): Let peiqiPI be as in Def. 5.1. By Lem. 5.4, we assume that each ei is primitive.

By Exp. 7.5, it suffices to prove that M generates each Aei. By Thm. 5.5, Aei is the
projective cover of the irreducible N :“ Aei{radpAeiq. By (2), M has an epimorphism to
N . Since M is projective, by Prop. 3.4, Aei is isomorphic to a direct summand of M .

Corollary 7.7. Let e P A be an idempotent. Then the following are equivalent.

(1) Ae is a (necessarily projective) generator.

(2) e is a generating idempotent.

Proof. (1)ñ(2): Clear from Def. 6.1. (2)ñ(1): Immediate from Prop. 7.6.

Proposition 7.8. CohLpAq has a projective generator if and only if A is strongly AUF.

Proof. “ð" follows from Cor. 6.4 and 7.7. Conversely, if CohLpAq has a projective gener-
ator M , by Rem. 7.1, an idempotent e P A can be found such that Ae generates M , and
hence generates CohLpAq. So e is a generating idempotent. Thus, by Cor. 6.4, CohLpAq

has finitely many irreducibles. So A is strongly AUF.
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7.2 Projective generators and endomorphism algebras

Our next goal is to give criteria for projective generators in terms of the endomor-
phism algebras. We need the endomorphism algebras to be finite-dimensional:

Proposition 7.9. Let M,N P CohLpAq. Then

dimHomA,´pM,Nq ă `8

Proof. By Def. 2.3, there is an epimorphism from a finite direct sum
À

iAei to M , where
ei is an idempotent. By taking composition with this epimorphism, we get

HomA,´pM,Nq Ñ HomA,´

´

à

i

Aei, N
¯

»
à

i

HomA,´pAei, Nq (7.1)

where the first map is injective. Thus, it suffices to prove that each HomA,´pAei, Nq is
finite-dimensional.

Again, we can find an epimorphism Φ :
À

j Afj ↠ N (where
À

j is finite). Since Aei
is projective, each α P HomA,´pAei, Nq can be lifted to some β P HomA,´pAei,

À

j Afjq
such that α “ Φ ˝ β. Thus

dimHomA,´pAei, Nq ď dimHomA,´

´

Aei,
à

j

Afj

¯

“
ÿ

j

dimHomA,´pAei, Afjq

where dimHomA,´pAei, Afjq “ dim eiAfj ă `8.

Proposition 7.10. Let M be a left A-module. Let B “ EndA,´pMqop, and let p, q P B be
idempotents. Then an element of HomA,´pMp,Mqq is precisely the right multiplication of an
element of pBq. In particular, we have a canonical isomorphism

EndA,´pMpqop » pBp

Consequently, the direct summands of the left A-module Mp correspond bijectively to the sub-
idempotents of p in B.

Proof. This is similar to the proofs of Prop. 1.2 and Cor. 1.4. Any y P pBq defines a
morphismMp Ñ Mq by right multiplication. Conversely, if T P HomA,´pMp,Mqq, let pT :

M Ñ M be pT pξq “ T pξpq. Then pT P EndA,´pMq, and hence pT is the right multiplication
by some py P B. Note that T “ pT |Mp, and hence T pξpq “ ξppy for each ξ P M . Since T
has range in Mq, we have T pξpq “ ξppyq. So T is the right multiplication by y :“ ppyq P

pBq.

Theorem 7.11. Let M P CohLpAq. Let B “ EndA,´pMqop which is a finite-dimensional unital
algebra (by Prop. 7.9). Let p P B be an idempotent. Consider the following statements:

(1) As coherent left A-modules, Mp generates M .

(2) p is a generating idempotent of B.

Then (2)ñ(1). If M is projective, then (1)ô(2).
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Proof. (2)ñ(1): Since dimB ă `8, we have a primitive orthogonal decomposition 1B “

q1 ` ¨ ¨ ¨ ` qn where each qj P B is a primitive idempotent. By Prop. 6.2, each qj is
isomorphic to a sub-idempotent of p. Thus Mqj is isomorphic to a direct summand of the
left A-module Mp. So Mp generates

À

jMqj “ M .
(1)ñ(2): Let q be any primitive idempotent of B. Since Mp generates M and since

M generates Mq, we have that Mp generates Mq. We claim that Mq is isomorphic to
a direct summand of Mp. Then Prop. 7.10 will imply that q is isomorphic (in B) to a
sub-idempotent of p. This implies (2), thanks to Prop. 6.2.

