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Abstract

Let V be an N-graded Cs-cofinite vertex operator algebra (VOA), not necessarily
rational or self-dual. Using a special case of the sewing-factorization theorem from
[GZ25a], illustrated in Fig. 0 below, we show that the end

E= J M ®c M’
MeMod(V)

in Mod(V®?) (where M’ is the contragredient module of M) admits a natural struc-
ture of associative C-algebra compatible with its V®2-module structure. Moreover,
we show that a suitable category Cohy,(E) of left E-modules is isomorphic, as a linear
category, to Mod(V), and that the space of vacuum torus conformal blocks is isomor-
phic to the space SLF(E) of symmetric linear functionals on E.

Combining these results with the main theorem of [GZ25b], we prove a conjec-
ture of Gainutdinov-Runkel [GR19]: For any projective generator G in Mod(V), the
pseudo-g-trace construction yields a linear isomorphism from SLF (Endy(G)°P) to the
space of vacuum torus conformal blocks of V.

In particular, if A is a unital finite-dimensional C-algebra such that the category
of finite-dimensional left A-modules is equivalent to Mod(V), then SLF(A) is linearly
isomorphic to the space of vacuum torus conformal blocks of V. This confirms a
conjecture of Arike-Nagatomo [AN13].

[ oy - M M s oo
g W - SMEI\[U(I(V) ®c ~7 W

Figure 0. A pictorial illustration of the sewing-factorization isomorphism (0.4).
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0 Introduction

0.1 (Co)ends in finite logarithmic CFT

A fundamental feature of rational conformal field theory (rational CFT) is the factor-
ization property, which states, roughly speaking, that when a (possibly disconnected)
compact Riemann surface is sewn along several pairs of marked points using prescribed
local coordinates, the resulting space of conformal blocks is isomorphic to a direct sum of
spaces of conformal blocks associated to the pre-sewing configuration.

In the theory of rational and Cs-cofinite vertex operator algebras (VOAs), proving the
factorization property in low-genus cases is a central topic in the literature. The key re-
sults in this direction include the modular invariance property [Zhu96, Hua05b] and the
associativity of intertwining operators [Hua95, Hua05a]. These are analytic in nature,
meaning that the isomorphisms appearing in the factorization property are derived us-
ing Segal’s formalism of sewing [Seg88, Seg04]. More recently, the factorization property
in arbitrary genus has been established for rational Ca-cofinite VOAs using formal (al-
gebraic) sewing, as in [DGT24]; for genus zero, this formal approach was developed in
[NTO5].



Now we focus on a Cs-cofinite, but not necessarily rational, VOA V = @, V(n).
The category Mod(V) of grading-restricted generalized V-modules is a finite abelian cate-
gory as a linear category [MNT10, Hua(09]. As a monoidal category, its tensor structure—
defined via the formalism of Huang-Lepowsky-Zhang [HLZ14], [HLZ12a]-[HLZ12g]—
forms a (possibly non-rigid) ribbon Grothendieck-Verdier category [ALSW21].

In this setting, the study of factorization originates from the construction of non-
semisimple modular functors in topological field theory (TFT), especially the work of
Lyubashenko [Lyu95, Lyu96]. From the TFT perspective, factorization should naturally
be formulated in terms of ends and coends, the definitions of which will be recalled in Def.
2.32. There are several approaches to expressing factorization via ends and coends. One
is the left exact coend formulation [Lyu95, Lyu96, FS17]. Another employs the horizon-
tal composition of profunctors, as in [HR24]. In fact, the Huang-Lepowsky-Zhang tensor
category theory can be viewed as realizing a genus-zero sewing-factorization theorem in
the language of horizontal composition of profunctors—a perspective first emphasized
in [Mor22].

On the other hand, the modular invariance property is typically regarded as a genus-
one sewing-factorization theorem. In the non-rational case, one well-established formula-
tion of modular invariance is expressed in terms of pseudo-g-traces [Miy04, AN13, Fio1l6,
Hua24b]. However, the connection between this formulation and the end /coend perspec-
tive remains unclear. The aim of this paper is to clarify that relationship.

0.2 The sewing-factorization (SF) theorem

In [GZ25a], we established several equivalent formulations of the sewing-
factorization theorem for any Cs-cofinite VOA V = @, V(n). One such formula-
tion appears in the language of horizontal composition of profunctors; see [GZ25a, Sec.
3.2]. While this is a coend-based expression of the factorization property, its relation to
pseudo-g-traces is not immediately transparent. In the following, we recall the version of
the sewing-factorization theorem stated in terms of (dual) fusion products, as proved in
[GZ25a, Sec. 3.1] and reviewed in detail in Sec. 1.6.

Let & be a (possibly disconnected) compact Riemann surface with disjoint sets G’
and G of outgoing and incoming marked points, respectively, such that each connected
component of & intersects G’ U G. Suppose each point in G’ U G is equipped with a local
coordinate. Let N = |G’| and R = |G|. Fix orderings of G’ and G, that is, bijections

{1,...,N} =G {1,...,R} =G

Let Vect be the category of finite-dimensional C-vector spaces. Then we have a left exact
(cf. Rem. 1.4) profunctor

Mod(VEN) x Mod(VEH) — Vect

wn - (2

(G

where the notation .7*(---) on the RHS denotes the space of conformal blocks over &
with input module X and output module M. (The roles of input and output modules can
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be interchanged by taking contragredient modules.) This profunctor is covariant in M
and contravariant in X. For a detailed definition and interpretation of the figure, see Sec.
1.2.

By [DSPS19], every linear functor from a finite C-linear category to Vect is repre-
sentable. Therefore, for each fixed X € Mod(V®R), there exists an M-natural linear iso-

morphism

Fix such a natural isomorphism, and let

e (wr SSIE)

(G

be the element corresponding to idx,x € Endye~ (XleX) under the isomorphism (0.1).
The pair (XX, ) is called a fusion product of X along &, and 7 is called the canoni-
cal conformal block. Note that this construction depends on the chosen orderings of the
incoming and outgoing marked points G and G’. For simplicity, we suppress this depen-
dence in the introduction, but it will be made explicit in the main body of the paper.

Now suppose we are given, similarly to ®, a compact Riemann surface § with disjoint
sets F', I of outgoing and incoming marked points. Let K = |F’| and assume that |F| =

= |G’'|. Fix orderings of F’ and F. Assume that each component of § intersects F’ U
F. Then, using the chosen orderings, we can analytically sew § and ® along F' and ¢/,
producing a new surface §#®&:

—

=X -
— @

(Since we are performing analytic sewing, we must choose sewing moduli. In the in-
troduction, as well as in many parts of this paper, we fix all sewing moduli to be 1; see
Subsec. 1.6.1 for details.)

Assume that each component of §#® intersects F' U G. The sewing-factorization
(SF) theorem says that for each W € Mod(V®X) and X € Mod(V®F), we have a linear
isomorphism (called the sewing-factorization isomorphism)

S = (G
&.H = — 0.2)

¢ do

where o 71: W ®X — Cis the contractionof ¢ : W XX — Cand 7:NsX®X — C,
with Ng X being the contragredient module of X X (called the dual fusion product).

We remark that in [GZ25a], the SF theorem is stated under the assumption that each
component of & intersects G. This condition can be removed by invoking the propagation
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of conformal blocks; see Thm. 1.38. (In particular, when & is connected, it is allowed to
have no incoming marked points. In that case, since & intersects G’ U G, the set G’ of
outgoing marked points must be non-empty.)

0.3 The SF theorem in terms of the end §,_, ;M ®c M'

An important special case of the above SF theorem is when § has two incoming points,
and & is the sphere 91 with no incoming and two outgoing points o0, 0, equipped with the
local coordinates 1/¢, ¢ respectively, where ( is the standard coordinate of C. We refer to
N as the default 2-pointed sphere. Let (XjnC, w) be a fusion product of the complex field
C € Mod(V®?) along 91. Assume that

o
I
i
(I

Then, since

(=29 - (==D e
3 Nn
— - — (0.4a)

where W € Mod(V®X), and K is (again) the number of outgoing points of 3.

By the propagation of conformal blocks, XnC is isomorphic to the fusion product XJqV
of V along a sphere with one input and two outputs; see Thm. 1.14 for details.! In [GZ25a,
Sec. 0.6], we explained why X5V can be viewed as the end §,_,, avyM® M. Therefore,

we have an isomorphism of V&2-modules

XinC ~ M ®c M’ (0.4b)
MeMod(V)

(An alternative proof of (0.4b) will be given in this paper; see Thm. 2.33.) Therefore,
(0.4a) yields the isomorphism shown in Figure 0 following the abstract. See Rem. 1.41 for
further explanation.

0.4 The Arike-Nagatomo conjecture is an easy consequence of the SF theorem

As a special case of the isomorphism in Figure 0, we have

g* < o ) = 9* ( V— @ SMIE]\IQ({(\V) M ®C M/>

!The contragredient of [xloV was first considered by Li in [Li02], where it was referred to as the regular
representation of V.




~ J* ( @ SMeMod(\V) M®c Ml)

where the last equality is due to the propagation of conformal blocks. Since the transpose
of the dinatural transform §;_, d(v) MM — MM is M'@M — ( §icne A MM’ )',
the latter must satisfy the universal property required for a coend. Thus

, MeMod(V)
( J M® M) ~ f M @ M
MeMod (V)

Therefore, we have

(D) - (@)

By (0.1) and (0.4b), the RHS above is isomorphic to

HomV®2 < J‘ M ® M/a
MeMod(V)

Therefore, the space of vacuum torus conformal blocks is isomorphic to (0.5). This imme-
diately implies the following theorem, originally conjectured by Arike-Nagatomo in the
Introduction of [AN13].

