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Abstract

Let V. = P,y V(n) be a Cy-cofinite vertex operator algebra, not necessarily
rational or self-dual. In this paper, we establish various versions of the sewing-
factorization (SF) theorems for conformal blocks associated to grading-restricted gen-
eralized modules of V®V (where N € N). In addition to the versions announced in
the Introduction of [GZ23], we prove the following coend version of the SF theorem:

Let § be a compact Riemann surface with NV incoming and R outgoing marked
points, and let ® be another compact Riemann surface with K incoming and R out-
going marked points. Assign W € Mod(V®Y) and X € Mod(V®X) to the incoming
marked points of § and & respectively. For each M € Mod(V®%), assign M and its
contragredient M’ to the outgoing marked points of § and & respectively. Denote
the corresponding spaces of conformal blocks by 72 (M ® W) and 7§ (M’ ® X). Let
the X be the (N + K)-pointed surface obtained by sewing §, ® along their outgoing
marked points. Then the sewing of conformal blocks—proved to be convergent in
[GZ24]—yields an isomorphism of vector spaces

MeMod (VOR)
J TFMOW) Q¢ T (M' @ X) ~ .73 (WRX)

We also discuss the relation between conformal blocks and the modular functors

defined using Lyubashenko’s coend in the case where V is strongly finite and rigid.
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0 Introduction

0.1 Sewing-factorization (SF) theorems: from rational to irrational VOAs

In this final part of our three-part series, we prove the sewing-factorization (SF) theo-
rems for conformal blocks of a Cs-cofinite vertex operator algebra (VOA) V = @), . V(n),
several versions of which were originally announced in the Introduction of [GZ23].
Roughly speaking, such a theorem asserts that sewing conformal blocks establishes an
equivalence between the spaces, sheaves, or functors of conformal blocks associated with
compact Riemann surfaces before sewing and those associated with the surfaces after
sewing.

In the literature on rational VOAs, the proof of the sewing-factorization (SF) theo-
rem for rational VOAs holds a central position [TUY89, Zhu96, Hua95, Hua05a, NT05,
Hua05b]. A recent breakthrough in this area is the proof of the factorization formulation
and a “formal sewing” theorem for rational Cs-cofinite VOAs in [DGT24]. This result was
later translated into the analytic setting, leading to a proof of the SF theorem for rational
Cs-cofinite VOAs; see [Gui24, Thm. 12.1].

However, even in the case of rational VOAs, there are discrepancies in the formulation
of the SF theorem: for instance, whether to involve nodal curves; whether to formulate
the theory in terms of coinvariants or conformal blocks; and whether to treat Riemann
surfaces of arbitrary genus directly, or to first study lower-genus cases and then reduce
higher-genus cases to lower-genus cases via pants decomposition. Unfortunately, the
literature does not seem to provide a clear and detailed account of how one version of the
rational SF theorem can be translated into another.

The situation becomes even more intricate when considering C>-cofinite VOAs that
are not necessarily rational. Here, we focus on the complex-analytic setting. (For an



algebro-geometric perspective, see [DGK25, DGK23].) The theory of vertex tensor cate-
gories developed by Huang-Lepowsky-Zhang in [HLZ14], [HLZ12a]-[HLZ12g], particu-
larly their construction of associativity isomorphisms in the category Mod(V) of grading-
restricted generalized V-modules, can be regarded as a genus-zero version of the SF the-
orem. (The precise relationship between the associativity isomorphisms and the SF theo-
rems proved in this paper will be given in Subsec. 3.4.2.) In particular, the product and
iterate of (logarithmic) intertwining operators may be interpreted as instances of sewing
conformal blocks—that is, as constructing conformal blocks via contraction.

However, as shown in [Miy04], the usual sewing of conformal blocks corresponding
to the self-sewing of a sphere is insufficient to produce all genus-one conformal blocks.
To recover all torus conformal blocks from genus-zero data, one must instead employ
pseudo-g-traces, cf. [Miy04, AN13, Hua24]. The core issue lies in self-sewing, that is,
sewing a compact Riemann surface along a pair of points on the same connected com-
ponent. As emphasized in the introductions of [GZ23, GZ24], the distinction between
self-sewing and disjoint sewing is crucial: while the usual sewing of conformal blocks
(defined via contraction) is sufficient in the case of disjoint sewing, it is generally inade-
quate for self-sewing.

Besides pseudo-g-traces, left exact coends offer another approach to addressing the
challenge of self-sewing conformal blocks. This method was originally introduced by
Lyubashenko in [Lyu96] in the context of topological modular functors. (See also [FS17,
HR24] for discussions.) To our knowledge, the precise relationship between pseudo-¢-
traces and left exact coends remains unclear. Nevertheless, the coend version of the SF
theorem presented in this paper can be more directly connected to pseudo-g-traces.

Before stating our version of the SF theorem, we begin with a brief overview of the
left exact coend approach in the VOA setting.

0.2 Self-sewing and left exact coends

Coends naturally generalize the construction of “direct sums of a complete set of irre-
ducible objects” in the semisimple case. Let N € N, and let & be a category. Recall that if
F : Mod(V®Y) x Mod(V®N) — 9 is a covariant bi-functor and A € 2, then a family of
morphisms

ow: F(W W) - A 0.1)

for all W € Mod(V®") (with contragredient module W’) is called dinatural if for any
M e VON and T' € Homye~ (M, W) (with transpose T*), the following diagram commutes:

F(T*,idy)

F(W', M) F(M', M)
F(idyy ,T)J MPM
FW. W) — %, 4

A dinatural transformation (0.1) is called a coend (in 2) if it satisfies the universal prop-
erty that for any B € 2 and any family of morphisms ¢w : F(W, W) — B (for all



W e Mod(V®N)) there is a unique ® € Homy (A, B) such that ¢y = ® o ¢y holds for all
W. In that case, we write

A:

WeMod(VON)
f F(W' W)

In the theory of VOAs, the sewing of conformal blocks provides a fundamental class
of dinatural transformations. We begin by recalling some notation. Let

% = (CN‘gh R 7<NH</7 gll) (02)

be an (N + 2)-pointed compact Riemann surface, that s, C is a (not necessarily connected)
compact Riemann surface (without boundary), and ¢, . ..,sn,<’,s” are distinct points of
C. Assume that each component of C contains one of S1,...,6N. We associate a local
coordinate 7; to ;.! Similarly, let £ and w be local coordinates of ¢’ and ¢” respectively.
For p e C* with reasonably large |p|, we obtain a new compact Riemann surface

%p = (Cp|§17"‘7§N)

(with local coordinates 71, . .., ny) by sewing X along the pair of points ¢’, ¢” with mod-
uli p. More precisely, X, is constructed by removing a closed disk D’ c V' centered at
¢/, removing another closed disk D” < V" centered at ¢”, and then gluing the resulting
surface by identifying z € V' — D" with y € V" — D” whenever {(z) - w(y) = p.

Fix W € Mod(V®N ), and associate W to the ordered marked points <y, . ..,y of X and
X,. For each M € Mod(V), associate M and its contragredient M to ¢, ¢” respectively. Let
T (W) be the (finite-dimensional) space of conformal blocks associated to W and X,,.2

Let ﬂg (W® M ® M) be the space of conformal blocks associated to W @ M @ M’ and X
We have proved in [GZ24] that for each ) € fg (W®M ® M), the contraction

S : W — C{qg}[log ]
W bRO-® 1) = 3 h(w® ¢ Ve () ® ()
AeC aely

converges absolutely, where (eq(a))aca, is a (finite) basis of W,;, the generalized
eigenspace of L(0) on M with eigenvalue A, and (€)(a))qen, is the dual basis. Moreover,
[GZ24] shows that for each p, we have S|, € T (W). Therefore, by letting M € Mod(V)
vary, we obtain a family of linear maps

TEHWROMOM) — FE (W) b S, (0.3)

which is clearly dinatural.

'In other words, 7; is a univalent (=injective holomorphic) function on a neighborhood of ; satisfying
ni(s;) = 0.

*Thus, each element of ﬂx”; (W) is a linear functional W — C satisfying a suitable invariance property.
See Subsec. 1.2.5 for details.



In the case of self-sewing, the dinatural transformation (0.3) is generally not a coend.
Indeed, by the universal property of coends, any dinatural transformation into

Vect := the category of finite-dimensional C-linear spaces

must be surjective in order to be a coend. However, Miyamoto’s work [Miy04] demon-
strates that when the surface C in (0.2) is taken to be P! and N = 1,W = V, the span of
the images of (0.3) over all M € Mod(V) fails to be surjective when V is not rational.

Lyubashenko’s work [Lyu96] suggests a method for obtaining a coend from (0.3). (See
also [FS17, Prop. 9] or [HR24, Prop. 4.8].) Instead of fixing W, we let W € Mod(V®Y)
vary. Then, noting that the conformal block functor is a left exact contravariant functor
(cf. Thm. 1.22), the dinatural transformation (0.3) gives rise to a family of morphisms

TH-QMOM) — 7 (-) (0.4)

in the category Lex(Mod(V®N), Vect) of left exact contravariant functors from Mod(V®Y)
to Vect. It is expected that, at least when V is strongly finite—that is, V is Cs-cofinite, self-
dual, and satisfies dim V(0) = 1—the family of morphisms (0.4) is a left exact coend (i.e.,
a coend in Lex(Mod(VON), Vect)). Following the convention in the literature of denoting
left exact coends by §, our expectation is that (0.4) induces an equivalence of left exact
functors

MeMod(V)
$ ZH-OMOM) ~ 7, ()

At present, it is unclear to us how to prove the above statement about left exact co-
ends. Moreover, since Lyubashenko’s approach is based on (not necessarily semisimple)
modular categories—which are, in particular, rigid—and since Mod (V) is not necessarily
rigid but only a Grothendieck-Verdier category when the Cs-cofinite VOA V is not self-
dual (cf. [ALSW21]), it remains uncertain whether the above result on left exact coends is
expected to hold in the non-self-dual case.

On the other hand, the SF theorem(s) established in this paper will indicate that, in the
case of disjoint sewing of compact Riemann surfaces along multiple pairs of points, the
sewing of conformal blocks is indeed a coend in Vect. Moreover, in [GZ24], we showed
that pseudo-g-traces arise naturally within our framework. A more detailed discussion
of the relationship between our SF theorems and pseudo-g-traces will be provided in an
upcoming work.

0.3 Disjoint sewing and coends in Vect

We now introduce our SF theorems. Let

Sz(xll,...,x}%|01|x1,...,x]\z) Q5=(yi,...,y}z\Cﬂyl,...,yK) (0.5)

be (R, N)-pointed and (R, K)-pointed compact Riemann surfaces. That s, § is an (R+NN)-
pointed compact Riemann surface, where the marked points are divided into NV incoming
marked points z1,...,zy and R outgoing marked points. & is understood in a similar



way. Moreover, we fix local coordinates at these marked points, and we assume that each
component of C; contains one of z1, ...,z y, and each component of Cy contains one of
Yy - YK Yoo > Ype

Choose pe = (p1,-..,pr) € (C*)f where |p1],...,|pr| can be reasonably large. The
sewing of § and & along the R pairs of points (z},), ..., (¢, y) (using their local co-
ordinates) with moduli p, is denoted by

Xp, =SEud),, =Cplzr,...;2N, Y15+ UK)

Fix W € Mod(V®") and X € Mod(V®X), and associate them to the ordered marked points
x1,...,xzy and y1,. .., yx respectively. Similar to (0.3), for each M e Mod(V®E) we have
a sewing map

TH(MO®W) @ T¢ (M ®X) — 73, (W X)

0.6
YOX > SWOX)|, 00

defined by contracting the M-component of  : M ® W — C with the M'-component of
X : M ® X — C. (See Def. 3.2 for the rigorous definition.)

The following is one version of our SF theorems, which may be regarded as the VOA
analogue of [HR24, Cor. 4.9]. In the genus-0 case, this theorem was obtained in [Mor22].

Theorem 0.1 (=Thm. 3.7). Assume that V is Cy-cofinite. Then, as M € Mod(V®R) varies, the
family of linear maps (0.6) is a coend in Vect. In short, the sewing of conformal blocks yields a
linear isomorphism

MeMod (VOR)
J T (MEW) ®c ¢ (M' ®X) ~ 7 (WRX)
Since 7 (M®W) ®c ¢ (M’ ®X) is canonically isomorphic to 7 (M@W@M' @ X)
(cf. Thm. 1.24), Thm. 0.1 can thus be illustrated by Fig. 0.1. Moreover, by the pa-
rameter theorem for (co)ends [ML98, Sec. IX.7], as W and X vary, (0.6) yields a co-
end in Fun(Mod(V®Y) x Mod(V®E) Vect), the category of contravariant functors from
Mod(V®N) x Mod(V®X) to Vect. Furthermore, by Thm. 1.22, this coend is left exact.

MeMod(VOE) M M
[ (a3 )
29*(}&'.00 Z = W)

Figure 0.1. The pictorial illustration of Thm. 0.1.

We emphasize that V is not assumed to be self-dual. Therefore, the topological mod-
ular functor version of Thm. 0.1 (e.g., [HR24, Cor. 4.9]) is expected to hold in categories
more general than modular categories.



0.4 The SF theorem in terms of (dual) fusion products

In this paper, we will prove Thm. 0.1 by first proving an equivalent version of the SF
theorem. Fix W and X. Since the conformal block functors are left exact (cf. Thm. 1.22),
and since any functor from a finite C-linear category to Vect is representable [DSPS19, Cor.
1.10], there exists Nz(W) € Mod(V®#) such that we have an equivalence of contravariant
functors

M +— Homyer (M, Elg(W)) o~ M — %* (M () W) (0.7)

The element 1 € 7 (Ng(W) ® W) corresponding to id € Homyer (N (W), Nz(W)) via the
above equivalence is called the canonical conformal block, and the pair (Nz(W),J) is
referred to as a dual fusion product. The contragredient

5 (W) := (N5 (W)’
is called a fusion product of W along 3.
By [FS17, Prop. 4], the family of linear maps
Homyer (M, Ng(W)) ®c T (M' @ X) — ' ( 5 (W) @ X)
T®x — xo (T"®idx)

for all M € Mod(V®%) is a coend. (See Lem. 3.6 and its proof for more explanations.)

Therefore, the family of linear maps
75 MOW) @ 75 (M'®X) — 75 (&5 (W) @ X)

0.8
1|)®Xr—>XO(T$®idx) ©8)

(for all M) is a coend, where T}, is the unique element of Homyer (M, Ngz(W)) correspond-
ing to \ through the equivalence (0.7).

Since (0.6) is dinatural, the universal property of the coend (0.8) guarantees a unique
linear map @ : 5 (Kz (W) ® X) — T3¢ (W®X) such that ® o (0.8) = (0.6) holds for all
M. One checks easily that the following linear map satisfies this condition (cf. the proof
of Thm. 3.7):

T (5 (W) ®X) — F (WX)
(0.9)
X~ SAx),,

Therefore, proving Theorem 0.1 is equivalent to establishing the following version of the
SF theorem, which was originally announced in the Introduction of [GZ23].

Theorem 0.2 (=Thm. 3.5). Assume that V is Cy-cofinite. Then (0.9) is a linear isomorphism.

0.5 Main idea of the proof

Theorem 0.2 can be proved in full generality once it is established for the special case
where R = 2, K = 0 and & is the (2, 0)-pointed sphere

9N = (o0, 0|Pt)

7



with local coordinates 1/¢ and (, where ¢ denotes the standard coordinate of C. We now
outline the main idea of the proof of Theorem 0.2 in this key special case. Since X €
Mod(V®Y) = Vect, we may assume that X is the scalar field C.

It is not hard to prove that (0.9) is injective; the difficulty lies in proving the surjectivity.
As we explain below, our proof of surjectivity bears a structural resemblance to the proofs
of modular invariance in [Miy04] and [Hua24].

Foreachr > 0, welet D) = {z € C: 0 < |z| < r}. Then, by varying p, = (p1,p2), we
obtain a family of surfaces over the base D, x D; for some 7, p > 0, which arises as the
pullback of another family X (with base manifold D;}) along the map D;* x D — Dy,
sending (p1,p2) to p = p1p2. Indeed, X is the family obtained by sewing & along the two
outgoing marked points z/, .

By what we have proved in [GZ24], the spaces of conformal blocks over the fibers of
X assemble into a vector bundle 7 (W) over D), equipped with an (automatically flat)
connection under which any section defined via sewing (as in (0.3)) is parallel. Conse-
quently, any element ), € 73 (W), for fixed p, extends to a multivalued parallel section
P of Z3F(W). It remains to show that |,—¢,4, = S(A®X) for some x € T (Xz(W)). (More
precisely, we want to prove that the multivalued section (q1, g2) — |44, coincides with
(q1,92) = SA®X)g1,¢2-)

By the basic theory of linear differential equations with simple poles, the multivalued
section g € Dy, — |, admits a formal expansion (cf. Lem. 2.7) of the form

L
P = Z Z Py 1q" (log q)" where each 1, ; : W — C is a linear functional
1=0neC

Here, L € N, and there exists a finite set £ < C such that,,; = 0 whenever n ¢ E 4+ N.
The remainder of the proof is divided into the following three steps:

(1) Show that each 1, ; belongs to Nz (W). (Note that Nz (W) was explicitly constructed
in [GZ23] as a linear subspace of the full dual space W* of W.) This is established in
Lem. 2.9.

(2) Show that the formal series p = >, > 1,,,q"(logq)! € Nz(W){q}[logq], viewed
as a linear map Xlz(W) — C{q}[log¢], is invariant under the left and right actions
of V. (Recall that R = 2, so Xz(W) € Mod(V®?).) This is proved in Prop. 2.10,
equivalently, Cor. 2.11.

