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1 Preliminaries

1.1 Notation

In this monograph, unless otherwise stated, we understand the field F as ei-
ther R or C.
We use frequently the abbreviations:

iff=if and only if
LHS=left hand side =~ RHS=right hand side
J=there exists V=for all
i.e.=id est=that is=namely e.g.=for example
cf.=compare/check/see/you are referred to
resp.=respectively ~ WLOG=without loss of generality
LCH=locally compact Hausdorff

MCT=monotone convergence theorem
DCT=dominated convergence theorem

When we write A := B or A = B, we mean that A is defined by the expres-
sion B. When we write A = B, we mean that A are B are different symbols of the
same object.

Unless otherwise stated, an inner product space V' denotes a complex inner
product space, and its sesquilinear form {:|-) is antilinear on the right argument
|:».and linear on the left argument (..

If V is an [F-vector space, then for each v € V and each linear map ¢ : V' — F,
we write

(v, 0) = {p,v) == p(v)

We assume a-(4+00) = (+0)-a = +wifa € (0,4+00],and 0-(+00) = (+0)-0 = 0.
An increasing function/sequence/net means a non-decreasing one.

* Unless otherwise specified, completeness of a metric space or normed vector
space refers to Cauchy completeness.

N={0,1,2,...},Z, = {1,2,...}.

R-o = [0, +0), Rso = [0, +0], R = [~c0, +-o0].

An interval denotes a connected subset of R. A proper interval denotes an
interval with non-zero Lebesgue measure.

Y X is the set of functions with domain X and codomain Y.



2% is the set of subsets of X.
fin(2%X) is the set of finite subsets of X.
If f: X - Y isamap, then

Rng(f) = f(X)

If V is a vector space and X is a set, then V* is viewed as a vector space
whose linear structure is defined by

(af +bg)(x) =af(x)+ bg(x) forall f,ge VX and a,beF

If X isasetand A — X, the characteristic function is

1 ifzeA

X — 1 —
xa 0.1 {0 ifre X\A

Clx(A), also denoted by CI(A) or 4, is the closure of A = X with respect to
the topological space X.

If X is a metric space and p € X, r € [0, +0], we let
Bx(p,r) ={re X :d(x,p) <r} Bx(p,r) ={ze X :d(z,p) <7}
For each F < X, we define the diameter

diam(F) = sup{d(x,y) : x,y € E}

If X is a topological space, then Tx denotes the topology of X, i.e.,
Tx = {open subsets of X'}

If x € X, a neighborhood of = denotes an open subset of X containing x. We
let

Nbhx (z) = Nbh(z) := {neighborhoods of = in X'}

If X,Y are topological spaces, then

C(X,Y) = {feY™: fiscontinuous}
Bx = the Borel o-algebra of X
Per(X,Y) ={feY™X: fisBorel}



m", as a measure, denotes the Lebesgue measure on R", and is abbreviated
to m when no confusion arises.

St ={z€eC:|z] =1} ~ R/27xZ. If f is a function on S', equivalently, a
2m-periodic function on R, then

A~

f = 5 [ e dm(a)

2
is its n-th Fourier coefficient (whenever the integral can be defined).

(X, 9, u), often abbreviated to (X, 11), denotes a measure space where 91 is
the o-algebra and p : 9 — R is the measure.

Let V' be a normed vector space. Let X is either a set or a topological space,
depending on the context. Let 1 < p < +. For each f € V¥,

Suppy (f) = Supp(f) = Clx({zx € X : f(z) # 0})
| f e vy = [ fllie = Sup Lf ()]

Iflocer) = 1flo = ( 2 1£@)1P)°

zeX
| f| is the function X — R such that | f|(z) = ||f(x)|

We call | f| the absolute value function of f. For each £ — V, we let

Ce(X,E) ={f e C(X,E) : Supp(f) is compact in X'}
X V) ={feV™ | flo < +o}
PX, V) ={feV™:|fl, < +o}

We are particularly interested in the case that £ = V, E = [0,1], and £ =
R>o.

Let V' be a normed vector space. Let X be a set. We say that a family (f,)aew
in V* is uniformly bounded if sup,, | falio(x,v) < +o0.

If X is LCH and V is a normed F-vector space, we understand C,.(X, V) as a
normed F-vector space whose linear structure inherits from that of V¥, and
whose norm is chosen to be the I”-norm.

If (X,9) and (Y, 91) are measurable spaces, then

L(X,Y) = {measurable functions X — Y}



If V is a normed vector space, for each f € L(X,V)and 1 < p < 400, we let

Wl = 1fles = (| 1517dm)”
B X
[l ey = 1flpe = inf{d € Rog 2 pi{z € X+ [ f(2)] > a} = 0
which are potentially infinite.

¢ In the notation of function spaces, the codomain is understood to be C when
it is suppressed. For example,

C(X) = Cu(X,C)  Bea(X) = Bon(X,C)  LP(X,p) = L"(X, 11, C)

However, this convention does not apply to £(V): If V is a normed vector
space, then £(V') denotes £(V, V), the space of bounded linear operators on
V.

1.2 Review of important facts in point-set topology

Fix a normed vector space V.

1.2.1 Miscellaneous definitions and properties

Definition 1.1. If X, Y are metric spaces and f : X — Y is map, we say that
C € Ry is a Lipschitz constant of f if

d(f(x1), f(x2)) < Cd(x1,x9) forall x1, 29 € X
If f has a Lipschitz constant, we say that f is Lipschitz continuous.

Definition 1.2. If d and d’' are two metrics on a set X, we say that d and d’ are
equivalent if there exists «, 5 € R such that

d(z,y) < ad(z,y)  d(x,y) <pdx,y) forallz,ye X

Definition 1.3. Let X, ..., Xy be metric spaces. For each 1 < p < +, the I®-
product metric d,, and the IP-product metric d, are the metrics on X; x --- x Xy
defined by

doo((z1,. . 2N), (Y1, - -y yn)) = max{d(z1, 1), ..., d(xN,yn)}
dp((m'lv s 7xN>7 (yla cee 73/N)) = vd(xluyl)p +oeoet d(xN7yN)

for all z;, y; € X;. These metrics are equivalent. We equip X; x --- x Xy with any
metric equivalent to [* and [”.



Remark 1.4. Recall that if f : X — Y is a map of topological spaces, and X =
U,e; Ui is an open cover of X, then f is continuous iff f|y, : U; — Y is continuous
foranyie I.

Definition 1.5. Let f : X — Y be a map where (Y, 7y) is a topological space. The
pullback topology on X is defined to be

= (T)={f7(V): VeTy}
Then, a net (z,) in X converges under f*7y to x iff

lim f (20) = f(2)

1.2.2 Product topology and pointwise convergence

Let (X, )aewr be a family of topological spaces. Elements of the product space

Sana

acd

are denoted by x = (2, )ac- Let
T 1S — X, x— ()

It is easy to check that

B = { H U, : each U, is open in X,,,

acd

U, = X, for all but finitely many oz}

:{ ﬂ 7. (U,) : E € fin(27), U, is open in X,, for each a e E}

aeFE

is a base for a topology, namely, for each Wy, W, € B and « € Wy n W5, there exists
W3 € B such that W5 < W, n W,. Therefore, B generates a topology.

Definition 1.6. The topology of S generated by B is called the product topology
or pointwise convergence topology of S. Unless otherwise stated, the product of
a family of topological spaces is equipped with the product topology.

Remark 1.7. If each X, is Hausdorff, then S is clearly Hausdorff.

Theorem 1.8. Let (x,,) e be a net in S, and let x € S. Then the following conditions are
equivalent:

(a) lir? x,, = x under the product topology.
e
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(b) (x,),er converges pointwise to x, namely, for each oo € o/ we have 1in;1 zu(a) =
e
z(a) in X,.

Proof. (a)=(b): Fix o € &. For each open U, < X,, we have 7~ *(U,) € B. There-
fore,

To S — X, is continuous (1.1)

Thus, if lim, z,, = x, then lim, 7, (z,) = 7, (x). This proves (b).

(b)=(a): Assume (b). Choose any W € B containing x. Then there exists
E € fin(27) such that W = (.5 7. '(U,), where each U, < X, is open and
containing z,. For such o € E, since lim, z,(c) = z(a), we know that (z,(«)) is
p-eventually in U,. Therefore, since E is finite, we conclude that (z,,) is eventually
in W. This proves (a). ]

Corollary 1.9. Let Z be a topological space. Suppose that for each o € o/, a map f, :
Z — X, is chosen. Then

\/ fa 14— 1_[ Xa Z = (fa(z))oze?/ (12)

aced acd

is continuous iff f, is continuous for each o € <.

Proof. If F' := \/ .., fa is continuous, then since 7, is continuous, f, = 7, © f,
is also continuous. Conversely, suppose that each f, is continuous. Let (z;) be
a net in Z converging to z € Z. For each a, since f, is continuous, we see that
lim; fo(2:) = fa(2). By Thm. 1.8, F'(2;) converges to F(z). This proves that F is
continuous. ]

Proposition 1.10. Suppose that </ is countable. If each X, is second countable, then S
is second countable. If each X, is metrizable, then S is metrizable.

Proof. If U, is a base of the topology of X, then
U:= { ﬂ . (Uy) : E € fin(29),U, € Ua}

acl
is a base of the the product topology, which is countable if each 4, is countable.
Now assume that each X, is equipped with a metric d,. Fix any R € R., and

let d,, be metric on X, inducing the same topology as d,,, and satisfies d, < R. For
example,

do(Ta, Ya) = min{de(Ta, Ya), R} for each z,, y, € X, (1.3a)
Let v : & — Z, be an injective map, and define a metric d on S by
d(z,y) = Z 27 (z(a), y(a)) foreach z,y € S (1.3b)
acd

~

One shows easily that a net (z,) in S converging to z € S iff lim, d, (z,(a), z(®)) =
0 for all o« € &7. Therefore, by Thm. 1.8, d induces the product topology. ]
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Theorem 1.11 (Tychonoff theorem). Assume that X, is compact for each o € <.
Then S is compact.

* Proof. Assume WLOG that .« is non-empty, that each X, is non-empty. Let
() uer be anetin S. We want to show that (z,,),.e; has a cluster point.

For each & &7, let S¢ = | ] .o Xo- For each x € Sg, we write Dom(z) = &.
Foreach & ¢ % < o/ and y € Sz, let yle = (y(a))aes- Let

P = U {z € Ss : wis a cluster point of (z,]s),es in S}
Ecd

1 "

equipped with the partial order “c". In other words, if z,y € P, then z < y means
that Dom(z) < Dom(y) and = = ye.

Since each X, is compact, P is clearly non-empty. Let us show that every
totally ordered non-empty subset () = P has an upper bound in P, so that Zorn’s
lemma can be applied. Let = be the union of all elements of (). Thus = € Sy where
& = U,eq Dom(y), and we have z|pom(y) = y for each y € Q.

To show that z is a cluster point of (z,|¢).er in Se, we pick any neighborhood
of z in Sg, which, after shrinking if necessary, is of the form W = [] ., U, where
each U, « X, is open, and there exists K € fin(29) such that U, = X, whenever
a ¢ K. Since & = | J,., Dom(y), there exists y € @ such that K’ = Dom(y). Namely,
(74| Dom(y) ) uer has cluster point y, and K < Dom(y). Therefore (x,|x ) .er has cluster
point y|x (which equals x|k because Z|pom(,) = %), and hence is frequently in
[ Iocx Ua- Thus (z,|e),er is frequently in W. This finishes the proof that z € P.
Clearly z is an upper bound of Q.

Now we can apply Zorn’s lemma, which claims that P has a maximal element
x € P. The proof of the Tychonoff theorem will be finished by showing that
& = Dom(z) equals .&Z. Suppose not. Choose € </\&. Since = € P, there is
a subnet (z,,|¢)ves Of (z,]s),er converging pointwise to z. Since Xz is compact,
(24, (B))ves has a converging subnet (z,,, (3))ver. Define T € Se (s to be 2 when
restricted to &, and Z(f) := lim, z,, (3). Then Z € P, and 7 is strictly larger than
x, contradicting the maximality of . O

Remark 1.12. If </ is a countable set, and if each X, is compact and metrizable,
the diagonal method can be used in place of Zorn’s lemma to prove that S (which
is metrizable by Prop. 1.10) is compact:

We consider the case that & = Z,. (The case that <7 is finite is even sim-
pler.) Let (z,)nez, be a sequence in S. We construct inductively a double sequence
(Tmn)mmez, In S as follows. Since X; is sequentially compact, (z,,) has subseqe-
unce (1, )nez, Whose first component (1 ,,(1))nez, converges to some z(1) € X;.
Suppose that (2,,,—1,,)nez, has been constructed (where m — 1 > 1). Since X, is
sequentially compact, (2,,—1,,)nez, has a subsequence (2, ,)nez, Whose m-th com-
ponent (2, ,(m))nez, to some z(m) € S. In this way, the double sequence (z, )
in S and the element = € S are constructed. One checks easily that (z,,,)nez, is a
subsequence of (x,) converging to z. O



1.2.3 Precompact sets
Let X be a Hausdorff space.
Definition 1.13. Let A c X. We say that A is precompact relative to X and write
AcX
if Cly(A) is compact, equivalently, if A is contained in a compact subset of X.
Recall that a subset of a compact Hausdorff space is closed iff it is compact.

Proof of equivalence. “=": Obvious. “<": Let B < X be compact and containing
A. Then B is closed in X. So Clx(A) < B. Since Clx(A) is closed in X and hence
closed in B, it is compact. O

Remark 1.14. Let W < X. Then for each A < W, we have
AcW — A€ Xand Clx(A) c W

When either side is true, we have Cly(A) = Clx(A). Thus, both Cly(A) and
Clx(A) can be denoted unambiguously by A.

In practice, we often choose W to be an open subset of X.

Proof. “<": Clx(A) is a compact set inside I¥ and contains A. So A € W'.

“=": We have a compact set B such that A c B < W. So A € X. Since B is
closed in any larger set, we have Clx(A) < B and hence Clx(A4) c W.

It is obvious that Cly (A) < Clx(A). Assume A € W. Then Cly, (A) is compact.
In the above paragraph, if we choose B = Cly,(A). then we have Clx(A4) € B =
Clx(A). This proves Cly (A) = Clx(A). O

Remark 1.15. Let U be an open subset of X. Let f € C.(U,V). Then by zero-
extension, f can be viewed as an element of C.(X,V) supported in U. Briefly
speaking, we have

C.(U,V) c Co(X,V)
Moreover, for each f € C.(U,V), we have

Suppy (f) = Suppx (f)

Proof. Let f take value 0 outside U. Let K = Suppy(f), which is compact by
assumption. Since f|y is continuous and f|x. = 0 are continuous, and since X =

U u K¢ is an open cover on X, f is continuous. By the Rem. 1.14, we have
Suppy (f) = Suppx (f). Therefore f € C.(X, V). O

Under the setting of Rem. 1.15, it is clear that

Ce(U, V) = {f € Ce(X, V) : Suppx (f) = U} (1.4)

10



1.2.4 LCH spaces
Let X be LCH.

Proposition 1.16. Any closed or open subset of X is LCH.
Proof. See [Gui-A, Subsec. 8.6.2]. ]

Corollary 1.17. Let W < X be an open subset. Let K < W be compact. Then there
exists an open subset U of X suchthat K c U € W.

Proof. The case that K is a single point follows from the fact that W is LCH, cf.
Prop. 1.16. The general case follows from the compactness of K. O

Corollary 1.18. Let Ky, Ky be mutually disjoint compact subsets of X. Then there exist
open subsets Uy, Uy of X such that Ky < Uy and Ky < Us.

Proof. This corollary in fact holds even without the assumption that X is locally
compact, and its proof is a straightforward exercise in point-set topology. How-
ever, it also follows directly from the results established above. Indeed, by Prop.
1.16, X\ K, is LCH. Therefore, by Cor. 1.17, there exists an open set U; such that
K, c U @ X\Ks. Let U, = X\U,. O

Theorem 1.19 (Urysohn’s lemma). Let K < X be compact. Then there exists a (con-
tinuous) Urysohn function f with respect to K and X, ie., f € C.(X,[0,1]) and
flx = 1.

Proof. See [Gui-A, Sec. 15.4]. H

Remark 1.20. Urysohn’s lemma can be used in the following way. Suppose that
K < U c X where K is compact and U is open in X. By Prop. 1.16, U is LCH.
Therefore, by Thm. 1.19, there exists f € C.(U,[0,1]) such that f|x = 1. By
Rem. 1.15, f can be viewed as an element of C.(X, [0, 1]) satisfying f|x = 1 and

Supp(f) = U.

Theorem 1.21. Let K be a compact subset of X. Let 4 = (Uy, ..., U,) be a finite col-
lection of open subsets of X covering K (ie. K < Uy v ---u U,). Then there exist
h; € Co(U;, Rxo) (for all 1 < i < n) satisfying the following conditions:

(1) 0<Zhi<10nX.
=1

(2) i hil . = 1.
i=1

Such hy, ..., h, are called a partition of unity of K subordinate to .

11



In fact, hy,..., R, should be viewed as a partition of the Urysohn function
h:=hy+ -+ h,.

Proof. See [Gui-A, Sec. 15.4]. Note that condition (1) is not stated in some text-
books on partitions of unity. However, even if (1) is not initially satisfied, one can
enforce it by setting g(z) = max{}, h;(z), 1} and replacing each h; with h;/g. [

Theorem 1.22 (Tietze extension theorem). Let K be a compact subset of X. Let
f € C(K,F). Then there exists f € C.(X,F) such that f|x = f, and that || f]»(x) =
[ fllie (xc)-

Proof. See [Gui-A, Sec. 15.4]. ]
Definition 1.23. We let

Co(X.V) = {feC(X,V) :limy ||f(z)| =0} if X is not compact

O oXx, V) = Cu(XLY) if X is compact
where X = X U{ow0} is the one-point compactification of X. Equivalently, Cy(X, V)
is the set of all f € C'(X,V) such that for any € > 0 there exists a compact K < X
such that | f|xx\x) < €. See [Gui-A, Subsec. 15.8.1] for more discussions. For
each £ c V, we let

Co(X,E) = Co(X, V) n BEX
Remark 1.24. Cy(X, V) is the [®-closure of C.(X,V) in C(X, V).

Proof. One easily shows that Cy(X, V) is closed in C (X, V). To show that C.(X,V)
is dense in Cy(X, V), we choose any f € Cy(X, V). Then for each ¢ > 0 there exists
a compact K < X such that | f|»(xc) < €. By Urysohn’s lemma, there exists h €
C.(X,[0,1]) such that h|x = 1. Then |Af|o(xe) < €, and hence | f — hfio(x) < 2e.
This finishes the proof, since i f € C.(X, V). O

Remark 1.25. Suppose that X is second countable. Then X is Lindelof. Therefore,
X has a countable open cover i = (U, ),ez, whose members U,, are precompact

open subsets of X. In particular, X is o-compact, since X = J, .5, U, where each

U, is compact.

1.3 «-algebras and the Stone-Weierstrass theorem

Recall that F € {R,C}. In this section, we let K be any subfield of C closed
under complex conjugation, such as R, C, Q, Q + iQ.

12



Definition 1.26. A K-algebra is defined to be a ring &/ (not necessarily having 1)
that is also a K-vector space, such that the vector addition agrees with the ring
addition, and the scalar multiplication is compatible with the ring multiplication
in the following sense: for all A €e K and z,y € .7, we have

AMay) = (Az)y = z(\y) (1.5)

A K-algebra is called unital if <7, as a ring, has a multiplicative identity 1. In
this case, we write A - 1 as A if A € K.

A K-algebra is called commutative or abelian if xy = yz forall z,y € </.

If o7 is a K-algebra, then a (K-)subalgebra is a subset % which is invariant un-
der the ring addition, ring multiplication, and scalar multiplication. (Namely, %
is a subring and also a subspace of .7.) If & is unital, then a unital (K-)subalgebra
of &/ is a K-subalgebra containing the identity of .«7. O

Remark 1.27. A unital K-algebra &/ can equivalently be described as a ring with
identity, together with a ring homomorphism C — Z(.%/) where Z(.<) is the cen-
ter of &7, i.e.

Z(d) ={x e :xy=yxforeveryye o}
We leave the verification of this equivalence to the reader.

Example 1.28. If V' is a F-vector space, then End(V), the set of F linear maps
V' — V, is naturally an F-algebra. If V is a normed vector space, then £(V) is an
[F-algebra.

Definition 1.29. A *-K-algebra is defined to be a K-algebra together with an an-
tilinear map * : &/ — & sending « to z* (wWhere “antilinear" means that for every
a,be Cand z,y € & we have (az + by)* = ar* + by*) such that for every z,y € <7,
we have

(@) =x  (2y)* =y a®

Note that * must be bijective. We call * an involution. A *-K-subalgebra % is
defined to be a subalgebra satisfying x € Z iff 2* € A. If &7 is a unital algebra with
unit 1, we say that &7 is a unital *-K-algebra if </ is equipped with an involution
+ : o/ — 4/ such that &/ is a *-algebra, and that

1" =1
A unital *-subalgebra is a unital subalegbra and also a *-subalgebra.

Convention 1.30. We omit “K-" when K is C. For example, a unital *-algebra
means a unital x-C-algebra.

13



Example 1.31. The set of complex n x n matrices C**" is naturally a unital -

algebra if for every A € C"*" we define A* = A', the complex conjugate of the
transpose of A.

Example 1.32. Let X be a set. Then K¥ is naturally a unital K-algebra, and
[*(X,K) is its unital K-subalgebra. If X is a topological space, then C'(X,K) is a
unital K-subalgebra of K¥. If X is compact, then C (X, K) is a unital K-subalgebra
of [*(X,K).

Example 1.33. Let X be a set. Then C* is a unital *-algebra if for every f € C* we
define

ffX-C @) = f@) (1.6)

Then K¥ and (*(X, K) are unital *-K-subalgebras of C*.

