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1 Preliminaries

1.1 Notation

In this monograph, unless otherwise stated, we understand the field F as ei-
ther R or C.

We use frequently the abbreviations:

iff=if and only if
LHS=left hand side RHS=right hand side

D=there exists @=for all
i.e.=id est=that is=namely e.g.=for example

cf.=compare/check/see/you are referred to
resp.=respectively WLOG=without loss of generality

LCH=locally compact Hausdorff
MCT=monotone convergence theorem
DCT=dominated convergence theorem

When we write A :“ B or A
def

ùùù B, we mean that A is defined by the expres-
sion B. When we write A ” B, we mean that A are B are different symbols of the
same object.

Unless otherwise stated, an inner product space V denotes a complex inner
product space, and its sesquilinear form x¨|¨y is

::::::::::
antilinear

::::
on

::::
the

::::::
right

:::::::::::
argument

::
|¨y

:::::
and

:::::::
linear

:::
on

::::
the

::::
left

:::::::::::
argument

:::
x¨|.

If V is an F-vector space, then for each v P V and each linear map φ : V Ñ F,
we write

xv, φy “ xφ, vy :“ φpvq

We assume a¨p`8q “ p`8q¨a “ `8 if a P p0,`8s, and 0¨p`8q “ p`8q¨0 “ 0.
An increasing function/sequence/net means a non-decreasing one.

• Unless otherwise specified, completeness of a metric space or normed vector
space refers to Cauchy completeness.

• N “ t0, 1, 2, . . . u, Z` “ t1, 2, . . . u.

• Rě0 “ r0,`8q, Rě0 “ r0,`8s, R “ r´8,`8s.

• An interval denotes a connected subset of R. A proper interval denotes an
interval with non-zero Lebesgue measure.

• Y X is the set of functions with domain X and codomain Y .

3



• 2X is the set of subsets of X .

• finp2Xq is the set of finite subsets of X .

• If f : X Ñ Y is a map, then

Rngpfq “ fpXq

• If V is a vector space and X is a set, then V X is viewed as a vector space
whose linear structure is defined by

paf ` bgqpxq “ afpxq ` bgpxq for all f, g P V X and a, b P F

• If X is a set and A Ă X , the characteristic function is

χA : X Ñ t0, 1u x ÞÑ

"

1 if x P A

0 if x P XzA

• ClXpAq, also denoted by ClpAq or A, is the closure of A Ă X with respect to
the topological space X .

• If X is a metric space and p P X, r P r0,`8s, we let

BXpp, rq “ tx P X : dpx, pq ă ru BXpp, rq “ tx P X : dpx, pq ď ru

For each E Ă X , we define the diameter

diampEq “ suptdpx, yq : x, y P Eu

• If X is a topological space, then TX denotes the topology of X , i.e.,

TX “ topen subsets of Xu

If x P X , a neighborhood of x denotes an open subset of X containing x. We
let

NbhXpxq ” Nbhpxq :“ tneighborhoods of x in Xu

• If X, Y are topological spaces, then

CpX, Y q “ tf P Y X : f is continuousu

BX “ the Borel σ-algebra of X

Bor pX, Y q “ tf P Y X : f is Borelu
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• mn, as a measure, denotes the Lebesgue measure on Rn, and is abbreviated
to m when no confusion arises.

• S1 “ tz P C : |z| “ 1u » R{2πZ. If f is a function on S1, equivalently, a
2π-periodic function on R, then

pfpnq “
1

2π

ż π

´π

fpxqe´inxdmpxq

is its n-th Fourier coefficient (whenever the integral can be defined).

• pX,M, µq, often abbreviated to pX,µq, denotes a measure space where M is
the σ-algebra and µ : M Ñ Rě0 is the measure.

• Let V be a normed vector space. Let X is either a set or a topological space,
depending on the context. Let 1 ď p ă `8. For each f P V X ,

SuppXpfq ” Supppfq “ ClXptx P X : fpxq ‰ 0uq

}f}l8pX,V q “ }f}l8 “ sup
xPX

}fpxq}

}f}lppX,V q “ }f}lp “

´

ÿ

xPX

}fpxq}
p
¯

1
p

|f | is the function X Ñ Rě0 such that |f |pxq “ }fpxq}

We call |f | the absolute value function of f . For each E Ă V , we let

CcpX,Eq “ tf P CpX,Eq : Supppfq is compact in Xu

l8pX, V q “ tf P V X : }f}8 ă `8u

lppX, V q “ tf P V X : }f}p ă `8u

We are particularly interested in the case that E “ V , E “ r0, 1s, and E “

Rě0.

• Let V be a normed vector space. Let X be a set. We say that a family pfαqαPA

in V X is uniformly bounded if supαPA }fα}l8pX,V q ă `8.

• If X is LCH and V is a normed F-vector space, we understand CcpX, V q as a
normed F-vector space whose linear structure inherits from that of V X , and
:::::::
whose

::::::
norm

:::
is

::::::::
chosen

::
to

:::
be

::::
the

::::::::::
l8-norm.

• If pX,Mq and pY,Nq are measurable spaces, then

LpX, Y q “ {measurable functions X Ñ Y }
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If V is a normed vector space, for each f P LpX, V q and 1 ď p ă `8, we let

}f}LppX,µq “ }f}Lp “

´

ż

X

|f |
pdµ

¯
1
p

}f}L8pX,µq “ }f}L8 “ inftλ P Rě0 : µtx P X : }fpxq} ą au “ 0u

which are potentially infinite.

• In the notation of function spaces, the codomain is understood to be C when
it is suppressed. For example,

CcpXq “ CcpX,Cq Bor pXq “ Bor pX,Cq Lp
pX,µq “ Lp

pX,µ,Cq

However, this convention does not apply to LpV q: If V is a normed vector
space, then LpV q denotes LpV, V q, the space of bounded linear operators on
V .

1.2 Review of important facts in point-set topology

Fix a normed vector space V .

1.2.1 Miscellaneous definitions and properties

Definition 1.1. If X, Y are metric spaces and f : X Ñ Y is map, we say that
C P Rě0 is a Lipschitz constant of f if

dpfpx1q, fpx2qq ď Cdpx1, x2q for all x1, x2 P X

If f has a Lipschitz constant, we say that f is Lipschitz continuous.

Definition 1.2. If d and d1 are two metrics on a set X , we say that d and d1 are
equivalent if there exists α, β P Rą0 such that

dpx, yq ď αd1
px, yq d1

px, yq ď βdpx, yq for all x, y P X

Definition 1.3. Let X1, . . . , XN be metric spaces. For each 1 ď p ă `8, the l8l8l8-
product metric d8 and the lplplp-product metric dp are the metrics on X1 ˆ ¨ ¨ ¨ ˆ XN

defined by

d8ppx1, . . . , xNq, py1, . . . , yNqq :“ maxtdpx1, y1q, . . . , dpxN , yNqu

dpppx1, . . . , xNq, py1, . . . , yNqq :“ p
a

dpx1, y1qp ` ¨ ¨ ¨ ` dpxN , yNq

for all xi, yi P Xi. These metrics are equivalent. We equip X1 ˆ ¨ ¨ ¨ ˆ XN with any
metric equivalent to l8 and lp.
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Remark 1.4. Recall that if f : X Ñ Y is a map of topological spaces, and X “
Ť

iPI Ui is an open cover of X , then f is continuous iff f |Ui
: Ui Ñ Y is continuous

for any i P I .

Definition 1.5. Let f : X Ñ Y be a map where pY, TY q is a topological space. The
pullback topology on X is defined to be

f˚TY :“ f´1
pTY q “ tf´1

pV q : V P TY u

Then, a net pxαq in X converges under f˚TY to x iff

lim
α
fpxαq “ fpxq

1.2.2 Product topology and pointwise convergence

Let pXαqαPA be a family of topological spaces. Elements of the product space

S “
ź

αPA

Xα

are denoted by x “ pxαqαPA . Let

πα : S Ñ Xα x ÞÑ xpαq

It is easy to check that

B “

!

ź

αPA

Uα : each Uα is open in Xα,

Uα “ Xα for all but finitely many α
)

“

!

č

αPE

π´1
α pUαq : E P finp2A

q, Uα is open in Xα for each α P E
)

is a base for a topology, namely, for each W1,W2 P B and x P W1 XW2, there exists
W3 P B such that W3 Ă W1 X W2. Therefore, B generates a topology.

Definition 1.6. The topology of S generated by B is called the product topology
or pointwise convergence topology of S. Unless otherwise stated, the product of
a family of topological spaces is equipped with the product topology.

Remark 1.7. If each Xα is Hausdorff, then S is clearly Hausdorff.

Theorem 1.8. Let pxµqµPI be a net in S, and let x P S. Then the following conditions are
equivalent:

(a) lim
µPI

xµ “ x under the product topology.
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(b) pxµqµPI converges pointwise to x, namely, for each α P A we have lim
µPI

xµpαq “

xpαq in Xα.

Proof. (a)ñ(b): Fix α P A . For each open Uα Ă Xα, we have π´1pUαq P B. There-
fore,

πα : S Ñ Xα is continuous (1.1)

Thus, if limµ xµ “ x, then limµ παpxµq “ παpxq. This proves (b).
(b)ñ(a): Assume (b). Choose any W P B containing x. Then there exists

E P finp2A q such that W “
Ş

αPE π
´1
α pUαq, where each Uα Ă Xα is open and

containing xα. For such α P E, since limµ xµpαq “ xpαq, we know that pxµpαqq is
µ-eventually in Uα. Therefore, sinceE is finite, we conclude that pxµq is eventually
in W . This proves (a).

Corollary 1.9. Let Z be a topological space. Suppose that for each α P A , a map fα :
Z Ñ Xα is chosen. Then

ł

αPA

fα : Z Ñ
ź

αPA

Xα z ÞÑ pfαpzqqαPA (1.2)

is continuous iff fα is continuous for each α P A .

Proof. If F :“
Ž

αPA fα is continuous, then since πα is continuous, fα “ πα ˝ fα
is also continuous. Conversely, suppose that each fα is continuous. Let pziq be
a net in Z converging to z P Z. For each α, since fα is continuous, we see that
limi fαpziq “ fαpzq. By Thm. 1.8, F pziq converges to F pzq. This proves that F is
continuous.

Proposition 1.10. Suppose that A is countable. If each Xα is second countable, then S
is second countable. If each Xα is metrizable, then S is metrizable.

Proof. If Uα is a base of the topology of Xα, then

U :“
!

č

αPE

π´1
α pUαq : E P finp2A

q, Uα P Uα

)

is a base of the the product topology, which is countable if each Uα is countable.
Now assume that each Xα is equipped with a metric dα. Fix any R P Rą0, and

let rdα be metric on Xα inducing the same topology as dα, and satisfies dα ď R. For
example,

rdαpxα, yαq “ mintdαpxα, yαq, Ru for each xα, yα P Xα (1.3a)

Let ν : A Ñ Z` be an injective map, and define a metric d on S by

dpx, yq “
ÿ

αPA

2´νpαq
rdαpxpαq, ypαqq for each x, y P S (1.3b)

One shows easily that a net pxµq in S converging to x P S iff limµ
rdαpxµpαq, xpαqq “

0 for all α P A . Therefore, by Thm. 1.8, d induces the product topology.
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Theorem 1.11 (Tychonoff theorem). Assume that Xα is compact for each α P A .
Then S is compact.

‹ Proof. Assume WLOG that A is non-empty, that each Xα is non-empty. Let
pxµqµPI be a net in S. We want to show that pxµqµPI has a cluster point.

For each E Ă A , let SE “
ś

αPE Xα. For each x P SE , we write Dompxq “ E .
For each E Ă F Ă A and y P SF , let y|E “ pypαqqαPE . Let

P “
ď

E ĂA

␣

x P SE : x is a cluster point of pxµ|E qµPI in SE

(

equipped with the partial order “Ă". In other words, if x, y P P , then x ď y means
that Dompxq Ă Dompyq and x “ y|E .

Since each Xα is compact, P is clearly non-empty. Let us show that every
totally ordered non-empty subset Q Ă P has an upper bound in P , so that Zorn’s
lemma can be applied. Let x be the union of all elements of Q. Thus x P SE where
E “

Ť

yPQ Dompyq, and we have x|Dompyq “ y for each y P Q.
To show that x is a cluster point of pxµ|E qµPI in SE , we pick any neighborhood

of x in SE , which, after shrinking if necessary, is of the form W “
ś

αPE Uα where
each Uα Ă Xα is open, and there exists K P finp2E q such that Uα “ Xα whenever
α R K. Since E “

Ť

yPQ Dompyq, there exists y P Q such that K Ă Dompyq. Namely,
pxµ|DompyqqµPI has cluster point y, andK Ă Dompyq. Therefore pxµ|KqµPI has cluster
point y|K (which equals x|K because x|Dompyq “ y), and hence is frequently in
ś

αPK Uα. Thus pxµ|E qµPI is frequently in W . This finishes the proof that x P P .
Clearly x is an upper bound of Q.

Now we can apply Zorn’s lemma, which claims that P has a maximal element
x P P . The proof of the Tychonoff theorem will be finished by showing that
E :“ Dompxq equals A . Suppose not. Choose β P A zE . Since x P P , there is
a subnet pxµν |E qνPJ of pxµ|E qµPI converging pointwise to x. Since Xβ is compact,
pxµν pβqqνPJ has a converging subnet pxµνυ

pβqqυPL. Define rx P SE Ytβu to be x when
restricted to E , and rxpβq :“ limυ xµνυ

pβq. Then rx P P , and rx is strictly larger than
x, contradicting the maximality of x.

Remark 1.12. If A is a countable set, and if each Xα is compact and metrizable,
the diagonal method can be used in place of Zorn’s lemma to prove that S (which
is metrizable by Prop. 1.10) is compact:

We consider the case that A “ Z`. (The case that A is finite is even sim-
pler.) Let pxnqnPZ`

be a sequence in S. We construct inductively a double sequence
pxm,nqm,nPZ`

in S as follows. Since X1 is sequentially compact, pxnq has subseqe-
unce px1,nqnPZ`

whose first component px1,np1qqnPZ`
converges to some xp1q P X1.

Suppose that pxm´1,nqnPZ`
has been constructed (where m ´ 1 ě 1). Since Xm is

sequentially compact, pxm´1,nqnPZ`
has a subsequence pxm,nqnPZ`

whosem-th com-
ponent pxm,npmqqnPZ`

to some xpmq P S. In this way, the double sequence pxm,nq

in S and the element x P S are constructed. One checks easily that pxn,nqnPZ`
is a

subsequence of pxnq converging to x.
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1.2.3 Precompact sets

Let X be a Hausdorff space.

Definition 1.13. Let A Ă X . We say that A is precompact relative to X and write

A Ť X

if ClXpAq is compact, equivalently, if A is contained in a compact subset of X .

Recall that a subset of a compact Hausdorff space is closed iff it is compact.

Proof of equivalence. “ñ": Obvious. “ð": Let B Ă X be compact and containing
A. Then B is closed in X . So ClXpAq Ă B. Since ClXpAq is closed in X and hence
closed in B, it is compact.

Remark 1.14. Let W Ă X . Then for each A Ă W , we have

A Ť W ðñ A Ť X and ClXpAq Ă W

When either side is true, we have ClW pAq “ ClXpAq. Thus, both ClW pAq and
ClXpAq can be denoted unambiguously by A.

In practice, we often choose W to be an open subset of X .

Proof. “ð": ClXpAq is a compact set inside W and contains A. So A Ť W .
“ñ": We have a compact set B such that A Ă B Ă W . So A Ť X . Since B is

closed in any larger set, we have ClXpAq Ă B and hence ClXpAq Ă W .
It is obvious that ClW pAq Ă ClXpAq. Assume A Ť W . Then ClW pAq is compact.

In the above paragraph, if we choose B “ ClW pAq. then we have ClXpAq Ă B “

ClXpAq. This proves ClW pAq “ ClXpAq.

Remark 1.15. Let U be an open subset of X . Let f P CcpU,Vq. Then by zero-
extension, f can be viewed as an element of CcpX,Vq supported in U . Briefly
speaking, we have

CcpU,Vq Ă CcpX,Vq

Moreover, for each f P CcpU,Vq, we have

SuppUpfq “ SuppXpfq

Proof. Let f take value 0 outside U . Let K “ SuppUpfq, which is compact by
assumption. Since f |U is continuous and f |Kc “ 0 are continuous, and since X “

U Y Kc is an open cover on X , f is continuous. By the Rem. 1.14, we have
SuppUpfq “ SuppXpfq. Therefore f P CcpX,Vq.

Under the setting of Rem. 1.15, it is clear that

CcpU,Vq “ tf P CcpX,Vq : SuppXpfq Ă Uu (1.4)
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1.2.4 LCH spaces

Let X be LCH.

Proposition 1.16. Any closed or open subset of X is LCH.

Proof. See [Gui-A, Subsec. 8.6.2].

Corollary 1.17. Let W Ă X be an open subset. Let K Ă W be compact. Then there
exists an open subset U of X such that K Ă U Ť W .

Proof. The case that K is a single point follows from the fact that W is LCH, cf.
Prop. 1.16. The general case follows from the compactness of K.

Corollary 1.18. Let K1, K2 be mutually disjoint compact subsets of X . Then there exist
open subsets U1, U2 of X such that K1 Ă U1 and K2 Ă U2.

Proof. This corollary in fact holds even without the assumption that X is locally
compact, and its proof is a straightforward exercise in point-set topology. How-
ever, it also follows directly from the results established above. Indeed, by Prop.
1.16, XzK2 is LCH. Therefore, by Cor. 1.17, there exists an open set U1 such that
K1 Ă U1 Ť XzK2. Let U2 “ XzU1.

Theorem 1.19 (Urysohn’s lemma). Let K Ă X be compact. Then there exists a (con-
tinuous) Urysohn function f with respect to K and X , i.e., f P CcpX, r0, 1sq and
f |K “ 1.

Proof. See [Gui-A, Sec. 15.4].

Remark 1.20. Urysohn’s lemma can be used in the following way. Suppose that
K Ă U Ă X where K is compact and U is open in X . By Prop. 1.16, U is LCH.
Therefore, by Thm. 1.19, there exists f P CcpU, r0, 1sq such that f |K “ 1. By
Rem. 1.15, f can be viewed as an element of CcpX, r0, 1sq satisfying f |K “ 1 and
Supppfq Ă U .

Theorem 1.21. Let K be a compact subset of X . Let U “ pU1, . . . , Unq be a finite col-
lection of open subsets of X covering K (i.e. K Ă U1 Y ¨ ¨ ¨ Y Un). Then there exist
hi P CcpUi,Rě0q (for all 1 ď i ď n) satisfying the following conditions:

(1) 0 ď

n
ÿ

i“1

hi ď 1 on X .

(2)
n
ÿ

i“1

hi
ˇ

ˇ

K
“ 1.

Such h1, . . . , hn are called a partition of unity ofKKK subordinate to UUU.
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In fact, h1, . . . , hn should be viewed as a partition of the Urysohn function
h :“ h1 ` ¨ ¨ ¨ ` hn.

Proof. See [Gui-A, Sec. 15.4]. Note that condition (1) is not stated in some text-
books on partitions of unity. However, even if (1) is not initially satisfied, one can
enforce it by setting gpxq “ maxt

ř

i hipxq, 1u and replacing each hi with hi{g.

Theorem 1.22 (Tietze extension theorem). Let K be a compact subset of X . Let
f P CpK,Fq. Then there exists rf P CcpX,Fq such that rf |K “ f , and that } rf}l8pXq “

}f}l8pKq.

Proof. See [Gui-A, Sec. 15.4].

Definition 1.23. We let

C0pX,Vq “

"

tf P CpX,Vq : limxÑ8 }fpxq} “ 0u if X is not compact
CpX,Vq “ CcpX,Vq if X is compact

where pX “ XYt8u is the one-point compactification ofX . Equivalently, C0pX,Vq

is the set of all f P CpX,Vq such that for any ε ą 0 there exists a compact K Ă X
such that }f}l8pXzKq ă ε. See [Gui-A, Subsec. 15.8.1] for more discussions. For
each E Ă V , we let

C0pX,Eq “ C0pX, V q X EX

Remark 1.24. C0pX,Vq is the l8-closure of CcpX,Vq in CpX,Vq.

Proof. One easily shows that C0pX,Vq is closed in CpX,Vq. To show that CcpX,Vq

is dense in C0pX,Vq, we choose any f P C0pX,Vq. Then for each ε ą 0 there exists
a compact K Ă X such that }f}l8pKcq ă ε. By Urysohn’s lemma, there exists h P

CcpX, r0, 1sq such that h|K “ 1. Then }hf}l8pKcq ă ε, and hence }f ´ hf}l8pXq ă 2ε.
This finishes the proof, since hf P CcpX,Vq.

Remark 1.25. Suppose thatX is second countable. ThenX is Lindelöf. Therefore,
X has a countable open cover U “ pUnqnPZ`

whose members Un are precompact
open subsets of X . In particular, X is σ-compact, since X “

Ť

nPZ`
Un where each

Un is compact.

1.3 ˚-algebras and the Stone-Weierstrass theorem

Recall that F P tR,Cu. In this section, we let K be any subfield of C closed
under complex conjugation, such as R,C,Q,Q ` iQ.
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Definition 1.26. A K-algebra is defined to be a ring A (not necessarily having 1)
that is also a K-vector space, such that the vector addition agrees with the ring
addition, and the scalar multiplication is compatible with the ring multiplication
in the following sense: for all λ P K and x, y P A , we have

λpxyq “ pλxqy “ xpλyq (1.5)

A K-algebra is called unital if A , as a ring, has a multiplicative identity 1. In
this case, we write λ ¨ 1 as λ if λ P K.

A K-algebra is called commutative or abelian if xy “ yx for all x, y P A .
If A is a K-algebra, then a (K-)subalgebra is a subset B which is invariant un-

der the ring addition, ring multiplication, and scalar multiplication. (Namely, B
is a subring and also a subspace of A .) If A is unital, then a unital (K-)subalgebra
of A is a K-subalgebra containing the identity of A .

Remark 1.27. A unital K-algebra A can equivalently be described as a ring with
identity, together with a ring homomorphism C Ñ ZpA q where ZpA q is the cen-
ter of A , i.e.

ZpA q “ tx P A : xy “ yx for every y P A u

We leave the verification of this equivalence to the reader.

Example 1.28. If V is a F-vector space, then EndpV q, the set of F linear maps
V Ñ V , is naturally an F-algebra. If V is a normed vector space, then LpV q is an
F-algebra.

Definition 1.29. A *-K-algebra is defined to be a K-algebra together with an an-
tilinear map ˚ : A Ñ A sending x to x˚ (where “antilinear" means that for every
a, b P C and x, y P A we have pax` byq˚ “ ax˚ ` by˚) such that for every x, y P A ,
we have

px˚
q

˚
“ x pxyq

˚
“ y˚x˚

Note that ˚ must be bijective. We call ˚ an involution. A *-K-subalgebra B is
defined to be a subalgebra satisfying x P B iff x˚ P B. If A is a unital algebra with
unit 1, we say that A is a unital *-K-algebra if A is equipped with an involution
˚ : A Ñ A such that A is a *-algebra, and that

1˚
“ 1

A unital *-subalgebra is a unital subalegbra and also a *-subalgebra.

Convention 1.30. We omit “K-" when K is C. For example, a unital *-algebra
means a unital ˚-C-algebra.
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Example 1.31. The set of complex n ˆ n matrices Cnˆn is naturally a unital ˚-
algebra if for every A P Cnˆn we define A˚ “ A

t
, the complex conjugate of the

transpose of A.

Example 1.32. Let X be a set. Then KX is naturally a unital K-algebra, and
l8pX,Kq is its unital K-subalgebra. If X is a topological space, then CpX,Kq is a
unital K-subalgebra of KX . IfX is compact, then CpX,Kq is a unital K-subalgebra
of l8pX,Kq.

Example 1.33. Let X be a set. Then CX is a unital *-algebra if for every f P CX we
define

f˚ : X Ñ C f˚
pxqf˚
pxqf˚
pxq “ fpxq (1.6)

Then KX and l8pX,Kq are unital *-K-subalgebras of CX .
Assume that X is a compact topological space. Then CpX,Fq is a unital *-F-

subalgebra of l8pX,Fq. If f1, . . . , fn P CpX,Fq, then Frf1, . . . , fns, the set of polyno-
mials of f1, . . . , fn with coefficients in F, is a unital F-subalgebra of CpX,Fq. And
Frf1, f

˚
1 , . . . , fn, f

˚
n s is a unital *-F-subalgebra of CpX,Fq.

More generally, we have:

Example 1.34. Let A be an abelian unital K-algebra. Let S Ă A . Then

KxSy “ SpanKtxn1
1 ¨ ¨ ¨ xnk

k : k P Z`, xi P S, ni P Nu (1.7)

the set of (possibly non-commutative) polynomials of elements in S, is the small-
est unital K-subalgebra containing S, called the unital K-subalgebra generated
by S. (Here, we understand x0 “ 1 if x P A .) Thus, if A is an abelian unital *-
algebra, then CxS Y S˚y (where S˚ “ tx˚ : x P Su) is the smallest unital *-algebra
containing S, called the unital *-K-subalgebra generated by S.

Definition 1.35. Let X be sets. Let pfαqαPA be a family of maps where fα : X Ñ Yα
and Yα is a set. We say that pfαqαPA separates the points of XXX if for any distinct
x1, x2 P X there exists α P A such that fαpx1q ‰ fαpx2q. Equivalently, the map

ł

αPA

fα : X Ñ
ź

αPA

Yα x ÞÑ pfαpxqqαPA (1.8)

is injective.