MeMod(V)
f M ® M) (0.5)

Theorem 0.1. Let A be a unital finite-dimensional C-algebra such that Mod (V) is linearly iso-
morphic to the category Mod! (A) of finite dimensional left A-modules. Then we have a linear

isomorphism
T ( V— > ~ SLF(A) (0.6)

where SLF(A) denotes the space of symmetric linear functionals on A.

By a symmetric linear functional on A, we mean a linear map ¢ : A — C satisfying
¢(ab) = ¢(ba) for all a,b € A.

Proof. We have used the SF theorem to prove that the LHS of (0.6) is linearly isomorphic
to (0.5). Note that

ModE (A4)°P ~ Mod(V)°P ~ Mod(V)

where the isomorphism Mod(V)°P ~ Mod(V) is defined by sending each M°P to the con-
tragredient M’ of M. By [McR23],

Mod(V) x Mod(V) — Mod(V®?)  (X,Y) —» X®c Y
is a Deligne product. Therefore, (0.5) can be written as
fMEMOd(V)

HomMod(V)®DelM0d(V) ( j M @Del M,,

M/ ®De1 M)
MeMod(V)



MeMod! (A)
J MoP ®De1 M)

~Homy, e £ Ao f M @P MoP,
Mody, (A)@P'Mody, (A) p( MeMod! (4)

where ®"°' denotes the Deligne product. By [FSS20, Cor. 2.9], if we identify Mod! (4)®P!
Mod! (A)°P with the category Bim(A) of finite-dimensional A-bimodules, then the last
Hom space above is equivalent to

Homyp; ¢ 4) (A, A*) ~ SLF(A)

where each 7' € Homp;,, ¢4y (4, A*) corresponds to 1} o T' € SLF(A) and 1} : A* — Cis
the transpose of A e C — X - 14 € A. This establishes the isomorphism (0.6). O

0.5 The Gainutdinov-Runkel conjecture on pseudo-g-traces

The isomorphism (0.6) established in Thm. 0.1 is fairly abstract, and it is natural to
seek an explicit linear map that realizes this isomorphism. Such a map was proposed
by Gainutdinov and Runkel in [GR19]. Specifically, Conjecture 5.8 of [GR19] asserts that
if G is a projective generator in the abelian category Mod(V), then the pseudo-g-trace
construction (in the sense of [AN13]) yields a linear isomorphism

SLF (Endy(G)°) = J* < V— ) 0.7)

We do not recall the definition of the pseudo-g-trace construction here; see Sec. 3.2
for details, or the Introduction of [GZ25b] for a brief overview. However, let us explain
why the Arike-Nagatomo conjecture is a special case of the Gainutdinov-Runkel conjec-
ture: Suppose that Mod(V) ~ Mod: (A) as linear categories, where A is a unital finite-
dimensional algebra. Then A, as a left A-module, is a projective generator of Mod! (A),
and Endyjoqr (4 (A)°P ~ A. By choosing any G € Mod(V) corresponding to the object A of

Mod! (A), we recover the isomorphism (0.6) from (0.7).

We emphasize that in the main body of this paper, our proof of the Gainutdinov-
Runkel conjecture, formally stated in Thm. 3.7, does not rely on first establishing the
Arike-Nagatomo conjecture. In fact, our argument provides an independent proof of the
Arike-Nagatomo conjecture, separate from the one given in Sec. 0.4. Furthermore, our
proof does not assume the isomorphism XKinC =~ §, avy M® M/; rather, the alternative
proof of this isomorphism is a consequence of the techniques developed for proving the
Gainutdinov-Runkel conjecture, as we will see in Sec. 2.8.

To prove the Gainutdinov-Runkel conjecture, we must relate pseudo-g-traces to ends
and coends—in other words, to answer the question posed in the title of this paper. Our
answer, in brief, is as follows:

(1) The vector space XnC can be equipped with an associative C-algebra structure that
is compatible with its V®2-structure (Cor. 2.12). Moreover, the algebra xinC is al-
most unital and finite-dimensional (AUF) in the sense of [GZ25b] (Cor. 2.22).

(2) There is a canonical linear isomorphism from the category Cohr,(XnC) of coher-
ent left XjyC-modules (cf. Def. 2.24) to the abelian category Mod(V) (Thm. 2.29).
Therefore, the projective generators of the two categories can be identified.
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(3) By (0.4a) and the propagation of conformal blocks, the sewing-factorization isomor-
phism implements an isomorphism from the following space of conformal blocks

@(_ mc 0.8)

(which can be identified with SLF(X»C), cf. Thm. 2.36) to the space of vacuum
torus conformal blocks.

(4) By the main result (Thm. 9.4) of [GZ25b] on symmetric linear functionals of AUF
algebras, the pseudotrace construction yields a linear isomorphism

by (2)

SLF(Endy(G)) SLF(Endgg,,c(G)) —> SLF(®nC) (0.9)

Due to (3), the sewing-factorization isomorphism yields an isomorphism from
SLF (XInC) to the space of vacuum torus conformal blocks. One can show that the
composition of the pseudotrace construction (0.9) and the SF isomorphism equals
the pseudo-g-trace construction. The proof of the Gainutdinov-Runkel conjecture is
finished.

0.6 The cobordism geometry of associative C-algebras

According to the discussion above, the key to answering the question “how are
pseudo-g-traces related to (co)ends” lies in the fact that the end X»zC naturally carries
the structure of an AUF algebra. Our approach to studying torus conformal blocks via
infinite-dimensional associative algebras is partly inspired by Huang’s construction of
the algebra A* (V) in [Hua24a, Hua22] and his use of this algebra in [Hua24b] to estab-
lish modular invariance of intertwining operators for Cy-cofinite VOAs. Another type
of infinite-dimensional algebra, the so called mode transition algebra, was considered
by Damiolini-Gibney-Krashen [DGK25, DGK24], and was conjectured in [DW25] to be
closely related to the end §; ;4 vy M® M, although this connection remains unclear in
the absence of rationality assumption on the Cs-cofinite VOA V.

Our construction of the associative algebra structure on XC differs fundamentally
from all previous approaches to associative algebras in the VOA context: it is purely
geometric, in the sense of Segal’s CFT and cobordism categories.

It is well-known that the vertex operator Y (—, z), associated to any V-module, gives
a conformal block associated to a sphere with two inputs and one output. In contrast,
the geometric realization of the Zhu algebra A(V) and the higher Zhu algebras A, (V) is
far less transparent. However, the geometry for the algebra structure of XjnC is much
clearer: the multiplication map ¢ : XnC ® XnC — XnC belongs to the following space of
conformal blocks:

KnC XnC

S A
T* ( G @ @ ) (0.10)
XnC
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where the signs + and — indicate the ordering of marked points; see Sec. 1.2 for the
precise meaning of the graphical notation for conformal blocks. Moreover, for any
M e Mod(V), the corresponding left XjyC-module structure on M, given by a linear map
XinC ® M — M, belongs to the following space of conformal blocks:

XnC M

ol
g@@) 011
i

These two conformal blocks will be defined precisely in Def. 2.7 in a uniform way using
the SF theorem. This provides yet another illustration of the power of the SF theorem
established in [GZ25a].

According to [LiOla, Li0lb] (see also the appendex Chapter B of the arXiv version
of [GZ23]), the Zhu algebra A(V) and the higher Zhu algebra A, (V) can be realized as
quotient spaces of XlnC, and their algebra structures can be defined via the V®2-module
structure of XnC. Since our associative algebra structure on xj»C is compatible with this
V®2-module structure, we expect that the algebra structure on X C descends to those of
A(V) and A, (V). This, in turn, provides a cobordism-geometric interpretation of A(V)
and A,,(V): the geometries of the associative algebras A(V) and A,,(V) should be viewed
as the zero-level and finite-level truncations of a distinguished conformal block in (0.10),
namely, the conformal block defining the multiplication map ¢ : XnC ® XnC — XnC.

Acknowledgment

We would like to thank Jurgen Fuchs, Robert McRae, Shuang Ming, Ingo Runkel,
Christoph Schweigert, Yilong Wang, Lukas Woike, Baojun Wu, and Jinwei Yang for help-
ful discussions. Special thanks go to Yi-Zhi Huang for encouraging us to explore the
connection between our series of works [GZ23, GZ24, GZ25a] and the pseudo-g-traces,
a relationship that was not at all apparent to us when the outlines of these three articles
were initially conceived.

1 Conformal blocks and their graphical calculus

1.1 Notation

Throughout this paper, we use the following notation.

e N={0,1,2,...},Z;+ = {1,2,...}. Neighborhoods are assumed to be open.

e Let C* = C\{0}. For each r € [0, +0], we let

D,={zeC:lz|<r} D={zeC:0<|z|<r}

* Let Vect be the abelian category of finite-dimensional C-vector spaces.



¢ Let ( be the standard coordinate of C, namely, the identity map id : C — C.

* For each complex manifold X, Ox denotes the sheaf of germs of holomorphic func-
tions on X. Therefore, Ox(X) = O(X) is the space of holomorphic functions
X — C. We let wx be the sheaf of germs of holomorphic 1-forms on X.

¢ Throughout this paper, we fix an N-graded C»-cofinite vertex operator algebra
(VOA) V = @,y V(n) with conformal vector ¢ and vacuum vector 1. For each
n €N, we let

V=" = P V(k)

k<n

For each N € N, we let Mod(V®¥) be the category of grading-restricted generalized
V®N-modules, which is an abelian category by [Hua09] (see also [MNT10]). We re-
fer the reader to [Hua09] for the general properties of grading-restricted generalized
modules of Cy-cofinite VOAs.