Assume that X is a compact topological space. Then C(X,F) is a unital *-IF-
subalgebra of [”(X,F). If f1,..., f, € C(X,F), thenF[f1,..., f.], the set of polyno-
mials of fi, ..., f, with coefficients in F, is a unital F-subalgebra of C'(X,F). And
F[fi, ff, ..., fa, f¥] is a unital *-F-subalgebra of C(X,F). O

More generally, we have:

Example 1.34. Let &/ be an abelian unital K-algebra. Let & — /. Then
K(S&) = Spang{z}* ---a* : k€ Zy,x; € &,n; € N} (1.7)

the set of (possibly non-commutative) polynomials of elements in &, is the small-
est unital K-subalgebra containing &, called the unital K-subalgebra generated
by &. (Here, we understand z° = 1 if z € &/.) Thus, if & is an abelian unital *-
algebra, then C(& U &*) (Where &* = {z* : x € G}) is the smallest unital *-algebra
containing &, called the unital *-K-subalgebra generated by &.

Definition 1.35. Let X be sets. Let (f,)aeca be a family of maps where f, : X — Y,
and Y, is a set. We say that (f,).ca Separates the points of X if for any distinct
x1, 22 € X there exists o € 2 such that f,(x1) # f.(x2). Equivalently, the map

Vi X=]]Ya 2= (fal®))aen (1.8)
e ac
is injective.
Example 1.36. Let X be an LCH space. Then C,.(X, [0, 1]) separates the points of
X.

Proof. Choose any distinct points =,y € X. By Urysohn’s lemma (Rem. 1.20), there
exists f € C.(X,[0,1]) such that f(z) = 1 and Supp(f) < X\{y}. So f separates
Z,Y. O
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Theorem 1.37 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space.
Let & < C(X,F). Suppose that & separates the points of X. Then the -F-subalgebra
F(& u &*) generated by & is dense in C'(X,F) under the [*-norm.

Note that if F = R, then &* = & by (1.6).

If F = C, then since (Q +iQ){(& U &*) is [*-dense in C(G U G*), it is clear that
(Q+1iQ)(6 u &%) is [*-dense in C'(X). Similarly, if F = R, then Q(&) is [*-dense
in C(X,R).

Proof. See [Gui-A, Ch. 15]. H

The following application of the Stone-Weierstrass theorem will be used in
the study of weak-* topology, particularly in the proof of Thm. 2.45. Recall that
C(X,F) is equipped with the [*-norm.

Theorem 1.38. Let X be a compact Hausdorff space. Then the following are equivalent:
(a) X is metrizable.
(b) X is second countable.
(c) Thereis a sequence (fy,)nez, in C(X,F) separating the points of X.
(d) C(X,T) is separable.

Moreover, if (c) is satisfied, then for each R € R, a compatible metric d on X can be
chosen to be

d(z.y) = Y 27" min{|f.(x) — fu(y)|, R}  foreachz,ye X (1.9)

TLEZ+

In particular, if (c) is satisfied and sup,,cz, | fnlix < +o0, we can choose R =
2sup,ez, ||fn]i=. Then (1.9) becomes

d(z,y) = . 27" ful) = fuly)]  foreachz,ye X (1.10)

n€Z+

The Stone-Weierstrass theorem will be used in the direction (¢)=-(d). The
equivalence of (a,b,c) does not rely on the Stone-Weierstrass theorem.

Proof. (a)=(b): By .

(b)=(c): Since X is second countable, we can choose an infinite countable
base (U,)nez of the topology. For each m,n € Z,, if U, € U,, we choose
fmn € Ce(Un, [0,1]) = C.(X, [0, 1]) such that f|; = 1 (which exists by Urysohn’s
lemma); otherwise, we let f,,,, = 0.

Let us prove that { f,,,, : m,n € Z. } separates the points of X: Choose distinct
z,y € X. Since X\{y} € Nbhx(z), there exists U,, containing = and is contained in
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X\{y}. By Cor. 1.17, there exists n such that {z} < U,, € U,,. Then f,, ,(z) = 1 and
fm,n(y) = 0.

(c)=(a,b): Since (f,) separates points, the map

O =\/fu: X >F 2o (fu(e))ner,

is injective. By Cor. 1.9, ® is continuous. Since X is compact, the map & restricts
to a homeomorphism ® : X — ®(X), where ®(X) is equipped with the subspace
topology of the product topology of FZ+. By Prop. 1.10, FZ+ is metrizable and
second countable, so ®(X), and hence X, is metrizable and second countable.
This proves (a) and (b).

By (1.3), the product topology of FZ+ is induced by the metric

d(u,v) = Z 27" min{|u(n) — v(n)|, R} for each u, v € F+

n€Z+

Therefore, the pullback metric ®*6 on X (defined by ®*6(z,y) = d(P(z), P(y)))
induces the topology of X. Clearly ®*§(x,y) equals (1.9).

(0)=(d): Let K = F n (Q + iQ). By Stone-Weierstrass, the countable set
K[{fn : n € Z;}]is dense in C(X,F). Thus C(X,F) is separable.

(d)=(c): By Exp. 1.36, C(X,F) separates the points of X. Therefore, any dense
subset of C'(X,F) separates the points of X. Since C'(X,F) is separable, it has a
countable dense subset separating the points of X. O

1.4 Review of measure theory: general facts
1.4.1 Some useful definitions and their basic properties

Definition 1.39. Let X be a set. Suppose that ¢ is an F-linear subspace of FX. A
positive linear functional on ¢ denotes an [F-linear map A : ¢ — F such that
A(f) = 0forall fe € nRZ,.

Recall that if (X, 90) is a measurable space, an F-valued simple function on X
is an F-linear combination of characteristic functions over measurable sets; that
is, an element of Spany{xg : E € M}.

Definition 1.40. Let X be a set. Let v € X. The Dirac measure 6, of z is defined
to be the measure ¢, : 2¥ — R, satisfying 6,(A) = 1if z € A, and §,(A) = 0 if
r ¢ A

Definition 1.41. Let (X, 7x) be a topological space. Let M — 2¥ be a o-algebra
containing the Borel o-algebra B y. Let i : 9 — R, be a measure. Assume that
one of the following conditions holds:
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(1) X is second countable.
(2) X is LCH, and p|y, is a Radon measure.

The support Supp(y) is defined to be
Supp(u) = {x € X : u(U) > 0 for each U € Nbhy(x)}

Then Supp(y) is a closed subset of X, because we clearly have

X\Supp(p) = | J U

UeTx,u(U)=0

Moreover, we have ;(X\Supp(p)) = 0. Thus, Supp(y) is the largest closed subset
whose complement is p-null.

Proof that X\Supp(p) is null. It suffices to show that if a family of open subsets
(Uqa)aesw is null, then the union U := |, U, is null.

Assume that condition (1) holds. Since any subset of a second countable space
is second countable and hence Lindelof, the set U is Lindelof. So (U, ) has a count-
able subfamily covering U. Therefore, by the countable additivity, U is null.

Assume that condition (2) holds. Since Radon measures are inner regular on
open sets (cf. Def. 1.53), u(U) is the supremum of ;(K) where K runs through all
compact subsets of U. Since K is compact, (U, ) has a finite subfamily covering K.
Therefore K is null, and hence U is null. O

Lemma 1.42. Let ju : 9 — R be as in Def. 1.40, and assume that Condition (1) or (2)
of Def. 1.40 holds. The following are equivalent:

(a) Supp(p) is a finite set.
(b) wis a linear combination of Dirac measures (restricted to ).

Proof. (b)=(a): This is obvious.

(a)=(b): Write E = Supp(p). Choose any measurable f : X — R.y. Then,
since u|x\g = 0, the integral of any measurable function g : X — R, vanishing
ourside F is zero. In particular, we can choose g to be the unique one such that

9+ e (@)X = f. Therefore

ffd# JZJC 2)Xiapdp = Y f(@) - p({z})

E vep el

This shows that u = >, . n({z})d,. N
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1.4.2 Radon-Nikodym derivatives
Fix a measurable space (X, ).

Definition 1.43. Let p, v : 9t — [0, +0] are measures. We say that v is absolutely
continuous with respect to ; and write v « p if any p-null set is v-null. We say
that h € £L(X,R>) is a Radon-Nikodym derivative of v with respect to y if

J fdv = J fhdy  forall f e £(X,Rsp)
X X
By MCT, the above condition is equivalent to
v(E) = J hdp forall E e M
E

We write dv = hdp.

Remark 1.44. If p is o-finite, and if hy, hy are both Radon-Nikodym derivatives of
v with respect to i, then hy(z) = ho(z) for p-a.e. z € X.

Proof. It suffices to assume that p(X) < +oo. For each k € N, let
A ={z e X : hi(z) < ha(z) and hy(x) < k}

Then §, Tndu < ku(X) < +o0, and

f hydp = J dv = J hodp
Ay Ay Ay

Taking subtraction, we get SAk(hg —hi)dp=0.Let A=, Ar = {r e X : ly(x) <
hao(z)}. By MCT, § , (ha—hy)dp = 0. Since ho —hy = 0 on A, we conclude hy —hy = 0
p-a.e. on A, and hence ;(A) = 0. Similarly, 4(B) = 0 where B = {z € X : hy(z) >
ho(x)}. O

Remark 1.45. If v is o-finite, and if dv = hdy, then h(z) < +oo for u-a.e. x € X.

Proof. Let A = {x € A: h(x) = +o0}. Since v is o-finite, we can write A = | J, v A
where Aj, € M and v(A;) < +o0. Since v(Ax) = §, hdu = +oou(Ax), we have
1(Ag) =0, and hence p(A) = 0. O

Theorem 1.46 (Radon-Nikodym theorem). Assume that pu,v : 9 — [0,+00] are
o-finite measures. Then v < y iff v has a Radon-Nikodym derivative with respect to pu.

Proof. “<" is obvious. Let us prove “=". It is easy to reduce to the case that
w(X),v(X) < +o0. Let dyp = dp + dv. So p, v < 1. Therefore, the linear functional

NPX ) -C g | g
X
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is bounded. Since L*(X, ) is a Hilbert space (Thm. 1.48), by the Riesz-Fréchet
theorem, there exists f € L?(X,¢) such that {, {dv = {, £ fdy forall € € L*(X, 1)).
Since A sends positive functions to Ry, after adding an v-a.e. function to £, we
have 1) > 0 everywhere.

We have found f € L£(X,Rs) such that du = fdi. Similarly, we have g €
L(X,Rsg) such that dv = gdi. Since p < ¢ « p, we have f > 0 outside a ¥-null
set A. Let h = g/f outside A, and h = 0 on A. Then dv = hdpu. O

1.4.3 LP-spaces

Let (X, 90, ) be a measure space. Let 1 < p,¢ < +oosuch thatp™ + ¢! = 1.

Theorem 1.47. Let 1 < p < +o0. Then the set of integrable F-valued simple functions
is dense in LP(X, pu, IF). In other words,

{xg: E <M uE) < +o}
spans a dense subspace of LP(X, j1, IF).
Proof. See [Gui-A, Sec. 27.2]. O

Theorem 1.48 (Riesz-Fischer theorem, the modern form). The normed vector space
LP(X, p, ) is (Cauchy) complete. Moreover, any Cauchy sequence in LP(X, 1, F) has a
subseqence converging i-a.e..

Proof. See [Gui-A, Sec. 27.3]. O

Lemma 1.49. Assume that (X, p) is o-finite. Let S, be the set of simple functions X —
R=¢. Then for each f € L(X,R>,) we have

| fllzr(x ) = sup { f fadp g€ Se,|glraxy < 1} (1.11)
X

Consequently, for each f € L(X, C) we have

i = sun{ [ 1fal: 92 2965 . Igly < 1} (112
Proof. By Holder’s inequality, we have “=". To prove “<", we note that (1.12)
follows immediately from (1.11) by writing f = u|f| where v € L£(X,S') and
applying (1.11) to | f|. Thus, in the following, we assume f € £(X, Rxy).

Case 1 < p < +oo: Choose an increasing sequence (f,) (i.e. fi < fo < ---)
in S, converging pointwise to f such that each f, vanishes outside a measurable
p-finite set. Let g, = (f,)?~'. After removing the first several terms, we assume
|gn| e > 0 for all n. Then

0 < [lgally = Ifally/? < +o0
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By MCT, we have lim, |g.[, = | f|5/? and lim,, §y fg. = | 2. Thus, if | f], < +o0,
then

im oIy | fon = 11157111 = 151,

This proves (1.11) when | f|, < +co. If || f|, = +, then, by MCT, | .|, < + can
be sufficiently large. Applying (1.11) to f,,, we obtain g € S; such that ||g||, < 1
and { f,g is sufficiently large, and hence { f¢ is sufficiently large. Thus (1.11) holds
again.

Casep =1:Letg = 1.

Case p = +00: Write X = [, 2, where Q,, € 9t and p(2,) < 4+00. Choose
any 0 < A < [ f|e. Then A := {|f| > A} satisfies u(A) > 0. Thus, there exists n
such that 0 < (A N §,) < +w. Let g = xanq, /(AN Q). Thenge S, gl = 1,
and { fg > A. This proves (1.11). O

Theorem 1.50. Assume that (X, p) is o-finite. Assume 1 < p < +oo. Then we have an
isomorphism of normed vector spaces

UL F) - DX E) e (ge DX F) o L fodn)  (L13)

When p < +o, the assumption on o-finiteness can be removed. See [Fol-R,
Sec. 6.2]. When p = 2, this is simply due to the completeness of L*(X, p1, F) and
the Riesz-Fréchet theorem.

Proof. By Holder’s inequality and Lem. 1.49, W is an isometry. Let us show that
any A € L9(X, i, IF)* belongs to the range of V.

Step 1. By considering the real and imaginary parts, we can first assume that
Aisreal, ie., A(f) e Rforany f e LY(X, p,Rx).

Let us define Ry (-linear maps A*, A~ : LI(X, u,R5y) — R, with operator
norms < [A[, i.e.,

IA ()| < A[-lgly  forallge LU(X, p,Rso) (1.14)
and let us check that
Ag)=A"(9) —A (g)  forallge LI(X, u,Rxo) (1.15)

Eq. (1.15) is called the Jordan decomposition of A.
Define the A* : L9(X, u,R>o) — R by sending each g € LY(X, 1, R5) to

A (g) = sup{+A(h) : he LUX, u,R=p), h < g} (1.16)

Since 0 < g, we clearly have A*(g) > 0. Since A is bounded and |A|, < |g|,
we clearly have |[A*(g)| < |A] - |lgls- In particular, A* has range in R>,. Since
A* = (=A)7, a similar property holds for A~. Thus, we have checked (1.14).
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Clearly, for each f,g € L'(X, u,Rso), we have AT(f + g) = AT(f) + A*(g). To
prove the other direction, choose any h € LI(X, 1, R5¢) such that h < f + g. Let
hy = fh/(f+g)and hy = gh/(f+g), understood to be zero where the denominator
vanishes. Then hy, hy € L' (X, 4, Rx0) and hy < f and hy < g. This proves A*(f +
g) < AY(f)+ A*(g). Thus A" (and similarly A™) is Rx-linear.

From (1.16), one easily checks A(g) + A~ (g) < A*(g) foreach f € LI(X, u, Rxy).
Replacing A with —A, we get —A(g) + A" (g) < A (g). Thus (1.15) holds.

Step 2. Let us prove that A" is represented by some f* € LP(X, 1, R5(), namely,

A= | Frodu  forallge LY. Re (1.17)
X

Then, similarly, A~ is represented by some f~ € LP(X, p,Rxo). Thus A is repre-
sented by f* — f~, finishing the proof.

Write X = ||, X,, where u(X,) < +oo. Suppose that we can find [,/ €
LP(X,, 1) representing A*|Lq(x, ), then we can define f* : X — Ry, such that
f*|x, = fu for all n. Clearly f* represents A*. In particular, by Lem. 1.49 and
(1.14), [ f*], < |A] < +oc. Thus f e LP(X, p).

Therefore, according to the previous paragraph, we may assume at the begin-
ning that ;(X) < +00. Define

v: M —[0,+x0] E — A(xg)

Then one checks easily that v is a measure,! and that v « p. Therefore, by the
Radon-Nikodym Thm. 1.46, there exists f* € L£(X,R5,) such that dv = f*du.
Thus

AT (g) = f gdv = J fTgdu  for each simple function g € LY(X, u,R5o) (1.18)
X X

Lem. 1.49 and (1.14) then imply | f*|, < |A| < +o0, and hence f € LP(X, u,Rxy).
Finally, for g € L(X, u,R5y), find an increasing sequence of simple functions
gn € LU(X, u,Rs) converging pointwise to g. By (1.14), AT (g —g,) < |A]- g — gnl4
where the RHS converges to zero by DCT. By MCT, § . f*g,du — §, f*gdpu. Thus,
by (1.18), we conclude (1.17). O

1.5 Review of measure theory: Radon measures
1.5.1 Radon measures and the Riesz-Markov representation theorem

Let X be LCH. The reference for this subsection is [Gui-A, Ch. 25].

1To check the countable additivity, we let £y < E5  --- be measurable and E = | J,, E,,. Let
F, = E\E,. By (1.14), v(F},) < HAH,u(Fnﬁ — 0. Thus v(E,) — v(E).
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Definition 1.51. Let M < 2X bea o algebra containing B x, and let 1 : M — @20
be a measure. Let £/ € 9. We say that p is outer regular on E if

u(E) =inf{p(U) : U o E,U is open}
We say that . is inner regular on E if
pu(E) = sup{u(K) : K ¢ E, K is compact}
We say that 1 is regular on FE if ;1 is both outer and inner regular on E.

Lemma 1.52. Let ;1 : Bx — R be a Borel measure. Let U = X be open. Then

sup {u(K) : K < U, K is compact} = sup { JX fdu : f e C.(U,]0, 1])}

Therefore, 1 is inner regular on U iff

p(U) = sup | L fau: f e CU.[0.1)}

Proof. Let A, B denote the LHS and the RHS. If f € C.(U, [0, 1]), then setting K =
Supp(f), we have u(K) = §, xxdp = { fdp. This proves A > B.

Conversely, let K < U. By Urysohn’s lemma, there exists f € C.(U, [0, 1]) such
that f|x = 1. So u(K) = §, xxdp < § fdp. This proves A < B. O

Definition 1.53. A Borel measure j : Bx — R is called a Radon measure if the
following conditions are satisfied:

(a) pis outer regular on Borel sets.

(b) p is inner regular on open sets. Equivalently, for each open U < X, we have
u(©) = sup { [ dus f e Cuv.fo.11)} (1.19)
X

() u(K) < +oo if K is a compact subset of X. Equivalently, for each f €
C.(X,R5() we have

f fdu < +o0 (1.20)
X

Proof of equivalence. The equivalence in (b) is due to Lem. 1.52. The equivalence
in (c) can be proved in a similar way to Lem. 1.52. O

Remark 1.54. There exist canonical bijections among;:
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* R--linear maps C.(X,Rx() — Rxy
 Positive linear functionals on C.(X, R).

e Positive linear functionals on C.(X) = C.(X, C).

Proof. An Ry-linear map A : C.(X,R5y) — R5( can be extended uniquely to a
linear map A : C.(X,R) — R due to the following Lem. 1.55. The latter can be
extended to a linear functional on C.(X) by setting A(f) = A(Ref) + iA(Imf) for
all C.(X). O

Lemma 1.55. Let K be an Rxq-linear subspace of an R-vector space V. Let W be an
R-linear space. Let I' : K — W be an Ry-linear map. Suppose that V' = SpangK.
Then T can be extended uniquely to an R-linear map A : V' — W.

Proof. The uniqueness is obvious. To prove the existence, note that any v € V' can
be written as

v=v" —v"

where v* v~ € K. (Proof: Since V = Spang K, we have v = aju; + -+ - + aptly, —
bijwy — - -+ — byw, where each u;, w; are in K, and each a;, b; are in R>,. One sets
vt =2 au;and vT = 3 bjw;.) We then define A(v) = T'(v*) —T'(v7).

Let us show that this gives a well-defined map A : V' — W. Assume that
v=w"—w" wherew",w™ € K. ThenI'(v") —T'(v") = I'(w*) = T'(w™) iff ['(v") +
F(w™) =T'(v7) + I'(wt), iff (by the additivity of I') I'(v* + w™) = I'(v™ +w™). The
last statement is true because v* — v~ = w* —w™ implies v* + w™ = v~ + w*.

It is easy to see that A is additive. If ¢ > 0, then cv = cv* —cv™ where cv*, cv™ €
K. So A(cv) = I'(cv™) — I'(cv™), which (by the R -linearity of I') equals cI'(v*) —
c'(v™) = ¢A(v). Since —v = v~ —v*, we have A(—v) = I'(v™) = T'(v*) = —A(v).
Hence A(—cv) = c¢A(—v) = —cA(v). This proves that A commutes with the R-
multiplication. O

Theorem 1.56 (Riesz-Markov representation theorem). For every positive linear
A C.(X,F) — F there exists a unique Radon measure i : Bx — Rx such that

A(f) = L fdu (1.21)

forall f e C.(X,F). Moreover, every Radon measure on X arises from some A in this
way.

In addition, the operator norm |A| equals u(X). Therefore, A is bounded iff u is a
finite measure.

Proof. See [Gui-A, Sec. 25.3] for the first paragraph. The second paragraph asserts
that

sup  [A(S)] = w(X)

feBc,(x)(0,1)

The inequality “<" is obvious. The reverse inequality “=" follows from (1.19). [
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1.5.2 Basic properties of Radon measures

Theorem 1.57. Let 1 be a Radon measure (or its completion) on X. Then (i is regular on
any measurable set E satisfying u(E) < +oo.

Proof. See [Gui-A, Sec. 25.4]. A sketch of the proof (different from that in [Gui-A])
is as follows.

Assume WLOG that E is Borel. Since Radon measures are outer regular on
Borel sets, it remains to prove that y is inner regular on E. Pick an open set (U)
such that ¢(U\E) is small. Since . is inner regular on U, there is a compact K < U
such that x(U\K) is small. However, K is not necessarily contained in E.

