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Algebras
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Abstract

We introduce the notion of almost unital and finite-dimensional (AUF) algebras,
which are associative C-algebras that may be non-unital or infinite-dimensional, but
have sufficiently many idempotents. We show that the pseudotrace construction,
originally introduced by Hattori and Stallings for unital finite-dimensional algebras,
can be generalized to AUF algebras.

Let A be an AUF algebra. Suppose that G is a projective generator in the category
Cohr,(A) of finitely generated left A-modules that are quotients of free left A-modules,
and let B = End 4, (G)°P. We prove that the pseudotrace construction yields an iso-
morphism between the spaces of symmetric linear functionals SLF(A) —» SLF(B),
and that the non-degeneracies on the two sides are equivalent.
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0 Introduction

In [Miy04], Miyamoto introduced the pseudo-g-trace construction for modules of ver-
tex operator algebras (VOAs), generalizing the usual g-trace. His primary motivation was
to address the failure of modular invariance for ¢-traces in the case of Cy-cofinite but irra-
tional VOAs. While Zhu's theorem in [Zhu96] establishes modular invariance for g-traces
in the rational setting, this result does not extend to the irrational case—unless g-traces
are replaced with pseudo-g-traces.

Miyamoto’s original approach is quite involved. Moreover, his dimension formula
for the space of torus conformal blocks is expressed in terms of higher Zhu algebras. This
presents two drawbacks: first, higher Zhu algebras are difficult to compute in practice;
second, their connection to the VOA module category is not transparent.

Later, Arike [Ari10] and Arike-Nagatomo [AN13] introduced a simplified version of
the pseudo-g-trace construction based on the idea of Hattori [Hat65] and Stallings [Sta65].
Below, we briefly outline this approach.

Let A be an algebra, and let B be a unital finite-dimensional algebra. Let M be a finite-
dimensional A-B bimodule, projective as a right B-module. By the projectivity, there is
a (finite) left coordinate system of M, namely, elements a1, ...,®, € Hompg(B, M) and
al,...,&" € Homys (M, B) satisfying >, o; o & = idys. Then the linear map

A— B xHZ&ioxoai(lg)

descends to a linear map A/[A, A] — B/[B, B] which is independent of the choice of the
left coordinate system. Its pullback gives a linear map

SLF(B) — SLF(4) ¢+~ Tr? (0.1)

where SLF(A) is the space of symmetric linear functionals on A—that is, linear maps ¢ :
A — C satisfying ¢ (zy) = ¢(yz) for all z,y € A—and SLF(B) is the space of symmetric
linear functionals on B. The above map is called the pseudotrace construction. Note that
a typical choice of A is Endp(M).

The pseudotrace construction is applied to the VOA setting as follows. Let V be an
N-graded C5-cofinite VOA with central charge ¢, and let M be a grading-restricted gen-
eralized V-module. Then M admits a decomposition M = ) ,.c M) into generalized
eigenspaces of L(0), where each M) is finite-dimensional. Let Endy(M) be the algebra
of linear operators on M commuting with the action of V, which is necessarily unital and
finite-dimensional. Let B be a unital subalgebra of Endy(M)°". Assume that M is a pro-
jective right B-module, equivalently, each M, is B-projective. Let ¢ € SLF(B). Then for
v € V, the expression

Te? (Yig (v, 2)¢" O 20) = 37 Te? (P(\)Yaa(v, 2)¢" 0721 P(N)) 0.2)
AeC

converges absolutely for z € Cand 0 < |¢| < 1, and defines a torus conformal block. Here,
P(}) is the projection of M := [ . M[,; onto M(,j. Then each P()Yiy(v, 2)g" 0=z P())
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is a linear operator on M,; commuting with the right action of B, and hence Tr? can be
defined on it.

Based on this formulation, in [GR19, Conjecture 5.8], Gainutdinov and Runkel pro-
posed a conjecture that directly relates the space of torus conformal blocks of a Cs-cofinite
VOA V to the linear structure of the category Mod(V) of grading-restricted generalized
V-modules. Let G be a projective generator in Mod(V), and let B = Endy(G). Then G is
B-projective. The conjecture asserts that the linear map sending each ¢ € SLF(B) to (0.2)
defines an isomorphism between SLF(B) and the space of torus conformal blocks of V.

The purpose of this note is to establish results in the theory of associative algebras that
are essential for proving the Gainutdinov-Runkel conjecture. The actual resolution of the
conjecture will appear in the forthcoming paper [GZ25].

Our approach stems from recognizing a structural analogy between the Gainutdinov-
Runkel conjecture and a classical result in associative algebra: If A is a unital finite-
dimensional algebra and M is a projective generator in the category of finite-dimensional
left A-modules, then M is projective over B := End4(M)°P, and the pseudotrace map
(0.1) is a linear isomorphism. This result was suggested in [BBG21, Sec. 2] and was
proved in [Aril0] in the special case that M = Ae where e is a basic idempotent.

However, this classical result is not directly applicable to the Gainutdinov-Runkel
conjecture. We need to generalize it to a larger class of associative algebras than unital
finite-dimensional ones. In particular, we must consider infinite-dimensional algebras
that can be approximated, in a certain sense, by finite-dimensional (and possibly unital)
algebras. The need to consider infinite-dimensional associative algebras in the study of
irrational VOAs has also been recognized in recent years from different perspectives, such
as Huang’s associative algebra A*(V) introduced in [Hua24], and the mode transition
algebra introduced by Damiolini-Gibney-Krashen in [DGK25].

The infinite-dimensional algebra required for the proof of the Gainutdinov-Runkel
conjecture is different from the above mentioned algebras. In [GZ25], we will show that
the end

E:= f M ®@c M’
MeMod (V)

a priori an object of Mod(V®?), carries a structure of an associative C-algebra that is com-
patible with its V®2-module structure. This algebra E is an example of an almost unital
and finite-dimensional algebra' (abbreviated as AUF algebra), meaning that E has a col-
lection of mutually orthogonal idempotents (e;)iey such that E = 3, ;5 e;Ee; where each
summand e;Ee; is finite-dimensional. (This sum is automatically direct.) In fact, E has
only finitely many irreducibles. We call such algebra strongly AUF.

The main result of this note is a generalization of the aforementioned isomorphism
between spaces of symmetric linear functionals to the setting of strongly AUF algebras.
More precisely, we prove that the pseudotrace construction defines a linear isomorphism
SLF(B) ~ SLF(A) where A is strongly AUF, M is a projective generator of the cate-
gory Cohr,(A) of coherent left A-modules (i.e., finitely generated left A-modules that are
quotients of free ones), and B = End4(M)°. See Thm. 9.4. Moreover, we show that

'Here, “almost" modifies the entire phrase “unital and finite-dimensional”, not just “unital".



the symmetric linear functional on B is non-degenerate if and only if the corresponding
functional on A is non-degenerate. See Thm. 10.4.

Since the associative algebra structure on the end E will not be developed in this note,
we present some alternative examples of AUF algebras for illustration. Let U(V) be the
universal algebra of V as defined in [FZ92]. Let

U(V)reg = C—D U(V)[z\,u]
A,ueC

where U(V)y ) is the subspace of joint generalized-eigenvectors of the left and right
actions of L(0) corresponding to the eigenvalues A and p respectively. The following
properties are shown in [MNT10]: Each U(V)[y ) is finite-dimensional. For each A, u, v €
C one has

UMV iU W) € UV)

V]

In particular, U(V)™ is a subalgebra of U(V). Moreover, there is an increasing sequence
of idempotents (1,,)nez, such that U(V)™® = (] 1,U(V)"&1,. (See [MNT10, Sec. 2.6].)
Therefore, U(V)™® is AUF, since the family of orthogonal idempotents in the definition of
AUF algebras can be chosen to be (1,41 — 1,,)nez, -

For a more elementary and concrete example, consider the following. Let B be a unital
finite-dimensional algebra. Let M be a right B-modules. Equip M with a grading

M =@ M(i)

1€J
where each M (i) is finite-dimensional and is preserved by the right action of B. Let A be

End% (M) := {T € End(M) :(T'm)b = T(mb) forallm e M,be B,
T'|p(y = 0 for all by finitely many i € J}

Then A is clearly an AUF algebra, with the family of mutually orthogonal idempotents
given by the projections e; of M onto M ().

In fact, any strongly AUF algebra arises from such a construction. More precisely, an
algebra is strongly AUF if and only if it is isomorphic to some End% (M), where M and B
satisfy the above conditions and, in addition, M is a projective generator in the category
of right B-modules. See Thm. 11.9.

Note that the relationship between End% (M) and Cs-cofinite VOAs is straightfor-
ward: If Ml € Mod(V) is equipped with the grading (.- M|\ given by the generalized
eigenspaces of L(0), and if B is a unital subalgebra of Endy(M)°? such that M is pro-
jective as a right B-module, then each P(\)Yiy(v, z)¢"(©)~21 P()\) appearing in (0.2) lies
End%(M). Therefore, the main result of this note on pseudotraces (Thm. 10.4) can be
applied to C>-cofinite VOAs. Details of this application will be presented in [GZ25].