* Recall from [GZ24, Sec. 1.1] that if W € Mod(V®V) and v € V, the i-th vertex
operator

Yw (v, 2z) = Z Yawi(v)nz "

neZ

isY(1® - -®v®---®1,2) where v is at the i-th component. We abbreviate Yy ; to
Y; when no confusion arises. We also write

Y/(v,2) = YiU(y2)o, =) (1.1a)

where U(y,) = e*X(1)(—272)L0) is the change-of-coordinate operator (cf. Subsec.
1.2.1) associated to

1 1

Yz:t'_)z—&—t_; (1.1b)
Clearly U(y.)~' = U(y1/,), and hence
Yilv,2) = Y/ U(y:)o,2™") (1.10)
We write
Y/(v,2) = ) V] (0)pz"! (1.2)
neZ
We also write
Yy=Y1 Y=Y Y=Y, Y. =Y] for V®-modules (1.3)

Let Li(n) = Yi(c)n_1.
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If W e Mod(V®V) and A1, ..., Ay € C, then Wy,] is the subspace of all w € W such
that for all 1 < i < N, w is a generalized eigenvector of L;(0) with eigenvalue \;.
The finite-dimensional subspace W, is defined to be the direct sum of all W[, ;
where R(11;) < R(\;) for all 1 < i < N. Then the contragredient V®~-module of W,
as a vector space, is

W= P (Wp.)*
Ae€CN

Then for each w € W, w' € W we clearly have
<Yvi(v7z)w7w,> = <w,Y;/(U,Z)w/> (14)

The algebraic completion of W is

W=W) = [] Wn,
Ae€CN

We let

P(),) = the projection of W onto Wy,
P(< A,) = the projection of W onto W,

Fix1 <7< N and )\ € C, then

P;(\) resp. P;(< \) denotes the projection of W onto
P Wi resp. P Wi (L5)

He€CN ;=X He€CN R(p;) <R(N)
If N = 2, we write

Py(A) = Pi(\) PyAN) =PI(<A) P-()=P) P(<N=P(<N) (16)

Let E be a finite set such that |[E| = N. An ordering of E is a bijection ¢ :
{1,---,N} — E. Suppose we have two orderings

e:{l,--- ,N} - E, 3:{l1,--- M}—>F
The composition of orderings is defined as

exz:{l,--- N+ M}—>FEuF
ex3(i) =c(i),1<i< N  exx(N+j)=20(),l<j<M

Then € # 3+is an ordering of £/ ui F'. It is easy to check that composition of orderings
satisfies the associativity. Thus, the composition of [ orderings 1 * €9 * - -- * g/ is
well-defined for ¢; : {1,--- , N;} — E;.

Let N € Z.. The permutation group of {1,--- , N} is denoted as S .
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* Let M € Mod(V). Let End(M) be the set of linear operators on M. Let

End’(M) := | ] End(M<y))
AeC (1'7)
={T € End(M) : T'= P(< \)TP(< \) for some X € C}

End’ (M) is a grading-restricted V®2-module whose module structure is determined
by the fact that for each v € V,7 € End’(M), the following relation holds in
End”(M)[[=*]]:

Y(v®1,2)T = Yv(v,2)oT Y(1Q®uv,2)T =T o Yy(U(y:)v, 27 1)
Under this structure, the linear isomorphism
M@M = End’ (M) m®@m' — m-(m/,—)
is an isomorphism in Mod (V®?).
* Let M € Mod(V). If M is a right module over an associative C-algebra B, we let

End% (M) = {T € End°(M) : (T'm)b = T'(mb)foreachm e Mand be B}  (1.8)

e If Ais an associative C-algebra, we let
SLF(A) = {symmetric linear functionals on A}

where a symmetric linear functional on A denotes a linear map ¢ : A — C satisfy-
ing ¢(ab) = ¢(ba) for all a,b € A.

1.2 Conformal blocks for unordered N-pointed compact Riemann surfaces

In this section, we introduce the (unordered) N-pointed compact Riemann surfaces
with local coordinates.

1.2.1 Sheaf of VOA

Let us recall the definition of sheaf of VOA. See [GZ24, Subsec. 1.3.1] for details.

Let G be the group of all f(z) = >}, .,an2", where a,, € C and a; # 0. The group
product of f,g € G is defined to be the composition f o g. For each a € G, U(«) is an
invertible linear operator on V defined by

U(a) = ' (0O exp ( Z an(n)>
n>0

where ¢, € Cand 0 # o/ (0) € C are the constants defined by a(z) = «/(0) -

exp ( > =0 cnz"H@Z) z.
More generally, if W € Mod(V®Y), for each 1 < i < N we define a linear operator

Ui(a) = o' (0 exp (Y eaLi(n)) (1.9)

n>0
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on W, which depends on the choice of arg o/(0).

If X is a complex manifold, a map p : X — G (sending z € X to p, € G) is called a
holomorphic family of transformations if for each z € X, there exists a neighborhood
V < X of x and a neighborhood U < C of 0 such that the map (z,y) e U x V — p,(2) € C
is holomorphic. In that case, for each n € N, we have an End(V<")-valued holomorphic
map

U(p) : X - End(V") 2 U(pa)
which induces an isomorphism of holomorphic vector bundles
U(p) : V" Q¢ Ox — V" ®c Ox
Let C be a Riemann surface (without boundary). The sheaf of VOA

Yo = lm v = | 75

neN neN

which relies on V and C, is defined as follows. “VC<” is a (finite rank) locally free Oc¢-
module defined by the transition functions provided below. For each open subset U = C
and each univalent (i.e. holomorphic injective) function n € O(U), we have a trivializa-
tion, i.e., an isomorphism of holomorphic vector bundles

Up(n) : V& o = V="Q Oy

If 4 € O(U) is another univalent function, the transition function is given by the isomor-
phism

Us(Uy(1) ™" = U(e(nlp)) : V<" ®c Oy = V=" ®c Oy (1.10)
Here o(n|u) : U — G is the holomorphic family such that for each p € U,

o(nlw)p(2) = no ™ (z+ pu(p)) —n(p)

Equivalently, o(n|u), is the unique element of G transforming the local coordinate 11— 1(p)
atpton —n(p),ie.,

o(nlp)p o (p— p(p)) = n—np)

Recall that we is the sheaf of germs of holomorphic 1-forms on C. We view w¢ as a
holomorphic line bundle. Consider the tensor product bundle ¥5" ® w¢, formed from
¥5" and we. Then for each univalent € O(U) as above, we have a trivialization

UQ(T]) ®id : 7/;71 ®wc‘U = Vgn & wyr

abbreviated to U,(n) for convenience.
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1.2.2 Definition of conformal blocks
Let N e N.

Definition 1.1. An (unordered) N-pointed compact Riemann surface with local coordi-
nates denotes the data

X = (C’E, nEg) = (C‘E, (Nz)zeE), (1.11)

where C' is a compact Riemann surface; £ < C is a set of marked points such that |E| =
N; for each = € E, n, is a local coordinate at x—that is, 7, is an injective holomorphic
function on a neighborhood U, of x satisfying 7, (x) = 0. We also assume that

the intersection of E with each connected component of C is non-empty. (1.12)
An ordering of E is defined to be a bijection
£:{1,2,--- ,N} = E (1.13)
Given an ordering ¢, the set £ can be written as £ = {¢(1),--- ,e(N)}.
Consider the sheaf 73 ® wc (e E), where
Yy = Vo

The sheaf 75 ® wc(eF) consists of sections of ¥x @ w¢| B with finite poles at £. Then

H°(C, 7% ®wc(eF)) is the space of global sections of ¥x @ wc on C\E with finite poles at
E.

Let ¢ be an ordering of E. Let W € Mod(V®"). We will use the terminology of asso-
ciating W to E via ¢ to describe the assignment of V®N-modules to marked points. This
terminology allows us to define the e-residue action *¢ of H°(C, 7% ® wc(eE)) on W,
which is a linear action defined by

o x5 w = Res ;) Yi(Uo(n-(i)) 0, Neiy) W (1.14a)
N

o w= Za*iw (1.14b)
=1

for each o € HY(C, 73 @ we(eE)), we W,and 1 <i < N.
Eq. (1.14a) is interpreted in the following way: Let U, ;) be a connected neighborhood
of £(i) on which 7, ;) is defined, and let Uex(i) = U.(;)\{(7)}. Then the trivialization

Ug(Me(@)) = T @ wc|UEX<Z_) = V®c wyx, =V ®c OUEZ) dne(s)

maps o (more precisely, the restriction | U i)) to a finite sum

Z Uk @ frdne()
k
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where v, € V, and fi, = fr(n.¢;)) € O(U;(i)) admits a Laurent series expansion at (7):

Jr = Z ak,n(ns(i))n

nez
with ay, , € C, and ay,, = 0 for n « 0. Then
o+ w = Res. () Yi(0r, (o)W - frdneqsy = D, Y arnYi(vp)nw (1.15)
k k neZ
The space of coinvariants is given by

W

yx,e(W) = O (C, Vi ®UJC’(OE)) < W

where Spanc has been omited in the denominator. Its dual space is called the space of
conformal blocks and is denoted by ﬂx":s(W) The elements of 7;* (W) are called con-
formal blocks associated to the family X, the module W, and the ordering . In other
words:

¢ The space fx"j (W) consists of all conformal blocks, i.e., linear functionals ¢ : W —
C satisfying

(p,0+=w)y =0
for eachw e W,0 € H(C, ¥x Qwc(sE)).
Remark 1.2. Let W € Mod(V®Y). A pictorial illustration of T (W) is

W( ///WY

In this picture, X has two connected components, and N = 5. Thus, the set £/ of marked
points has five elements, corresponding to ¢(4),e(5),e(1),e(3),e(2), listed from left to
right. (Note that each marked point (i) is equipped with a local coordinate 7,(;).) And
M € Mod(V®?).