(3) Show that ¢d,\b corresponds to the action of the zero-mode Virasoro operators on
1. See Prop. 2.12, or equivalently, Cor. 2.13.

Our proofs of all these three steps rely on the analysis of global meromorphic sections of
the sheaves of VOA, specifically Thm. 1.11 and Prop. 1.14.

Once these three steps have been proved, we define ¥, as a linear functional xz(W) —
C,tobe X = >,,cc Vno0. By Step (3), this sum is finite when evaluated on any element
of Xz(W). Step (2) then implies that x € J; (Xlz(W)). Finally, using (3), one verifies
PYlg=q1q» = S(A® x), finishing the proof of Thm. 0.2. (Note that Step (1) is essential, as
both (2) and (3) rely on the conclusion that each 1, ; € Nz(W).)



To see how the above proof strategy parallels those of [Miy04] and [Hua24], consider
the case where § is the (2, 1)-pointed sphere

Q = (o0, 0[P1) (0.10)

equipped with the local coordinates 1/¢,(,{ — 1 (where ( is the standard coordinate of
C). Then Xq(W) plays a role analogous to that of the AN (V)-bimodules AN (W) (for
N e N) considered in [Hua20, Hua22, Hua24]. (When W =V, [xIo (V) also serves a similar
function to the higher-level Zhu algebras introduced in [DLM98] and used in the proof of
modular invariance in [Miy04].) In this analogy:

¢ Step (1) corresponds to proving that each 1/15.;\’; k,j N [Hua24, Thm. 4.3], initially just a

linear functional on UN (W), descends to a linear functional on AN (W).

¢ Step (2) resembles the argument that each wé\f; ;1 a symmetric linear functional on
AN (W) (see the formula preceding (4.9) in [Hua24, Thm. 4.3]).

¢ Step (3) reflects a compatibility condition with the Virasoro action, akin to Eq. (4.9)
of [Hua24, Thm. 4.3].
0.6 Relationship between conformal blocks and topological modular functors

We close this Introduction with a brief discussion of the relationship between confor-
mal blocks and the (topological) modular functors introduced by Lyubashenko [Lyu96],
illustrating the significance of our SF theorems. We continue to assume that V is Cs-
cofinite, though we do not initially assume that V is self-dual.

Assume that & in (0.5) is an (R, K)-pointed sphere (i.e., Co = P!), written as

6= (y/17ay;%’P1|y117yK)

Let T be a (1,1)-pointed torus. Let § in (0.5) be IR 5 disjoint union of R copies of T,
which is (R, R)-pointed. By sewing § and & along their outgoing marked points using
some moduli p, = (p1,...,pr), we obtain an (K + R)-pointed genus-R surface

%p. = (Cpo‘l'l""7xR7y17"'7yK)

See Fig. 0.2.

Figure 0.2. Sewing § with &.



Let X1,...,Xx € Mod(V), and associate X; ® - -- ® X € Mod(V®X) to the ordered
marked points y1, . . ., yx. Associate VO to z1,..., xg. Let

Q.jp. = (Cp.

By the propagation of conformal blocks (cf. [GZ23, Cor. 2.44]), we have a linear isomor-
phism of spaces of conformal blocks

ylv"'ayK)

y3€*p,(V®R<>9X1@"~®XK) ~ Ty (X1®-- @Xk)

defined by inserting the vacuum vector 1 into each tensor component V. Therefore, by
Thm. 0.2, the sewing map induces a linear isomorphism

Ty, (X1® - ®Xg) ~ T (K5 (VEF) @X1® - ®Xk)

Since the fusion product of a disjoint union is the tensor product of the fusion products on
each component (cf. Thm. 1.24), we have a canonical equivalence [xz(V®?) ~ (X V)®F,
Therefore, the above equivalence becomes

Ty, (X1® - ®Xg) ~ T (@E:V)*F @X1® - ®Xk) 0.11)

Let us express the RHS of (0.11) in terms of the monoidal structure of Mod(V). Define
(1, 2)-pointed and (2, 1)-pointed spheres

P = (1|PYoo,0) Q= (c0,0[P|1)
Then gives the tensor bifunctor @ of Mod(V), i.e., for each Wy, W5 € Mod(V),
Wi 0 Wy = Kyp(W; @ W)
Therefore, (0.11) can be rewritten as
Ty (X1® - ®@Xg) = Homy (V)™ 53X, B+ 0 Xk, V) (0.12)

The V-module XtV can be related to Lyubashenko’s coend

M B M

MeMod(V)
L:= J

in the following way. By the transitivity of fusion products (Thm. 3.15), another version
of the SF theorem, we have a canonical isomorphism

KV >~ Xip(XqV) (0.13a)
See Fig. 0.3. On the other hand, it can be proved that the V®2-module NaV is a coend

JMeMod(V)

NaV ~ M/®M

10



Xp(HaV) C@ % \%

Figure 0.3. The transitivity of fusion products XV ~ Xip(XqV).

(More explanations will be given in a future work.) Therefore, since the functor Xy :
Mod(V®?) — Mod(V) is a left adjoint—specifically, it is the left adjoint of M € Mod (V) —
Na (M')—it preserves coends. This implies

L ~ Ry(SaV) (0.13b)

Now assume that V is strongly finite (in particular, that V ~ V’), and that the conjec-
tured rigidity property of V holds. Then, by [McR21], the category Mod(V) is modular.
In this case, one can show that the coend NV is self-dual, i.e., NqV ~ XypV. (Again, this
will be explained in more detail in a future work.) Substituting this into (0.13), we obtain
the isomorphism

L ~XsV
Consequently, the isomorphism (0.12) becomes

Ty (X1 ®- - ®Xg) ~ Homy (LT 0 X, 8- 3 Xk, V) (0.14)
where the LHS is the space of genus- R conformal blocks (with input modules X, ..., Xg),
and the RHS coincides with Lyubashenko’s construction of modular functors (cf. the end
of [Lyu96, Sec. 8.2]).
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1 Preliminaries

1.1 Notation

In this paper, we continue to use the notations listed in [GZ24, Sec. 1.1]. In addition
to these notations, we also adopt the following notations and conventions.

If W is a vector space, and ¢1, . . . , ¢ are (mutually commuting) formal variables, then
W{ge} = W{qi,...,qn} denotes the set of all

n n
D Wty
necE4+CN

where E is a finite subset of CV, and each wy, € W.

Throughout this paper, we fix an (N-graded) Cs-cofinite vertex operator algebra
(VOA) V = @, .y V(n) with conformal vector c. For each N € N, we let Mod(V®) be the
category of grading-restricted (generalized) V®¥-module, which is an abelian category
by [Hua09].

For each r € (0, +o0], we let

D,={zeC:|z| <r} D) =D, \{0} 13;( = the universal cover of D,  (1.1a)

r

Foreach ry,...,rn € (0,4x], we let
Dy, =Dy, x -+ x Dy Dy, =D; x---x D], ﬁé:ﬁéx---xﬁ;} (1.1b)

Recall from [GZ24, Sec. 1.1] that if W € Mod(V®Y) and v € V, the i-th vertex operator
isYi(v,2) = 3,07 Yi(0)nz " His Y (1®- - -®@v®- - -®1, 2) where v is at the i-th component,
and L;(n) = Y;(c),—1. We also write

Y/ (v,2) = YilUd(v2)v, 27 1) (1.2a)

where U(y.) = X1 (=232 In particular, U(y1) = €0 (=1)4©). Clearly U(y.)! =
U(v1/-), and hence

Yi(v,2) = Y,(U(Yz)vvzil) (1.2b)

)

For each k € Z, let
Yi(v) iy = Res.—oY; (ZF O~y 2)dz Y/ (v) ) = Res,—oY] (ZF*HO~1y 2)dz  (1.3)

If W e Mod(V®Y) and Ay, ..., Ay € C, then Wp,j is the subspace of all w € W such
that for all 1 < i < N, w is a generalized eigenvector of L;(0) with eigenvalue \;. The
finite-dimensional subspace W] is defined to be the direct sum of all W, ; where
R(pi) < R(N;) forall 1 < ¢ < N. Then the contragredient V®N _module of W, as a vector
space, is



Then for each w € W, w' € W we clearly have
Yi(v, 2)w,w'y = (w, Y] (v, 2)w') (1.4)

The algebraic completion of W is

W=W)* = [] Wp,
Ae€CN

We let Py, and P, be the projections of W onto Wp,,; and W, respectively.
If W is a vector space, we let (-,-) be the evaluation pairing between W and W*. In
other words, for each w € W,{ € W*, we write

b(w) = (b, w) = (w, b

If A, B are sets, then both A — B and A\B denote {a € A : a ¢ B}. Note thatif A, B are
hypersurfaces in a complex manifold, the notation A — B, which denotes a divisor, has a
different meaning. (Cf. the proof of Prop. 1.14.)

For any complex manifold X, recall that ©x is the sheaf of (germs) of holomorphic
tangent fields of X, i.e., the holomorphic tangent bundle of X. We let wx be its dual sheaf
©%, the holomorphic cotangent bundle of X. In particular, if X is a Riemann surface,
then wx is the sheaf of (germs of) holomorphic 1-forms on X.

1.1.1 Series with logarithmic terms

Definition 1.1. Let X be a complex manifold. Let R € Z., and let I' = CF be locally
compact. Let D be a finite subset of C*. Let Ly, ..., Lg € N. We say that the formal series

f(ze) := Z Z Croga 2t 2 (log 21) -+ (log 2g)" " (1.5)

ne€D 0<le< L

(where each ¢,,;, € O(X)) converges al.u. on X x I' if, for each 0 < [, < L, (i.e.
0<!l;<L;forall 1 <i< R)and each compact K < X x I' we have

sup Z |Cna i ()27 -+ 257 < 400 (1.6)

(z,20)EK ;) D

Suppose that W is a vector space and { : W — O(X){z.}[log z.] is a linear map such that
for each w € W, the series \(w) is of the form (1.5). We say that 1\ converges a.l.u. on
X x I''if for each w € W, the series {(w) converges a.l.u. on I'.

Now,weletD = E+ N = {a+ §: «a€ E, € N} where F is a finite subset of C. Let
L € N. We recall the following result from [Hual7, Prop. 2.1] and provide an alternative
proof with a slightly different flavor.

Proposition 1.2. Suppose that there exists € > 0 such that (1.6) converges a.l.u. (in the sense of
Def. 1.1) on the real interval (0,¢) to 0. Then ¢,,; = 0 forallne Dand 0 <[ < L.
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Proof. Suppose that not all ¢,,; are zero. Let r € R be the smallest number such that
¢cn,1 # 0 for some 0 < I < L and some n € D satisfying %(n) = r. Let A € {0, ..., L} be the
largest number such that ¢, y # 0 for some n € D satisfying R(n) = r. Then we can write

27" (log 2) M f(2) = e12' 4 -+ + 2™ + g(2) + h(2)
Here, ¢y, ..., co € C are non-zero, and sy, . . ., s; € R are mutually distinct. Moreover,
h(z) = 27 hi(z)(log 2)7* + - -+ + 2" hp,(2) (log 2)7™

for some hy, ..., hy, € C[[z]] converging on a neighborhood of 0, and o1, ..., 0., € Z, and
the real parts of 71 . .., v, are > 0. Moreover,

1 A

9(z) = q1(2)(logz)"" 4+ -+ + ga(z)(log z)~

where g1, ..., g\ € Spanc{z'* : s € R}. (Welet g(z) = 0if A = 0.)
By induction on j € N, one easily sees that

; J (ot — 1 Jp (ot —
Jim &lg(e!) = tim_alh(e) =0

Therefore, since f = 0, we have

tE@w(clsjlelslt + -+ Cksielskt) =0

forall j € N. Let A be the k x k complex matrix (33 _1)1@-, j<k- Then the above limit implies

lim (c;e®') ..., cpe**)A =0
t——0o0
Since sy, . . ., s are mutually distinct, the Vandermonde matrix A is invertible. Therefore,
we have lim;_, 4 ¢;e'® = 0 forall 1 < i < k, and hence ¢; = 0. This is impossible. O

1.2 Review of basic concepts

1.2.1 The family X = SX obtained by sewing X

Let N € Z4 and R € N. In this chapter, we assume the setting in [GZ24, Subsec. 1.2.1],
along with the condition that B is a single point (i.e. a connected 0-dimensional complex
manifold). Namely,

X = (C|§1a"' 7§N;7717"'a77N||g{>"' 7§;%>§i/7"' a§gz;fl,---»5R,w17--->wR) (17)

is an (N + 2R)-pointed compact Riemann surface with local coordinates. More precisely,
Ge, 5L, <. are distinct points of the compact Riemann surface C. Each 7; is a local coordinate
at g;, i.e., a univalent function on a neighborhood of ¢; sending ¢; to 0. Similarly, each &; is
a local coordinate at ; and each w; is a local coordinate at ¢;. The N-pointed family

%ES%Z(WIC—’B|§17"'7§N;n1a~'-777N) (1.8)
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is the obtained by sewing X along the pairs of points (sj,57) (forall 1 < j < R) via the
local coordinates ¢;, w;.
Here, for each 1 < j < R, we assume that {; is defined on a neighborhood
V] of ¢, and that w; is defined on a neighborhood V}" of {j. We assume that
ViV VE VL, .., s are mutually disjoint, and
&GV =Dy @(Vi) =D, (1.9)

where 74, p; € (0, +0] are called the sewing radii. Then

B="D,,,, =Dy p X xD (1.10)

TRPR

For each 1 < ¢ < N, note that the marked point ¢; € C is extended constantly to a
section ¢; : B — C of X. The local coordinate 7; of X at g; is extended constantly to a
local coordinate n; of X at ¢;(B) (i.e., a holomorphic function 7; on a neighborhood U; of
6i(B) which is univalent on U; n 7—1(b) for each b € B, and which sends ¢;(B) to 0). Then
c1(B),...,sn(B) are mutually disjoint. Let

Sy = ijgi(B) S%z{gi,gj'-,gj'-/:1<i<N,1<j<R} (1.11)
i=1
which are 1-codimensional closed submanifolds of C and C respectively.
Let A be the set of all b € B such that C; is not smooth. Namely,
B-A=D;, =D, x-xDJ .
For each open or closed complex submanifold 7" of B — A, we let
Xr = (7:Cr - Tlsa|7)
be the restriction of X to T, where
Cr =nm YT)
In particular, for each b € B — A, we have the b-fiber
Xp = (Golsa (b)) = (Co = 7' (B)]a (b), -, < (D))
The restriction of 71, ..., nxy to Cp defines local coordinates 71 |¢,, . .., nn|c, of Xp. Let

Y = {x € C : wis not a submersion at =} (1.12)

Assumption 1.3. We always assume that each connected component of C intersects S,
and each connected component of each smooth fiber X;, of X (where b € B — A) intersects
Sx.

We refer the reader to [GZ23, Sec. 2.3] or [GZ24, Sec. 1.2] for more details about the
sewing construction. See also the next subsection for a detailed description when R = 1.

15



1.2.2 Thecase R =1

Let us describe the construction of X = (7 : C — B|c,) in more detail when R = 1.
We write &1, w1, V{, V{', <1, ¢{ 71, pras &, w, VI, V" <" <", r, p for simplicity. So B = D,,. In
view of (1.9), we make identifications

V' =D, (viaf) V"=D, (viaw) (1.13)

so that{ : D, — D, and w : D, — D, become the identity maps. Define open set W and
its open subsets W', W” by

W =D, x D, W' =D} xD, W" =D, x D, (1.14)

Extending £, w constantly, we can define coordinates

E:W > D, (z,w,*) — 2z (1.15a)
w:W —-D, (z,w,*) — w (1.15b)
q:W —"D,, (z,w, %) — zw (1.15¢)

so that ¢ = {ww. Then we have open holomorphic embeddings

(& w): W =D, xD, (1.16a)
(& q): W > D, xD,, (1.16b)
(w,q): W' — D, x D, (1.16¢)

The image of (1.16b) resp. (1.16c) is precisely the subset of all (z,p) € D, x D,, resp.
(w,p) € D, x D, satisfying

Ipl

=<zl <r resp. - < lw| < p (1.17)

So closed subsets I’ < D, x D,, and F” < D, x D,, can be chosen such that we have
biholomorphisms

(&q): W S Dy xDpy— F' (1.18a)
(w,q) : W' = D, x Dy, — F” (1.18b)

By the identifications (1.13), we can write the above maps as

(&4q): W SV xD,,— F cCx Dy, (1.19a)
(w,q): W' S V" x Dy, — F" c C x Dy, (1.19b)

In particular, we view F’ and F” as disjoint closed subsets of C x D,
The complex manifold C is defined by

C=w|]E€xDy-F-F")/~ (1.20)

16



Here, the equivalence ~ is defined by identifying each subsets W', W" of W with the
corresponding open subsets of C x D,, — F' — F" via the biholomorphisms (1.19).
The map 7 : C — B is defined as follows. The projection

C xD,,— D,, = B
agrees with
qg=¢&w: W =D, xD, — D,, =B

when restricted to W/ u W”. These two maps give a well-defined surjective holomorphic
map 7 :C — B.

Convention 1.4. We let
q:B — C be the standard coordinate of B = D,,
Namely, ¢(p) = p for p € D,,. If U  C is open, noting that B = D,., c C, we let
q:U — C betheextensionof 7|y : U -» BtoU — C

This convention is compatible with the definition of ¢ : W — Cin (1.15).