Example 1.36. Let X be an LCH space. Then CcpX, r0, 1sq separates the points of
X .

Proof. Choose any distinct points x, y P X . By Urysohn’s lemma (Rem. 1.20), there
exists f P CcpX, r0, 1sq such that fpxq “ 1 and Supppfq Ă Xztyu. So f separates
x, y.
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Theorem 1.37 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space.
Let S Ă CpX,Fq. Suppose that S separates the points of X . Then the ˚-F-subalgebra
FxS Y S˚y generated by S is dense in CpX,Fq under the l8-norm.

Note that if F “ R, then S˚ “ S by (1.6).
If F “ C, then since pQ` iQqxS Y S˚y is l8-dense in CxS Y S˚y, it is clear that

pQ ` iQqxS Y S˚y is l8-dense in CpXq. Similarly, if F “ R, then QxSy is l8-dense
in CpX,Rq.

Proof. See [Gui-A, Ch. 15].

The following application of the Stone-Weierstrass theorem will be used in
the study of weak-* topology, particularly in the proof of Thm. 2.45. Recall that
CpX,Fq is equipped with the l8-norm.

Theorem 1.38. Let X be a compact Hausdorff space. Then the following are equivalent:

(a) X is metrizable.

(b) X is second countable.

(c) There is a sequence pfnqnPZ`
in CpX,Fq separating the points of X .

(d) CpX,Fq is separable.

Moreover, if (c) is satisfied, then for each R P Rą0, a compatible metric d on X can be
chosen to be

dpx, yq “
ÿ

nPZ`

2´nmint|fnpxq ´ fnpyq|, Ru for each x, y P X (1.9)

In particular, if (c) is satisfied and supnPZ`
}fn}l8 ă `8, we can choose R “

2 supnPZ`
}fn}l8 . Then (1.9) becomes

dpx, yq “
ÿ

nPZ`

2´n
|fnpxq ´ fnpyq| for each x, y P X (1.10)

The Stone-Weierstrass theorem will be used in the direction (c)ñ(d). The
equivalence of (a,b,c) does not rely on the Stone-Weierstrass theorem.

Proof. (a)ñ(b): By .

(b)ñ(c): Since X is second countable, we can choose an infinite countable
base pUnqnPZ of the topology. For each m,n P Z`, if Un Ť Um, we choose
fm,n P CcpUm, r0, 1sq Ă CcpX, r0, 1sq such that f |Un

“ 1 (which exists by Urysohn’s
lemma); otherwise, we let fm,n “ 0.

Let us prove that tfm,n : m,n P Z`u separates the points of X : Choose distinct
x, y P X . Since Xztyu P NbhXpxq, there exists Um containing x and is contained in
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Xztyu. By Cor. 1.17, there exists n such that txu Ă Un Ť Um. Then fm,npxq “ 1 and
fm,npyq “ 0.

(c)ñ(a,b): Since pfnq separates points, the map

Φ “
ł

n

fn : X Ñ FZ` x ÞÑ pfnpxqqnPZ`

is injective. By Cor. 1.9, Φ is continuous. Since X is compact, the map Φ restricts
to a homeomorphism Φ : X Ñ ΦpXq, where ΦpXq is equipped with the subspace
topology of the product topology of FZ` . By Prop. 1.10, FZ` is metrizable and
second countable, so ΦpXq, and hence X , is metrizable and second countable.
This proves (a) and (b).

By (1.3), the product topology of FZ` is induced by the metric

δpu, vq “
ÿ

nPZ`

2´n mint|upnq ´ vpnq|, Ru for each u, v P FZ`

Therefore, the pullback metric Φ˚δ on X (defined by Φ˚δpx, yq “ δpΦpxq,Φpyqq)
induces the topology of X . Clearly Φ˚δpx, yq equals (1.9).

(c)ñ(d): Let K “ F X pQ ` iQq. By Stone-Weierstrass, the countable set
Krtfn : n P Z`us is dense in CpX,Fq. Thus CpX,Fq is separable.

(d)ñ(c): By Exp. 1.36, CpX,Fq separates the points of X . Therefore, any dense
subset of CpX,Fq separates the points of X . Since CpX,Fq is separable, it has a
countable dense subset separating the points of X .

1.4 Review of measure theory: general facts

1.4.1 Some useful definitions and their basic properties

Definition 1.39. Let X be a set. Suppose that C is an F-linear subspace of FX . A
positive linear functional on C denotes an F-linear map Λ : C Ñ F such that
Λpfq ě 0 for all f P C X RX

ě0.

Recall that if pX,Mq is a measurable space, anFFF-valued simple function on X
is an F-linear combination of characteristic functions over measurable sets; that
is, an element of SpanFtχE : E P Mu.

Definition 1.40. Let X be a set. Let x P X . The Dirac measure δxδxδx of x is defined
to be the measure δx : 2X Ñ Rě0 satisfying δxpAq “ 1 if x P A, and δxpAq “ 0 if
x R A.

Definition 1.41. Let pX, TXq be a topological space. Let M Ă 2X be a σ-algebra
containing the Borel σ-algebra BX . Let µ : M Ñ Rě0 be a measure. Assume that
one of the following conditions holds:

16



(1) X is second countable.

(2) X is LCH, and µ|BX
is a Radon measure.

The support SupppµqSupppµqSupppµq is defined to be

Supppµq “ tx P X : µpUq ą 0 for each U P NbhXpxqu

Then Supppµq is a closed subset of X , because we clearly have

XzSupppµq “
ď

UPTX ,µpUq“0

U

Moreover, we have µpXzSupppµqq “ 0. Thus, Supppµq is the largest closed subset
whose complement is µ-null.

Proof that XzSupppµq is null. It suffices to show that if a family of open subsets
pUαqαPA is null, then the union U :“

Ť

α Uα is null.
Assume that condition (1) holds. Since any subset of a second countable space

is second countable and hence Lindelöf, the set U is Lindelöf. So pUαq has a count-
able subfamily covering U . Therefore, by the countable additivity, U is null.

Assume that condition (2) holds. Since Radon measures are inner regular on
open sets (cf. Def. 1.53), µpUq is the supremum of µpKq where K runs through all
compact subsets of U . Since K is compact, pUαq has a finite subfamily covering K.
Therefore K is null, and hence U is null.

Lemma 1.42. Let µ : M Ñ Rě0 be as in Def. 1.40, and assume that Condition (1) or (2)
of Def. 1.40 holds. The following are equivalent:

(a) Supppµq is a finite set.

(b) µ is a linear combination of Dirac measures (restricted to M).

Proof. (b)ñ(a): This is obvious.
(a)ñ(b): Write E “ Supppµq. Choose any measurable f : X Ñ Rě0. Then,

since µ|XzE “ 0, the integral of any measurable function g : X Ñ Rě0 vanishing
ourside E is zero. In particular, we can choose g to be the unique one such that
g `

ř

xPE fpxqχtxu “ f . Therefore
ż

X

fdµ “

ż

E

ÿ

xPE

fpxqχtxudµ “
ÿ

xPE

fpxq ¨ µptxuq

This shows that µ “
ř

xPE µptxuqδx.
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1.4.2 Radon-Nikodym derivatives

Fix a measurable space pX,Mq.

Definition 1.43. Let µ, ν : M Ñ r0,`8s are measures. We say that ν is absolutely
continuous with respect to µ and write ν ! µν ! µν ! µ if any µ-null set is ν-null. We say
that h P LpX,Rě0q is a Radon-Nikodym derivative of ν with respect to µ if

ż

X

fdν “

ż

X

fhdµ for all f P LpX,Rě0q

By MCT, the above condition is equivalent to

νpEq “

ż

E

hdµ for all E P M

We write dν “ hdµdν “ hdµdν “ hdµ.

Remark 1.44. If µ is σ-finite, and if h1, h2 are both Radon-Nikodym derivatives of
ν with respect to µ, then h1pxq “ h2pxq for µ-a.e. x P X .

Proof. It suffices to assume that µpXq ă `8. For each k P N, let

Ak “ tx P X : h1pxq ă h2pxq and h1pxq ď ku

Then
ş

Ak
h1dµ ď kµpXq ă `8, and

ż

Ak

h1dµ “

ż

Ak

dν “

ż

Ak

h2dµ

Taking subtraction, we get
ş

Ak
ph2 ´ h1qdµ “ 0. Let A “

Ť

k Ak “ tx P X : h1pxq ă

h2pxqu. By MCT,
ş

A
ph2´h1qdµ “ 0. Since h2´h1 ě 0 onA, we conclude h2´h1 “ 0

µ-a.e. on A, and hence µpAq “ 0. Similarly, µpBq “ 0 where B “ tx P X : h1pxq ą

h2pxqu.

Remark 1.45. If ν is σ-finite, and if dν “ hdµ, then hpxq ă `8 for µ-a.e. x P X .

Proof. Let A “ tx P A : hpxq “ `8u. Since ν is σ-finite, we can write A “
Ť

kPNAk

where Ak P M and νpAkq ă `8. Since νpAkq “
ş

Ak
hdµ “ `8µpAkq, we have

µpAkq “ 0, and hence µpAq “ 0.

Theorem 1.46 (Radon-Nikodym theorem). Assume that µ, ν : M Ñ r0,`8s are
σ-finite measures. Then ν ! µ iff ν has a Radon-Nikodym derivative with respect to µ.

Proof. “ð" is obvious. Let us prove “ñ". It is easy to reduce to the case that
µpXq, νpXq ă `8. Let dψ “ dµ ` dν. So µ, ν ď ψ. Therefore, the linear functional

Λ : L2
pX,ψq Ñ C ξ ÞÑ

ż

X

ξdµ
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is bounded. Since L2pX,ψq is a Hilbert space (Thm. 1.48), by the Riesz-Fréchet
theorem, there exists f P L2pX,ψq such that

ş

X
ξdν “

ş

X
ξfdψ for all ξ P L2pX,ψq.

Since Λ sends positive functions to Rě0, after adding an ψ-a.e. function to ξ, we
have ψ ě 0 everywhere.

We have found f P LpX,Rě0q such that dµ “ fdψ. Similarly, we have g P

LpX,Rě0q such that dν “ gdψ. Since µ ď ψ ! µ, we have f ą 0 outside a ψ-null
set ∆. Let h “ g{f outside ∆, and h “ 0 on ∆. Then dν “ hdµ.

1.4.3 Lp-spaces

Let pX,M, µq be a measure space. Let 1 ď p, q ď `8 such that p´1 ` q´1 “ 1.

Theorem 1.47. Let 1 ď p ă `8. Then the set of integrable F-valued simple functions
is dense in LppX,µ,Fq. In other words,

tχE : E Ă M, µpEq ă `8u

spans a dense subspace of LppX,µ,Fq.

Proof. See [Gui-A, Sec. 27.2].

Theorem 1.48 (Riesz-Fischer theorem, the modern form). The normed vector space
LppX,µ,Fq is (Cauchy) complete. Moreover, any Cauchy sequence in LppX,µ,Fq has a
subseqence converging µ-a.e..

Proof. See [Gui-A, Sec. 27.3].

Lemma 1.49. Assume that pX,µq is σ-finite. Let S` be the set of simple functions X Ñ

Rě0. Then for each f P LpX,Rě0q we have

}f}LppX,µq “ sup
!

ż

X

fgdµ : g P S`, }g}LqpX,µq ď 1
)

(1.11)

Consequently, for each f P LpX,Cq we have

}f}LppX,µq “ sup
!

ż

X

|fg| : g P Lq
pX,µq, }g}q ď 1

)

(1.12)

Proof. By Hölder’s inequality, we have “ě". To prove “ď", we note that (1.12)
follows immediately from (1.11) by writing f “ u|f | where u P LpX, S1q and
applying (1.11) to |f |. Thus, in the following, we assume f P LpX,Rě0q.

Case 1 ă p ă `8: Choose an increasing sequence pfnq (i.e. f1 ď f2 ď ¨ ¨ ¨ )
in S` converging pointwise to f such that each fn vanishes outside a measurable
µ-finite set. Let gn “ pfnqp´1. After removing the first several terms, we assume
}gn}Lq ą 0 for all n. Then

0 ă }gn}q “ }fn}
p{q
p ă `8

19



By MCT, we have limn }gn}p “ }f}
p{q
p and limn

ş

X
fgn “ }f}pp. Thus, if }f}p ă `8,

then

lim
n

}gn}
´1
q

ż

X

fgn “ }f}
´p{q
p ¨ }f}

p
p “ }f}p

This proves (1.11) when }f}p ă `8. If }f}p “ `8, then, by MCT, }fn}p ă `8 can
be sufficiently large. Applying (1.11) to fn, we obtain g P S` such that }g}q ď 1
and

ş

fng is sufficiently large, and hence
ş

fg is sufficiently large. Thus (1.11) holds
again.

Case p “ 1: Let g “ 1.
Case p “ `8: Write X “

Ť

nPN Ωn where Ωn P M and µpΩnq ă `8. Choose
any 0 ď λ ă }f}8. Then A :“ t|f | ą λu satisfies µpAq ą 0. Thus, there exists n
such that 0 ă µpA X Ωnq ă `8. Let g “ χAXΩn{µpA X Ωnq. Then g P S`, }g}1 “ 1,
and

ş

fg ě λ. This proves (1.11).

Theorem 1.50. Assume that pX,µq is σ-finite. Assume 1 ă p ď `8. Then we have an
isomorphism of normed vector spaces

Ψ : Lp
pX,µ,Fq Ñ Lq

pX,µ,Fq
˚ f ÞÑ

´

g P Lq
pX,µ,Fq ÞÑ

ż

X

fgdµ
¯

(1.13)

When p ă `8, the assumption on σ-finiteness can be removed. See [Fol-R,
Sec. 6.2]. When p “ 2, this is simply due to the completeness of L2pX,µ,Fq and
the Riesz-Fréchet theorem.

Proof. By Hölder’s inequality and Lem. 1.49, Ψ is an isometry. Let us show that
any Λ P LqpX,µ,Fq˚ belongs to the range of Ψ.

Step 1. By considering the real and imaginary parts, we can first assume that
Λ is real, i.e., Λpfq P R for any f P LqpX,µ,Rě0q.

Let us define Rě0-linear maps Λ`,Λ´ : LqpX,µ,Rě0q Ñ Rě0 with operator
norms ď }Λ}, i.e.,

}Λ˘
pgq} ď }Λ} ¨ }g}q for all g P Lq

pX,µ,Rě0q (1.14)

and let us check that

Λpgq “ Λ`
pgq ´ Λ´

pgq for all g P Lq
pX,µ,Rě0q (1.15)

Eq. (1.15) is called the Jordan decomposition of Λ.
Define the Λ˘ : LqpX,µ,Rě0q Ñ R by sending each g P LqpX,µ,Rě0q to

Λ˘
pgq “ supt˘Λphq : h P Lq

pX,µ,Rě0q, h ď gu (1.16)

Since 0 ď g, we clearly have Λ`pgq ě 0. Since Λ is bounded and }h}q ď }g}q,
we clearly have }Λ`pgq} ď }Λ} ¨ }g}q. In particular, Λ` has range in Rě0. Since
Λ˘ “ p´Λq¯, a similar property holds for Λ´. Thus, we have checked (1.14).
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Clearly, for each f, g P L1pX,µ,Rě0q, we have Λ`pf ` gq ě Λ`pfq ` Λ`pgq. To
prove the other direction, choose any h P LqpX,µ,Rě0q such that h ď f ` g. Let
h1 “ fh{pf`gq and h2 “ gh{pf`gq, understood to be zero where the denominator
vanishes. Then h1, h2 P L1pX,µ,Rě0q and h1 ď f and h2 ď g. This proves Λ`pf `

gq ď Λ`pfq ` Λ`pgq. Thus Λ` (and similarly Λ´) is Rě0-linear.
From (1.16), one easily checks Λpgq `Λ´pgq ď Λ`pgq for each f P LqpX,µ,Rě0q.

Replacing Λ with ´Λ, we get ´Λpgq ` Λ`pgq ď Λ´pgq. Thus (1.15) holds.

Step 2. Let us prove that Λ` is represented by some f` P LppX,µ,Rě0q, namely,

Λ`
pgq “

ż

X

f`gdµ for all g P Lq
pX,µ,Rě0q (1.17)

Then, similarly, Λ´ is represented by some f´ P LppX,µ,Rě0q. Thus Λ is repre-
sented by f` ´ f´, finishing the proof.

Write X “
Ů

nXn where µpXnq ă `8. Suppose that we can find f`
n P

LppXn, µq representing Λ`|LqpXn,µq, then we can define f` : X Ñ Rě0 such that
f`|Xn “ fn for all n. Clearly f` represents Λ`. In particular, by Lem. 1.49 and
(1.14), }f`}p ď }Λ} ă `8. Thus f P LppX,µq.

Therefore, according to the previous paragraph, we may assume at the begin-
ning that µpXq ă `8. Define

ν : M Ñ r0,`8s E ÞÑ ΛpχEq

Then one checks easily that ν is a measure,1 and that ν ! µ. Therefore, by the
Radon-Nikodym Thm. 1.46, there exists f` P LpX,Rě0q such that dν “ f`dµ.
Thus

Λ`
pgq “

ż

X

gdν “

ż

X

f`gdµ for each simple function g P Lq
pX,µ,Rě0q (1.18)

Lem. 1.49 and (1.14) then imply }f`}p ď }Λ} ă `8, and hence f P LppX,µ,Rě0q.
Finally, for g P LqpX,µ,Rě0q, find an increasing sequence of simple functions

gn P LqpX,µ,Rě0q converging pointwise to g. By (1.14), Λ`pg´gnq ď }Λ} ¨ }g´gn}q

where the RHS converges to zero by DCT. By MCT,
ş

X
f`gndµ Ñ

ş

X
f`gdµ. Thus,

by (1.18), we conclude (1.17).

1.5 Review of measure theory: Radon measures

1.5.1 Radon measures and the Riesz-Markov representation theorem

Let X be LCH. The reference for this subsection is [Gui-A, Ch. 25].
1To check the countable additivity, we let E1 Ă E2 Ă ¨ ¨ ¨ be measurable and E “

Ť

n En. Let
Fn “ EzEn. By (1.14), νpFnq ď }Λ}µpFnq

1
q Ñ 0. Thus νpEnq Ñ νpEq.

21



Definition 1.51. Let M Ă 2X be a σ algebra containing BX , and let µ : M Ñ Rě0

be a measure. Let E P M. We say that µ is outer regular on E if

µpEq “ inftµpUq : U Ą E,U is openu

We say that µ is inner regular on E if

µpEq “ suptµpKq : K Ă E,K is compactu

We say that µ is regular on E if µ is both outer and inner regular on E.

Lemma 1.52. Let µ : BX Ñ Rě0 be a Borel measure. Let U Ă X be open. Then

sup
␣

µpKq : K Ă U,K is compact
(

“ sup
!

ż

X

fdµ : f P CcpU, r0, 1sq

)

Therefore, µ is inner regular on U iff

µpUq “ sup
!

ż

X

fdµ : f P CcpU, r0, 1sq

)

Proof. Let A,B denote the LHS and the RHS. If f P CcpU, r0, 1sq, then setting K “

Supppfq, we have µpKq “
ş

X
χKdµ ě

ş

X
fdµ. This proves A ě B.

Conversely, let K Ă U . By Urysohn’s lemma, there exists f P CcpU, r0, 1sq such
that f |K “ 1. So µpKq “

ş

X
χKdµ ď

ş

X
fdµ. This proves A ď B.

Definition 1.53. A Borel measure µ : BX Ñ Rě0 is called a Radon measure if the
following conditions are satisfied:

(a) µ is outer regular on Borel sets.

(b) µ is inner regular on open sets. Equivalently, for each open U Ă X , we have

µpUq “ sup
!

ż

X

fdµ : f P CcpU, r0, 1sq

)

(1.19)

(c) µpKq ă `8 if K is a compact subset of X . Equivalently, for each f P

CcpX,Rě0q we have
ż

X

fdµ ă `8 (1.20)

Proof of equivalence. The equivalence in (b) is due to Lem. 1.52. The equivalence
in (c) can be proved in a similar way to Lem. 1.52.

Remark 1.54. There exist canonical bijections among:

22



• Rě0-linear maps CcpX,Rě0q Ñ Rě0

• Positive linear functionals on CcpX,Rq.

• Positive linear functionals on CcpXq “ CcpX,Cq.

Proof. An Rě0-linear map Λ : CcpX,Rě0q Ñ Rě0 can be extended uniquely to a
linear map Λ : CcpX,Rq Ñ R due to the following Lem. 1.55. The latter can be
extended to a linear functional on CcpXq by setting Λpfq “ ΛpRefq ` iΛpImfq for
all CcpXq.

Lemma 1.55. Let K be an Rě0-linear subspace of an R-vector space V . Let W be an
R-linear space. Let Γ : K Ñ W be an Rě0-linear map. Suppose that V “ SpanRK.
Then Γ can be extended uniquely to an R-linear map Λ : V Ñ W .

Proof. The uniqueness is obvious. To prove the existence, note that any v P V can
be written as

v “ v`
´ v´

where v`, v´ P K. (Proof: Since V “ SpanRK, we have v “ a1u1 ` ¨ ¨ ¨ ` amum ´

b1w1 ´ ¨ ¨ ¨ ´ bnwn where each ui, wj are in K, and each ai, bj are in Rě0. One sets
v` “

ř

i aiui and v´ “
ř

j bjwj .) We then define Λpvq “ Γpv`q ´ Γpv´q.
Let us show that this gives a well-defined map Λ : V Ñ W . Assume that

v “ w` ´w´ where w`, w´ P K. Then Γpv`q ´ Γpv´q “ Γpw`q ´ Γpw´q iff Γpv`q `

Γpw´q “ Γpv´q ` Γpw`q, iff (by the additivity of Γ) Γpv` `w´q “ Γpv´ `w`q. The
last statement is true because v` ´ v´ “ w` ´ w´ implies v` ` w´ “ v´ ` w`.

It is easy to see that Λ is additive. If c ě 0, then cv “ cv` ´cv´ where cv`, cv´ P

K. So Λpcvq “ Γpcv`q ´ Γpcv´q, which (by the Rě0-linearity of Γ) equals cΓpv`q ´

cΓpv´q “ cΛpvq. Since ´v “ v´ ´ v`, we have Λp´vq “ Γpv´q ´ Γpv`q “ ´Λpvq.
Hence Λp´cvq “ cΛp´vq “ ´cΛpvq. This proves that Λ commutes with the R-
multiplication.

Theorem 1.56 (Riesz-Markov representation theorem). For every positive linear
Λ : CcpX,Fq Ñ F there exists a unique Radon measure µ : BX Ñ Rě0 such that

Λpfq “

ż

X

fdµ (1.21)

for all f P CcpX,Fq. Moreover, every Radon measure on X arises from some Λ in this
way.

In addition, the operator norm }Λ} equals µpXq. Therefore, Λ is bounded iff µ is a
finite measure.

Proof. See [Gui-A, Sec. 25.3] for the first paragraph. The second paragraph asserts
that

sup
fPBCcpXqp0,1q

|Λpfq| “ µpXq

The inequality “ď" is obvious. The reverse inequality “ě" follows from (1.19).
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1.5.2 Basic properties of Radon measures

Theorem 1.57. Let µ be a Radon measure (or its completion) on X . Then µ is regular on
any measurable set E satisfying µpEq ă `8.

Proof. See [Gui-A, Sec. 25.4]. A sketch of the proof (different from that in [Gui-A])
is as follows.

Assume WLOG that E is Borel. Since Radon measures are outer regular on
Borel sets, it remains to prove that µ is inner regular on E. Pick an open set µpUq

such that µpUzEq is small. Since µ is inner regular on U , there is a compact K Ă U
such that µpUzKq is small. However, K is not necessarily contained in E.

To fix this issue, we note that since µ is outer regular on UzE, we can find an
open set V Ă U containing UzE whose measure is close to µpUzEq. In particular,
µpV q is small. Then KzV is a compact subset of E whose measure is close to
µpEq.

Theorem 1.58. Assume that X is second countable. Let µ be a Borel measure on X .
Then µ is Radon iff µpKq ă `8 for any compact K Ă X .

In particular, a finite Borel measure on Rn (where n P N) is Radon.

Proof. See [Gui-A, Sec. 25.5].

1.5.3 Approximation and density

The main reference for this subsection is [Gui-A, Sec. 27.2].

Theorem 1.59 (Lusin’s theorem). Let X be LCH. Let µ be a Radon measure (or its
completion) on X with σ-algebra M. Let f : X Ñ F be measurable. Let A P M such that
µpAq ă `8. Then for each ε ą 0 there exists a compact K Ă A such that µpAzKq ă ε
and that f |K : K Ñ F is continuous.

With the help of the Tietze extension Thm. 1.22, Lusin’s theorem implies that
for each ε ą 0 there exist a compact K Ă A and some rf P CcpX,Fq such that
rf |K “ f |K and µpAzKq ă ε.

Proof. See [Gui-A, Sec. 25.4].

Theorem 1.60. Let 1 ď p ă `8. Let µ be a Radon measure (or its completion) on an
LCH space X . Then, under the Lp-norm, the space CcpX,Fq is dense in LppX,µ,Fq.
More precisely, the map f P CcpX,Fq ÞÑ f P LppX,µ,Fq has dense range.