Let us prove the claim, assuming that M is projective. Since Mq is a direct summand
of M , we see that Mq is projective. Since q is primitive in B, by Prop. 7.10, Mq is an
indecomposible left A-module. Therefore, by Cor. 5.6, Mq is the projective cover of an
irreducible N P CohLpAq. Since Mp generates Mq, it generates N . Thus N has an epi-
morphism from a finite direct sum of Mp. Since N is irreducible, N has an epimorphism
from Mp. Note that Mp is also projective. Therefore, by Prop. 3.4, Mq is isomorphic to a
direct summand of Mp.

Corollary 7.12. Assume that G P CohLpAq is a projective generator. Let M be a left A-module.
Then the following are equivalent.

(1) M P CohLpAq, and M is a projective generator (of CohLpAq).

(2) There exist n P Z` and a generating idempotent p of B :“ EndA,´pG‘nqop such that
M » G‘n ¨ p.

In particular, if e P A is a generating idempotent, one can take G “ Ae. Thus a
projective generator of CohLpAq is (up to isomorphisms) precisely of the form pAeq‘np
where n P Z` and p P EndA,´ppAeq‘nqop is a generating idempotent.

Proof. (2)ñ(1): By Thm. 7.11, M generates G‘n. So M is a generator. Since G‘np is
a direct summand of the projective coherent module G‘n, G‘np is also projective and
coherent.

(1)ñ(2): M has an epimorphism from G‘n for some n P Z`. Since M is projective,
this epimorphism splits. So M can be viewed as a direct summand of G‘n. Let p be the
projection of G‘n onto M , which can be viewed as an endomorphism of G‘n. So p is an
idempotent of B, and M “ G‘np. Since M is a generator, it generates G‘n. Since G‘n is
projective, by Thm. 7.11, p is generating.

8 Right pseudotraces

Let A be an AUF algebra. Let B be a unital algebra. Let M be an A-B bimodule,
coherent as a left A-module.

For each y P B and ξ P M , we write ξy as yopξ. Namely, yop is viewed as an element
of EndA,´pMq.

Definition 8.1. A right coordinate system of M denotes a collection of morphisms

βj P HomA,´pAe,Mq qβj : HomA,´pM,Aeq
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where e P A is an idempotent (called the domain idempotent), and j runs through a finite
index set J such that the

ř

jPJ βj ˝ qβj equals idM .

Remark 8.2. M has a right coordinate system iff M is A-projective.

Proof. By Rem. 7.1, each N P CohLpAq has an epimorphism from pAeq‘n where e P A
is an idempotent and n P Z`. This epimorphism splits iff N is projective in CohLpAq.
Therefore, similar to Rem. 4.2, we see that M has a right coordinate system iff M is A-
projective.

Remark 8.3. In Def. 8.1, one can freely enlarge the domain idempotent e. More pre-
cisely, suppose that f P A is an idempotent such that e ď f . One can define a new right
coordinate system

γj P HomA,´pAf,Mq qγj P HomA,´pM,Afq

γjpafq “ βjpaeq qγjpξq “ qβjpξq
(8.1)

called the canonical extension of pβj , qβjqjPJ .

Definition 8.4. Assume that M has a right coordinate system pβj , qβjqjPJ . For each ψ P

SLFpAq, define the (right) pseudotrace ψTrψTrψTr associated to ψ to be

ψTr : B Ñ C ψTrpyq “
ÿ

jPJ

ψ
`

pqβj ˝ yop ˝ βjq
op

˘

noting that qβj ˝ yop ˝ βj P EndA,´pAeq » peAeqop. In other words,

ψTrpyq “
ÿ

jPJ

ψpqβj ˝ yop ˝ βjpeqq (8.2)

Note that in (8.2) we have βjpeq P M , and hence qβj ˝ yop ˝ βjpeq P Ae. So

qβj ˝ yop ˝ βjpeq “ qβj ˝ yop ˝ βjpe
2q “ eqβj ˝ yop ˝ βjpeq P eAe

Proposition 8.5. Assume that M is A-projective. Let ψ P SLFpAq. Then ψTr P SLFpBq.
Moreover, the definition of ψTr is independent of the choice of right coordinate systems.

Proof. From (8.1) and (8.2), it is clear that a canonical extension of the right coordinate
system does not affect the value of ψTrpyq. Also, note that since A is AUF, for any idem-
potents e1, e2 P A there is an idempotent e3 such that e1, e2 ď e3. Therefore, to compare
ψTr defined by two coordinate systems pα‚, qα‚q and pβ‹, qβ‹q, by performing canonical ex-
tensions, it suffices to assume that their domain idempotents are equal. Then one can use
the same argument as in Lem. 4.4 to show that pα‚, qα‚q and pβ‹, qβ‹q define the same ψTr.
Finally, similar to the proof of Prop. 4.5, one shows that ψTr is symmetric.