Therefore, if n € O(U) is univalent on every fiber (i.e., for each fiber U, = U n 771(b)
of U, the restriction p|y, is injective), then (7, ¢) is a set of coordinates of U, i.e., it is an
open embedding of U into an open subset of C™ for some m.

Clearly ¥ = (1.12) is the subset of W = D,. x D, described by

S ={0,0} <D, xD, (1.21)

and A = {0}.

For each 1 < i < N, the marked point ¢; € C is extended constantly p € D,, —
(s, p)C x D,,. Since its range it disjoint from V', V" and hence disjoint from F’, F”, it
gives rise to a section ¢; : B — C.

We also choose a neighborhood ﬁi of ¢; on which the local coordinate 7; is defined. We

assume that U/ Tyenns Uy are mutually disjoint and are also disjoint from V', V”. Then
U :=U; x D, (1.22)

can be viewed as an open subset of C containing ;(D,,), and 7; is extended constantly to
a holomorphic map (z, p) € U; x D,, — n;(x) which, by abuse of notation, is also denoted
by 7. This gives the local coordinate

ni € O(U;) (1.23)

of X at Cl(B)
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1.2.3 The sheaves O¢(—logCa), Op(—logA), and we )

We recall several sheaves related to the differential geometry of 7 : C — B for R < 1.
See [GZ24, Subsec. 1.2.2] for details.

When R = 0 and hence C = C is a compact Riemann surface, then ©¢ and w¢ are
defined in Sec. 1.1.

Now we assume R = 1. Then O3(—log A) is the (automatically free) Op-submodule
of ©p generated by ¢dy, i.e.

Op(—logA) = Op - qd, (1.24)

In particular, Op(—log A) equals ©p3 outside A = {0}.

The sheaf ©¢(—logCa) equals O¢ outside ¥. To describe ©¢(—logCa) near %, by
(1.21), it suffices to describe ©¢(—logCa)|w. Indeed, the later is the (automatically free)
Oy -submodule of Oy _5, generated

£0¢, 0 (1.25)

where 0¢, 0 are defined under the coordinate (£, @) of V.
One can define an O¢-module morphism

dm : Oc(—logCa) — ©*Op(—log A) (1.26)

to be the unique one that restricts to the usual differential map (of tangent vectors) outside
Y. Therefore, on W, we have

dn(£0¢) = dn(wix) = q0, (1.27)

where ¢0, is the abbreviation of 7*(¢qd,).

Clearly (1.26) is an epimorphism, and its kernel is denoted by ©¢/z and called the
relative tangent sheaf. This is a line bundle, i.e., a locally-free O¢c-module of rank 1. Its
dual sheaf w53 is called the relative dualizing sheaf. Therefore, for each open U = C — %
and each 7(U) univalent on every fiber of U, we have a free generator dn of w¢/z. If
we O(U) is also univalent on every fiber of U, then

dn = (0un) - dp (1.28)

where the partial derivative is defined with respect to the set of coordinates (u,q o )
of U. This gives an explicit description of w¢/z outside ¥. On the other hand, we/5|w
can be viewed as the Oc-submodule of we/s|w -5 generated by the unique element of
H°(W — %, we/slw—x) whose restriction to W’ and W” are

¢d¢ resp. —w ldw (1.29)

1.2.4 The sheaf 7%
We recall the definition of sheaf of VOA

Vi 1= li_r)n”f/fn _ U a//%$n

neN neN
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which relies only on V and on the map 7 : C — B but not on the marked point or the local
coordinates of X. See [GZ24, Subsec. 1.3.1] and the reference therein for details.

”Vf” is a locally free Oc-module. The restriction ¥'<"|¢_y, is described as follows. For
each open U < C — ¥ and each € O(U) univalent on every fiber U, of U, we have a
trivialization, i.e., an Oy-module isomorphism

>~

Uy(n) : V" lu — V=" Q¢ Op (1.30)

If 1 € O(U) is also univalent on each fiber, the transition function U, (n)U,(x) !, which is
an automorphism of V<" ®¢ Oy, is defined using Huang’s change of coordinate formula
in [Hua97]. The explicit formula of U, (n)U,(x) !, which is not needed in this paper, can
be found in Subsec. 1.3.1. But note that these {,(7) are compatible for different n so that
”1/f”|c_g is naturally an O¢_s-submodule of “Vf”“ le—s.

With abuse of notations, we also denote the tensor product of (1.30) and the identity
map of we /3 by

Uy(n) : ”I/fn ® we/Blu — VS"®c Op ®c dn (1.31)

Namely, it sends v ® dn to Uy (n)v @c dn.
We have finished the definition of #% outside Y. In particular, 7% is defined when
R =0 (and hence X = X). We now describe ¥4 near ¥ when R = 1:

Definition 1.5. The restriction “i/§"|w is the (automatically free) Oy -submodule of
“I/f_"z lw—_x, generated by the sections whose restrictions to W’ and W” are

Up(©) (") resp. Up(w) (@ OU1)) (1.32)

where £ € O(W') and w € O(W”) are defined by (1.16) and v € V<™. This is well-defined,
i.e., the two expressions in (1.32) agrees on W' n W”.

Again, ;=" is naturally an O¢-submodule of #,=""!. The description of ¥x for R < 1
is complete. The description for general R is similar but not needed and hence is omitted.

Finally, we note that the description of #% for R = 0 also applies and defines the sheaf
V%, associated to the fiber X;,.

1.2.5 Conformal blocks

Fix W € Mod(V®Y) associated to the ordered marked points ¢ (B),...,sn(B) of X
and the ordered marked points ¢;(B), ..., sy (B) of X. Note that the orders of the marked
points are important. We recall the basic properties about conformal blocks. See [GZ24,
Subsec. 1.3.2] and the reference therein for details.

Since the local coordinates 7, of X are fixed, we can set

Wx (W) =W Q¢ Op
The sheaf of coinvariant 7x(W) is a quotient sheaf of #%(W), and its dual sheaf .7;* (W)

is called the sheaf of conformal blocks.
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Choose any connected open V' < B. Recall (1.22) for the meaning of U;. For eachn € N
and each 0 € HO(U; n =1 (V), V=" @ wep(05%)) and w € W ®@c O(V'), we define the i-th
residue action

o #;w = Resy,—oY;(Uy(ns) o, mi)w e W®c O(V) (1.33a)

More precisely, note that the element U, (1;)0 € H°(U;, VS" ®c we(¢5%)) is a finite sum
>, u® fidn; where vy € VS" and f; € HO(U;, Oy, (¢Sx)). Then for each b € V, noting that
filu;~r—1() can be viewed as an element of C((7;)), we have

o i wl, = Y Resy,—oYi(v, )w(d) - fil,nm—1(p) - dmi
l

where the RHS is the residue of an element of W((n;))dn;.
Now, we define the residue action of each o € H°(V,m (%% ® we/p(*Sx))) =
H°(Cy, 7% ® we/(95%)) on each HO(V, #5(W)) = W® O(V) to be

N
oow= > 0%w (1.33b)
=1

Definition 1.6. The sheaf of coinvariants associated to X and W is defined to be
_ Wx(W)
s (Yx @ weys(9Sx)) - #x(W)

and is locally free ([GZ24, Thm. 3.13]), i.e., it is a (finite-rank) holomorphic vector bundle
on B. Its dual bundle is denoted by Z*(W) and called the sheaf of conformal blocks (or
conformal block bundle) associated to X and W.

Note that when R = 0, then X = X isa single surface. Then #%(W) = W, and 73 (W)
is a quotient space of W which is finite-dimensional, and .73 (W) is the dual space of
Tx(W).

Therefore, for general R € Nand b € B—A, the vector spaces #%, (W), 7x,(W), 735 (W)
can be defined. The elements of 73 (W), which are linear functionals W — C satisfying
certain invariant condition, is called a conformal block associated to W and X;, (together
with its local coordinates 7.|c, ).

By [GZ24, Remark 3.1], for each open V < B — A, an element € H®(V, Zf(W))
is equivalently a linear map P : W — O(V) such that for each b € V, the restriction
Y(-)[p : W — C belongs to 7 (W). Such 1 is called a conformal block associated to W
and the restricted family X|y .

Remark 1.7. Let b € B — A. By [GZ24, Thm 3.13], the map
TEW)p — TE W) b= d()s

T (W) (1.34)

(where .7;¥ (W), is the stalk of .7;* (W) at b) descends to a linear isomorphism

T (W)

—2 2 (W 1.35
mB,ng*(W)b xb( ) ( )

In other words, the fiber of the vector bundle .7;* (W) at b is canonically isomorphic to the
space of conformal blocks .7y (W).
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1.3 Truncated g-expansions of global sections of 7 ® wc/z(*S%)

In this section, we assume that R = 1.

1.3.1 g-expansions and their truncated expansions

Let0 <e <rpand ve H(m }(D;), ¥x ® we/p(*Sx)). We shall expand v into a power
series. (See also the proof of [GZ24, Prop. 4.8].)

Suppose that Uis a precompact open subset of C — Sz. Choose small enough 0 <
§ < e such that U x Dg is an open subset of C x Dy, — F’ F”. (Recall Subsec. 1.2.2
for the notations.) Then 7 : C — B, when restricted to U x Dj, becomes the projection
pr: [7 X D5 g 'D(;.

Thus, if n € O(U) is univalent, and if we denote its constant extension (z,p) € U x
D; — n(x) also by 7, then noting (1.31), we can write

‘pr 2 ong" - dn where 0,, € V®¢ (’)([7)

neN

(Recall Conv. 1.4 for the meaning of ¢.) Then
| = Up(n) " om - dn (1.36)

This definition of v, is independent of the choice of  and §. Therefore, we obtain v,, €
HO(C — S, 73 ® wz) whose local expression is given by (1.36).

Each v, clearly has finite poles at 1, . . ., ox. By the description of 7|y and we/g|w in
Def. 1.5 and Eq. (1.29), there exist a family (f®)aeq in O(W) and a linearly independent
family (u®)qeq of vectors of V, indexed by the same finite set 2, such that

Up(€)]y = 3 S (6 /€)X Oue df (1372)
ol
d
Up(E)v]yypn = — a%f“(q/w, @) OU (v )u® - g (1.37b)

(Recall from (1.15) that (£, @) is the standard set of coordinates of W = D, x D,.) Expand-
ing (1.37) into power series, we see that the term before ¢ has poles of orders at most
n+1até = 0and at @w = 0. Thus the same can be said about v,. So v, also has finite
poles at ¢/, ¢”. This proves that

vn € HO(C, ¥ @ wp(eS3)) (1.38)
Definition 1.8. We write
v = Z Ung" (1.39)
neN

and call (1.39) it the power series expansion of v (or simply the g-expansion of v). For
each h € N, we say that vy + v1q + - - - + v;¢" is the h-th truncated g-expansion (or simply
the h-th truncated expansion) of v.
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1.3.2 Classification of truncated g-expansions

Fix h € N, and choose vy, . .., v, € H° (C~, 73 ® wg(oSi)). Recall (1.31). Then for each
0 < k < h, we have

Uo(E)Vk|yr_(y €V Bc O(V' — {})d¢ (1.40a)
U,y (w v,f|v,,f{§,,} eVec OV" —{"})dw (1.40b)

Therefore, we can take Laurent series expansions of these two sections at ¢’ and ¢” respec-
tively. Namely, they can be viewed as elements of V((¢))d¢ and V((w))dw respectively.

Let Noj = {n € N:n > h}. Then N*\N?, is the set of all (m,n) € N x N such that at
least one of m,n is < h.

Definition 1.9. We say that the element vy + v1g + - - - + vpq" of H(C, % ® wy(eS5))[q] is
h-compatible if the following property holds: There exists a linearly independent family
(u®)qen Of vectors of V with finite index set 2, together with a family

(¢t e Aand (m,n) € N*\N2,) (1.41)

in C such that for each 0 < k£ < £, the Laurent series expansions of the two sections in
(1.40) take the form

Up(©)vkly gy = 2 Z ot 6O dg (1.42a)
acAl=—k
+00
Ug(w)vk V”—{g”} = - Zgllzk C(Iz,l+kwl+L(0)_1Z/{(Y1)uadw (142b)
aE =—

Lemma 1.10. In Def. 1.9, for each o € 2 and 0 < k < h, we have

Dl il r™ <400 D el p" < 4o (1.43)

meN neN

Proof. By expanding (u®)aez, we can assume that (u®),eq is a basis of VS for some
M € N. The first of (1.43) is obvious when each u® is homogeneous. Now, we do not
assume that u® is homogeneous. Let (w”)gey be a homogeneous basis of V<M. Then
there is an invertible matrix A = (A\y )a,gen such that w” = 3 A\, su®. Using the inverse
matrix of A, one can write (1.42a) as a formal power series

Vi) T Z Z dl+k: RO g

Be i=—k

U@(&)”k

where ¢!, . = 25 Ao, BdQB k.- Since each w” is homogeneous, for all 0 < k < i we have

Z|d Rl < 40

meN

This immediately implies the first of (1.43). The second of (1.43) can be proved in a similar
way by reducing it to the special case that each U/(y1)u® is homogeneous. O
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Theorem 1.11. The following are equivalent.

(a) There exist 0 < ¢ < rp and an element v € H°(w~*(D.), ¥x ® we/p(*Sx)) whose h-th
truncated expansion is vo + vig + - -+ + vpq".

(b) vo +v1q + - - + vpq" is h-compatible.

Proof of (a)=(b). Assume (a). Then we can assume that v satisfies (1.37). Expand the func-
tion f“ in (1.37) into power series

fm = > "

m,neN

where ¢, ,, € C. Then we can expand (1.37) into power series

U|W/ Z Z Z Cl+k; €Z+L luadf‘qk

aceA keNI=>—k
Up(@)olyr == D7 D7 D) e O UMV deo -
aeA keNI=>—k
Comparing this with (1.42), we see that (b) holds. O

Proof of (b)=(a). Step 1. Assume (b). Choose M € N such that u® € V<M for all o € 2. We
shall apply the base change Theorem 1.12to 7 : C — B and

& =V @ we)s(tSx)

for some t € N. Recall that A = {0}, and note that the complex analytic space Cy is a nodal
curve. By [Gui24, Thm. 2.3], we have H'(Co, /=" ® we5(tSx)lc,) = 0 for sufficiently
large t. For such ¢, the assumptions in Thm. 1.12 are satisfied. Let us fix such a ¢ that also
ensures that vo, . .. , v have poles of order at most ¢ at 5.

Step 2. The goal of this step is to define sections x and ¥} on open subsets of C covering
771(0). First, Lem. 1.10 implies that for each « € 2, the series

P Ewm = Y Galw

(m,n)eN2\N?

>h

converges a.l.u. to an element of O(W) = O(D, x D,), also denoted by ¢g*. By Def. 1.5
and Eq. (1.29), there exists an element

x € H'(W,&) = H'(W, /M @ we )

such that
d
Uy = X 9°(E /X0 - (1.452)
ael
Up(@) g = — ) 6" 0/, @) Oty - (1.45b)

ae
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Next, we choose 7/, p' such that 0 < 7’ <rand 0 < p’ < p. Let

—_— ~

A=C—¢'(Dy)—w ' (Dy) Q=0xD.

In view of (1.9), the set () is an open subset of C. (In the construction of X from X, we have
assumed the identification (1.13). However, here, we do not omit ¢! and w~!, because
we want to stress that {1 (D,v) isin V' and @™ (D) is in V".) Then, for sufficiently small
¢ > 0, one can view (2 as an open subset of C such that 7 : C — B restricts to the projection
Q x D. — D.. (In fact, any « satisfying 0 < ¢ < 1y works.) Thus

9= v +v1q + - + vpq" is an element of H°(Q, &)
Step 3. Define open subsets W}, W{ of C x D. c C by
W)=V -¢YDy)xD. Wi =(V"-=(Dy)) x D,

Due to the gluing maps (¢, ¢) and (w, ¢) in (1.19) defining the equivalence relation ~ in
(1.20), one can also view W, W as disjoint open subsets of W/, W” respectively. Now,
we can use (1.45) and (1.42) to compute that

+00  h—k
U () (Xlwy — FNwy) = %k; ”chﬁthHL(o)AuadE g (1.462)
aE =h+1l=—
+00  h—k

Ug(w)(X‘Wé/ — ﬁ‘Wé/) = - Z;[kzr: lzk Cg’l+kwl+L(0)flu(y1)uadw . qk (14:6b)
Q€ =h+1l=—

Since mj;' = ¢""'Op, and since Q@ n W = W U WY/ clearly holds, (1.46) implies that
X|Qr\W _19|Qr\W € HO(Q N ngi)lg) (1.47)

Clearly Q U W contains 771(0). Thus, since 7 is proper, we can make ¢ smaller such
that Q U W covers 7~ 1(D.). Therefore, by (1.47), there is an element

ceH° (77_1(1)5), é"/mgfoléa)

whose restriction to W nm—1(D,) is represented by ¥, and whose restriction to Qn7—1(D;)
is represented by 9. Hence, by Step 1, we can apply Thm. 1.12, which says that after
further shrinking ¢, there exists v € H(7~1(D,), &) that is sent by the canonical quotient
map to o. Clearly v has i-th truncated expansion vg +vig+-- -+ vpq". This proves (a). [

1.3.3 A base change theorem in complex analytic geometry

In the proof of Thm. 1.11 we have used the following base change theorem.