To fix this issue, we note that since p is outer regular on U\ E, we can find an
open set V' < U containing U\ E whose measure is close to u(U\E). In particular,
wu(V) is small. Then K\V is a compact subset of £ whose measure is close to
w(E). O

Theorem 1.58. Assume that X is second countable. Let p be a Borel measure on X.
Then yu is Radon iff 1K) < +oo for any compact K < X.

In particular, a finite Borel measure on R" (where n € N) is Radon.

Proof. See [Gui-A, Sec. 25.5]. m

1.5.3 Approximation and density

The main reference for this subsection is [Gui-A, Sec. 27.2].

Theorem 1.59 (Lusin’s theorem). Let X be LCH. Let u be a Radon measure (or its
completion) on X with o-algebra M. Let f : X — F be measurable. Let A € 9 such that
w(A) < 400. Then for each € > 0 there exists a compact K < A such that n(A\K) < ¢
and that f|x : K — F is continuous.

With the help of the Tietze extension Thm. 1.22, Lusin’s theorem implies that
for each € > 0 there exist a compact X < A and some f € C.(X,F) such that
fle = flx and pu(A\K) < e.

Proof. See [Gui-A, Sec. 25.4]. H

Theorem 1.60. Let 1 < p < +oo. Let ;i be a Radon measure (or its completion) on an
LCH space X. Then, under the LP-norm, the space C.(X,F) is dense in L*(X, u,F).
More precisely, the map f € C.(X,F) — f e LP(X, u,F) has dense range.

Proof. See [Gui-A, Sec. 27.2]. H
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Remark 1.61. One easily checks that

Spang{x; : I = Ris a bounded interval}
=Spanp{xs : I < Ris a compact interval}
=Spang{x; : I < Ris abounded open interval}

An element in these sets is called an F-valued step function. Moreover, one
checks that

{right-continuous F-valued step functions} = Spang{x[.s : a,b € R}
{left-continuous F-valued step functions} = Spang{x (s : a,b € R}

Theorem 1.62. Let 1 < p < +o0. Let p1 be a Radon measure (or its completion) on R.
Then each of the following classes of functions form a dense subset of LP(R, y1, F):

(a) Right-continuous F-valued step functions.
(b) Left-continuous F-valued step functions.
(c) Elements of Spangp{x (- : b € R}.

(d) Elements of Spang{x(—wyp) : b€ R}.

Proof. With the help of Thm. 1.60, the density of (a) and (b) can be proved by
approximating a function f € C.(X, F) with left/right-continuous step functions.
See [Gui-A, Sec. 27.2] for details.

Since (a)c(c) and (b)<=(d), the density of (c) and (d) follows. O

Theorem 1.63. Let 1 < p < +o0. Let pu be a Radon measure (or its completion) on a
second countable LCH space X. Then L?(X, u,F) is separable.

Proof. See [Gui-A, Sec. 27.2]. m

1.5.4 Complex Radon measures

Definition 1.64. If X is a set and 9 < 2% is a o-algebra, a complex measure (resp.
signed measure) is a function 9 — C (resp. M — R) that can be written as a
C-linear (resp. R-linear) combination of finite measures on 1.

We now assume that X is LCH.

Definition 1.65. A complex (resp. signed) measure on By is called Radon if it is
a C-linear (resp. R-linear) combination of finite Radon measures.
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Suppose that p is a complex Radon measure on X. Then similar to the proof
of Rem. 1.54, for each f € Cy(X), we can extend the R.y-linear functional f —
§x fdu, where p are finite Radon measures, to y — {, fdu for all complex Radon
measures p. This gives a C-bilinear map

(f 1) — L fdu  eC

for f € Cy(X) and complex Radon measures .

Theorem 1.66 (Riesz-Markov representation theorem). Let F = C (resp. F = R.)
Then the elements of C.(X,F)* are precisely linear functionals

A:C.(X,F)—>F fHJde,u

where 1 is complex (resp. signed) Radon measure on X.

Proof. It suffices to assume that A is real, i.e., sending C.(X,R) into R. Similar to
the proof of Thm. 1.50, one writes A = A™ — A~ where AT are positive. Then apply
Thm. 1.56 to A*. See [Gui-A, Subsec. 25.10.2] for details. O

Remark 1.67. Since C.(X,F) is [*-dense in Cy(X, F), by Cor. 2.28, the dual spaces
Co(X,F)* and Cy(X,F)* are canonically identified. Therefore, Thm. 1.66 holds
verbatim if C..(X, F) is replaced by Cy (X, F).

1.6 Basic facts about increasing functions
1.6.1 Notation

If I < Ris a proper interval, a function p : I — R is called increasing if it is
non-decreasing, i.e., p(z) < p(y) whenever z,y € [ and x < y. Foreach t € R, let

Igt = [ M (—Oo,t] I<t = I M (—Oo,t) IZt = [ M [t, +OO) I>t = [ M (t, +OO>

Suppose that @ = inf I and b = sup . Let p : I — R be increasing. If = € (a,b),
then the left and right limits®

p(z7) = lim p(y)  p(z") = Lm p(y) (1.22)

Y=~ y—aT

exist, and

plz”) < plx) < p(z7™)

2When taking the limit lim,,_,,+, we do not allow y to be equal to x.
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If a € I, then p(a™) exists, and p(a) < p(a*). If b € I, then p(b~) exists, and
p(b™) < p(b). Let

Q, = {z € (a,b) : p|(ap is continuous at x}
Then for each x € (a,b), we have

xef, < pla7)=p@a") < pla7)=p)=p") (1.23)

1.6.2 Basic properties of increasing functions

Let I < R be a proper interval with a = inf I, b = sup I.
Proposition 1.68. If p : I — R is increasing, then 1\, is countable.

Proof. Replacing p with arctan op, we may assume that p is bounded. Let C' =
diam(p(I)) = sup, ,e; [p(z) — p(y)|- Let A = (a,b)\Q,. Then for each B € fin(24),
we have

N (ple*) = pla™)) < C

Applying limp, we get >, (p(2") — p(z7)) < C < +o0. Therefore A is countable.
[

Definition 1.69. Let p : I — R. The right-continuous normalization of p is the
function p : I — R defined by

- plxt) ifz <b
(z) = { p(b)  ifz=b

The function p is clearly increasing and right-continuous. Moreover, p clearly
agrees with p on €2,,. Therefore, p and p are almost equal, as defined by the follow-
ing proposition.

Proposition 1.70. Let p1, p2 : I — R be increasing. Then the following are equivalent:
(a) There exists a dense subset E — I such that p,|g = ps|E.
(b) Q, = Q,,, and pila, = pola,,-
(c) The right-continuous normalizations of p; and p, agree on I,

If any of these statements are true, we say that py, p, are almost equal.
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Proof. (a)=(b): Assume (a). Choose any z € [. If x > a then

pi(z”) = lim pi(y) = pdim p2(y) = pa(a”) (1.24a)

Esy—a~
Similarly, if x < b then
pi(x") = pa(z”) (1.24b)
Thus (b) follows from (1.23).
(b)=(a): By Prop. 1.68, E := (a,b) n €2, is a dense subset of (a, b).

(b)<=(c): Let p; be the right continuous normalization of p;,. Then by (a)=(b),
we have Q,, = Q; and ,01'|Qpi = ﬁi‘gﬁi. Therefore, (b) holds iff

Qﬁl = QﬁQ and ﬁl‘Qﬁl = 52‘952 (125)

Clearly (c) implies (1.25). Suppose that (1.25) is true. Then for each =z € I, we
have

(1.24b) ~
P2(fﬁ+) = pa(x)

pr(z) = pi(x’)

Thus (1.25) implies (c). Therefore (b) and (c) are equivalent. O

1.7 The Stieltjes integral
1.7.1 Definitions and basic properties

In this subsection, we fix a proper interval / ¢ R, and let p : I — R, be an
increasing function.

Definition 1.71. Let J be any proper bounded interval. Let a = inf J,b = sup J. A
partition of the interval J is defined to be an element of the form

o={ag,a1,...,an€la,bl:aqp=a<a;<ay<---<a,=bne’Z.} (1.26)
The mesh of o is defined to be
max{ai—aizl:i: 1,...,77,}

If 0,0’ € fin(27) are partitions of J, we say that ¢’ is a refinement of o (or that o’
is finer than o), if 0 < ¢’. In this case, we also write

/
<o

We define P(J) to be
P(J) = {partitions of J}
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Remark 1.72. If 5,0’ € P(J), then clearly cuo’ € P(J) and 0,0’ < ouo. Therefore,
< is a partial order on P(J). We call o U ¢’ the common refinement of o and o’

Definition 1.73. A tagged partition of I is an ordered pair

(0,&) = ({ao =a<a <---<a,=>b},(&,... ,én)) (1.27)
where o € P(J) and

§i € (aj-1,05]
forall 1 < j < n. The set
Q(J) = {tagged partitions of J}
equipped with the preorder < defined by
(0,6) < (0",&) ==  ocd (1.28)

is a directed set.

Definition 1.74. Let V' be a Banach space. Assume [a,b] < [ and a < b. Let
f € C([a,b],V). For each (c,&,) € Q(I), define the Stieltjes sum

So(f,0,6) = > (&) (play) — plaj_1))

7j=1

abbreviated to S(f, o, &) when no confusion arises. The Stieltjes integral on (a, b]

is defined to be the limit of the net (S,(f, 0, &.))(0.c.)c0([a.b]):
dp= i S 1.29
J(a,b] fdp = o o(f.0,8) (1.29)

The Stieltjes integral on [, b] is defined to be

r

] fdp = f(a)p(a) + fdp (1.30)
[a,b] (a,b]

Note that when f(a) # 0, the integral S(%b] fdp depends not only on p| (s but
also on the value p(a). On the other hand, it is clear that

fdp = fdpliap fdp = fdplian (1.31)
(a,b] (a,b] [a,b] [a,b]

Proof of the convergence of (1.29). Since f is uniformly continuous, for each € > 0,
there exists § > 0 such that | f(z) — f(y)| < eforall z,y € [a,b] and |z —y| < ¢
Choose any tagged partition (o, &,) of [a,b] with mesh < §. Then one easily sees
that for any (¢',€,) > (0,&) we have

[S(f,0",€0) = S(f,0.8) < £(p(b) — pla))

Therefore, the net (S(f, 0,&.))(0..)c0() is Cauchy. So it must converge because V'
is complete. O]
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Remark 1.75. The above proof implies the following useful fact: Let f € [a, b]. Let
e,0 > O such that | f(x) — f(y)| < e forall z,y € [a, b] satistfying |z — y| < . Then
for each tagged partition (o, £,) of [a, b] with mesh < §, we have

fdp—S,(f,0,8.)| <e(p(b) — p(a)) (1.32)

o

and hence

||, o= r@nt@) = 5,(5.0.€)] < <(o(t) — ) (1.33)

Example 1.76. The integrals of the constant function 1 are

f dp = p(b) — pla) j dp = p(b)
(a,b] [a,b]

Example 1.77. Suppose that p|, 5 = 1. Then

- fdp = f(a)(1 = p(a)) - fdp = f(a)

In particular, if p|f. 5 = 1, thenj fdp =0and fdp = f(a).
(a,b] [a,b]

Remark 1.78. It is easy to see that

A:C([a,b],V) >V f fdp
[a,b]

is linear. Moreover, since |S(f,0,&)| < (p(b) — p(a))| f|» and hence || f(a)p(a) +
S(f,0,&)| < p)| fli=, the operator norm |A| satisfies | Al < p(b), that is

H Jab fdPH )| fle  forall feC([a,b],V)

In particular, A is bounded.

Remark 1.79. It is easy to check that p — S(a y fdpand p — S[a s/ dp are Rxo-linear
over increasing functions p : [a,b] — Rx(. Moreover, if ¢ € (a, b), one easily shows

fdp = fdp + fdp (1.34)
(a,b] (a,c] (C,b]

by considering tagged partitions finer than {a, ¢, b}.

Exp. 1.77 suggests that the value of S[a,b] fdp is independent of p(a):

30



Lemma 1.80. Suppose that p, p> : [a,b] — Ry are increasing and satisfies pi|(qp) =

p2(ap)- Then for each f € C([a,b], V) we have fdp = fdps.
[a,b] [a,b]

See Thm. 1.82 for a generalization of this lemma.

Proof. Assume WLOG that p;(a) < p2(a). Let A = pa(a) — p1(a). Then py — py =
A Xia} = A+ (1 = X(ap]), and hence p; + A = pa + A - X(4,47- By Rem. 1.79,

fdpr + A fdl = fdpa + X fdX(ap)
[a,b] [a,b] [a,b] [a,b]

By Exp. 1.79, we obtain S[a o fdp1 = S[a o fdp2- O

1.7.2 Dependence of the Stieltjes integral on p

Let I = R be a proper interval, and let a = inf / and b = sup /. Note that I is
not assumed to be bounded.

Definition 1.81. For each f € C.(,V) and each increasing p : I — R, we can still
define the Stieltjes integral
| 140 | 1ap
I 7

where J is any compact sub-interval of I/ containing Supp;(f). The value of the
integral is clearly independent of the choice of such J. Moreover, this definition
is compatible with the definitions of S[a y fdpand S(a »y fdpin Def. 1.74.

Theorem 1.82. Let p1,p2 : I — Ry be increasing functions satisfying the following
condition:

* py and py are almost equal, and p;(b) = p2(b) if b € 1. (By Prop. 1.70, this is
equivalent to that py, p; have the same right-continuous normalization.)

Then for each f € C.(1,V'), we have

L fdp = Lfdpz

Proof. By Lem. 1.80, we may assume that p;(a) = p2(a) ifa € I.

Fix f € C.(I,V). Choose «, § € R satisfying Supp,;(f) < [a, 5] < I. Due to the
assumption on py, p2, we may slightly enlarge the compact interval J := [«, 3] so
that

p1(a) = pa(a) p1(B) = p2(B)
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(Whena € I'resp. b€ I, onecanevenseta = aresp. § = b.) Then §, fdp; = {, fdp;.

Let C' = max{p;(8) — pi(v) : i = 1,2}. Choose any ¢ > 0. Since f is uniformly
continuous, there exists ¢ > 0 such that |f(z) — f(y)| < € whenever =,y € I and
|z — y| < 0. Choose a tagged partition

(0,6)={ao=a<a < - <a,=08}(&,...,&))

of J with mesh < §. Moreover, due to the assumption on py, py, by a slight adjust-
ment, we may assume that p;(a;) = pa2(a;) for each 0 < j < n. This implies

Spl (f> g, 60) = sz (f> g, €°>
Therefore, by Rem. 1.75, we obtain

)Lfdpl‘fjfdpz\\<2a-c

This completes the proof by choosing arbitrary «. O

Theorem 1.83. Let p1, p2 : I — Rx be bounded increasing functions satisfying

lim py(z) = lim, pa(x) =0 ifag¢l (1.35)

rz—at T—a
Then the following are equivalent:

(1) p1 and py are almost equal, and p,(b) = pa(b) if b € I. (By Prop. 1.70, this is
equivalent to that py, ps have the same right-continuous normalization.)

L Fdp = Lfdpz

Proof. By Thm. 1.82, we have “(1)=(2)". Assume (2). Let us prove (1). Let p; be
the right-normalization of p;. By “(1)=(2)", we have {, fdp; = §, fdp;. Therefore,
to prove (1), it suffices to assume that p; and p, are right-continuous on /.

We shall prove (1) by choosing an arbitrary bounded increasing right-
continuous p : I — R, and show that for each x € I, the value p(z) can be
recovered from the integrals §, fdp where f € C.(I,R).

Case 1: Assume a ¢ I and a < x < b. For each real numbers v, y satisfying

(2) Foreach f € C.(I,F) we have

a<v<zr<y<b
choose ¢, € C.(I, [0, 1]) satisfying

X[vz] S Poy S X(ay]
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Choose u € (a,v) such that ¢, , vanishes outside [u, y]. Then by Rem. 1.79,

J Spv,ydp = f Qov,ydp = @U,y(u) + f (;Ov,ydp + J cpv,ydp + f Spv,ydp
I [w.y] (u,v] (v,2] (z,]

:J( ) Sov,ydp + p(SL’) - IO<U) + J Spv,ydp

(z,y]
where Exp. 1.76 is used in the last equality. By Rem. 1.75, we have S(W] Poydp <
p(v) —p(u) < p(v) and S(w] ©uydp < (p(y) — p(x)). Since p is right-continuous and
satisfies (1.35), we have

Jim p(v) = ylir;g(p(y) —p(z)) =0

Therefore, the above calculation of {, ¢, ,dp shows
lim vudp = lim (p(z) — p(v)) = p(x
Jim | Guydp U\ﬁ(p( ) = p(v)) = p(x)
YNt

Case2: Assumea € [ and a < z < b. Foreachy € (z,b), choose ¢, € C.(1, [0, 1])
such that (4] < ¢y < X[ay)- Similar to the argument in Case 1, one shows

f pydp = f Pydp + f pydp = p(z) + J pydp
1 [a.2] (2] (z]

where Exp. 1.76 is used. By Rem. 1.75, S(Ly] wydp < p(y) — p(x). Therefore, the
right-continuity of p implies

lim dp = p(x
Jim, ] ydp p(z)

Case 3: Assume I = (a,b] and © = b. For each v € (a,x), choose ¢, €
C.(1,[0,1]) such that x[, 5 < ¢» < x7. Similar to the argument above,

lim wdp = p(b
Jim | eudp p(b)

Case 4: Assume [ = [a,b] and = b. Then f dp = p(b). O
I

Remark 1.84. The assumption (1.35) imposes little restriction. Indeed, suppose
a ¢ I. Then for each f € C.(I), since there exists v € R., such that f vanishes on
(a,v], for any constant » € R with p + » > 0, we clearly have

| s = satp+ (1.36)

Therefore, when a ¢ I, given any two increasing functions pq, p2 : I — Ry, we
can freely add constants to p; and p, to ensure that (1.35) holds.
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1.8 The Riesz representation theorem via the Stieltjes integral

In this section, we fix a proper interval I — R, and let @ = inf I and b = sup I.

1.8.1 The positive case

Theorem 1.85 (Riesz representation theorem). We have a bijection between:

(a) A bounded increasing right-continuous function p : I — Ry satisfying
lim, ,,+ p(a) =0ifa ¢ 1.

(b) A bounded positive linear functional A : C.(I,F) — F.

A is determined by p by
A:CUI,F)>F  f J fdp (1.37)
I

p is determined by A by
plx) = p(ley)  forallzel (1.38)

where 11 is the finite Borel measure on I associated to A as in the Riesz-Markov represen-
tation Thm. 1.56.

Note that by Thm. 1.58, finite Borel measures on I and finite Radon measures
on [ coincide.

Proof. Step 1. Thm. 1.56 establishes the equivalence between a bounded positive
linear A and a finite Borel measure ;.. We let prove the equivalence between the
radon measures ; and the functions p satisfying (a).

More precisely, given a Radon measure . on I, let p, : I — R be defined by
(1.38), that is, for each = € I we have

pu(®) = pl<s) (1.39)

Then p,, is clearly bounded and increasing. By DCT, p, is right-continuous, and
we have lim,_,,- p(z) = 0 when a ¢ I. Therefore, p, satisfies (a).

Conversely, given any p satisfying (a), let u, be the unique Radon measure
corresponding to p via (1.37), i.e., for each f € C.(I,F) we have

L Fu, = L fdp (1.40)

By Rem. 1.78, the linear functional f € C.(I,F) — S] fdpis bounded with operator
norm < sup,; p(z). Thus, p, is a finite measure.
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We want to show that ® : p — p, and ¥ : u — p, are inverses of each other. By
Thm. 1.83, the map @ is injective. Therefore, it suffices to prove that ® o ¥ = id,
i.e., that p,, = p. This means proving

Lfdu = Lfdpu (1.41)

for each f € C.(I,F).

Step 2. Let us fix f € C.(I,F) and prove (1.41). Choose «, 5 € R such that
J := |, f] is a sub-interval of I containing Supp;(f). Choose any ¢ > 0. Since f
is uniformly continuous, there exists § > 0 such that |f(z) — f(y)| < ¢ whenever
z,y € I and |z — y| < 6. Choose a tagged partition

(0,&) = ({ao =a<aq <---<ay :B},(fl,...,fn))
of J with mesh < 4. By Rem. 1.75, we have

| 1o, = @)o@) = 5, (1.0 < 2(0(3) = (o) = - ul(@.B) (142

Also, we have | f — g//»(1) < € where

g = f(a)X{a} + Z f(g’i)x(aiflyai]
i=1

By (1.38), we have

p({a}) = pula) — pll<a) p((aizr, ai]) = pulai) — pu(ai-1)

Note that if f(a) # 0, then by Supp,(f) < |«, 5], we must have a = a € [ and
hence /., = . Therefore, we must have

L gdpi = [(0)pulc) + 5o (f.0,E.)

Combining this fact with | f — g[(;) < &, we get

‘ Lfdu — fla@)pu(a) = Sp, ([ 11,6)

<e-p(J)
This inequality, together with (1.42), implies

| fau=| sdo <20

Since ¢ is arbitrary, we conclude (1.41). ]
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1.8.2 The general case

Definition 1.86. A real-valued function / — F is called of bounded variation
(or simply BV) if it is an [F-linear combination of bounded increasing functions
I — R. The space of BV functions from I to F is denoted by BV (I, F).

Remark 1.87. By Rem. 1.78 and 1.79, we have an R -bilinear functional

(f.p) — L fdo  eRsg

for f € C.(I,R5() and bounded increasing p : I — Rs(. Similar to the proof of
Rem. 1.54, it can be extended to a positive bililinear functional

C.(I.C) x BV(I,C) > C  (f.p) L fdp

Theorem 1.88 (Riesz representation theorem). The elements of the dual space
C.(1,TF)* are precisely linear functionals of the form

A:C(,F)—F fHLfdp

where p € BV (1,F). Moreover, the BV function p can be chosen such that it is right-
continuous on I, and that lim, .+ p(z) = 0ifa ¢ I.