Proof. See [Gui-A, Sec. 27.2].
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Remark 1.61. One easily checks that

SpanFtχI : I Ă R is a bounded intervalu
“SpanFtχI : I Ă R is a compact intervalu
“SpanFtχI : I Ă R is a bounded open intervalu

An element in these sets is called an F-valued step function. Moreover, one
checks that

tright-continuous F-valued step functionsu “ SpanFtχra,bq : a, b P Ru

tleft-continuous F-valued step functionsu “ SpanFtχpa,bs : a, b P Ru

Theorem 1.62. Let 1 ď p ă `8. Let µ be a Radon measure (or its completion) on R.
Then each of the following classes of functions form a dense subset of LppR, µ,Fq:

(a) Right-continuous F-valued step functions.

(b) Left-continuous F-valued step functions.

(c) Elements of SpanFtχp´8,bs : b P Ru.

(d) Elements of SpanFtχp´8,bq : b P Ru.

Proof. With the help of Thm. 1.60, the density of (a) and (b) can be proved by
approximating a function f P CcpX,Fq with left/right-continuous step functions.
See [Gui-A, Sec. 27.2] for details.

Since (a)Ă(c) and (b)Ă(d), the density of (c) and (d) follows.

Theorem 1.63. Let 1 ď p ă `8. Let µ be a Radon measure (or its completion) on a
second countable LCH space X . Then LppX,µ,Fq is separable.

Proof. See [Gui-A, Sec. 27.2].

1.5.4 Complex Radon measures

Definition 1.64. IfX is a set and M Ă 2X is a σ-algebra, a complex measure (resp.
signed measure) is a function M Ñ C (resp. M Ñ R) that can be written as a
C-linear (resp. R-linear) combination of finite measures on M.

We now assume that X is LCH.

Definition 1.65. A complex (resp. signed) measure on BX is called Radon if it is
a C-linear (resp. R-linear) combination of finite Radon measures.
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Suppose that µ is a complex Radon measure on X . Then similar to the proof
of Rem. 1.54, for each f P C0pXq, we can extend the Rě0-linear functional f ÞÑ
ş

X
fdµ, where µ are finite Radon measures, to µ ÞÑ

ş

X
fdµ for all complex Radon

measures µ. This gives a C-bilinear map

pf, µq ÞÑ

ż

X

fdµ P C

for f P C0pXq and complex Radon measures µ.

Theorem 1.66 (Riesz-Markov representation theorem). Let F “ C (resp. F “ R.)
Then the elements of CcpX,Fq˚ are precisely linear functionals

Λ : CcpX,Fq Ñ F f ÞÑ

ż

X

fdµ

where µ is complex (resp. signed) Radon measure on X .

Proof. It suffices to assume that Λ is real, i.e., sending CcpX,Rq into R. Similar to
the proof of Thm. 1.50, one writes Λ “ Λ` ´Λ´ where Λ˘ are positive. Then apply
Thm. 1.56 to Λ˘. See [Gui-A, Subsec. 25.10.2] for details.

Remark 1.67. Since CcpX,Fq is l8-dense in C0pX,Fq, by Cor. 2.28, the dual spaces
CcpX,Fq˚ and C0pX,Fq˚ are canonically identified. Therefore, Thm. 1.66 holds
verbatim if CcpX,Fq is replaced by C0pX,Fq.

1.6 Basic facts about increasing functions

1.6.1 Notation

If I Ă R is a proper interval, a function ρ : I Ñ R is called increasing if it is
non-decreasing, i.e., ρpxq ď ρpyq whenever x, y P I and x ď y. For each t P R, let

Iďt “ I X p´8, ts Iăt “ I X p´8, tq Iět “ I X rt,`8q Iąt “ I X pt,`8q

Suppose that a “ inf I and b “ sup I . Let ρ : I Ñ R be increasing. If x P pa, bq,
then the left and right limits2

ρpx´
q “ lim

yÑx´
ρpyq ρpx`

q “ lim
yÑx`

ρpyq (1.22)

exist, and

ρpx´
q ď ρpxq ď ρpx`

q

2When taking the limit limyÑx˘ , we do not allow y to be equal to x.
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If a P I , then ρpa`q exists, and ρpaq ď ρpa`q. If b P I , then ρpb´q exists, and
ρpb´q ď ρpbq. Let

Ωρ “ tx P pa, bq : ρ|pa,bq is continuous at xu

Then for each x P pa, bq, we have

x P Ωρ ô ρpx´
q “ ρpx`

q ô ρpx´
q “ ρpxq “ ρpx`

q (1.23)

1.6.2 Basic properties of increasing functions

Let I Ă R be a proper interval with a “ inf I, b “ sup I .

Proposition 1.68. If ρ : I Ñ R is increasing, then IzΩρ is countable.

Proof. Replacing ρ with arctan ˝ρ, we may assume that ρ is bounded. Let C “

diampρpIqq “ supx,yPI |ρpxq ´ ρpyq|. Let A “ pa, bqzΩρ. Then for each B P finp2Aq,
we have

ÿ

xPB

pρpx`
q ´ ρpx´

qq ď C

Applying limB, we get
ř

xPApρpx`q ´ ρpx´qq ď C ă `8. Therefore A is countable.

Definition 1.69. Let ρ : I Ñ R. The right-continuous normalization of ρ is the
function rρ : I Ñ R defined by

rρpxq “

"

ρpx`q if x ă b

ρpbq if x “ b

The function rρ is clearly increasing and right-continuous. Moreover, rρ clearly
agrees with ρ on Ωρ. Therefore, rρ and ρ are almost equal, as defined by the follow-
ing proposition.

Proposition 1.70. Let ρ1, ρ2 : I Ñ R be increasing. Then the following are equivalent:

(a) There exists a dense subset E Ă I such that ρ1|E “ ρ2|E .

(b) Ωρ1 “ Ωρ2 , and ρ1|Ωρ1
“ ρ2|Ωρ2

.

(c) The right-continuous normalizations of ρ1 and ρ2 agree on Iăb.

If any of these statements are true, we say that ρ1, ρ2 are almost equal.
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Proof. (a)ñ(b): Assume (a). Choose any x P I . If x ą a then

ρ1px
´

q “ lim
EQyÑx´

ρ1pyq “ lim
EQyÑx´

ρ2pyq “ ρ2px´
q (1.24a)

Similarly, if x ă b then

ρ1px
`

q “ ρ2px`
q (1.24b)

Thus (b) follows from (1.23).

(b)ñ(a): By Prop. 1.68, E :“ pa, bq X Ωρ1 is a dense subset of pa, bq.

(b)ô(c): Let rρi be the right continuous normalization of ρi. Then by (a)ñ(b),
we have Ωρi “ Ω

rρi and ρi|Ωρi
“ rρi|Ω

rρi
. Therefore, (b) holds iff

Ω
rρ1 “ Ω

rρ2 and rρ1|Ω
rρ1

“ rρ2|Ω
rρ2

(1.25)

Clearly (c) implies (1.25). Suppose that (1.25) is true. Then for each x P Iăb we
have

rρ1pxq “ rρ1px`
q

(1.24b)
ùùùùù rρ2px

`
q “ rρ2pxq

Thus (1.25) implies (c). Therefore (b) and (c) are equivalent.

1.7 The Stieltjes integral

1.7.1 Definitions and basic properties

In this subsection, we fix a proper interval I Ă R, and let ρ : I Ñ Rě0 be an
increasing function.

Definition 1.71. Let J be any proper bounded interval. Let a “ inf J, b “ sup J . A
partition of the interval J is defined to be an element of the form

σ “ ta0, a1, . . . , an P ra, bs : a0 “ a ă a1 ă a2 ă ¨ ¨ ¨ ă an “ b, n P Z`u (1.26)

The mesh of σ is defined to be

maxtai ´ ai“1 : i “ 1, . . . , nu

If σ, σ1 P finp2Jq are partitions of J , we say that σ1 is a refinement of σ (or that σ1

is finer than σ), if σ Ă σ1. In this case, we also write

σ ă σ1

We define PpJq to be

PpJq “ tpartitions of Ju
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Remark 1.72. If σ, σ1 P PpJq, then clearly σYσ1 P PpJq and σ, σ1 ă σYσ. Therefore,
ă is a partial order on PpJq. We call σ Y σ1 the common refinement of σ and σ1.

Definition 1.73. A tagged partition of I is an ordered pair

pσ, ξ‚q “
`

ta0 “ a ă a1 ă ¨ ¨ ¨ ă an “ bu, pξ1, . . . , ξnq
˘

(1.27)

where σ P PpJq and

ξi P paj´1, ajs

for all 1 ď j ď n. The set

QpJq “ ttagged partitions of Ju

equipped with the preorder ă defined by

pσ, ξ‚q ă pσ1, ξ1
‚q ðñ σ Ă σ1 (1.28)

is a directed set.

Definition 1.74. Let V be a Banach space. Assume ra, bs Ă I and a ă b. Let
f P Cpra, bs, V q. For each pσ, ξ‚q P QpIq, define the Stieltjes sum

Sρpf, σ, ξ‚q “
ÿ

jě1

fpξjq
`

ρpajq ´ ρpaj´1q
˘

abbreviated to Spf, σ, ξ‚q when no confusion arises. The Stieltjes integral on pa, bs
is defined to be the limit of the net pSρpf, σ, ξ‚qqpσ,ξ‚qPQpra,bsq:

ż

pa,bs

fdρ “ lim
pσ,ξ‚qPQpIq

Sρpf, σ, ξ‚q (1.29)

The Stieltjes integral on ra, bs is defined to be
ż

ra,bs

fdρ “ fpaqρpaq `

ż

pa,bs

fdρ (1.30)

Note that when fpaq ‰ 0, the integral
ş

pa,bs
fdρ depends not only on ρ|pa,bs but

also on the value ρpaq. On the other hand, it is clear that
ż

pa,bs

fdρ “

ż

pa,bs

fdρ|ra,bs

ż

ra,bs

fdρ “

ż

ra,bs

fdρ|ra,bs (1.31)

Proof of the convergence of (1.29). Since f is uniformly continuous, for each ε ą 0,
there exists δ ą 0 such that }fpxq ´ fpyq} ď ε for all x, y P ra, bs and |x ´ y| ď δ.
Choose any tagged partition pσ, ξ‚q of ra, bs with mesh ď δ. Then one easily sees
that for any pσ1, ξ1

‚q ą pσ, ξq we have

}Spf, σ1, ξ1
‚q ´ Spf, σ, ξ‚q} ď εpρpbq ´ ρpaqq

Therefore, the net pSpf, σ, ξ‚qqpσ,ξ‚qPQpIq is Cauchy. So it must converge because V
is complete.
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Remark 1.75. The above proof implies the following useful fact: Let f P ra, bs. Let
ε, δ ą 0 such that }fpxq ´ fpyq} ď ε for all x, y P ra, bs satisfying |x ´ y| ď δ. Then
for each tagged partition pσ, ξ‚q of ra, bs with mesh ď δ, we have

›

›

›

ż

pa,bs

fdρ ´ Sρpf, σ, ξ‚q

›

›

›
ď εpρpbq ´ ρpaqq (1.32)

and hence
›

›

›

ż

ra,bs

fdρ ´ fpaqρpaq ´ Sρpf, σ, ξ‚q

›

›

›
ď εpρpbq ´ ρpaqq (1.33)

Example 1.76. The integrals of the constant function 1 are
ż

pa,bs

dρ “ ρpbq ´ ρpaq

ż

ra,bs

dρ “ ρpbq

Example 1.77. Suppose that ρ|pa,bs “ 1. Then
ż

pa,bs

fdρ “ fpaqp1 ´ ρpaqq

ż

ra,bs

fdρ “ fpaq

In particular, if ρ|ra,bs “ 1, then
ż

pa,bs

fdρ “ 0 and
ż

ra,bs

fdρ “ fpaq.

Remark 1.78. It is easy to see that

Λ : Cpra, bs, V q Ñ V f ÞÑ

ż

ra,bs

fdρ

is linear. Moreover, since }Spf, σ, ξ‚q} ď pρpbq ´ ρpaqq}f}l8 and hence }fpaqρpaq `

Spf, σ, ξ‚q} ď ρpbq}f}l8 , the operator norm }Λ} satisfies }Λ} ď ρpbq, that is
›

›

›

ż

ra,bs

fdρ
›

›

›
ď ρpbq}f}l8 for all f P Cpra, bs, V q

In particular, Λ is bounded.

Remark 1.79. It is easy to check that ρ ÞÑ
ş

pa,bs
fdρ and ρ ÞÑ

ş

ra,bs
fdρ are Rě0-linear

over increasing functions ρ : ra, bs Ñ Rě0. Moreover, if c P pa, bq, one easily shows
ż

pa,bs

fdρ “

ż

pa,cs

fdρ `

ż

pc,bs

fdρ (1.34)

by considering tagged partitions finer than ta, c, bu.

Exp. 1.77 suggests that the value of
ş

ra,bs
fdρ is independent of ρpaq:
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Lemma 1.80. Suppose that ρ1, ρ2 : ra, bs Ñ Rě0 are increasing and satisfies ρ1|pa,bs “

ρ2|pa,bs. Then for each f P Cpra, bs, V q we have
ż

ra,bs

fdρ1 “

ż

ra,bs

fdρ2.

See Thm. 1.82 for a generalization of this lemma.

Proof. Assume WLOG that ρ1paq ď ρ2paq. Let λ “ ρ2paq ´ ρ1paq. Then ρ2 ´ ρ1 “

λ ¨ χtau “ λ ¨ p1 ´ χpa,bsq, and hence ρ1 ` λ “ ρ2 ` λ ¨ χpa,bs. By Rem. 1.79,
ż

ra,bs

fdρ1 ` λ

ż

ra,bs

fd1 “

ż

ra,bs

fdρ2 ` λ

ż

ra,bs

fdχpa,bs

By Exp. 1.79, we obtain
ş

ra,bs
fdρ1 “

ş

ra,bs
fdρ2.

1.7.2 Dependence of the Stieltjes integral on ρ

Let I Ă R be a proper interval, and let a “ inf I and b “ sup I . Note that I is
not assumed to be bounded.

Definition 1.81. For each f P CcpI, V q and each increasing ρ : I Ñ R, we can still
define the Stieltjes integral

ż

I

fdρ :“

ż

J

fdρ

where J is any compact sub-interval of I containing SuppIpfq. The value of the
integral is clearly independent of the choice of such J . Moreover, this definition
is compatible with the definitions of

ş

ra,bs
fdρ and

ş

pa,bs
fdρ in Def. 1.74.

Theorem 1.82. Let ρ1, ρ2 : I Ñ Rě0 be increasing functions satisfying the following
condition:

• ρ1 and ρ2 are almost equal, and ρ1pbq “ ρ2pbq if b P I . (By Prop. 1.70, this is
equivalent to that ρ1, ρ2 have the same right-continuous normalization.)

Then for each f P CcpI, V q, we have
ż

I

fdρ1 “

ż

I

fdρ2

Proof. By Lem. 1.80, we may assume that ρ1paq “ ρ2paq if a P I .
Fix f P CcpI, V q. Choose α, β P R satisfying SuppIpfq Ă rα, βs Ă I . Due to the

assumption on ρ1, ρ2, we may slightly enlarge the compact interval J :“ rα, βs so
that

ρ1pαq “ ρ2pαq ρ1pβq “ ρ2pβq
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(When a P I resp. b P I , one can even set α “ a resp. β “ b.) Then
ş

I
fdρi “

ş

J
fdρi.

Let C “ maxtρipβq ´ ρipαq : i “ 1, 2u. Choose any ε ą 0. Since f is uniformly
continuous, there exists δ ą 0 such that |fpxq ´ fpyq| ď ε whenever x, y P I and
|x ´ y| ď δ. Choose a tagged partition

pσ, ξ‚q “
`

ta0 “ α ă a1 ă ¨ ¨ ¨ ă an “ βu, pξ1, . . . , ξnq
˘

of J with mesh ă δ. Moreover, due to the assumption on ρ1, ρ2, by a slight adjust-
ment, we may assume that ρ1pajq “ ρ2pajq for each 0 ď j ď n. This implies

Sρ1pf, σ, ξ‚q “ Sρ2pf, σ, ξ‚q

Therefore, by Rem. 1.75, we obtain
›

›

›

ż

J

fdρ1 ´

ż

J

fdρ2
›

› ď 2ε ¨ C

This completes the proof by choosing arbitrary ε.

Theorem 1.83. Let ρ1, ρ2 : I Ñ Rě0 be
:::::::::
bounded increasing functions satisfying

lim
xÑa`

ρ1pxq “ lim
xÑa`

ρ2pxq “ 0 if a R I (1.35)

Then the following are equivalent:

(1) ρ1 and ρ2 are almost equal, and ρ1pbq “ ρ2pbq if b P I . (By Prop. 1.70, this is
equivalent to that ρ1, ρ2 have the same right-continuous normalization.)

(2) For each f P CcpI,Fq we have
ż

I

fdρ1 “

ż

I

fdρ2

Proof. By Thm. 1.82, we have “(1)ñ(2)". Assume (2). Let us prove (1). Let rρi be
the right-normalization of ρi. By “(1)ñ(2)", we have

ş

I
fdρi “

ş

I
fdrρi. Therefore,

to prove (1), it suffices to assume that ρ1 and ρ2 are right-continuous on I .
We shall prove (1) by choosing an arbitrary bounded increasing right-

continuous ρ : I Ñ Rě0, and show that for each x P I , the value ρpxq can be
recovered from the integrals

ş

I
fdρ where f P CcpI,Rq.

Case 1: Assume a R I and a ă x ă b. For each real numbers v, y satisfying

a ă v ă x ă y ă b

choose φv,y P CcpI, r0, 1sq satisfying

χrv,xs ď φv,y ď χpa,ys
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Choose u P pa, vq such that φv,y vanishes outside ru, ys. Then by Rem. 1.79,
ż

I

φv,ydρ “

ż

ru,ys

φv,ydρ “ φv,ypuq `

ż

pu,vs

φv,ydρ `

ż

pv,xs

φv,ydρ `

ż

px,ys

φv,ydρ

“

ż

pu,vs

φv,ydρ ` ρpxq ´ ρpvq `

ż

px,ys

φv,ydρ

where Exp. 1.76 is used in the last equality. By Rem. 1.75, we have
ş

pu,vs
φv,ydρ ď

ρpvq ´ ρpuq ď ρpvq and
ş

px,ys
φv,ydρ ď pρpyq ´ ρpxqq. Since ρ is right-continuous and

satisfies (1.35), we have

lim
vŒa`

ρpvq “ lim
yŒx`

pρpyq ´ ρpxqq “ 0

Therefore, the above calculation of
ş

I
φv,ydρ shows

lim
vŒa`

yŒx`

ż

I

φv,ydρ “ lim
vŒa`

pρpxq ´ ρpvqq “ ρpxq

Case 2: Assume a P I and a ď x ă b. For each y P px, bq, chooseφy P CcpI, r0, 1sq

such that χra,xs ď φy ď χra,ys. Similar to the argument in Case 1, one shows
ż

I

φydρ “

ż

ra,xs

φydρ `

ż

px,ys

φydρ “ ρpxq `

ż

px,ys

φydρ

where Exp. 1.76 is used. By Rem. 1.75,
ş

px,ys
φydρ ď ρpyq ´ ρpxq. Therefore, the

right-continuity of ρ implies

lim
yŒx`

ż

I

φydρ “ ρpxq

Case 3: Assume I “ pa, bs and x “ b. For each v P pa, xq, choose φv P

CcpI, r0, 1sq such that χrv,bs ď φv ď χI . Similar to the argument above,

lim
vŒa`

ż

I

φvdρ “ ρpbq

Case 4: Assume I “ ra, bs and x “ b. Then
ż

I

dρ “ ρpbq.

Remark 1.84. The assumption (1.35) imposes little restriction. Indeed, suppose
a R I . Then for each f P CcpIq, since there exists v P Rąa such that f vanishes on
pa, vs, for any constant κ P R with ρ ` κ ě 0, we clearly have

ż

I

fdρ “

ż

I

fdpρ ` κq (1.36)

Therefore, when a R I , given any two increasing functions ρ1, ρ2 : I Ñ Rě0, we
can freely add constants to ρ1 and ρ2 to ensure that (1.35) holds.
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1.8 The Riesz representation theorem via the Stieltjes integral

In this section, we fix a proper interval I Ă R, and let a “ inf I and b “ sup I .

1.8.1 The positive case

Theorem 1.85 (Riesz representation theorem). We have a bijection between:

(a) A bounded increasing right-continuous function ρ : I Ñ Rě0 satisfying
limxÑa` ρpaq “ 0 if a R I .

(b) A bounded positive linear functional Λ : CcpI,Fq Ñ F.

Λ is determined by ρ by

Λ : CpI,Fq Ñ F f ÞÑ

ż

I

fdρ (1.37)

ρ is determined by Λ by

ρpxq “ µpIďxq for all x P I (1.38)

where µ is the finite Borel measure on I associated to Λ as in the Riesz-Markov represen-
tation Thm. 1.56.

Note that by Thm. 1.58, finite Borel measures on I and finite Radon measures
on I coincide.

Proof. Step 1. Thm. 1.56 establishes the equivalence between a bounded positive
linear Λ and a finite Borel measure µ. We let prove the equivalence between the
radon measures µ and the functions ρ satisfying (a).

More precisely, given a Radon measure µ on I , let ρµ : I Ñ Rě0 be defined by
(1.38), that is, for each x P I we have

ρµpxq “ µpIďxq (1.39)

Then ρµ is clearly bounded and increasing. By DCT, ρµ is right-continuous, and
we have limxÑa´ ρpxq “ 0 when a R I . Therefore, ρµ satisfies (a).

Conversely, given any ρ satisfying (a), let µρ be the unique Radon measure
corresponding to ρ via (1.37), i.e., for each f P CcpI,Fq we have

ż

I

fdµρ “

ż

I

fdρ (1.40)

By Rem. 1.78, the linear functional f P CcpI,Fq ÞÑ
ş

I
fdρ is bounded with operator

norm ď supxPI ρpxq. Thus, µρ is a finite measure.
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We want to show that Φ : ρ ÞÑ µρ and Ψ : µ ÞÑ ρµ are inverses of each other. By
Thm. 1.83, the map Φ is injective. Therefore, it suffices to prove that Φ ˝ Ψ “ id,
i.e., that µρµ “ µ. This means proving

ż

I

fdµ “

ż

I

fdρµ (1.41)

for each f P CcpI,Fq.

Step 2. Let us fix f P CcpI,Fq and prove (1.41). Choose α, β P R such that
J :“ rα, βs is a sub-interval of I containing SuppIpfq. Choose any ε ą 0. Since f
is uniformly continuous, there exists δ ą 0 such that |fpxq ´ fpyq| ď ε whenever
x, y P I and |x ´ y| ď δ. Choose a tagged partition

pσ, ξ‚q “
`

ta0 “ α ă a1 ă ¨ ¨ ¨ ă an “ βu, pξ1, . . . , ξnq
˘

of J with mesh ď δ. By Rem. 1.75, we have
ˇ

ˇ

ˇ

ż

J

fdρµ ´ fpαqρµpαq ´ Sρµpf, σ, ξ‚q

ˇ

ˇ

ˇ
ď εpρµpβq ´ ρµpαqq “ ε ¨ µppα, βsq (1.42)

Also, we have }f ´ g}l8pIq ď ε where

g “ fpαqχtau `

n
ÿ

i“1

fpξiqχpai´1,ais

By (1.38), we have

µptαuq “ ρµpαq ´ µpIăαq µppai´1, aisq “ ρµpaiq ´ ρµpai´1q

Note that if fpαq ‰ 0, then by SuppIpfq Ă rα, βs, we must have α “ a P I and
hence Iăα “ H. Therefore, we must have

ż

I

gdµ “ fpαqρµpαq ` Sρµpf, σ, ξ‚q

Combining this fact with }f ´ g}l8pIq ď ε, we get

ˇ

ˇ

ˇ

ż

I

fdµ ´ fpαqρµpαq ´ Sρµpf, µ, ξ‚q

ˇ

ˇ

ˇ
ď ε ¨ µpJq

This inequality, together with (1.42), implies
ˇ

ˇ

ˇ

ż

I

fdµ ´

ż

I

fdρµ

ˇ

ˇ

ˇ
ď 2ε ¨ µpJq

Since ε is arbitrary, we conclude (1.41).
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1.8.2 The general case

Definition 1.86. A real-valued function I Ñ F is called of bounded variation
(or simply BV) if it is an F-linear combination of bounded increasing functions
I Ñ Rě0. The space of BV functions from I to F is denoted by BV pI,Fq.

Remark 1.87. By Rem. 1.78 and 1.79, we have an Rě0-bilinear functional

pf, ρq ÞÑ

ż

I

fdρ P Rě0

for f P CcpI,Rě0q and bounded increasing ρ : I Ñ Rě0. Similar to the proof of
Rem. 1.54, it can be extended to a positive bililinear functional

CcpI,Cq ˆ BV pI,Cq Ñ C pf, ρq ÞÑ

ż

I

fdρ

Theorem 1.88 (Riesz representation theorem). The elements of the dual space
CcpI,Fq˚ are precisely linear functionals of the form

Λ : CpI,Fq Ñ F f ÞÑ

ż

I

fdρ

where ρ P BV pI,Fq. Moreover, the BV function ρ can be chosen such that it is right-
continuous on I , and that limxÑa` ρpxq “ 0 if a R I .