1 Preliminaries
Throughout this note, algebras are associative, not necessarily unital, and over C. Let

N ={0,1,2,...} and Z4+ = {1,2,...}. For any vector spaces V, W, we let Hom(V, W) =
Homg (V, W) be the space of linear maps V' — W, and let End (V') = Hom(V, V).
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Let A be an algebra. Its opposite algebra is denoted by A°P. If M, N are left (resp.
right) A-modules, we let Homy _ (M, N) (resp. Hom_ 4(M, N)) be the space of linear
maps M — N intertwining the left (resp. right) actions of A.

An idempotent ¢ € A is an element satisfing e? = e. If ¢, f € A are idempotent, we
write e < fifef = fe = e. Equivalently, f = e + ¢ where ¢/ € A is an idempotent
orthogonal to e (i.e. e¢ = ¢’e = 0). We say that a nonzero idempotent e is primitive if the
only idempotent f satisfying f < eis f =0and f =e.

In this section, we review some well-known facts about associative algebras. Since,
unlike many references, our algebras are not assumed to be unital, we include proofs for
the reader’s convenience.

Definition 1.1. Let u,v € A. We say that (u,v) is pair of partial isometries in A if the
following are true:

(@) p :=vuand g := uv are idempotents.
(b) u e gApand v € pAg.

In this case, we also say that u is a partial isometry from p to ¢, and that v is a partial
isometry from ¢ to p. We say that two idempotents are equivalent if there are partial
isometries between them.

Proposition 1.2. Let e, f € A be idempotents. Then an element of Hom 4 _(Ae, Af) is precisely
the right multiplication of an element of e Af. In particular, we have an algebra isomorphism

Endy _(Ae)P ~ eAe

Proof. Clearly the right multiplication by some element of eAf yields an element of
Homy _(Ae, Af). Conversely, suppose that ' € Homy _(Ae, Af). Let 2 = T'(e), which
belongs to Af. Since ex = eT'(e) = T'(ee) = T'(e) = z, we see thatz € eAf. Foreachy € 4,
we have T'(ye) = yT'(e) = yxr = yex, which shows that T is the right multiplication by
x. O

Corollary 1.3. Let e, f be idempotents in A. The following are equivalent:
(1) Ae ~ Af as left A-modules.
(2) There is a partial isometry from e to f.

Proof. (1)=(2): Let T € Homy _(Ae, Af) be an isomorphism with inverse T~! €
Homa ((Af, Ae). By Prop. 1.2, T and T! are realized by the right multiplications of
ue eAf and v e fAe respectively. Since TT-1 = 1a¢, we have vu = f. Since T7IT =14,
we have uv = e.

(2)=(1): Let u € eAf and v € fAe such that uv = e, vu = f. Then the right multiplica-
tion of u on Ae has inverse being the right multiplication of v. So Ae ~ Af. O

Corollary 1.4. Let e € A be an idempotent. Let M be a left A-submodule of Ae. The following
are equivalent.

(1) M is a direct summand of Ae.



(2) M = Af for some idempotent f < e in A.

Proof. (2)=(1): Ae = Af @ Af' where f' = e — f is an idempotent.

(1)=(2): Let Ae = M @ N. Let ¢ : Ae — Ae be the projection on M vanishing on V.
Then ¢ € End(Ae). By Prop. 1.2, ¢ is the right multiplication by some f € eAe. Since
oy =, clearly f? = f. Moreover, M = p(Ae) = (Ae)f = Af. O

Corollary 1.5. Let e € A be an idempotent. The following are equivalent.
(1) Ae is an indecomposible left A-module.
(2) eis primitive.
Proof. This follows immediately from Cor. 1.4. O

Lemma 1.6. Let M be a nonzero finitely-generated left A-module. Then M has a maximal proper
left A-submodule N. Consequently, there is an epimorphism of M onto an irreducible module.

Proof. Let &,...,&, generate M. Without loss of generality, we assume that £; does not
belong to the submodule Ny generated by &»,...,&,. By Zorn’s lemma, there is a left
submodule N < M maximal with respect to the property that No ¢ N and & # N.
Let us prove that N is a maximal proper submodule. Let N < K < M. Then by the
maximality of N we must have {; € K. S0 &1,...,&, € M, and hence K = M. So K is not
proper. O

2 Almost unital algebras

In this section, we introduce the notion of almost unital algebras, which is weaker
than being almost unital and finite-dimensional.

Definition 2.1. We say that an algebra A is almost unital if the following conditions are
satisfied:

(a) For each x € A, there is an idempotent e € A such that x = exe.

(b) For any finitely many idempotents ey, ..., e, € A there exists an idempotent e € A
such thate; <eforalll <i < n.

Throughout this section, unless otherwise stated, A is assumed to be almost unital.

Definition 2.2. We say that a left A-module M is quasicoherent if one of the following
equivalent conditions hold:

(1) For each & € M we have £ € AE.
(2) For each £ € M there exists an idempotent e € A such that £ = €.

(3) M is a quotient module of @),_; Ae; where each ¢; € A is an idempotent.

el

(4) M is a quotient module of a free left A-module A®’.



The category of quasicoherent left A-modules is denoted by QCohy,(A).

Proof of equivalence. (1)=(2): For each ¢ € M, since £ € A, we have £ = af for some a € A.
Choose idempotent e € A such that a € eAe. Then e§ = eal = a& = &.

(2)=(1): Obvious.

(2)=(3): For each { € M, let e € A be an idempotent such that ec{ = . Then we
have a morphism @, Aes — M whose restriction to Ae¢ sends each a € Ae¢ to al.
Then £ = ec£ implies that { € Aecg, and hence § is in the range of this morphism. So this
morphism is surjective.

(3)=(4): This is obvious, since we have an epimorphism A — Ae; and hence an epi-
morphim @, ; A — @, Ae;.

(4)=(2): Tt suffices to show that A®! satisfies the requirement of (2). Choose ¢ =
(a;)ier € A®L. Then there are only finitely many ¢ € I such that a; # 0. Since A is almost
unital, there exist idempotents e; € A (where ¢ € I) such that a; = e;ae; forall i € 1. (If
a; = 0, then we choose e; = 0). Choose idempotent e € A such thate; < eforall € I.
Then & = €. O

Definition 2.3. A left A-module M is called coherent if it is quasicoherent and finitely-
generated. By the above proof of equivalence, it is clear that A is coherent iff M is a
quotient of @),_; Ae; where I is a finite index set and e; € A is an idempotent. The category
of coherent left A modules is denoted by Cohy,(A).

However, note that a coherent left A-module is not necessarily a quotient of ASn
where n € Z . Indeed, A is not necessarily finitely generated as a left A-module.

Remark 2.4. If M € QCohy,(A), then every submodule of M is quasicoherent, and every
quotient module of M is quasicoherent M. However, if M € Cohy,(A), then a submodule
of M is not known to be coherent. Thus, QCohy,(A) is an abelian category, while Cohy,(A)
is not known to be abelian.

Proposition 2.5. Let M € QCohy,(A). The following are equivalent.
(1) M is projective in the category of left A-modules.
(2) M is projective in QCohy,(A).
(3) M is a direct summand of @,_; Ae; for some index set I and each e; € A is an idempotent.

Proof. (3)=(1): It is well-known that a direct summand of a projective module is projec-
tive. Thus, it suffices to prove that P,_; Ae; is projective. Let & : @,_; Ae; — N be an
epimorphism where N is a left A-module. LetI' : K — N be an epimorphism. Let

ni = ®(e;)

Since T' is surjective, there is ¢; € K such that I'(¢;) = 7;. Define ¥ : @,_; Ae; — K to be
the morphism sending each ae; € Ae; to ae;§. Then the following commute:

@ie[ Ae; aci
y l(b / 1
K-— VN ae;&; —— aen;

r



Note that — holds since I'(ae;&;) = ae;I'(&;) = ae;n;, and Jholds since ®(ae;) = P(ae;e;) =
ae; ®(e;) = aemn;.

(1)=(2): Obvious.

(2)=(3): Choose an epimorphism @), ; Ae; — M, which splits because M is projec-
tive. So M is a direct summand of @),_; Ae;. O

Proposition 2.6. Let M € Cohy,(A). The following are equivalent.
(1) M is projective in the category of left A-modules.
(2) M is projective in QCohy,(A).
(3) M is projective in Cohy,(A).

(4) M is a direct summand of P
idempotent.

e Ae; for some finite index set I and each e; € A is an
Therefore, there is no ambiguity when talking about projective coherent left A-
modules.

Proof. Clearly we have (1)=(2) and (2)=(3). By Prop. 2.5 we have (4)=(1). Assume (3).
By Rem. 2.4, there is an epimorphism @),_; Ae; — M such that [ is finite, and that it splits
(because M is projective in Cohy,(A)). So (4) is true. O

Remark 2.7. If M € QCohy, (A), clearly M is irreducible in QCohy,(A) iff M is irreducible
in the category of left A-modules; in this case we say that M is irreducible. Note that even
if M € Cohy,(A), its irreducibility is understood as in QCohy,(A) but not as in Cohy,(A).