Proof. This is immediate from Thm. 1.66 and 1.85. O
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2 Normed vector spaces and their dual spaces

2.1 The origin of dual spaces in the calculus of variations

Linear functional analysis treats function spaces as linear spaces with appro-
priate geometric/topological structures and analytic properties. In the founda-
tional theory of functional analysis, two analytic properties are especially impor-
tant: (Cauchy) completeness and duality. In this course, our focus is primarily
on normed vector spaces V. For such spaces, Cauchy completeness is interpreted
in the same way as in any metric space. Duality, on the other hand, refers to the
natural identification of V' as the dual space V'* of another normed vector space
U.

Many early results in functional analysis were related to duality, while the sig-
nificance of completeness was not immediately recognized. In fact, the history of
functional analysis experienced a paradigm shift from the study of (scalar-valued)
functionals to linear maps between vector spaces. Specifically, attention moved
from continuous bilinear maps of the form U x V' — F to the analysis of contin-
uous linear maps V' — W, where U, V, W are normed vector spaces. With this
shift, completeness became increasingly central to modern analysis. See Sec. 2.5
for further illustrations.

The early part of this course will also focus more on dual spaces. If V is
a normed [F-vector space, then the dual space V* = £(V,F) is defined to be
the space of bounded (i.e. continuous) linear maps V' — F. One of the major
themes in early functional analysis was the characterization of dual spaces of var-
ious function spaces under appropriate norms. Among the most notable results
are F. Riesz’s characterization of C([a,b],R)* (cf. Thm. 1.88) in [Rie09, Riell],
and his proof that L9([a,b], m,R)* ~ LP([a,b],m,R) (cf. Thm. 1.50) in [RielO].
These results highlight a profound connection between dual spaces and mea-
sure/integration theory. Nevertheless, the study of dual spaces originally arose
from a somewhat different field: the calculus of variations in the 19th century.

Consider a nonlinear functional S : f — S(f) € R, for example, of the form

S() = [ LU £ 0

a

where L is a “nice" real valued function with r-variables, and f is defined on [a, b].
If we perturb f slightly by a variation 7, then the corresponding change in S can
be approximated by

5SLf.n) = S(fF +m) — S(f) ~ f B5(t) - n(t)dt @.1)

where 3 : [a,b] — R is a function depending on f. This function should be
interpreted loosely. In some cases, it may involve delta functions or similar objects
that are not functions in the classical sense, but rather distributions:
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Example 2.1. Consider the case where L is smooth and r = 1, i.e.

(For example, L(z,y) = T(y) — V(x) where T'(y) = 3my? the kinetic energy for the

mass m € R.(, and V(z) is the potential energy at =.) Then

b

b
oS[f,n] = f L(f+n,f +7)~ f (O L(f, f1)m + Oy L(f,m)n)

‘ b
0L Sl + [ 0L ) = 0L 1

If we assume that the function f and its variation n always vanish at the endpoints
a, b, then we obtain (2.1) with

Br(t) = CaL(f(t), ['(t)) — a0, L(f (1), [ (1))

The equation 3; = 0 is called the Euler-Lagrange equation.
However, if no boundary conditions are imposed on the endpoints, then the

term 0, L(f, f' )”‘Z is not necessarily zero. As a result, we have

Br = L(f(b), ['(0))d — L(f(a), f'(a))da + O=L(f, [') = 010y (f. ')

where, for each c € R, 4. is the “delta function" at ¢, namely, the imaginary func-
tion R — R, vanishing outside ¢ and satisfying { 6. = 1. The situation becomes
even more singular if we define S by

() = Y st + [ LU, 7o)

a

where \; e Rand a < ¢; < b, then
By = Z Aide, + L(f(D), f'(0))0s — L(f(a), f'(a))da + O L(f, [') — 0:0,(f, [)
i=1

This raises the question: what should the function j3;, alternatively the integral

b
operator 1 — f Bsn, actually look like in the general case? O

It is in this context that the problem of classifying bounded linear functionals
on C([a,b],R), originally posed by Hadamard in 1903, should be understood. Re-
call that if V, W are normed vector spaces, {2 < V is open,and S : @ — Wisa
map, one says that S is differentiable at f € Q2 if

S(f+mn)—S(f) =An) +o(n)
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where A : V' — W is a bounded linear operator (called the differential of S at
f), and limy,;o 0(n)/|n| = 0. In the calculus of variations, one sets W = [F. Then
A € V*. One can thus understand  — 5[ f,n] as a bounded linear functional on
a function space V equipped with a suitable norm.

The problem of expressing 05| f, n] as an integral involving 7 is therefore trans-
formed to the problem of characterizing the dual space V*. More precisely, the
space V—and in particular its norm—is not fixed in advance. The situation is not
that one starts with a given normed space and is then asked to characterize its
dual. Rather, the task is to find an appropriate norm on a suitable function space
V such that the bounded linear functionals on V, once studied and classified as
integrals, are well-suited to capturing the variation of S.! The two perspectives

on ¢S —as a bounded linear functional on V, and as an integral involvin

—together offer a deeper and more complete understanding of the variation of
S.

S

More discussion of the relationship between dual spaces and the calculus of
variations can be found in [Gray84].

2.2 Moment problems: a bridge between integral theory and
dual spaces

The theory of dual spaces would not have reached its current depth and so-
phistication if it were developed solely within the framework of the calculus
of variations. For instance, Riesz’s classification of the duals of C([a,b]) and
L*([a, b],m) would have been impossible without the Lebesgue and Stieltjes in-
tegrals. In fact, the very form of Riesz’s theorems presents a striking connection
between integration theory and dual spaces.

But why should such a connection exist in the first place? The way this rela-
tionship appears in Riesz’s theorems calls for a deeper explanation. My short an-

swer is this: it is the moment problems that form the bridge between integration
theory and the theory of dual spaces. (Readers may jump ahead to Subsection
2.2.5 for the detailed final conclusion.)

To clarify my point, consider the first major example of a duality theorem: the
identification (L?)* ~ L? proved by Riesz and Fréchet in 1907:

Theorem 2.2 (Riesz-Fréchet theorem, the classical form). We have a linear isomor-
phism
A: L ([_ﬂa,ﬂ]a %) — L ([_71—77@7 %)
!The same function space V, when equipped with different norms, leads to different classifica-
tions of bounded linear functionals. For example, let V = C([a, b]). If the norm is [*°, then by Thm.
1.88, the bounded linear functionals are the Stieltjes integrals with respect to BV functions. If the

norm is L?, then by Exp. 2.29, the bounded linear functionals are those of the form f — { fgdm
where g € L*([a, b],m).
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In fact, Riesz studied L? spaces several years before introducing the more gen-
eral L spaces. His interest in L? spaces was clearly influenced by Hilbert’s ear-
lier work on the Hilbert space [?(Z) and its applications to the theory of integral
equations. It was Hilbert’s insights that served as the crucial bridge leading to the
Riesz-Fréchet Thm. 2.2—the first major result linking Lebesgue integration with
dual spaces.

As I will explain in the following, Hilbert’s role in this development is best
understood through the lens of moment problems.

2.21 Moment problems and dual spaces

Let me begin by introducing moment problems and explaining how they relate
to dual spaces—particularly to the characterization of dual spaces in terms of
integral representations.

Problem 2.3 (Moment problem, original version). Let (¢,,) be a sequence of scalar-
valued functions defined on a space, e.g., an interval I — R. Choose a sequence
of scalars (c,) satisfying certain conditions. Find a scalar valued function f on /
such that for all n, we have

f@“nf = ¢, resp. Jgndf = ¢, (2.2)

The numbers ¢y, ¢y, . .. are called the moments of f resp. df.
There are two typical types of moment problems:

» Trigonometric moment problem: Here / = S! ~ R/27Z, and &,(z) = e7"®
for n € Z. The problem then amounts to finding a function f with prescribed
Fourier coefficients ¢y, ¢y, . . ..

¢ Polynomial moment problem: Here / — R is an interval, not necessarily
bounded, and &, (x) = 2™ for n € N. One is asked to find an increasing or BV
function f such that df has moments ¢, co, . . ..

Many (but not all) moment problems can be reformulated in the language of
bounded linear functionals and dual spaces as follows:

Problem 2.4 (Moment problem, dual space version). Let (¢,) be a sequence in a
normed vector space V, and let (¢,,) be a sequence of scalars. Suppose that there
exists M € R~ such that

(2.3)

S
n

< M| Y ante
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for each sequence of scalars (a,) with finitely many nonzero terms. Find ¢ € V*
such that

&nyp) = Cp for all n (2.4)

Remark 2.5. Note that (2.3) is necessary for the existence of ¢ satisfying (2.4),
because

S
n

where || is the operator norm. Hence (2.3) holds for any M satisfying ||¢| < M.
Conversely, if we know that Vj, = Span{¢, } is dense in V, then (2.3) guarantees
that the linear functional

QD‘/()HF Zangn’_)zancn

=[] < 1l [ Sty

is well-defined and bounded, with operator norm |¢| < M. By boundedness, ¢
extends uniquely to a bounded linear functional on all of V. Therefore, Problem
2.4 can always be solved.

The case where V) is not dense in V' is more subtle and will be treated in detail
in a later chapter. O

Once Problem 2.4 is resolved—for example, when Span{¢,} is dense in V—
Problem 2.3 can be solved by answering the following:

Problem 2.6 (Characterization of the dual space). Characterize the elements of
V* as precisely those linear functionals ¢ : V' — F of the form

o= [ e resp. [ car

(for all ¢ € V'), where f is a function satisfying suitable regularity or integrability
conditions.

Conversely, Problem 2.6 can be reduced to the moment Problem 2.3 by choos-
ing a densely-spanning (,,) and taking ¢, = (£, ¢). The solution to Problem 2.3
then yields a function f such that (&, f) = ({,, ¢). By the density of Span{¢,} in
V, it follows that ¢ is represented by f.

Thus, we conclude that when (¢,,) spans a dense subspace of V, the moment

roblem (Problem 2.3) and the characterization of dual spaces (Problem 2.6) are
equivalent.
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2.2.2 Moment problems and integral theory/function theory

In the remainder of this section, we focus on the case where the sequence of
functions (¢,,) is “sufficiently rich", for example, when it spans a dense subspace
of V in Problem 2.4. Under this assumption, the function f (resp. df) in Problem
2.3 or the functional ¢ in Problem 2.4 is uniquely determined by the moments
(¢,,). Therefore, (¢,) can be understood as the coordinates of f (resp. df) and ¢
under the coordinate system (¢,).

We now explain how the moment problems connect to integral theory—in
other words, to function theory. A central theme in function theory is the approx-
imation of abstract or complicated functions by simpler, more elementary ones.
This motivation often arises from practical mathematical problems, particularly
those originating in physics, where one seeks to express the solution as a series
of elementary functions, such as a power series or a Fourier series. The ques-
tion of how such series should converge—uniformly, pointwise, or in some other
sense—and what kinds of functions they can approximate was a central focus of
function theory in the 18th and 19th centuries.

The first step in understanding and solving the approximation problem is to
analyze the corresponding moment problem. A typical scenario unfolds as fol-
lows. In the setting of Problem 2.3, suppose there exists a sequence of elementary
functions (f,,) such that

Jﬁkfn resp. fﬁkdfn = ¢ when |k| < |n] (2.5)

This situation arises, for instance, in the study of continued fractions and polyno-
mial moments, where &, (z) = z*. In the case of Fourier series, an even stronger
condition holds:

(e if K < n
fg’“f" resp: fg’“df” _{o if k| > [n) (2.6)

where ¢ (z) = e7* and f,(z) = X<, cke™. The approximation problem asks:

Problem 2.7. Does the sequence (f,,) converge to some function f? If so, in what
sense does it converge?

To approach this problem, observe that if such a function f exists, and if the
integral commutes with the convergence of sequence of functions, then

Jar=[ jim eufu= tim [eufs 22 a0 (2.7)

|n|—c0
resp.

(25)

Jadr = [ 1 g, = i [ e, £ (2.7b)
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Therefore, the first step in solving Problem 2.7 is to find a function f solving the

moment Problem 2.3. Once such an f is found, the next step is to prove that the
sequence ( f,) converges to f, and investigate the mode of convergence.

Historically, the understanding of convergence, the properties of the limiting
function f, and the integrals appearing in (2.7) was often insufficient to resolve
the approximation problem at the outset. In many cases, addressing the approx-
imation problem required the development of new theories of integration or the
extension of the class of integrable functions. Both the Lebesgue and Stieltjes inte-
grals emerged from such needs. For instance, the challenges posed by Fourier se-
ries played a central role in motivating the development of the Riemann and later
the Lebesgue integral. See [Jah, Ch. 6, 9] and [Haw-L] for a detailed discussion
of how Fourier series drove this evolution. The connection between continued
fractions and the Stieltjes integral will be explored in Ch. 4.

Function theory Moment Problems | Dual spaces

Lebesgue integral
& Fourier coefficients | L?([a,b], m)*

Fourier series

Stieltjes integral
& Polynomial moments | C([a,b])*
Continued fractions

Table 2.1: The origin of moment problems in function theory

2.2.3 Convergence of functions, moments, and linear functionals

In the previous subsection, we noted that solving moment problems deter-
mines the function f that appears in Problem 2.7. But can the moment problem
perspective also help us understand the convergence of f, to f? Or conversely,
can the convergence behavior of f, toward f offer deeper insight into the struc-
ture of moment problems themselves? Thanks to Hilbert’s foundational work on
the Hilbert space [*(Z)—especially his groundbreaking 1906 paper [Hil06]—the
answer is yes.

A key concept introduced by Hilbert in [Hil06] is weak convergence: If (1,)
is a sequence in [*(Z) with uniformly bounded norm, i.e.,

sup [[u |z < +o0 2.8)

we say that (¢,,) converges weakly to ¢ € [?(Z) if it converges pointwise Z, i.e.,
lim ¢, (k) = ¢ (k) forallke Z (2.9

?Indeed, Hilbert originally worked with the real Hilbert space [?(Z, R), rather than the complex
one [?(Z) = I*(Z, C). For clarity and simplicity, however, we will work with /?(Z) in what follows.
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Since [*(Z) is typically interpreted as the space of Fourier series of L*-integrable
tunctions, Hilbert’s notion of weak convergence corresponds to the (pointwise)
convergence of Fourier coefficients. That is,

~

lirrln Fulk) = f(K) forall k € Z
where f, and f are L*-integrable functions on [—, 7.3
The notion of weak convergence—later extended to weak-* convergence—
provided a fundamentally new insight into the study of moment problems and
their connection to dual spaces and function theory/integral theory. Since Fourier
coefficients are simply trigonometric moments, the weak convergence described
by (2.9) can be understood as the (pointwise) convergence of moments, which
means, in the setting of the moment Problem 2.3, that

lim J &kfn resp.  lim J &df, =cp for all k& (2.10)

The translation of (2.10) into the setting of the dual space version of the mo-
ment Problem 2.4 is straightforward: One considers a sequence (p;) in V* such
that lim,, (&, ) = (&, ) holds for all k. Since we have assumed at the beginning
of Subsec. 2.2.2 that (&,) spans a dense subspace of V, it follows from (2.8) that

this convergence of moments is equivalent to the weak-* convergence of (¢,,) to
¢. That is, we say that (¢,,) converges weak-* to ¢ if

Hmd&, ) = &, @) forall¢ e V (2.11)

Thus, the second and third columns of Table 2.2 are equivalent. See Thm. 2.41 for
the formal statement of this equivalence.

On the other hand, (2.10) generalizes the condition (2.5), which, as previously
mentioned, arises naturally in the study of Fourier series and continued frac-
tions. As such, its function-theoretic interpretation—highlighted by the following
theorems—provides a general framework for understanding the convergence of
the sequence (f,,) to f in Problem 2.7.

Theorem 2.8. Let 1 < p < +wand p~' + ¢~' = 1. Let (f,,) be a uniformly LP-norm
bounded sequence in LP([a,b],m). Suppose that (f,) converges pointwise to f. Then
we have f € LP([a,b],m). Moreover, (f,) converges weak-* to f, which means that
lim,, § fgdm = § fgdm forall g € LY([a,b],m).

Proof. See Thm. 2.49. O

SHilbert himself did not initially connect /?(Z) with the Lebesgue integral. The precise rela-
tionship between [?(Z) and L?([—, «], Z) was later clarified by Riesz and Fischer in 1907.

) 21
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Theorem 2.9. Let 1 < p < 4w and p~' + ¢* = 1. Let (f,) be a uniformly LF-
norm bounded sequence in LP([a,b], m). Then (f,) converges weak-* to some element
f € L?([a,b],m) iff the limit

F(z):= ligbn Jz frndm (2.12)

exists for every x € [a,b]. When (f,) converges weak-* to f € LP([a,b],m), for each
x € |a, b] we have

F(z) = Jm fdm (2.13)

Proof. If (f,) converges weak-* to f, then limy, § f.X[a,z] = § fnX[a,s], Which implies
that F'(z) exists and equals { fdm.

The other direction is more difficult. Indeed, it is almost equivalent to the
duality L?([a,b],m) ~ Li([a,b], m)*. See Thm. 2.48. O

Theorem 2.10. Let (p,,) be a uniformly [*-bounded sequence of increasing functions
[a,b] — Rxo. The following are true.

1. Let p : [a,b] — Rxq be bounded and increasing. Then (dp,,) converges weak-*to dp
iff (pn) converges pointwise to p at b and at any point where p|(qp) is continuous.

2. (dp,) converges weak-*to dp for some bounded increasing p : [a, b] — R iff (pn)
converges pointwise at b and on a dense subset of 1.

By saying that (dp,,) converges weak-* to dp, we mean lim,, { gdp, = { gdp for
all g € C([a,b],m).

Proof. See Thm. 2.64 and Cor. 2.65. O

The above theorems establish an intimate connection between the (pointwise)
convergence of moments and the pointwise convergence of the antiderivatives of
a sequence of functions.* Our understanding of convergence from various per-
spectives can thus be summarized in Table 2.2.

Function theory Moment Problems Dual spaces

Pointwise convergence
of (antiderivatives of)
a sequence of functions

Pointwise convergence

Weak-* convergence
of moments

Table 2.2: Equivalence of convergence notions

“We are viewing p,, and p as the antiderivatives of dp,, and dp.
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2.2.4 Equivalence of the first and second columns of Table 2.2

Thm. 2.9 and 2.10, which establish the equivalence of the first and second
columns of Table 2.2, are not easy to prove. In fact, proving Thm. 2.9 typically
requires the duality L?([a,b]) ~ L%([a, b])*, or at least techniques closely related to
those used in establishing this duality.

Therefore, the solvability of the moment problems (Problems 2.3 and 2.4)—
in other words, the solvability of Problem 2.6 concerning the characterization of
dual spaces—is closely related to the equivalence between the first and second
columns of Table 2.2. This close connection rests on the following principle:

Principle 2.11. Usually, if V' is a normed vector space consisting of functions,
any element ¢ of V* can be weak-* approximated by elementary functions with
uniformly bounded norms. More precisely, there exists a sequence (or a net) of
elementary functions (f,) such that the operator norms of the linear functionals
£ eV (&, are uniformly bounded, and

1i7rlnfffn=<§,go> forallé eV

Remark 2.12. Here is how, with the help of Principle 2.11, the characterization of
V* can be derived from the equivalence of the first and second columns of Table
2.2:

By this principle, for each ¢ € V*, we can select a sequence (f,,) approximat-
ing weak-* to ¢. Since the second column of Table 2.2 implies the first column,
the sequence (f,,) converges to some function f in the sense described in the first
column of Table 2.2. Then, by the equivalence of the three modes of convergence
in that table, it follows that ( f,,) converges weak-* to f. Consequently, ¢ is repre-
sented by integration against f, thereby solving the problem of characterizing the
dual space V'*. O

The idea outlined in Rem. 2.12 is roughly the approach Riesz employed in
1907 to solve the following trigonometric moment problem.

Theorem 2.13 (Riesz-Fischer theorem, Riesz’s original version). > For each (ci) ez,
in I?(Z), there is an (automatically unique) f € L*([—m, 7], 3~) whose Fourier series is
equal to (ci).

>The modern interpretation of the Riesz-Fischer theorem as stating that L?( X, 1) (or more gen-
erally LP(X, p)) is Cauchy-complete for any measure space (X, 1) has led to a significant misun-
derstanding. In fact, while Fischer formulated the theorem for L?([—m, 7], %) in terms of Cauchy
sequences, Riesz understood it quite differently—through the lens of moment problems.
Therefore, once Riesz realized that solving moment problems is equivalent to the characteriza-
tion of dual spaces, he immediately obtained the Riesz-Fréchet Thm. 2.2. As we have emphasized
at the beginning of Sec. 2.1, completeness and duality are fundamentally distinct properties, each
serving distinct purposes and arising from different considerations. The fact that they coincide in
the case of inner product spaces is purely a coincidence.
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Riesz’s idea of the proof. ® Choose (c;,)iez in [2(Z). One aims to solve the moment
problem that there exists f € L? such that % {fe_r = ¢ for all k € Z, where
ex(r) = e'**. For each n € N, let

fo= ), oxek

—n<k<n

Then (f,) converges weak-* to the bounded linear functional ¢ € (L?)* satisfying
{e_k, ) = ¢ for all k. (This is an instance of Principle 2.11.)

On the other hand, the property >, |cx|* < +co implies that the antideriva-
tives of (f,,) converge pointwise to some function /' in the sense of (2.12). This
establishes the convergence described in the first column of Table 2.2.