Remark 1.3. The setting of conformal blocks laid out in this article is slightly different
from that of [GZ23, GZ24, GZ25a], where we study conformal blocks associated to W e
V®N and an ordered N-pointed compact Riemann surface with local coordinates

Q.’) = (C‘x17"'7$N;7]17"‘77]N)

The definition used there agrees with the present definition of .y (W) provided that,
given the above 2), we define the unordered data

X = (C|E; (N2)aek) where F = {z1,...,zy}and 0y, = n;

and define the ordering ¢ by (i) = z;. Conversely, given the unordered data X and the
ordering € as in (1.11) and (1.13), we define the ordered data

9 = (C|5(1)) R 8(N)a Ne(1)y - - - ’776(]\/))
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Remark 1.4. For each M, W € Mod(V®") and T € Homyex~ (M, W), the map 7' : M — W
clearly descends to a linear map of the corresponding quotient spaces

T: Fxo(M) — Fxo(W) (1.16)
Its transpose is

T : T (W) — T (M) (1.17)
Therefore, we have a contravariant functor

T Mod(V®Y) — Vect
T € Homyen (M, W) —s (Tt : ngjg(w) - gx*,a(M))

called the conformal block functor. In fact, this contravariant functor is left exact; see
[GZ25a, Thm. 1.22].

1.2.3 Grouping marked points

Let X be as in Def. 1.1. In practice, the set E of marked points of (1.11) is often divided
into T subsets (wWhere T' € 7Z,), written as E = F; u --- u FEp. In this case, for each
i=1,...,T, welet

ne; = (Na)aek; (1.18)
so that X can be written as
X=(C|lEiu---uEpng, - 6 (1.19)
Foreach 1 <i < T, set N; = |E;|, and choose an ordering
g :{l,--- | N;} = E;

Choose W; € Mod(V®"1), and associate W; to E; via ¢;.
Recall that ey * - - - x e denotes the composition of the orderings ¢4, ..., e7, cf. Sec. 1.1.

Proposition 1.5. For each o € S, we associate W,y ® -+ @ W (1) € Mod(VON) to E via
the ordering €, (1) * - - - * o). Then the linear isomorphism

Ta: Wi ® - @Wp - Wy1) ® - @ Wy
W1 Q- QUT = We(1) @+ @ We(T)

descends to a linear isomorphism

Ta t Tx ey ner (W1 @ - @Wr) — ’*%57504(1)*'“*%@) (Wa(l) ® WQ(T)>

Therefore, its transpose gives a linear isomorphism

ﬂ-f)t : C?;,Ea(l)>l<~~>l<25a(r1~) (Wa(l) ® e ®WQ(T)) i) yx*,al*m*aT (Wl ® T ®WT)
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Proof. By (1.14) and (1.15), for each 0 € H°(C, ¥x @ wc (e E)) we have
T (o 5% (0 @ -+ @ wr)) = o %5 *a) (W, 1) @ -+ ® Wy(T))
for each wy € Wq,...,wr € Wp, and hence
T (0 #1F7*T ) = g x5a)* D) 7 (w) (1.20)

foreachw e Wi ® - - - ® Wr. Therefore

T (HO (C, 7/% ®wC(OE)) GEL¥ RET (Wl Q- @WT))
—HO (07 Ve ® wc(.E» $Ea(1)F *Eq(T) (Wa(l) R ® Wa(T))

This proves that 7, descends to a bijective linear map between spaces of coinvariants. [

Definition 1.6. By Prop. 1.5, for each o € &7, we can identify the spaces of conformal
blocks Z;* )(Wa(l) ® - QW) and Iy (W, ® -+ @ Wr) via wrl,. We

36,5a<1)*---*5a<T X,e1%- ke

denote this identified space by

‘?’ge.(W.) = ‘7.';517...,ET (Wb s 7WT) =I5 (Wa(1)7 cee 7Wa(T))

= xvaa(l)v'”vaa(T)
and call it the space of conformal blocks associated to X and Wy,... , Wy viaey, ..., er.

Remark 1.7. A pictorial illustration of 73*_ (W.,) is

Wb W

YNy

%e*,g.(W.)=9*< )

1 N
Wm WU’

S

In this example, X has two components, with a total of N = 8 marked points, divided
into T = 4 subsets. The set of marked points is £ = Ey, u E. u Ey, u E,; where the
subscripts b,r, m, g stand for blue, red, magenta, and green, respectively. Let ey, &r, em, €
be the corresponding orderings.

* [, consists of the top three blue points on the left component, ordered from left to
right as €1,(2), e5(3), ep(1).

* [, consists of the top two red points on the right component, ordered from left to
right as €,(2), &, (1).

* E,, consists of the single magenta point, £,(1), located at the bottom of the left
component.

* E, consists of the bottom two green points: ,(1) lies on the left component, and
£¢(2) on the right.
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The modules W}, € Mod(V®3), W, € Mod(V®?), W,,, € Mod(V), and W, € Mod(V®?) are
associated to i, I, B, B via the orderings ey, €, em, €4 respectively.

Remark 1.8. When |E;| = 1, we typically omit the index of the arrow in the picture. When
|El| =2, we

write 1 and 2 as + and —, respectively (1.21a)
Accordingly, we
write Y7 and Y5> as Y5 and Y_, respectively, for V®2_modules (1.21b)

Moreover, for any E;, reversing the directions of the arrows for W; and simultaneously
replacing W; with its contragredient W/, represent the same space of conformal blocks.
For example, the space 73, (W,) in Rem. 1.7 can be represented by

W,

W,
Vs N 7\

o= ((Z72) ()

N/

Wlll W; ‘\—s&\]/ W%

m

1.3 (Dual) fusion products

In this section, we let V, R € N. In order to define (dual) fusion products, we divide the
set of marked points F into 7' = 2 parts E’, E, and place one of them—say E'—together
with its local coordinates in front of C. More precisely:

Definition 1.9. Let § be an unordered (R + N)-pointed compact Riemann surfaces with
local coordinates, where the set of marked points is divided into two groups E’ and E.
We let 0, denote the local coordinate at x € E, and let #/, denote the local coordinate at
a2’ € E'. We write this data as

F=(E;0%

C’E; GE) where 0% = (0)) e and 0 = (0,)2er (1.22)

and call it an unordered (R, N)-pointed compact Riemann surface with local coordi-
nates. We call E the incoming marked points (or simply inputs) of §, and we call E’ the
outgoing marked points (or simply outputs) of §.

Note that according to Def. 1.1, we have:

Each connected component of C intersects £ U E'. (1.23)
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When we view § as an (R + NN)-pointed compact Riemann surface with local coordi-
nate, we write it as

= (C|E' uE;0y,65). (1.24)

Definition 1.10. Let § = (1.22) be as in Def. 1.9. Choose orderingse : {1,--- ,N} — E and
e :{l,--- R} — E'. Associate W € Mod(V®V) to E via . An (¢, )-dual fusion product
of W along § denotes a pair (Ng,e,«(W),1), where Ng o+ - (W) € Mod(V®%) is associated to
E'via¢é/,

le ‘Z;a’,e (NS,E’,E (W)7 W)

where 7, (Nge (W), W) is the space of conformal blocks associated to § and
Ng.er.e (W), Wvia €', e (cf. Def. 1.6), and the following universal property is satisfied:

* For each M € Mod(V®F) associated to E’ via ¢/, the map
Homyon (M, S0 (W) — T (M,W)  ToJo(T®idw)  (125)
is a linear isomorphism.

We call J the canonical conformal block. We abbreviate (N ./ . (W), J) to N ./ - (W) when
no confusion arises.
The contragredient V®®-module of Nz ./ . (W) is denoted by K e (W), that is,

S,e’,& <W> = NS,E’,& (W)/

We call the pair (Kz o (W), I)—or simply K. .(W)—an (¢’,&)-fusion product of W
along §. O

Remark 1.11. In Def. 1.10, we are viewing

’%’fe’,s (ES,E’ﬁ (W)v W) = ‘Z;e’*e (N&E’,E (W) ® W)
‘?Sj:s’,s (M7 W) = %Te’*s (M ® W)

cf. Def. 1.6. Then J is a linear functional
1N e(W)@W - C
By Def. 1.6, one can also view

‘72;5/,& (EI&S’,& (W)v W) = %Te*a’ (W ® N{?,é’,s (W)>
‘Z;:s’,e (Mv W) = ‘7{;5*5’ (W ® M)

In that case, ] is a linear functional
1 WONe (W) —C
and the expression 7' — J o (T’ ® idw) in (1.25) should be replaced by

T Jo (idw®T)
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Remark 1.12. When F = ¢J (and hence N = 0), Def. 1.10 is interpreted in the following
way. Since

Mod (V&) = Vect

It suffices to consider the scalar field C € Mod(V®"). Then, an &’-dual fusion product of C
along § denotes a pair (N ./ (C), J), where N - (C) € Mod(V®%), and

Te 7o (R (0))

satisfies the following universal property that for each M € Mod(V®%) associated to E’
via €/, the following map is a linear isomorphism:

Homyer (M, N5 (C)) > Tz (M)  Tw—JoT (1.26)

In [GZ23], the existence of (dual) fusion products is established under the additional
assumption that each component of C intersects E (not merely E U E’). This assumption,
however, can be removed with the help of propagation of conformal blocks:

Theorem 1.13. Let § = (1.22) be as in Def. 1.9. Choose orderings ¢ : {1,--- ,N} — E and
e {1, R} — E'. Associate W € Mod(V®N) to E via e. Then there exists an (&', €)-dual
fusion products of W along §.