Proposition 2.8. Let M be a left A-module. The following are equivalent.
(1) M € QCohy,(A) and M is irreducible.
(2) M ~ Ae/N where e € A is an idempotent and N is a maximal (proper) left ideal of Ae.
(3) M ~ A/N where N is a maximal proper left A-submodule of A.

Proof. (1)=(2): Let M € QCohy,(A) be irreducible. By Def. 2.2, M has an epimorphism ¢
from some @, Ae; where e; € A is an idempotent. The restriction of ® to some Ae; must
be nonzero, and hence must be surjective (since M is irreducible). It follows that M has
an epimorphism ¥ from Ae;. Then N = KerV is a maximal proper left A-submodule of
Aei, and M ~ Ael/N

(1)=(3): In the above proof, M also has an epimorphism from @, A (since we have
an epimorphism A — Ae;). Thus, replacing Ae; with A; in the above proof, we are done.

(2),(3)=(1): Clearly M is irreducible. That M € QCoh;, (A) follows from Def. 2.2. O

3 Projective covers

Let A be an algebra, not necessarily almost unital. In this section, we recall some basic
facts about projective covers. When A is unital, these results can be found in [AF92], for
example. In the non-unital case, one can reduce to the unital setting by considering the
unitalization of A. For the reader’s convenience, we include complete proofs.
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3.1 Basic facts

Definition 3.1. Let M be a left A-module. A left A-submodule K < M is called superflu-
ous, if for any left A-submodule L < M satisfying K + L = M we must have L = M.

Remark 3.2. Obviously, we have an equivalent description of superfluous submodules:
Let7 : M — M /K be the quotient map. Then K < M is superfluous iff for any morphism
of left A-modules ¢ : N — M such that mo ¢ : N — M/K is surjective, it must be true
that ¢ is surjective.

Definition 3.3. Let M be a left A-module. A projective cover of M denotes a left A-
module epimorphism ¢ : P — M where P is a projective left A-module, and Keryp is
superfluous in P.

The following property says that among the projective modules that have epimor-
phisms to M, the projective cover is the smallest one in the sense of direct summand.

Proposition 3.4. Let ¢ : P — M be a projective cover of M. Let v : Q — M be an epimorphism
where @ is projective. Then there is a morphism o : Q — P such that the following diagram

commutes.
P
% It (3.1)

Q—» M

Moreover, for any such «, there is a left A-submodule P' < Q) such that Q = ker a @ P’ and that
alp 2 P! => P is an isomorphism.

By setting L = ker ¢, it follows that (3.1) is equivalent to

P
O@V I+ (3.2)

LoP T M

Proof. The existence of a follows from that () is projective and that ¢ is an epimorphism.
Moreover, since ker ¢ is superfluous and ¢ o « is surjective, by Rem. 3.2, « is surjec-
tive. Therefore, since P is projective, the epimorophism « splits, i.e., there is a morphism
f: P — Qsuchthataof : P — P equals idp. One sees that P’ = §(P) fulfills the
requirement. 0

It follows that projective covers are unique up to isomorphisms:

Corollary 3.5. Let M be a left A-module with projective covers ¢ : P — M and ¢ : Q — M.
Then there exists an isomorphism « : Q — P such that (3.1) commutes.

Proof. By Prop. 3.5, there exists a such that (3.1) commutes. It remains to show that « is
an isomorphism. We assume that (3.1) equals (3.2). Since 0Py : L& P — M is a projective
cover, L + ker(P) = ker(0 @ ¢) is superfluous, and hence L is superfluous. Thus, since
L + Pequals Q = L ® P, we must have Q = P and hence L = 0. So o = 0 @ idp is an
isomorphism. O



3.2 Projective covers of irreducibles

Proposition 3.6. Suppose that ¢ : P — M is a projective cover of an irreducible left A-module
M. Then P is indecomposible.

Proof. Suppose that P = P’ @ P”. Then one of ¢|p/, ¢|pr (say ¢|ps) is nonzero. Since M
is irreducible, ¢|p : P’ — M must be surjective. So the map P’ < P' @ P" % M is
surjective. Since ker ¢ is superfluous, by Rem. 3.2, P' — P’ @ P" is surjective, and hence
P" =0. O

Theorem 3.7. Let e € A be a primitive idempotent satisfying
dimeAe < +o0

Let K be any proper left A-submodule of Ae. Then K is superfluous. In other words, the quotient
map Ae — Ae/K is the projective cover of Ae/K.

Proof. Step 1. Let ¢ : Ae — Ae/K be the quotient map. Let L be a submodule of Ae.
Assume that N + K = Ae; in other words, if we let v : N — Ae be the inclusion, then
pou: N — Ae/K is surjective. Our goal is to show that NV = Ae.

Since Ae is projective and ¢ o ¢ is surjective, there is a morphism o : Ae — N such that
¢ =@oroo. Let f =10 a. Then the following diagram commutes:

Ae

N < Ae ——» Ae/K

L

To prove that ¢ is surjective, it suffices to show that 3 is surjective.

Step 2. Suppose that § is not surjective. Let us find a contradiction. Since § €
Enda,_(Ae), by Prop. 1.2, g is the right multiplication by some = € eAe. Let R, :
eAe — eAe be the right multiplication of x on eAe. Then R, is not surjective. Other-
wise, there exists a € A such that R, (eae) = ¢, i.e., eaex = e. Then for each b € A, we have
be = beaex = [(beae), contradicting the fact that 3 is not surjective.

It is well-known that if 7" is a linear operator on a finite-dimensional C-vector space
W, then W is the direct sum of generalized eigenspaces of T', and the projection operator
of W onto each generalized eigenspace is a polynomial of 7. Therefore, R, has only one
eigenvalue. Otherwise, there is a polynomial p such that p(R;) = R, is the projection
of eAe onto a proper subspace, and hence p(z) is an idempotent in eAe not equal to 0 or
e. This is impossible, since e is assumed to be primitive.

Therefore, R, has a unique eigenvalue, which must be 0 since R, is not surjective. By
linear algebra, R, is nilpotent. Since R,» = (R,)", it follows that z is nilpotent, and hence
8 is nilpotent. By (3.3), we have ¢ = po 3, and hence p = o3 = po 2 = po 2 =
.-+ = 0. This contradicts the fact that ¢ is a surjection onto a nonzero module, finishing
the proof. O
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Corollary 3.8. Let e € A be a primitive idempotent satisfying dimeAe < +oo. Then Ae has a
unique proper maximal left A-submodule, denoted by rad(Ae).

It follows from Thm. 3.7 that Ae is the projective cover of the irreducible Ae/rad(Ae).

Proof. By Lem. 1.6, Ae has at least one proper maximal left A-submodule. Suppose that
K # L are proper maximal left A-submodules of M. By the maximality, we have K + L =
M. By Thm. 3.7, L is superfluous. So K = M, impossible. ]

4 Left pseudotraces

Let A, B be algebras such that B is unital. Fix an A-B bimodule M. We do not assume
that Mp is unital, i.e., 15 € B acts as the identity on M.

Definition 4.1. A left coordinate system of M denotes a collection of morphisms
o; € Hom_ p(B,M) & e Hom_ g(M,B) (4.1)
where ¢ runs through an index set I such that the following conditions hold:

(a) For each ¢ € M, we have &'(¢) = 0 for all but finitely many i € I, and Y]
areg) =¢

(b) For each z € A (viewed as an element of End_ p(M)), we have z o o; = 0 and
&' o x = 0 for all but finitely many i € I.

el &

Remark 4.2. M is a projective right B-module iff there exists (;, &');cs of the form (4.1)
satisfying condition (a).

Proof. Suppose that there exists («;, &');es such that (a) holds. Define morphisms of right
B-modules

(I):BG_)IHM @szHZaz(b)
V:M— B o @id(©)

Then (a) implies that ® o ¥ = idy;. Thus, M is a direct summand of B®! and hence is
projective as a right B-module.

Conversely, assume M is projective as a right B-module. Then we have an epimor-
phism @ : B®! — M and a morphism ¥ : M — B® such that ® o ¥ = id),. For each
i €1, let; : B — B® be the inclusion map of B into the i-th direct summand, and
7; : B®' — B be the projection map onto the i-th direct summand. Set

o; = Doy, a'=moWw

Then (a;, &%), satisfies (a). O
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Definition 4.3. Assume that A has a left coordinate system (c;, &")4e1. Define the B-trace
function

TI"B:A—>B/[B,B] xHZ&ioxoai

el
where the RHS, originally an element of End_ 5(B) ~ B,? is descended to B/[B, B].
Lemma 4.4. The definition of Tr is independent of the choice of left coordinate systems.

Proof. Suppose that (5;, 37) jes is another left coordinate system of the A-B bimodule M.
Let I, c I and J, c J be finite sets such that &’ oz = 0,z 0 oy; = 0 for any i € I\I,;, and
that 37 oz = 0,z 0 3; = 0 for any j € J\J,. Then

Z(\iioxoaiz Z (\iioxoﬁjogjoaiz Z &ioxoﬁjogjoai

i€l i€ly,5€d 1€ly,j€

Since each &' o x o 3; and 39 o a; are in End_ p(B) ~ B, the RHS above equals
Z Bjoaio§ioxoﬂj=25joxoﬂj
i€ly,j€Jx Jj€Jz
in B/[B, B. O
Proposition 4.5. Tr? is symmetric, i.e., Tv? (zy) = TvB (yz) for any x,y € A. Therefore, Tt
descends to a linear map A/[A, A] — B/[B, B].