Then, applying the fundamental theorem of calculus for the Lebesgue inte-
gral, Riesz deduced the convergence in the second column of Table 2.2 for the
derivative function f := F’ (which exists a.e. and is L?) and for another densely
spanning set of functions—the set {x[4..] : © € [a,]}.* Namely, he obtained

<X[a,x]a f> = hin<X[a,x]7 fn> forall z e [CL, b]

Therefore, since the second column of Table 2.2 is equivalent to the third, (f,)
converges weak-* to f. Thus ¢ is represented by f, which implies that f solves
the desired moment problem—since ¢ does. O

Note that the fundamental theorem of calculus for the Lebesgue integral is
crucial to the above proof. Likewise, the Radon-Nikodym Thm. 1.46—a mod-
ern form of the fundamental theorem of calculus—also plays a central role in the
proof of Theorem 1.50, which establishes the duality 1.50 on L?(X, p) ~ LI(X, p1)*.
This reinforces the point that the characterization of dual spaces is deeply con-
nected to the equivalence between the first and second columns of Table 2.2.

See [Gui-A, Sec. 27.3] for further discussion on the relationship between the
classical and modern proofs of the duality L” ~ (L9)*, the connection between
this duality and the completeness of LP-spaces, and the role of derivatives—both
in the classical sense and in the form of Radon-Nikodym derivatives—in this con-
text.

2.2.5 Conclusion

We now summarize the discussion so far by addressing the question posed
at the beginning of this section: Why are dual spaces related to integral theory?
More specifically, from the mathematical-historical perspective, why is it possible
to characterize the dual spaces of L”(X, ;) and C'(X)?

6See [Haw-L, Ch. 6].
"Riesz’s original proof does not use the language of linear functionals.
8The fact that the fundamental theorem of calculus for the Lebesgue integral—one of the deep-
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Function theory Moment Problems Dual spaces

Solving moment problems | Characterizing 1*
Related by @ Principle 2.11

Pointwise convergence
of (antiderivatives of)
a sequence of functions

Pointwise convergence

Weak-* convergence
of moments

Table 2.3: The cells in each row are equivalent

The answer, in my view, is captured in Table 2.3: The power of the Lebesgue
and Stieltjes integrals lies in their ability to establish the equivalence between the
two gray cells in that table. Once this equivalence is established, with the help of
Principle 2.11, the characterization of dual spaces in terms of integrals becomes
straightforward.

But why are these two integrals powerful enough to establish the equivalence
between the two gray cells in Table 2.3?—Because both the Lebesgue and Stieltjes
integrals arise from the study of moment problems, which in turn are rooted in
the corresponding approximation problems, as illustrated in Table 2.1. The em-
phasis of these integral theories on the commutativity of limits and integration
anticipates the equivalence of the two gray cells.

In light of the equivalences in Table 2.3, the Lebesgue integral, as the com-
pletion of the Riemann integral, can be interpreted as the weak-* completion of
trigonometric functions and continuous functions. Similarly, the Stieltjes integral,
as the completion of finite sums, can be viewed as the weak-* completion of dis-
crete spectra—a perspective that will be one of the main themes of Ch. 4. See
Table 2.4.

Completion of Integrals Extension O,f Weak-* completion
classes of functions
Riemann integral Continuous functions
N N of continuous functions
Lebesgue integral Measurable functions
Finite sum Discrete spectra
N N of discrete spectra
Stieltjes integral Continuous spectra
Table 2.4

Side note. A common viewpoint—motivated by the completeness of L!-spaces—regards

est results in measure theory—is used here highlights how non-trivial the equivalence between
the first and second columns of Table 2.2 really is.
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the Lebesgue integral and the Lebesgue measurable/integrable functions as the Cauchy
completion of Riemann integrals and continuous functions. In my view, this perspective
is not only historically inaccurate, but also mathematically misleading.

Historically, the first LP-space considered is L?([a, b], m), due to its close relation with
[?(Z), the space of trigonometric moments of L?-integrable functions. The space ?(Z)
was introduced by Hilbert in [Hil06], where weak convergence (equivalently, pointwise
convergence of moments) plays a central role in his proof of the Hilbert-Schmidt theo-
rem. In [Riel0], Riesz studied the space LP([a,b],m) for 1 < p < 400, and in particular
proved the duality L”([a,b],m) ~ L9([a,b],m)*. The completeness of L”([a,b],m) fol-
lows as a corollary. However, L!([a, b], m) was not considered, likely due to its lack of a
satisfactory duality theory. This clearly shows that duality was originally viewed as more
fundamental than Cauchy completeness.

Mathematically, to perform a Cauchy completion, one needs a norm, which in this
context is defined via an integral. Yet, while integrals are linear functionals, norms only
satisfy the subadditivity. As a result, norms and Cauchy completions do not provide the
right conceptual framework for understanding the nature of the Lebesgue integral from
a functional-analytic perspective.

The more appropriate viewpoint is to regard the Lebesgue integral as arising from
weak-* completion, not Cauchy completion.

2.3 Bounded multilinear maps
2.3.1 Seminorms, norms, and normed vector spaces

Definition 2.14. If V' is an F-vector space, a function | - || : V' — Ry is called a
seminorm if

lav] = |a| - [Jv] lu+v| < |uf + [v| foranyu,ve VandaeF  (2.14)

A seminorm is called a norm if any v € V satisfying |v| = 0 is the zero vector 0. A
vector space V, equipped with a norm, is called a normed vector space.

If V is a normed vector space, then a normed vector subspace of ' denotes a
linear subspace U — V' equipped with the norm inherited from V/, i.e., the restric-
tion of V’s norm to U.

We say that V' is separable if it is so under the norm topology, namely, the

topology induced by the metric d(u,v) = |u — v|. O
Remark 2.15. In Def. 2.14, the condition ||av| = |a| - |v| can be weakened to
lav|| < la| - ||v| foranyve VandaeF (2.15)

Therefore, (2.14) can be weakened to

law + bv| < |a| - ||Jul| + |b] - |v| forany u,v e Vand a,beF (2.16)
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Proof. Suppose that (2.15) is true. Then we clearly have |av| = |a|- [v| when a = 0.

Suppose that a # 0. Then |[v|| = |a tav| < |a|7!|av|, and hence |av| = |a| - |v]|.

Therefore |av| = |a| - |v]. O

Remark 2.16. The norm function || - | : V' — R is continuous. This is because
Jul = ol < flu—v] (2.17)

Therefore, if (v,) is a net in V' converging (in norm) to v, then
o]} =t o

Proposition 2.17. Let | - ||y be a seminorm on an F-vector space V.. Let Vo = {ve V :
|vlly = 0}. Then Vj is a linear subspace on V', and there is a (clearly unique) norm ||-||y v,
on the quotient space V' /V; such that

lv+Wlviw, = vy forallveV (2.18)

In the future, unless otherwise stated, we will always equip V' /V; with this
norm | - v .

Proof. We abbreviate | - |y to |- |. If u,v € Vy and a,b € F, then
law + bvl| < falful + [blv] = 0

This shows that 1} is a linear subspace of V. On the other hand, if u, v € V satisfy
u+Vy=v+V,, thenu— v eV, and hence

[oll = lu+v —ull < ul + v —u] = u]
Similarly, |u| < |v|. Therefore |u| = |v|. This implies that we have a well-defined
function | - [ly v, : V/Vo — Ry satisfying (2.18).
If u,v e Vanda,b e F, then

la(u + Vo) + (v + Vo) v vy = llau +bv + Vollv v, = au + bu| < [al|ul + [b]|lv]

O]

2.3.2 Bounded multilinear maps

In the rest of this section, V1, V5,... and U, V, W all denote normed F-vector
spaces.
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Definition 2.18. Let N e Z,. Amap T : V; x --- x Viy — W is called a multilinear
map if for each 1 < ¢ < N and each fixed v; € V; (for all j # i), the map

vieVi—>T(vy,...,on) €W
is F-linear. We let
Lin(Vj4 x -+ x Vy, W) = {multilinear maps V; x --- x Vy — W}
Foreach T € Lin(V} x --- x Vi, W), we define the operator norm

IT|| = HTHZOO(Evl(0,1)><---><§VN(0,1),W) = sup 1T (vr, - ..o
’L)1€BV1(0,1) ..... UNEBVN(O,I)

We say that 7" is bounded if || 7| < +o0.
Definition 2.19. We let
(Vi x -+« x Vy, W) := {bounded multilinear maps V; x --- x Vy - W} (2.19)
viewed as an F-linear subspace of W<V~ We let
(V) =LV, V) V* .= &(V,F)

Element of £(V') are called bounded linear operators on V. The space V* is called
the dual space of V.

Remark 2.20. In this course, the most frequently encountered cases of (2.19) are
£(V), V*, and £(U x V,F). In Ch. 4, we also consider spaces such as £(U x V x
Vi, F), where V, is a normed vector space with dual space V. In such cases, Prop.
2.37 gives isomorphisms

LU xV x V,,F) ~ U, LV x V,,F)) ~ £U, £(V))
Remark 2.21. |T'| is the smallest element in R satisfying
[T (v, .. on) | < [T ol - - Jlow] (2.20)

Proof. If one of vy, ..., vy is zero, then T'(vy, ..., vy) = 0 by the multilinearity, and
hence (2.20) holds. So we assume that vy, ..., vy are all non-zero. So their norms
are all nonzero. Since v;/||v;| € By, (0, 1), we have

(i )l < m

[od™ " llow]

which implies (2.20) by the multilinearity. B
We have proved that |7'|| satisfies (2.20). Now, suppose that C' € R-, and

[T, on)| < C-foa] - - low ]

for all v; € V;. Taking v; € By (0, 1), we see that ||T| < C. O
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Recall Def. 1.3.

Proposition 2.22. Let T : Vi x --- x Vy — W be multilinear. The following are
equivalent.

(a) T is continuous.

(b) T is continuous at 0 x --- x 0.

(c) T is bounded.

(d) T is Lipschitz continuous on By, (0, R) x --- x By, (0, R) for every R € R.,.
(e) T is Lipschitz continuous on By, (0,1) x - -+ x By, (0,1).

Moreover, if T is bounded, and if Vi x --- x Vi is equipped with the [*-product metric,
then the Lipschitz constant in (d) can be chosen to be NRN 1| T|.

What matters about the Lipschitz constant above is not its exact formula, but
the implication it carries: namely, that any family (7},) in £(V; x --- x Vi, W)
satisfying sup,, |7, < +o0, when restricted to a bounded subset of V; x --- x Vy,
admits a uniform Lipschitz constant.

Proof. Clearly (a)=(b).

(b)=(c): Assume (b). Then 0 x --- x 0 is an interior point of T~*(By(0,1)),
and hence contains By, (0,20;) x --- x By, (0,20y) for some dy,...,05 > 0.
So T sends By,(0,6;) x --- x By, (0,6x) (which equals By, (0,1) x --- x
Sn By, (0,1)) into By (0,1). By multilinearity, 7' sends By, (0,1) x -+ x By, (0,1)
into By (0,6, " - - d5"). This proves (c).

(c)=(d): Assume (c). Choose v; € By, (0, R;). Then, for each &; € By, (0, R;),

T (&, ... ¢n) —T(v1,...,0n)
SIT(& = 0182, 855 EN) [+ T (01,62 = 0,65, N
+ T (w1, 02,63 — w3, &N + -+ [T (w1, 02,03, -, € — o)
SNRYT| - max{[g — vl ..., [€v — vn]}
where (2.20) is used in the last inequality. Thus 7" has Lipschitz constant
NRNT).

(e)=(d): This is clear by scaling the vectors.
(d)=(f): This is clear from Rem. 1.4. O

Example 2.23. A linear map 7' : V — W is called a linear isometry if it is an
isometry of metric spaces, i.e., |[Tvy — Tvo| = |v1 — vof for all vy,v, € V. This is
clearly equivalent to

|Tv| = |v| forallve V
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A linear isometry is clearly bounded with operator norm |T'| = 1 (unless when
V' = {0}). Moreover, a linear isometry is clearly injective. A linear isometry 7 :
V' — W which is also surjective (and hence bijective) is called an isomorphism of
normed vector spaces. In that case, we say that the normed vector spaces V, W
are isomorphic.

Remark 2.24. Suppose that ® : V' — W is a linear map of vector spaces, and W is
a normed vector space. Then V' has a seminorm defined by

[olv = [@@)lv

Equip V/Ker® with the norm defined by Prop. 2.17. Then ® descends to a linear
map ¢ : V/Ker® — W, which is clearly a linear isometry.

Example 2.25. Let 1 < p < +0, let X be an LCH space, let i« be a Radon measure
(or its completion) on X. Let @ : C.(X,F) — L?(X, i, F) be the obvious map. Then
¢ descends to a linear isometry of normed vector spaces

Co(X,F)/{f € Co(X,F): f = 0 prae.} — LP(X, i, F) (2.21)

Now assume p < +00. Then by Thm. 1.60, the map (2.21) has dense range. This is
often expressed by saying that C.(X,F)/{f € C.(X,F) : f = 0 p-a.e.} is dense in
LP(X, 1, ), or simply that C.(X,F) is dense in L”(X, u, F).

2.4 Fundamental properties of bounded multilinear maps

Let Vi, Vs, ..., U, V,W be normed vector spaces. In this section, we establish
several fundamental properties of bounded multilinear maps that will be used
frequently throughout the course. We first note the elementary fact:

Remark 2.26. Let U be a linear subspace of V. Let R € R.(. Then U is dense in V'
iff By (0, R) is dense in By (0, R).

Proof. The direction “<" is obvious. Let us prove “=". Let ¢ € By (0, R), choose
a sequence (¢,) in U converging to £. Assume WLOG that £ # 0 and R € R.;
otherwise, the approximation is obvious. Since the norm function is continuous,

|1€n] — [|€]|. In particular, ||€, | is eventually nonzero. Thus %fn — £. O

Recall that two sequences (z,),(y,) in a metric space X is called Cauchy
equivalent if lim,, d(z,, y,) = 0.

Theorem 2.27. Suppose that W' is complete. For each i, let U; be a dense linear subspace
of Vi. Then we have an isomorphism of normed vector spaces

S(Vix o x Vi, W) =5 &(Uy x -+ x Uy, W)

(2.22)
T - T‘U1><~-~><UN
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Proof. Denote the map (2.22) by ® which is clearly linear. By Rem. 2.26, By, (0, 1) x
-+ x By, (0,1)is dense in By, (0,1) x - - x By, (0, 1). This shows that VU is a linear
isometry, i.e., T" and T’Ul «.x,, Dave the same operator norm.

We now show that ® is surjective. Here, the completeness of IV is need. Let
T e £U; x --- x Uy,W). We want to extend 7" to a bounded multilinear map
Vi x -+ x Viy — W. We only need to extend 7" on the first component, i.e., extend
T to a bounded multilinear Vi x Uy x Uy x - - - x Uy — W. Then, a similar argument
applies to the second component extend 7" to a bounded multilinear V; x V5 x
Us x --- x Uy — W. By repeating this procedure, we obtain bounded multilinear
Vi x - xVy — W extending T'.

Let £ € Vi,us € Us,...,uny € Un. Let (§,) be a sequence in U; converging to
§. In particular, (z,) is a Cauchy sequence. By Rem. 2.21, T'(§,,vs,...,vn) is a
Cauchy sequence in W. Therefore, by the completeness of W, T'(§,, va, ..., vN)
converges to some element, which we denote by T'(¢, vs, ..., vn).

Let us show that the definition of 7'(¢, vs, . .., vy ) is independent of the choice
of sequence converging to . Suppose that (£) is another sequence converging to
€. Then (¢,) and (&) are Cauchy equivalent. By Rem. 2.21, T'(§,, v2, ..., vy) and
T(&,, va,...,vy) are Cauchy equivalent. So they converge to the same element.

Thus, we have defined amap 7" : Vi x Uy x --- x Uy — W. We leave it to the
reader to check that 7" is bounded multi-linear map. O

Corollary 2.28. Let U be a dense linear subspace of V. Then we have an isomorphism of
normed vector spaces

Proof. This follows immediate from Thm. 2.27. O

Example 2.29. Let 1 < ¢ < +ovand p~! + ¢! = 1. Let X be an LCH space. Let i
be a Radon measure (or its completion) on X. By Exp. 2.25, the L?-seminorm on
C.(X,F) descends to the L4-norm on V = C.(X,F)/{f € C.(X,F) : f = 0 p-a.e.},
and V is dense in L?(X, u). Therefore, by Thm. 1.50 and Cor. 2.28, the map (1.13)
gives an isomorphism of normed vector spaces V* ~ LP(X, u).

The following Prop. 2.30 and Thm. 1.83 will imply Thm. 2.41, which estab-
lishes the equivalence of the second and third columns of Table 2.2.

Proposition 2.30. For each i, let E; be a densely spanning subset of V;. Let (1) be a net
in £(Vy x -+ x Vi, W) with uniformly bounded operator norms, i.e., sup, |T,| <
+o0. Suppose that T' € £(Vy x---xVy, W) and (T,) converges pointwise on Ey x- - -x Ey
to T. Then (T,,) converges pointwise on Vy x --- x Vi to T.

Proof. Let U; = Span(E;), which is dense in V;. Then (7,,) converges pointwise on
U x---xUyxtoT.
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Choose any ¢; € V;. Choose R € R. such that |{;]| < R for each i. Since
sup, |Tw| < +o0, by Prop. 2.22, {T,,,T : « € I} has a uniform Lipschitz constant
C € Ry (with respect to the [*-product metric) when restricted to By, (0, R) x

- x By, (0, R). By Rem. 2.26, for each € > 0, there exists v; € By, (0, R) such that
|& — vi| < e. Then

limasup T &1y 6n) — Tal&rs - €N

<limsup [|T(vy, ..., on) — To(vi, ..., on)|| + 2Ce = 2Ce

Since ¢ is arbitrary, we conclude that 7,,(&1, ..., &) — T(&, .-, En). O

Theorem 2.31. Suppose that W is complete. For each i, let E; be a densely spanning
subset of V;. Let (T,,) be a net in £(Vy x --- x Vn, W) satisfying sup,, |1, < +oo.
Suppose that (T,,) converges pointwise on Ey x - -- x Ex. Then (T,) converges pointwise
onVyx---xVytosomeT € L(Vi x -+ x Vy, W), and

|| < liminf |7, (2.24)

Inequality (2.24) is sometimes referred to as Fatou’s lemma.

Proof. Let U; = Span(E;), which is densein V;. Let T": U; x --- x Uy — W be
the pointwise limit of (T_ﬂoé)oéE 1 restricted to U; x --- x Uy, which is clearly linear.
Moreover, for each v; € By, (0, 1) we have

HT(Ula s 7UN)H = liminf ||T04(U17 s aUN>H < liminf HTaH

Taking sup over all v; € By, (0, 1), we see that | T| < sup,, |T,| < +oo. In particular,
T e &Uyx---xUy,W). By Thm. 2.27, T can be extended to a bounded multilinear
map T : Vi x --- x Vy — W with ||T|| unchanged. By Prop. 2.30, this extended 7'
is the pointwise limit of (7},) on the whole domain V; x --- x V. ]

Remark 2.32. Recall that if X is a set, then [*(X, W), equipped with the [“-norm,
is a normed vector space.

By the definition of operator norms, we have a linear isometry of normed vec-
tor spaces

(Vi x - x Vy, W) = 1®(By,(0,1) x - -+ x By, (0,1), W)

(2.25)
T — ,'TY|§V1 (0,1) X ---XEVN (0,1)

Therefore, by identifying £(V; x - - - x Vi, W) with its image under (2.25), we view
£(Vi x --- x Viy, W) as a normed vector subspace of [*(By; (0,1) x -+ x By,, W).

Consequently, if (7},) is anetin £(V} x -+ x Vy, W), and if T € £(V} x --- x
Vi, W), then lim, | — T, | = 0 is equivalent to that (7},) converges uniformly to
T on By, (0,1) x -+ x By, (0,1). O
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Theorem 2.33. £(V; x - x Viy, W) is a closed linear subspace of 1°(By; (0,1) x - -+ x
By, (0,1),W).

Proof. Let T € 1°(By;(0,1) x --- x By, (0,1), W) be the limit of a sequence (T,,) in
£(Vix - xVy, W). Then (T;,) converges uniformly on By (0, 1) x - - - x By, (0, 1)
T. By scahng the vectors, we see that ( ) converges uniformly on By, (0, R) x - - - x
By, (0,R) forany R > 0. Let T : V; x - -- x Viy — W be the pointwise limit of (T ),
which automatically extends the original T defined on By, (0,1) x - -+ x By, (0, 1).
Since each T, is multilinear, clearly 7" is multilinear. Thus 7' € £(V; x X
Vi, W). This proves that £(V; x --- x Vi, W) is a closed. O

Corollary 2.34. Suppose that W' is complete. Then £(V; x --- x Viy, W) is complete.

Proof. Since W is complete, by the following Prop. 2.35, I*(By;(0,1) x --- x
By, ,W) is complete. Since any closed subset of a complete space is complete,
by Thm. 2.33, £(V; x - -+ x Vv, W) is complete. O

Proposition 2.35. Suppose that W is complete. Then for each 1 < p < +0, the normed
vector space IP(X, W) is complete.

Proof. Let (f,) be a Cauchy sequence in [?(X, W). Then for each = € X, (f,(z)) is
a Cauchy sequence in W, and hence converges to some f(z) € W. This defines
f:X->W.

Case p = +o0: For each ¢ > 0, choose N € Z, such that for all m,n > N we
have | f, — fili= < ¢, ie., ||fu(z) — fi(z)| < € for every x € X. Applying lim,, .o,
we get | f.(z) — f(z)| < eforallz € X and n > N. Thus, for all n > N we have
| fr — flli= < e;in particular, we have f € [*(X, W). Thus | f,, — f|li» — 0.

Case p < +oo: For each ¢ > 0, choose N € Z, such that for all m,n > N
we have || f,, — fllw(x) < & equivalently, | f,, — fmllwa) < € for each A € fin(2%).
Applying lim,, ..., we get | f,, — fllw) < e foralln > N and A € fin(2*). Thus
Ifn = flirx) < € for all n > N; in particular, we have f e [?(X,W). This proves
Ifu— 7l — 0. &

Corollary 2.36. The dual space V*, equipped with the operator norm, is complete.