Proof. This is immediate from Thm. 1.66 and 1.85.
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2 Normed vector spaces and their dual spaces

2.1 The origin of dual spaces in the calculus of variations

Linear functional analysis treats function spaces as linear spaces with appro-
priate geometric/topological structures and analytic properties. In the founda-
tional theory of functional analysis, two analytic properties are especially impor-
tant: (Cauchy) completeness and duality. In this course, our focus is primarily
on normed vector spaces V . For such spaces, Cauchy completeness is interpreted
in the same way as in any metric space. Duality, on the other hand, refers to the
natural identification of V as the dual space V ˚ of another normed vector space
U .

Many early results in functional analysis were related to duality, while the sig-
nificance of completeness was not immediately recognized. In fact, the history of
functional analysis experienced a paradigm shift from the study of (scalar-valued)
functionals to linear maps between vector spaces. Specifically, attention moved
from continuous bilinear maps of the form U ˆ V Ñ F to the analysis of contin-
uous linear maps V Ñ W , where U, V,W are normed vector spaces. With this
shift, completeness became increasingly central to modern analysis. See Sec. 2.5
for further illustrations.

The early part of this course will also focus more on dual spaces. If V is
a normed F-vector space, then the dual space V ˚ “ LpV,Fq is defined to be
the space of bounded (i.e. continuous) linear maps V Ñ F. One of the major
themes in early functional analysis was the characterization of dual spaces of var-
ious function spaces under appropriate norms. Among the most notable results
are F. Riesz’s characterization of Cpra, bs,Rq˚ (cf. Thm. 1.88) in [Rie09, Rie11],
and his proof that Lqpra, bs,m,Rq˚ » Lppra, bs,m,Rq (cf. Thm. 1.50) in [Rie10].
These results highlight a profound connection between dual spaces and mea-
sure/integration theory. Nevertheless, the study of dual spaces originally arose
from a somewhat different field: the calculus of variations in the 19th century.

Consider a nonlinear functional S : f ÞÑ Spfq P R, for example, of the form

Spfq “

ż b

a

Lpfptq, f 1
ptq, . . . , f prq

ptqqdt

where L is a “nice" real valued function with r-variables, and f is defined on ra, bs.
If we perturb f slightly by a variation η, then the corresponding change in S can
be approximated by

δSrf, ηs :“ Spf ` ηq ´ Spfq «

ż b

a

βf ptq ¨ ηptqdt (2.1)

where βf : ra, bs Ñ R is a function depending on f . This function should be
interpreted loosely. In some cases, it may involve delta functions or similar objects
that are not functions in the classical sense, but rather distributions:
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Example 2.1. Consider the case where L is smooth and r “ 1, i.e.

Spfq “

ż b

a

Lpfptq, f 1
ptqqdt

(For example, Lpx, yq “ T pyq ´V pxq where T pyq “ 1
2
my2 the kinetic energy for the

mass m P Rą0, and V pxq is the potential energy at x.) Then

δSrf, ηs “

ż b

a

Lpf ` η, f 1
` η1

q «

ż b

a

pBxLpf, f 1
qη ` ByLpf, ηqη1

q

“ByLpf, f 1
qη
ˇ

ˇ

b

a
`

ż b

a

pBxLpf, f 1
q ´ BtByLpf, f 1

qqη

If we assume that the function f and its variation η always vanish at the endpoints
a, b, then we obtain (2.1) with

βf ptq “ BxLpfptq, f 1
ptqq ´ BtByLpfptq, f 1

ptqq

The equation βf “ 0 is called the Euler-Lagrange equation.
However, if no boundary conditions are imposed on the endpoints, then the

term ByLpf, f 1qη
ˇ

ˇ

b

a
is not necessarily zero. As a result, we have

βf “ Lpfpbq, f 1
pbqqδb ´ Lpfpaq, f 1

paqqδa ` BxLpf, f 1
q ´ BtBypf, f 1

q

where, for each c P R, δc is the “delta function" at c, namely, the imaginary func-
tion R Ñ Rě0 vanishing outside c and satisfying

ş

R δc “ 1. The situation becomes
even more singular if we define S by

Spfq “

n
ÿ

i“1

λifpciq `

ż b

a

Lpfptq, f 1
ptqqdt

where λi P R and a ă ci ă b, then

βf “

n
ÿ

i“1

λiδci ` Lpfpbq, f 1
pbqqδb ´ Lpfpaq, f 1

paqqδa ` BxLpf, f 1
q ´ BtBypf, f 1

q

This raises the question: what should the function βf , alternatively the integral

operator η ÞÑ

ż b

a

βfη, actually look like in the general case?

It is in this context that the problem of classifying bounded linear functionals
on Cpra, bs,Rq, originally posed by Hadamard in 1903, should be understood. Re-
call that if V,W are normed vector spaces, Ω Ă V is open, and S : Ω Ñ W is a
map, one says that S is differentiable at f P Ω if

Spf ` ηq ´ Spfq “ Λpηq ` opηq
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where Λ : V Ñ W is a bounded linear operator (called the differential of S at
f ), and lim}η}Ñ0 opηq{}η} “ 0. In the calculus of variations, one sets W “ F. Then
Λ P V ˚. One can thus understand η ÞÑ δSrf, ηs as a bounded linear functional on
a function space V equipped with a suitable norm.

The problem of expressing δSrf, ηs as an integral involving η is therefore trans-
formed to the problem of characterizing the dual space V ˚. More precisely, the
space V—and in particular its norm—is not fixed in advance. The situation is not
that one starts with a given normed space and is then asked to characterize its
dual. Rather, the task is to find an appropriate norm on a suitable function space
V such that the bounded linear functionals on V , once studied and classified as
integrals, are well-suited to capturing the variation of S.1

::::
The

:::::
two

::::::::::::::
perspectives

:::
on

:::::::::::::
δSrf, ηs—as

::
a
:::::::::::
bounded

:::::::
linear

:::::::::::
functional

::::
on

:::
V ,

:::::
and

:::
as

::::
an

:::::::::
integral

:::::::::::
involving

::::::::::::
η—together

::::::
offer

::
a
::::::::
deeper

:::::
and

::::::
more

::::::::::
complete

:::::::::::::::::
understanding

:::
of

::::
the

::::::::::
variation

:::
of

::
S.

More discussion of the relationship between dual spaces and the calculus of
variations can be found in [Gray84].

2.2 Moment problems: a bridge between integral theory and
dual spaces

The theory of dual spaces would not have reached its current depth and so-
phistication if it were developed solely within the framework of the calculus
of variations. For instance, Riesz’s classification of the duals of Cpra, bsq and
Lppra, bs,mq would have been impossible without the Lebesgue and Stieltjes in-
tegrals. In fact, the very form of Riesz’s theorems presents a striking connection
between integration theory and dual spaces.

But why should such a connection exist in the first place? The way this rela-
tionship appears in Riesz’s theorems calls for a deeper explanation. My short an-
swer is this:

:
it

::
is

::::
the

::::::::::
moment

:::::::::::
problems

::::
that

::::::
form

::::
the

::::::::
bridge

:::::::::
between

:::::::::::::
integration

:::::::
theory

:::::
and

::::
the

::::::::
theory

:::
of

:::::
dual

::::::::
spaces. (Readers may jump ahead to Subsection

2.2.5 for the detailed final conclusion.)
To clarify my point, consider the first major example of a duality theorem: the

identification pL2q˚ » L2 proved by Riesz and Fréchet in 1907:

Theorem 2.2 (Riesz-Fréchet theorem, the classical form). We have a linear isomor-
phism

Λ : L2
`

r´π, πs,
m

2π

˘

Ñ L2
`

r´π, πs,
m

2π

˘˚

1The same function space V , when equipped with different norms, leads to different classifica-
tions of bounded linear functionals. For example, let V “ Cpra, bsq. If the norm is l8, then by Thm.
1.88, the bounded linear functionals are the Stieltjes integrals with respect to BV functions. If the
norm is L2, then by Exp. 2.29, the bounded linear functionals are those of the form f ÞÑ

ş

fgdm
where g P L2pra, bs,mq.
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xΛpfq, gy “
1

2π

ż π

´π

fgdm

In fact, Riesz studied L2 spaces several years before introducing the more gen-
eral Lp spaces. His interest in L2 spaces was clearly influenced by Hilbert’s ear-
lier work on the Hilbert space l2pZq and its applications to the theory of integral
equations. It was Hilbert’s insights that served as the crucial bridge leading to the
Riesz-Fréchet Thm. 2.2—the first major result linking Lebesgue integration with
dual spaces.

As I will explain in the following, Hilbert’s role in this development is best
understood through the lens of moment problems.

2.2.1 Moment problems and dual spaces

Let me begin by introducing moment problems and explaining how they relate
to dual spaces—particularly to the characterization of dual spaces in terms of
integral representations.

Problem 2.3 (Moment problem, original version). Let pξnq be a sequence of scalar-
valued functions defined on a space, e.g., an interval I Ă R. Choose a sequence
of scalars pcnq satisfying certain conditions. Find a scalar valued function f on I
such that for all n, we have

ż

ξnf “ cn resp.
ż

ξndf “ cn (2.2)

The numbers c1, c2, . . . are called the moments of f resp. df .

There are two typical types of moment problems:

• Trigonometric moment problem: Here I “ S1 » R{2πZ, and ξnpxq “ e´inx

for n P Z. The problem then amounts to finding a function f with prescribed
Fourier coefficients c1, c2, . . . .

• Polynomial moment problem: Here I Ă R is an interval, not necessarily
bounded, and ξnpxq “ xn for n P N. One is asked to find an increasing or BV
function f such that df has moments c1, c2, . . . .

Many (but not all) moment problems can be reformulated in the language of
bounded linear functionals and dual spaces as follows:

Problem 2.4 (Moment problem, dual space version). Let pξnq be a sequence in a
normed vector space V , and let pcnq be a sequence of scalars. Suppose that there
exists M P Rě0 such that

ˇ

ˇ

ˇ

ÿ

n

ancn

ˇ

ˇ

ˇ
ď M

›

›

›

ÿ

n

anξn

›

›

›
(2.3)
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for each sequence of scalars panq with finitely many nonzero terms. Find φ P V ˚

such that

xξn, φy “ cn for all n (2.4)

Remark 2.5. Note that (2.3) is necessary for the existence of φ satisfying (2.4),
because

ˇ

ˇ

ˇ

ÿ

n

ancn

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

@

ÿ

n

anξn, φ
D

ˇ

ˇ

ˇ
ď }φ} ¨

›

›

›

ÿ

n

anξn

›

›

›

where }φ} is the operator norm. Hence (2.3) holds for any M satisfying }φ} ď M .
Conversely, if we know that V0 “ Spantξnu is dense in V , then (2.3) guarantees

that the linear functional

φ : V0 Ñ F
ÿ

n

anξn ÞÑ
ÿ

n

ancn

is well-defined and bounded, with operator norm }φ} ď M . By boundedness, φ
extends uniquely to a bounded linear functional on all of V . Therefore, Problem
2.4 can always be solved.

The case where V0 is not dense in V is more subtle and will be treated in detail
in a later chapter.

Once Problem 2.4 is resolved—for example, when Spantξnu is dense in V—
Problem 2.3 can be solved by answering the following:

Problem 2.6 (Characterization of the dual space). Characterize the elements of
V ˚ as precisely those linear functionals φ : V Ñ F of the form

xξ, φy “

ż

ξf resp.
ż

ξdf

(for all ξ P V ), where f is a function satisfying suitable regularity or integrability
conditions.

Conversely, Problem 2.6 can be reduced to the moment Problem 2.3 by choos-
ing a densely-spanning pξnq and taking cn “ xξn, φy. The solution to Problem 2.3
then yields a function f such that xξn, fy “ xξn, φy. By the density of Spantξnu in
V , it follows that φ is represented by f .

Thus, we conclude that when pξnq spans a dense subspace of V ,
:::
the

::::::::::
moment

:::::::::
problem

::::::::::
(Problem

:::::
2.3)

:::::
and

::::
the

::::::::::::::::::
characterization

::
of

::::::
dual

::::::::
spaces

::::::::::
(Problem

:::::
2.6)

::::
are

:::::::::::
equivalent.
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2.2.2 Moment problems and integral theory/function theory

In the remainder of this section, we focus on the case where the sequence of
functions pξnq is “sufficiently rich", for example, when it spans a dense subspace
of V in Problem 2.4. Under this assumption, the function f (resp. df ) in Problem
2.3 or the functional φ in Problem 2.4 is uniquely determined by the moments
pcnq. Therefore, pcnq can be understood as the coordinates of f (resp. df ) and φ
under the coordinate system pξnq.

We now explain how the moment problems connect to integral theory—in
other words, to function theory. A central theme in function theory is the approx-
imation of abstract or complicated functions by simpler, more elementary ones.
This motivation often arises from practical mathematical problems, particularly
those originating in physics, where one seeks to express the solution as a series
of elementary functions, such as a power series or a Fourier series. The ques-
tion of how such series should converge—uniformly, pointwise, or in some other
sense—and what kinds of functions they can approximate was a central focus of
function theory in the 18th and 19th centuries.

The first step in understanding and solving the approximation problem is to
analyze the corresponding moment problem. A typical scenario unfolds as fol-
lows. In the setting of Problem 2.3, suppose there exists a sequence of elementary
functions pfnq such that

ż

ξkfn resp.
ż

ξkdfn “ ck when |k| ď |n| (2.5)

This situation arises, for instance, in the study of continued fractions and polyno-
mial moments, where ξkpxq “ xk. In the case of Fourier series, an even stronger
condition holds:

ż

ξkfn resp.
ż

ξkdfn “

"

ck if |k| ď |n|

0 if |k| ą |n|
(2.6)

where ξkpxq “ e´ikx and fnpxq “
ř

|k|ďn cke
ikx. The approximation problem asks:

Problem 2.7. Does the sequence pfnq converge to some function f? If so, in what
sense does it converge?

To approach this problem, observe that if such a function f exists, and if the
integral commutes with the convergence of sequence of functions, then

ż

ξkf “

ż

lim
|n|Ñ8

ξkfn “ lim
|n|Ñ8

ż

ξkfn
(2.5)

ùùùù ck (2.7a)

resp.
ż

ξkdf “

ż

lim
|n|Ñ8

ξkdfn “ lim
|n|Ñ8

ż

ξkdfn
(2.5)

ùùùù ck (2.7b)
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Therefore,
:::
the

:::::
first

:::::
step

:::
in

::::::::
solving

::::::::::
Problem

:::
2.7

:::
is

:::
to

:::::
find

::
a

:::::::::
function

::
f

:::::::::
solving

::::
the

:::::::::
moment

::::::::::
Problem

:::
2.3. Once such an f is found, the next step is to prove that the

sequence pfnq converges to f , and investigate the mode of convergence.
Historically, the understanding of convergence, the properties of the limiting

function f , and the integrals appearing in (2.7) was often insufficient to resolve
the approximation problem at the outset. In many cases, addressing the approx-
imation problem required the development of new theories of integration or the
extension of the class of integrable functions. Both the Lebesgue and Stieltjes inte-
grals emerged from such needs. For instance, the challenges posed by Fourier se-
ries played a central role in motivating the development of the Riemann and later
the Lebesgue integral. See [Jah, Ch. 6, 9] and [Haw-L] for a detailed discussion
of how Fourier series drove this evolution. The connection between continued
fractions and the Stieltjes integral will be explored in Ch. 4.

Function theory Moment Problems Dual spaces
Lebesgue integral

&
Fourier series

Fourier coefficients L2pra, bs,mq˚

Stieltjes integral
&

Continued fractions
Polynomial moments Cpra, bsq˚

Table 2.1: The origin of moment problems in function theory

2.2.3 Convergence of functions, moments, and linear functionals

In the previous subsection, we noted that solving moment problems deter-
mines the function f that appears in Problem 2.7. But can the moment problem
perspective also help us understand the convergence of fn to f? Or conversely,
can the convergence behavior of fn toward f offer deeper insight into the struc-
ture of moment problems themselves? Thanks to Hilbert’s foundational work on
the Hilbert space l2pZq—especially his groundbreaking 1906 paper [Hil06]—the
answer is yes.2

A key concept introduced by Hilbert in [Hil06] is weak convergence: If pψnq

is a sequence in l2pZq with uniformly bounded norm, i.e.,

sup
n

}ψn}2 ă `8 (2.8)

we say that pψnq converges weakly to ψ P l2pZq if it converges pointwise Z, i.e.,

lim
n
ψnpkq “ ψpkq for all k P Z (2.9)

2Indeed, Hilbert originally worked with the real Hilbert space l2pZ,Rq, rather than the complex
one l2pZq “ l2pZ,Cq. For clarity and simplicity, however, we will work with l2pZq in what follows.
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Since l2pZq is typically interpreted as the space of Fourier series of L2-integrable
functions, Hilbert’s notion of weak convergence corresponds to the (pointwise)
convergence of Fourier coefficients. That is,

lim
n

pfnpkq “ pfpkq for all k P Z

where fn and f are L2-integrable functions on r´π, πs.3

The notion of weak convergence—later extended to weak-* convergence—
provided a fundamentally new insight into the study of moment problems and
their connection to dual spaces and function theory/integral theory. Since Fourier
coefficients are simply trigonometric moments, the weak convergence described
by (2.9) can be understood as the (pointwise) convergence of moments, which
means, in the setting of the moment Problem 2.3, that

lim
n

ż

ξkfn resp. lim
n

ż

ξkdfn “ cn for all k (2.10)

The translation of (2.10) into the setting of the dual space version of the mo-
ment Problem 2.4 is straightforward: One considers a sequence pφkq in V ˚ such
that limnxξk, φny “ xξk, φy holds for all k. Since we have assumed at the beginning
of Subsec. 2.2.2 that pξnq spans a dense subspace of V , it follows from (2.8) that
::::
this

::::::::::::::
convergence

:::
of

::::::::::
moments

:::
is

::::::::::::
equivalent

::
to

::::
the

:::::::::::::::::::::::
weak-* convergence of pφnq to

φ. That is, we say that pφnq converges weak-* to φ if

lim
n

xξ, φny “ xξ, φy for all ξ P V (2.11)

Thus, the second and third columns of Table 2.2 are equivalent. See Thm. 2.41 for
the formal statement of this equivalence.

On the other hand, (2.10) generalizes the condition (2.5), which, as previously
mentioned, arises naturally in the study of Fourier series and continued frac-
tions. As such, its function-theoretic interpretation—highlighted by the following
theorems—provides a general framework for understanding the convergence of
the sequence pfnq to f in Problem 2.7.

Theorem 2.8. Let 1 ă p ď `8 and p´1 ` q´1 “ 1. Let pfnq be a uniformly Lp-norm
bounded sequence in Lppra, bs,mq. Suppose that pfnq converges pointwise to f . Then
we have f P Lppra, bs,mq. Moreover, pfnq converges weak-* to f , which means that
limn

ş

fngdm “
ş

fgdm for all g P Lqpra, bs,mq.

Proof. See Thm. 2.49.
3Hilbert himself did not initially connect l2pZq with the Lebesgue integral. The precise rela-

tionship between l2pZq and L2pr´π, πs, m
2π q was later clarified by Riesz and Fischer in 1907.

44



Theorem 2.9. Let 1 ă p ď `8 and p´1 ` q´1 “ 1. Let pfnq be a uniformly Lp-
norm bounded sequence in Lppra, bs,mq. Then pfnq converges weak-* to some element
f P Lppra, bs,mq iff the limit

F pxq :“ lim
n

ż x

a

fndm (2.12)

exists for every x P ra, bs. When pfnq converges weak-* to f P Lppra, bs,mq, for each
x P ra, bs we have

F pxq “

ż x

a

fdm (2.13)

Proof. If pfnq converges weak-* to f , then limn

ş

fnχra,xs “
ş

fnχra,xs, which implies
that F pxq exists and equals

şx

a
fdm.

The other direction is more difficult. Indeed, it is almost equivalent to the
duality Lppra, bs,mq » Lqpra, bs,mq˚. See Thm. 2.48.

Theorem 2.10. Let pρnq be a uniformly l8-bounded sequence of increasing functions
ra, bs Ñ Rě0. The following are true.

1. Let ρ : ra, bs Ñ Rě0 be bounded and increasing. Then pdρnq converges weak-* to dρ
iff pρnq converges pointwise to ρ at b and at any point where ρ|pa,bq is continuous.

2. pdρnq converges weak-* to dρ for some bounded increasing ρ : ra, bs Ñ Rě0 iff pρnq

converges pointwise at b and on a dense subset of I .

By saying that pdρnq converges weak-* to dρ, we mean limn

ş

gdρn “
ş

gdρ for
all g P Cpra, bs,mq.

Proof. See Thm. 2.64 and Cor. 2.65.

The above theorems establish an intimate connection between the (pointwise)
convergence of moments and the pointwise convergence of the antiderivatives of
a sequence of functions.4 Our understanding of convergence from various per-
spectives can thus be summarized in Table 2.2.

Function theory Moment Problems Dual spaces
Pointwise convergence
of (antiderivatives of)

a sequence of functions

Pointwise convergence
of moments Weak-* convergence

Table 2.2: Equivalence of convergence notions

4We are viewing ρn and ρ as the antiderivatives of dρn and dρ.
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2.2.4 Equivalence of the first and second columns of Table 2.2

Thm. 2.9 and 2.10, which establish the equivalence of the first and second
columns of Table 2.2, are not easy to prove. In fact, proving Thm. 2.9 typically
requires the duality Lppra, bsq » Lqpra, bsq˚, or at least techniques closely related to
those used in establishing this duality.

Therefore, the solvability of the moment problems (Problems 2.3 and 2.4)—
in other words, the solvability of Problem 2.6 concerning the characterization of
dual spaces—is closely related to the equivalence between the first and second
columns of Table 2.2. This close connection rests on the following principle:

Principle 2.11. Usually, if V is a normed vector space consisting of functions,
any element φ of V ˚ can be weak-* approximated by elementary functions with
uniformly bounded norms. More precisely, there exists a sequence (or a net) of
elementary functions pfnq such that the operator norms of the linear functionals
ξ P V ÞÑ

ş

ξfn are uniformly bounded, and

lim
n

ż

ξfn “ xξ, φy for all ξ P V

Remark 2.12. Here is how, with the help of Principle 2.11, the characterization of
V ˚ can be derived from the equivalence of the first and second columns of Table
2.2:

By this principle, for each φ P V ˚, we can select a sequence pfnq approximat-
ing weak-* to φ. Since the second column of Table 2.2 implies the first column,
the sequence pfnq converges to some function f in the sense described in the first
column of Table 2.2. Then, by the equivalence of the three modes of convergence
in that table, it follows that pfnq converges weak-* to f . Consequently, φ is repre-
sented by integration against f , thereby solving the problem of characterizing the
dual space V ˚.

The idea outlined in Rem. 2.12 is roughly the approach Riesz employed in
1907 to solve the following trigonometric moment problem.

Theorem 2.13 (Riesz-Fischer theorem, Riesz’s original version). 5 For each pckqkPZ
in l2pZq, there is an (automatically unique) f P L2pr´π, πs, m

2π
q whose Fourier series is

equal to pckq.
5The modern interpretation of the Riesz-Fischer theorem as stating that L2pX,µq (or more gen-

erally LppX,µq) is Cauchy-complete for any measure space pX,µq has led to a significant misun-
derstanding. In fact, while Fischer formulated the theorem for L2pr´π, πs, m

2π q in terms of Cauchy
sequences, Riesz understood it quite differently—through the lens of moment problems.

Therefore, once Riesz realized that solving moment problems is equivalent to the characteriza-
tion of dual spaces, he immediately obtained the Riesz-Fréchet Thm. 2.2. As we have emphasized
at the beginning of Sec. 2.1, completeness and duality are fundamentally distinct properties, each
serving distinct purposes and arising from different considerations. The fact that they coincide in
the case of inner product spaces is purely a coincidence.
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Riesz’s idea of the proof. 6 Choose pckqkPZ in l2pZq. One aims to solve the moment
problem that there exists f P L2 such that 1

2π

ş

fe´k “ ck for all k P Z, where
ekpxq “ eikx. For each n P N, let

fn “
ÿ

´nďkďn

ckek

Then pfnq converges weak-* to the bounded linear functional φ P pL2q˚ satisfying
xe´k, φy “ ck for all k. (This is an instance of Principle 2.11.) 7

On the other hand, the property
ř

k |ck|2 ă `8 implies that the antideriva-
tives of pfnq converge pointwise to some function F in the sense of (2.12). This
establishes the convergence described in the first column of Table 2.2.

Then, applying the fundamental theorem of calculus for the Lebesgue inte-
gral, Riesz deduced the convergence in the second column of Table 2.2 for the
derivative function f :“ F 1 (which exists a.e. and is L2) and for another densely
spanning set of functions—the set tχra,xs : x P ra, bsu.8 Namely, he obtained

xχra,xs, fy “ lim
n

xχra,xs, fny for all x P ra, bs

Therefore, since the second column of Table 2.2 is equivalent to the third, pfnq

converges weak-* to f . Thus φ is represented by f , which implies that f solves
the desired moment problem—since φ does.

Note that the fundamental theorem of calculus for the Lebesgue integral is
crucial to the above proof. Likewise, the Radon-Nikodym Thm. 1.46—a mod-
ern form of the fundamental theorem of calculus—also plays a central role in the
proof of Theorem 1.50, which establishes the duality 1.50 on LppX,µq » LqpX,µq˚.
This reinforces the point that the characterization of dual spaces is deeply con-
nected to the equivalence between the first and second columns of Table 2.2.