Proof. Let x,y € A. Let Iy < I be a finite set such that & oz = &'oy = 0and v o oy =
yoa; = 0forallie I\ly. Then

TrB(zy) = Z&’oxoyoai = Z d'oxoajod oyoq;
i€lp i,jEIo
and similarly
B - 5 o )
Tr? (yx) = & oyoa;0d’ oxoaq;
i,5€lo

The two RHS’s are equal in B/[B, B], noting that &' o z o a; and &’ o y o «; are both in
End_ 5(B) ~ B. O

Definition 4.6. Let ¢ : B — C be a symmetric linear functional (SLF), i.e., a linear map
satisfying ¢(ab) = ¢(ba) for all a,b € B. The (left) pseudotrace associated to ¢ (and M),
denoted by Tr?, is defined to be

Tr? =goTrP : A C 4.2)
Itis an SLF on A.

Thus, for each z € A we have

Tr(x) = Y (& oz 0 ay(1p)) (4.3)

el

*This isomorphism relies on the fact that B is unital.
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5 AUF algebras and projective covers of irreducibles

Definition 5.1. An algebra A is called almost unital and finite-dimensional (AUF) if
there is a family of mutually orthogonal idempotents (e;);c5 such that the following con-
ditions hold:

(a) Foreachi,j e J wehave dime;Ae; < +00.

(b) A =3 ;cyeide;. (Thatis, for each z € A one can find a finite subset / — Jand a
collection (z;,7); jey such that z = 33, .., e;x; je;.)

Note that (b) automatically impies A = P, ;5 €;Ae;.

It is illuminating to view an element € A as an J x J matrix whose (i, j)-entry is

€;re;.

Remark 5.2. Each AUF algebra A is almost unital.

Proof. For each x1,--- ,z, € A, we can find a subset Iy ¢ J such that x € ¢’ A¢/, where
e’ = icy, €i- By choosen = 1and 21 = x € A, we see x = ¢'z¢’. By choosing idempotents
;=€ €A weseee; <€ foralll <i<n. O

Lemma 5.3. In Def. 5.1, one can assume moreover that each e; is primitive (in A).

Proof. Let (e;)iey be as in Def. 5.1. For each i € J, since e;Ae; is a finite-dimensional left
e;Ae;-module, it is a finite direct sum of indecomposible left e¢; Ae;-submodules. By Cor.
1.4 and 1.5, we have a finite direct sum e; Ae; = (—Bkeﬁi e;Afir where (fi)kes, is a finite
family of mutually orthogonal idempotents in e; Ae;, that 3, fi 1 = e;, and that each f;
is primitive in e; Ae;. Clearly f;  is also primitive in A. Replacing (e;)icy by (fik)icd kes;
does the job. O

In the remaining part of this section, we always assume that A is AUFE.

Remark 5.4. For each idempotents e, f € A, we have
dimeAf < +o0

Indeed, one can find a finite set [y = J such thate, f € ¢’Ae’ where ¢/ = >.._; e;. Then
dim e’ Ae’ < +o0, and hence dimeAf < +oo.

It follows that each idempotent e € A has a (finite) orthogonal primitive decomposi-
tione = €1 + --- + g,. This follows from a decomposition of the finite-dimensional left

eAe-module e Ae into indecomposible submodules. O

iEIO

Recall Rem. 2.7 about irreducibility.
Theorem 5.5. The following are true.

1. For each primitive idempotent e € A, let rad(Ae) be the unique proper maximal left submod-
ule of Ae (cf. Cor. 3.8). Then Ae — Ae/rad(Ae) gives a projective cover of the irreducible
coherent module Ae/rad(Ae).
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2. Any irreducible M € QCohy, (A) is isomorphic to Ae/rad(Ae) for some primitive idempo-
tent e € A.

3. Let e, f be primitive idempotents. Then the following are equivalent:

(1) Ae ~ Af as left A-modules.

(2) Ae/rad(Ae) ~ Af/rad(Af) as left A-modules.

(3) e ~ f,i.e., there is a partial isometry (in A) from e to f.
Proof. Part 1 was already proved, cf. Thm. 3.7. (Note that Thm. 3.7 and its consequences
are applicable since dim eAe < +00 by Rem. 5.4.)

Part 2: By Prop. 2.8, M has an epimorphism V¥ from A. Let (e;);c5 be as in Def. 5.1
such that each e; is primitive (Lem. 5.3). Then A ~ @), Ae; as left A-modules. The
restriction of ¥ to some Ae; must be nonzero, and hence must be surjective. Therefore
M ~ Ae;/rad(Ae;).

Part 3: (1)=(2) is obvious. (2)=(1) follows from the uniqueness of projective covers
(Cor. 3.5). (1)<(3) follows from Cor. 1.3. d

Corollary 5.6. Let P € Cohy,(A). The following are equivalent.
(1) P is projective and indecomposible.

(2) P is the projective cover of an irreducible M € QCohy,(A), which (by Thm. 5.5) is isomor-
phic to Ae for some primitive idempotent e € A.

Proof. (2)=(1): This follows from Prop. 3.6.

(1)=(2): By Lem. 1.6, P has an epimorphism to an irreducible, which (by Thm. 5.5)
is of the form Ae/rad(Ae) where e € A is a primitive idempotent. We know that Ae is its
projective cover. Since P is projective, by Prop. 3.4, Ae is a direct summand of P. Since P
is indecomposible, we must have P = Ae. O

6 Pseudotraces and generating idempotents of strongly AUF al-
gebras

Let A be AUF. In this section, we show that if e € A is a generating idempotent, any
SLF ¢ on A can be recovered from |4, via the pseudotrace construction.

Definition 6.1. An idempotent e € A is called generating if every irreducible M e
QCohy,(A) has an epimorphism from Ae.

Proposition 6.2. Let e € A be an idempotent. Let e = €1 + - - - + &, be an orthogonal primitive
decomposition (cf. Rem. 5.4). The following are equivalent:

(1) e is generating.
(2) Any primitive idempotent of A is isomorphic to ¢; for some .

(3) Any irreducible M € QCohy (A) is isomorphic to Ae;/rad(Aeg;) for some i.

14



Proof. (1)=(3): Each irreducible M € QCohy,(A) has an epimorphism from Ae = Ay @
-+ @ Aey, and hence an epimorphism from some Ae;. By Cor. 3.8, the kernel of this
epimorophism is rad(Ae;). Therefore, we have Ae¢;/rad(Ae;) ~ M.

(3)=(1): Obvious.

(2)=(3): Immediate from Thm. 5.5. O

Corollary 6.3. Let e, f € A be idempotents such that e < f and e is a generating idempotent of
A. Then e is a generating idempotent of fAf.

Proof. Let p be any primitive idempotent of fAf. Then p is a primitive idempotent of
A. By Prop. 6.2, if welete = ¢; + --- + ¢, be an orthogonal primitive decomposition,
then there exist 1 < ¢ < nand u € ¢;Ap,v € pAg; such that uv = ¢; and vu = p. So p is
isomorphism in fAf to ;. By Prop. 6.2, we conclude that e is generating in fAf. O

Corollary 6.4. The following are equivalent.
(1) A has a generating idempotent.
(2) QCohy,(A) has finitely many equivalence classes of irreducible objects.
(3) A has finitely many isomorphism classes of primitive idempotents.

If one of these conditions holds, we say that A is strongly AUF.

Proof. (1)=(2): Immediate from Prop. 6.2.

(2)=(3): Immediate from Thm. 5.5.

(2)=(1): Let My, ..., M, € QCohy,(A) exhaust all equivalence classes of irreducibles.
Let (e;)icy be as in Def. 5.1. For each 1 < k < n, by Prop. 2.8, M} has an epimorphism
from A. Since A = @), Ae;, it follows that M), has an epimorphism from Ae;, for some

i€
iy € J. If we assume at the beginning that My, ..., M,, are mutually non-isomorphic, then
€i,,- - -, €, must be distinct, and hence mutually orthogonal. Soe = ¢;, + -+ ¢;, is a
generating idempotent. O

Theorem 6.5. Assume that A is strongly AUF, and let e € A be a generating idempotent. Then
the A-(eAe) bimodule Ae has a left coordinate system. In particular, by Rem. 4.2, Ae is a projec-
tive right e Ae-module.

The following construction of left coordinate system is important and is motivated by
[Aril0, Lem. 3.9].