Proof. This follows immediately from Cor. 2.34. O

2.5 The roles of completeness and duality

Let Vi,...,Vy and V, W be normed vector spaces.

2,51 The role of Cauchy completeness

In functional analysis, Cauchy completeness plays two primary roles:
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1. Completeness as a domain property, where it is often used in conjunction
with the Baire category theorem.

2. Completeness as a codomain property, which ensures that linear operators
can be restricted from the whole space to a dense subspace without loss.
Thm. 2.27 and 2.31 are typical examples illustrating this usage.

Among these two, completeness as a codomain is the more widely encoun-

tered in practice. This suggests that the recognition and widespread appreciation

of Cauchy completeness in function spaces developed alongside the study of
linear operators—that is, linear maps from V' to W—rather than with linear, bi-

linear, or multilinear functionals, such as V' x W — F. In the early days of func-
tional analysis, particularly in Hilbert’s foundational work [Hil06], the dominant
perspective was centered not on linear operators, but on bilinear forms and lin-
ear functionals. Within this (bi)linear framework, completeness is not required—
indeed, in Thm 2.27,2.31, and Corollary 2.34, when W = F, none of the remaining
vector spaces involved (namely Vi, ..., Vy) are assumed to be complete.

Historically, the focus on bilinear forms gradually gave way to the linear op-
erator viewpoint. As this shift took place, Cauchy completeness came to occupy
a central role in functional analysis. The fact that the bilinear form or multilinear
functional viewpoint can be reformulated in terms of linear operators is a conse-
quence of the following elementary observation:

Proposition 2.37. Let Uy, ..., Uy be normed vector spaces. Then we have an isomor-
phism of normed vector spaces

LU x - x Uy x Vi x oo x Vg, W) —> £Uy x - x Upp, £(V1 x - x Vi, W))

T — ((ul,...,uM)|—>T(u1,...,uM,—,...,—)>
(2.26)
where T'(uy, ..., up, —, . .., —) denotes the multilinear map Vi x - - - x Viy — W sending
(Ul,...,UN) tOT(Ul,...,U,M,Ul,...7UN).

Proof. Itis easy to verify that the second line of (2.26) defines a linear isomorphism
U :Lin(Uy x -+ x Upyy x Vi x - x Vi, W)
— Lin(U; x -+ x Uy, Lin(Vy x -+ x Viy, W))

To explain the idea of comparing the operator norms, we assume for simplicity
that M = N =1, and writeU; =Uand V; = V.

Choose any 7" € Lin(U x V,W). Then ¥(T') : U — Lin(V, W) sends each u € V'
to the linear map

U(T)(u) : v e Lin(V,W) — T(u,v)
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Thus, for each v € U and v € V, we have
[T (u, v) | = [¥(T) (w) ()| < [€(T) ()] - o] < YD) - Jul - o]
This proves |7 < |¥(T")|. Conversely, for each u € U,
W) (W) = sup  [W(T)(w)(w)| = sup [T(u,0)]

veBy (0,1) veBy(0,1)
< sup [T Juf - ol = [T - flul
’UGB\/(O,I)

This proves ||U(T)| < | 7.

We have proved that |¥(7)|| = |7'||. In particular, if 7" is bounded, then ¥ (7") (u)
is bounded for each v € U, and ¥(7') is bounded. Conversely, if V(T)(u) is
bounded for each u, and if ¥(T") is bounded, then 7" is bounded. This proves

that ¥ restricts to the linear isomorphism (2.26), which is an isometry because
[ (T)| = 1T 0

2.5.2 The role of duality
The following two corollaries follow immediate from Prop. 2.37.

Corollary 2.38. We have an isomorphism of normed vector spaces
LU xV,F) = &U,V*) T~ (u—T(u,—)) (2.27)

Corollary 2.39. Suppose that V is the dual space of another normed vector space V.
Then we have an isomorphism of normed vector spaces

SV x Vo, F) =5 £(V) T (v T(v,—)) (2.28)

In Sec. 2.1 and 2.2, we explored the motivation for introducing dual spaces
from the perspectives of the calculus of variations and moment problems. Cor.
2.39 now offers yet another compelling reason for the study of duality: when
a space V possesses a dual structure—specifically, when V is the dual of some

normed space V,—it allows us to approach problems from both the bilinear form

and linear operator perspectives.
What are the respective advantages of these two viewpoints? To address this,

I would like to revisit the arguments presented in [Gui-A], particularly in the
Introduction and in Ch. 21 and 25 of [Gui-A]:

1. The bilinear form framework allows us to draw upon the full strength of
measure theory. In fact, measure theory can be understood as a method of
monotone convergence extension—a procedure for extending linear func-
tionals in such a way that the monotone convergence theorem (or its vari-
ants) holds. This type of extension aligns naturally with the structure of
bilinear forms.
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2. The space £(V) of bounded linear operators on V' is not just a vector space
but also an algebra, with multiplication given by composition. This alge-
braic structure enables the use of symbolic calculus, a technique developed
in the mid-19th century in the study of linear algebras, and it connects di-
rectly to the representation-theoretic perspectives that flourished in the 20th
century.

As discussed in [Gui-A, Sec. 25.8, 25.9], and as we will also explore in Ch.
4, Riesz’s spectral theorem provides a striking example of how these two advan-
tages can be fruitfully combined.

2.6 Dual spaces and the weak-* topology

Let Vi, Vs, ..., U, V,W be normed F-vector spaces.

Definition 2.40. By viewing V* as a subset of C", the subspace topology on V*
inherited from the product topology of CV is called the weak-* topology on V*.
By Thm. 1.8, this is the unique topology such that for any net (¢, ) in V* and any
¢ € V, the net (¢, ) converges weak-* to p—that is, converges to ¢ in the weak-*
topology—iff

lm{p,, v) = {p,v) foranyveV (2.29)

Since C is Hausdorff, the weak-* topology is also Hausdorff.

Weak-* topology is mainly considered for closed balls of V*, rather than the
whole dual space V*, because for such subsets, pointwise convergence of mo-
ments is equivalent to weak-* convergence—that is, the second and third columns
of Table 2.2 are equivalent. This equivalence is formally stated in the following
theorem.

Theorem 2.41. Suppose that E is a densely spanning subset of V. Let (p,) be a net in V*
satisfying sup,, |¢a| < +00. Then (v, ) converges weak-*in V* iff the limit lim,{p,, v)
exists for any v € E.

Moreover, if p € V* satisfies that

lim{p,,v) ={p,v)  foranyve E
then (p,) converges weak-*to .

Proof. This is clear from Prop. 2.30 and Thm. 2.31. O]

Remark 2.42. Let U be a dense linear subspace of V. (For example, take V =
Co(X,F) and U = C.(X,F).) Recall the canonical isomorphism V* ~ U* given in
Cor. 2.28. Then by Prop. 2.41, for each R € R, the weak-* topology on By (0, R)
agrees with the weak-* topology on By« (0, R). However, the weak-* topology on
V* is in general not equal to the weak-* topology on U*.
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In Prop. 2.41, one might further ask whether a net (¢,) in By+(0, R) that con-
verges weak-* has its limit also in By« (0, R). The answer is yes:

Proposition 2.43 (Fatou’s lemma for weak-* convergence). Let (¢, ) be a net in V*
converging weak-* to some ¢ € V*. Then

[l < Tim inf o, | (2.30)

In other words, the norm function || - || : V* — Ry is lower semicontinuous with respect
to the weak-* topology on V*.

In contrast, if (p,) converges in the operator norm to ¢, then |¢|| = lim,, |¢, |-
Cf. Rem. 2.16.

Proof. For each v € By (0, 1), we have
G, 0)] = m [, v)] = liminf o, )] < liminf 0ol - o] = o
Applying sup,cg, (o.1) to the LHS above yields (2.30). (See also Thm. 2.31.) O

Theorem 2.44 (Banach-Alaoglu theorem). By« (0, 1) is weak-* compact—that is,
it is compact in the weak-* topology.

Thus, By+(0,1) is a compact Hausdorff space.

First proof. Let (¢,) be a net By«(0,1). Since |[{¢,,v)| < ||v| for each v € V, we
can view (¢, ) as a net in

S =1 1B, |v])

veV

By Tychonoff’s Thm. 1.11, S is compact. Therefore, (¢,) has a subnet (¢,,) con-
verging pointwise on V' to some function ¢ : V' — F. The function ¢ is clearly
linear and satisfies ||| < sup, [¢a,| < 1, cf. Thm. 2.31. Thus (g, ) converges

weak-* to ¢ € By«(0,1). This finishes the proof that By« (0, 1) is compact. O

The above proof relies on Tychonoff’s theorem, which in turn relies on Zorn’s
lemma. When V' is separable, one can prove the Banach-Alaoglu theorem without
using Zorn’s lemma:

Second proof assuming that V is separable. Let E be a countable dense subset of
V. Then

is injective. Moreover, if (¢,) is a net in By«(0,1) and ¢ € By«(0,1), then Prop.
2.30 indicates that (¢, ) converges weak-* to ¢ iff (¢,) converges pointwise on £
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to ¢. Therefore, ® restricts to a homeomorphism from EV*(O,l) to its image. Thus,
since F¥ is metrizable (cf. Prop. 1.10), so is any subset—in particular, By« (0,1).
Therefore, showing that By« (0, 1) is compact is equivalent to showing that it
is sequentially compact. Let (,) be a sequence in By«(0,1). By the diagonal
method (cf. Rem. 1.12), (¢,) has a subsequence (y,, ) converging pointwise on E.
Thm. 2.31 now implies that (¢, ) converges weak-* to some ¢ € By« (0, 1). O

The above proof shows that if V' is separable, then By« (0, 1) is metrizable and
therefore sequentially compact under the weak-* topology. The converse is also
true:

Theorem 2.45. The following statements are equivalent.
(a) The normed vector space V' is separable.

(b) When equipped with the weak-* topology, the compact Hausdorff space By« (0, 1)
is metrizable.

Proof. (a)=(b) has been proved above. Here, we give a more direct argument
of the equivalence (a)=(b). By the following Lem. 2.46, V' can be viewed as a
subset of C(X,F) where X = Byx(0,1) is compact by Banach-Alaoglu. Clearly
V separates the points of X. Therefore, if V' is separable, then X is metrizable by
(c)=(a) of Thm. 1.38. Conversely, if X is metrizable, then C(X,F) is separable the
(a)=(d) of Thm. 1.38. Therefore, the subset V' of C'(X, F) is also separable. O

Lemma 2.46. For each ¢ € V, the function
By«(0,1) = F ¢ (p,v)
is continuous with respect to the weak-* topology.
Proof. This is clear by (2.29). O]

Remark 2.47. When V is separable, a metric d generating the weak-* topology of
By(0, 1) can be explicitly given: Let (v,)nez, be a dense sequence in V. Replacing
v, With v, /| v, if v, # 0, we assume that |v,|| < 1. Then, by (1.10), the metric d
can be chosen to be

d(p1,p2) = Z 271 (vn) — wa(vn)| for each ¢y, vy € By(0,1) (2.31)

neZ4

2.7 Weak-* convergence in L’-spaces

Let (X, M, 1) be a o-finite measure space.” Let I < R be a closed proper inter-
val. Letl <p < 4+owandp ' +¢ ! = 1.

9The condition on o-finiteness can be removed at least when p = 2. See the paragraph after
Thm. 1.50.
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We identify L?(X, i, F) with the dual space L(X, p, F)* via the isomorphism
described in Thm. 1.50. This defines the weak-* topology on LP(X,u,F) . In
particular, a net (f,) in L”(X, i, F) converges weak-* to f € LP(X, u, F) iff

limf fagdp = f fadu forall g e LY(X, u, F)
@ Jx X

2.7.1 Pointwise convergence and weak-* convergence

Let us prove Thm. 1.54 in a slightly more general setting. Note that a finite
Borel measure ; on an interval / < R can be extended by zero to a finite Borel
measure on R, which is Radon by Thm. 1.58. Therefore, to generalize Thm. 1.54,
it suffices to consider finite Borel (equivalently, finite Radon) measures on R.

Theorem 2.48. Let 1 be a finite Borel measure on R. Let (f,) be a net in LP(R, u, F) sat-
isfying sup,, | folLr < +o0. Then (f,) converges weak-* to some element f € L*(R, p1,F)
iff the following limit exists for every x € R:

F(x):= limJ fadp (2.32)
@ (—OO,I]
When ( f.) converges weak-*to f € LP(R, u, ), for each x € R we have
F(z) = J fdu (2.33)
(_wvx]
Note that since 1 is finite, the constant function 1 belongs to L?. Therefore, by

Holder’s inequality, any function in L”(R, y, F) is integrable.

Proof. First, assume that (f,) converges weak-* to f in L”(R, 1, F). Then for each
z € R, wehavelim, § foX(—woudit = § fX(—0dp. This proves that (2.32) exists and
(2.33) holds.

Next, we assume that (2.32) exists for every z. In the following, we give two
proofs of the weak-* convergence of (f,).

First proof. Let ¢, € LY(R, u, F)* be the linear functional associated to f,, i.e.,
{fa,g) = § fagdp for each g € L. By assumption, ¢, converges when evaluated
with any member of

E = Spanp{X(—wq) : © € R}
By Thm. 1.62, £ is dense in L?. Therefore, since

sup [l¢a | = sup | fall, < 40
[0 (0%
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by Thm. 2.41, (¢,) converges weak-* to some ¢ € (L?)*. By Thm. 1.50, ¢ is
represented by some f € LP(R, p1, IF). Thus (f,) converges weak-* to f.

Second proof. In this proof, we use the fact that any bounded closed ball of
LP(R, ui, F) is weak-* compact, which is due to Thm. 1.50 and the Banach-Alaoglu
theorem.

Since sup,, | fa|, < 400, the net (f,) has a subnet (f,,) converging weak-* to
some [ € LP. By the first paragraph, for each « € R we have

fim | fadie= [ g
v (—o00,z] (—o00,z]

Since (2.32) converges, we conclude

1mj mw=f fdp
@ (700,I] (700733]

That is, if we let p, € (L?)* represent f, and let ¢ € (L?)* represent f, then (¢, )
converges to ¢ when evaluated on £. By Thm. 1.62, £ is dense in L?. Therefore,
by Thm. 2.41, (¢, ) converges weak-* to ¢. That is, (f,) converges weak-*to f. [J

We now present another connection between pointwise convergence and
weak-* convergence.

Theorem 2.49. Let (f,,) be a sequence in LP(X, u, F) satisfying sup,, || fn|, < +00. Sup-
pose that ( f,,) converges pointwise to f. Then f € LP(X, u,F), and (f,,) converges weak-*

to f.

Proof. By Fatou’s lemma, we have f € L?, since

f|f|p < liminfj|fn|p < 4

Thm. 2.48 suggests that when X = R and p is a finite Borel measure, to prove
that (f,,) converges weak-* to f, it suffices to verify that lim,, S(_ o] fn = S(_ o.a] f
for each z € R. Motivated by this, we claim that in the general case, it suffices to
prove

lim L Fodp = L Fdy (2.34)

for each E € 9 satisfying p(E) < +o0. (Note that any L? function is integrable
in I/ by Holder’s inequality.) Indeed, suppose (2.34) is true. Then, by the density
of integrable simple functions in L? (Thm. 1.47), and by Thm. 2.41, the sequence
(fn) converges weak-* to f.
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Let us prove (2.34). For each A > 0, let o) : Roy — [0, 1] be the (continuous)
piecewise linear increasing function such that a[joxj = 0 and a|pa11,400) = 1. Let
By =1 —ay. Since 0 < ay < X[ +x), We have

-1 -1 —1
N7y < NWTUX o) < 2P

where z denotes the identity function id : R5g — Rxo. Hence N~ 'z« < 2?, which
implies A7 f,[(ox o | fu]) < [ ful?. Let C := sup,, §, | f»[P. Then

vlamj|n+«mouu><mmjrnv=c%<+w
n E n E

Therefore, (f,) is uniformly integrable on F, which means that for each ¢ > 0 we
have

SUPJ |ful - (aro|fnl) <€ for sufficiently large \
n Jg

Since |f| - (ax © |f]) decreases to 0 as A\ — +o0, and since {,[f| < +oo (due to
Holder’s inequality), by DCT or MCT,

J If] - (axol|f]) <e for sufficiently large A
E

On the other hand, since 0 < zf, < A + 1, and since lim,, ) o | f,,| converges
pointwise to 3 o | f| (due to the continuity of 3,), by DCT we have

li n O lJnl) = ’ ©
m [ foeGuolib = [ 1+l
Therefore, since oy + 5y = 1,
imsup| [ 4, [ o] <timsuw| [ £, @rolfa)~ [ e lr))
1' nl o) n . O
wtimsup [ (] (ano LD + | 1£1-(arolf)
where the RHS is < 2¢ for sufficiently large \. O

2.7.2 Weak-* approximation by elementary functions

Let X be an LCH space, and let ;« be a Radon measure (or its completion) on X
with o-algebra 9t. We assume that 1 is o-finite. This condition holds, for example,
when X is o-compact (in particular, when X is second countable; cf. Rem. 1.25.)

In this subsection, we examine Principle 2.11 in the context of LP-spaces. We
begin with the following observation:
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Remark 2.50. Let V' be a normed vector space, and let U be a linear subspace of
V*. Let R € R.o. By Rem. 2.26, U is norm-dense in V* iff B;(0, R) is norm-dense
in Ev* (O, R) .

It is clear from linearity that if B;;(0, R) is weak-* dense in By«(0, R), then U
is weak-* dense in V/*. However, the weak-* density of U in V* does not imply
the weak-* density of By (0, R) in By« (0, R). Therefore, when studying weak-*
approximation in V*, we aim—when possible—to approximate any ¢ € V* by a
net (p,) in U such that |¢,| < [¢||. This ensures not only convergence but also
control of norms. O

Theorem 2.51. The closed unit ball of C.(X,F) is weak-* dense in the closed unit
ball of LP(X, 1, F). More precisely, the obvious map C.(X,F) — LP(X,p,F) sends
Be,xm)(0, 1) to a weak-* dense subset of Br(x,,,m(0,1).

Proof. By Thm. 1.60, if p < +0, then Be,(x ) (0, 1) isnorm-dense in Brs(x .1 (0, 1),
and hence also weak-* dense.
Now, we assume p = + 0. let .# be the directed set

= {(G,¢) : G € fin(2X9) ¢ e Ro}
(Gr,61) < (Ga,e2)  means G < G601 = &
Fix any f € FLoc( x5 (0,1). By adding a p-a.e. zero function to f, we assume

that Hf_”loo(x) = | flleoxpr < 1. We claim that for any (G,¢) € .7, there exists
fa.= € Be,(x,m(0,1) such that

‘ J (f = foe)gdu| < e forallge G
X

If this is true, then (fg - ) g,c)e.r cOnverges to f when integrated against any element
of C.(X,F). Since C.(X,TF) is dense in L*(X, i, F) (Thm. 1.60), it follows from
Thm. 2.41 that (fg)(g,)esr converges weak-* to f, finishing the proof.

Let us prove the claim. We write G = {g1,...,g,}. Let A; = Supp(g;) and A =
Aju---UA,. Since A is compact, we have 1(A) < +00. Let M = g1 oo+ -+ gn co-
By Lusin’s Thm. 1.59 and the Tietze extension Thm. 1.22, there exist a compact
set K < A and a function fg. € C.(X,F) satisfying

foelk = flx  faele = 1fl p(A\K) < e/2M

Recall that | f||;= < 1. Thus, for each 1 < i < n, we have

| 7= 100

<M - p(A\K) <

f fgs

Mf (] + o)

A\K

65



Corollary 2.52. Let yu be a finite Borel measure on S*. Let U = Spanc{e,, : n € Z} where
en 2 2 €S' — 2" € C. Then for each f € LP(S', ), there exists a sequence (f,) in U
converging weak-* to f and satisfying sup,, || f|l» < || f| L+

Proof. By Thm. 1.63, the normed vector space V = L4(S', ;1) is separable. There-
fore, by Thm. 2.45, the weak-* topology of B ,(0,1) is metrizable. There-
fore, to prove the corollary, it suffices to show that BU( 1) is weak-* dense in
Bras 1(0,1).

By Thm. 2.51, Be)(0,1) is weak-* dense in Bresi ) (0,1). By the Stone-
Weierstrass Thm. 1.37, U is [*-dense (and hence LP-dense) in C(S'). Thus,
By (0,1) is LP-norm-dense (and hence weak-* dense) in Bost1)(0, 1). This finishes
the proof. O

2.8 Weak-* convergence in [’-spaces

Let X beaset,andlet 1 < p < +wand p~! + ¢! = 1. In this section, we
prove the equivalence of the first two columns of Table 2.2 for V' = L(X,F), cf.
Thm. 2.57. The most important case is when X is countable and p = ¢ = 2. For
example, [?(Z") corresponds to the space of Fourier coefficients of L?-functions on
T := (S')".

2.8.1 The linear isometry [?(X,F) — [9(X,[F)*
Proposition 2.53. Assume that 1 < p < +o0. Then C.(X,F) is dense in [P(X, ), where
C.(X,F) := {f e F* : Supp(f) is a finite set} (2.35)

The notation of C,.(X,F) in (2.35) is compatible with our usual notation for
LCH spaces if X is equipped with the discrete topology Ty = 2.

Proof. Choose f € [?(X,F). Then, since

N Z|f|p = Z |fI?

we have

Aefin( Aefin(2X)

i I = frall = i 3311= Y0P = i, Sl =0
X A

Thus, (fX4)actin(2x) is anet in C.(X, F) converging to f. ]
Remark 2.54. We have a linear map
U (X, F) - 19(X,F)*
Fis (gequ]F Zf ) (2.36)

reX
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Indeed, by Holder’s inequality, for each A € fin(2¥),
| fa| < D1F9l < Ufloeay - gl < 1Flmce) - Il
A A

Applying lim 4, we see that ) fg is absolutely convergence (i.e. > |fg] < +0),
and

|2 £9| < D1f9l < Ul - lglheco
X X

This justifies the claim that ¥ has range in [9(X,F)* (rather than just in
Lin(l9(X,F),F)), and that | V| < 1.