Example 8.6. Let M “ Ae and B “ eAe where e P A is an idempotent. Then the identity
map on Ae gives a right coordinate system. From this, one sees that if ψ P SLFpAq then

ψTr “ ψ|eAe
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Example 8.7. More generally, letM “ pAeq‘n andB “ EndA,´pMqop. SoB “ eAebCnˆn.
Let

tr : Cnˆn Ñ C

be the standard trace on Cnˆn. A right coordinate system can be choosen to be the n
canonical embeddings Ae Ñ pAeq‘n and the n canonical projections pAeq‘n Ñ Ae. Then
one easily sees that

ψTr “ ψ|eAe b tr

Proposition 8.8. Assume that M is A-projective. Let p P B be an idempotent. Let ψ P SLFpAq.
Let ψTrM : B Ñ C be the pseudotrace associated to M . Then the pseudotrace ψTrMp : pBp Ñ C
associated to the A-ppBpq bimodule Mp is equal to ψTrM

ˇ

ˇ

pBp
, i.e.

ψTrMp “ ψTrM
ˇ

ˇ

pBp

Proof. Let pβ‚, qβ‚q be a right coordinate system (with domain idempotent e P A) as in Def.
8.1. Then one has a right coordinate system

γj P HomA,´pAe,Mpq qγj : HomA,´pMp,Aeq

γjpaeq “ βjpaeqp qγjpξpq “ qβjpξpq

noting that Mp ď M , and hence qγj is simply the restriction of βj to Mp. Using (8.2) one
computes that for each y P B,

ψTrMpppypq “
ÿ

j

ψpqγj ˝ ppypqop ˝ γjpeqq “
ÿ

j

ψpqβj ˝ ppypqop ˝ βjpeqpq

“
ÿ

j

ψpqβj ˝ ppypqop ˝ pop ˝ βjpeqq “
ÿ

j

ψpqβj ˝ ppypqop ˝ βjpeqq “ ψTrM ppypq

9 Equivalence of left and right pseudotraces

Let A,B be algebras where B is unital.

9.1 Preliminary discussion

In this subsection, assume that A is AUF. We shall consider M P CohLpAq such that
the left and the right pseudotrace constructions are both available to theA-pEndA,´pMqopq

bimodule M . By Rem. 8.2, M needs to be assumed A-projective. One also needs M to be
EndA,´pMqop-projective. In fact, these two conditions are precisely what ensure that both
left and right pseudotraces can be defined.

Proposition 9.1. Let M be an A-B bimodule. Assume that M is A-coherent. Then the following
are equivalent.
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(1) M has a left coordinate system.

(2) M is B-projective.

Although this proposition will not be used in the current note, we include it here as it
may be of use in the future.

Proof. (1)ñ(2): See Rem. 4.2.
(2)ñ(1): Let peiqiPI be as in Def. 5.1. By Rem. 7.2, each eiM is finite-dimensional.

Therefore, the right B-module eiM has an epimorphism from B‘n which splits because
M is B-projective (and hence eiM is projective since M “

À

iPI eiM ). Therefore, for
each i P I, there is a finite left coordinate system αi,‚ P Hom´,BpB, eiMq and qαi,‚ P

Hom´,BpeiM,Bq. Let

γi,‚ P Hom´,BpB,Mq qγi,‚ P Hom´,BpM,Bq

γi,‚pbq “ αi,‚pbq qγi,‚pξq “ qαi,‚peiξq

Then one checks easily that pγi,‚, qγ
i,‚qiPI is a left coordinate system of M .

9.2 Calculation of some left pseudotraces

In this subsection, A is not assumed to be AUF. Let M be an A-B bimodule.
The goal of this subsection is to prepare for the proof of the main Thm. 9.4. The

following theorem is dual to Prop. 8.8.

Theorem 9.2. Assume thatM has a left coordinate system. Let p P B be a generating idempotent.
Then the following are true.

1. The A-ppBpq bimodule Mp has a left coordinate system.

2. Let ϕ P SLFpBq. Then on A, the pseudotrace associated to ϕ|pBp and Mp is equal to the
pseudotrace associated to ϕ and M . Namely,

Tr
ϕ|pBp

Mp “ TrϕM (9.1)

In this theorem, we do not require that A is AUF.