Proof. Let (e;)iey be as in Def. 5.1. By Lem. 5.3, we can assume that each ¢; is primitive.
Lete = 1 + - -+ + &, be an orthogonal primitive decomposition of e. By Prop. 6.2, there
are partial isometries u;, v; such that

ViUu; = Eki UV = €4
U; € €¢A€]€i V; € 6]%1461'
where k; € {1,...,n}. In particular u; € e;Ae and v; € eAe;. Let

a; € End_ . 4.(eAe, Ae) e End_ cac(Ae, eAe)
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aj(exe) = u; - exe &'(ze) = v; - ze
One checks easily that («, &")4e5 is a left coordinate system. O
The proof of [Aril0, Thm. 3.10] can be easily adapted to prove the following theorem.

Theorem 6.6. Assume that A is strongly AUF, and let e € A be a generating idempotent. Then
there is a linear isomorphism

SLF(A) — SLF(ede) ¥ — ]ese
whose inverse is given by
SLF(eAe) — SLF(A) ¢ — Tr?
Here, Tr? is the pseudotrace on A with respect to ¢ and the A-(e Ae) bimodule Ae.

Proof. Let u;,v;, i, &' be as in the proof of Thm. 6.5. For any ¢ € SLF(eAe), let us compute
Tr?. Let z € A, viewed as an element of End_ c4c(Ae). Then dtozoa;€E End_ cac(eAe)
equals (the left multiplication by) v;zu;. Then

Tr? () = 2 o(vizu;) (6.1)

1€J
Note that the RHS is a finite sum since u; = e;u;, and since and ze; = 0 for all but finitely
many <.
To show that Tr? leAe = ¢, we compute

Tr? (exe) = Z d(vieweu;) = Z P(viexe - eu;)
Since v;exe, eu; € eAe, and since ¢ is SLF, we have
Tr?(exe) = 2 d(eu; - vieze) = Z p(eeiexe) = p(exe)
Finally, let ) € SLF(A). Then for each x € A4,
Ty¥lee (z) = Z¢|e,4e(vixui) = ZWU&UW) = Z@ﬁ(uwﬂ) = Ziﬁ(&m) = 1(z)

This proves Tr¥leae = ), ]

7 Projective generators of strongly AUF algebras

Let A be an AUF algebra.

Remark 7.1. A left A-module M is coherent if and only if M is a quotient module of
(Ae)®" where n € Z, and e € A is an idempotent.
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Proof. “<"is obvious. Conversely, let M/ € Cohy,(A). By Def. 2.3, M is a quotient module
of Ap1®- - -®Ap,, where each p; is an idempotent. By Rem. 5.2, one can find an idempotent
e € Awhichis > pi,...,p,. Then M is a quotient module of (Ae)®™. O

Remark 7.2. By Rem. 7.1, if M € Cohy,(A) and z € A, then dimzM < +o0.

Proof. Suppose that M has an epimorphism from N := (Ae)®" where e € A is an idem-
potent. Then dimzM < dimaN. Let f € A be an idempotent such that z = fxf. Then
xAe c fAe, and hence

dimazN = ndimzxAe < ndim fAe < +©

7.1 Basic facts

Definition 7.3. Let . and .7 be classes of objects in Cohy,(A). We say that . generates
7 if each object of .7 is a quotient of a finite direct sum of objects in .7

Definition 7.4. We say that M € Cohy,(A) is a generator (of Cohy,(A)) if it generates every
object of Cohy,(A), i.e., every N € Cohy,(A) is a quotient module of M®" for some n € Z..
A generator which is also projective is called a projective generator.

Example 7.5. Let (e;);ey be as in Def. 5.1. Then . := {Ae; : i € J} generates Cohy,(A).

Proof. By the proof of Rem. 5.2, for any idempotent e € A one can find a finite set Iy < I
such thate < ., e;. Therefore, .7 generates each Ae, and hence (by Rem. 7.1) generates
COhL (A) OJ
Proposition 7.6. Let M € Cohy,(A) be projective. The following are equivalent.

(1) M is a projective generator.

(2) Each irreducible N € Cohy,(A) has an epimorphism from M.
Proof. (1)=(2): Obvious.
(2)=(1): Let (e;);ey be as in Def. 5.1. By Lem. 5.4, we assume that each e; is primitive.
By Exp. 7.5, it suffices to prove that M generates each Ae;. By Thm. 5.5, Ae; is the
projective cover of the irreducible N := Ae;/rad(Ae;). By (2), M has an epimorphism to
N. Since M is projective, by Prop. 3.4, Ae; is isomorphic to a direct summand of M. [
Corollary 7.7. Let e € A be an idempotent. Then the following are equivalent.

(1) Ae is a (necessarily projective) generator.

(2) eis a generating idempotent.

Proof. (1)=(2): Clear from Def. 6.1. (2)=(1): Immediate from Prop. 7.6. O

Proposition 7.8. Cohy,(A) has a projective generator if and only if A is strongly AUF.

Proof. “<" follows from Cor. 6.4 and 7.7. Conversely, if Cohy,(A) has a projective gener-
ator M, by Rem. 7.1, an idempotent e € A can be found such that Ae generates M, and
hence generates Cohy,(A). So e is a generating idempotent. Thus, by Cor. 6.4, Cohy,(A)
has finitely many irreducibles. So A is strongly AUF. O
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7.2 Projective generators and endomorphism algebras

Our next goal is to give criteria for projective generators in terms of the endomor-
phism algebras. We need the endomorphism algebras to be finite-dimensional:

Proposition 7.9. Let M, N € Cohy,(A). Then
dimHomy (M, N) < +x

Proof. By Def. 2.3, there is an epimorphism from a finite direct sum @, Ae; to M, where
e; is an idempotent. By taking composition with this epimorphism, we get

Homy, - (M, N) = Homy, - ( €D Aei, N) = @ Homy,- (4e;, N) (7.1)

where the first map is injective. Thus, it suffices to prove that each Homy _(Ae;, N) is
finite-dimensional.

Again, we can find an epimorphism @ : (®; Af; - N (where D, is finite). Since Ae;
is projective, each a € Homy,_(Ae;, N) can be lifted to some 8 € Homy,_(Ae;, D, Af;)
such that o« = ® o 8. Thus

dim Homy _(Ae;, N) < dimHom 4 (Aei, @ Afj> = Z dim Hom g4 — (Ae;, Af;)
J J
where dim Hom 4 _ (Ae;, Af;) = dime; Af; < +o0. O

Proposition 7.10. Let M be a left A-module. Let B = Enda,_(M)°P, and let p,q € B be
idempotents. Then an element of Hom _ (Mp, Mq) is precisely the right multiplication of an
element of pBq. In particular, we have a canonical isomorphism

Endg _(Mp)°® ~ pBp

Consequently, the direct summands of the left A-module Mp correspond bijectively to the sub-
idempotents of p in B.

Proof. This is similar to the proofs of Prop. 1.2 and Cor. 1.4. Any y € pBq defines a
morphism Mp — Mqby right multiplication. Conversely, if ' € Homy4 _(Mp, Mq), let T
M — M be f(§) = T(&p). Then T € End A,—(M), and hence T is the right multiplication
by some y € B. Note that 7" = ZIA’|Mp, and hence T'(¢p) = Epy for each € € M. Since T'
has range in M¢q, we have T'({p) = {pyq. So T is the right multiplication by y := pyq €
pBg. ]

Theorem 7.11. Let M € Cohy,(A). Let B = End 4, (M)°P which is a finite-dimensional unital
algebra (by Prop. 7.9). Let p € B be an idempotent. Consider the following statements:

(1) As coherent left A-modules, Mp generates M.
(2) pis a generating idempotent of B.
Then (2)=(1). If M is projective, then (1)<(2).
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Proof. (2)=(1): Since dim B < +o0, we have a primitive orthogonal decomposition 15 =
q1 + -+ + g, where each ¢; € B is a primitive idempotent. By Prop. 6.2, each ¢; is
isomorphic to a sub-idempotent of p. Thus M g¢; is isomorphic to a direct summand of the
left A-module Mp. So Mp generates P ; Mq; = M.

(1)=(2): Let ¢ be any primitive idempotent of B. Since Mp generates M and since
M generates Mg, we have that Mp generates Mq. We claim that M¢q is isomorphic to
a direct summand of Mp. Then Prop. 7.10 will imply that ¢ is isomorphic (in B) to a
sub-idempotent of p. This implies (2), thanks to Prop. 6.2.

Let us prove the claim, assuming that M is projective. Since Mg is a direct summand
of M, we see that Mg is projective. Since ¢ is primitive in B, by Prop. 7.10, Mq is an
indecomposible left A-module. Therefore, by Cor. 5.6, Mgq is the projective cover of an
irreducible N € Cohr,(A). Since Mp generates Mg, it generates N. Thus N has an epi-
morphism from a finite direct sum of Mp. Since N is irreducible, N has an epimorphism
from Mp. Note that Mp is also projective. Therefore, by Prop. 3.4, Mq is isomorphic to a
direct summand of Mp. O

Corollary 7.12. Assume that G € Cohy,(A) is a projective generator. Let M be a left A-module.
Then the following are equivalent.

(1) M e Cohy,(A), and M is a projective generator (of Cohr,(A)).

(2) There exist n € Z and a generating idempotent p of B := Ends _ (G®")°P such that
M ~ GO . p.