Note that by the universal property in Def. 1.10, (¢’,¢)-dual fusion products are
unique up to unique V®#-module isomorphisms.

Proof. By enlarging the set of incoming marked points of §, we get an (R, N + L)-pointed
compact Riemann surface with local coordinates

%Z (Ela /E‘/}C’Eu {Zlv"'azL};9E>9217"'HZL)

(where z1, . .., z1, are distinct points of C\(E u E’), and 6, is an arbitrary local coordinate
at z;) such that

each component of C intersects E' U {z1,--- , z.}. (1.27)

Then § satisfies [GZ23, Asmp. 2.2], so that the dual fusion product exists. More precisely,
let

LL:{]-u”')L}i){Zla"'sz} /L-'_>Z’L

Associate W @ VO to E U {z1,--+ , 21} via e * ¢1f. By [GZ23, Thm. 3.31], there exists an
(€', * v1,)-dual fusion product ( N (W®V®L) T) of W ® V&L along §. We view ]
as a linear functional

,ERLT,

WV oW Ve - C
By [GZ23, Cor. 2.44], for each M € Mod(V®#) we have an linear isomorphism

T e, MOWRVOL) = 72, (MOW) b b(- @1%F) (1.28)

F.e’kexe
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Therefore, the linear functional
1Nk, (WOVE W -C () =3~ 1%
belongs to

W@ Vo), W) = Terne ( NG (WeVe) @ W)

LEXLT, ( yERLE,

’Z;e’,a ( N@,e’
By the universal property of b

Homyer (M, N ., (WO VEH)) — 7 (M@W@ V)

JERL], 5.6’ kexe

N (1.29)
T +— J o (T@idw@idV®L)

is a linear isomorphism. Its composition with (1.28), namely
Homyen (M,K; ., (WO VE)) — 7, (M@W)
T — Jo (T ®idy)

is also a linear isomorphism. This proves that ( Ni o cn, (W V®L) 7) is an (&', e)-dual

fusion products of W along J. O

The proof of Thm. 1.13 implies a result that is important enough to be stated sepa-
rately. Recall that 1 € V denotes the vacuum vector of V.

Theorem 1.14. Let § = (1.22) be as in Def. 1.9. Choose orderings ¢ : {1,--- ,N} — E and
e :{1,---,R} — E'. Associate W € Mod(V®N) to E via e. Let (Ng o (W), ]) be an (¢',¢)-
dual fusion product of W along §.

Choose distinct points z1, ...,z € C\(E u E') and local coordinates 0, ,...,0,, at these
points. Let

§= (B 0u|ClE U {z1,... 20} 08,0, 0.,) (1.30)
Let v, be the ordering of {z1, ..., z1} defined by v1,(i) = z;. Then there exists a unique

Je 7

ey (Nsere (W), W@ VO (1.31a)
such that 3, as a linear functional Ny o+ . (W) @ W ® VO — C, satisfies

1(=) = I(— ®1%h) (1.31b)
Moreover, (Ngor.- (W),3) is an (¢/,  * u1,)-dual fusion product of W ® VO along §.

By viewing J as a linear functional on Nz (W) @ W® VOL we regard

T (N&e’,a (W), W®V®L) = T (Elg,gz’g (W) ®W®V®L)

el eker &l xexy,
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Definition 1.15. The data § = (1.30) is called the propagation of § at 21, . . ., 2z, with local
coordinates 0., ..., 0., . The pair

( N&,e’,s (W) ’ j)

defined in Thm. 1.14 is called the propagation of the dual fusion product (Nz . .(W), 1)
at z1,. .., zz, with local coordinates 0., ...,0,, .

Note that unlike the proof of Thm. 1.13, in Thm. 1.14 and Def. 1.15 we do not assume
that each component of C intersects E' U {z1,...,21}. However, since we are assuming
that each component of C intersects E U E’ (cf. Def. 1.1), the results in [GZ23] on the
propagation of conformal blocks still apply.

Proof of Thm. 1.14. Let (N (W), J) be an (¢/, €)-dual fusion product of W along §. The
existence and uniqueness of hi satisfying (1.31) follow from the linear isomorphism (1.28).
. Let (Kk_ .,,, (W®V®H),T) beany (¢, & * 1 )-dual fusion product of W ® V¥ along
3. By the proof of Thm. 1.13, ( Ns o, (W® V®L) 7) is an (¢/, £)-dual fusion product

of W along F, provided that we set 7(—) = “1(— ® 1®L). Therefore, by the uniqueness of
dual fusion products, there exists a unique V®%-module isomorphism

T: N@,E’,E*LL (W®V®L) — NS’,E/,E(W)

such that 77 = Jo (T ® idw). With the help of the isomorphism (1.28), one easily checks
that T = Jo (T ®idw ®idyer ). This proves that (N . (W), ]) is an (¢/, € *¢1,)-dual fusion
product of W ® V& along 3. O

1.4 Basic properties
1.4.1 The action of Sy
Let X = (C |E ;nE) be an N-pointed compact Riemann surface with local coordinates.

Definition 1.16. Choose a € Sy. Then « induces an automorphism
@ : Mod(V®Y) = Mod(VEY)
defined as follows. For each W € Mod(V®)
a(W) := W as vector spaces (1.32a)
The i-th vertex operator on a(W) is defined by
YE(W),Z‘ = Yw,a—l(i) (1.32b)

The operator @ acts as the identity on the Hom spaces of Mod(V®Y).
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Remark 1.17. Note that for each «, 5 € & we have
aof=aocf

since, for each W € Mod(V®"), we have

YaoB(W),i = YB(W),a—l(i) = Yw,g-10a-1(i) = YW,(a08)~1(5)
Therefore, we have a group homomorphism
Sy — Aut(Mod(V®Y)) a—@

Proposition 1.18. Let ¢ : {1,2,--- ,N} — E be an ordering of E. Let W € Mod(V®"). Let
a € Gy. Then the identity map

idy : W — a@(W)
descends to a linear isomorphism
yx,s(w) — %,aooﬁl (E(W))
Therefore, its transpose is a linear isomorphism

T coa1 [@W)) — FE (W)

,eoa~1

Proof. Choose 0 € H°(C,¥x ® wc(eE)) and w € W. If we view w as an element of the
module W, then

N
o€ w = Z Ress(i) YW,i(uQ(n‘S(i))O—’ T}g(z))w
i=1

If we view w as an element of the module a(W), then

N
o1
o= w = Z Ressoa—l(i) YE(W),i(UQ(neoa—l(i))O_v nsoa—l(i))w
i=1

N
= Z Rescoq-1 (3) YW,ofl (1) (ug(neoofl (2) )Ja Neoa=1(4) )w
i=1

The above two expressions are clearly equal. This proves our result. O

Remark 1.19. A pictorial illustration of Prop. 1.18 is given by

where the isomorphism is induced by id : W — @(W). On the LHS of (1.33), the number
for each = € E is e~!(x). On the RHS, the number for z is a 0 e~ !(x).
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1.4.2 Isomorphisms of pointed surfaces

Definition 1.20. Suppose we have two unordered N-pointed compact Riemann surfaces
with local coordinates

X=(C|Eing) = (D|F;Tr)

An isomorphism of N-pointed compact Riemann surfaces with local coordinates f :
X — Q) denotes a biholomorphism f : C' — D satisfying the following conditions:

. f(B)=F.
¢ The pullpack of 7x along f is ng. More precisely, for each = € E, the relation
Ti@) 0 f =N

holds on a neighborhood U, of x such that », is defined on U, and 7y, is defined
on f(Uy).

Proposition 1.21. Let X,9) be as in Def. 1.20, and let f : X — Q) be an isomorphism of N-
pointed compact Riemann surfaces with local coordinates. Choose an ordering e : {1,--- N} —
E. Let W € Mod(V®N). Then we have

T e(W) = Ty (W) TZ (W) = Ty oo (W)

In other words, the space of coinvariants (resp. space of conformal blocks) associated
to W and X via ¢ is identical to the one associated to W and g) via f o e. (Note that foe s
an ordering of F'.)

Proof. It is clear that
H(C, 72 ®wc(eE)) =W = H(D, ¥y @ wp(eF)) /=W
O

Definition 1.22. Suppose that we are given two unordered (R, N)-pointed compact Rie-
mann surfaces with local coordinates

5= (E;0p

C|E;05) &= (F;p

D|F;9p)

If f: § — & is anisomorphism of (R + N )-pointed compact Riemann surfaces with local
coordinates satisfying f(E) = F and f(E’) = F’, we call f an isomorphism of (R, N)-
pointed compact Riemann surfaces with local coordinates.

Proposition 1.23. Let §, & be as in Def. 1.22, and let f : § — & be an isomorphism of (R, N )-
pointed compact Riemann surfaces with local coordinates. Choose orderings e : {1,--- ,N} —» E
and ¢’ : {1,--- R} — E'. Let W € Mod(V®N). Let (Ng o .(W),1) be an (¢', ¢)-dual fusion
product of W along §. Then (Nz o .(W),3) is also an (f o €', f o €)-dual fusion product of W
along &.