Proof. Choose a left coordinate system for M :

αi P Hom´,BpB,Mq qαi P Hom´,BpM,Bq i P I

Since p is generating, similar to the proof of Thm. 6.5, we can find finitely many elements
uk, vk in B such that

vkuk “ pk ukvk “ qk

uk P qkBpk vk P pkBqk
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where each pk, qk P B are idempotents, 1B “
ř

k qk is a primitive orthogonal decomposi-
tion of 1B , and pk ď p for each k. 3 Let

θi,k P Hom´,pBpppBp,Mpq qθi,k P Hom´,pBppMp, pBpq

θi,kppypq “ αipuk ¨ pypq qθi,kpξpq “ vk ¨ qαipξpq

noting that αipuk ¨ pypq “ αipukqpyp P Mp and vk ¨ qαipξpq “ vk ¨ qαipξqp P pkBp Ă pBp.
For each ξ P M , note that if qαipξq “ 0, then qθi,kpξpq “ vkqαipξqp “ 0. Therefore,

qθi,kpξpq “ 0 for all but finitely many i and k. Moreover, we compute
ÿ

i,k

θi,k ˝ qθi,kpξpq “
ÿ

i,k

θi,kpvkqαipξpqq “
ÿ

i,k

αipukvkqαipξpqq

“
ÿ

i,k

αipqkqαipξpqq “
ÿ

i

αi ˝ qαipξpq “ ξp

where all the sums are finite. This proves that pθ, qθq satisfies Def. 4.1-(a). It is easy to
check Def. 4.1-(b). So we have proved that pθ, qθq is a left coordinate system of Mp.

It remains to check (9.1). Choose any x P A. By (4.3) and the fact that 1pBp “ p,

Tr
ϕ|pBp

Mp pxq “
ÿ

i,k

ϕpqθi,k ˝ x ˝ θi,kppqq “
ÿ

i,k

ϕpqθi,k ˝ x ˝ αipukpqq

“
ÿ

i,k

ϕpqθi,k ˝ x ˝ αipukqq “
ÿ

i,k

ϕpvk ¨ qαipx ˝ αipukqqq

Since qαi, x, αi commute with the right multiplication by vk, and since ϕ is symmetric,

Tr
ϕ|pBp

Mp pxq “
ÿ

i,k

ϕpqαipx ˝ αipukqqvkq “
ÿ

i,k

ϕpqαipx ˝ αipukvkqqq

“
ÿ

i

ϕpqαipx ˝ αip1Bqqq “ TrϕM pxq

This finishes the proof of (9.1).

Corollary 9.3. Assume that M has a left coordinate system. Let n P Z`. Let rB “ B b Cnˆn.
Then the A- rB bimodule M‘n » M b C1,n has a left coordinate system. Moreover, for each
ϕ P SLFpBq, we have

Trϕbtr
M‘n “ TrϕM (9.2)

as pseudotraces on A associated to ϕb tr P SLFp rBq and ϕ P SLFpBq, respectively.

Recall that tr P SLFpCnˆnq is the standard trace on the nˆ n matrix algebra.

Proof. Choose a left coordinate system

αi P Hom´,BpB,Mq qαi P Hom´,BpM,Bq

3So pk, qk are similar to εki , ei in the proof of Thm. 6.5.
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of M . Define

γi P Hom
´, rB

p rB,M‘nq qγi P Hom
´, rB

pM‘n, rBq

such that

γi

»

—

–

y1,1 ¨ ¨ ¨ y1,n
...

yn,1 ¨ ¨ ¨ yn,n

fi

ffi

fl

“ rαip1Bq, 0, . . . , 0s

»

—

–

y1,1 ¨ ¨ ¨ y1,n
...

yn,1 ¨ ¨ ¨ yn,n

fi

ffi

fl

“ rαipy1,1q, . . . , αipy1,nqs

qγirξ1, . . . , ξns “

»

—

—

—

–

qαipξ1q ¨ ¨ ¨ qαipξnq

0 ¨ ¨ ¨ 0
...

...
...

0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

fl

One checks easily that this is a left coordinate system of M‘n. Now (9.2) follows by
applying Thm. 9.2 to the A- rB bimodule M‘n and the generating projection p P rB, where
p is the matrix whose p1, 1q-entry is 1 and other entries are 0.

9.3 The main theorem

Assume that A is strongly AUF (cf. Cor. 6.4) so that A has a projective generator (cf.
Prop. 7.8). The following generalization of Thm. 6.6 is the main theorem of this note.