In particular, if e € A is a generating idempotent, one can take G = Ae. Thus a
projective generator of Cohy,(A) is (up to isomorphisms) precisely of the form (Ae)®"p
where n € Z and p € End4 _ ((Ae)®™)°P is a generating idempotent.

Proof. (2)=(1): By Thm. 7.11, M generates G®". So M is a generator. Since G¥"p is
a direct summand of the projective coherent module G®", G®"p is also projective and
coherent.

(1)=(2): M has an epimorphism from G®" for some n € Z,. Since M is projective,
this epimorphism splits. So M can be viewed as a direct summand of G®". Let p be the
projection of G®" onto M, which can be viewed as an endomorphism of G®". So p is an
idempotent of B, and M = G®"p. Since M is a generator, it generates G®". Since G®" is
projective, by Thm. 7.11, p is generating. O

8 Right pseudotraces

Let A be an AUF algebra. Let B be a unital algebra. Let M be an A-B bimodule,
coherent as a left A-module.

For each y € B and £ € M, we write £y as y°P¢. Namely, y°P is viewed as an element
of Endy _ (M).

Definition 8.1. A right coordinate system of M denotes a collection of morphisms

Bj € Homy _(Ae, M) Bl Homy, (M, Ae)

19



where e € A is an idempotent (called the domain idempotent), and j runs through a finite
index set J such that the >}, ; 8; o 37 equals id ;.

Remark 8.2. M has a right coordinate system iff M is A-projective.

Proof. By Rem. 7.1, each N € Cohy,(A) has an epimorphism from (A4e)®" where e € A
is an idempotent and n € Z,. This epimorphism splits iff N is projective in Cohr,(A).
Therefore, similar to Rem. 4.2, we see that M has a right coordinate system iff M is A-
projective. ]

Remark 8.3. In Def. 8.1, one can freely enlarge the domain idempotent e. More pre-
cisely, suppose that f € A is an idempotent such that e < f. One can define a new right
coordinate system

v; € Homy _(Af, M) ¥ € Homa (M, Af)

. 2 (8.1)
vi(af) = Bjlae)  F(§) = H(§)

called the canonical extension of (3;, Bj )jeJ-

Definition 8.4. Assume that M has a right coordinate system (,B],B ) jes- For each v €
SLF(A), define the (right) pseudotrace ¥Tr associated to 1/ to be

YIr:B—>C  YTr(y Z¢ (87 0y o B;)°P)

jed
noting that 37 0 3% o 8; € End 4, (Ae) ~ (eAe)°P. In other words,

UTr(y) = Y (B o y°P o Bi(e)) (82)

jed

Note that in (8.2) we have 3;(e) € M, and hence Bj o y°P o fB;(e) € Ae. So
Bj oyPo fBi(e) = B/j oy°Po ﬁj(ez) = ij oyPo fBj(e) € ede

Proposition 8.5. Assume that M is A-projective. Let y» € SLF(A). Then ¥Tr € SLF(B).
Moreover, the definition of Y Tr is independent of the choice of right coordinate systems.

Proof. From (8.1) and (8.2), it is clear that a canonical extension of the right coordinate
system does not affect the value of ¥Tr(y). Also, note that since A is AUF, for any idem-
potents e, e2 € A there is an idempotent e3 such that er, e < €3. Therefore, to compare
“Tr defined by two coordinate systems (v, &°) and (§,, 3*), by performing canonical ex-
tensions, it suffices to assume that their domain idempotents are equal. Then one can use
the same argument as in Lem. 4.4 to show that (a., @*) and (fs, B*) define the same ¥Tr.
Finally, similar to the proof of Prop. 4.5, one shows that ¥Tr is symmetric. O

Example 8.6. Let M = Ae and B = eAe where e € A is an idempotent. Then the identity
map on Ae gives a right coordinate system. From this, one sees that if ) € SLF(A) then

wTr = 1/}|€A6
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Example 8.7. More generally, let M = (Ae)®" and B = End4 _ (M)°P. So B = e Ae®C"*".
Let

tr : C"*" - C

be the standard trace on C"*". A right coordinate system can be choosen to be the n
canonical embeddings Ae — (Ae)®" and the n canonical projections (Ae)®" — Ae. Then
one easily sees that

QZ}TT = ,¢|€A6 ® tr

Proposition 8.8. Assume that M is A-projective. Let p € B be an idempotent. Let 1) € SLF(A).
Let ¥ Trps : B — C be the pseudotrace associated to M. Then the pseudotrace ¥ Tryy, : pBp — C
associated to the A-(pBp) bimodule Mp is equal to ¥ Tr M’p By i€

¢TrMp = wTrM |po

Proof. Let (f., B’) be a right coordinate system (with domain idempotent e € A) as in Def.
8.1. Then one has a right coordinate system

v; € Homy _(Ae, Mp) Y1 : Homya _ (Mp, Ae)
vilae) = Bilaelp ¥ (&p) = B (¢p)
noting that Mp < M, and hence ¥ is simply the restriction of 3’ to Mp. Using (8.2) one

computes that for each y € B,

U Trarp(pyp) = >, (5 © (pyp)™ o v;(e Zw (57 o (pyp)*® © Bj(e)p)
J

—Z¢ B o (pyp)° o p° o B;(e) Zw B o (pyp)° o Bj(e)) = Y Trar(pyp)

9 Equivalence of left and right pseudotraces

Let A, B be algebras where B is unital.

9.1 Preliminary discussion

In this subsection, assume that A is AUF. We shall consider M € Cohp,(A) such that
the left and the right pseudotrace constructions are both available to the A-(End 4 _ (M )°P)
bimodule M. By Rem. 8.2, M needs to be assumed A-projective. One also needs M to be
End (M )°P-projective. In fact, these two conditions are precisely what ensure that both
left and right pseudotraces can be defined.

Proposition 9.1. Let M be an A-B bimodule. Assume that M is A-coherent. Then the following
are equivalent.
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(1) M has a left coordinate system.
(2) M is B-projective.

Although this proposition will not be used in the current note, we include it here as it
may be of use in the future.

Proof. (1)=(2): See Rem. 4.2.

(2)=(1): Let (e;)iey be as in Def. 5.1. By Rem. 7.2, each e; M is finite-dimensional.
Therefore, the right B-module e; M has an epimorphism from B®" which splits because
M is B-projective (and hence e; M is projective since M = @,_e;M). Therefore, for
each i € J, there is a finite left coordinate system «;, € Hom_ p(B,e;M) and abe e
Hom_ p(e;M, B). Let

Yie € Hom_ g(B,M)  ¥“* e Hom_ 5(M,B)
Yie(D) = aie(b)  FT(E) = &M (es)

Then one checks easily that (; ., 7*)c7 is a left coordinate system of M. O

9.2 Calculation of some left pseudotraces

In this subsection, A is not assumed to be AUF. Let M be an A-B bimodule.
The goal of this subsection is to prepare for the proof of the main Thm. 9.4. The
following theorem is dual to Prop. 8.8.

Theorem 9.2. Assume that M has a left coordinate system. Let p € B be a generating idempotent.
Then the following are true.

1. The A-(pBp) bimodule Mp has a left coordinate system.

2. Let ¢ € SLF(B). Then on A, the pseudotrace associated to ¢|,p, and Mp is equal to the
pseudotrace associated to ¢ and M. Namely,

Teyp™ = Tr, .1)

In this theorem, we do not require that A is AUR.
Proof. Choose a left coordinate system for M:
o; € Hom_ g(B,M) & eHom_p(M,B) i€lJ

Since p is generating, similar to the proof of Thm. 6.5, we can find finitely many elements
ug, Vg in B such that

VpUg = Pk URVK = Qg
U € qpBpy v € prBqy
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where each py, g, € B are idempotents, 15 = ), g is a primitive orthogonal decomposi-
tion of 15, and py, < p for each k. 3 Let

0, € Hom_ ,p,(pBp, Mp)  6°F € Hom_ ,p,(Mp, pBp)
0:1(pyp) = ci(uk - pyp)  0"%(Ep) = vk - & (€p)

noting that o (uy - pyp) = a;(ug)pyp € Mp and vy, - &v"(fp) = v - & (€)p € prBp < pBp.
_ For each ¢ € M, note that if &'(¢) = 0, then 6°%(¢p) = v d'(§)p = 0. Therefore,
0 (¢p) = 0 for all but finitely many i and k. Moreover, we compute

D Ois o 0K (Ep) = Z@k ved (€p)) = D i (upvrd (€p))

i,k ik

_Zaz .’ (ép)) ZO‘@OO‘ (&p) = ¢p

where all the sums are finite. This proves that (6, 5) satisfies Def. 4.1-(a). It is easy to
check Def. 4.1-(b). So we have proved that (6, §) is a left coordinate system of Mp.
It remains to check (9.1). Choose any z € A. By (4.3) and the fact that 1,5, = p,

Trﬂz;f" qu 9”“03:00”@ Zgb (0" o 2 o a;(ugp))
i,k i,k
—Zqﬁelkoazoa, ug)) 2¢vk &z o ai(ug)))
i,k i,k

Since &*, r, a; commute with the right multiplication by vy, and since ¢ is symmetric,

Trﬁ;;Bp Z¢ (z 0 o (ug)) Zgb (x o aj(ugvy)))
—Z¢ (xoai(1p))) = TrM(J:)

This finishes the proof of (9.1). O

Corollary 9.3. Assume that M has a left coordinate system. Let n € Z... Let B = B @ C"*™,

Then the A-B bimodule M®" ~ M ® CY" has a left coordinate system. Moreover, for each
¢ € SLF(B), we have

o8 = Trf, 9.2)

as pseudotraces on A associated to ¢ ® tr € SLF(B B) and ¢ € SLF(B), respectively.
Recall that tr € SLF(C™*") is the standard trace on the n x n matrix algebra.