See [Gui-A, Sec. 27.3] for further discussion on the relationship between the
classical and modern proofs of the duality Lp » pLqq˚, the connection between
this duality and the completeness of Lp-spaces, and the role of derivatives—both
in the classical sense and in the form of Radon-Nikodym derivatives—in this con-
text.

2.2.5 Conclusion

We now summarize the discussion so far by addressing the question posed
at the beginning of this section: Why are dual spaces related to integral theory?
More specifically, from the mathematical-historical perspective, why is it possible
to characterize the dual spaces of LppX,µq and CpXq?

6See [Haw-L, Ch. 6].
7Riesz’s original proof does not use the language of linear functionals.
8The fact that the fundamental theorem of calculus for the Lebesgue integral—one of the deep-
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Function theory Moment Problems Dual spaces

Solving moment problems Characterizing V ˚

Related by õ Principle 2.11
Pointwise convergence
of (antiderivatives of)

a sequence of functions

Pointwise convergence
of moments Weak-* convergence

Table 2.3: The cells in each row are equivalent

The answer, in my view, is captured in Table 2.3: The power of the Lebesgue
and Stieltjes integrals lies in their ability to establish the equivalence between the
two gray cells in that table. Once this equivalence is established, with the help of
Principle 2.11, the characterization of dual spaces in terms of integrals becomes
straightforward.

But why are these two integrals powerful enough to establish the equivalence
between the two gray cells in Table 2.3?—Because both the Lebesgue and Stieltjes
integrals arise from the study of moment problems, which in turn are rooted in
the corresponding approximation problems, as illustrated in Table 2.1. The em-
phasis of these integral theories on the commutativity of limits and integration
anticipates the equivalence of the two gray cells.

In light of the equivalences in Table 2.3, the Lebesgue integral, as the com-
pletion of the Riemann integral, can be interpreted as the weak-* completion of
trigonometric functions and continuous functions. Similarly, the Stieltjes integral,
as the completion of finite sums, can be viewed as the weak-* completion of dis-
crete spectra—a perspective that will be one of the main themes of Ch. 4. See
Table 2.4.

Completion of Integrals Extension of
classes of functions

Weak-* completion

Riemann integral
X

Lebesgue integral

Continuous functions
X

Measurable functions
of continuous functions

Finite sum
X

Stieltjes integral

Discrete spectra
X

Continuous spectra
of discrete spectra

Table 2.4

Side note. A common viewpoint—motivated by the completeness of L1-spaces—regards

est results in measure theory—is used here highlights how non-trivial the equivalence between
the first and second columns of Table 2.2 really is.
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the Lebesgue integral and the Lebesgue measurable/integrable functions as the Cauchy
completion of Riemann integrals and continuous functions. In my view, this perspective
is not only historically inaccurate, but also mathematically misleading.

Historically, the first Lp-space considered is L2pra, bs,mq, due to its close relation with
l2pZq, the space of trigonometric moments of L2-integrable functions. The space l2pZq

was introduced by Hilbert in [Hil06], where weak convergence (equivalently, pointwise
convergence of moments) plays a central role in his proof of the Hilbert-Schmidt theo-
rem. In [Rie10], Riesz studied the space Lppra, bs,mq for 1 ă p ă `8, and in particular
proved the duality Lppra, bs,mq » Lqpra, bs,mq˚. The completeness of Lppra, bs,mq fol-
lows as a corollary. However, L1pra, bs,mq was not considered, likely due to its lack of a
satisfactory duality theory. This clearly shows that duality was originally viewed as more
fundamental than Cauchy completeness.

Mathematically, to perform a Cauchy completion, one needs a norm, which in this
context is defined via an integral. Yet, while integrals are linear functionals, norms only
satisfy the subadditivity. As a result, norms and Cauchy completions do not provide the
right conceptual framework for understanding the nature of the Lebesgue integral from
a functional-analytic perspective.

The more appropriate viewpoint is to regard the Lebesgue integral as arising from
weak-* completion, not Cauchy completion.

2.3 Bounded multilinear maps

2.3.1 Seminorms, norms, and normed vector spaces

Definition 2.14. If V is an F-vector space, a function } ¨ } : V Ñ Rě0 is called a
seminorm if

}av} “ |a| ¨ }v} }u ` v} ď }u} ` }v} for any u, v P V and a P F (2.14)

A seminorm is called a norm if any v P V satisfying }v} “ 0 is the zero vector 0. A
vector space V , equipped with a norm, is called a normed vector space.

If V is a normed vector space, then a normed vector subspace of V denotes a
linear subspace U Ă V equipped with the norm inherited from V , i.e., the restric-
tion of V ’s norm to U .

We say that V is separable if it is so under the norm topology, namely, the
topology induced by the metric dpu, vq “ }u ´ v}.

Remark 2.15. In Def. 2.14, the condition }av} “ |a| ¨ }v} can be weakened to

}av} ď |a| ¨ }v} for any v P V and a P F (2.15)

Therefore, (2.14) can be weakened to

}au ` bv} ď |a| ¨ }u} ` |b| ¨ }v} for any u, v P V and a, b P F (2.16)
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Proof. Suppose that (2.15) is true. Then we clearly have }av} “ |a| ¨}v} when a “ 0.
Suppose that a ‰ 0. Then }v} “ }a´1av} ď |a|´1}av}, and hence }av} ě |a| ¨ }v}.
Therefore }av} “ |a| ¨ }v}.

Remark 2.16. The norm function } ¨ } : V Ñ Rě0 is continuous. This is because

}u} ´ }v} ď }u ´ v} (2.17)

Therefore, if pvαq is a net in V converging (in norm) to v, then

}v} “ lim
α

}vα}

Proposition 2.17. Let } ¨ }V be a seminorm on an F-vector space V . Let V0 “ tv P V :
}v}V “ 0u. Then V0 is a linear subspace on V , and there is a (clearly unique) norm }¨}V {V0

on the quotient space V {V0 such that

}v ` V0}V {V0 “ }v}V for all v P V (2.18)

In the future, unless otherwise stated, we will always equip V {V0 with this
norm } ¨ }V {V0 .

Proof. We abbreviate } ¨ }V to } ¨ }. If u, v P V0 and a, b P F, then

}au ` bv} ď |a|}u} ` |b|}v} “ 0

This shows that V0 is a linear subspace of V . On the other hand, if u, v P V satisfy
u ` V0 “ v ` V0, then u ´ v P V0, and hence

}v} “ }u ` v ´ u} ď }u} ` }v ´ u} “ }u}

Similarly, }u} ď }v}. Therefore }u} “ }v}. This implies that we have a well-defined
function } ¨ }V {V0 : V {V0 Ñ Rě0 satisfying (2.18).

If u, v P V and a, b P F, then

}apu ` V0q ` bpv ` V0q}V {V0 “ }au ` bv ` V0}V {V0 “ }au ` bv} ď |a|}u} ` |b|}v}

2.3.2 Bounded multilinear maps

In the rest of this section, V1, V2, . . . and U, V,W all denote normed F-vector
spaces.
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Definition 2.18. Let N P Z`. A map T : V1 ˆ ¨ ¨ ¨ ˆ VN Ñ W is called a multilinear
map if for each 1 ď i ď N and each fixed vj P Vj (for all j ‰ i), the map

vi P Vi ÞÑ T pv1, . . . , vNq P W

is F-linear. We let

LinpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q “ tmultilinear maps V1 ˆ ¨ ¨ ¨ ˆ VN Ñ W u

For each T P LinpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q, we define the operator norm

}T } :“ }T }l8pBV1
p0,1qˆ¨¨¨ˆBVN

p0,1q,W q “ sup
v1PBV1

p0,1q,...,vNPBVN
p0,1q

}T pv1, . . . , vNq}

We say that T is bounded if }T } ă `8.

Definition 2.19. We let

LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q :“ tbounded multilinear maps V1 ˆ ¨ ¨ ¨ ˆ VN Ñ W u (2.19)

viewed as an F-linear subspace of W V1ˆ¨¨¨ˆVN . We let

LpV q :“ LpV, V q V ˚ :“ LpV,Fq

Element of LpV q are called bounded linear operators on V . The space V ˚ is called
the dual space of V .

Remark 2.20. In this course, the most frequently encountered cases of (2.19) are
LpV q, V ˚, and LpU ˆ V,Fq. In Ch. 4, we also consider spaces such as LpU ˆ V ˆ

V˚,Fq, where V˚ is a normed vector space with dual space V . In such cases, Prop.
2.37 gives isomorphisms

LpU ˆ V ˆ V˚,Fq » LpU,LpV ˆ V˚,Fqq » LpU,LpV qq

Remark 2.21. }T } is the smallest element in Rě0 satisfying

}T pv1, . . . , vNq} ď }T } ¨ }v1} ¨ ¨ ¨ }vN} (2.20)

Proof. If one of v1, . . . , vN is zero, then T pv1, . . . , vNq “ 0 by the multilinearity, and
hence (2.20) holds. So we assume that v1, . . . , vN are all non-zero. So their norms
are all nonzero. Since vi{}vi} P BVi

p0, 1q, we have
›

›

›
T
´ v1

}v1}
, ¨ ¨ ¨ ,

vN
}vN}

¯›

›

›
ď }T }

which implies (2.20) by the multilinearity.
We have proved that }T } satisfies (2.20). Now, suppose that C P Rě0 and

}T pv1, . . . , vNq} ď C ¨ }v1} ¨ ¨ ¨ }vN}

for all vi P Vi. Taking vi P BV p0, 1q, we see that }T } ď C.
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Recall Def. 1.3.

Proposition 2.22. Let T : V1 ˆ ¨ ¨ ¨ ˆ VN Ñ W be multilinear. The following are
equivalent.

(a) T is continuous.

(b) T is continuous at 0 ˆ ¨ ¨ ¨ ˆ 0.

(c) T is bounded.

(d) T is Lipschitz continuous on BV1p0, Rq ˆ ¨ ¨ ¨ ˆ BVN
p0, Rq for every R P Rą0.

(e) T is Lipschitz continuous on BV1p0, 1q ˆ ¨ ¨ ¨ ˆ BVN
p0, 1q.

Moreover, if T is bounded, and if V1 ˆ ¨ ¨ ¨ ˆ VN is equipped with the l8-product metric,
then the Lipschitz constant in (d) can be chosen to be NRN´1}T }.

What matters about the Lipschitz constant above is not its exact formula, but
the implication it carries: namely, that any family pTαq in LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q

satisfying supα }Tα} ă `8, when restricted to a bounded subset of V1 ˆ ¨ ¨ ¨ ˆ VN ,
admits a uniform Lipschitz constant.

Proof. Clearly (a)ñ(b).
(b)ñ(c): Assume (b). Then 0 ˆ ¨ ¨ ¨ ˆ 0 is an interior point of T´1pBW p0, 1qq,

and hence contains BV1p0, 2δ1q ˆ ¨ ¨ ¨ ˆ BVN
p0, 2δNq for some δ1, . . . , δN ą 0.

So T sends BV1p0, δ1q ˆ ¨ ¨ ¨ ˆ BVN
p0, δNq (which equals δ1BV1p0, 1q ˆ ¨ ¨ ¨ ˆ

δNBVN
p0, 1q) into BW p0, 1q. By multilinearity, T sends BV1p0, 1q ˆ ¨ ¨ ¨ ˆ BVN

p0, 1q

into BW p0, δ´1
1 ¨ ¨ ¨ δ´1

N q. This proves (c).
(c)ñ(d): Assume (c). Choose vi P BVi

p0, Riq. Then, for each ξi P BVi
p0, Riq,

}T pξ1, . . . , ξNq ´ T pv1, . . . , vNq}

ď}T pξ1 ´ v1, ξ2, ξ3, . . . , ξNq} ` }T pv1, ξ2 ´ v2, ξ3, . . . , ξNq}

` }T pv1, v2, ξ3 ´ v3, . . . , ξNq} ` ¨ ¨ ¨ ` }T pv1, v2, v3, . . . , ξN ´ vNq}

ďNRN´1
}T } ¨ maxt}ξ1 ´ v1}, . . . , }ξN ´ vN}u

where (2.20) is used in the last inequality. Thus T has Lipschitz constant
NRN´1}T }.

(e)ô(d): This is clear by scaling the vectors.
(d)ñ(f): This is clear from Rem. 1.4.

Example 2.23. A linear map T : V Ñ W is called a linear isometry if it is an
isometry of metric spaces, i.e., }Tv1 ´ Tv2} “ }v1 ´ v2} for all v1, v2 P V . This is
clearly equivalent to

}Tv} “ }v} for all v P V
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A linear isometry is clearly bounded with operator norm }T } “ 1 (unless when
V “ t0u). Moreover, a linear isometry is clearly injective. A linear isometry T :
V Ñ W which is also surjective (and hence bijective) is called an isomorphism of
normed vector spaces. In that case, we say that the normed vector spaces V,W
are isomorphic.

Remark 2.24. Suppose that Φ : V Ñ W is a linear map of vector spaces, and W is
a normed vector space. Then V has a seminorm defined by

}v}V :“ }Φpvq}V

Equip V {KerΦ with the norm defined by Prop. 2.17. Then Φ descends to a linear
map rΦ : V {KerΦ Ñ W , which is clearly a linear isometry.

Example 2.25. Let 1 ď p ď `8, let X be an LCH space, let µ be a Radon measure
(or its completion) onX . Let Φ : CcpX,Fq Ñ LppX,µ,Fq be the obvious map. Then
Φ descends to a linear isometry of normed vector spaces

CcpX,Fq
L␣

f P CcpX,Fq : f “ 0 µ-a.e.
(

ÝÑ Lp
pX,µ,Fq (2.21)

Now assume p ă `8. Then by Thm. 1.60, the map (2.21) has dense range. This is
often expressed by saying that CcpX,Fq

L␣

f P CcpX,Fq : f “ 0 µ-a.e.
(

is dense in
LppX,µ,Fq, or simply that CcpX,Fq is dense in LppX,µ,Fq.

2.4 Fundamental properties of bounded multilinear maps

Let V1, V2, . . . , U, V,W be normed vector spaces. In this section, we establish
several fundamental properties of bounded multilinear maps that will be used
frequently throughout the course. We first note the elementary fact:

Remark 2.26. Let U be a linear subspace of V . Let R P Rą0. Then U is dense in V
iff BUp0, Rq is dense in BV p0, Rq.

Proof. The direction “ð" is obvious. Let us prove “ñ". Let ξ P BV p0, Rq, choose
a sequence pξnq in U converging to ξ. Assume WLOG that ξ ‰ 0 and R P Rą0;
otherwise, the approximation is obvious. Since the norm function is continuous,
}ξn} Ñ }ξ}. In particular, }ξn} is eventually nonzero. Thus }ξ}

}ξn}
ξn Ñ ξ.

Recall that two sequences pxnq, pynq in a metric space X is called Cauchy
equivalent if limn dpxn, ynq “ 0.

Theorem 2.27. Suppose that W is complete. For each i, let Ui be a dense linear subspace
of Vi. Then we have an isomorphism of normed vector spaces

LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q
»

ÝÝÑ LpU1 ˆ ¨ ¨ ¨ ˆ UN ,W q

T ÞÑ T
ˇ

ˇ

U1ˆ¨¨¨ˆUN

(2.22)
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Proof. Denote the map (2.22) by Φ which is clearly linear. By Rem. 2.26,BU1p0, 1qˆ

¨ ¨ ¨ ˆBUN
p0, 1q is dense in BU1p0, 1q ˆ ¨ ¨ ¨ ˆBUN

p0, 1q. This shows that Ψ is a linear
isometry, i.e., T and T

ˇ

ˇ

U1ˆ¨¨¨ˆUN
have the same operator norm.

We now show that Φ is surjective. Here, the completeness of W is need. Let
T P LpU1 ˆ ¨ ¨ ¨ ˆ UN ,W q. We want to extend T to a bounded multilinear map
V1 ˆ ¨ ¨ ¨ ˆ VN Ñ W . We only need to extend T on the first component, i.e., extend
T to a bounded multilinear V1ˆU2ˆU3ˆ¨ ¨ ¨ˆUN Ñ W . Then, a similar argument
applies to the second component extend T to a bounded multilinear V1 ˆ V2 ˆ

U3 ˆ ¨ ¨ ¨ ˆ UN Ñ W . By repeating this procedure, we obtain bounded multilinear
V1 ˆ ¨ ¨ ¨ ˆ VN Ñ W extending T .

Let ξ P V1, u2 P U2, . . . , uN P UN . Let pξnq be a sequence in U1 converging to
ξ. In particular, pxnq is a Cauchy sequence. By Rem. 2.21, T pξn, v2, . . . , vNq is a
Cauchy sequence in W . Therefore, by the completeness of W , T pξn, v2, . . . , vNq

converges to some element, which we denote by T pξ, v2, . . . , vNq.
Let us show that the definition of T pξ, v2, . . . , vNq is independent of the choice

of sequence converging to ξ. Suppose that pξ1
nq is another sequence converging to

ξ. Then pξnq and pξ1
nq are Cauchy equivalent. By Rem. 2.21, T pξn, v2, . . . , vNq and

T pξ1
n, v2, . . . , vNq are Cauchy equivalent. So they converge to the same element.
Thus, we have defined a map T : V1 ˆ U2 ˆ ¨ ¨ ¨ ˆ UN Ñ W . We leave it to the

reader to check that T is bounded multi-linear map.

Corollary 2.28. Let U be a dense linear subspace of V . Then we have an isomorphism of
normed vector spaces

V ˚ »
ÝÝÑ U˚ φ ÞÑ φ|U (2.23)

Proof. This follows immediate from Thm. 2.27.

Example 2.29. Let 1 ď q ă `8 and p´1 ` q´1 “ 1. Let X be an LCH space. Let µ
be a Radon measure (or its completion) on X . By Exp. 2.25, the Lq-seminorm on
CcpX,Fq descends to the Lq-norm on V “ CcpX,Fq{tf P CcpX,Fq : f “ 0 µ-a.e.u,
and V is dense in LppX,µq. Therefore, by Thm. 1.50 and Cor. 2.28, the map (1.13)
gives an isomorphism of normed vector spaces V ˚ » LppX,µq.

The following Prop. 2.30 and Thm. 1.83 will imply Thm. 2.41, which estab-
lishes the equivalence of the second and third columns of Table 2.2.

Proposition 2.30. For each i, let Ei be a densely spanning subset of Vi. Let pTαq be a net
in LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q with uniformly bounded operator norms, i.e., supα }Tα} ă

`8. Suppose that T P LpV1ˆ¨ ¨ ¨ˆVN ,W q and pTαq converges pointwise onE1ˆ¨ ¨ ¨ˆEN

to T . Then pTαq converges pointwise on V1 ˆ ¨ ¨ ¨ ˆ VN to T .

Proof. Let Ui “ SpanpEiq, which is dense in Vi. Then pTαq converges pointwise on
U1 ˆ ¨ ¨ ¨ ˆ UN to T .
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Choose any ξi P Vi. Choose R P Rą0 such that }ξi} ď R for each i. Since
supα }Tα} ă `8, by Prop. 2.22, tTα, T : α P Iu has a uniform Lipschitz constant
C P Rě0 (with respect to the l8-product metric) when restricted to BV1p0, Rq ˆ

¨ ¨ ¨ ˆ BVN
p0, Rq. By Rem. 2.26, for each ε ą 0, there exists vi P BUi

p0, Rq such that
}ξi ´ vi} ď ε. Then

lim sup
α

}T pξ1, . . . , ξNq ´ Tαpξ1, . . . , ξNq}

ď lim sup
α

}T pv1, . . . , vNq ´ Tαpv1, . . . , vNq} ` 2Cε “ 2Cε

Since ε is arbitrary, we conclude that Tαpξ1, . . . , ξNq Ñ T pξ1, . . . , ξNq.

Theorem 2.31. Suppose that W is complete. For each i, let Ei be a densely spanning
subset of Vi. Let pTαq be a net in LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q satisfying supα }Tα} ă `8.
Suppose that pTαq converges pointwise on E1 ˆ ¨ ¨ ¨ ˆEN . Then pTαq converges pointwise
on V1 ˆ ¨ ¨ ¨ ˆ VN to some T P LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q, and

}T } ď lim inf
α

}Tα} (2.24)

Inequality (2.24) is sometimes referred to as Fatou’s lemma.

Proof. Let Ui “ SpanpEiq, which is dense in Vi. Let T : U1 ˆ ¨ ¨ ¨ ˆ UN Ñ W be
the pointwise limit of pTαqαPI restricted to U1 ˆ ¨ ¨ ¨ ˆ UN , which is clearly linear.
Moreover, for each vi P BUi

p0, 1q we have

}T pv1, . . . , vNq} “ lim inf
α

}Tαpv1, . . . , vNq} ď lim inf
α

}Tα}

Taking sup over all vi P BUi
p0, 1q, we see that }T } ď supα }Tα} ă `8. In particular,

T P LpU1ˆ¨ ¨ ¨ˆUN ,W q. By Thm. 2.27, T can be extended to a bounded multilinear
map T : V1 ˆ ¨ ¨ ¨ ˆ VN Ñ W with }T } unchanged. By Prop. 2.30, this extended T
is the pointwise limit of pTαq on the whole domain V1 ˆ ¨ ¨ ¨ ˆ VN .

Remark 2.32. Recall that if X is a set, then l8pX,W q, equipped with the l8-norm,
is a normed vector space.

By the definition of operator norms, we have a linear isometry of normed vec-
tor spaces

LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q Ñ l8pBV1p0, 1q ˆ ¨ ¨ ¨ ˆ BVN
p0, 1q,W q

T ÞÑ T |BV1
p0,1qˆ¨¨¨ˆBVN

p0,1q

(2.25)

Therefore, by identifying LpV1 ˆ ¨ ¨ ¨ ˆVN ,W q with its image under (2.25), we view
LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q as a normed vector subspace of l8pBV1p0, 1q ˆ ¨ ¨ ¨ ˆ BVN

,W q.
Consequently, if pTαq is a net in LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q, and if T P LpV1 ˆ ¨ ¨ ¨ ˆ

VN ,W q, then limα }T ´ Tα} “ 0 is equivalent to that pTαq converges uniformly to
T on BV1p0, 1q ˆ ¨ ¨ ¨ ˆ BVN

p0, 1q.
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Theorem 2.33. LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q is a closed linear subspace of l8pBV1p0, 1q ˆ ¨ ¨ ¨ ˆ

BVN
p0, 1q,W q.

Proof. Let T P l8pBV1p0, 1q ˆ ¨ ¨ ¨ ˆ BVN
p0, 1q,W q be the limit of a sequence pTnq in

LpV1ˆ¨ ¨ ¨ˆVN ,W q. Then pTnq converges uniformly onBV1p0, 1qˆ¨ ¨ ¨ˆBVN
p0, 1q to

T . By scaling the vectors, we see that pTnq converges uniformly onBV1p0, Rqˆ¨ ¨ ¨ˆ

BVN
p0, Rq for any R ą 0. Let T : V1 ˆ ¨ ¨ ¨ ˆ VN Ñ W be the pointwise limit of pTnq,

which automatically extends the original T defined on BV1p0, 1q ˆ ¨ ¨ ¨ ˆBVN
p0, 1q.

Since each Tn is multilinear, clearly T is multilinear. Thus T P LpV1 ˆ ¨ ¨ ¨ ˆ

VN ,W q. This proves that LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q is a closed.

Corollary 2.34. Suppose that W is complete. Then LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q is complete.

Proof. Since W is complete, by the following Prop. 2.35, l8pBV1p0, 1q ˆ ¨ ¨ ¨ ˆ

BVN
,W q is complete. Since any closed subset of a complete space is complete,

by Thm. 2.33, LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W q is complete.

Proposition 2.35. Suppose that W is complete. Then for each 1 ď p ď `8, the normed
vector space lppX,W q is complete.

Proof. Let pfnq be a Cauchy sequence in lppX,W q. Then for each x P X , pfnpxqq is
a Cauchy sequence in W , and hence converges to some fpxq P W . This defines
f : X Ñ W .

Case p “ `8: For each ε ą 0, choose N P Z` such that for all m,n ě N we
have }fn ´ fm}l8 ď ε, i.e., }fnpxq ´ fmpxq} ď ε for every x P X . Applying limmÑ8,
we get }fnpxq ´ fpxq} ď ε for all x P X and n ě N . Thus, for all n ě N we have
}fn ´ f}l8 ď ε; in particular, we have f P l8pX,W q. Thus }fn ´ f}l8 Ñ 0.

Case p ă `8: For each ε ą 0, choose N P Z` such that for all m,n ě N
we have }fn ´ fm}lppXq ď ε, equivalently, }fn ´ fm}lppAq ď ε for each A P finp2Xq.
Applying limmÑ8, we get }fn ´ f}lppAq ď ε for all n ě N and A P finp2Xq. Thus
}fn ´ f}lppXq ď ε for all n ě N ; in particular, we have f P lppX,W q. This proves
}fn ´ f}p Ñ 0.

Corollary 2.36. The dual space V ˚, equipped with the operator norm, is complete.

Proof. This follows immediately from Cor. 2.34.

2.5 The roles of completeness and duality

Let V1, . . . , VN and V,W be normed vector spaces.

2.5.1 The role of Cauchy completeness

In functional analysis, Cauchy completeness plays two primary roles:
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1. Completeness as a domain property, where it is often used in conjunction
with the Baire category theorem.

2. Completeness as a codomain property, which ensures that linear operators
can be restricted from the whole space to a dense subspace without loss.
Thm. 2.27 and 2.31 are typical examples illustrating this usage.