Theorem 1.12. Let ¢ : X — Y be a holomorphic map of complex manifolds. Assume that ¢ is
proper and open. Let & be a locally-free O x-module.
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Let y € Y. Assume that H* (X, &|x,) = 0. Then for each h € N, the canonical map of stalks

(ps8)y — (ps(&/my 1} 8)), (1.48)

is an epimorphism of Oy,~-modules. In other words, for each neighborhood V of y and each
o € Ho(cpfl(V),éa/m@fylf), there exist a smaller neighborhood Vy of y and some G €

HO%¢=Y(Vo), &) that is sent by the quotient map & — éa/m@fylé" to o] y—1(vp).-

Some of the notations are explained as follows. Recall that my,, is the maximal ideal
of the local ring Oy, understood also as the ideal sheaf of sections of Oy vanishing at

y. Then myyl is its (h + 1)-power, i.e., it is the ideal sheaf generated by {g;,---¢;, : 1 <

i0, .. .,% < n}if my, is generated by g1,...,9, € O(Y). So m?,j;lé” is the O x-submodule
of & generated by

{B-5=(¢*B)-swhere B e m@j; and s € &}

The complex analytic space X, is defined to be the fiber of X at y. It equals o (y) asa
(Hausdorff) topological space, and its structure sheaf is (Ox/my,Ox) f¢_1 (v)7 the inverse
image of Ox /my,Ox under the inclusion map ¢~ !(y) — X. (See [Fis76] or [GR84] for
the basic notions of complex analytic spaces.)

Proof. This theorem remains valid under a more general assumption, where the first para-
graph is replaced by the weaker condition that ¢ : X — Y is a proper holomorphic map
of complex analytic spaces, that & is a coherent Ox-module, and that & is p-flat (i.e.,
for each z € X, viewing the stalk &; as an Oy ,(,)-module, the functor &, Q0y @) — ON
the abelian category of Oy, ,(,)-modules is exact). Under this assumption, the theorem
follows from Cor. 3.5 in Ch. III of [BS76].

We now explain why this assumption is indeed weaker. If the original conditions
stated in the theorem’s first paragraph hold, then ¢ is clearly proper. Since ¢ is open
and since X,Y are complex manifolds, by the last Corollary in Sec. 3.20 of [Fis76], the
structure sheaf Ox is -flat. Since & is locally-free, it is also ¢-flat. O

1.3.4 The geometric meaning of -compatibility

From the proof of Thm. 1.11, readers familiar with complex analytic spaces (as treated
in [Fis76, GR84, GPR94], for example) can easily recognize the geometric meaning of -
compatibility. To illustrate this, let B" be the closed analytic subspace of B associated to
Op/q"t1Op. Namely, B" is the topological space {0}, equipped with the structure sheaf
Op/q" O | {0y Pulling back X along the inclusion B" — B gives a subfamily X" with
map 7 : C" — B". Here, C" is the (Hausdorff) topological space 7—1(0) together with
the structure sheaf O¢/q"1Oc [+-1(0)- (In other words, 7 : C" — B"is the h-th order
infinitesimal deformation of the nodal curve Cy.)

Restricting 7% and w¢/p to C" yields the sheaves #;n and wen /ph, Where Vg is the
sheaf of VOA associated to the h-th order infinitesimal deformation X". In the special
case h = 0, then ¥4 is the sheaf of VOA associated to the nodal curve Cy.
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The restriction of 7 : C" — B" to C" — X can be regarded as the projection (5 —¢' -
¢") x B" — B". Therefore, each element of H(C", ¥xn ® wen/pn(#Sx)) can be faithfully
presented as vy + vig + -+ + vrq" where vy, ..., vy € HO(C~, 7% ® wé('si))'

By adapting Steps 2 and 3 of the proof of (b)=(a) in Thm. 1.11, one can verify the
following remark, which provides the geometric meaning of i-compatibility.

Remark 1.13. Let vy, ..., v; € H (CN, 73 @wz(eS5)). Then v +vig+-- -+ vpq" corresponds
to some element of H°(C", ¥4 ® wen/pn(9S5%)) if and only if vy + vig + - -+ + vpg" is h-
compatible.

1.4 Truncated g-expansions with prescribed Laurent coefficients at ¢/, ¢”

We continue to assume R = 1. We shall show that any finitely many elements of the
family (c5;, ,,) in Def. 1.9 can be assigned prescribed numbers. Note thatif 0 < & < Q are
integers, then N2 ,\N2, is the set of all (m,n) € N such that m,n < @, and that at least
one of m,nis < A.

Proposition 1.14. Assume that each connected component of C contains one of 51, .. .,sn. Choose
M e Nand u e VSM, Choose integers 0 < h < Q. Choose a family

(Cm,n : (ma n) € NiQ\Niﬁ)

in C. Then for each 0 < k < h, there exists v, € H°(C, ”//%SM ® ws(eS3)) whose Laurent series
expansions at " and " are respectively

Up(E)Vk|yr o = Qik O ude mod VM @c O(V)EQTMae  (1.49a)
t;:lz
Uy (o)vg, V(e = Z ck7t+kwt+L(0)_1U(yl)udw mod VM @c O(V")w? M dw
- (1.49Db)
Proof. Write Z3x = {c1,...,sn}. Let A € N, and consider the short exact sequence

0 — V=M @uws(AZz — (Q + M) — (Q + M)<")
= VM @uwp(AZy + (k+ 1) + (k+1)¢") = 2 — 0.
where & is the quotient of the previous two sheaves. Abbreviate this exact sequence to

0— 2" — P — P — 0. Since each component of C intersects Zz, by Serre’s vanishing

theorem (or by the proof of [Gui24, Thm. 2.3]), we have H'(C, 2") = 0 for sufficiently
large A. Fix such an A. Then, we obtain a long exact sequence

0— HC,2") - H°(C, ") - H°(C,?) - 0
Define o € H%(C, ) as follows. Let U,(&)o|y and Uy(w)o |y~ be represented by

Q—k Q—k

Z Ct+k7k€t+L(0)_1ud€ . Z ck7t+kwt+L(0)_1U(y1)udw
t=—k t=—k
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respectively. On C— {¢’,<"}, we set 0 = 0. Then, by the above exact sequence, o has a lift
v, € H(C, &'). Clearly vy, satisfied the desired property. O

Proposition 1.15. Under the assumptions of Prop. 1.14, assume that v, . . ., vy € H°(C, W;M ®
wg(.s%)) satisfy (1.49). Then vy + viq + - - - + vpq" is h-compatible.

Proof. Choose a basis (u®)aeq of VSM such that the element u in Prop. 1.14 equals € - u”
for some 3 € A and € € C. By (1.49),

Q—k
UQ(S)UIC|V/_{§/} - Z Ct+k,k§t+L(0)71Ud€ (*)
t=—k
is a (finite) C[[£]]-linear combination of (€M y%) cq(. Since
§Q+Mua _ §Q+L(0) . ngL(O)ua

and since ML)y is a C[¢]-linear combination of (u®)aeq, we conclude that () is a
C[[£]]-linear combination of (€9+L(0)y®) o. Therefore, for each o € A,0 < k < h, there
exists a family (f;, K, 1) teNs o+1 in C such that Uy(&)vg, has power series expansion

V/—{<'}
Q—k +00
Z Ct+k7kft+L(0)_1Ud§ + Z Z fta-ti-k7k£t+L(0)_1uad€ (150&)
t=—%k acAt=Q+1
Similarly, we can expand U, (w)vy, e into the power series
Q—k +o0
= Y @ PO U (v ude - YT YT g @ PO U (v udew (1.50b)
t=—k aeAt=Q+1

where g7, ., € C. Define the family (cf;, ,,) (where a € 2 and (m,n) € N*\N2 ) by
dap € Cmn if (m,n)e NiQ\Nih

- Imn fn<handm>Q+n
e Im.n fm<handn>Q+m
0 otherwise
Then (1.42) is satisfied. -

1.5 Fusion product xj3(W) and dual fusion product Nz (W)

In this section, we let N, R € N.

Definition 1.16. An (R, N)-pointed compact Riemann surface with local coordinates
denotes a date of the form

S: (l‘ll,...,ajﬁpb; ’1,...70}%]0@1,...,a:N;Qh...,HN)

Here C is a compact Riemann surfaces, z1,...,zn, 2], ..., 2, are distinct marked points
of C. Each z; has local coordinate 6; (i.e., §; is a univalent holomorphic function on a
neighborhood of z; sending z; to 0), and each 2’; has local local coordinate ¢. We call
z1,...,zN the incoming marked points (or simply inputs) of §, and we call z},..., 2,

the outgoing marked points (or simply outputs) of 3.
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1.5.1 Definition and explicit construction

Let § be as in Def. 1.16. Associate W € Mod(V®Y) to the ordered marked points
L1y 3TN

Definition 1.17. Assume that
each connected component of C' contains one of z1,...,xnx (1.51)

A dual fusion product of W along § denotes a pair (Nz(W), J) where Nz(W) € Mod(V®F)
is associated to 71, ..., 2 and J € 77 (Nz(W) ® W) satisfies the universal property:

e For each M € Mod(V®) associated to 21, ..., ’;, the map
Homyer (M, Kg(W)) > ZF(M@W) T Jo (T ®idy) (1.52)
is a linear isomorphism.

We abbreviate (Njz(W), J) to Nz(W) when no confusion arises. The contragredient V®£-
module of Nz(W) is denoted by Xlz(W) and called the fusion product of W along §. We
call J the canonical conformal block.

Note that M ® W and Nz(W) ® W are grading-restricted V®(N+#)-modules, both as-
sociated to the ordered marked points z1, ..., 2y, z1,...,zR.

Dual fusion products are clearly unique up to unique isomorphisms. The existence
of dual fusion products was proved in [GZ23, Thm. 3.31]. Note that when R = 0, then
Ng(W) is the space of conformal blocks 73*(W), and 1 : Ng(W) @ W — C is given by

1. W)W - C bR w— d(w)

Hence XJ3(W) is the space of coinvariant .75(W). See [GZ24, Sec. 3.4] for more explana-
tions.

Remark 1.18. The map (1.52) is clearly injective if J is partially injective in the sense that
{€ eNz(W) : I(®w) = 0) for all w € W}

is zero. Conversely, if (Nz(W), J) is a dual fusion product, then its explicit construction in
Thm. 1.21 clearly indicates that ] is partially injective.

We need to recall the explicit construction of (dual) fusion products. Let
Zz ={z1,...,xN} Zy = A{z,..., 2R} (1.53)

be divisors. In the remaining part of this section, we always assume (1.51).

Definition 1.19. For each a1, - ,ar € Nand n € N, define
K = o= 15— (LOVZ + a1 + -+ aney)

_ . <n
/y%yal:’“:aR = %7‘1* T h_I>n/y%'7a17m
neN

yOR
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using the data of §, V. More precisely, 7/;;1 is a locally free O¢-submodule of ”1/5" de-
scribed as follows. Outside z/, - - , 2, it is exactly ”f/fn; foreachl < j < R,ifQjisa
neighborhood of z’; on which ¢! is defined (and univalent), and if @~ {z, ..., 2%} = {z},
then ”I/fgi o, is generated by

Uy(0;)71(6)) %Oy (1.54)

for homogeneous vectors v € VS™.

Definition 1.20. Define a vector space

\%%

ai,,a W = Ax W =
Ts.a1,,ar(W) = 5.0, (W) HO(C,”//;g,al,.-~,aR®WC(°ZS))'W

(1.55)

where the linear action of H°(C, 5., ® wc(9Z5)) on W is defined to be the restriction of
the residue action of H°(C, 5 ® wc (e Z3)). Its dual space is denoted by

5, (W) = . (W)

s@15y.--yQR

Theorem 1.21. Let

Ng(W) := h_r)n %ﬂjah---,a}z(W) = U ‘Zgal,-",aR(W)
a1,---,aR€N al,...,aReN

which is naturally a linear subspace of W*. Moreover, Ngz(W) has a canonical grading-restricted
VOE-module structure. If we restrict the evaluation pairing W* @ W — C to the linear functional
1:Ng(W) ®@W — C, then (Nz(W), 1) is a dual fusion product of W along §.

Proof. See [GZ23, Ch. 3]. In particular, the V®®-module structure on Kjz(W) can be de-
fined in terms of the propagation of partial conformal blocks (cf. [GZ23, Sec. 3.1]). It
can also be described by the residue action of elements of H°(C, %5 ® wc(eZz + °Z%)) (cf.
[GZ23, Prop. 3.19]). O

1.5.2 is right exact and N is left exact
The following theorem will be used in the proof of Thm. 1.24.

Theorem 1.22. The covariant functor W € Mod(VEN) i Xz(W) € Mod(V®R) is right exact.
Equivalently, the contravariant functor W € Mod(VON) - Nz(W) € Mod(V®F) is left exact.

Proof. 1t suffices to prove that W € Mod(V®") - [x5(W) € Vect is right exact, where
Vect is the category of C-vector spaces. Moreover, since direct limits commute with cok-
ernels, it suffices to fix a1,...,ar and prove that W — %, (W) is right exact. Write
J = H°(C, %4, ® wc(eZ5)) so that T, (W) = W/JW. Let W3 — Wy — W; — 0 be
an exact sequence in Mod(V®Y). Then we have an exact sequence of chain complexes
0—JW, - W, - F,, (W,) - 0. Namely, we have the commutative diagram Fig. 1.1,
where the rows are exact, and the composition of any two consecutive vertical arrows is
Zero.
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0—— JWg Wg %VQ*(Wg) — 0

® a
0 —— JWy Wa Tz 0, (Wy) —— 0
v () B
0 —— JW, W, Tz 0, (W1) —— 0
5
0 0 0

Figure 1.1. The exact sequence of chain complexes in Thm. 1.22.

We use the notations in Fig. 1.1. Then, the zig-zag lemma yields an exact sequence
Kery)/Imy — Ker/Ima — Kerd/Im-y

By assumption, we have Kert)/Imy = 0. Note that if we view W, as the quotient module
Wy /W3, then the action of J on Wy descends to that of W;. Therefore v is surjective, and
hence Kerd/Imy = 0. Thus Kerg = Ima. A similar argument shows that (3 is surjective.

Therefore, we have an exact sequence % ,, (W3) LN Tz 0. (W2) A, Tz 0. (W1) — 0. This
finishes the proof that 7% ,, (—) is right exact. O

1.5.3 Fusion product along § 1 &
Let N, K € Z, and R, Q € N. In this subsection, we let

F = (:cll,...,xg%; '1,...,9}3‘01‘1:1,...,96]\/;01,...,QN)

& = (Y1 ¥ s -5 1o Colyn, - -y pas - k)

be respectively (R, N)-pointed and (Q, K)-pointed compact Riemann surface with local

coordinates. We assume that each component of C; contains one of z1, ..., zy, and each
component of Cy contains one of y1, ..., yx.

Define the disjoint union § L & to be
Fu6 = (2, 2Ryl vy 0, O 1l -5 i |C1 L O (156)
le,...,l’N,yl,...,yK;gl,...,gN,,ul,...,MK)

which is an (R + @, N + K)-pointed compact Riemann surface with local coordinates.
Associate W € Mod(V®Y) to the ordered marked points z1,...,7y. Associate X €
Mod(V®K) to the ordered marked points y1, . . ., yx. Thus we have dual fusion products

Ns(W), ) Ne(X),T)

Associate the tensor product module W ® X € Mod(V®WN+K)) to the ordered marked
points z1,...,xN,Y1,...,yx of § L &.
The following lemma is a special case of Thm. 1.24.
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Lemma 1.23. Assume that R = Q = 0. Then each w € T3 (W ® X) is can be written as a
finite sum w = 3 ; &; @ ; where §; € T (W) and ; € T (X).

Proof. Since w is a conformal block, each o € H°(C1, %5 ® we, (¢Z3)) can be extended by
zero to an element of H(Cy L Cy, 3,6 Qwe, L, (9 Z5+9Zg)). Therefore w((o-w)®@u) = 0
forallwe W, u e X.

Now, let (¢i)icr be a (finite) basis of 7" (W). By the first paragraph, for each u € X,
the linear functional w € W — w(w ® u) is a conformal block associated to § and W,
and hence can be written uniquely as a linear combination of (¢;)ic;. For each u € X,
We write it as ), \;(u)d; where ;(u) € C. Similar to the first paragraph, for each o €
HY(Ca, 7 ®@ we, (¢ Zg)) we have w(w ® (o - u)) = 0, and hence V;(o - u) = 0. Therefore
each \; : X — C belongs to .7 (X). Clearly w = >, ¢; @ ;. O

We now arrive at the main result of this section, which is needed in the proof of the
sewing-factorization Thm. 3.4. Roughly speaking, this result says that

Ngoo (W X) ~Ns(W) @Ns(X)  BHyoe (WOX) =~ H3(W) @RHe (X)
In the special case that R = @) = 0, the above isomorphisms become

T eWEOX) = F W) TEX)  Fre(WOX) = FH(W)® Jo(X)
Theorem 1.24. Define the linear functional

IRT: Nz (W) @Ns(X) @WRX — C
¢RVOUWu—IdQw) - TP Ou)
Then (Nz(W) ® Ne (X),I® ) is a dual fusion product of W ® X along § u &.