Proof. Choose a left coordinate system

o; € Hom_ g(B,M) & e Hom_ 5(M,B)

%S0 pi, g are similar to €k, € in the proof of Thm. 6.5.
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of M. Define

v € Hom_ 5(B, M®")  §'e Hom_ z(M®", B)

)

such that
Yyl 0 Yin Yyl 0 Yin
Vi : = [2i(1p),0,...,0] : = [i(y1,1), - @i(yin)]
yn,l e yn,n yn,l e yn,n
&) - d'(&)

y 0 .. 0

7[517"‘7571]: . .

0 .. 0

One checks easily that this is a left coordinate system of M®". Now (9.2) follows by
applying Thm. 9.2 to the A- B bimodule M®" and the generating projection p € B, where
p is the matrix whose (1, 1)-entry is 1 and other entries are 0. O

9.3 The main theorem

Assume that A is strongly AUF (cf. Cor. 6.4) so that A has a projective generator (cf.
Prop. 7.8). The following generalization of Thm. 6.6 is the main theorem of this note.

Theorem 9.4. Assume that M e Cohy(A) is a projective generator. Assume that B =
Endy,— (M)°P so that M is an A-B bimodule. Then M has left and right coordinate systems.
Moreover, we have a linear isomorphism

SLF(A) = SLF(B) 1~ YTr (9.3a)
whose inverse map is
SLF(B) = SLF(A) ¢ — Tr? (9.3b)

Of course, both pseudotraces are associated to M; we have suppressed the subscript
M.

Proof. Note that dim B < +o0 by Prop. 7.9. So dim SLF(B) < +oc0. Since M € Cohy,(A) is
A-projective, by Rem. 8.2, M has a right coordinate system. By Cor. 7.12, we may assume
that M = G - p where

e G = (Ae)®" for some n € Z, and generating idempotent e € A.
e M = Gp where p is a generating idempotent of B = Enda _ (G) = eAe ® C"*".

B = pBp (by Prop. 7.10).
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By Thm. 6.5 and Cor. 9.3, G has a left coordinate system. Therefore, by Thm. 9.2, M has
a left coordinate system.

By Thm. 6.6, we have dim SLF(A) = dim SLF(eAe). Clearly we have a linear isomor-
phism

SLF(eAe) = SLF(eAe ® C"*™) W w®tr

So dim SLF(eAe) = dim SLF(B). By Thm. 6.6, we have dim SLF(B) = dim SLF(B). This
proves dim SLF(A) = dim SLF(B) < +.

Choose any ¢ € SLF(A). By Exp. 8.7, ¥Trq : B — C equals ¢|c 4. ® tr. By Prop. 8.8,
on B = p(eAe ® C™*™)p we have

wTrM = (w‘eAe ® tr)|B =1 ¢
Now ¢ € SLF(B). By Thm. 9.2 and Cor. 9.3,

¢ — (w|6A5®tr)| _ wleAe®tr _ "pleAe
Trhy, = Trg, B =Ty = Tr)s

By Thm. 6.6, Trﬁ'cf“‘ﬁ = . So Tr}@ = 1. We have thus proved that (9.3b) o (9.3a) is the
identity map on SLF(A). This finishes the proof. O

10 Equivalence of non-degeneracy of left and right pseudotraces

Definition 10.1. Let A be an algebra and ) € SLF(A). We say that ¢ is non-degenerate if
{reA:Y(xA)=0}={zrec A:¢(xy) =0,Vyec A}
is zero.

In the following, A is always assumed to be AUF.

Lemma 10.2. Let e € A be an idempotent, and let 1) € SLF(A). If ¢ is non-degenerate, then the
restriction 1|cae is non-degenerate. Conversely, if 1|ca. is non-degenerate and e is generating,
then 1) is non-degenerate.

Proof. Assume that ¢ is non-degenerate. Choose = € eAe such that ¢(zeAe) = 0. Then
P(zA) = Y(exeA) = Y(zede) =0

and hence x = 0. Therefore )|, 4. is non-degenerate.
Conversely, assume that ?|. 4. is non-degenerate and e is generating. Choose z € A
such that ¢)(zA) = 0. Then for each a,b € A,

Y (eazxbe - eAe) = (eaxbeAe) = (zbedea) = 0

Therefore eaxbe = 0. Since b is arbitrary, we have eaxAe = 0. Since e is generating, it is
not hard to show that the left A-module Ae is faithful. (See for example Lem. 11.6.) It
follows from that eax = 0. Therefore eAxz = 0. Similarly, eA is a faithful right A-module.
Hence = = 0. This proves the non-degeneracy of . O
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Proposition 10.3. Assume that 1) € SLF(A) is non-degenerate. Let M € Cohy,(A) be projective,
and let B = Endﬁl,_(M ). Then the right pseudotrace ¥'Tr € SLF(B) is non-degenerate.

Proof. By Prop. 2.6, M can be viewed as a direct summand of P;_; Ae; where eache; € A
is an idempotent. Let e € A be an idempotent such that e > e; for all <. Then M is
a direct summand of (Ae)®". By Prop. 1.2, we have End%’_(Ae)Op = eAe, and hence
End%v_((Ae)@”) = eAe ® C"*". By Cor. 1.4, there is an idempotent p € ede ® C™*"
such that M = (Ae)®"p. By Lem. 10.2, ¥|c4. is non-degenerate, and hence 9|c4. ® tr :
eAe ® C"*" — C is non-degenerate. By Lem. 10.2 again, the restriction of ¥|.4. ® tr to
p(eAe ® C"*™)p (which is B due to Prop. 7.10) is non-degenerate. But this restriction is
exactly ¥Tr due to Exp. 8.7 and Prop. 8.8. O

Theorem 10.4. Assume that A is strongly AUF. Then in Thm. 9.4, for any ¢ € SLF(A), the
non-degeneracy of 1 and of ¥ Tr are equivalent.

Proof. We use the notation in the proof of Thm. 9.4. From that proof, we know “Tr =
(¢]eae ® tr)|p. By Lem. 10.2, ¢ is non-degenerate iff |c4. is so, and 9|c4. ® tr is non-
degenerate iff (1|4 ® tr)| g is so. The equivalence of the non-degeneracy of ¢|. 4. and of
]eae ® tr is obvious. The proof is finished. O

11 Classification of strongly AUF algebras

In this section, we fix an AUF algebra A.

Definition 11.1. For each left A-module M, let M* be the space of linear functionals,
which has a right A-module structure defined by

(¢a)(m) = ¢(am) forallae A,me M
We define the quasicoherent dual
MY ={pe M*:pe¢- A}
={¢ € M* : there exists an idempotent e € A such that ¢ = ¢e}

By Def. 2.2, MV is the largest right A-submodule of M that is quasicoherent.

Remark 11.2. Let M € QCohy,(A). Let (¢;)e5 be as in Def. 5.1. Then, as vector spaces, we
clearly have

M=@eM M =]](eM)*

€7 1€J
It follows easily that

MY = @P(eM)*

i€J
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Definition 11.3. For each M € QCoh; (A), we let
End®(M) = M ®c M

viewed as a subalgebra of End(M).* Suppose that B is an algebra, and M has a right
B-module structure commuting with the left action of A, we let

End’ p(M) = {T € End’(M) : (T&)b = T'(¢b) forall { € M,b e B} (11.1)

Remark 11.4. Let M € Cohr,(A). By Rem. 7.2 we have dime; M < +oo. It follows from
Rem. 11.2 that

End®(M) = {T € End(M) : Te; = 0 for all but finitely many i € J}

Proposition 11.5. Choose M € Cohy,(A), and let B = End s, (M )°P. Then for each generating
idempotent p € B, we have a linear isomorphism

End? 5(M) = End? ,5,(Mp) S S, (11.2)

Proof. Step 1. Let B = B°° = End A4—(M), and let p € B be the opposite element of p.
Then M has a left B-module structure commuting with the left action of A, and R, is the
left multiplication by p.

For each S € EndO,, g(M), note that S|y, = S| maps pM into pM, because
Sp¢ = pSE € pM for each € € M. It is clear that S|, commutes with the action of ﬁﬁﬁ.
That S|, belongs to End’(M) can be checked from Rem. 11.4. This proves that S|y,

belongs to End(l’p pp(Mp). We have thus proved that the linear map (11.2) is well-defined.

Step 2. Let us prove the surjectivity of (11.2). By Rem. 5.4, B is finite-dimensional.