Proposition 2.55. The map V in (2.36) is a linear isometry,.

Proof. We already know ||¥|| < 1, and we want to show |¥| = 1.

Case p < +oo: By Prop. 2.53 and Thm. 2.27, we have |V = [¥|c, xm]-
Therefore, it suffices to show that |V (f)| = | f]| for each f € C.(X,F). We assume
WLOG that f # 0. Then

(), 9) = [ fllw - gl

if we write f = u|f| (Where u : X — S')and let g = uw - |f[P~!. Since |¥(f)] -
lglie = K¥(f),g)| and |g[i« > 0, we conclude that | ¥(f)|| = |f|», and hence

O = 1flw-
Case p = +0: Foreach 0 < A < 1, let z € X such that |f(z)| = A|f|». Take

g = X{z}- Then

(), 90 = Al fllw - gl
and hence |¥(f)| = A||f[l;»- Since A is arbitrary, we conclude |U(f)| = | flr. O

2.8.2 Weak-* convergence in [?(X, )

Definition 2.56. Assume that 1 < p < +o. The weak-* topology on I?(X,F) is
defined to be the pullback topology via the (injective) map ® : I?(X,F) — 19(X, F)*
of the weak-* topology of 1%(X, F)*. In other words, anet (f,) in /?(X, F) converges
weak-* to f € [P(X,F) iff for each g € [7( X, F) we have

lim ) fag =) fg (2.37)
X X

Theorem 2.57. Assume 1 < p < +oo. Let (f,) be a net in LP(X,F) satisfying
sup,, || fallr < +co. Then (f.) converges weak-* to some f € IP(X,F) iff lim, fo(x)
converges for each x € X.

Moreover, if ( f.) converges weak-*to f, then f(x) = lim, f,(z) for each x € X.
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Consequently, if p > 1 and (f,) is a uniformly /’-bounded net in L?(X,F)
converging pointwise to f : X — [, then f € I?(X,F). (Indeed, by Thm. 2.57,
(fa) converges weak-* to some f e IP(X,F), and f is the pointwise limit of (f,).
Therefore f = fbelongs to IP(X,TF).)

However, as we will see below, this conclusion must in fact be established first
in order to complete the proof of Thm. 2.57

Proof. First, assume that (f,) converges weak-* to f € I?(X,F). Applying (2.37) to
g = X{a (for each z € X)), we see that ( f,) converges pointwise to f.

Conversely, assume that (f,) converges pointwise on X. Let f € FX be the
pointwise limit of (f,). Recall that C' = sup, | f.|w is finite. We claim that f €
P(X,F). Indeed, if p = +o0o, then for each z € X, we have

F(@)] = lim | fu(@)] < sup | full < +o0

If p < +o0, then for each A € fin(2¥),

2P =lm Y| fal? < sup | falf < C7
A A @

Applying lim 4, we see that > | f|? < C?, and hence f € [?(X,F).
Let ¥ be as in (2.36). By Prop. 2.53, C.(X,F) is dense in L¢(X, F). Therefore, to
show that (f,) converges weak-* to f, by Thm. 2.41 and the observation that

sup [W(fa)[ = sup | falw < +o0

it suffices to show that (U(f,), g) converges to (¥(f), g) (that is, Y] fog converges
to . fg) for each g € C.(X,F). But this follows from the fact that (f,) converges
pointwise to f. ]

As an application of Thm. 2.57, we prove a variant of Prop. 2.53.
Proposition 2.58. Let 1 < p < +0. Then B, (x ) (0, 1) is weak-* dense in By (x ).
Proof. Let f € Bpe(xr). Then (fxa)acsnx) is @ net in B, (xr)(0,1) converging
pointwise to f. By Thm. 2.57, this net converges weak-* to f. O
2.8.3 The isomorphism [?(X,F) ~ [7(X,F)*

Now that the equivalence of the first two columns of Table 2.2 for V' = L?( X, F)
has been established in Thm. 2.57 for p > 1, we can prove the isomorphism
P(X,F) ~ 19(X,F)* by following the strategy outlined in Rem. 2.12.

Of course, at least when X is countable, this isomorphism is a special case of
the duality LP(X, u, F) ~ LY(X, pu, F)* from Thm. 1.50, by taking p : 2¥ — [0, +0]
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to be the counting measure. However, there are good reasons to study the proof
of [9(X,F)* ~ [?(X,F) independently.

First, the proof of Thm. 1.50 is significantly more involved than the direct
proof in the [? setting. Whenever a result admits a simpler proof in a special case,
it is worthwhile to examine that proof directly. Second, Thm. 1.50 depends cru-
cially on the Radon-Nikodym Thm. 1.46, which in turn can be derived from the
Riesz-Fréchet Theorem. The latter can be proved with the help of the isomor-
phism (X, F) ~ (*(X,F). Third, since the proof below follows the idea in Rem.
2.12, it also serves as another concrete illustration of Table 2.3.

Theorem 2.59. Assume that 1 < p < +0o. Then the map U : [P(X,F) — [9(X,F)* is
an isomorphism of normed vector spaces.

Proof. By Prop. 2.55, it remains to show that W is surjective. Choose ¢ € 19(X, F)*.
We want to find f € [?(X,F) such that U(f) = .

Step 1. In this step, we verify Principle 2.11, which says in the current setting
that ¢ can be weak-* approximated by a uniformly bounded net in C..(X,F).

For each A € fin(2X),let U4 : [P(A,F) — [9(A,F)* be defined as in (2.36), which
is a linear isometry by Prop. 2.55. Moreover, since [?(A,F) and [9(A,F)* both
have dimension |A|, ¥ 4 is an isomorphism. Therefore, there exists f4 € C.(X,F),
supported in A, such that

VA(fa) = @liaar

This relation clearly shows that

lim <‘1’(fA) 9) =<{»,9)

Aefin(

for each g of the form x,; where z € X, and hence for each g € C.(X,FF). More-
ovet, the net (W(f4)) 4ein(2x) is uniformly bounded, since

W (fa)lw = lelaaml < lel

Therefore, since C.(X,F) is dense in 14(X, F) (cf. Prop. 2.53), by Thm. 2.41, the net
(VU(fa)) acin(2x) converges weak-* to . In other words, (f4) scfin(2x) is @ uniformly
[P-bounded net in C.(X, F) converging weak-* to ¢.

Step 2. For each = € X, the limit

li = 1 -
Aeﬁlnr(%X)f Aeﬁlm ZfAX{ )

converges by the weak-* convergence of (fa) acfin(2x). Therefore, since (f4) acgin(2x)
is a uniformly bounded, by Thm. 2.57, the net (f4) scin(2x) converge weak-* to
some f € [P(X,F). Thus ¢ = U(f). O
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2.9 Weak-* convergence of distribution functions

In this section, we fix a proper interval I/ — R, and let ¢ = inf I, b = sup I. We
use freely the notation in Subsec. 1.6.1. In particular, for each function p on I, we
let

Q, = {z € (a,b) : p|(ap) is continuous at x}

A family of functions (p,) from I to R is called uniformly bounded if
sup,, H,OQHZOO([,R) < +00.

The goal of this section is to prove Thm. 2.10, which characterizes the rela-
tionship between pointwise convergence and weak-* convergence for increasing
functions. To this end, we begin with several preparatory results concerning the
pointwise convergence of such functions.

2.9.1 Almost convergence of increasing functions

Lemma 2.60. Let (p,) be a uniformly bounded net of increasing functions I — Rxy.
Suppose that (p,) converges pointwise on a dense subset E < I. Then there exists a
bounded increasing function p : I — Rs such that (p,) converges pointwise on E to p.

Proof. Let p : E — R, be the pointwise limit of (p,), which is clearly bounded
and increasing. Extend p to a function p : I, U (E n {b}) — R, by setting
- 1
p(x) A p(y)

if v € I\E. Extend p further to p : I — R by setting p(b) = lim, ;- p(z)ifbe I\E.
Then p is bounded and increasing, and (p,) converges pointwise to p on E. O

Proposition 2.61. Let (p,) be a uniformly bounded net of increasing functions I — Rxo.
Let p : I — Ry be increasing. Then the following are equivalent:

(a) There exists a dense subset E < I such that (p,) converges pointwise on E to p.
(b) The net (p,) converges pointwise on 2, to p.
If either of these two statements are true, we say that (p,) almost converges to p.

Proof. Since (2, is dense (Prop. 1.68), clearly (b) implies (a).

Now assume (a). Choose any = € 2,. We will show that every convergent
subnet (pa, ()) of (pa(z)) converges to p(x). This will immediately imply (b).

By Lem. 2.60, there exists an increasing function p : I — R such that (p,,)
converges on F'u{z} to p. Since (p,, ) converges pointwise on E to p, the functions
p and p agree on E. Namely, p and p are almost equal. Therefore, by Prop. 1.70, p
and p agree on 2, and in particular at . This proves lim, p,, (z) = p(x). O
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The following theorem can be viewed as a concrete manifestation of the
Banach-Alaoglu Thm. 2.44 in the setting of C.(/)*. It will be used in the proof
of Thm. 2.64.

Theorem 2.62 (Helly selection theorem). Let (p,,) be a uniformly bounded net (resp.
sequence) of increasing functions I — Rs,. Then (p,) admits a pointwise convergent
subnet (resp. subsequence).

Proof. The existence of a pointwise convergent subnet follows directly from the
Tychonoff Thm. 1.11. Therefore, let us assume that (p,) is a sequence (p,,). Let
E =1 n Q. Then, by the diagonal method (cf. Rem. 1.12), (p,) has a subsequence
(pn, ) converging pointwise on E. By Lem. 2.60, there exists a bounded increasing
p : I — Ry such that (p,, ) converges pointwise on E to p. Therefore, by Prop.
2.61, (pn, ) converges pointwise on €2, to p. Since I\(2, is countable, by the diagonal
method again, (p,, ) has a subsequence converging pointwise on /\(2,, and hence
on [. [

2.9.2 Almost convergence and weak-* convergence

Definition 2.63. Let (p,) be a net in BV (I,F). Let p € BV(I,F). Let A, and A
be the elements of C.(I,F)* corresponding to p, and p, respectively, via the Riesz
representation Thm. 1.88. We say that the net (dp,) converges weak-* to dp if (A,)
converges weak-* to A. Namely, for each f € C.(I,F), we have

hénf[ fdp, = L fdp (2.38)

The following Thm. 2.64 is parallel to Thm. 2.48. However, unlike Thm. 2.48
whose proof relies on the isomorphism L? ~ (L9)*, Thm. 2.64 does not rely on the
Riesz representation theorem.

Theorem 2.64. Let (p,)acor be a uniformly bounded net of bounded increasing functions
I — Ryy. Let p : I — Ry be bounded and increasing. Then the following are equivalent:

(a) There exists a bounded family (5, ) e in R (assumed to be zero if a € I) satisfying
the following conditions:

® (pa + 54) almost converges to p.
* lim,(pa(b) + 224) = p(b) ifbe I.
(b) The net (dp,,) converges weak-* to dp.

The boundedness of (32, ).c» means that sup,, |7,| < +0o0.
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Proof. (a)=(b): Assume (a). We verify (2.38) for each f € C.(I,F), which estab-
lished (b). Recall from Rem. 1.84 that if a ¢ I, adding constants to p, and p does
not affect the values of §, fdp, and {, fdp.

Since (p,) is uniformly bounded (¢,) is bounded, there exists ¢ > 0 such that
Po + 74 + ¢ = 0 for all a. Therefore, replacing p, with p, + s, + ¢ and p with
p + ¢, we assume that there exists a dense subset £ < I such that (p,) converges
pointwise on E to p, and thatbe Eifbe I.

Choose any f € C.(I,F). Choose u, v € R satisfying Supp;(f) < [u,v] = I, and
let J = [u,v]. By increasing v if possible, we may assume that v € E. (When b€ I,
one simply choose v = b.)

In the case where a € I, by Lem. 1.80, the values of { ; fdpo and §; fdp remain
unchanged if we change the values of p,(a) and p(a) to 0. Therefore, we may
assume that p,(a) = p(a) = 0 (so that a can be included to E), and we may also
choose u = a. In the case where a ¢ I, by the density of £/, we can slightly decrease
u so that u € E. To summarize, whether a or b belongs to I or not, we can assume

u,v ekl

Since f is uniformly continuous, for each ¢ > 0 there exists 0 > 0 such that
|f(x) — f(y)| < e for each z, y € I satisfying |x — y| < . Choose a tagged partition

(0,&) = ({ao =u<a <--<ap =v},(§1,...,§n))

of J with mesh < 4. Since F is dense, by a slight adjustment, we may assume that
ap,ai, ..., a, € E. This implies

lim f(u)pa(u) = f(w)p(u) — limS, (f,0,6) = 5y(f,0,&)
Therefore, if we let C' = sup{p.(v) — pa(u), p(v) — p(u) : @ € </}, then Rem. 1.75
implies
lim sup ‘ f fdpe — J fdp‘ <2-C
a J J

This finishes the proof of (2.38).

(b)=(a): Assume (b). We first consider the case where a ¢ I. Fix t € (), and let

o = p(t) = pa(t)

Then (s,) is bounded. Therefore, (p,+ 5, ) is uniformly bounded, and hence there
exists ¢ > 0 such that p, + s, + ¢ = 0 for all a. Replacing p, with p, + c and p with
p + ¢, we assume that p,, + s, > 0 for all a. (Of course, we still have p > 0.)

Choose any x € Q,. To show that (p,(z) + 22, ). converges to p(x), it suffices to
show that every convergent subnet (pg(x) + 53)s converges to p(z).
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By the Helly selection Thm. 2.62, the net of functions (pg+ )3 has a pointwise
convergent subnet (p, +,),. Let 5 : I — R, be the pointwise limit of this subnet,
which is clear bounded and increasing. By (a)=(b), the net (d(p, + 5,)), converges
weak-* to dp. By assumption, it also converges weak-* to dp. Therefore, we have
§; fdp =§, fdp for each f € C.(I).

By Thm. 1.83 (and noting Rem. 1.84), we have

p— lim p(y) = p— lim p(y)  on,
y—a y—a
In other words, there exists a constant ¢ € R such that
p+c=p on(, (2.39)

Since p,(t) + », = p(t) is constant over «, and since its subnet (p,(t) + ),
converges to p(t), we conclude p(t) = p(t). Therefore, since t € ©,, by (2.39), we
have ¢ = 0. Since z € Q,, by (2.39), we obtain p(x) = p(z). This proves that
(py(x) + 52,), converges to p(x), and hence (pg(x) + 23)s converges to p(z).

Now consider the case where a € I. We set s, = 0. Similar to the above
argument, we choose any z € (2,, choose a subnet ps converging at z, and further
choose a subnet p,, converging pointwise on / to 5 : I — R¢. By (a)=(b), we have
§, fdp =§, fdp for each f e C.(I). Consequently, Thm. 1.83 implies that p = p on
€,. Since x € ,, we obtain again limg pg(x) = lim, p,(z) = p(z) = p(x). Therefore
(pa(z))a converges to p(x) for each = € €2, O

Corollary 2.65. Let (p,)acs be a uniformly bounded net of increasing functions I —
Rxg. Then the following are equivalent:

(1) There exists a bounded family (s¢,)aes in R (assumed to be zero if a € I) such that
(pa + 224) converges pointwise on a dense subset E < I, and alsoat bifbe I.

(2) There exists a bounded increasing p : I — R such that (dpa)acws converges
weak-* to dp.

Proof. “(2)=(1)" follows immediately from Thm. 2.64. Conversely, assume (1).
By Lem. 2.60, there exists a bounded increasing p : I — Ry such that (p, + 5,)
converges pointwise on £ U {I n {b}} to p. Then Thm. 2.64 implies (2). O

2.10 Weak-* approximation of Radon measures by Dirac mea-
sures

Fix an LCH space X. Recall that we have assumed throughout the notes that
Fe {R,C}. Let

M(X, e

=0

RM(X R-o) = {Radon measures on X}
) = {finite Radon measures on X'}

2.40
M(X.R) (2.40)

RM( ,C) = {complex Radon measures on X}

{signed Radon measures on X}

73



which are vectors spaces over R-g, R>, R, C respectively. Note the inclusion rela-
tion

RM(X,Rso) € RM(X,Rs) RM(X,Rsg) € RM(X,R) € RM(X,C)

Recall that for each x € X, the Dirac measure at z is denoted by 4,.

The goal of this section is to prove Principle 2.11 for V' = C,(X, F). In this con-
text, elementary functions are understood as linear combinations of Dirac mea-
sures. When X is an interval I — R, these elementary functions correspond to
bounded increasing functions I — R, whose ranges are finite sets.

2.10.1 Definitions and basic properties
Definition 2.66. Recall the F-linear isomorphism

RM(X,F) ~ C.(X,F)*

defined by the Riesz-Markov representation Thm. 1.66. The pullback of the oper-
ator norm on C.(X,F)* to n € RM(X,TF) is called the total variation of y, and is
denoted by |gf. In other words,

il = sup {| | s 1 < X 51 < 1)

A family of complex Radon measures ({in)acor is called uniformly bounded if

sup ||pta | < 400
oacd

The weak-* topology on C.(X,F)* defines the weak-* topology on RM(X,F).
Thus, if (1) is a uniformly bounded net in RM (X, F), and if n € RM(X,F), then
(o) converges weak-* to u 0 iff for each f € C.(X,F) we have!'!

limf fdpe = J fdu (2.41)
« Jx X
Example 2.67. By Thm. 1.56, if ;1 € RM(X,R5), then

lp] = p(X)

Example 2.68. Let £ — X be a finite set, and let ¢ : £ — F be a function. Then

H D, c@)d.| = ) le()] (2.42)

el el

19We also say that (du,) converges weak-* to dy.
By Rem. 2.42, this is equivalent to that (2.41) holds for each f € Cy (X, F).
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Proof. Let p = ., c(x)d,. By Exp. 2.67, we have |d,| = 1. Since norms satisfy
the sub-additivity, we have

Il < X5 le(@)] - 18] = ) le(2)]

By Urysohn’s lemma, there exists f € C.(X,F) such that | f|;» < 1, and that for
each z € E, we have |f(2)] = 1 and f(z)c(z) = |c(z)]. Then §, fdu = >, 5 lc(x)].
This proves [ju] > 3, c(x)]. 0

Lemma 2.69. Let p € RM(X,F). Let Ay, ..., A be mutually disjoint Borel subsets of
X. Then

k
Il =) (A
j=1

Proof. Since p is a linear combination of finite Radon measures, there exists
i€ RM(X,Rsg) such that |u(A)| < 1(A) for each Borel A < X. Since Radon
measures are regular on Borel sets with finite measures (Thm. 1.57), for each
e > 0 there exists compact K; < A; such that ji(4,\K;) < e.

By Cor. 1.18, there exist mutually disjoint open subsets U, ..., U, < X such
that U; o K. Since j1 is regular on K, we may assume that i(U;\K;) < ¢. By
Urysohn’s lemma, there exists f; € C.(U;,F) such that |f;| < 1, that f;|«, equals
a constant ¢; € F, and that c;u(K;) = |pu(K;)|. Let f = fi + -+ fr, which is an
element of C.(X,F) satisfying | f| < 1. Then

| ta=Swn || s <

Since [j1(4;) — u(K,)| = [n(A\K))| < i(A)\K;) < e, we obtain [u(K)] > |u(A;)] -
¢, and hence

= | [ sl = || gan || sdu] = i) - 2k
X Uj Kj X\ Uj Kj i
Since ¢ is arbitrary, we obtain the desired inequality. O

2.10.2 Approximation of Radon measures by Dirac measures
In this section, we let K € {R>, R, C}.
Theorem 2.70. Define

D(X,K) = Spang{, : z € X}

Then the closed unit ball of D(X, K) is weak-* dense in the closed unit ball of RM (X, K).
In other words, Bp(x k)(0, 1) is weak-* dense in Brax,x)(0,1).
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Proof. Fix p € RM(X,K) satisfying | x| < 1. Similar to the proof of Thm. 2.51, we
let .# be the directed set

I ={(G,e) : G € fin(29-XK)) 2 e R}

(Gr,e1) < (G, e9) means G1 c Ga,e1 =69

We claim that for any (G, <) € .#, there exists ig. € Bp(x.i)(0, 1) such that

‘ L fdp — L fdug,e

If this is true, then (ug.)(ge)es is @ net in Bpxx)(0,1) converging weak-* to f.
This will finish the proof.

Let us prove the claim. Since p is a linear combination of finite Radon mea-
sures, there exists i € RM (X, Rxg) such that

U gdu‘ J |gldpi

for each bounded Borel function g : X — C.

Let K < X be compact and containing Supp(f) for all f € G. By the compact-
ness of K, there exist open sets Uy, . .., U, < X whose union contains X, such that
diam(f(U;)) < ¢/i(K) for each j and f € G. Choose a Borel set A;  U; such that
K =A;u---u A2 Choose any z; € A;, and let

<e forall fe G

k
= D, 13(A))d, (2.43)

Then, for each f € G,

— Zk: ‘ f fdp— pi(Az) f(2s)

j=1 JAi

This proves the desired inequality. Moreover, by Exp. 2.68 and Lem. 2.69,

k
lg.ell = > (A < Jul < 1
j=1

This proves that g € Bp(xx)(0, 1). O

12For example, take A} = K nUyand A; = K nU;\(Uy u -+~ w U;_1) if j > 1.
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The proof of Thm. 2.70 immediately implies:

Theorem 2.71. For each j1 € RM(X,C), we have

k
|| = sup { 2 \W(Aj)| :keZy,and Ay, ..., A, € Bx are mutually disjoint} (2.44)
j=1

Proof. Lem. 2.69 implies “>". Let us prove “<". Let (1g)g.)es be the net in
D(X,C) converging weak-* to p and satisfying ||ug.| < |u|. Each pg. is of the
form (2.43), by Lem. 2.68, the RHS of (2.44) is > |ug.||. By Fatou’s lemma for
weak-* convergence (Prop. 2.43), the RHS of (2.44) is > |u]. N
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3 Basics of inner product spaces

3.1 Sesquilinear forms

Let V be C-vector spaces.