Proof. This is clear by Prop. 1.21. O
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1.4.3 Change of coordinates
Proposition 1.24. Let X = (C|E;ng) be an unordered N-pointed compact Riemann surface
with local coordinates. Choose an ordering ¢ : {1,...,N} — E. Let W € Mod(V®"). For each
1 < i< N, let o; € G, and choose an argument arg o/;(0). Let X = (C|E; ) where
ﬁs(z) = Q4 O 17&‘(1) fOT’ all i
Then the (invertible) operator Uy (a) o - - - oUn () on W descends to a linear isomorphism
y%,a(w) — y%,g(w)

Therefore, its transpose is a linear isomorphism:

9£5(W)i%f£(W) b dolhy(ay)o---olUy(ay)

Proof. This follows from the coordinate-free definition of conformal blocks. See [GZ23,
Sec. 2.1], [FBZ04, Sec. 6.5], or [Gui24, Thm. 3.2]. Note that in [GZ23], a diagonal operator
L;(0) is used instead of L;(0) to define (1.9). The operator L;(0) satisfies that L;(0) — L;(0)
commutes with the action of V&V . Therefore, the operator U;(«) defined in this paper
equals the composition of the corresponding operator in [GZ23] with an automorphism
of the V®¥-module W. Thus, the results in [GZ23, Sec. 2.1] remain applicable in the
present setting. O

Proposition 1.25. Let § = (E'; 0/ |C|E; 0g) be an unordered (R, N)-pointed compact Riemann
surfaces with local coordinates. Choose orderingse : {1,--- ,N} - Eand¢’ : {1,--- ,R} — E'.
Let W € Mod(V®N). Foreach 1 <i < Nand 1 < j < R, choose o;, Bj € G with prescribed
arg o;(0) and arg 3}(0), and let

~ ~

Octiy = i 0Oy 0Ly = By o Ol
Let§ = (E; §/E,|C’\E; §E) Let (El§ o (W)j) be an (€', €)-dual fusion product of W along 3.
Then (N, . (W),3) isan (¢/, €)-dual fusion product of W along §, where
I=TJ0 Ui(a)--Un(an) UL(BL) - - Ur(BR)) : WoR;,, (W) - C

Proof. This follows immediately from Prop. 1.24. ]

1.5 Standard 2-pointed spheres and the default fusion product (X»C, w)
1.5.1 The 2-pointed sphere 9 and the default fusion product (X»C, w)
Recall from Sec. 1.1 that ¢ denotes the standard coordinate of C.

Definition 1.26. Throughout this paper, we let 1 denote the (unordered) 2-pointed sphere
with local coordinates:

N = (P'{o0,0}; (a)sefoo0)  Where e = 1/Cand ng = ¢ (1.34)
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Then the automorphism group Aut(91) ~ Z; is generated by
O:P! - P! z—1/z
The default ordering of {00, 0} is defined to be
€: {+,—} —> {0,0} e(+) = e(—=)=0 (1.35)

Remark 1.27. Choose any W € Mod(V®?). By Prop. 1.21, we have Tt (W) = T 9o (W).
In fact, both spaces consist of linear functionals ¢ : W — C satisfying the relation

(b, Y] (v, 2)wy ={p,Y_(v,2)wy  forallve V,weW (1.36a)
in C[[2*!]]. Equivalently, ¢ satisfies
(b, Yy (v, 2)wy ={$, Y (v, 2)w) forallve V,we W (1.36b)
See [GZ25a, Rem. 2.1] for more explanations.
Definition 1.28. By viewing 91 = (1.34) as an (2, 0)-pointed sphere with local coordinates
9 = ({00,0}; (e)aeron0y ') where i, = 1/C and o = ¢ (1.37)

we fix, throughout this article, an e-dual fusion product (N (C), w) of C along N, cf.
Rem. 1.12. We use the abbreviations

N‘)’tc = ND’I,E(C> fﬁ(c = ‘ﬁ,e(C)

and call (NnC,w) the default dual fusion product of C along 9. Accordingly,
(XnC, w)—or simply XjnC—is called the default fusion product of C along 9.

Remark 1.29. Note that the canonical conformal block
w € Tt (NmC) = T3 goc (NC)
is a linear functional
w :NnC - C

satisfying the same condition as ¢ in Rem. 1.27.

1.5.2 Standard 2-pointed spheres

Definition 1.30. A standard 2-pointed sphere is defined to be a 2-pointed compact Rie-
mann surface with local coordinates € that is isomorphic to 9. Equivalently, it is defined
to be

¢= (C’{Zag}Qnmng) (1.38)

where C' is a compact Riemann surface biholomorphic to P!, and the local coordinates
12,75 are linear fractional transformations satisfying 7. - n; = 1.

26



Remark 1.31. Let W € Mod(V®?). According to Rem. 1.27, the space of conformal blocks
associated to W and a standard 2-pointed sphere € is independent of the ordering of the
marked points of €. Therefore, we denote this space by Jg*(W), whose elements are
precisely the linear functionals on W satisfying (1.36).

Proposition 1.32. Let € = (1.38) be a standard 2-pointed sphere. Let € : {+,—} — {z,3} beany
ordering of {z,3}. Then (XnC, w) is an e-fusion product of C along .

Proof. This is clear by Prop. 1.23. O

The following two figures represent the fusion products of C along ¢ with respect to
the two orderings of {z, 3}.

O e (O s

N N\

XnC XnC
1.6 Composition of conformal blocks and the sewing-factorization theorem
Let K, N, R € N. In this section, we let
F = (F;0p|C1|F;0r) 6 = (G 16| Co|G; )

be respectively (K, N)-pointed and (XN, R)-pointed compact Riemann surfaces with local
coordinates, cf. Def. 1.9. Fix orderings

e {l,--- K} —>F  ¢:{1,--- ,N} = F
3 {l,--- N} = & 3:{l,- R} = G

1.6.1 The sewing S#f,’fm/@ and the composition §#°%' &

For each x € F (resp. ¥ € G'), choose a neighborhood V. (resp. Wé,) such that 6, (resp.
,u;/,) is defined. Assume that V and Wé, are open disks, i.e.

0.(Vy) =D, iy (W) = Dy, where 7., p,s € (0, +0] (1.40)

The numbers r;, p,s are called sewing radii. Assume that V,, n V., = Jif x; # x, and
that W/, n Wy’,2 = @ if y| # vh.
1

Definition 1.33. Set

N N
_ X x
D""/" - HDTs(i)ng(i) DT.p- - HDTE(i)pT/(,L-)
i=1 i=1
Choose pe = (p1,.-.,pN) € D) ,,. In other words, p, € CV satisfies
0 < |pi| < 7e@)psi) foreach1 <i< N (1.41)
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The sewing 3#2’,3“/05 of § and & via (e, 3’) with sewing moduli p, is defined as follows.
(Note that if (1.41) is satisfied, we say that the sewing radii r., p. are admissible for the
sewing moduli p,.)

Foreach1 <i < N,

Di y2
i = {2 Vagy : 09 (2)] < pL,(L)} Ai =1z e Wiy I ()] < L@')}

are compact subsets of V,(; and W;,( ) respectively. We have a biholomorphism

i

. W, \A, = () (5
Fi Ve \li — W)\ 20 (lyy)) <95(i)(z)>

The compact Riemann surface C4 #Z’?/ Cs is defined by removing I'; and A; (for all 1 <
i < N) and gluing Ve(i)\l“i and W;,(i)\Ai via the biholomorphism .#;. In other words, for
each 2 € V(;\['; and 23 € W;,(i)\Ai,

21 is identified with 2o — Oc(iy(21) - u;,(i) (22) = pi (1.42)

Note that after gluing, F' and G’ are removed, but F”, G and their local coordinates 6%, /1
remain. We let

FH'® = (30 [CL#57 Co| G i) (1.43)

Then § #;;3"/(’5 satisfies the definition of an (K, R)-pointed compact Riemann surface with
local coordinates, except that (1.23) in Def. 1.9 is not necessarily satisfied—that is, it is not
necessarily true that

each component of C'; #f;f"’ O, intersects F' U G (1.44)

The superscript ¢, 3/ in #5% and #Z’,TI will be omitted when the context is clear.
In the case where p; = -+ = py = 1 (note that this requires r.(; ps/(;y > 1 for each i,
due to (1.41)), we suppress the subscript p., that is, we write

SHTS = FH )6

We call §#5%' & the composition of § and & via (e, 3”). O

1.6.2 Sewing and composition of conformal blocks

Assume that condition (1.44) holds, namely, each component of S#f{f‘/@ contains at
least one incoming or outgoing marked point. (Note that this condition is independent of
the choice of p,.)

Choose W € Mod(V®K), M € Mod(V®Y), X € Mod(V®%). Choose

be T (WROM) Ve Ty, (MeX) (1.45)
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Since ¢ and 1 are linear functionals W @ M — C and M' ® X — C, respectively, they can
be viewed as linear maps

P M->W P:X->M (1.46)
Choose p, € Dy, ,, with fixed arguments arg p1, ..., arg ppg.
In the following, we let
p.L-(O) plLl(O) ) 'p]LVN(O) (1.47)

Theorem 1.34. The linear functional

Goph: WX - C
w/®w’_) Z <wl,(|)ﬁ0p£"(0)OP(}\.)OIJ,)ﬁ(w)>

Ae€CN

converges absolutely for each w' € W' and w € X.  Moreover, ¢ op, P belongs to

% ;e g (W', X)), that is, it is a conformal block associated to S#f,f"/@ and W', X via the
U P; ’5,73L

orderings €', 3.
Proof. This is due to Thm. 4.9 and Rem. 4.10 of [GZ24]. O

Definition 1.35. We call ¢ o, 1 the sewing of ¢ and 1\ with moduli p,. Note that ¢ o, P
can also be defined by the contraction

<¢Op.ll),w/®w>—<d),w,®p, ><1|), ®w>
= > D hw'ept Der (@) - (b, 2. (a) @ w)

AeeCN aEQb\.