Here, Nz (W) @Ns (X) @ WX is associated to the marked points of § L & in the order
wlla"‘7‘rlR7y£7"‘7y,Q7x17"‘7$N7y17"'7yK'

Proof. Clearly J® T is a conformal block associated to § U &. We need to check the
universal property in Def. 1.17: for each M € Mod(V®+@)) the linear map

\I/M : HOII]V®(R+Q) (M, EIS:(W) ® N@ (X)) i %*I_I@(M ® W ® X) T — \I’M(T)
is bijective, where
Uy(T) : MOW®X — C muUu— (IQ 1)(T(m) @w®u)

Step 1. Let us prove that ¥y is injective. Suppose that Uy;(7") = 0. Choose any m € M,
and write T'(m) = >.,.; &; ®1; where ¢; € Ng(W) and ; € Ng (X), and (¢;)ser is linearly
independent. Then for all w € W, u € X we have (I® 7)(T(m) ® w®u) = 0, which means

ZJ(«bi@w) ST ®@u) = 0

Since Ng(W) is grading-restricted, we can find a1, ..., ar € R such that Ng(W)/<,,] con-
tains all ¢;. The linear map

weW — IJ(-®w)e [ Ng(W)i<aw))®
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is surjective; otherwise, we can find ¢ € Ng(W)[<,,] such that J(¢ ® w) = 0 for all w e W,
contradicting the partial injectivity of J (cf. Rem. 1.18). Therefore, since (¢;)c; is linearly
independent, we can find a collection (w;);er in W such that J(¢; ® w;) = 0;; for all
i,j € I. Thus T(Pp; ® u) = O forall i € I and all u € X. Since T is partially injective, we
have 1; = 0. This proves 7'(m) = 0. Thus T' = 0.

Step 2. Let us prove that Wy is bijective. We first consider the special case that M =
E ® F where E € Mod(V®®) and F € Mod(V®?). By Lem. 1.23, it suffices to prove
that QO ® © belongs to the range of ¥y if O € JF(E® W) and © € F§(F ® X). By
the universal property for (Nz(W),J) and (Ng(X), ), there exist F' € Homyer (E, Ng(W))
and G € Homyee (F,Ng (X)) such that Q = Jo (F ®idw) and ©® = T o (G ® idx). Then
Uper(F ® G) = Q ® 0. Thus Yy is surjective, and hence is bijective.

Next, we consider the general case. By [McR23, Prop. 3.2], there is an epimorphism
B:E®F — M where E € Mod(V®F) and F € Mod(V®?). Applying the same result to
Ker, we obtain an exact sequence

EQF S E®F M -0 (1.57)

Then (1.57) induces the commutative diagram Fig. 1.2, where the vertical arrows above
the last two rows are defined by composition with o and g.

Homys o) (M, Kz (W) @ N (X)) — 22— F (MOW®X)

'z
Homyerio) (E®F,Ny(W) @Ns (X)) — T 6(EQF @ WRX)

SN Vs <
Homysrio) (EQF, Ny (W) @ N (X)) — 5 s(E®FQWRX)

Figure 1.2. The commutative diagram induced by (1.57).

The left column in Fig. 1.2 is exact because Homyer+q) (—, Nz (W) @ Ng (X)) is left
exact. The right column is exact due to Thm. 1.22. By the previously proved special case,
Vggr and Wi are isomorphisms. Therefore, by the five lemma, the linear map Wy is an
isomorphism. O

2 Sewing-factorization theorem: A key special case

In this chapter, we assume the setting in Subsec. 1.2.2 and use freely the notations in
that subsection. In particular, we let R = 1. Moreover, we assume that each connected
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component of C contains one of sy, . .. ,sy. Then Asmp. 1.3 is satisfied. Compatible with
(1.53), we let

Zx ={c1,...,sn} Z% = {d,<"} (2.1)

Hence S3 = Zx u Z%.

2.1 The SF theorem
2.1.1 The setting

Define a (2, N)-pointed compact Riemann surface with local coordinates
F=(.¢"s&@|Clar,. .- onsm, . nn) (22)

In other words, § is almost the same as %, except that the marked points ¢’,¢" of X are
viewed as outgoing points of §. Let (Nz(W),]) be the dual fusion product associated
to § and W. Thus J : N3(W) ® W — C is the canonical conformal block, and Nz (W) €
Mod(V®?) is associated to ¢’, ¢”. In particular, for each v € V, the vertex operator Y; (v, 2) =
Y(v®1,z2)isfor¢, and Ya(v,2) = Y(1 ® v, z) is for ¢". We write

V.=V, Y.=Y,
Define a (2, 0)-pointed sphere with local coordinates
N = (o0,0;1/¢, ¢|P) (2.3)
where ( denotes the standard coordinate of C.

Remark 2.1. Associate M € Mod(V®?) to the ordered pair of marked points (o0, 0). So
Y, = Y] isassociated to o0, and Y_ = Y5 is associated to 0. Note that 991( ) c M*. Letyx €
M*. Itis easy to see that H (P!, ¥ ®wp1 (ec0+e0)) is spanned by all U, (z) ~ (uz”dz) where
u € Vand n € Z. Combining this observation with the fact that (U,(1/C)U,(¢) 1), = U(y>)
for all z € C* (cf. [GZ23, Exp. 1.15]), we see that x belongs to .7,; (M) if and only if for all
u €V, m € M, the relation

<X, (u, z m> <X, (u z)m> (2.4a)
holds in C[[2%!]]. Due to (1.2) and (1.4), condition (2.4a) is equivalent to
<X7 Y+ (’LL, Z)m> = <X7 YL (uv Z)m> (24b)

A similar description holds for conformal blocks associated to a disjoint union of several
pieces of 1.

Associate Xz (W) to (c0,0). In particular, Y, = Y] is for co and Y_ = Y5 is for 0. Let

S(F uMN) be the sewing of § L 91 along the pair 2.5)
(s, 00) with sewing radii r, 1, and along (<", 0) with sewing radii p, 1 '

33



(See Subsec. 1.2.1 for more details.) Then S(§ 1 91) has base manifold D, x D,. Moreover,
the pullback of 3€|Drxp along the map (q1,q2) € D) x D) — qig2 € Dy, is canonically

X

,, we have a

equivalent to S(F L N)|px <D In particular, for each ¢; € D),¢q2 € D
canonical equivalence of fibers

Xgigo > SEFu m)QI:QQ (2.6)

For each x € Jf(Xz(W)), noting that J : Ng(W) @ W — C and x : Kz(W) — C are
linear functional, define

SA®X) : W — C{q1, g2}[log g1, log ¢2]

[ |
(SA®x),wy= Y IPn.-@w) x(a+ Ve VP, -)
)\1,/\26@

(2.7a)

where, for each ., the contraction is taken using a (finite) basis (ex, (@))ae,, Of Ng(W)[a,]
and its dual basis (&), (@))aent,, in Xz(W)[s,]- More precisely,

SAx.w=> Y IE.(ew) - ka Pd Ve @)  @7b)

A1,A26C ae,y,

See [GZ24, Sec. 4.1] for more discussions.

By [GZ24, Thm. 4.9], S(I® x) converges a.l.u. on D) x D, in the sense of Def. 1.1,
and for each p; € D), p» € D, with chosen arguments, the linear functional S(I®X)p, p, :
W — C is a conformal block associated to X,,,, = S(§ 1 MN)p, p, and W. Therefore

~

SA®x) € H' (D} x D, T o (W) (2.8)
(Recall (1.1) for the meanings of ﬁrx and 13; )

2.1.2 The sewing-factorization theorem

The goal of this chapter, which will be achieved in Sec. 2.5, is to prove the following
version of the sewing-factorization theorem.

Theorem 2.2. Let py € D), p2 € D with fixed arg p1, arg pe. Then

Tt (5(W)) = Td(zom),, ,,(W)  x— SA®X)|

P1,P2

(2.9)

p1,p2

is a linear isomorphism.

Remark 2.3. Thm. 2.2 was originally suggested by Kong and Zheng [KZ] in a slightly
different form. In their formulation, they consider self-sewing X rather than sewing ¥
with 91, and—due to the absence of 91—they interpret elements of .7 (Xz(W)) as invari-
ant linear functionals on [XJz (W) rather than as conformal blocks associated to [xjz(W) and
M. Our formulation, which is based on the disjoint sewing of conformal blocks, allows us
to view Theorem 2.2 as a special (yet significant) case of the general sewing-factorization
Thm. 3.5, the latter being more useful in applications.
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In the next chapter, we will need a variant of Thm. 2.2 to prove the general versions
of the sewing-factorization theorems. Let

9 = (0,0;1/¢, ¢|PY1;¢ — 1) (2.10)

Again, ¢ denotes the standard coordinate of C. Associate V to the incoming marked point
1, which gives a dual fusion product (Ng(V), X) where R : Ng(V)®V — C is the canonical
conformal block. Recall that 1 € V is the vacuum vector. It is easy to check that

W=R-®1):Ma(V) - C (2.11)
is an element of .7} (N (V)).

Corollary 2.4. Let py € D), p2 € D Then the linear map

T3 @a(V)@W) = Tigim,, ,,(W) &= S(b@w) (2.12)

P1,P2 p1,p2

is an isomorphism.
Here, S(¢ ® w) is defined in a similar way to (2.7a). (See also Def. 3.2.)

Proof. By the universal property for 1 (cf. Def. 1.17), the linear map
Homys: (Ma(V),Ng(W)) = 75" ([®a(V)@W) T~ Jo (T ®idw)

is an isomorpism. Therefore, to prove that (2.12) is an isomorphism, it suffices to prove
that the linear map

Homye: (Ko (V), Ng(W)) — 7 S*(Eu‘ﬁ)
T S(Ao(T®idw)) @ w)|,

W)
= SA®(woT")

1,P

is an isomorphism. By Thm. 2.2, it suffices to prove that

Homye: (Klg (V),Nz(W)) — Z57 (Kz(W))
T—woT"'=Ro(T'®1)

But this follows from the universal property for (Nq(V),R) (i.e, T — Ro (T' ® idy) is an
isomorphism) and the propagation of conformal blocks, which says that

T3 (Ms(W) @V) —» Ty ((5(W)) A= A(=®1)
is a linear isomorphism, cf. [GZ23, Cor. 2.44]. O

Remark 2.5. Assume that V is rational, and let Irr be a set of representatives of isomor-
phism classes of simple objects of Mod (V). Let

Na(V)= @ MM
Melrr

I Np(V)@V—->C me@meuv—{m Y(,1)m)
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It is easy to show that (Nq(V),J) is a dual fusion product of V along 9, and w|yrgp is
the evaluation pairing. Given pg € Drxp, we write pg = p1p2 where p; € D), py € Dy, and
recall the isomorphism (2.6). Then Cor. 2.4 asserts that

O FMOMOW) — T5, (W) & bu— 2, Sdul,, (2.13)
€lrr M

is a linear isomorphism, where

1
Shul, W—-C we ) o P-0P-0w)
AeC

In particular, we obtain the factorization formula

dim ZE(W)[, = ) dm (M MEOW) (2.14)
Melrr
originally proved in [DGT24] using algebro-geometric methods. Therefore, the present
paper may also be regarded as providing an alternative, complex-analytic proof of the
factorization formula for rational Cy-cofinite VOAs.

2.2 The lifty of ¢0, and its associated connection V*

The main challenge in Thm. 2.2 is proving that the sewing map (2.9) is surjective. Our
strategy is as follows. Let py = p1p2, and choose \,,, € 95"‘(%91)1)1@2 (W). To show that (2.9)
maps some X € Jy (Xz(W)) to 1y, we first extend 1, to a multivalued parallel section
1 of the conformal block bundle .7 (W)\Drxp. We then show that 1\ has a logarithmic
g-expansion and use the coefficients in this expansion to define x.

To implement this strategy, we begin by reviewing the definition of (logarithmic) con-
nections on sheaves of conformal blocks.

Since B = D,, is a Stein manifold, by [GZ24, Rem. 2.19], the differential map dr in
(1.26) gives rise to a surjective map

dr: H(C,O¢(—1logCa + #Sx)) - H°(C,m*Op(—log A)(eS%)) (2.15)

Therefore, for the element ) = g, of H° (B, ©5(—1log A)), we can find a lift § of gdy, i.e.,
and element §) € HY(C,O¢(—logCa + ¢Sx)) satisfying dr () = 7*(gd,). (In the following,
we abbreviate 7*(¢d,) to g0, as usual.)

Throughout this chapter, we fix a lift ) of ¢d,. A detailed description of 1 is given in
the next subsection.

2.21 The g-expansion of the vertical part of 1)

Let us expand the “vertical part” of §j into a g-power series > 5¢" as in Subsec.
1.3.1. See the proof of [Gui24, Thm. 11.4] or [GZ24, Thm. 4.9] for more discussions.

Choose any precompact open subset U — C — Z ; equipped with a univalent n € O(U).

Choose 0 < § < rp small enough such that U x Ds can be viewed as an open subset of C.
After extending 7 constantly to a fiberwise univalent function on U := U x D;, we have

5|U = h(n, Q)an + qaq (2.16a)
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where h € O((n,q)(U — Zx)) has finite poles at (1, ¢)(Zx). Write

h=">" ha(n)q" (2.16b)

neN

where each h,, € (9(77((7 — Z3)) has finite poles at 7)(Z3), and set
B =ha(m)dy € HO(U —{¢'.<"}, 04(s23)) (2160)

It is easy to see that v, is independent of the choice of 1. Hence one obtains ;- € H° (C~ —
A ;~€ , ©5(#Z3)) whose local expression is given by (2.16).
Let us show that §;; has finite poles at Z%. Recall Subsec. 1.2.2 for the meanings of
W, W', W". Due to (1.25), we can write
E|W = CL(&, w)gaf + b(£7 w)waw
where a,b e O(D, x D,). Since dr(y) = ¢d,, by (1.27), we have
a+b=1 (2.17)

We take power series expansions

Al @) = Y, anpl"®" bEw) = Y] bmal" "

m,neN m,neN

where @, n, b € C. Under the sets of coordinates (¢, ¢) and (¢, w) respectively, we can
write

By = a6, 0/6)E0 + a0y = Y arin bt ¢ 0 + g0 (2.18a)
n=0,l=>—n
By = b(a/m, @) @0m + 400 = Y, bnpym@ ¢ 0 + qd, (2.18b)

m=0,l=—m

in the spirit of (2.16). Hence

Bolyr_goy = 25 @enal ™o (2.19a)
I=—n

ﬁ# vr—{ny T Z bn,lJrnlerlaw (2.19b)
[=—n

This proves that § € H(C, Os(053))

2.2.2 The connection V and its shifted connection V*

~

For each 1 < ¢ < N, recall that the local coordinate n; € O(U;) at ; is extended
constantly to n; € O(U;) at ;(B). Therefore, U; has a set of coordinates (7;, ¢). By (2.16a),
we can find h; € O((n;, ¢)(U; — Sx)) such that

Blu, = h'(0i, )0, + q0q (2.20)
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where n¥h'(n;, ) is holomorphic on U; for some k € N. Define
V(ﬁ) € HO(U1 u--uUn, %% ®wc/3(0535))
Up(ni)v(®)|v, = h' (ni, q)edn;

(Recall that c is the conformal vector of V.) The sheaf map V5, : W ®c O — W ®c Op
is defined as follows. For each open V < Band w e W ®c O(V'), we set

(2.21)

Vo, w = qOqw — v() - w e W®c O(V) (2.22)
where V() - w is the residue action of v(1)) on w, cf. (1.33). By [GZ24, Thm. 2.23],
Vo, =4 'V,

descends to a sheaf map on 73 (W) \Drxp. Moreover, if we set Vgo, = gV, forany g € OD;<p,
then V is a connection on the vector bundle .73 (W) |D§p. See [GZ24, Thm. 2.23] for details.
To describe V5, in more detail, we define

v(di) e HY (ﬁl U-ruOy oV oV ¥ ®w6~.(05’3~5)) (2.23)

in a similar way to (2.21). Namely, in view of (2.16c) and (2.19), let

Up (i)Y (5|5, = P (i) cdmi (2.24a)
U VB = ) arennt " eds (2.24b)

I=—n
Uy (@) V(i) |y = Z by in Tedw (2.24¢)

I=—n

Thus (2.22) becomes
N
Vo = 0w — > V(i) w - ¢" = qgdqw — Y > Resy,—o hn(n;)Yi(c,n;)wdn; - " (2.25)
neN 1=1neN

Proposition 2.6. For each n € N, there exists # (V) € C independent of the choice of W such
that for each Ml € Mod(V®?) associated to ¢', <", the residue action of v(}.) on ZZM @ W)
equals the multiplication by # (), i.e., for each w € W, m € M we have

V(ﬁ#)m@fu) +m®v(ﬁfl)w = #(ﬁ#) m@w in 7:(M®W) (2.26)
Moreover, the following power series converges a.l.u. to an element in O(B).

o= Y H#0O7)" (2.27)

neN

We are mainly interested in the case that Ml = Nx(W).
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Proof. The first part (about #(;-)) holds more generally when §; is replaced by any el-
ement of HO(C, Os(eS3)). Cf. [GZ24, Thm. 2.29] or [Gui24, Prop. 9.2]. Since #(0;) is
independent of the choice of M, to prove that s converges, one can choose M to be the
tensor product of two objects of Mod(V), e.g.,, M = V®V. Similarly, one can choose W to
be VOV Then the convergence of s follows from [Gui24, Prop. 11.12]. (See also Step 5 of
the proof of [GZ24, Thm. 4.9].) O

Unfortunately, the sewing of a conformal block is not parallel under V. To fix this
issue, we consider the shifted (logarithmic) connection V* on the Og-module 7% (W)
defined by

20qW = Vgoqw + > - w (2.28)

for all w € W®¢ Op. When restricted to Dﬁp, the dual connection V* on the vector bundle
T (W)\Drxp is given by
<vq0q1bv w> - qaq<¢7 U)> <lb quq > (229)
*
forallp e 73 (W”Dﬁp‘

2.3 The parallel section 1 and its logarithmic ¢g-expansion

Fix pg € B — A = D], and a conformal block ¥y, € .77 (W). Fix an argument arg po.
Recall (1.1) for the meaning of D,,. Then, pulling back the vector bundle .7;¥ (W) |D:p and
its connection V* to D;fp,
parallel section ) € H 0(Dx 2 7% (W)) whose initial value at py (with argument arg py) is
Pp,- Thus, by (2.29), for any w € W ®c Op we have

40,0, wy = (b, Vg wy Wiy, = by (2.30)

where the first relation holds in O+ %

and using the isomorphism (1.35) in Rem. 1.7, we obtain a V*-

We view W as a linear subspace of W ®c O(B) by viewing each w € W as w @ 1. Then
1 gives a linear map

VW OD)) w—hw)=(b,w)
Lemma 2.7. Thereexist L € N, a finite subset E < C, and a unique collection of linear functionals

P W—-C wherel € {0,1,...,L}, ne C,and,; =0ifn¢ E+ N

such that for each w € W, the element \p(w) € (’)(ﬁﬁp) equals

=SS i) - (o) (2.31)

[=0neC

where the RHS of (2.31) converges a.l.u. on Dy, in the sense of Def. 1.1.
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Proof. The uniqueness follows from Prop. 1.2. Then for each y,...,ty € R, 1 restricts
to a linear map P<te : Wi, 1 — O(Dy), i.e.,, a Wi j-valued multivalued holomorphic
function on D, Let

J = H°(C, V2 @wc/a(eS%)) - (W®c O(B))

where Spanc has been suppressed. Then J is an O(B)-submodule of #%x(W) := W ®c¢
O(B). By [GZ24, Thm. 1.16], the quotient O(B)-module #%(W)/7 is finitely generated.
Therefore, there exist ry,...,ty € R such that #%(W)/J is O(B)-generated by the ele-
ments of Wi, ). In the following, we fix these .