Therefore, we have an orthogonal primitive decomposition 15 —p = f1 + -+ + f, in B.
In this case, we have

M=pM®f IM®- & fnM

By Prop. 6.2, for each 1 < ¢ < n, f; is isomorphic to a sub-idempotent g; of p, i.e., there
exist u; € f;Bq; and v; € ¢; Bf; such that u;v; = f; and v;u; = ¢; < p (Where ¢; € B is an
idempotent).

Now, we choose T € Endg’p pp(Mp) = End(i’p pp(DM). Define a linear map

S:M—>M £ TF)+ > wl(vig) (11.3)
=1

By Rem. 11.4, we have S € End’(M). We claim that S commutes with the action of B
(and hence S € Endg g(M)). If this is proved, then since T clearly equals S|y, = S|pmr
(because v;p = 0, see below), the proof of the surjectivity of (11.2) is complete.

Note that since p, f1, ..., f, are mutually orthogonal, we have

Uiy = 0 Vv = 0 for all i,j

*That is, for each € € M, ¢ € MY, the operator £ ® ¢ sends each np € M to ¢(n) - €.
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vju; =0 foralli # j
vip=0 pu; =0 for all 4

Using this observation and the fact that 7' : pM — pM commutes the left action of ﬁéﬁ,
we compute that for each j and £ € M,

S(vi€) = T(pv&) + 0 = T(v;¢)
Ujuj=qjeﬁ§ﬁ

v;S(§) = v T(PE) + vju;T(v;€) === 0+ T(q;v;§) = T(v;§)

and hence S(v;§) = v;5(); similarly,

S(u;€) = T(Pus€) + T (vjus€) ~2ZLLEL 4 v, T(5E) = uy T (PE)

u;S(§) = uiT(pE) + 0 = uyT(pg)
and hence S(u;€) = u;S(§). Moreover, for each b € B we have

S(pbp€) = T(pbp§) + 0 = pbpT'(p€)
pbpS(§) = pbpT (P€) + 0 = pbpT (pg)
and hence S(pbp¢) = pbpS(§). This proves that S commutes with the left action of B,

since B is generated by {u;,v; : 1 <i < n}and ﬁéﬁ—to see this, note that for each b € B,
by setting fo = up = vo = p, we have

n

b= Z flbf] = Z uibmvj

,5=0 1,5=0

where each b; ; := v;bu; commutes with the left actions of A and satisfies b; ; = pb; ;p,
and hence belongs to pBp.

Step3.If S € Endg’B(M) and S|z = 0, then for each £ € M, we have

n

S(&) = S(BE) + >, S(fi€) = S(BE) + Y. uiS(vif)
i=1 i=1

where p¢,v;& € pM. Therefore S = 0. This proves that (11.2) is injective. O

Lemma 11.6. Suppose that e € A is a generating idempotent. Then we have a linear isomorphism
A= End’ . (Ae) (11.4)

sending each a € A to the left multiplication by a.

Proof. It is obvious that the left action on Ae by a € A belongs to End(i’6 4.(Ae). Therefore,
the map (11.4) is well-defined.

Suppose that the left multiplication of a € A on Ae is zero. Then aAe = 0. Since A is
AUF and hence almost unital, there is an idempotent p € A such that a = ap. Since e is

28



generating, by Cor. 7.7, Ae is a generator of Cohy,(A). Therefore, Ap is a quotient module
of (Ae)®" for some n € Z . Thus aAp is a quotient space of (aAe)®", and hence aAp = 0.
This proves ap = 0, and hence a = 0. We have thus proved that (11.4) is injective.

Choose T' € End(ly oac(Ae). Since T € End’(Ae), by Rem. 11.2, there is an idempotent
f € Asuchthat T = fT'f. It follows that fT f| 4. belongs to End_ . 4.(fAe). Since A is
AUF, we may enlarge f so that e < f also holds. We claim that End_ . 4.(fAe) consists
of the left multiplications by elements of fAf. If this is true, then T'|fa. = fTf|fa4e is
the left multiplication by faf for some a € A. It follows that for any b € A, we have
Tbe = T fbe = fafbe, and hence T is the left multiplication by faf on Ae, finishing the
proof that (11.4) is surjective.

By Cor. 6.3, the idempotent e € fAf is generating in fAf. Applying Prop. 11.5 to the
finite-dimensional unital algebra fAf and its (finite-dimensional) coherent left module
fAf, we see that End_ ca.(fAe) = fAf|f4e. This proves the claim. O

Theorem 11.7. Suppose that A is strongly AUF, and let G be a projective generator of Cohy,(A)
(which exists due to Prop. 7.8). Set B = Enda _(G)°P. Regard G as an A-B bimodule. Then we
have a linear isomorphism

A =5 End? 5(G) (11.5)
sending each a € A to the left multiplication of a on G.

Proof. By Cor. 6.4 and Prop. 7.8, A has a generating idempotent e. If G = Ae, then
Endy _(G) = eAe due to Prop. 1.2. Therefore, by Lem. 11.6, the map (11.5) is bijective.

If G = (Ae)®" where n € Z,, one easily checks that B = eAe ®@ C"*" where C"*" is
the matrix algebra of order n. The bijectivity of (11.5) then follows easily.

Finally, let G' be any general projective generator. By Cor. 7.12, we may assume that
G = (Ae)®p where n € Z,, and p is a generating idempotent of B = End 4 _ ((Ae)®")oP ~
eAe ® C™*™. By Prop. 7.10, we have B = pf?p. Therefore, by Prop. 11.5, the map

End’ 7 5((4e)%™) — End? 5(G)
sending each S to S| is bijective. By the previous paragraph, the map
A— Endg 5((Ae)®™)

sending each a to the left multiplication by a is bijective. Therefore, their composition,
namely (11.5), is bijective. O

Remark 11.8. In Thm. 11.7, the right B-module G is a projective generator in the category
Mod®(B) of right B-modules—that is, G is projective in Mod®(B), and any object in
Mod®(B) has an epimorphism from a (possibly infinite) direct sum of G.

Proof. The projectivity of G in Mod®(B) is due to Thm. 9.4 and Rem. 4.2. Using the
notation in the proof of Thm. 11.7, we may assume G = (A4e)®"p and B = p(ede ®
C™*™)p where e € A and p € eAe ® C"*™ are generating idempotents. Since B is unital,
B is generating in Mod™(B). Therefore (eAe ® C"*")p is generating in Mod®(B). Since
(eAe ® C™™)p is a direct sum of (eAe ® C1*") = (eAe)®p = eG, we conclude that eG is
generating in Mod®(B). Therefore G is generating in Mod®(B). O
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Theorem 11.9. Let A be an algebra. The following are equivalent.
(1) Ais strongly AUF.

(2) A is isomorphic to Endg g(M) where B is a unital finite-dimensional algebra, M is a
projective generator in Mod™(B), the vector space M has a grading

M =@ M(i)

i€J

where each M (i) is finite-dimensional and is preserved by the right action of B, and
End(i’ (M) is defined by

End” (M) :={T € End(M) :(T'm)b = T(mb) forall m € M,be B,
T'|rri) = 0 for all by finitely many i € J}

Proof. The direction (1)=(2) follows from Thm. 11.7 and Rem. 11.8. Let us prove the
other direction.

Assume that A = Endg, g(M) where End(l’ (M) is described as in (2). Let e; be the
projection of M onto M (i). Then e; clearly belongs to A, and each T € A can be written as
T =3, jey€¢iTej where e;Te; = 0 for all but finitely many 4, j. This proves that A is AUF

Since M is a projective generator in Mod®(B), for each finite subset I < J, My :=
@®,c; M (i) is projective in Mod®(B) (since it is a direct summand of M). Let 1z =
p1 + -+ + pp be an orthogonal primitive decomposition of 15 in B. By Thm. 5.5, ir-
reducible finite-dimensional right B-modules are precisely those that are isomorphic to
prB/rad(pyB) for some k. Since M is generating in Mod®(B), it has an epimorphism to
prB/rad(pyB) for each k. This epimorphism must restrict to a nonzero morphism (and
hence an epimorphism) M (i) — pipB/rad(ppB). Let I = {i1,...,in}. Then M; has an
epimorphism to each irreducible right B-module. It follows from Prop. 7.6 that M7 is a
projective generator in the category of finite-dimensional right B-modules.

Let er = > ;s ei, which is an idempotent in A. We claim that e; is a generating idem-
potent in A, which will complete the proof that A is strongly AUFE.

Let € be any primitive idempotent of A. Then ¢M is a finite-dimensional right B-
module, since any element of A has finite range when acting on M. Moreover, since ¢ is
primitive in A, the right B-module €M is indecomposible. Since €M is a direct summand
of the projective right B-module M, it follows that M is a finite-dimensional indecom-
posible projective right B-module. Therefore, since M; = ey M is a projective generator,
similar to the the end of the proof of Thm. 7.11, we conclude that the right B-module
eM is isomorphic to a direct summand of e; M. Thus, by Thm. 7.10, ¢ is isomorphic to a
subidempotent of ey in A. This proves the claim that e; is generating. O
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