Theorem 9.4. Assume that M P CohLpAq is a projective generator. Assume that B “

EndA,´pMqop so that M is an A-B bimodule. Then M has left and right coordinate systems.
Moreover, we have a linear isomorphism

SLFpAq
»
ÝÑ SLFpBq ψ ÞÑ ψTr (9.3a)

whose inverse map is

SLFpBq
»
ÝÑ SLFpAq ϕ ÞÑ Trϕ (9.3b)

Of course, both pseudotraces are associated to M ; we have suppressed the subscript
M .

Proof. Note that dimB ă `8 by Prop. 7.9. So dimSLFpBq ă `8. Since M P CohLpAq is
A-projective, by Rem. 8.2, M has a right coordinate system. By Cor. 7.12, we may assume
that M “ G ¨ p where

• G “ pAeq‘n for some n P Z` and generating idempotent e P A.

• M “ Gp where p is a generating idempotent of rB “ EndA,´pGqop “ eAeb Cnˆn.

• B “ p rBp (by Prop. 7.10).
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By Thm. 6.5 and Cor. 9.3, G has a left coordinate system. Therefore, by Thm. 9.2, M has
a left coordinate system.

By Thm. 6.6, we have dimSLFpAq “ dimSLFpeAeq. Clearly we have a linear isomor-
phism

SLFpeAeq
»
ÝÑ SLFpeAeb Cnˆnq ω ÞÑ ω b tr

So dimSLFpeAeq “ dimSLFp rBq. By Thm. 6.6, we have dimSLFp rBq “ dimSLFpBq. This
proves dimSLFpAq “ dimSLFpBq ă `8.

Choose any ψ P SLFpAq. By Exp. 8.7, ψTrG : rB Ñ C equals ψ|eAe b tr. By Prop. 8.8,
on B “ ppeAeb Cnˆnqp we have

ψTrM “ pψ|eAe b trq
ˇ

ˇ

B
“: ϕ

Now ϕ P SLFpBq. By Thm. 9.2 and Cor. 9.3,

TrϕM “ Tr
pψ|eAebtrq|B
Gp “ Tr

ψ|eAebtr
G “ Tr

ψ|eAe

Ae

By Thm. 6.6, Trψ|eAe

Ae “ ψ. So TrϕM “ ψ. We have thus proved that (9.3b) ˝ (9.3a) is the
identity map on SLFpAq. This finishes the proof.

10 Equivalence of non-degeneracy of left and right pseudotraces

Definition 10.1. Let A be an algebra and ψ P SLFpAq. We say that ψ is non-degenerate if

tx P A : ψpxAq “ 0u ” tx P A : ψpxyq “ 0,@y P Au

is zero.

In the following, A is always assumed to be AUF.

Lemma 10.2. Let e P A be an idempotent, and let ψ P SLFpAq. If ψ is non-degenerate, then the
restriction ψ|eAe is non-degenerate. Conversely, if ψ|eAe is non-degenerate and e is generating,
then ψ is non-degenerate.

Proof. Assume that ψ is non-degenerate. Choose x P eAe such that ψpxeAeq “ 0. Then

ψpxAq “ ψpexeAq “ ψpxeAeq “ 0

and hence x “ 0. Therefore ψ|eAe is non-degenerate.
Conversely, assume that ψ|eAe is non-degenerate and e is generating. Choose x P A

such that ψpxAq “ 0. Then for each a, b P A,

ψpeaxbe ¨ eAeq “ ψpeaxbeAeq “ ψpxbeAeaq “ 0

Therefore eaxbe “ 0. Since b is arbitrary, we have eaxAe “ 0. Since e is generating, it is
not hard to show that the left A-module Ae is faithful. (See for example Lem. 11.6.) It
follows from that eax “ 0. Therefore eAx “ 0. Similarly, eA is a faithful right A-module.
Hence x “ 0. This proves the non-degeneracy of ψ.
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Proposition 10.3. Assume that ψ P SLFpAq is non-degenerate. LetM P CohLpAq be projective,
and let B “ End0A,´pMq. Then the right pseudotrace ψTr P SLFpBq is non-degenerate.