Now let (e;)es be a (finite) basis of Wi<,]- Since V7 70,61 € W (W) (cf. (2.22)), there
exists a family (£2; j); jer in O(B) such that

qa e; = Z Q; je; mod J
g€l

for all 7 € I. Note that 1 is a conformal block and hence is vanishing on 7, cf. (1.34).
Therefore, by (2.30), we have

qOgb =t (es) = Qs bl (e;)

jel

for all ¢ € I. By the basic theory of linear differential equations with simple poles (cf.
[Tes12, Thm. 4.7], for example), we can find L € N and a finite set £ < C such that

L
PSle(w) = Z Z 11)53’ (w) - ¢"(log q)" forall w e Wi (2.32)

[=0neE+N

where each lj)ftl: : Wi<,,] — Cis alinear functional.
Let (m;)jes be a basis of W. For each j € J, choose w; € W<, | ® O(B) such that

mj —wj; € J. Sop(m;) equals P(w;) as an element of (’)(Zsrxp). By (2.32), we can write

L
wi) =Y Y A q"(logq)

l=0neE+N

where \,,; ; € C. Foreach0 <! < Land n € E + N, define {,,; : W — C to be the unique
linear functional satisfying \,, ;(m;) = A, ; for all j € J. Then (2.31) is satisfied. O

2.4 Important properties of the logarithmic g-expansion of 1\

Let (\,,;) be as in Lem. 2.7. From now until the end of this chapter, we view Nz (W) as
a linear subspace of W* and view J : Ng(W) ® W — C as the restriction of the evaluation
pairing W* @ W — C, c¢f. Thm. 1.21. Moreover, we assume, without loss of generality,
that the set £ in Lem. 2.7 is chosen in such a way that £ + N equals the disjoint union

UeEE(e + N)
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Lemma 2.8. Let 0 < ¢ < rpand v € H (7 H(D.), Vx ® we/p(eSx)) with g-expansion v =
> ren Vkd® (cf. Def. 1.8). Then for each w € W, 0 < | < L, and m € C, we have

D b k(vr - w) =0 (2.33)

keN

Recall that v, € HY (C~, V3 @ ws(eS3)), and vy, - w = SV v % w € W is the residue
action of v on w (cf. (1.33)). Note also that the LHS of (2.33) is a finite sum, because
Py = 0whenn e Cand R(n) « 0.

Proof. Step 1. Consider the residue action v - w € W ®¢ O(B) defined by (1.33). Since 1 is
a conformal block associated to %|Drxp, it vanishes at

veow = Z(Uk~w)-qk (2.34)
keN
Here, if we choose 1y, ...,y € Rsuch that w € W<,,], then the series on the RHS above

converges a.l.u. to a W< j-valued holomorphic function on D..

Roughly speaking, we can obtain (2.33) by substituting the series (2.31) and (2.34)
into the equation (v - w) = 0. However, this formal manipulation requires justification,
as the evaluation of 1\ on a section of W ®¢ Op is defined in a sheaf-theoretic manner
rather than using formal series. (That is, we first define 1{p on W by solving a differential
equation, and then extend it to W ®c Op by Op-linearity.) In the following, we provide a
justification for this.

Step 2. Note that if X is a complex manifold and ¢ : W®cOx — Ox is an Ox-module
morphism, then for any sequence f,, in W<, j®c O(X) (viewed as holomorphic functions
X — W,,}) converging locally uniformly to f € Wi, j®c O(X), the sequence ¢(f,) (in
O(X)) clearly converges locally uniformly on X to ¢(f).

Now, foreachO0 << L,ee E,letA.; : W®c O — Op be the Og-module morphism
determined by the fact that for each to € W,

Aei(o) = Z Wepn,(r0)g"

neN

where the RHS converges a.l.u. on D,,. By the previous paragraph, for each m € Z we
have

Resq:O }\e,l ('U : w) . qimildq = Resq:o Z }\e,l (Uk . U)) . qkfmfldq
keN
By the a.l.u. convergence, the residue on the RHS (viewed as a contour integral) com-

mutes with ) ;. Therefore

Resg—0 A¢i(v-w) - g " dg = Z Resq—0 Aey(vr - w) - ¢ 1dg
keN

= Z Resg=o Z Ve i (v - w)g" " dg = Z Wetm—k,t (Vg - W)

keN neN keN
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where the last term is a finite sum. Therefore

Aea(-w) = 37 > Ve (vg - w)g™

meN keN

Here, the outer sum ),  converges a.l.u. on D, and the inner sum ), is finite. Since

Y= > > Ay-q(logg)

0<i<LecE

holds on W and hence (by Op-linearity) on W ®c O(D[), we obtain in O(ﬁg) that

D 20 D k(v w) - g™ (log g)!

0<I<L meC keN

Since the V(v - w) is zero for all ¢ € ZSEX, by Prop. 1.2, we obtain (2.33). O
Lemma 2.9. Foralln e C,0 <[ < L, we have \,,; € Ng(W).

Proof. It suffices to assume that n € E + N. Recall Def. 1.19. Then, for each 7 € N and
o€ H(C, % pn ®ws(eZ;)), wehave that o + 0 - g + - - + 0 - ¢ is h-compatible, cf. Def.
1.9. (Indeed, by setting vy = o,v1 = --- = v; = 0, we obtain (1.42) with the family (¢, ,,),
where the only potentially nonzero terms are cj;, ; for m > h and cf,, for n > h. In fact,
Cm.05 cO ,, are determined respectively by the Laurent series expansions of U,(§)o, U, (w)o
near¢’,¢".)
Thus, by Thm. 1.11, there exist 0 < & < rpand v € H?(7~!(D.), ¥x ® we/s(eSx)) with

g-expansion v = o + *¢"*t1 + x¢"*2 4 ... Let us assume, at the beginning of the proof,
that 7 € N is large enough such that n — k& ¢ E + N for any integer £ > h. The Lem. 2.8
implies Yy, (0 - w) = 0 for each w € W. So ¥y, € T35 (W) < Rg(W). O

Proposition 2.10. Assume that f(§,w) € C[[{,w]] and 0 < ¢ < L. Then, for each v € V, the
following equation holds in Nz(W){q}.

Rese—o 2 f(€,a/€)Ye (€90 u, €)y, e dE

net 2.35
—Reso—o Y. flg/m, @)Y (@O Uv1)u, @) " dw 2%

neC

This proposition can be viewed as an inverse of [GZ24, Prop. 4.6]. Thus, [GZ24, Rem.
4.7] can also help the reader understand the two residues in (2.35).

Proof. 1t suffices to prove that for each & € N, Eq. (2.35) holds true mod Jj, where
In= Y q"" g (W)[[q]]
ecll
Fix h e N. Write D = F + Nand D; = F + Ngy. Write

0

f(gaw) = Z Cm,ngmwn

m,n=0
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where each ¢, ,, € C. Then, the LHS of (2.35), which equals

+00 +00

Res¢—o Z Z Z Corn kYo (EFFOy o0, ogF T dg

neD k=0t=—k
is mod J;, equal to

h +o0

Rese—o Y, > > cornn Y (€O 0, Oy, pgh 7 dg (2.36)

neDy k=0t=—k
Choose @ € N5 such that

Res,—o Vi (297 LO*0p ), 0dz =0 Vne Dy, 0<l<LoeV™ jeN (237)

By Prop. 1.14, we can find vy, . .., v, € HY (C~, Y3 ® wg(osi)) satisfying (1.49). Combining
(1.49) (or (1.50)) with (2.37), we see that

h
(236) = >, D Rese—o Vi (Up(€)vr, )bneg™ "

neDy, k=0

So the LHS of (2.35) is mod Jj equal to the RHS of the above equation. By a similar
argument, the RHS of (2.35) is mod J; equal to

h
— Z Z Resp—g Y—(Z/{g(w)vkaw)wn,ﬁqurn
neDy, k=0

Recall that the evaluation pairing (-, -) : Ng(W) ® W — C is just the canonical confor-
mal block J € 72 (N (W) ®@ W). So it vanishes on the residue action vy, - (Y, ¢ @ w) for each
w € W. In other words,

Rese—o(Y5 (U (§) vk, E)Wn e, w) 4+ Resgo—ol Y- (U () vk, @) e, w) = =y (v, - w)
Therefore, when evaluated with w, the LHS minus the RHS of (2.35) is mod J; equal to
h
= 3 D Unelvg - w)gt (2.38)
nEDﬁ k=0

By Thm. 1.11 and Prop. 1.15, there exist 0 < ¢ < rpand v € H? (7~ !(D;), ¥x @ we/5(*Sx))
whose A-truncated g-expansion is vy + vig + -+ + vpq". Write v = Yo vrq®. Then, by
Lem. 2.8, we have

+o0
0D ne(vr - w)g " =0

neD k=0
Therefore (2.38) equals zero mod J;. This proves that (2.35) holds mod Jj. O

Recall (1.3) for the meaning of Y (u) () and Y (u)(x)-

43



Corollary 2.11. Foreachw e V,k € Z,0 <l < L, the following equation holds in Nz(W){q}.

DY () gy naq” = D Y (1) gy bnag™ (2.39)

neC neC

In particular, we have Y- (u) (k) Wn,i = Y. () (k) Wn—k, and Ly (k)Wn; = L_(=k)bn—g-

Proof. Recall that U(y,)z"() = »=L0O )U(yl) Setting z = w ! and using the identity

Resp—og(w)dw = —Res,—og(z~1)d(27!) for any formal Laurent series g(w), we find that
(2.35) becomes
Rese_o ) f(€,4/)Y+ (€5 u, )b g dg
neC
(2.40)
=Res,— Z flgz, 2~ HY! (ZFO~ Yy, 2\, 1q"dz
neC

When k > 0 (resp. k < 0), we choose f (¢, @) = &¥ (resp. @ ™). Then (2.40) becomes

2 Yo (w) (ry$ngq" = Z Y’ (U)(k)ll)n,lqn+k

neC neC

resp. Y Yy (u)rybnag” " = DV (1) iy bng"

neC neC

So (2.39) is true. The rest of our corollary is obvious. O

Proposition 2.12. For each 0 < [ < L, the following relations hold in Nz(W){q}[log ¢q|.

904 = 22L+ Jnq" (log g)' ZZL 0)q" (log g)f (241)

1=0neC 1=0neC
In other words, we have q0,\p = L1 (0 = L_(0).

Proof. The second equality of (2.41) follows from Cor. 2.11. Choose any w € W. By Prop.
2.6, foreachn e C,0 <! < L,m € N, we have in 7x(Nx(W) ® W) that

V(B’i_@)ﬂr)n,l ®w + 1I)n,l ® V(B#@)w = #(Eiﬁ) : 1I)n,l ®w

Applying the canonical conformal block J: W @ Nz(W) — C (i.e., the evaluation pairing)
to the above equation yields

Y G )Wt ) + oty V(G )w) = #(,) - Wi (w)
Hence, by (2.27), we have in C[[¢]] that

D V@) n s wyg™ + Y g, V() w)g™ = 32 g, w)

meN meN

It follows that in C{q}[log ¢] we have

DIV ERIb W™+ b, V(G wg™ = b, w) (2.42)

meN meN
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On the other hand, by (2.30) and (2.28), we have in (’)(ZSTXP) that

qaq<1|), w> = <11)7 vqé’qw + %/w>

Applying (2.25) and using an argument similar to that in the proof of of Lem. 2.8 to tran-
sition from the sheaf-theoretic equation to the formal equation, we obtain the following
equation in C{¢}[log ¢].

g0y, wy = = D b, vy, )wyg™ + #(b,w)

meN

Combining this equation with (2.42), we get ¢d,(\, w) = ZmeN@(ﬁ}n)w, wyq™. Therefore

9000 = D vE " = D v(H) ¢ + D V()b g (2.43)

meN meN meN

holds in Nz (W){q}[log q], where v(§) +b = v(B;5) *1 ¥ and v(§,) - = v(D;5) *2 U, cf.
(1.33) for the meaning of i-th residue action ;.

Let us compute the RHS of (2.43) using an argument similar to that in the proof of
[Gui24, Lem. 11.8]. Due to (2.24), we have

Y(Om)+ W = D Rese_g apemmé Vi (c, )¢

t=—m

where the RHS is a finite sum. Hence, in N3(W){q}[log ¢] we have

DIvEm)+ g™ = D D Resemo arymmé g™V (e, b€

meN meNt=—m (2.44)

~Rese-o a6, a/€)Y4 (€7, 70
Similarly, noting ¢(y1)c = ¢, we have
~1 m_ L(0) dw
D V(@)W - ™ = Resg— b(g/w, @)Y (w Ulyi)e, whb—
meN
By Prop. 2.10, we have
~1 m LO d&
V()W g™ = Rese_o b(€, ¢/€) Y+ (€50, b (2.45)
meN
Combining (2.43), (2.44), (2.45) with the fact that a + b = 1 (cf. (2.17)), we obtain
00 = Rese_o Y1 (€906, 0°F = Ly(0)
This finishes the proof. O
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Corollary 2.13. Let L+(0) = L+(0)s+ L+(0)y be the Jordan-Chevalley decomposition of L+ (0)
where L+ (0)s is the semisimple part and L (0)y, is the nilpotent part. Then for each n € C and
0 <1 < L we have

L (0)iWng = L (0)stbns = nib (2.46a)
L+(0)n1bn,l =L_ (O)nll)n,l = (l + 1)¢n,l+1 (246b)

(where by = 0if I > L.) In particular, we have \,, ; € Ng(W), ) foralln e C,0 <1 < L.

Proof. For each n € C, let G,, < Nz(W) be the generalized eigenspace of L, (0) with
eigenvalue n. Then L, (0)s|g, = n. By (2.41), for each n,l we have

(LJ_F(O) - n)lbn,l = (l + 1)11)71,1-&-1 (247)

Therefore, H,, := Span{{,0,..., ¥, 1} is invariant under L, (0), and (L4 (0) — n)|q, is
nilpotent. Thus H,, ¢ G,,. Therefore, we have L, (0)s|r, = n, and hence L, (0)n|p, =
(L+(0) — n)|p,. Similarly, we have L_(0)s|,, = n and L_(0)n|r, = (L-(0) — n)|m,.
Combining these results with (2.47), we get (2.46). O

2.5 Proof of the SF Theorem 2.2

In this section, we prove Thm. 2.2, which means proving that the linear map I" := (2.9)
is bijective.

2.5.1 Proof that I is surjective

Let pg = p1p2 with arg pg = argp; + arg ps. Recall the equivalence X, ~ S(F uMN)p, po

(cf. (2.6)). Let \,,, be an element of ‘?S*(Sum)pl,pg (W), equivalently, an element of 93;;0 (W).

Lety e H O(ﬁfp, T¥(W)) satisfy (2.30). Recall from Lem. 2.9 that each 1, ; is an element
of Ng(W). In particular, it is a linear functional 1\, ; : Xlz(W) — C. Thus, we can define a
linear functional

X: (W)= C  (ow) =D (o) (2.48)

neC

Note that the above sum is finite because L (0)s\, 0 = npp o (cf. Cor. 2.13) and tv is a
finite sum of eigenvectors of L (0)s. We write x = >, _~Wn 0.
By Cor. 2.11 and (1.4), for each tv € Xlz(W),u € V, k € Z, we have

GG YL (1) g0y = > 0, Y1 (1) gyro) = > 1Y (1) oy 0, 10)

neC neC

= Y Y (1) oy 0, 10) = > (W0, Yo (1) yt0) = (X, Yo (1) 1y 0

neC neC

Therefore, by Rem. 2.1, we have x € 74} (Xz(W)).
Let us prove I'(x) = 1,,. By Cor. 2.13, we have

q1L+(0)q2L_(0)1bn,o _ (Q1QQ)L+(O)1I)n,0 _ (qlqﬂL*(O)”L*(O)nll)n,o
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L

=(q1g2)" - )] %(M(O)nlog(qwz))l%,o = > (0132)" (l0g(q192)) s

leN " =0

in Ng(W)[5,,n11¢e }[10g ge]. Combining this result with (2.7b), we get

SA®Y, 0 =L Y Y Y 3@ (@) @w) - (g VO, ex (@)

Al,)\QEC aEQl)\. neC

I
”‘M

Z (0142)"(log(q192))" - I(En () @ w) - (1, ()
aelly,,

(q192)™ (log(q1¢2))" - AW @ w)

i
Z S

I
‘“M

where the last equation is due to the easy fact that 0 = >, .o (0, enn(@)) &, n(a) for any
0 € Nz(W),,n. Recall again that J : Ng(W) ® W — C is the restriction of the evaluation
pairing W* @ W — C. Therefore

L
SA®X),wy = >, > (q102)" (l0g(q162)) (n s, w) = b, w)l

neCl=0

9=q192

We conclude that S(I® ) = W|g=q¢., and hence S(IRX)|p,.po = W|p, = Wp,- This proves
that F(X) = 1pPO'

2.5.2 Proof thatI is injective

For each x € .7 (XI5 (W)), recall that S(J®x) can be viewed as a section of the vector
bundle 93*(3 ) (W)on D) x Dy, cf. (2.8). By [GZ24, Thm. 4.11], there exists a connection
on Tz (W )Ipx D such that for any x € Z; (Xl5(W)), the section S(I ® x) is parallel
under this connection.