Among these two, completeness as a codomain is the more widely encoun-
tered in practice. This suggests that

:::
the

:::::::::::::
recognition

:::::
and

:::::::::::::
widespread

::::::::::::::
appreciation

::
of

:::::::::::::::::::::::::
Cauchy completeness

:::
in

::::::::::
function

::::::::
spaces

::::::::::::
developed

:::::::::::
alongside

:::::
the

:::::::
study

:::
of

::::::
linear

:::::::::::
operators—that is, linear maps from V to W—rather than with linear, bi-

linear, or multilinear functionals, such as V ˆ W Ñ F. In the early days of func-
tional analysis, particularly in Hilbert’s foundational work [Hil06], the dominant
perspective was centered not on linear operators, but on bilinear forms and lin-
ear functionals. Within this (bi)linear framework, completeness is not required—
indeed, in Thm 2.27, 2.31, and Corollary 2.34, whenW “ F, none of the remaining
vector spaces involved (namely V1, . . . , VN ) are assumed to be complete.

Historically, the focus on bilinear forms gradually gave way to the linear op-
erator viewpoint. As this shift took place, Cauchy completeness came to occupy
a central role in functional analysis. The fact that the bilinear form or multilinear
functional viewpoint can be reformulated in terms of linear operators is a conse-
quence of the following elementary observation:

Proposition 2.37. Let U1, . . . , UM be normed vector spaces. Then we have an isomor-
phism of normed vector spaces

LpU1 ˆ ¨ ¨ ¨ ˆ UM ˆ V1 ˆ ¨ ¨ ¨ ˆ VN ,W q
»

ÝÝÑ LpU1 ˆ ¨ ¨ ¨ ˆ UM ,LpV1 ˆ ¨ ¨ ¨ ˆ VN ,W qq

T ÞÑ

´

pu1, . . . , uMq ÞÑ T pu1, . . . , uM ,´, . . . ,´q

¯

(2.26)

where T pu1, . . . , uM ,´, . . . ,´q denotes the multilinear map V1 ˆ¨ ¨ ¨ ˆVN Ñ W sending
pv1, . . . , vNq to T pu1, . . . , uM , v1, . . . , vNq.

Proof. It is easy to verify that the second line of (2.26) defines a linear isomorphism

Ψ :LinpU1 ˆ ¨ ¨ ¨ ˆ UM ˆ V1 ˆ ¨ ¨ ¨ ˆ VN ,W q

»
ÝÝÑ LinpU1 ˆ ¨ ¨ ¨ ˆ UM ,LinpV1 ˆ ¨ ¨ ¨ ˆ VN ,W qq

To explain the idea of comparing the operator norms, we assume for simplicity
that M “ N “ 1, and write U1 “ U and V1 “ V .

Choose any T P LinpU ˆ V,W q. Then ΨpT q : U Ñ LinpV,W q sends each u P V
to the linear map

ΨpT qpuq : v P LinpV,W q ÞÑ T pu, vq
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Thus, for each u P U and v P V , we have

}T pu, vq} “ }ΨpT qpuqpvq} ď }ΨpT qpuq} ¨ }v} ď }ΨpT q} ¨ }u} ¨ }v}

This proves }T } ď }ΨpT q}. Conversely, for each u P U ,

}ΨpT qpuq} “ sup
vPBV p0,1q

}ΨpT qpuqpvq} “ sup
vPBV p0,1q

}T pu, vq}

ď sup
vPBV p0,1q

}T } ¨ }u} ¨ }v} “ }T } ¨ }u}

This proves }ΨpT q} ď }T }.
We have proved that }ΨpT q} “ }T }. In particular, if T is bounded, then ΨpT qpuq

is bounded for each u P U , and ΨpT q is bounded. Conversely, if ΨpT qpuq is
bounded for each u, and if ΨpT q is bounded, then T is bounded. This proves
that Ψ restricts to the linear isomorphism (2.26), which is an isometry because
}ΨpT q} “ }T }.

2.5.2 The role of duality

The following two corollaries follow immediate from Prop. 2.37.

Corollary 2.38. We have an isomorphism of normed vector spaces

LpU ˆ V,Fq
»

ÝÝÑ LpU, V ˚
q T ÞÑ

`

u ÞÑ T pu,´q
˘

(2.27)

Corollary 2.39. Suppose that V is the dual space of another normed vector space V˚.
Then we have an isomorphism of normed vector spaces

LpV ˆ V˚,Fq
»

ÝÝÑ LpV q T ÞÑ
`

v ÞÑ T pv,´q
˘

(2.28)

In Sec. 2.1 and 2.2, we explored the motivation for introducing dual spaces
from the perspectives of the calculus of variations and moment problems. Cor.
2.39 now offers yet another compelling reason for the study of duality: when
a space V possesses a dual structure—specifically,

::::::
when

:::
V

:::
is

::::
the

:::::
dual

:::
of

:::::::
some

::::::::
normed

:::::::
space

:::::::
V˚—it

:::::::
allows

:::
us

:::
to

:::::::::::
approach

::::::::::
problems

::::::
from

:::::
both

::::
the

:::::::::
bilinear

::::::
form

::::
and

:::::::
linear

:::::::::
operator

::::::::::::::
perspectives.

What are the respective advantages of these two viewpoints? To address this,
I would like to revisit the arguments presented in [Gui-A], particularly in the
Introduction and in Ch. 21 and 25 of [Gui-A]:

1. The bilinear form framework allows us to draw upon the full strength of
measure theory. In fact, measure theory can be understood as a method of
monotone convergence extension—a procedure for extending linear func-
tionals in such a way that the monotone convergence theorem (or its vari-
ants) holds. This type of extension aligns naturally with the structure of
bilinear forms.
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2. The space LpV q of bounded linear operators on V is not just a vector space
but also an algebra, with multiplication given by composition. This alge-
braic structure enables the use of symbolic calculus, a technique developed
in the mid-19th century in the study of linear algebras, and it connects di-
rectly to the representation-theoretic perspectives that flourished in the 20th
century.

As discussed in [Gui-A, Sec. 25.8, 25.9], and as we will also explore in Ch.
4, Riesz’s spectral theorem provides a striking example of how these two advan-
tages can be fruitfully combined.

2.6 Dual spaces and the weak-* topology

Let V1, V2, . . . , U, V,W be normed F-vector spaces.

Definition 2.40. By viewing V ˚ as a subset of CV , the subspace topology on V ˚

inherited from the product topology of CV is called the weak-* topology on V ˚.
By Thm. 1.8, this is the unique topology such that for any net pφαq in V ˚ and any
φ P V , the net pφαq converges weak-* to φ—that is, converges to φ in the weak-*
topology—iff

lim
α

xφα, vy “ xφ, vy for any v P V (2.29)

Since CV is Hausdorff, the weak-* topology is also Hausdorff.

Weak-* topology is mainly considered for closed balls of V ˚, rather than the
whole dual space V ˚, because for such subsets, pointwise convergence of mo-
ments is equivalent to weak-* convergence—that is, the second and third columns
of Table 2.2 are equivalent. This equivalence is formally stated in the following
theorem.

Theorem 2.41. Suppose thatE is a densely spanning subset of V . Let pφαq be a net in V ˚

satisfying supα }φα} ă `8. Then pφαq converges weak-* in V ˚ iff the limit limαxφα, vy

exists for any v P E.
Moreover, if φ P V ˚ satisfies that

lim
α

xφα, vy “ xφ, vy for any v P E

then pφαq converges weak-* to φ.

Proof. This is clear from Prop. 2.30 and Thm. 2.31.

Remark 2.42. Let U be a dense linear subspace of V . (For example, take V “

C0pX,Fq and U “ CcpX,Fq.) Recall the canonical isomorphism V ˚ » U˚ given in
Cor. 2.28. Then by Prop. 2.41, for each R P Rě0, the weak-* topology on BV ˚p0, Rq

agrees with the weak-* topology on BU˚p0, Rq. However, the weak-* topology on
V ˚ is in general not equal to the weak-* topology on U˚.
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In Prop. 2.41, one might further ask whether a net pφαq in BV ˚p0, Rq that con-
verges weak-* has its limit also in BV ˚p0, Rq. The answer is yes:

Proposition 2.43 (Fatou’s lemma for weak-* convergence). Let pφαq be a net in V ˚

converging weak-* to some φ P V ˚. Then

}φ} ď lim inf
α

}φα} (2.30)

In other words, the norm function } ¨ } : V ˚ Ñ Rě0 is lower semicontinuous with respect
to the weak-* topology on V ˚.

In contrast, if pφαq converges in the operator norm to φ, then }φ} “ limα }φα}.
Cf. Rem. 2.16.

Proof. For each v P BV p0, 1q, we have

|xφ, vy| “ lim
α

|xφα, vy| “ lim inf
α

|xφα, vy| ď lim inf
α

}φα} ¨ }v} “ }φα}

Applying supvPBV p0,1q to the LHS above yields (2.30). (See also Thm. 2.31.)

Theorem 2.44 (Banach-Alaoglu theorem). BV ˚p0, 1q is weak-* compact—that is,
it is compact in the weak-* topology.

Thus, BV ˚p0, 1q is a compact Hausdorff space.

First proof. Let pφαq be a net BV ˚p0, 1q. Since |xφα, vy| ď }v} for each v P V , we
can view pφαq as a net in

S “
ź

vPV

BFp0, }v}q

By Tychonoff’s Thm. 1.11, S is compact. Therefore, pφαq has a subnet pφαµq con-
verging pointwise on V to some function φ : V Ñ F. The function φ is clearly
linear and satisfies }φ} ď supµ }φαµ} ď 1, cf. Thm. 2.31. Thus pφαµq converges
weak-* to φ P BV ˚p0, 1q. This finishes the proof that BV ˚p0, 1q is compact.

The above proof relies on Tychonoff’s theorem, which in turn relies on Zorn’s
lemma. When V is separable, one can prove the Banach-Alaoglu theorem without
using Zorn’s lemma:

Second proof assuming that V is separable. Let E be a countable dense subset of
V . Then

Φ : BV ˚p0, 1q Ñ FE φ ÞÑ φ|E

is injective. Moreover, if pφαq is a net in BV ˚p0, 1q and φ P BV ˚p0, 1q, then Prop.
2.30 indicates that pφαq converges weak-* to φ iff pφαq converges pointwise on E
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to φ. Therefore, Φ restricts to a homeomorphism from BV ˚p0,1q to its image. Thus,
since FE is metrizable (cf. Prop. 1.10), so is any subset—in particular, BV ˚p0, 1q.

Therefore, showing that BV ˚p0, 1q is compact is equivalent to showing that it
is sequentially compact. Let pφnq be a sequence in BV ˚p0, 1q. By the diagonal
method (cf. Rem. 1.12), pφnq has a subsequence pφnk

q converging pointwise on E.
Thm. 2.31 now implies that pφnk

q converges weak-* to some φ P BV ˚p0, 1q.

The above proof shows that if V is separable, then BV ˚p0, 1q is metrizable and
therefore sequentially compact under the weak-* topology. The converse is also
true:

Theorem 2.45. The following statements are equivalent.

(a) The normed vector space V is separable.

(b) When equipped with the weak-* topology, the compact Hausdorff space BV ˚p0, 1q

is metrizable.

Proof. (a)ñ(b) has been proved above. Here, we give a more direct argument
of the equivalence (a)ñ(b). By the following Lem. 2.46, V can be viewed as a
subset of CpX,Fq where X “ BV ˚p0, 1q is compact by Banach-Alaoglu. Clearly
V separates the points of X . Therefore, if V is separable, then X is metrizable by
(c)ñ(a) of Thm. 1.38. Conversely, if X is metrizable, then CpX,Fq is separable the
(a)ñ(d) of Thm. 1.38. Therefore, the subset V of CpX,Fq is also separable.

Lemma 2.46. For each φ P V , the function

BV ˚p0, 1q Ñ F φ ÞÑ xφ, vy

is continuous with respect to the weak-* topology.

Proof. This is clear by (2.29).

Remark 2.47. When V is separable, a metric d generating the weak-* topology of
BV ˚p0, 1q can be explicitly given: Let pvnqnPZ`

be a dense sequence in V . Replacing
vn with vn{}vn} if vn ‰ 0, we assume that }vn} ď 1. Then, by (1.10), the metric d
can be chosen to be

dpφ1, φ2q “
ÿ

nPZ`

2´n
|φ1pvnq ´ φ2pvnq| for each φ1, φ2 P BV ˚p0, 1q (2.31)

2.7 Weak-* convergence in Lp-spaces

Let pX,M, µq be a σ-finite measure space.9 Let I Ă R be a closed proper inter-
val. Let 1 ă p ď `8 and p´1 ` q´1 “ 1.

9The condition on σ-finiteness can be removed at least when p “ 2. See the paragraph after
Thm. 1.50.
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We identify LppX,µ,Fq with the dual space LqpX,µ,Fq˚ via the isomorphism
described in Thm. 1.50. This defines the weak-* topology on LppX,µ,FqLppX,µ,FqLppX,µ,Fq . In
particular, a net pfαq in LppX,µ,Fq converges weak-* to f P LppX,µ,Fq iff

lim
α

ż

X

fαgdµ “

ż

X

fgdµ for all g P Lq
pX,µ,Fq

2.7.1 Pointwise convergence and weak-* convergence

Let us prove Thm. 1.54 in a slightly more general setting. Note that a finite
Borel measure µ on an interval I Ă R can be extended by zero to a finite Borel
measure on R, which is Radon by Thm. 1.58. Therefore, to generalize Thm. 1.54,
it suffices to consider finite Borel (equivalently, finite Radon) measures on R.

Theorem 2.48. Let µ be a finite Borel measure on R. Let pfαq be a net in LppR, µ,Fq sat-
isfying supα }fα}Lp ă `8. Then pfαq converges weak-* to some element f P LppR, µ,Fq

iff the following limit exists for every x P R:

F pxq :“ lim
α

ż

p´8,xs

fαdµ (2.32)

When pfαq converges weak-* to f P LppR, µ,Fq, for each x P R we have

F pxq “

ż

p´8,xs

fdµ (2.33)

Note that since µ is finite, the constant function 1 belongs to Lq. Therefore, by
Hölder’s inequality, any function in LppR, µ,Fq is integrable.

Proof. First, assume that pfαq converges weak-* to f in LppR, µ,Fq. Then for each
x P R, we have limα

ş

fαχp´8,xsdµ “
ş

fχp´8,xsdµ. This proves that (2.32) exists and
(2.33) holds.

Next, we assume that (2.32) exists for every x. In the following, we give two
proofs of the weak-* convergence of pfαq.

First proof. Let φα P LqpR, µ,Fq˚ be the linear functional associated to fα, i.e.,
xφα, gy “

ş

fαgdµ for each g P Lq. By assumption, φα converges when evaluated
with any member of

E “ SpanFtχp´8,xs : x P Ru

By Thm. 1.62, E is dense in Lq. Therefore, since

sup
α

}φα} “ sup
α

}fα}p ă `8
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by Thm. 2.41, pφαq converges weak-* to some φ P pLqq˚. By Thm. 1.50, φ is
represented by some f P LppR, µ,Fq. Thus pfαq converges weak-* to f .

Second proof. In this proof, we use the fact that any bounded closed ball of
LppR, µ,Fq is weak-* compact, which is due to Thm. 1.50 and the Banach-Alaoglu
theorem.

Since supα }fα}p ă `8, the net pfαq has a subnet pfαν q converging weak-* to
some f P Lp. By the first paragraph, for each x P R we have

lim
ν

ż

p´8,xs

fανdµ “

ż

p´8,xs

fdµ

Since (2.32) converges, we conclude

lim
α

ż

p´8,xs

fαdµ “

ż

p´8,xs

fdµ

That is, if we let φα P pLqq˚ represent fα and let φ P pLqq˚ represent f , then pφαq

converges to φ when evaluated on E . By Thm. 1.62, E is dense in Lq. Therefore,
by Thm. 2.41, pφαq converges weak-* to φ. That is, pfαq converges weak-* to f .

We now present another connection between pointwise convergence and
weak-* convergence.

Theorem 2.49. Let pfnq be a sequence in LppX,µ,Fq satisfying supn }fn}p ă `8. Sup-
pose that pfnq converges pointwise to f . Then f P LppX,µ,Fq, and pfnq converges weak-*
to f .

Proof. By Fatou’s lemma, we have f P Lp, since
ż

|f |
p

ď lim inf
n

ż

|fn|
p

ă `8

Thm. 2.48 suggests that when X “ R and µ is a finite Borel measure, to prove
that pfnq converges weak-* to f , it suffices to verify that limn

ş

p´8,xs
fn “

ş

p´8,xs
f

for each x P R. Motivated by this, we claim that in the general case, it suffices to
prove

lim
n

ż

E

fndµ “

ż

E

fdµ (2.34)

for each E P M satisfying µpEq ă `8. (Note that any Lp function is integrable
in E by Hölder’s inequality.) Indeed, suppose (2.34) is true. Then, by the density
of integrable simple functions in Lp (Thm. 1.47), and by Thm. 2.41, the sequence
pfnq converges weak-* to f .
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Let us prove (2.34). For each λ ě 0, let αλ : Rě0 Ñ r0, 1s be the (continuous)
piecewise linear increasing function such that αλ|r0,λs “ 0 and αλ|rλ`1,`8q “ 1. Let
βλ “ 1 ´ αλ. Since 0 ď αλ ď χrλ,`8q, we have

λp´1αλ ď λp´1χrλ,`8q ď xp´1

where x denotes the identity function id : Rě0 Ñ Rě0. Hence λp´1xαλ ď xp, which
implies λp´1|fn|pαλ ˝ |fn|q ď |fn|p. Let C :“ supn

ş

E
|fn|p. Then

λp´1 sup
n

ż

E

|fn| ¨ pαλ ˝ |fn|q ď sup
n

ż

E

|fn|
p

“ C ă `8

Therefore, pfnq is uniformly integrable on E, which means that for each ε ą 0 we
have

sup
n

ż

E

|fn| ¨ pαλ ˝ |fn|q ď ε for sufficiently large λ

Since |f | ¨ pαλ ˝ |f |q decreases to 0 as λ Ñ `8, and since
ş

E
|f | ă `8 (due to

Hölder’s inequality), by DCT or MCT,
ż

E

|f | ¨ pαλ ˝ |f |q ď ε for sufficiently large λ

On the other hand, since 0 ď xβλ ď λ ` 1, and since limn βλ ˝ |fn| converges
pointwise to βλ ˝ |f | (due to the continuity of βλ), by DCT we have

lim
n

ż

E

fn ¨ pβλ ˝ |fn|q “

ż

E

f ¨ pβλ ˝ |f |q

Therefore, since αλ ` βλ “ 1,

lim sup
n

ˇ

ˇ

ˇ

ż

E

fn ´

ż

E

f
ˇ

ˇ

ˇ
ď lim sup

n

ˇ

ˇ

ˇ

ż

E

fn ¨ pβλ ˝ |fn|q ´

ż

E

f ¨ pβλ ˝ |f |q

ˇ

ˇ

ˇ

` lim sup
n

ż

E

|fn| ¨ pαλ ˝ |fn|q `

ż

E

|f | ¨ pαλ ˝ |f |q

where the RHS is ď 2ε for sufficiently large λ.

2.7.2 Weak-* approximation by elementary functions

LetX be an LCH space, and let µ be a Radon measure (or its completion) onX
with σ-algebra M. We assume that µ is σ-finite. This condition holds, for example,
when X is σ-compact (in particular, when X is second countable; cf. Rem. 1.25.)

In this subsection, we examine Principle 2.11 in the context of Lp-spaces. We
begin with the following observation:
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Remark 2.50. Let V be a normed vector space, and let U be a linear subspace of
V ˚. Let R P Rą0. By Rem. 2.26, U is norm-dense in V ˚ iff BUp0, Rq is norm-dense
in BV ˚p0, Rq.

It is clear from linearity that if BUp0, Rq is weak-* dense in BV ˚p0, Rq, then U
is weak-* dense in V ˚. However, the weak-* density of U in V ˚ does not imply
the weak-* density of BUp0, Rq in BV ˚p0, Rq. Therefore, when studying weak-*
approximation in V ˚, we aim—when possible—to approximate any φ P V ˚ by a
net pφαq in U such that }φα} ď }φ}. This ensures not only convergence but also
control of norms.

Theorem 2.51. The closed unit ball of CcpX,Fq is weak-* dense in the closed unit
ball of LppX,µ,Fq. More precisely, the obvious map CcpX,Fq Ñ LppX,µ,Fq sends
BCcpX,Fqp0, 1q to a weak-* dense subset of BLppX,µ,Fqp0, 1q.

Proof. By Thm. 1.60, if p ă `8, thenBCcpX,Fqp0, 1q is norm-dense inBLppX,µ,Fqp0, 1q,
and hence also weak-* dense.

Now, we assume p “ `8. let I be the directed set

I “ tpG, εq : G P finp2CcpX,Fq
q, ε P Rě0u

pG1, ε1q ď pG2, ε2q means G1 Ă G2, ε1 ě ε2

Fix any f P BL8pX,µ,Fqp0, 1q. By adding a µ-a.e. zero function to f , we assume
that }f}l8pXq “ }f}L8pX,µ,Fq ď 1. We claim that for any pG, εq P I , there exists
fG,ε P BCcpX,Fqp0, 1q such that

ˇ

ˇ

ˇ

ż

X

pf ´ fG,εqgdµ
ˇ

ˇ

ˇ
ď ε for all g P G

If this is true, then pfG,εqpG,εqPI converges to f when integrated against any element
of CcpX,Fq. Since CcpX,Fq is dense in L1pX,µ,Fq (Thm. 1.60), it follows from
Thm. 2.41 that pfG,εqpG,εqPI converges weak-* to f , finishing the proof.

Let us prove the claim. We write G “ tg1, . . . , gnu. Let Ai “ Supppgiq and A “

A1Y¨ ¨ ¨YAn. SinceA is compact, we have µpAq ă `8. LetM “ }g1}8`¨ ¨ ¨`}gn}8.
By Lusin’s Thm. 1.59 and the Tietze extension Thm. 1.22, there exist a compact
set K Ă A and a function fG,ε P CcpX,Fq satisfying

fG,ε|K “ f |K }fG,ε}l8 “ }f}l8 µpAzKq ď ε{2M

Recall that }f}l8 ď 1. Thus, for each 1 ď i ď n, we have
ˇ

ˇ

ˇ

ż

X

pf ´ fG,εqgi

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

AzK

pf ´ fG,εqgi

ˇ

ˇ

ˇ
ď M

ż

AzK

p|f | ` |fG,ε|q

ď2M ¨ µpAzKq ď ε
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Corollary 2.52. Let µ be a finite Borel measure on S1. Let U “ SpanCten : n P Zu where
en : z P S1 ÞÑ zn P C. Then for each f P LppS1, µq, there exists a sequence pfnq in U
converging weak-* to f and satisfying supn }f}Lp ď }f}Lp .

Proof. By Thm. 1.63, the normed vector space V “ LqpS1, µq is separable. There-
fore, by Thm. 2.45, the weak-* topology of BLqpS1,µqp0, 1q is metrizable. There-
fore, to prove the corollary, it suffices to show that BUp0, 1q is weak-* dense in
BLqpS1,µqp0, 1q.

By Thm. 2.51, BCpS1qp0, 1q is weak-* dense in BLqpS1,µqp0, 1q. By the Stone-
Weierstrass Thm. 1.37, U is l8-dense (and hence Lp-dense) in CpS1q. Thus,
BUp0, 1q is Lp-norm-dense (and hence weak-* dense) in BCpS1qp0, 1q. This finishes
the proof.

2.8 Weak-* convergence in lp-spaces

Let X be a set, and let 1 ď p ď `8 and p´1 ` q´1 “ 1. In this section, we
prove the equivalence of the first two columns of Table 2.2 for V “ LqpX,Fq, cf.
Thm. 2.57. The most important case is when X is countable and p “ q “ 2. For
example, l2pZnq corresponds to the space of Fourier coefficients of L2-functions on
Tn :“ pS1qn.

2.8.1 The linear isometry lppX,Fq Ñ lqpX,Fq˚

Proposition 2.53. Assume that 1 ď p ă `8. Then CcpX,Fq is dense in lppX,Fq, where

CcpX,Fq :“ tf P FX : Supppfq is a finite setu (2.35)

The notation of CcpX,Fq in (2.35) is compatible with our usual notation for
LCH spaces if X is equipped with the discrete topology TX “ 2X .

Proof. Choose f P lppX,Fq. Then, since

lim
APfinp2Xq

ÿ

A

|f |
p

“
ÿ

X

|f |
p

we have

lim
APfinp2Xq

}f ´ fχA}
p
lp “ lim

APfinp2Xq

ÿ

XzA

|f | “
ÿ

X

|f |
p

´ lim
APfinp2Xq

ÿ

A

|f |
p

“ 0

Thus, pfχAqAPfinp2Xq is a net in CcpX,Fq converging to f .

Remark 2.54. We have a linear map

Ψ : lppX,Fq Ñ lqpX,Fq
˚

f ÞÑ

´

g P lqpX,Fq ÞÑ
ÿ

xPX

fpxqgpxq

¯

(2.36)
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Indeed, by Hölder’s inequality, for each A P finp2Xq,
ˇ

ˇ

ˇ

ÿ

A

fg
ˇ

ˇ

ˇ
ď
ÿ

A

|fg| ď }f}lppAq ¨ }g}lqpXq ď }f}lppXq ¨ }g}lqpXq

Applying limA, we see that
ř

X fg is absolutely convergence (i.e.
ř

X |fg| ă `8),
and

ˇ

ˇ

ˇ

ÿ

X

fg
ˇ

ˇ

ˇ
ď
ÿ

X

|fg| ď }f}lppXq ¨ }g}lqpXq

This justifies the claim that Ψ has range in lqpX,Fq˚ (rather than just in
LinplqpX,Fq,Fq), and that }Ψ} ď 1.