(1.48)

where (e), (@))aen,, is a (finite) basis of M,,) with dual basis (), (a))aex,, - In the case
that p; = 1 and arg p; = 0 for each i, we write

dopi=do 1Y
and call ¢ o the composition of ¢ and ).

Remark 1.36. Suppose that p; = 1 and argp; = 0 for each i. The terminology of compos-
ing conformal blocks is due to the obvious fact that the linear map

(pop): X > W (1.49a)
determined by ¢ o1 equals the composition of ¢f and V¥, that is, for each w € X,

(G o) (w) = ¢F o pF(w) := > ¢*o P(A.) o P (w) (1.49b)

Xe€CN

where the RHS converges absolutely when evaluated with each element of W'.
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Remark 1.37. Here, we give a pictorial illustration of composing conformal blocks: Let

g W :Il% M
R
5

In this figure, § has two components and 7 marked points. The four green points on the
left, listed from top to bottom as £(2),£'(1),¢'(4),€'(3), are ordered by ¢’. The three red
points on the right, listed from top to bottom as £(3),¢(2),e(1), are ordered by e. Let

2 1

* 3 3
ver(wi( = =) )

P —

(G

In this figure, ® is connected and has 6 marked points. The three red points on the left,
listed from top to bottom as 3v(2), 3 (3), 3/(1), are ordered by 3. The three blue points on
the right, listed from top to bottom as 3+(1), 3:(3), 3:(2), are ordered by 3.

Let x be a conformal block associated to F#5*'& and W, X via £/, that is, X €

Sﬂ;‘#m' QE,@(W’ ,X). Then the relation x = ¢ o1 is represented by the graphical equa-
tion
P X
= .
— N\ P
. b
.
— — AR E
s
The pointed compact Riemann surface with local coordinates on the LHS of the above
equation represents the composition §#* & of §, & via ¢, 3. ]

1.6.3 The sewing-factorization theorem

We continue to assume that (1.44) holds, that is, each component of S#f,’f"/@ con-
tains at least one incoming or outgoing marked point. Choose W € Mod(V®X) and
X € Mod(V®%). Choose p. € D)X, 0. With fixed arguments arg py, ..., arg pg.

Theorem 1.38. Let (Klg 5 +(X), ) bean (3, 31)-fusion product of X along &. Then the following
map is a linear isomorphism

* !/ = * !
%76’*6 (W ®®,3“,3”(X)) - %#;’.T/Qﬁ,s’*am(w ®X)
(1.50)
b— ¢ Ope 7

called the sewing-factorization isomorphism.
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Note that T e J%

B3/ %30

(Neo 5 »(X) ®X) is a linear functional Ng 5 +(X) ® X — C.

Proof. In the special case that each component of & intersects the set G' of incoming
marked points, the theorem is due to [GZ25a, Thm. 3.5]. The general case follows from
the special case and the propagation of conformal blocks and fusion products, as we ex-
plain below.

Choose distinct points z1, ..., z, of &, disjoint from G’ U G, such that the propaga-
tion & of & at 21, ..., 21, (with arbitrarily chosen local coordinates at 21, ..., z1) satisfies
the condition that each component intersects G U {z1, ..., z1}. Let ¢1, be the ordering of
{z1,...,21} defined by ¢1,(i) = z;. Let

Te Ty (Noss (X) @X@VEF)

&3/ %3uk0 ],

be the propagation of Tat z1, ..., zr, cf. Def. 1.15. Then, we have a commutative diagram

# / P>pop, T % / QL
%,a/*a (W ® 63’»3L(X>) 3#;’?/@5,8’*3‘*@ (W ®XOV )

:l lx~x(—®1®L)

(b'_)d)o’ ] _‘
T e (W @ 15(X) T Tkreen %)

where the vertical arrow on the right is an isomorphism by (1.28).

By Thm. 1.14, ( K (X), :I) is an (3,3 * 11)-fusion product of X ® V®L along
®. Therefore, by [GZ25a, Thm. 3.5], the top vertical arrow in the above diagram is an
isomorphism. It follows that the bottom arrow is also an isomorphism. O

Remark 1.39. Let (Mg - +(X), T) be an (3, 3)-fusion product of X along &. Then the
canonical conformal block 7 : Ng s (X) ® X — C is partially injective, meaning that
if each component of & intersects the set G of incoming marked points, then for each
€ € N o 5(X), we have

TE®@w) =0forallwe W — £E=0 (1.51)

See [GZ24, Rem. 3.17] for the explanation.

Since this partial injectivity is used in the proof that the sewing-factorization map
(1.50) is injective (see [GZ25a, Subsec. 2.5.2]), we also refer to the injectivity of the map
¢ — oy, Tas the partial injectivity of the canonical conformal block 7. (Note, however,
that the injectivity of this map does not require the assumption that each component of &
intersects the set G of incoming marked points.) O

Remark 1.40. In the remainder of this article, we restrict to the case where p; = 1 and
argp; = 0 for each i. In other words, we consider only the composition of conformal
blocks, rather than the more general sewing. Then, using the graphical calculus for the
composition of conformal blocks as described in Rem. 1.37, we reformulate the sewing-
factorization Thm. 1.38 as follows:
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Consider the fusion product

2 L o
0,00 (= =) a5

Then for each

= s
X”*(WA%X)

there exists a unique

such that

O

Remark 1.41. In this paper, we will apply Rem. 1.40 mainly to the case that (1.52) is the
fusion product (XnC, w) of C along a standard (2, 0)-sphere described in Prop. 1.32:

XinC @

Then the sewing-factorization Thm. 1.38 asserts that for each

W%
AN )

Xeﬂ*( . '
W @E=

there exists a unique

Wé’;
() (=g me
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such that

2 [XnC as an AUF algebra with involution ©

Recall Def. 1.28 for the default fusion product (XjnC, w). In this chapter, we prove
that XnC has a natural structure of associative algebra, which is almost unital and finite
dimensional (AUF) in the sense of [GZ25b]—that is, there is a family of mutually orthog-
onal idempotents (e;);e5 of XnC such that XnC = Z - €;(XInC)e; where each summand
is finite-dimensional. (Note that this sum must be a dlrect sum.) We will also explain why
XinC is the end §;_\,. d(v) M ® M.

In this chapter, all 2-pointed spheres in the pictures are assumed to be standard (cf.
Def. 1.30). Let N € Z,..

2.1 The actions ®; , and ®; _ of XjyC on W € Mod(V®N )

Let W, M € Mod(V®Y). In this section, we fix 1 < i < N and consider the spaces of
conformal blocks

f*(@@--:@)
A1 0 ) =

(- @) (-SD) e

Let us give explicit algebraic descriptions of these conformal blocks.
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Remark 2.1. Letx : W® M’ — C be a linear map. Then x € (2.1) if and only if for each
1<j<N,veV,weWandm'eM, the following relation holds in C[[2*!]]:

<X,Yj(v,z)w®m’> = <X,w®Yj'(v,z)m’> (2.4)

We now show that each x € (2.1), when viewed as a linear map W — M, has range in
M. Recall (1.5) for the meaning of P;(\).

Lemma 2.2. Let K € Z,. Choose X € Mod(V®X) and a finite subset S = X. Then for each
X € C, there exists a polynomial h(x) € C[z] such that Pj(\)g = h(L;(0))3 for all 5 € S and
1<j<K.

Proof. Itis well-known that if 7" is a linear operator on a finite-dimensional C-vector space
W, then W is the direct sum of generalized eigenspaces of T', and the projection operator
of W onto each generalized eigenspace is a polynomial of 7.

Now, choose po € CX such that R(y;) > R()\) for all j, and that S < Xigpu,- Let W

be the direct sum of K copies of X[<,,), and let T = diagl_, (L; {X[ ) Then Q =

diag; (P;( |X ]) is the projection of W onto the generalized elgenspace of T with

eigenvalue . Therefore, by the first paragraph, there exists a polynomial ~ such that
Q = h(T). O

Proposition 2.3. Elements in (2.1) are precisely those elements of the form
T WM — C wm — <T(w), m’> (2.5)
where T' € Homyen (W, M).

Proof. Note that a linear map 7' : W — M belongs to Homyg~ (W, M) iff for each 1 < j <
N,veV,weW,m' e M, the following relation holds in W[[z%!]]:

(T (Y;( ;m'y = (T(w),Y](v,z)m") (2.6)
Thus, (2.5) belongs to (2.1). Conversely, choose an element x € (2.1). Set

X W (M) =M wex(w®-)
By (2.4),

x(L; (0w @ m') = x(w® L;(0)m’)
This, together with Lem. 2.2 (applied to W @ M), implies for each j and X € C that
OGP Nw),m') = x(P(Nw@m') = x(w® P (\m') = (¢ (w), P (\)m”)

Thus, x*(Pj(\)w) = Pj(A\)x*(w). Therefore, x* has range in M. Let T' = xﬁ. By (2.4) and
(2.6), T belongs to Homye~ (W, M). Clearly T’ = x. This proves that x is of the form
(2.5). O

Next, we describe conformal blocks in (2.2) and (2.3).