Recall that parallel sections are determined by their values at a given point. Therefore,
if we assume that I'(x) = 0 (which means S(A® X)|p, p, = 0), then S(I® x) is the zero
section. Applying Prop. 1.2 first to the variable ¢ (for each fixed ¢» € D and arg ¢2) and
then to the variable ¢», we conclude that for each w € W and A\, A\ € C and [4, 5 € N, the
coefficient of qf‘lqg‘Q (log ¢1)" (log g2)'2 in (2.7b) is zero. When [ = Iy = 0, this means that

N 1@ (@) @ w) - (s ex (@) = 0

aEQ‘)\.

Since x is a linear functional Xjz(W) — C, we can define its restriction x», : Xz(W)[x,] —
C. Then x,, is an element of Nz(W)[,,}, and we clearly have

Y, (eenla)-énla)

aEQl)\.

It follows that J(x», ® w) = 0 for all w € W. Since ] is partially injective (cf. Rem. 1.18),
we must have x,, = 0 for all A\,. Hence x = 0. This finishes the proof that I' is injective.
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3 The general sewing-factorization theorems

3.1 The SF theorems for compact Riemann surfaces

The goal of this section is to prove Thm. 3.4 and 3.5, two nearly equivalent versions
of the sewing-factorization theorem.

3.1.1 The setting

Let N, K, R € N. In this section, we let

S: ({L‘ll,...,l‘lR; /1,...,93%‘01‘1]1,...,[EN;Ql,...,QN)

6 = (yia >y§%7//11 : '7/~/R’02’y17"' 7yK;/-L17"'7,uK)
be respectively (R, N)-pointed and (R, K')-pointed compact Riemann surfaces with local

coordinates, cf. Def. 1.16. Recall that § L & is the disjoint union of §, &, cf. (1.56). For each
1<j<R,Ilet V}’ (resp. Vj” ) be a neighborhood on which 0; (resp. u;) is defined. Assume

that V/, ..., V},z1,..., o are mutually disjoint, and V{’,..., V], y1, ..., yx are mutually
disjoint. We also assume that for each j there exist r;, p; € (0, +0] such that
0;(Vi) =Dr, (Vi) =D, (3.1)

Definition 3.1. Let S(§ 1 &) be the sewing of § L & along the pairs of points (27, y;) (for
all 1 < j < R) with sewing radii (7}, p;) using the local coordinates (¢, 11}). Cf. Subsec.
1.2.1. Then S(§ u &) has base manifold D,,,, = Dy p, X -+ X Dyp,,, and the fibers over
Dy, = D, x - x D, are smooth. Recall that the marked points ., y. and their
local coordinates 6., 1o are extended constantly to S(F 1 &), and we continue to denote

them by the same symbol. So we can write

SFL®) = (1:C > Dy

xl?'"7$N7y17"'7yK;917"-79N7/’L17"'7/~’LK) (32)

We still let ¢; be the standard coordinate of D,.,,.. Then qo = (q1,-..,qr) is a set of coor-
dinates of D, , .

We assume that each component of C; contains one of zi,...,zn (so that (dual)
fusion products along § can be defined), and each component of (5 contains one of
Yi,-- -, YK, Y, - - -, Yr (so that conformal blocks associated to & can be defined).

Associate W € Mod(V®V) to the ordered incoming marked points 1, ..., 2y of 3.
Similarly, associate X € Mod(V®X) to y1,...,yx. Associate M € Mod(V®®) to z/,..., 2%,
and associate its contragredient M to 4/}, ..., y/.

We view M ® W as associated to 7, z., and M’ ® X as associated to ¥, , y.. Associate
W ® X to the ordered marked points z1,...,zx,y1,...,yx of S(F 1 &). Let

be TFMW) xeJgM ®X)

Definition 3.2. The sewing of ¢ and x is defined by contracting the M-component of ¢
with the M'-component of x. More precisely,

S ®x) : WX — C{qa}[log ga]
(S@x),wez)= > > (ba"Ver(@)@w) (X&) ®35) (33)

Xe€CE ey,

48



(wWhere w € W, 3 € X). Here, (ex, (@))ae,, is a basis of M, j with dual basis (€), (@))aen,,
in M, ,, and
]

L. (0)

L1(0
g :qll()

Y (3.4)

See [GZ24, Sec. 4.1] for more explanations. Clearly we also have

(S®x),w@z)= > Y {ben(@@w)y-(xa V(@) (3.5)

Ae€CE o€y,

Remark 3.3. By [GZ24, Thm. 4.9], the formal series S(¢ ® x) converges a.l.u. on D, po I
the sense of Def. 1.1, and

S(Pp®x)

o« €H (D) . Td50e)(W® X)) (3.6)

TepPe

where D% is the universal cover of D) pe: BY [GZ24, Rem. 3.1], (3.6) is equivalent to that

iy

for each pe = (p1,...,pr) € Dy, ,, with fixed argpi, ..., argpr, we have

S(d®x)|,, € ZS(z0e),. (WOX)

3.1.2 The sewing-factorization theorems

Let (Ngz(W),J) be a dual fusion product of W along §. If each component of Cy con-
tains one of y., we have a dual fusion product (Ng(X), ) of X along &. So

I:Nzg(W)@W — C T Ne(X) X —>C
are the canonical conformal blocks.

Theorem 3.4. Assume that each component of Cy contains one of x1, ...,z N, and each compo-
nent of Cy contains one of yi,...,yk. Let ps € D, , with fixed argpy,...,argpr. Then the
following linear map is an isomorphism.

Homyer (He (X), Ny(W)) — Ts(gue),, (WO X) (3.7)
THS((IIO(T@idW))@_[)’p. |

Following Def. 3.2, the sewing in (3.7) is defined by contracting the [Xlg (X)-component
of Jo (T ®idwy) : K (X) @ W — C with the Ng (X)-component of . Moreover, note that
by taking transpose, (3.7) becomes an isomorphism

Homyan (K5 (W), Mo (X)) > Tsoe),, (WO X) (3.8)
T S(I®(To(T®idx)))] '

De

where the sewing is defined by contracting the Nz (W)-component of J with the Xz(W)-
component of To (T’ ®idx) : Kz(W) @ X — C.
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Proof. Step 1. Recall (2.3) for the (2,0)-pointed surface % = (0, 0;1/¢,¢|P'). Let w €
Tyt (Na(V)) be defined by (2.11), where Q = (o0, 0;1/¢, ¢|P*|1;¢ —1). The goal of this step
is to construct the linear isomorphism (3.9) by applying the sewing-factorization Cor. 2.4
iteratively R times.

For each 1 < ¢ < R, choose pZ € Dy, and p, € D, such that p, = pjpe_. Let 3¢
be the family obtained by sewing § 1 & along (z),v)),..., (z},y;) with sewing radii
(r1,p1)s-- -, (re, pe). In particular, we have 3° = § u & and 3% = S(F u &). The base
manifold of 3* is Dy, x -+ x Dy,,,. Note that the fiber Bﬁl,...,pe has marked points

/ / / !
x£+17y€+17'"7'TR7yR7x17"'7$N7y17'"7yK

Assuming this order, we associate (g (V))®~) @ W ® X to these marked points.
For each 0 < ¢ < R, consider the sewing

S35, uM

of 35, ., 1 Malong the pairs of points (z7, ;,%) and (y},,,0) with sewing radii 7441, 1

and py. 1, 1. This family has base manifold D,,, . ,. Cor. 2.4 yields an isomorphism

7 (e (VPEOQWEX) > Ty . (Fa (VP @WeX)

Pet+1Pet1

Y= SHw)|

+ —
Pyy15Poya

where the sewing is defined by contracting the first tensor component Xl (V) of { with

w : Na(V) — C. By (2.6), we have a canonical isomorphism Sf)f}_.’pﬂ L~ 8(321,...@ U
m)ﬁ P Thus, the above linear isomorphism becomes
r+1°Pe+
75 (Ba (VPFORWRX) — Zi, (Ko (V)PF D eWeX)
Ip1seapy PLosPet1
Il) = S(ll) ® w)|pz'+1’pz+1

Therefore, by induction on ¢, we have a linear isomorphism

T3 e (Ko (VER@W® X) — T3(5u6),. (WeX)

P S @ w®) =S w®)| o

il bhpR
where S(P ® w®F) is defined by contracting the component Xq(V)®® of ¢ with
WO Mg (V)®F - C.

Step 2. The goal of this step is to obtain the isomorphism (3.11). By Thm. 1.24 and the
universal property for dual fusion products, we have an isomorphism
Homyseen (Ka (V)®F, Nz (W) @ Ne (X)) — s (K (V)2F @ W X)
A (:I@-I) o (A@idw@idx)

Here, by reordering the tensor components in the domain, we view J® T as a linear
functional

(3.10)

1T (W) @Ns(X) @W® X — C
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Moreover, A is understood to be a linear map [Xq (V)®# — Nz(W) ® N (X) satisfying

A01® - @Yy (u,2)0; @+ ®0R) = (Yj(u, 2) ®idg,x)) A(01 ®--- @ vR)
A01®- QY (u,2)0;® - ®vp) = (idg,w) @ Y;(u,2))A(01 ® - ®vR)

forallvy,...,opeXg(V)and u e V.
Combining (3.10) with (3.9), we obtain a linear isomorphism

Homyger (K (V) Mz (W) @ Ne (X)) — Tdgoe),, (WO X)

Pe

A= S((A®T o (A®idw ®idx)) ® w®)| + = S(A®T) @ (w0 AY))] -

and hence a linear isomorphism

Homysen (& (W) ©Ea(0.Sa(V)™) — T, (WOX)
BHS((J@)‘I)@((»@ROB))\ ’

.
e

where the sewing is defined by contracting the component Nz (W) ® N (X) of 3® T with
w®o B Xz (W) ® K (X) — C.

Step 3. Let M = 9 L - - - L Ng be the disjoint union of R pieces of 9, where N; ~ N
is written as

N, = (905,05;1/¢, ¢|P;)

Note that w®" : N (V)®® — Cis a conformal block associated to M. (Here, we associate
Na(V)®% to the ordered marked points o0/, 01, ..., 90, 0%.) Then we have a linear map

Homysem (K (W) @ M (X), Na(V)®F) — Fir (Kz (W) @ K (X))

3.12
B— w®%o B (3.12)

where Xz (W) ® Kls (X) is associated to the ordered marked points oo}, ..., 0%, 0},...,0%
of M~

We claim that (3.12) is an isomorphism. Suppose this is true. Then, combining (3.12)
with (3.11), we get a linear isomorphism

Tyin([F5(W) @ Ks (X)) — Tgiz0e),. (WOX)

3.13
T'—>S(j®-i®’t)’p.i (313)

By Rem. 2.1, an element of 77 (Xlz(W) ® Xls(X)) is precisely a linear functional T :
Xz(W) ® Ko (X) — C such that ©(Y] (u, 2)v ® 3) = T(1v ® Yj(u, 2)3) holds in C[[2*']] for
all 1 < j < R. Therefore, we have a linear isomorphism

Homyer (@ (X), Ny (W)) — sf;R (S (W) ® X (X))

T (m ®3 <t’0, T3>> (3.14)

The composition of (3.13) with (3.14) yields the isomorphism (3.7), thereby completing
the proof.
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Step 4. It remains to prove that (3.12) is an isomorphism. Let QF = Q; 1 --- 1 Qg be
a disjoint union of Q, where Q; ~ Q is

Q; = (5,05 1/¢,¢|Pj|1;,¢ - 1)

Recall that (Ng(V),R) is a dual fusion product of V along Q. By Thm. 1.24,
(N (V)®F, R®F) is a dual fusion product of VO along QF. In particular,

RO . 6 (V)R @ VO _, C

is the canonical conformal block, where Kg (V)®F®@V®F is associated to the marked points
of 9% in the order 1,01,...,%0g,Or, 11, ..., 1r. Therefore, by the universal property,

Homyer (55 (W) ® Ke (X), Na(V)®") — I3k (K (W) ®@ Ko (X) @ VEF)

3.15
B — ¥® o (B®idyer) (3.15)

is a linear isomorphism, where Xz (W) ® X (X) ® VOF is associated to the marked points
of O in the order o0, ...,%x,01,...,0p,11,...,15.
The propagation of conformal blocks (cf. [GZ23, Cor. 2.44]) gives an isomorphism

G (B (W) ® Ko (X) @ V) — 7% (K5 (W) ® Ko (X))

3.16
@ — p(— ®1%7) (310

where we note that 1% € VO£, Since w®! equals R®%(— ® 197) (cf. (2.11)), the compo-
sition of (3.16) with (3.15) equals (3.12). Therefore (3.12) is an isomorphism. O

Note that the assumption on the marked points of C5 in the following sewing-
factorization theorem is weaker than that in Thm. 3.4.

Theorem 3.5. Assume that each component of Cy contains one of x1, ...,z N, and each compo-
nent of Cy contains one of y1, ..., Yk, Yy, ---,Yp- Let po € Dy, with fixed argpy, ..., arg pg.
Then the following linear map is an isomorphism.

Tg (K (W) ®@X) = Tize),. (WOX) o1
X = SA®X)|, '

The sewing in (3.17) is defined by contracting the Nz (W)-component of J : Nz(W) ®
W — C with the Xlz(W)-component of x : Xz(W) ® X — C.

Proof. Since we are not assuming that each component of C'; contains one of the incoming
marked points y., we may not be able to define the dual fusion product Ng (X). However,
we can remedy this by adding additional incoming marked points yx1,...,yx+1 (With
local coordinates pix 11, ..., K +1) to &. More precisely, let

~

6 = (y/17 . ,le,,Uzll, 7/1«/1{‘02‘%7- "7yK+L;,U’17"‘7,u’K+L)
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where y1,...,yx+1 € Co are mutually disjoint, and each component of C5 contains one
of y1,...,yx+1- Associate X ® V& to the ordered marked points y1,...,yx+r. Then
we have a dual fusion product (Ng(X @ V&), 8) where Ny (X ® V&) € Mod(V®F) is
associated to the ordered marked points v, ..., y%, and

3N XV X Ve - C

is the canonical conformal block.
By Thm. 3.4 (more precisely, by Eq. (3.8)), we have an isomorphism

Homyer (X (W), Ng (X @ VO")) — Tasd), (WX Vel

T—S(I® @0 (I®idx®idyer)))|,,
where the sewing is defined by contracting the Nz (W)-component of J with the Xz(W)-

component of ¥ o (T'® idx ® idyer ). The universal property of (Ng(X ® VL) %) yields
the isomorphism

Homyer (g (W), Mg (X ®@ V&) — 72 (K (W) @ X @ V¥F)
T—Xo (T@idx@idV®L)
Therefore, we obtain the isomorphism

T3 (B (W) @X@VE) — Too o (WOX®VE) (3.18)

- SARY)],
The propagation of conformal blocks (cf. [GZ23, Cor. 2.44]) gives isomorphisms
7% (5 (W) @ X®@ VO ~ 7 (5 (W) ®X)
Ts5u),, WOX® V) > Tisie),, (WOX)
defined by inserting 1®L into the V®L-components of the conformal blocks. With the

help of these two isomorphisms, the map (3.18) becomes (3.17). Therefore (3.17) is an
isomorphism. O

3.2 The coend version of the SF theorem

In this section, we continue to assume the setting in Subsec. 3.1.1. Moreover, as
in Thm. 3.5, we assume that each component of C'; contains one of xi,...,zy, and
each component of Cy contains one of y1,...,yx,yy,.-.,yp- Let po € Dy, with fixed

argpi,...,argpR.
We refer the reader to Sec. 0.2 or [SF12, Sec. 2] for the definition of coends. Let Vect

be the category of finite-dimensional C-linear spaces.
Lemma 3.6. The family of linear maps
Homyer (M, Nz (W)) ®c Zg (M' ® X) — T (X (W) ® X)
T®x— xo (T'®idx)
for M € Mod(V®%) is a coend in Vect.

(3.19)
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In other words, (3.19) realizes a linear isomorphism

MeMod (VOE)
f Homyer (M, Eg(W)) Rc ﬂg (M/ () X) ~ ﬂg ( Xl (W) X X)

Note that the linear functional x : M’ ® X — C in (3.19) is a conformal block, where M’ ® X

is associated to the ordered marked points y1, ..., Y%, y1,...,yx of &.