Proposition 2.55. The map Ψ in (2.36) is a linear isometry.

Proof. We already know }Ψ} ď 1, and we want to show }Ψ} “ 1.
Case p ă `8: By Prop. 2.53 and Thm. 2.27, we have }Ψ} “ }Ψ|CcpX,Fq}.

Therefore, it suffices to show that }Ψpfq} “ }f} for each f P CcpX,Fq. We assume
WLOG that f ‰ 0. Then

xΨpfq, gy “ }f}lp ¨ }g}lq

if we write f “ u|f | (where u : X Ñ S1) and let g “ u ¨ |f |p´1. Since }Ψpfq} ¨

}g}lq ě |xΨpfq, gy| and }g}lq ą 0, we conclude that }Ψpfq} ě }f}lp , and hence
}Ψpfq} “ }f}lp .

Case p “ `8: For each 0 ď λ ă 1, let x P X such that |fpxq| ě λ}f}l8 . Take
g “ χtxu. Then

xΨpfq, gy “ λ}f}lp ¨ }g}lq

and hence }Ψpfq} ě λ}f}lp . Since λ is arbitrary, we conclude }Ψpfq} “ }f}lp .

2.8.2 Weak-* convergence in lppX,Fq

Definition 2.56. Assume that 1 ă p ď `8. The weak-* topology on lppX,FqlppX,FqlppX,Fq is
defined to be the pullback topology via the (injective) map Φ : lppX,Fq Ñ lqpX,Fq˚

of the weak-* topology of lqpX,Fq˚. In other words, a net pfαq in lppX,Fq converges
weak-* to f P lppX,Fq iff for each g P lqpX,Fq we have

lim
α

ÿ

X

fαg “
ÿ

X

fg (2.37)

Theorem 2.57. Assume 1 ă p ď `8. Let pfαq be a net in LppX,Fq satisfying
supα }fα}lp ă `8. Then pfαq converges weak-* to some f P lppX,Fq iff limα fαpxq

converges for each x P X .
Moreover, if pfαq converges weak-* to f , then fpxq “ limα fαpxq for each x P X .
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Consequently, if p ą 1 and pfαq is a uniformly lp-bounded net in LppX,Fq

converging pointwise to f : X Ñ F, then f P lppX,Fq. (Indeed, by Thm. 2.57,
pfαq converges weak-* to some rf P lppX,Fq, and rf is the pointwise limit of pfαq.
Therefore f “ rf belongs to lppX,Fq.)

However, as we will see below, this conclusion must in fact be established first
in order to complete the proof of Thm. 2.57

Proof. First, assume that pfαq converges weak-* to f P lppX,Fq. Applying (2.37) to
g “ χtxu (for each x P X), we see that pfαq converges pointwise to f .

Conversely, assume that pfαq converges pointwise on X . Let f P FX be the
pointwise limit of pfαq. Recall that C “ supα }fα}lp is finite. We claim that f P

lppX,Fq. Indeed, if p “ `8, then for each x P X , we have

|fpxq| “ lim
α

|fαpxq| ď sup
α

}fα}l8 ă `8

If p ă `8, then for each A P finp2Xq,
ÿ

A

|f |
p

“ lim
α

ÿ

A

|fα|
p

ď sup
α

}fα}
p
lp ď Cp

Applying limA, we see that
ř

X |f |p ď Cp, and hence f P lppX,Fq.
Let Ψ be as in (2.36). By Prop. 2.53, CcpX,Fq is dense in LqpX,Fq. Therefore, to

show that pfαq converges weak-* to f , by Thm. 2.41 and the observation that

sup
α

}Ψpfαq} “ sup
α

}fα}lp ă `8

it suffices to show that xΨpfαq, gy converges to xΨpfq, gy (that is,
ř

fαg converges
to

ř

fg) for each g P CcpX,Fq. But this follows from the fact that pfαq converges
pointwise to f .

As an application of Thm. 2.57, we prove a variant of Prop. 2.53.

Proposition 2.58. Let 1 ă p ď `8. Then BCcpX,Fqp0, 1q is weak-* dense in Bl8pX,Fq.

Proof. Let f P Bl8pX,Fq. Then pfχAqAPfinp2Xq is a net in BCcpX,Fqp0, 1q converging
pointwise to f . By Thm. 2.57, this net converges weak-* to f .

2.8.3 The isomorphism lppX,Fq » lqpX,Fq˚

Now that the equivalence of the first two columns of Table 2.2 for V “ LqpX,Fq

has been established in Thm. 2.57 for p ą 1, we can prove the isomorphism
lppX,Fq » lqpX,Fq˚ by following the strategy outlined in Rem. 2.12.

Of course, at least when X is countable, this isomorphism is a special case of
the duality LppX,µ,Fq » LqpX,µ,Fq˚ from Thm. 1.50, by taking µ : 2X Ñ r0,`8s
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to be the counting measure. However, there are good reasons to study the proof
of lqpX,Fq˚ » lppX,Fq independently.

First, the proof of Thm. 1.50 is significantly more involved than the direct
proof in the lp setting. Whenever a result admits a simpler proof in a special case,
it is worthwhile to examine that proof directly. Second, Thm. 1.50 depends cru-
cially on the Radon–Nikodym Thm. 1.46, which in turn can be derived from the
Riesz-Fréchet Theorem. The latter can be proved with the help of the isomor-
phism l2pX,Fq » l2pX,Fq. Third, since the proof below follows the idea in Rem.
2.12, it also serves as another concrete illustration of Table 2.3.

Theorem 2.59. Assume that 1 ă p ď `8. Then the map Ψ : lppX,Fq Ñ lqpX,Fq˚ is
an isomorphism of normed vector spaces.

Proof. By Prop. 2.55, it remains to show that Ψ is surjective. Choose φ P lqpX,Fq˚.
We want to find f P lppX,Fq such that Ψpfq “ φ.

Step 1. In this step, we verify Principle 2.11, which says in the current setting
that φ can be weak-* approximated by a uniformly bounded net in CcpX,Fq.

For each A P finp2Xq, let ΨA : lppA,Fq Ñ lqpA,Fq˚ be defined as in (2.36), which
is a linear isometry by Prop. 2.55. Moreover, since lppA,Fq and lqpA,Fq˚ both
have dimension |A|, ΨA is an isomorphism. Therefore, there exists fA P CcpX,Fq,
supported in A, such that

ΨApfAq “ φ|lqpA,Fq

This relation clearly shows that

lim
APfinp2Xq

xΨpfAq, gy “ xφ, gy

for each g of the form χtxu where x P X , and hence for each g P CcpX,Fq. More-
over, the net pΨpfAqqAPfinp2Xq is uniformly bounded, since

}ΨpfAq}lp “ }φ|lqpA,Fq} ď }φ}

Therefore, since CcpX,Fq is dense in lqpX,Fq (cf. Prop. 2.53), by Thm. 2.41, the net
pΨpfAqqAPfinp2Xq converges weak-* to φ. In other words, pfAqAPfinp2Xq is a uniformly
lp-bounded net in CcpX,Fq converging weak-* to φ.

Step 2. For each x P X , the limit

lim
APfinp2Xq

fApxq “ lim
APfinp2Xq

ÿ

X

fAχtxu

converges by the weak-* convergence of pfAqAPfinp2Xq. Therefore, since pfAqAPfinp2Xq

is a uniformly bounded, by Thm. 2.57, the net pfAqAPfinp2Xq converge weak-* to
some f P lppX,Fq. Thus φ “ Ψpfq.
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2.9 Weak-* convergence of distribution functions

In this section, we fix a proper interval I Ă R, and let a “ inf I, b “ sup I . We
use freely the notation in Subsec. 1.6.1. In particular, for each function ρ on I , we
let

Ωρ “ tx P pa, bq : ρ|pa,bq is continuous at xu

A family of functions pραq from I to R is called uniformly bounded if
supα }ρα}l8pI,Rq ă `8.

The goal of this section is to prove Thm. 2.10, which characterizes the rela-
tionship between pointwise convergence and weak-* convergence for increasing
functions. To this end, we begin with several preparatory results concerning the
pointwise convergence of such functions.

2.9.1 Almost convergence of increasing functions

Lemma 2.60. Let pραq be a uniformly bounded net of increasing functions I Ñ Rě0.
Suppose that pραq converges pointwise on a dense subset E Ă I . Then there exists a
bounded increasing function ρ : I Ñ Rě0 such that pραq converges pointwise on E to ρ.

Proof. Let ρ : E Ñ Rě0 be the pointwise limit of pραq, which is clearly bounded
and increasing. Extend ρ to a function ρ : Iăb Y pE X tbuq Ñ Rě0 by setting

ρpxq “ lim
EQyÑx`

ρpyq

if x P IzE. Extend ρ further to ρ : I Ñ Rě0 by setting ρpbq “ limxÑb´ ρpxq if b P IzE.
Then ρ is bounded and increasing, and pραq converges pointwise to ρ on E.

Proposition 2.61. Let pραq be a uniformly bounded net of increasing functions I Ñ Rě0.
Let ρ : I Ñ Rě0 be increasing. Then the following are equivalent:

(a) There exists a dense subset E Ă I such that pραq converges pointwise on E to ρ.

(b) The net pραq converges pointwise on Ωρ to ρ.

If either of these two statements are true, we say that pραq almost converges to ρ.

Proof. Since Ωρ is dense (Prop. 1.68), clearly (b) implies (a).
Now assume (a). Choose any x P Ωρ. We will show that every convergent

subnet pραν pxqq of pραpxqq converges to ρpxq. This will immediately imply (b).
By Lem. 2.60, there exists an increasing function rρ : I Ñ Rě0 such that pραν q

converges onEYtxu to rρ. Since pραν q converges pointwise onE to ρ, the functions
ρ and rρ agree on E. Namely, ρ and rρ are almost equal. Therefore, by Prop. 1.70, ρ
and rρ agree on Ωρ, and in particular at x. This proves limν ραν pxq “ ρpxq.
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The following theorem can be viewed as a concrete manifestation of the
Banach-Alaoglu Thm. 2.44 in the setting of CcpIq˚. It will be used in the proof
of Thm. 2.64.

Theorem 2.62 (Helly selection theorem). Let pραq be a uniformly bounded net (resp.
sequence) of increasing functions I Ñ Rě0. Then pραq admits a pointwise convergent
subnet (resp. subsequence).

Proof. The existence of a pointwise convergent subnet follows directly from the
Tychonoff Thm. 1.11. Therefore, let us assume that pραq is a sequence pρnq. Let
E “ I X Q. Then, by the diagonal method (cf. Rem. 1.12), pρnq has a subsequence
pρnk

q converging pointwise on E. By Lem. 2.60, there exists a bounded increasing
ρ : I Ñ Rě0 such that pρnk

q converges pointwise on E to ρ. Therefore, by Prop.
2.61, pρnk

q converges pointwise on Ωρ to ρ. Since IzΩρ is countable, by the diagonal
method again, pρnk

q has a subsequence converging pointwise on IzΩρ, and hence
on I .

2.9.2 Almost convergence and weak-* convergence

Definition 2.63. Let pραq be a net in BV pI,Fq. Let ρ P BV pI,Fq. Let Λα and Λ
be the elements of CcpI,Fq˚ corresponding to ρα and ρ, respectively, via the Riesz
representation Thm. 1.88. We say that the net pdραq converges weak-* to dρ if pΛαq

converges weak-* to Λ. Namely, for each f P CcpI,Fq, we have

lim
α

ż

I

fdρα “

ż

I

fdρ (2.38)

The following Thm. 2.64 is parallel to Thm. 2.48. However, unlike Thm. 2.48
whose proof relies on the isomorphism Lp » pLqq˚, Thm. 2.64 does not rely on the
Riesz representation theorem.

Theorem 2.64. Let pραqαPA be a uniformly bounded net of bounded increasing functions
I Ñ Rě0. Let ρ : I Ñ Rě0 be bounded and increasing. Then the following are equivalent:

(a) There exists a bounded family pκαqαPA in R (assumed to be zero if a P I) satisfying
the following conditions:

• pρα ` καq almost converges to ρ.

• limαpραpbq ` καq “ ρpbq if b P I .

(b) The net pdραq converges weak-* to dρ.

The boundedness of pκαqαPA means that supα |κα| ă `8.
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Proof. (a)ñ(b): Assume (a). We verify (2.38) for each f P CcpI,Fq, which estab-
lished (b). Recall from Rem. 1.84 that if a R I , adding constants to ρα and ρ does
not affect the values of

ş

I
fdρα and

ş

I
fdρ.

Since pραq is uniformly bounded pκαq is bounded, there exists c ě 0 such that
ρα ` κα ` c ě 0 for all α. Therefore, replacing ρα with ρα ` κα ` c and ρ with
ρ ` c, we assume that there exists a dense subset E Ă I such that pραq converges
pointwise on E to ρ, and that b P E if b P I .

Choose any f P CcpI,Fq. Choose u, v P R satisfying SuppIpfq Ă ru, vs Ă I , and
let J “ ru, vs. By increasing v if possible, we may assume that v P E. (When b P I ,
one simply choose v “ b.)

In the case where a P I , by Lem. 1.80, the values of
ş

J
fdρα and

ş

J
fdρ remain

unchanged if we change the values of ραpaq and ρpaq to 0. Therefore, we may
assume that ραpaq “ ρpaq “ 0 (so that a can be included to E), and we may also
choose u “ a. In the case where a R I , by the density ofE, we can slightly decrease
u so that u P E. To summarize, whether a or b belongs to I or not, we can assume

u, v P E

Since f is uniformly continuous, for each ε ą 0 there exists δ ą 0 such that
|fpxq ´ fpyq| ď ε for each x, y P I satisfying |x´ y| ď δ. Choose a tagged partition

pσ, ξ‚q “
`

ta0 “ u ă a1 ă ¨ ¨ ¨ ă an “ vu, pξ1, . . . , ξnq
˘

of J with mesh ă δ. Since E is dense, by a slight adjustment, we may assume that
a0, a1, . . . , an P E. This implies

lim
α
fpuqραpuq “ fpuqρpuq lim

α
Sραpf, σ, ξ‚q “ Sρpf, σ, ξ‚q

Therefore, if we let C “ suptραpvq ´ ραpuq, ρpvq ´ ρpuq : α P A u, then Rem. 1.75
implies

lim sup
α

ˇ

ˇ

ˇ

ż

J

fdρα ´

ż

J

fdρ
ˇ

ˇ

ˇ
ď 2ε ¨ C

This finishes the proof of (2.38).

(b)ñ(a): Assume (b). We first consider the case where a R I . Fix t P Ωρ, and let

κα “ ρptq ´ ραptq

Then pκαq is bounded. Therefore, pρα`καq is uniformly bounded, and hence there
exists c ě 0 such that ρα `κα ` c ě 0 for all α. Replacing ρα with ρα ` c and ρ with
ρ ` c, we assume that ρα ` κα ě 0 for all α. (Of course, we still have ρ ě 0.)

Choose any x P Ωρ. To show that pραpxq ` καqα converges to ρpxq, it suffices to
show that every convergent subnet pρβpxq ` κβqβ converges to ρpxq.
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By the Helly selection Thm. 2.62, the net of functions pρβ`κβqβ has a pointwise
convergent subnet pργ`κγqγ . Let rρ : I Ñ Rě0 be the pointwise limit of this subnet,
which is clear bounded and increasing. By (a)ñ(b), the net pdpργ`κγqqγ converges
weak-* to drρ. By assumption, it also converges weak-* to dρ. Therefore, we have
ş

I
fdrρ “

ş

I
fdρ for each f P CcpIq.

By Thm. 1.83 (and noting Rem. 1.84), we have

rρ ´ lim
yÑa`

rρpyq “ ρ ´ lim
yÑa`

ρpyq on Ωρ

In other words, there exists a constant c P R such that

rρ ` c “ ρ on Ωρ (2.39)

Since ραptq ` κα “ ρptq is constant over α, and since its subnet pργptq ` κγqγ

converges to rρptq, we conclude rρptq “ ρptq. Therefore, since t P Ωρ, by (2.39), we
have c “ 0. Since x P Ωρ, by (2.39), we obtain rρpxq “ ρpxq. This proves that
pργpxq ` κγqγ converges to ρpxq, and hence pρβpxq ` κβqβ converges to ρpxq.

Now consider the case where a P I . We set κα “ 0. Similar to the above
argument, we choose any x P Ωρ, choose a subnet ρβ converging at x, and further
choose a subnet ργ converging pointwise on I to rρ : I Ñ Rě0. By (a)ñ(b), we have
ş

I
fdrρ “

ş

I
fdρ for each f P CcpIq. Consequently, Thm. 1.83 implies that rρ “ ρ on

Ωρ. Since x P Ωρ, we obtain again limβ ρβpxq “ limγ ργpxq “ rρpxq “ ρpxq. Therefore
pραpxqqα converges to ρpxq for each x P Ωρ.

Corollary 2.65. Let pραqαPA be a uniformly bounded net of increasing functions I Ñ

Rě0. Then the following are equivalent:

(1) There exists a bounded family pκαqαPA in R (assumed to be zero if a P I) such that
pρα ` καq converges pointwise on a dense subset E Ă I , and also at b if b P I .

(2) There exists a bounded increasing ρ : I Ñ Rě0 such that pdραqαPA converges
weak-* to dρ.

Proof. “(2)ñ(1)" follows immediately from Thm. 2.64. Conversely, assume (1).
By Lem. 2.60, there exists a bounded increasing ρ : I Ñ Rě0 such that pρα ` καq

converges pointwise on E Y tI X tbuu to ρ. Then Thm. 2.64 implies (2).

2.10 Weak-* approximation of Radon measures by Dirac mea-
sures

Fix an LCH space X . Recall that we have assumed throughout the notes that
F P tR,Cu. Let

RMpX,Rě0q “ tRadon measures on Xu

RMpX,Rě0q “ tfinite Radon measures on Xu

RMpX,Rq “ tsigned Radon measures on Xu

RMpX,Cq “ tcomplex Radon measures on Xu

(2.40)
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which are vectors spaces over Rě0,Rě0,R,C respectively. Note the inclusion rela-
tion

RMpX,Rě0q Ă RMpX,Rě0q RMpX,Rě0q Ă RMpX,Rq Ă RMpX,Cq

Recall that for each x P X , the Dirac measure at x is denoted by δx.
The goal of this section is to prove Principle 2.11 for V “ CcpX,Fq. In this con-

text, elementary functions are understood as linear combinations of Dirac mea-
sures. When X is an interval I Ă R, these elementary functions correspond to
bounded increasing functions I Ñ Rě0 whose ranges are finite sets.

2.10.1 Definitions and basic properties

Definition 2.66. Recall the F-linear isomorphism

RMpX,Fq » CcpX,Fq
˚

defined by the Riesz-Markov representation Thm. 1.66. The pullback of the oper-
ator norm on CcpX,Fq˚ to µ P RMpX,Fq is called the total variation of µ, and is
denoted by }µ}}µ}}µ}. In other words,

}µ} “ sup
!
ˇ

ˇ

ˇ

ż

fdµ
ˇ

ˇ

ˇ
: f P CcpX,Fq, |f | ď 1

)

A family of complex Radon measures pµαqαPA is called uniformly bounded if

sup
αPA

}µα} ă `8

The weak-* topology on CcpX,Fq˚ defines the weak-* topology on RMpX,FqRMpX,FqRMpX,Fq.
Thus, if pµαq is a uniformly bounded net in RMpX,Fq, and if µ P RMpX,Fq, then
pµαq converges weak-* to µ 10 iff for each f P CcpX,Fq we have11

lim
α

ż

X

fdµα “

ż

X

fdµ (2.41)

Example 2.67. By Thm. 1.56, if µ P RMpX,Rě0q, then

}µ} “ µpXq

Example 2.68. Let E Ă X be a finite set, and let c : E Ñ F be a function. Then
›

›

›

ÿ

xPE

cpxqδx

›

›

›
“

ÿ

xPE

|cpxq| (2.42)

10We also say that pdµαq converges weak-* to dµ.
11By Rem. 2.42, this is equivalent to that (2.41) holds for each f P C0pX,Fq.
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Proof. Let µ “
ř

xPE cpxqδx. By Exp. 2.67, we have }δx} “ 1. Since norms satisfy
the sub-additivity, we have

}µ} ď
ÿ

xPE

|cpxq| ¨ }δx} “
ÿ

xPE

|cpxq|

By Urysohn’s lemma, there exists f P CcpX,Fq such that }f}l8 ď 1, and that for
each x P E, we have |fpxq| “ 1 and fpxqcpxq “ |cpxq|. Then

ş

X
fdµ “

ř

xPE |cpxq|.
This proves }µ} ě

ř

xPE |cpxq|.

Lemma 2.69. Let µ P RMpX,Fq. Let A1, . . . , Ak be mutually disjoint Borel subsets of
X . Then

}µ} ě

k
ÿ

j“1

|µpAjq|

Proof. Since µ is a linear combination of finite Radon measures, there exists
pµ P RMpX,Rě0q such that |µpAq| ď pµpAq for each Borel A Ă X . Since Radon
measures are regular on Borel sets with finite measures (Thm. 1.57), for each
ε ą 0 there exists compact Kj Ă Aj such that pµpAjzKjq ď ε.

By Cor. 1.18, there exist mutually disjoint open subsets U1, . . . , Un Ă X such
that Uj Ą Kj . Since pµ is regular on Kj , we may assume that pµpUjzKjq ă ε. By
Urysohn’s lemma, there exists fj P CcpUj,Fq such that |fj| ď 1, that fj|Kj

equals
a constant cj P F, and that cjµpKjq “ |µpKjq|. Let f “ f1 ` ¨ ¨ ¨ fk, which is an
element of CcpX,Fq satisfying |f | ď 1. Then

ż

Ť

j Kj

fdµ “
ÿ

j

|µpKjq|

ˇ

ˇ

ˇ

ż

Xz
Ť

j Kj

fdµ
ˇ

ˇ

ˇ
ď kε

Since |µpAjq ´µpKjq| “ |µpAjzKjq| ď pµpAjzKjq ď ε, we obtain |µpKjq| ě |µpAjq| ´

ε, and hence

}µ} ě

ˇ

ˇ

ˇ

ż

X

fdµ
ˇ

ˇ

ˇ
ě

ˇ

ˇ

ˇ

ż

Ť

j Kj

fdµ
ˇ

ˇ

ˇ
´

ˇ

ˇ

ˇ

ż

Xz
Ť

j Kj

fdµ
ˇ

ˇ

ˇ
ě
ÿ

j

|µpAjq| ´ 2kε

Since ε is arbitrary, we obtain the desired inequality.

2.10.2 Approximation of Radon measures by Dirac measures

In this section, we let K P tRě0,R,Cu.

Theorem 2.70. Define

DpX,Kq “ SpanKtδx : x P Xu

Then the closed unit ball of DpX,Kq is weak-* dense in the closed unit ball of RMpX,Kq.
In other words, BDpX,Kqp0, 1q is weak-* dense in BRMpX,Kqp0, 1q.
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Proof. Fix µ P RMpX,Kq satisfying }µ} ď 1. Similar to the proof of Thm. 2.51, we
let I be the directed set

I “ tpG, εq : G P finp2CcpX,Kq
q, ε P Rě0u

pG1, ε1q ď pG2, ε2q means G1 Ă G2, ε1 ě ε2

We claim that for any pG, εq P I , there exists µG,ε P BDpX,Kqp0, 1q such that

ˇ

ˇ

ˇ

ż

X

fdµ ´

ż

X

fdµG,ε

ˇ

ˇ

ˇ
ď ε for all f P G

If this is true, then pµG,εqpG,εqPI is a net in BDpX,Kqp0, 1q converging weak-* to µ.
This will finish the proof.

Let us prove the claim. Since µ is a linear combination of finite Radon mea-
sures, there exists pµ P RMpX,Rě0q such that

ˇ

ˇ

ˇ

ż

X

gdµ
ˇ

ˇ

ˇ
ď

ż

X

|g|dpµ

for each bounded Borel function g : X Ñ C.
Let K Ă X be compact and containing Supppfq for all f P G. By the compact-

ness of K, there exist open sets U1, . . . , Uk Ă X whose union contains K, such that
diampfpUjqq ď ε{pµpKq for each j and f P G. Choose a Borel set Aj Ă Uj such that
K “ A1 \ ¨ ¨ ¨ \ Ak.12 Choose any xj P Aj , and let

µG,ε “

k
ÿ

j“1

µjpAjqδxj
(2.43)

Then, for each f P G,

ˇ

ˇ

ˇ

ż

X

fdpµ ´ µG,εq

ˇ

ˇ

ˇ
ď

k
ÿ

j“1

ˇ

ˇ

ˇ

ż

Ai

fdpµ ´ µG,εq

ˇ

ˇ

ˇ
“

k
ÿ

j“1

ˇ

ˇ

ˇ

ż

Ai

fdµ ´ µjpAjqfpxiq
ˇ

ˇ

ˇ

“

k
ÿ

j“1

ˇ

ˇ

ˇ

ż

Ai

pf ´ fpxjqqdµ
ˇ

ˇ

ˇ
ď

k
ÿ

j“1

ż

Aj

|f ´ fpxjq|dpµ ď
ε

pµpKq

k
ÿ

j“1

pµpAjq “ ε

This proves the desired inequality. Moreover, by Exp. 2.68 and Lem. 2.69,

}µG,ε} “

k
ÿ

j“1

|µjpAjq| ď }µ} ď 1

This proves that µG,ε P BDpX,Kqp0, 1q.