Proof. By Prop. 2.6, M can be viewed as a direct summand of
Àn

i“1Aei where each ei P A
is an idempotent. Let e P A be an idempotent such that e ě ei for all i. Then M is
a direct summand of pAeq‘n. By Prop. 1.2, we have End0A,´pAeqop “ eAe, and hence
End0A,´ppAeq‘nq “ eAe b Cnˆn. By Cor. 1.4, there is an idempotent p P eAe b Cnˆn

such that M “ pAeq‘np. By Lem. 10.2, ψ|eAe is non-degenerate, and hence ψ|eAe b tr :
eAe b Cnˆn Ñ C is non-degenerate. By Lem. 10.2 again, the restriction of ψ|eAe b tr to
ppeAe b Cnˆnqp (which is B due to Prop. 7.10) is non-degenerate. But this restriction is
exactly ψTr due to Exp. 8.7 and Prop. 8.8.

Theorem 10.4. Assume that A is strongly AUF. Then in Thm. 9.4, for any ψ P SLFpAq, the
non-degeneracy of ψ and of ψTr are equivalent.

Proof. We use the notation in the proof of Thm. 9.4. From that proof, we know ψTr “

pψ|eAe b trq|B . By Lem. 10.2, ψ is non-degenerate iff ψ|eAe is so, and ψ|eAe b tr is non-
degenerate iff pψ|eAe b trq|B is so. The equivalence of the non-degeneracy of ψ|eAe and of
ψ|eAe b tr is obvious. The proof is finished.

11 Classification of strongly AUF algebras

In this section, we fix an AUF algebra A.

Definition 11.1. For each left A-module M , let M˚ be the space of linear functionals,
which has a right A-module structure defined by

pϕaqpmq “ ϕpamq for all a P A,m P M

We define the quasicoherent dual

M_ “tϕ P M˚ : ϕ P ϕ ¨Au

“tϕ P M˚ : there exists an idempotent e P A such that ϕ “ ϕeu

By Def. 2.2, M_ is the largest right A-submodule of M that is quasicoherent.

Remark 11.2. Let M P QCohLpAq. Let peiqiPI be as in Def. 5.1. Then, as vector spaces, we
clearly have

M “
à

iPI

eiM M˚ “
ź

iPI

peiMq˚

It follows easily that

M_ “
à

iPI

peiMq˚

26



Definition 11.3. For each M P QCohLpAq, we let

End0pMq “ M bC M
_

viewed as a subalgebra of EndpMq.4 Suppose that B is an algebra, and M has a right
B-module structure commuting with the left action of A, we let

End0´,BpMq “ tT P End0pMq : pTξqb “ T pξbq for all ξ P M, b P Bu (11.1)

Remark 11.4. Let M P CohLpAq. By Rem. 7.2 we have dim eiM ă `8. It follows from
Rem. 11.2 that

End0pMq “ tT P EndpMq : Tei “ 0 for all but finitely many i P Iu

Proposition 11.5. Choose M P CohLpAq, and let B “ EndA,´pMqop. Then for each generating
idempotent p P B, we have a linear isomorphism

End0´,BpMq
»

ÝÝÑ End0´,pBppMpq S ÞÑ S
ˇ

ˇ

Mp (11.2)

Proof. Step 1. Let pB “ Bop “ EndA,´pMq, and let pp P pB be the opposite element of p.
Then M has a left pB-module structure commuting with the left action of A, and Rp is the
left multiplication by pp.

For each S P End0´,BpMq, note that S|Mp “ S|
ppM maps ppM into ppM , because

Sppξ “ ppSξ P ppM for each ξ P M . It is clear that S|Mp commutes with the action of pp pBpp.
That S|Mp belongs to End0pMq can be checked from Rem. 11.4. This proves that S|Mp

belongs to End0´,pBppMpq. We have thus proved that the linear map (11.2) is well-defined.

Step 2. Let us prove the surjectivity of (11.2). By Rem. 5.4, B is finite-dimensional.
Therefore, we have an orthogonal primitive decomposition 1

pB
´ pp “ f1 ` ¨ ¨ ¨ ` fn in pB.

In this case, we have

M “ ppM ‘ f1M ‘ ¨ ¨ ¨ ‘ fnM

By Prop. 6.2, for each 1 ď i ď n, fi is isomorphic to a sub-idempotent qi of pp, i.e., there
exist ui P fi pBqi and vi P qi pBfi such that uivi “ fi and viui “ qi ď pp (where qi P pB is an
idempotent).