Proof. The map (3.19) is clearly dinatural. By [FS17, Prop. 4], if Z is a C-linear category,
and if G : 2 — Vect is a C-linear functor, then for any b € 7, the family of linear maps

Homg (d,b) ®c G(d) = G(b)  T®E&— G(T)E
for d € 7 is a coend. Apply this result to 7 = Mod(V®%), b = Nz(W), and
G : Mod(V®H) - Vect M- JgF (M ®X)
Then the proof is complete. O

The following theorem is the coend version of the sewing-factorization theorem. In
the case where §, &, and S(§ u ®)|,, are all genus 0 surfaces, a similar theorem was
obtained in [Mor22].

Theorem 3.7. The family of linear maps
T MOW) ¢ Jg (M ®X) — Tdisoe), (W®X) 520
YRX = SWX)|,
for Ml € Mod(V®E) is a coend in Vect.
In other words, the sewing map realizes a linear isomorphism

MeMod(VOR)
J THMOW) ®c T8 (M ®X) ~ Tsse,, (WOX)  (321)

Proof. By the universal property for dual fusion products, the linear map
Homyer (M,Ng(W)) - ZF(MQW) T — Jo(TQidw)

implements a natural equivalence between the contravariant functors M € Mod(V®%)
Homyer (M, Ng(W)) and M € Mod(V®H) — 7*(M ® W). Combining this fact with Lem.
3.6, we see that the family of linear maps
T (MOW) Oc T3 (M ®X) — 7 (5 (W) © X)
P Rx — x o (T ®idx)
for M € Mod(V®®) is a coend, where Ty, : M — [Ng(W) is the unique homomorphism
such that J o (T}, ® idw) = .
By the sewing-factorization Thm. 3.5, the linear map (3.17) is an isomorphism. Hence
(3.17) 0 (3.22) is also a coend. We compute that (3.17) o (3.22) sends P ® x to

SA® (xo (T} ®idx)))|,, = S(A e (Ty ®idw)) ®@x)|,, = SW®X)|,,
Therefore, (3.20) is a coend. O

(3.22)
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3.3 The SF theorems for families of compact Riemann surfaces
3.3.1 The setting

In this section, we generalize the sewing-factorization theorems 3.4 and 3.5 to families
of compact Riemann surfaces. Let R, N, K € N. Let

3:(1'/1,.. .%R, /,..., IR‘7~T1:C~1—>l§’$1,...,$N;91,...,9N)

G = (Yl s Uil - s |2 Co = Blyn, -,y iy - - i)

be (R, N)-pointed and (R, K )-pointed families of compact Riemann surfaces with com-
mon base manifold 5. Therefore, 51, B are complex manifolds, and 7 is a proper holo-
morphic submersion such that for each b € B, the fiber 71 (b) has pure dimension 1. Each
T; B — C~1 is a holomorphic section, i.e., a holomorphic map such that 7, o z; = idg.
Moreover, 6; is a local coordinate at z;(B), i.e., a holomorphlc map 0; : U; — C (where U
is an open set containing x;(B 3)) which is univalent on U; b= U; n 7 1(b) for each b € B,
and which maps xl(g) to 0. Similarly, each z’; is a holomorphic section, and ¢’ is a lo-
cal coordinate at x;(g) We assume that 2, (B), ..., zy(B), 2, (B), . .. ,a:’R(g) are mutually
disjoint. A similar description applies to &.

For each 1 < j < R, let V] be a neighborhood of x;(g) on which ¢} is defined (and

univalent), and let V" be a neighborhood of z’} (B) on which 07 is defined. We assume that

~.

21(B),...,zx(B),V{,...,V} are mutually disjoint
n(B),...,yx(B),V{, ...,V are mutually disjoint

We also assume that there are 0 < r1,...,rg, p1,...,pr < +00 such that
FL0)(V])) =Bx Dy, (Fa,u))(V]') =B x D, (3.23)

Definition 3.8. Let S(F u &) be the family obtained by sewing § L & along the pairs
of marked points (z},y}) (for all 1 < j < R) with sewing radii (r;, p;) using their local
coordinates 9;, ,u;-. The sections z;,y; and the local coordinates 6;, 11; of §, & are extended
constantly to those of S(F U ®), and we continue to denote them by the same symbols.
See [GZ24, Subsec. 1.2.1] for the detailed construction. Let

BzngT.p.:ngnmx-~xD

TRPR
B* = B x DX —BXDX X - x DX (3.24)
Tep T1p1 TRPR

Then S(§F u &) has base manifold B and has smooth fibers over B*. We write
8(3'—' QS) = (ﬂ' :C — B‘Q?l,... 737N’3/17-~~73/K§917- . '70N7/’L17"'7IU'K) (325)
As in Subsec. 3.1.1, we let g; be the standard coordinate of D, ;.

We assume that each component of each fiber 7; * (b) intersects z1(B) U - -- U 2 (B),
and each component of each fiber 7, ! (b) intersects y1 (B) U- - - UyK (B)uy (B) - UYR(B).
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As in Subsec. 3.1.1, we associate W € Mod(V®Y) to the ordered incoming marked
points x1, ...,y of §. Similarly, associate X € Mod(V®X) to y1,...,yx. Associate M €
Mod(V®R) to o}, . .. , &', and associate its contragredient M to ¥/}, ..., y.

We view M ® W as associated to z/,, x,, and M’ ® X as associated to 1., y.. Associate
W ® X to the ordered marked points z1(B),...,xn(B),y1(B),...,yx(B) of S(F u &).

Definition 3.9. Suppose that
beH'(B, ZF(MOW))  xe H(B, 73 (M ®X))

The sewing of ¢ and Y is defined by contracting the M-component of ¢ with the M'-
component of x. More precisely,

S(P®X): WX — O(B){qe}[log q.]
(S@x),wezy= > Y {(b,a" Ve (@)@w) (x.2\(@)®3)

AeeCR OtGQ[)\.

(3.26a)

(Where w € W, 3 € X). Here, (ex, (@))ae,, is a basis of M, j with dual basis (€), (@))aen,,

in M’[/\.], and qf (O _ (3.4). See [GZ24, Sec. 4.1] for more explanations. Clearly we also
have

(So@x). w35y = Y, > (b er(a)@w) {(x.a"Ven () (3.26b)

Aec€CE ey,

Remark 3.10. By [GZ24, Thm. 4.9], S($ ® ) converges a.l.u. on B* in the sense of Def.
1.1, and

S(P®x)

gx € HO(B X DY, Tdisi.0) (W@ X)) (327)

TepPo?

where ﬁﬁ. oo 18 the universal cover of D per BY [GZ24, Rem. 3.1], (3.27) is equivalent to
that for each b = (bg, p1,...,pr) € B* with chosen arg p1, ..., argpr, we have

S(d®x)|, € Tsue), (WO X)

Definition 3.11 ([GZ24] Def. 3.18). A dual fusion product of W along § is a pair
(Nz(W),J) where Nz(W) € Mod(V®R), and 1 € HO(B, T (Nx (W) ® W)) satisfies that
for each b € B, the pair (Ngz(W),3];) is a dual fusion product of W along §;. The contra-
gredient V®F-module of N3 (W) is denoted by Xz(W) and called the fusion product of W
along §.

Remark 3.12. Dual fusion products, when they exist, are unique up to unique holomor-
phic isomorphisms. See [GZ24, Cor. 3.21] for a detailed description. Moreover, by [GZ24,
Cor. 3.23], a dual fusion product (Nz(W),]) exists provided that B is a polydisk, i.e.,
B=D., x---xD,, forsomemeNandei,...,em € (0, 4]
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3.3.2 The sewing-factorization theorems

Foreachp, € D), ,welet S(Fu &) Bxp. De the restriction of (§ u ®) to the submani-

TepPe’
fold B x p.. Equivalently, it is the pullback of S(F L &) along the map b € B — (b, p.) € B.
In this way, we may regard S(§ 1 &) Bxp, A5 Q family with base manifold B. We view

Homv®R ( @ (X)7 EI@’(W)) ®C Og

as the sheaf of (germs of) holomorphic functions on B whose values are homomorphisms
Mo (X) — Ng(W).

We now prove the sewing-factorization theorems for families, generalizing Thm. 3.4
and Thm. 3.5. We emphasize that the dual fusion products mentioned in the following
theorems exist whenever B is a polydisk.

Theorem 3.13. For each b € B, assume that every component of %, *(b) intersects 21 (B)U--- U
zn (B), and every component of %5 1 (b) intersects yi (B) U - - - Uy (B). Assume that (Nz(W), )
is a dual fusion product of W along §, and (Ng(X), ) is a dual fusion product of X along &.
Let po € Dy, ,, with fixed argp,...,argpg. Then the following sheaf map is an Og-module
isomorphism.

HOmv®R ( @ (X),Ng(W)) ®C Og i) ‘78*(311(’5)5)(?. (W® X)

(3.28)
TH»S“JOCT@kW@)@THEMM
Note that (3.28) is equivalent to
Homyer (K5 (W), Ne (X)) ®c O — Tigue),. (WOX) 629
e 3.29

T—SI® (7o (T®idx)))

| Bxp.

Proof. By Rem. 3.10, the map & :=(3.28) is well-defined and is clearly an Oz-module
morphism. Denote the source and the target of ® by & and .#, which are locally free.
Thus, ® can be viewed as a morphism of vector bundles. In particular, each by € B
is contained in a neighborhood Q2 < B such that ®|q can be viewed as a holomorphic
matrix-valued function. For each b € (~2, by [GZ24, Thm. 3.13] (see also Rem. 1.7), we
have a linear isomorphism

ﬁb/mg’bﬁb = ‘9"5*({?\_1@) W& X)

bXPo<

defined by sending each 1 of the stalk .%; to V. Therefore, by Thm. 3.4, the restriction
of ® to the fiber at b is a linear isomorphism, i.e., the induced linear map & /m&bé" —
F /m&bﬂ is an isomorphism. Therefore, if we view ®|q as a matrix-valued function,
then for each b € , the matrix ®|, is invertible. This proves that ® is an (’)g-module
isomorphism. ]

Theorem 3.14. For each b € BB, assume that every component of %7 (b) intersects x1(B) U - - - U
xn(B), and every component of %, ' (b) intersects y1 (B) U - -+ U yr (B) U ¥4 (B) U -+ - U yr(B).
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Assume that (Ng(W),3) is a dual fusion product of W along §. Let po € Dy, with fixed
argpi, ..., arg pr. Then the following sheaf map is an Og-module isomorphism.

78 (K5 (W) ®@X) — Tgiz0e),  (WOX)
e (3.30)
X = SA®X)| g,

Proof. This theorem follows from Thm. 3.5 by the same reasoning as the derivation of
Thm. 3.13 from Thm. 3.4. O

3.4 Transitivity of fusion products as an SF theorem

We continue to work in the setting of Subsec. 3.3.1. Let §) denote the same surface &
but with incoming and outgoing marked points exchanged. Namely,

32(1‘,1, . J}R, /,...,93%|7AT/‘1:C~1—>B~’$1,...,1’N;91,...,9N)
.6=(y1,---,yK;u1,---,uK|7~rz:52—>l§|yi,---,y§z;u’1,---,ﬂﬁz)

Let $) o § denote the same family as S(F u &) = (3.25), except with the marked points
Y1, .., YK reinterpreted as outgoing marked points. Namely,

HoF = (yl,...,yK;ul,...,uK|7r:C—>B’x1,...,xN;(91,...,(9N)

is a family of (K, N)-pointed compact Riemann surfaces with local coordinates. For each

Pe € D, oo’ define

$Hop, § = therestriction of § o F to B x De

Equivalently, $ o,, & is the pullback of §) o § along the map b € B — (b,p.) € B. Our
notation suggests that we are viewing §), § as morphisms in a cobordism category, with
$ op, § representing their composition.

3.4.1 Transitivity of fusion products

We now prove the transitivity of fusion products, which can be viewed as another
version of the sewing-factorization theorem. Roughly speaking, this property says that

Xiro,, 5(W) ~ Ky (K5 (W)) (3.31)

Note that by Rem. 3.12, the dual fusion products in the following theorem exist whenever
B is a polydisk.

Theorem 3.15. For each b € B, assume that every component of %1(b) intersects z1(B) U - - U

zn(B), and every component of 7, * (b) intersects yi(g) “U yR(g)
Associate W € Mod(V®N) to the ordered marked points 21(B),...,xn(B). Assume that
(Ng(W), 1) is a dual fusion product of W along §. Associate [xJz(W) to the ordered marked points
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Y\ (B), -, yn(B). Assume that (N (&g(W)),R) is a dual fusion product of Kz(W) along .
Choose pe € Dy, ,, with fixed argps, ..., argpg. Then

(N5 (&5(W), @@z, ) (3.32)

is a dual fusion product of W along §) op, 3.

Note that B : Ny(Xz(W)) ® Xz(W) — Cand I : Nz(W) ® W — C are canonical
conformal blocks, and the sewing

SR®1I) : Ny (W) © W — O(B){g.}[log ¢.]
is defined by contracting the [x]z(W)-component of 2 with the Nz (W)-component of J.

Proof. By Def. 3.11, it suffices to prove that for each b € B, the V®X_module N, (X5 (W),
together with the conformal block S(M®J)|pxp, = SR ®Ip)|p., is a dual fusion product
of W along ($) op, §)p = (9 ©F)bxp.. Therefore, we may assume without loss of generality
that B = {0}.

Let X € Mod(V®K). We need to show that the linear map

Homyex (X, Ny (K5(W))) — T, ;(XQW)  T—SMEI)| o(Tidw) (3.33)

De

is an isomorphism. Note that

SM®I)

10 (T ®idy) = S((Mo (T ®idg,w))) @)

DPe

where Do (T'®idg, w)) : X@Xz(W) — Cis a conformal block associated to £). Therefore,
(3.33) is the composition of

Ty (X@Hs(W) —» T, s(X®W)  x—Sx®I)|,
(which is an isomorphism by the sewing-factorization Thm. 3.5) with
Homyer (X, Ny (65(W))) — 75 X @06G(W)) T 2o (T @ idg,w))
(which is an isomorphism by the universal property of 1). Therefore, (3.33) is an isomor-

phism. O

3.4.2 Example: The associativity isomorphisms

In this subsection, we briefly explain how the associativity isomorphisms in the theory
of Huang-Lepowsky-Zhang [HLZ14, HLZ12a]-[HLZ12g] can be constructed using our
sewing-factorization Thm. 3.15.

Let ¢ be the standard coordinate of C. For z, 21, 20 € C* = C — {0}, let

A= (0; 1/¢[PY0;¢)  B. = (o0 1/¢[P"[z,0;¢ = 2,)
Py 2o = (005 1/¢|P 21, 22,05 ¢ — 21, ¢ — 22,C)
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which are (1,1), (1,2), (1,3)-pointed spheres with local coordinates. For each W, M e
Mod(V), we associate W ® M to the ordered marked points z, 0 of °B.. Let

(W mz M7 yz)

be a fusion product of W @ M along B, where )V, : W®M — W xjp_ M is the linear map
such that

m®w1 ®w2 € (qugz M) @W@M —> <m,yz(w1,w2)>

is the canonical conformal block. (Here, W Ny, M is the contragredient of W [xjy;, M.)

In what follows, all canonical conformal blocks will be expressed as linear maps in
this form. For example, (W, idy) is a fusion product of W along .

Now, we assume that 0 < |z; — 22| < |22| < |21]. Then we have a canonical equivalence

Pz 011 (ALP.,) ~ By 2
Let W1, Wa, W5 € Mod(V). By Thm. 1.24,
(W1 ® (W By, W3),idw, ® Vs,)

is a fusion product of Wi @ Wo @ W3 along A LB, . Therefore, by the sewing-factorization
Thm. 3.15,

(W <bp., (Wo XK., W3), Yz, o (idw, ® V)

is a fusion product of W; ® Wy ® W3 along B, .,.
Similarly, we have a canonical equivalence

P o011 (Pay—zp UA) =P, oy
By Thm. 1.24,
(W1 By, ., Wa) @ W3, Vz, 2, ® idwy,)
is a fusion product of W; ® Wy ® W3 along B, ., u 2. Thus, by Thm. 3.15,
(W1 By, ., Wa) B, Wa, Vzy 0 (Vzy -2, ®icl, )

is a fusion product of Wi ® Wy ® W3 along *B., .,. Therefore, by the uniqueness of (dual)
fusion products, there is a (unique) isomorphism

D2y Wi Ry, (Wo Rip,, W3) — (W1 Ky, .. Wa) K., W3

which, upon extension to a linear map between the algebraic completions of the respec-
tive modules, satisfies for all w; € Wy, wy € Wa, w3 € W3 the equality

yzg o (yzl—zg(wl ® U)Q) ®w3) = (pz1,2’2 o yzl ('LUl ®y22 (’UJQ ®w3)) (334)
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We assume that z — ), is holomorphic. Therefore, by [GZ24, Prop. 3.20], if we vary
21, 22, then @, ., isholomorphic with respect to 21, z2. Moreover, note that P! has a canon-
ical projective structure, i.e., the one consisting of Mobius transformations. Therefore, by
[GZ24, Cor. 2.32], for any family of spheres with marked points and local coordinates
such that the restriction of each coordinate to each fiber is a Mobius transformation, there
is a unique connection V on the conformal block bundle that is compatible with the pro-
jective structure. If we further require that z — ), is parallel under this connection, then
by [GZ24, Thm. 4.11], both V., o (Vs, -2, ® idw,) and V,, o (idw, ® V.,) are parallel sec-
tions of conformal blocks as z1, 22 vary. Therefore, by (3.34), (21, 22) — ®., », must be a
constant isomorphism ®. This yields the associativity isomorphism ®.
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