3.1.1 Sesquilinear forms

Definition 3.1. A map of C-vector spaces T' : V. — W is called antilinear or
conjugate linear if for every a,b € F and v, v € V we have

T(au + bv) = au + bv

where @, b are the complex conjugates of a, b.

Definition 3.2. A function (:|-) : V x V' — C (sending u x v € V2 to (ulv)) is called
a sesquilinear form if it is linear on the first variable, and antilinear on the second
one.! Namely, for each a,b € C and u, v, w € V we have

lau + bvjw) = alu|lw) + Kv|w) (wlau + bv) = aw|u) + blwv)

More generally, if V, W are complex vector spaces, a map V x W — C is also
called sesquilinear if it is linear on the V-component and antilinear on the -
component.

Notice the difference between the notations (u|v) and (u, v): the latter always
means a bilinear form, i.e., a function which is linear on both variables.

Remark 3.3. For each sesquilinear form (:|-) on V/, we have the polarization iden-
tity
(ulv) = ! Z (u+ e'vlu + evde
4 3
=0em (3.1)
1
=Z<<u + vlu+v) —(u—v|u —v) + i{u + ivju + iv) — i{u — iv|u — iv>>

(VB

Therefore, if (:|-) and (-|-) are two sesquilinear forms on V/, then the two forms are
equal iff (v|v) = (v|v) for each v € V.

Definition 3.4. Let w(:|-) : V x W — C be a sesquilinear form. The adjoint sese-
quilinear form w* is defined to be
WwWxV —-C w*(ulv) = w(v|u)

1Physicis’fs prefer the opposite convention, i.e., their sesquilinear forms are antilinear on the
first variables.
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Definition 3.5. A sesquilinear form (:|-) : V' x V' — C is called a Hermitian form
if is equal to it adjoint, namely,

(v|u)y = (ulv)  foreachu,veV
Proposition 3.6. Let {-|-) be a sesquilinear form on V. The following are equivalent:
(1) {:|-) is a Hermitian form.
(2) Foreach v € V we have {v|v) € R.
Proof. Let w = {-|-). By the polarization identity, we have w* = w iff w*(v|v) =

w(vlv) (i.e. w(v|v) = w(v|v)) for each v e V. O

3.1.2 Positive sesquilinear forms

Definition 3.7. A sesquilinear form (:|-) on V is called positive semi-definite (or
simply positive) and written as (-|-) > 0, if (v|v) > 0 for all v € V. If a positive
sesquilinear form (:|-) on V is fixed, we define

v = A/<v|v) forallve V (3.2)

Then it is clear that |[A\v| = |\| - |v| for each v € V and A € C. A vector v € V
satisfying ||v| = 1 is called a unit vector.

By Prop. 3.6, a positive sesquilinear form is Hermitian.

Theorem 3.8 (Cauchy-Schwarz inequality). Let {-|-) be a positive sesquilinear form
on V. Then for each u,v € V we have

[Culopl < ful - o]

Proof. Note that if f : R? — R is a quadratic form

flxy) = (z ) <Z l;) @) = ax® + 2bry + cy?

where a,b,c € R, then f > 0iff a > 0 and

ac — b = det (Z i) =0

In fact, we only need the fact that if f > 0 then ac—b* > 0. To see this, note that if f
is not always 0, then one of a, c must be nonzero; otherwise, f(z,y) = 2bxy cannot
be always > 0. Thus, assume WLOG that a # 0. Then f(z,1) = az? + 2bx + ¢ =
a(z 4+ b/a)* + ¢ — b*/a, which implies a > 0 and ¢ — b*/a > 0, and hence ac — b* = 0.
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Now, we let f : R?> — R be the quadratic form defined by pulling back the
form & € V — (£|€) via the map (z,y) € R? — zu + yv € V, that is,

fla,y) = Cou+ yolou + yo) = ul? - 2® + 2ReCulv) - 2y + v]* -y
Then, the above paragraph shows that |[u|? - |v]|? — (Re{u|v))? = 0, equivalently,
Redulv)| < ful - v

Choose A € S! such that A(u|v) € R. Since the above inequality holds when u is
replaced by \u, we get

[Culvpl = [Redhulv)] < [Aul - o] = [u] - v

Corollary 3.9. Let {:|-) be a positive sesquilinear form on V. Then we have
{fveV:i|v|=0}={veV :(w&)=0foral eV}

where the RHS is clearly a linear subspace of V. We call this space the null space of {-|-).

Proof. Letv € V. If (v|V) = 0, then |[v||* = (v|v) = 0. Conversely, if |v|| = 0, then by
the Cauchy-Schwarz inequality, for each £ € V we have [(u|&)| < [uf - ] =0. O

Corollary 3.10. Let {:|-) be a positive sesquilinear formon V. Then v € V — |v] € Ry
is a seminorm on V.

Proof. It remains to check the subadditivity: for each u,v € V, the Cauchy-
Schwarz inequality imlies

lu +v|? = (u+vju +v) = |u? + 2Relulv) + |ul?
<[ul® + 2fu] - ol + [v]* = (Ju] + |v])?

3.2 Inner product spaces and bounded sesquilinear forms
3.2.1 Inner product spaces

Definition 3.11. Let {(:|-) be a positive sesquilinear form on a C-vector space V.
We call (:|-) an inner product if it is non-degenerate, i.e., the null space is 0. We
call the pair (V,{:|-)) (or simply call V') an inner product space or a pre-Hilbert
space .
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Exercise 3.12. Let (:|-) be a positive sesquilinear form on V' with null space ./".
Prove that there is a (necessarily unique) inner product {:|-)y/. 4 on the quotient
space V /.4 such that for any u,v € V, the cosets u + .4 and v + .4 satisfy

u+ NN+ AN yy = (ulv)

Example 3.13. Let X be a set. Then [*(X) = [*(X, C) is an inner product space,
where

(frg) =), f(z)g(x)  forany f,ge’(X)

reX

Example 3.14. Let (X, 1) be a measure space. Then L*(X, 1) is an inner product
space, where

{f,g) = J;{ fgdu for any f,ge L*(X,pn)

Remark 3.15. By Rem. 3.10, an inner product space V' is equipped with the norm
defined by |v| = +/{v|v). In particular, V' is a metric space with metric d(u,v) =
|u — v|. The topology on V' induced by this metric is called the norm topology of
V.

Remark 3.16. Let V, W be inner product spaces. If T : V' — V' is a linear map, then
T is an isometry of metric spaces iff 7" is an isometry of normed vector spaces, i.e.,

(Tv|Tv) = (v|v) forallve V
By the polarization identity, this is equivalent to
(Tu|Tv) = (ulv) forall u,v eV

A surjective linear isometry 7' : V' — W is called a unitary map. If 7 : V' — W is
unitary, we say that V, W are isomorphic inner product spaces (or that V, W are
unitarily equivalent).

Similarly, if 7' : V' — V is antilinear map between inner product spaces, then
T is an isometry of metric spaces iff

(Tv|Tv) = (v|v) forallveV
By the polarization identity, this is equivalent to
(Tu|Tv) = {v|uy forall u,v eV

A surjective antilinear isometry 7" : V' — W is called an antiunitary map. If
T :V — W is antiunitary, we say that V and W are antiunitarily equivalent. []
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3.2.2 Bounded sesquilinear forms

Let V, W be inner product spaces.

Definition 3.17. The (complex) conjugate of V is the inner product space V* de-
fined as follows. The elements of V' correspond bijectively to those of V by the
map

C:V > Ve vt =T

where v* = ¥ is an abstract element, called the conjugate of v. Moreover, the struc-
ture of an inner product space on V' is defined in such a way that  is antiunitary.
In other words, for each u,v € V and a, b € C, we have

au+bv=a-u+b-v

@loyve = Cvlwyy
The conjugate of V' is defined to be V, that is,
(VO =V
Moreover, the conjugate map C : V* — V is defined by
C:VP—V T
Thus v = v for eachv e V. O
Remark 3.18. An antilinear map 7' : V' — W is equivalent to the linear map
VoW ve—Tu (3.3a)
and is also equivalent to the linear map
Vi-W T Tu (3.3b)

It is clear that 7" is an antilinear isometry (resp. antiunitary) iff (3.3a) is a linear
isometry (resp. unitary) iff (3.3b) is a linear isometry (resp. unitary).

Remark 3.19. A sesquilinear form w : V' x W — Cis equivalent to a bilinear form
S:VxW—C (v, W) — {(v|w)

Unless otherwise stated, we always view w and @ as the same.
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Definition 3.20. Let w : V x W — C be a sesquilinear form. The norm |w|| is
defined to be the norm of the associated bilinear form V x W® — C. Therefore,

jwlf = sup_Jw(uv)]
veBy (0,1),we By (0,1)

Recalling the notation (2.19), we let
Ses (V|W) := £(V x W', C)
which is the space of bounded sesquilinear forms V' x W — C. We write
des (V) = Ses (V|V)

The elements of Jes (V|W) (resp. Ses (V)) are called bounded sesquilinear forms
onV x W (resp. on V).

Example 3.21. The inner product
CpeVixV=C  (u,0) = (ufo)

has norm 1, and hence belongs to Ses (V). Therefore, by Prop. 2.22, this map is
continuous.

3.3 Orthogonality

Let V be an inner product spaces.

3.3.1 Orthogonal and orthonormal vectors

Definition 3.22. A set & of vectors of V' are called orthogonal if (u|v) = 0 for any
distinct u,v € V. An orthogonal set & is called orthonormal if v = 1 for all
veV.

Remark 3.23. We will also talk about an orthogonal resp. orthonormal family of
vectors (e;);c;. This means that (e;|e;) = 0 for any distinct ¢, j € I (resp. {e;le;) =
d;; forany i,j e I).

In particular, two vectors u, v € V are called orthogonal and written as

u v

when (u|v) = 0. A fundamental fact about orthogonal vectors is

Proposition 3.24 (Pythagorean identity). Suppose that w,v € V are orthogonal. Then
[+ of* = full® + o] (3.4)
In particular,

[oll < llu+ o] (3.5)
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Proof. ||u+ v|* = (u + v|u + v) = (ulu) + (v|v) + 2Reuv) = (ulu) + (v|v). O

Note that by applying (3.4) repeatedly, we see that if v,, ..., v, € V are orthog-
onal, then

Jor + -+ va* = Joa* + -+ Jloa|? (3.6)
Remark 3.25. Suppose that & is an orthonormal set of vectors of V. Then &
is clearly linearly independent. (If ey,...,e, € & and ), a;e; = 0, then a; =
Y. {aieilejy = (Ole;) = 0.) Thus, by linear algebra, if & = {es, ..., e,} is finite, then
one can find uniquely a4, ...,a, € Cand u € V such thatv = aje; +--- + ane, +u
and that v is orthogonal to e, ..., e,. The expressions of ay,...,a,,u can be ex-
pressed explicitly:

Proposition 3.26 (Gram-Schmidt). Let ey, ..., e, be orthonormal vectors in V. Let
veV. Then

v— Z<v|ei> - € (3.7)

is orthogonal to ey, . . . , .
Proof. This is a direct calculation and is left to the readers. O

Remark 3.27. “Gram-Schmidt" usually refers to the following process. Let
v1,...,U, be a set of linearly independent vectors of V. Then there is an algo-
rithm of finding an orthonormal basis of U = Span{vy,...,v,}: Let ey = vy /|vy].
Suppose that a set of orthonormal vectors ey, ..., e, in U have been found. Then
ey is defined by By 1 /| Tis1| where Ty iy = vgyr — Do (Uksa]es) - €.

Combining Pythagorean with Gram-Schmidt, we have:

Corollary 3.28 (Bessel’s inequality). Let (e;);er be a family of orthonormal vectors of
V. Then for each v € V we have

2. Kolenl® < ol (3.8)
iel
In particular, the set {i € I : {v|e;) # 0} is countable.

Proof. The LHS of (3.8) is lim jeqin(ar) Xjcs [{v|e;»|?. Thus, it suffices to show that for
each J € fin(2") we have Y., [(v]e;)[* < v]*. Let
Uy =Z<v]ej>-ej Uy =V — Uy
jedJ
(Namely, v = uq +us is the orthogonal decomposition of v with respect to Span{e; :
j € J}.) By Gram-Schmidt, we have (u;|us) = 0. By Pythagorean, we have |u; |? <

|v]|*>. But Pythagorean (3.6) also implies
Jua | = D [Cvle,|”
jedJ
The last statement about countability follows from . O]
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3.3.2 Orthogonal decomposition

Definition 3.29. Let U be a linear subspace of V. Let v € V. An orthogonal
decomposition of v with respect to U is an expression of the form

V=u+w whereue Uandw L U

Orthogonal decompositions of v are unique if exist. We call u the orthogonal
projection of v onto U.

Proof of uniqueness. Suppose that v = v’ +w’is another orthogonal decomposition.
Then u — v’ equals w’ —w. Let§ = u—u'. Then{ e Uand & L U. So (£|¢) = 0, and
hence £ = 0. So v = v’ and w = w'. O

Example 3.30. Let ey,...,e, be orthonormal vectors of V. Let U =
Span{ey, ..., e,}. Choose any v € V. Then by Gram-Schmidt,

v=u+w where u = Z@\ei}ei andw =v—u (3.9)
i=1

is the orthogonal decomposition of v with respect to U.

Proposition 3.31. Let U be a linear subspace of V. Suppose that v € V has orthogonal
decomposition v = u + w with respect to U. Then

lv—ul = inf v —¢] (3.10)

Proof. Clearly “=" holds. Choose any £ € U. Thenv —§ = v—-—u+u—§ =
w4+ (u—¢§). Since uw — { € U, we have w L u — £. Thus, by Pythagorean, we have
[w] < llv—¢&J. U
3.3.3 Orthonormal basis

Definition 3.32. A set G (or a family (e;)er) of orthonormal vectors of V is called
an orthonormal basis of V' if it spans a dense subspace of V.

Example 3.33. If X is a set, by Prop. 2.53, [?(X) has an orthonormal basis (X (4} )zex.
Example 3.34. If V is separable, then V' has a countable orthonormal basis.

Proof. Let {vy,vs,...} be a dense subset of VV where v; # 0. Then by Gram-
Schmidt (Rem. 3.27), we can find e, es,--- € V such that the set {ej,es,...} is

orthnormal (after removing the duplicated terms), and that Span{v;,...,v,} =
Span{es, ..., e,} for each n. Then {ej, ey, ...} clearly spans a dense subspace of
V. O
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We remark that there are non-separable and non-complete inner product
spaces that do not have orthonormal bases. See [Gud74].

Theorem 3.35. Suppose that (e;);es is an orthonormal basis of V. Then for each v € V,
the RHS of the following converges (under the norm of V') to the LHS:

v = Z<U|ei> - € (3.11)
i€l
Proof. Note that for J € fin(2!), the expression

HU - Z<v]ej>ej i = |v|? - Z [(vles|?

jeJ jed

decreases when J increases. Thus, it suffices to prove that the inf jc4,(0r) of this
expression is 0.

By assumption, we can find J € fin(2") and ();) e in C such that [v—37._; Aje;
is small enough. On the other hand, applying Prop. 3.31 to the orthogonal projec-
tion v = u + w where w = 3. (v|e;ye; (cf. Exp. 3.30), we have

Hv — Z<v]ej>ej < Hv — Z Aj€j
jedJ jedJ

Thus, the infimum of the LHS over J € fin(2/) is zero. O

Corollary 3.36 (Parseval’s identity). Suppose that (e;);es is an orthonormal basis of V.
Then for each u,v € V we have

(3.12)

Culoy =D Cules) - eilo) (3.13)
In particular, -
ol = Z [vlesyf? (3.14)
Proof. By Thm. 3.35, u = lim jegy o1y g V\iere uy = Zje.]<u‘€j>'ej‘ By the continuity
of (:|): V x V — C (Exp. 3.21), we have
W) = lim | Cuslo) = lim D Culey - Leslv) = Y ulesy - Ceifv)

I
Jefin(2) 555 iel

]

Corollary 3.37. Suppose that (e,).ex is an orthonormal basis of V.. Then there is a linear
isometry

oV - *(X) v ((vleg))zex (3.15)
whose range is dense in 1*(X).

Proof. Parseval’s identity shows that ((v|e,)).cx has finite [*-norm |v|. So the map
¢ defined by (3.15) is clearly a linear isometry. The density of the range of ®
follows from the fact that {*(X) contains all x(,; = ®(e,), and that Span{x : z €
X} is dense in I?(X) (cf. Prop. 2.53). O
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3.4 Hilbert spaces

Theorem 3.38. Let H be an inner product space. Then the following three conditions are
equivalent:

(a) H is (Cauchy) complete.

(b) For each orthonormal family (e;)icr in H, and for each family (a;)er in C satisfying
Dier lail? < 400, the unordered sum Y, a;e; converges (under the norm of H).

(c) H is unitarily equivalent to I*(X) for some set X.
If H satisfies any of these conditions, we say that H is a Hilbert space.

Proof. (c)=(a): By Thm. 2.59, [*(X) is the dual space of [*(X). Since any dual
space is complete (Cor. 2.36), [*(X) is complete.

(a)=(b): Since Y, |a;|* < +, for each ¢ > 0 there exists J € fin(2) such that
for all finite K < I\J we have Y, _, |ax|*> < ¢, and hence, by the Pythagorean
identity,

2
H Z akekH = Z larer|® < e
keK keK

Thus (3;c; a;€;) sein(2r) is @ Cauchy net. By the completeness of H, we see that
D s Gi€; converges.

(b)=(c): Assume (b). We first show that 7 has an orthonormal basis. By
Zorn’s lemma, we can find a maximal (with respect to the partial order <) set
of orthonormal vectors, written as a family (e;);e;. The maximality implies that
every nonzero vector { € H is not orthogonal to some e;. (Otherwise, {e; : i € I}
can be extended to {e; : i € I} U {&/|£][}.)

Let us prove that (e;);e; is an orthonormal basis. Suppose not. Then U =
Span{e; : i € I} is not dense in H. Let £ € H\U. By Bessel’s inequality, we have

D [Kelenl? < 4o

iel

Therefore, by (b),

Z<§|€i> "€ (3.16)

el

converges to some vector 7 € H. By the continuity of (:|-) (Exp. 3.21), we see that
(n|e;y = (£le;) for all i, and hence

& —nle)y =0 foralliel (3.17)
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Since € U and ¢ ¢ U, we conclude that ¢ — 7 is a nonzero vector orthogonal to
all e;. This contradicts the maximality of (e;);e;.

Now we have an orthonormal basis (e;);,c;. By Cor. 3.37, we have a linear
isometry

d:H — I*(I) §— <<€‘€i>)iel

with dense range. If (a;);e; belongs to [(), by (b), the unordered sum },_; ae;
converges to some ¢ € H. Clearly ®(£) = (a;)ies. This proves that ® is surjective,
and hence is a unitary map. So H ~ [*(I). O

Example 3.39. By Thm. 3.38, if X is a set, then [?(X) is a Hilbert space.

Example 3.40. Let (X, 1) be a measure space. By the Riesz-Fischer Thm. 1.48, the
inner product space L?(X, 1) is a Hilbert space.

Corollary 3.41. Every Hilbert space H has an orthonormal basis. Moreover, H is sepa-
rable iff the orthonormal basis can be chosen to be countable.

Proof. That ‘H has an orthonormal basis follows from the proof of Thm. 3.38 or
from the fact that />(X) has an orthonormal basis (x(})sex. If X is countable,
then [?(X) has dense subset Spang, ;o{x(s} : # € X} and hence is separable. Con-
versely, we have proved in Exp. 3.34 that every separable inner product space has
a countable orthonormal basis. O

Theorem 3.42. Let (e,).cx be an orthonormal basis of a Hilbert space H. Then we have
a unitary map

HSPX) 6o (o), (3.18)
Proof. This is clear from the proof of Thm. 3.38. O

3.5 Bounded linear maps, sesquilinear forms, and matrices

In this section, we let V, W be inner product spaces.

3.5.1 Bounded linear maps and bounded sesquilinear forms

In Subsec. 2.5.2, we discussed the close relationship between bounded linear
maps and bounded bilinear forms in the general setting of normed vector spaces.
This connection allows us to combine the strengths of both perspectives. One key
advantage of the perspective of linear operators is that the space £(V') is particu-
larly well-suited for symbolic calculus.

In this section, we explore this relationship in the context of inner product
spaces and Hilbert spaces. We will see that the passage from £(V') to bounded
sesquilinear forms fundamentally relies on the Riesz—Fréchet theorem, a pivotal
result that enables this correspondence.
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Definition 3.43. If 7' € Lin(V, W), we let wr be the sesquilinear form

wr:VxW—-C (v, w) — {Tv|w)
Proposition 3.44. For each T e Lin(V, W), we have

1T = Jlowr
Consequently, T' is bounded iff wr is so, and the map T € Lin(V, W) — wr is injective.
Proof. For each v e V,w e W, we have
jwr (v, w)| = [KTww)| < [Tl - |w] < |T] - ol - w]
Applying sup over all v, w in the closed unit balls, we get |wr| < ||T]. Moreover,
|T9]* = wr(v|Tv) < flwr] - o] - |Tv]

and hence | Tv|| < |wr - |v]|. Applying sup over all v in the closed unit ball, we get
17 < flwr]- 0
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4 Spectral theorem for bounded self-adjoint opera-
tors

4.1 Prehistory of spectral theory: continued fractions

4.2 Prehistory of spectral theory: the polynomial moment prob-
lem
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Radon-Nikodym theorem, 18
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