Now, we choose T P End0´,pBppMpq “ End0´,pBppppMq. Define a linear map

S :M Ñ M ξ ÞÑ T pppξq `

n
ÿ

i“1

uiT pviξq (11.3)

By Rem. 11.4, we have S P End0pMq. We claim that S commutes with the action of pB
(and hence S P End0´,BpMq). If this is proved, then since T clearly equals S|Mp “ S|

ppM

(because vipp “ 0, see below), the proof of the surjectivity of (11.2) is complete.
Note that since pp, f1, . . . , fn are mutually orthogonal, we have

uiuj “ 0 vivj “ 0 for all i, j

4That is, for each ξ P M,ϕ P M_, the operator ξ b ϕ sends each η P M to ϕpηq ¨ ξ.

27



vjui “ 0 for all i ‰ j

vipp “ 0 ppui “ 0 for all i

Using this observation and the fact that T : ppM Ñ ppM commutes the left action of pp pBpp,
we compute that for each j and ξ P M ,

Spvjξq “ T pppvjξq ` 0 “ T pvjξq

vjSpξq “ vjT pppξq ` vjujT pvjξq
vjuj“qjPpp pBpp

ùùùùùùùùùù 0 ` T pqjvjξq “ T pvjξq

and hence Spvjξq “ vjSpξq; similarly,

Spujξq “ T pppujξq ` ujT pvjujξq
vjuj“qjPpp pBpp

ùùùùùùùùùù 0 ` ujqjT pppξq “ ujT pppξq

ujSpξq “ ujT pppξq ` 0 “ ujT pppξq

and hence Spujξq “ ujSpξq. Moreover, for each b P pB we have

Spppbppξq “ T pppbppξq ` 0 “ ppbppT pppξq

ppbppSpξq “ ppbppT pppξq ` 0 “ ppbppT pppξq

and hence Spppbppξq “ ppbppSpξq. This proves that S commutes with the left action of pB,
since pB is generated by tui, vi : 1 ď i ď nu and pp pBpp—to see this, note that for each b P pB,
by setting f0 “ u0 “ v0 “ pp, we have

b “

n
ÿ

i,j“0

fibfj “

n
ÿ

i,j“0

uibi,jvj

where each bi,j :“ vibuj commutes with the left actions of A and satisfies bi,j “ ppbi,jpp,
and hence belongs to pp pBpp.

Step 3. If S P End0´,BpMq and S|
ppM “ 0, then for each ξ P M , we have

Spξq “ Spppξq `

n
ÿ

i“1

Spfiξq “ Spppξq `

n
ÿ

i“1

uiSpviξq

where ppξ, vjξ P ppM . Therefore S “ 0. This proves that (11.2) is injective.

Lemma 11.6. Suppose that e P A is a generating idempotent. Then we have a linear isomorphism

A
»

ÝÝÑ End0´,eAepAeq (11.4)

sending each a P A to the left multiplication by a.

Proof. It is obvious that the left action on Ae by a P A belongs to End0´,eAepAeq. Therefore,
the map (11.4) is well-defined.

Suppose that the left multiplication of a P A on Ae is zero. Then aAe “ 0. Since A is
AUF and hence almost unital, there is an idempotent p P A such that a “ ap. Since e is
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generating, by Cor. 7.7, Ae is a generator of CohLpAq. Therefore, Ap is a quotient module
of pAeq‘n for some n P Z`. Thus aAp is a quotient space of paAeq‘n, and hence aAp “ 0.
This proves ap “ 0, and hence a “ 0. We have thus proved that (11.4) is injective.

Choose T P End0´,eAepAeq. Since T P End0pAeq, by Rem. 11.2, there is an idempotent
f P A such that T “ fTf . It follows that fTf |fAe belongs to End´,eAepfAeq. Since A is
AUF, we may enlarge f so that e ď f also holds. We claim that End´,eAepfAeq consists
of the left multiplications by elements of fAf . If this is true, then T |fAe “ fTf |fAe is
the left multiplication by faf for some a P A. It follows that for any b P A, we have
Tbe “ Tfbe “ fafbe, and hence T is the left multiplication by faf on Ae, finishing the
proof that (11.4) is surjective.

By Cor. 6.3, the idempotent e P fAf is generating in fAf . Applying Prop. 11.5 to the
finite-dimensional unital algebra fAf and its (finite-dimensional) coherent left module
fAf , we see that End´,eAepfAeq “ fAf |fAe. This proves the claim.

Theorem 11.7. Suppose that A is strongly AUF, and let G be a projective generator of CohLpAq

(which exists due to Prop. 7.8). Set B “ EndA,´pGqop. Regard G as an A-B bimodule. Then we
have a linear isomorphism

A
»

ÝÝÑ End0´,BpGq (11.5)

sending each a P A to the left multiplication of a on G.