12For example, take A1 “ K X U1 and Aj “ K X UjzpU1 Y ¨ ¨ ¨ Y Uj´1q if j ą 1.
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The proof of Thm. 2.70 immediately implies:

Theorem 2.71. For each µ P RMpX,Cq, we have

}µ} “ sup
!

k
ÿ

j“1

|µpAjq| : k P Z`, and A1, . . . , Ak P BX are mutually disjoint
)

(2.44)

Proof. Lem. 2.69 implies “ě". Let us prove “ď". Let pµG,εqpG,εqPI be the net in
DpX,Cq converging weak-* to µ and satisfying }µG,ε} ď }µ}. Each µG,ε is of the
form (2.43), by Lem. 2.68, the RHS of (2.44) is ě }µG,ε}. By Fatou’s lemma for
weak-* convergence (Prop. 2.43), the RHS of (2.44) is ě }µ}.
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3 Basics of inner product spaces

3.1 Sesquilinear forms

Let V be C-vector spaces.

3.1.1 Sesquilinear forms

Definition 3.1. A map of C-vector spaces T : V Ñ W is called antilinear or
conjugate linear if for every a, b P F and u, v P V we have

T pau ` bvq “ au ` bv

where a, b are the complex conjugates of a, b.

Definition 3.2. A function x¨|¨y : V ˆ V Ñ C (sending uˆ v P V 2 to xu|vy) is called
a sesquilinear form if it is linear on the first variable, and antilinear on the second
one.1 Namely, for each a, b P C and u, v, w P V we have

xau ` bv|wy “ axu|wy ` bxv|wy xw|au ` bvy “ axw|uy ` bxw|vy

More generally, if V,W are complex vector spaces, a map V ˆ W Ñ C is also
called sesquilinear if it is linear on the V -component and antilinear on the W -
component.

Notice the difference between the notations xu|vy and xu, vy: the latter always
means a bilinear form, i.e., a function which is linear on both variables.

Remark 3.3. For each sesquilinear form x¨|¨y on V , we have the polarization iden-
tity

xu|vy “
1

4

ÿ

t“0,π
2
,π, 3π

2

xu ` eitv|u ` eitvyeit

“
1

4

´

xu ` v|u ` vy ´ xu ´ v|u ´ vy ` ixu ` iv|u ` ivy ´ ixu ´ iv|u ´ ivy

¯

(3.1)

Therefore, if x¨|¨y and p¨|¨q are two sesquilinear forms on V , then the two forms are
equal iff xv|vy “ pv|vq for each v P V .

Definition 3.4. Let ωp¨|¨q : V ˆ W Ñ C be a sesquilinear form. The adjoint sese-
quilinear form ω˚ω˚ω˚ is defined to be

ω˚ : W ˆ V Ñ C ω˚
pu|vq “ ωpv|uq

1Physicists prefer the opposite convention, i.e., their sesquilinear forms are antilinear on the
first variables.
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Definition 3.5. A sesquilinear form x¨|¨y : V ˆ V Ñ C is called a Hermitian form
if is equal to it adjoint, namely,

xv|uy “ xu|vy for each u, v P V

Proposition 3.6. Let x¨|¨y be a sesquilinear form on V . The following are equivalent:

(1) x¨|¨y is a Hermitian form.

(2) For each v P V we have xv|vy P R.

Proof. Let ω “ x¨|¨y. By the polarization identity, we have ω˚ “ ω iff ω˚pv|vq “

ωpv|vq (i.e. ωpv|vq “ ωpv|vq) for each v P V .

3.1.2 Positive sesquilinear forms

Definition 3.7. A sesquilinear form x¨|¨y on V is called positive semi-definite (or
simply positive) and written as x¨|¨y ě 0, if xv|vy ě 0 for all v P V . If a positive
sesquilinear form x¨|¨y on V is fixed, we define

}v} “
a

xv|vy for all v P V (3.2)

Then it is clear that }λv} “ |λ| ¨ }v} for each v P V and λ P C. A vector v P V
satisfying }v} “ 1 is called a unit vector.

By Prop. 3.6, a positive sesquilinear form is Hermitian.

Theorem 3.8 (Cauchy-Schwarz inequality). Let x¨|¨y be a positive sesquilinear form
on V . Then for each u, v P V we have

|xu|vy| ď }u} ¨ }v}

Proof. Note that if f : R2 Ñ R is a quadratic form

fpx, yq “
`

x y
˘

ˆ

a b
b c

˙ˆ

x
y

˙

“ ax2 ` 2bxy ` cy2

where a, b, c P R, then f ě 0 iff a ě 0 and

ac ´ b2 ” det

ˆ

a b
b c

˙

ě 0

In fact, we only need the fact that if f ě 0 then ac´b2 ě 0. To see this, note that if f
is not always 0, then one of a, c must be nonzero; otherwise, fpx, yq “ 2bxy cannot
be always ě 0. Thus, assume WLOG that a ‰ 0. Then fpx, 1q “ ax2 ` 2bx ` c “

apx` b{aq2 ` c´ b2{a, which implies a ą 0 and c´ b2{a ě 0, and hence ac´ b2 ě 0.
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Now, we let f : R2 Ñ Rě0 be the quadratic form defined by pulling back the
form ξ P V ÞÑ xξ|ξy via the map px, yq P R2 ÞÑ xu ` yv P V , that is,

fpx, yq “ xxu ` yv|xu ` yvy “ }u}
2

¨ x2 ` 2Rexu|vy ¨ xy ` }v}
2

¨ y2

Then, the above paragraph shows that }u}2 ¨ }v}2 ´ pRexu|vyq2 ě 0, equivalently,

|Rexu|vy| ď }u} ¨ }v}

Choose λ P S1 such that λxu|vy P R. Since the above inequality holds when u is
replaced by λu, we get

|xu|vy| “ |Rexλu|vy| ď }λu} ¨ }v} “ }u} ¨ }v}

Corollary 3.9. Let x¨|¨y be a positive sesquilinear form on V . Then we have

tv P V : }v} “ 0u “ tv P V : xv|ξy “ 0 for all ξ P V u

where the RHS is clearly a linear subspace of V . We call this space the null space of x¨|¨y.

Proof. Let v P V . If xv|V y “ 0, then }v}2 “ xv|vy “ 0. Conversely, if }v} “ 0, then by
the Cauchy-Schwarz inequality, for each ξ P V we have |xu|ξy| ď }u} ¨ }ξ} “ 0.

Corollary 3.10. Let x¨|¨y be a positive sesquilinear form on V . Then v P V ÞÑ }v} P Rě0

is a seminorm on V .

Proof. It remains to check the subadditivity: for each u, v P V , the Cauchy-
Schwarz inequality imlies

}u ` v}
2

“ xu ` v|u ` vy “ }u}
2

` 2Rexu|vy ` }u}
2

ď}u}
2

` 2}u} ¨ }v} ` }v}
2

“ p}u} ` }v}q
2

3.2 Inner product spaces and bounded sesquilinear forms

3.2.1 Inner product spaces

Definition 3.11. Let x¨|¨y be a positive sesquilinear form on a C-vector space V .
We call x¨|¨y an inner product if it is non-degenerate, i.e., the null space is 0. We
call the pair pV, x¨|¨yq (or simply call V ) an inner product space or a pre-Hilbert
space .
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Exercise 3.12. Let x¨|¨y be a positive sesquilinear form on V with null space N .
Prove that there is a (necessarily unique) inner product x¨|¨yV {N on the quotient
space V {N such that for any u, v P V , the cosets u ` N and v ` N satisfy

xu ` N |v ` N yV {N “ xu|vy

Example 3.13. Let X be a set. Then l2pXq “ l2pX,Cq is an inner product space,
where

xf, gy “
ÿ

xPX

fpxqgpxq for any f, g P l2pXq

Example 3.14. Let pX,µq be a measure space. Then L2pX,µq is an inner product
space, where

xf, gy “

ż

X

fgdµ for any f, g P L2
pX,µq

Remark 3.15. By Rem. 3.10, an inner product space V is equipped with the norm
defined by |v} “

a

xv|vy. In particular, V is a metric space with metric dpu, vq “

}u´ v}. The topology on V induced by this metric is called the norm topology of
V .

Remark 3.16. Let V,W be inner product spaces. If T : V Ñ V is a linear map, then
T is an isometry of metric spaces iff T is an isometry of normed vector spaces, i.e.,

xTv|Tvy “ xv|vy for all v P V

By the polarization identity, this is equivalent to

xTu|Tvy “ xu|vy for all u, v P V

A surjective linear isometry T : V Ñ W is called a unitary map. If T : V Ñ W is
unitary, we say that V,W are isomorphic inner product spaces (or that V,W are
unitarily equivalent).

Similarly, if T : V Ñ V is antilinear map between inner product spaces, then
T is an isometry of metric spaces iff

xTv|Tvy “ xv|vy for all v P V

By the polarization identity, this is equivalent to

xTu|Tvy “ xv|uy for all u, v P V

A surjective antilinear isometry T : V Ñ W is called an antiunitary map. If
T : V Ñ W is antiunitary, we say that V and W are antiunitarily equivalent.
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3.2.2 Bounded sesquilinear forms

Let V,W be inner product spaces.

Definition 3.17. The (complex) conjugate of V is the inner product space V A de-
fined as follows. The elements of V A correspond bijectively to those of V by the
map

A : V Ñ V A v ÞÑ vA
” v

where vA ” v is an abstract element, called the conjugate of v. Moreover, the struc-
ture of an inner product space on V A is defined in such a way that A is antiunitary.
In other words, for each u, v P V and a, b P C, we have

au ` bv “ a ¨ u ` b ¨ v

xu|vyV A “ xv|uyV

The conjugate of V A is defined to be V , that is,

pV A
q

A
“ V

Moreover, the conjugate map A : V A Ñ V is defined by

A : V A
Ñ V v ÞÑ v

Thus v “ v for each v P V .

Remark 3.18. An antilinear map T : V Ñ W is equivalent to the linear map

V Ñ W A v ÞÑ Tv (3.3a)

and is also equivalent to the linear map

V A
Ñ W v ÞÑ Tv (3.3b)

It is clear that T is an antilinear isometry (resp. antiunitary) iff (3.3a) is a linear
isometry (resp. unitary) iff (3.3b) is a linear isometry (resp. unitary).

Remark 3.19. A sesquilinear form ω : V ˆW Ñ C is equivalent to a bilinear form

rω : V ˆ W A
Ñ C pv, wq ÞÑ xv|wy

Unless otherwise stated, we always view ω and rω as the same.
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Definition 3.20. Let ω : V ˆ W Ñ C be a sesquilinear form. The norm }ω} is
defined to be the norm of the associated bilinear form V ˆ W A Ñ C. Therefore,

}ω} “ sup
vPBV p0,1q,wPBW p0,1q

|ωpu|vq|

Recalling the notation (2.19), we let

Ses pV |W q :“ LpV ˆ W A,Cq

which is the space of bounded sesquilinear forms V ˆ W Ñ C. We write

Ses pV q :“ Ses pV |V q

The elements of Ses pV |W q (resp. Ses pV q) are called bounded sesquilinear forms
on V ˆ W (resp. on V ).

Example 3.21. The inner product

x¨|¨y : V ˆ V Ñ C pu, vq ÞÑ xu|vy

has norm 1, and hence belongs to Ses pV q. Therefore, by Prop. 2.22, this map is
continuous.

3.3 Orthogonality

Let V be an inner product spaces.

3.3.1 Orthogonal and orthonormal vectors

Definition 3.22. A set S of vectors of V are called orthogonal if xu|vy “ 0 for any
distinct u, v P V . An orthogonal set S is called orthonormal if }v} “ 1 for all
v P V .

Remark 3.23. We will also talk about an orthogonal resp. orthonormal family of
vectors peiqiPI . This means that xei|ejy “ 0 for any distinct i, j P I (resp. xei|ejy “

δi,j for any i, j P I).

In particular, two vectors u, v P V are called orthogonal and written as

u K v

when xu|vy “ 0. A fundamental fact about orthogonal vectors is

Proposition 3.24 (Pythagorean identity). Suppose that u, v P V are orthogonal. Then

}u ` v}
2

“ }u}
2

` }v}
2 (3.4)

In particular,

}v} ď }u ` v} (3.5)
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Proof. }u ` v}2 “ xu ` v|u ` vy “ xu|uy ` xv|vy ` 2Rexu|vy “ xu|uy ` xv|vy.

Note that by applying (3.4) repeatedly, we see that if v1, . . . , vn P V are orthog-
onal, then

}v1 ` ¨ ¨ ¨ ` vn}
2

“ }v1}
2

` ¨ ¨ ¨ ` }vn}
2 (3.6)

Remark 3.25. Suppose that S is an orthonormal set of vectors of V . Then S
is clearly linearly independent. (If e1, . . . , en P S and

ř

i aiei “ 0, then aj “
ř

ixaiei|ejy “ x0|ejy “ 0.) Thus, by linear algebra, if S “ te1, . . . , enu is finite, then
one can find uniquely a1, . . . , an P C and u P V such that v “ a1e1 ` ¨ ¨ ¨ ` anen ` u
and that u is orthogonal to e1, . . . , en. The expressions of a1, . . . , an, u can be ex-
pressed explicitly:

Proposition 3.26 (Gram-Schmidt). Let e1, . . . , en be orthonormal vectors in V . Let
v P V . Then

v ´

n
ÿ

i“1

xv|eiy ¨ ei (3.7)

is orthogonal to e1, . . . , en.
Proof. This is a direct calculation and is left to the readers.

Remark 3.27. “Gram-Schmidt" usually refers to the following process. Let
v1, . . . , vn be a set of linearly independent vectors of V . Then there is an algo-
rithm of finding an orthonormal basis of U “ Spantv1, . . . , vnu: Let e1 “ v1{}v1}.
Suppose that a set of orthonormal vectors e1, . . . , ek in U have been found. Then
ek`1 is defined by rvk`1{}rvk`1} where rvk`1 “ vk`1 ´

řk
i“1xvk`1|eiy ¨ ei.

Combining Pythagorean with Gram-Schmidt, we have:

Corollary 3.28 (Bessel’s inequality). Let peiqiPI be a family of orthonormal vectors of
V . Then for each v P V we have

ÿ

iPI

|xv|eiy|
2

ď }v}
2 (3.8)

In particular, the set ti P I : xv|eiy ‰ 0u is countable.
Proof. The LHS of (3.8) is limJPfinp2Iq

ř

jPJ |xv|ejy|2. Thus, it suffices to show that for
each J P finp2Iq we have

ř

jPJ |xv|ejy|2 ď }v}2. Let

u1 “
ÿ

jPJ

xv|ejy ¨ ej u2 “ v ´ u1

(Namely, v “ u1`u2 is the orthogonal decomposition of v with respect to Spantej :
j P Ju.) By Gram-Schmidt, we have xu1|u2y “ 0. By Pythagorean, we have }u1}2 ď

}v}2. But Pythagorean (3.6) also implies

}u1}
2

“
ÿ

jPJ

|xv|ejy|
2

The last statement about countability follows from .
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3.3.2 Orthogonal decomposition

Definition 3.29. Let U be a linear subspace of V . Let v P V . An orthogonal
decomposition of v with respect to U is an expression of the form

v “ u ` w where u P U and w K U

Orthogonal decompositions of v are unique if exist. We call u the orthogonal
projection of v onto U .

Proof of uniqueness. Suppose that v “ u1 `w1 is another orthogonal decomposition.
Then u´ u1 equals w1 ´w. Let ξ “ u´ u1. Then ξ P U and ξ K U . So xξ|ξy “ 0, and
hence ξ “ 0. So u “ u1 and w “ w1.

Example 3.30. Let e1, . . . , en be orthonormal vectors of V . Let U “

Spante1, . . . , enu. Choose any v P V . Then by Gram-Schmidt,

v “ u ` w where u “

n
ÿ

i“1

xv|eiyei and w “ v ´ u (3.9)

is the orthogonal decomposition of v with respect to U .

Proposition 3.31. Let U be a linear subspace of V . Suppose that v P V has orthogonal
decomposition v “ u ` w with respect to U . Then

}v ´ u} “ inf
ξPU

}v ´ ξ} (3.10)

Proof. Clearly “ě" holds. Choose any ξ P U . Then v ´ ξ “ v ´ u ` u ´ ξ “

w ` pu ´ ξq. Since u ´ ξ P U , we have w K u ´ ξ. Thus, by Pythagorean, we have
}w} ď }v ´ ξ}.

3.3.3 Orthonormal basis

Definition 3.32. A set S (or a family peiqiPI) of orthonormal vectors of V is called
an orthonormal basis of V if it spans a dense subspace of V .

Example 3.33. IfX is a set, by Prop. 2.53, l2pXq has an orthonormal basis pχtxuqxPX .

Example 3.34. If V is separable, then V has a countable orthonormal basis.

Proof. Let tv1, v2, . . . u be a dense subset of V where v1 ‰ 0. Then by Gram-
Schmidt (Rem. 3.27), we can find e1, e2, ¨ ¨ ¨ P V such that the set te1, e2, . . . u is
orthnormal (after removing the duplicated terms), and that Spantv1, . . . , vnu “

Spante1, . . . , enu for each n. Then te1, e2, . . . u clearly spans a dense subspace of
V .
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We remark that there are non-separable and non-complete inner product
spaces that do not have orthonormal bases. See [Gud74].

Theorem 3.35. Suppose that peiqiPI is an orthonormal basis of V . Then for each v P V ,
the RHS of the following converges (under the norm of V ) to the LHS:

v “
ÿ

iPI

xv|eiy ¨ ei (3.11)

Proof. Note that for J P finp2Iq, the expression
›

›

›
v ´

ÿ

jPJ

xv|ejyej

›

›

›

2

“ }v}
2

´
ÿ

jPJ

|xv|ejy|
2

decreases when J increases. Thus, it suffices to prove that the infJPfinp2Iq of this
expression is 0.

By assumption, we can find J P finp2Iq and pλjqjPJ in C such that }v´
ř

jPJ λjej}
is small enough. On the other hand, applying Prop. 3.31 to the orthogonal projec-
tion v “ u ` w where w “

ř

jPJxv|ejyej (cf. Exp. 3.30), we have
›

›

›
v ´

ÿ

jPJ

xv|ejyej

›

›

›
ď

›

›

›
v ´

ÿ

jPJ

λjej

›

›

›
(3.12)

Thus, the infimum of the LHS over J P finp2Iq is zero.

Corollary 3.36 (Parseval’s identity). Suppose that peiqiPI is an orthonormal basis of V .
Then for each u, v P V we have

xu|vy “
ÿ

iPI

xu|eiy ¨ xei|vy (3.13)

In particular,

}v}
2

“
ÿ

iPI

|xv|eiy|
2 (3.14)

Proof. By Thm. 3.35, u “ limJPfinp2Iq uJ where uJ “
ř

jPJxu|ejy¨ej . By the continuity
of x¨|¨y : V ˆ V Ñ C (Exp. 3.21), we have

xu|vy “ lim
JPfinp2Iq

xuJ |vy “ lim
JPfinp2Iq

ÿ

jPJ

xu|ejy ¨ xej|vy “
ÿ

iPI

xu|eiy ¨ xei|vy

Corollary 3.37. Suppose that pexqxPX is an orthonormal basis of V . Then there is a linear
isometry

Φ : V Ñ l2pXq v ÞÑ
`

xv|exyqxPX (3.15)

whose range is dense in l2pXq.
Proof. Parseval’s identity shows that pxv|exyqxPX has finite l2-norm }v}. So the map
Φ defined by (3.15) is clearly a linear isometry. The density of the range of Φ
follows from the fact that l2pXq contains all χtxu “ Φpexq, and that Spantχtxu : x P

Xu is dense in l2pXq (cf. Prop. 2.53).
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3.4 Hilbert spaces

Theorem 3.38. Let H be an inner product space. Then the following three conditions are
equivalent:

(a) H is (Cauchy) complete.

(b) For each orthonormal family peiqiPI in H, and for each family paiqiPI in C satisfying
ř

iPI |ai|
2 ă `8, the unordered sum

ř

iPI aiei converges (under the norm of H).

(c) H is unitarily equivalent to l2pXq for some set X .

If H satisfies any of these conditions, we say that H is a Hilbert space.

Proof. (c)ñ(a): By Thm. 2.59, l2pXq is the dual space of l2pXq. Since any dual
space is complete (Cor. 2.36), l2pXq is complete.

(a)ñ(b): Since
ř

i |ai|
2 ă `8, for each ε ą 0 there exists J P finp2Iq such that

for all finite K Ă IzJ we have
ř

kPK |ak|2 ă ε, and hence, by the Pythagorean
identity,

›

›

›

ÿ

kPK

akek

›

›

›

2

“
ÿ

kPK

|akek|
2

ă ε

Thus p
ř

jPJ ajejqJPfinp2Iq is a Cauchy net. By the completeness of H, we see that
ř

iPI aiei converges.
(b)ñ(c): Assume (b). We first show that H has an orthonormal basis. By

Zorn’s lemma, we can find a maximal (with respect to the partial order Ă) set
of orthonormal vectors, written as a family peiqiPI . The maximality implies that
every nonzero vector ξ P H is not orthogonal to some ei. (Otherwise, tei : i P Iu

can be extended to tei : i P Iu Y tξ{}ξ}u.)
Let us prove that peiqiPI is an orthonormal basis. Suppose not. Then U “

Spantei : i P Iu is not dense in H. Let ξ P HzU . By Bessel’s inequality, we have
ÿ

iPI

|xξ|eiy|
2

ă `8

Therefore, by (b),
ÿ

iPI

xξ|eiy ¨ ei (3.16)

converges to some vector η P H. By the continuity of x¨|¨y (Exp. 3.21), we see that
xη|eiy “ xξ|eiy for all i, and hence

xξ ´ η|eiy “ 0 for all i P I (3.17)
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Since η P U and ξ R U , we conclude that ξ ´ η is a nonzero vector orthogonal to
all ei. This contradicts the maximality of peiqiPI .

Now we have an orthonormal basis peiqiPI . By Cor. 3.37, we have a linear
isometry

Φ : H Ñ l2pIq ξ ÞÑ
`

xξ|eiy
˘

iPI

with dense range. If paiqiPI belongs to l2pIq, by (b), the unordered sum
ř

iPI aiei
converges to some ξ P H. Clearly Φpξq “ paiqiPI . This proves that Φ is surjective,
and hence is a unitary map. So H » l2pIq.

Example 3.39. By Thm. 3.38, if X is a set, then l2pXq is a Hilbert space.

Example 3.40. Let pX,µq be a measure space. By the Riesz-Fischer Thm. 1.48, the
inner product space L2pX,µq is a Hilbert space.

Corollary 3.41. Every Hilbert space H has an orthonormal basis. Moreover, H is sepa-
rable iff the orthonormal basis can be chosen to be countable.

Proof. That H has an orthonormal basis follows from the proof of Thm. 3.38 or
from the fact that l2pXq has an orthonormal basis pχtxuqxPX . If X is countable,
then l2pXq has dense subset SpanQ`iQtχtxu : x P Xu and hence is separable. Con-
versely, we have proved in Exp. 3.34 that every separable inner product space has
a countable orthonormal basis.

Theorem 3.42. Let pexqxPX be an orthonormal basis of a Hilbert space H. Then we have
a unitary map

H »
ÝÝÑ l2pXq ξ ÞÑ

`

xξ|exy
˘

xPX
(3.18)

Proof. This is clear from the proof of Thm. 3.38.

3.5 Bounded linear maps, sesquilinear forms, and matrices

In this section, we let V,W be inner product spaces.

3.5.1 Bounded linear maps and bounded sesquilinear forms

In Subsec. 2.5.2, we discussed the close relationship between bounded linear
maps and bounded bilinear forms in the general setting of normed vector spaces.
This connection allows us to combine the strengths of both perspectives. One key
advantage of the perspective of linear operators is that the space LpV q is particu-
larly well-suited for symbolic calculus.

In this section, we explore this relationship in the context of inner product
spaces and Hilbert spaces. We will see that the passage from LpV q to bounded
sesquilinear forms fundamentally relies on the Riesz–Fréchet theorem, a pivotal
result that enables this correspondence.
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Definition 3.43. If T P LinpV,W q, we let ωT be the sesquilinear form

ωT : V ˆ W Ñ C pv, wq ÞÑ xTv|wy

Proposition 3.44. For each T P LinpV,W q, we have

}T } “ }ωT }

Consequently, T is bounded iff ωT is so, and the map T P LinpV,W q ÞÑ ωT is injective.

Proof. For each v P V,w P W , we have

|ωT pv, wq| “ |xTv|wy| ď }Tv} ¨ }w} ď }T } ¨ }v} ¨ }w}

Applying sup over all v, w in the closed unit balls, we get }ωT } ď }T }. Moreover,

}Tv}
2

“ ωT pv|Tvq ď }ωT } ¨ }v} ¨ }Tv}

and hence }Tv} ď }ωT } ¨ }v}. Applying sup over all v in the closed unit ball, we get
}T } ď }ωT }.
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4 Spectral theorem for bounded self-adjoint opera-
tors

4.1 Prehistory of spectral theory: continued fractions

4.2 Prehistory of spectral theory: the polynomial moment prob-
lem
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Ž

αPA fα, 8
χA, 4
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