Proof. By Cor. 6.4 and Prop. 7.8, A has a generating idempotent e. If G “ Ae, then
EndA,´pGq “ eAe due to Prop. 1.2. Therefore, by Lem. 11.6, the map (11.5) is bijective.

If G “ pAeq‘n where n P Z`, one easily checks that B “ eAe b Cnˆn where Cnˆn is
the matrix algebra of order n. The bijectivity of (11.5) then follows easily.

Finally, let G be any general projective generator. By Cor. 7.12, we may assume that
G “ pAeq‘npwhere n P Z`, and p is a generating idempotent of rB “ EndA,´ppAeq‘nqop »

eAeb Cnˆn. By Prop. 7.10, we have B “ p rBp. Therefore, by Prop. 11.5, the map

End0
´, rB

ppAeq‘nq Ñ End0´,BpGq

sending each S to S|G is bijective. By the previous paragraph, the map

A Ñ End0
´, rB

ppAeq‘nq

sending each a to the left multiplication by a is bijective. Therefore, their composition,
namely (11.5), is bijective.

Remark 11.8. In Thm. 11.7, the rightB-moduleG is a projective generator in the category
ModRpBq of right B-modules—that is, G is projective in ModRpBq, and any object in
ModRpBq has an epimorphism from a (possibly infinite) direct sum of G.

Proof. The projectivity of G in ModRpBq is due to Thm. 9.4 and Rem. 4.2. Using the
notation in the proof of Thm. 11.7, we may assume G “ pAeq‘np and B “ ppeAe b

Cnˆnqp where e P A and p P eAe b Cnˆn are generating idempotents. Since B is unital,
B is generating in ModRpBq. Therefore peAe b Cnˆnqp is generating in ModRpBq. Since
peAe b Cnˆnqp is a direct sum of peAe b C1ˆnq “ peAeq‘np “ eG, we conclude that eG is
generating in ModRpBq. Therefore G is generating in ModRpBq.
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Theorem 11.9. Let A be an algebra. The following are equivalent.

(1) A is strongly AUF.

(2) A is isomorphic to End0´,BpMq where B is a unital finite-dimensional algebra, M is a
projective generator in ModRpBq, the vector space M has a grading

M “
à

iPI

Mpiq

where each Mpiq is finite-dimensional and is preserved by the right action of B, and
End0´,BpMq is defined by

End0´,BpMq :“ tT P EndpMq :pTmqb “ T pmbq for all m P M, b P B,

T |Mpiq “ 0 for all by finitely many i P Iu

Proof. The direction (1)ñ(2) follows from Thm. 11.7 and Rem. 11.8. Let us prove the
other direction.

Assume that A “ End0´,BpMq where End0´,BpMq is described as in (2). Let ei be the
projection of M onto Mpiq. Then ei clearly belongs to A, and each T P A can be written as
T “

ř

i,jPI eiTej where eiTej “ 0 for all but finitely many i, j. This proves that A is AUF.
Since M is a projective generator in ModRpBq, for each finite subset I Ă I, MI :“

À

iPIMpiq is projective in ModRpBq (since it is a direct summand of M ). Let 1B “

p1 ` ¨ ¨ ¨ ` pn be an orthogonal primitive decomposition of 1B in B. By Thm. 5.5, ir-
reducible finite-dimensional right B-modules are precisely those that are isomorphic to
pkB{radppkBq for some k. Since M is generating in ModRpBq, it has an epimorphism to
pkB{radppkBq for each k. This epimorphism must restrict to a nonzero morphism (and
hence an epimorphism) Mpikq Ñ pkB{radppkBq. Let I “ ti1, . . . , inu. Then MI has an
epimorphism to each irreducible right B-module. It follows from Prop. 7.6 that MI is a
projective generator in the category of finite-dimensional right B-modules.

Let eI “
ř

iPI ei, which is an idempotent in A. We claim that eI is a generating idem-
potent in A, which will complete the proof that A is strongly AUF.

Let ε be any primitive idempotent of A. Then εM is a finite-dimensional right B-
module, since any element of A has finite range when acting on M . Moreover, since ε is
primitive in A, the right B-module εM is indecomposible. Since εM is a direct summand
of the projective right B-module M , it follows that εM is a finite-dimensional indecom-
posible projective right B-module. Therefore, since MI “ eIM is a projective generator,
similar to the the end of the proof of Thm. 7.11, we conclude that the right B-module
εM is isomorphic to a direct summand of eIM . Thus, by Thm. 7.10, ε is isomorphic to a
subidempotent of eI in A. This proves the claim that eI is generating.
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