34



Remark 2.4. Let x : KinC@ W @M’ — C (resp. 6 : W ® KnC ® M’ — C) be a linear map.
Then x € (2.2) (resp. & € (2.3)) iff for each v € V,¢) € KnC,w € W,m’ € M, j # i, the
following relations hold in C[[2*1]]:

(1/J®Y(vzw®m)=x(w®w®Y'vz) ) (2.7a)

(¢®Y(vzw®m):x( 'vz¢®w®m) (2.7b)

X(Ye(v,2)p @uwe@m') =x(¥ @uw Y/ (v, z)m) (2.7¢)
resp.

6( i (v, z)w®¢®m') = 6(w®z/1®Yj/(v,z)m/) (2.8a)

S(Y(v z)w@z/z@m) :6(w®Yfr(v,z)z/1®m’) (2.8b)

6(w®Y (v, z)zb@m) = 6(w®¢®Yi’(v,z)m’) (2.8¢0)

Proposition 2.5. Elements in (2.2) (resp. (2.3)) are precisely those of the form
T ECOWRM - C Y Quew — (T (yQu),w')
resp.
T WRECOM - C  w®yeuw — I-(w®y),v)
where
T, XnCRQW - M resp. T WQXnC - M

is a linear map such that for all w € W,v € V, 4 € XnC and j # i, the following relations hold
in M[[2*1]]:

T, (zp®Yj(v,z)w) =Yj(v,2)Ty (w ®w) (2.9a)

Ty (Y QYi(v, 2)w) = Ty (Y (v, 2)Y @ w) (2.9b)

T, (Y+(v,z)¢®w) = E(v,z)T+(1/J®w) (2.90)
resp.

T (Y (0, 2)w ®4) = V(0. 2)T- (w @ ) (2.10a)

T_(Yi(v,2)w®v) = T-(w Y| (v, 2)1) (2.10b)

T (w®Y-(v,2)¢) = Yi(v,2)T (w ® ) (2.10¢c)

Proof. It is clear that (2.7) and (2.8) are equivalent to (2.9) and (2.10), respectively. There-
fore, the only remaining step is to prove the following: if x and 6 satisfy the descriptions
in Rem. 2.4, then, when viewing x as a linear map 7y = )(ﬁ : KnCRW — M, and viewing
b as a linear map 7_ = 5 : W ® KnC — M, the ranges of both maps lie in M.

By (2.7) and Lem. 2.2 (applied to XnC @ W @ M), we have

X(IZ)@Pj()\)w@w’) = X(¢®M®Pj()\)w’)
X(¢®Pz’()\)w®w') :X(P—(A)w(@w@w/)
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X (P @w @) = X(1®w e B(w)

That is, for each ¢ € }XpC,w e W, A e Cand j # ¢, themap T}y = x! satisfies

Ty (4 ® P(\w) = BT, (¢ @w) (2.11a)

T (4 ® Pi(\w) = Ts (P-(\)¢ @ w) (2.11b)

Ty (Pr(NY @w) = BTy (v @ w) (2.11¢c)
Similarly, by (2.8) and Lem. 2.2, the map 7_ = & satisfies

T_(P(Nw®¢) = P(NT- (v @) (2.12a)

T_(P(Nw®v) =T (w® P (M) (2.12b)

T_(w @ P-(\)¢) = B(N)T-(w®1) (2.12¢)
This proves that 7'y have ranges in M. O

Convention 2.6. In the pictures of conformal blocks, T denote the conformal blocks
T%; equivalently, x* and &¢ denote the conformal blocks x and §, respectively. Similarly,
T € Homyen~ (W, M) denotes the conformal block 7° : WM’ — C in (2.1) sending w ®m’
to (Tw,m’).

We now focus on the case that M = W. Recall that 1 <7 < N is fixed.

Definition 2.7. By Rem. 1.41, there exist unique

FeosN W
@bg@[]@@) (@ @[]/[D 21

RN S ¥
W W
such that when viewed as linear maps
 XpCROW-W &, : WRKyC—->W (2.14)
(cf. Prop. 2.5), for each w € W, w’ € W we have
w(=) (i1 (—Q@w),w) =W, wy ={P; _(w®—),w ) w(-) (2.15a)
which is abbreviated to

W(=) B (~Qw) =w=;_ (W —) - w(~) (2.15b)
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for each w € W. Graphically,

w

(2.16)

/N +\\'

o (0D ()])

W
Note that the sewing radii can be chosen to be admissible when all the sewing moduli are
set to 1 (cf. Subsec. 1.6.1 for terminology). Therefore, the contractions in (2.15) converge
absolutely (by Thm. 1.34).
2.2 The canonical involution © of xnC

We continue to fix 1 < ¢ < N. In this section, we relate ®; ; and ®; _

Theorem 2.8. The space of conformal blocks

XnC XinC
AR 4 U
g*(@@) _ g*(gg) 217)
e N[
XnC XnC

consists of linear operators T € End(XnC) satisfying
TY,: (v)n = Y_(0), T TY_ (v)p =Yy (v),T  forallveV,nelZ (2.18)
Moreover, there exists a unique © € (2.17) whose transpose ©' € End(NnC) satisfies
w=wo@" (2.19)

In addition, we have ©? = idg,,c, in particular, © is bijective. For each W € Mod(V®N ) and
1 € XIinC, we have

it (V@ w) = B (w® OP) (2.20)

The map O is called the canonical involution of XjnC.
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Proof. Let o : {+,—} — {+, —} send =+ to T. Recall Def. 1.16 for the meaning of a(XnC).
Then, by Prop. 1.18, we have

XnC RinC
‘\[ L q\l X,,

9(0 B) ) W( J0 ) P20 Homyes (3nC.a(E@C)  (221)
ERA \ J
ELe a(XmC)

The latter hom space clearly consists of 7' € End(XnC) satisfying (2.18).
By Prop. 1.18, we have

NnC a(NnC)

9*(@) _ g*(@) (2.22)

Therefore, by Prop. 1.32, for each ¢ belonging to the RHS above, there exists a unique
T € Homye: (a(NnC),NnC) satisfying ¢ = w o T. The existence and uniqueness of ©
satisfying (2.18) and (2.19) follow by letting ¢ = w and © = T*. Thus w = w o (OF)2.
Since (0%)? € Endye2 (NnC), by the universal property for dual fusion products, we have
(©%)2 = id, and hence ©? = id.

By (2.18) and (2.19), the map

HnCQW ->W  ¢YQuw— & _(w®6)

satisfies the definition of ®; ; in Def. 2.7. This proves (2.20). O

2.3 Theleftand rightactions ® = ¢, , and ¥ = &_ _ of XnC on W € Mod (V®?)
In this section, we assume N = 2. Choose W € Mod(V®?).
Definition 2.9. Let ® = ®; , = ¢, , and ¥ = ®» _ = &_ _, thatis,
D=3, , FMCOW->W T=0__:WRKnC—>W (2.23)
For each ¢ € XnC and w € W, write
Yorw:= b ®w) wopd = V(w®) (2.24)
The figures representing the conformal blocks ®, ¥ are

XxC W W EKxC
V- RV

(O 000 e

O\

38



By Prop. 2.5, one can give an explicit and algebraic characterization of ® and ¥ being
conformal blocks of the corresponding types. Specifically, for each v € V,v¢ € XnC,w €
W, the following relations hold in W[[z%1]]:

(Y RY_(v,2)w) =Y_(v,2)P(¢Y ®w)
P @Y, (v, 2)w) = (Y (v,2)Y @ w)
O(Yi(v,2)Y @w) = Yi(v,2)2(¢ Qw)

resp.

U(Yy (v, 2)w @) =Yy (v,2)¥(w @)
U(Y_(v,2)w®1) = W(w@Yi(v,z)w)
V(w®Y_(v,2)1) = Y_(v,2)¥(w R P)

By Def. 2.7, the conformal blocks ® and ¥ are determined by the fact that

L L

w(=) D= @w) = w = V(W) w(-) (2.26)
holds for each w € W. The picture for (2.26) is

w W w

W

A A KON ) el
(O @O idW’ O O - O@ O (2.27)
'\W/ - \f -

Proposition 2.10. For each 11,12 € XinC and w € W, we have the associative law

(Y1 0op w) og Y2 = Y1 of (W oR P2)

Therefore, both sides can be denoted by

Y1 ow oo

Proof. We need to prove

(1 @w) @) = (v1 @ U(w @ v2)) (2.28)
for all ¥, 19 € XnC and w € W. Set

A:FnCQWRRRC - W 1 @uw® s — ¥(P(Y1 ®w) Q1)
B :MnCR@W @ xnC — W VI ®WR Y — P (U1 @ ¥(w1s))

In other words, A and B are defined by the contractions
1
Al @u12) = (2(1 @ w),—) - U(— Q@12) (2.29a)
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HnC W
V-

2 4y i O@D Ty
A @@ - )
U= e

W XinC
Vv

e S T R C O@D
@ @ _ H oy Wy
IS0 - g 7 g

Figure 2.1 The conformal blocks A and B.

B({1 ®@w®1) = ®(11 @ — < U(w®1)) (2.29b)

where the notation is similar to that in (2.15b). Thus, A, B are obtained by composing
conformal blocks, and are therefore themselves conformal blocks; see Fig. 2.1.
For each w e W,

(2.29) ] { ]

MW@w@—W (= ®w), ) ¥(=® ()
229 1 Su @ D) 22 <w,m)=w (2.30)

The picture for (2.30) is Fig. 2.2. From this picture, it is evident that the sewing radii can
be chosen to be admissible when all sewing moduli are set to 1. Therefore, by Thm. 1.34,
the contractions involved in each term of (2.30) are simultaneously converging absolutely.
In particular, by Fubini’s theorem for absolutely integrable functions, the order in which
the contractions are performed does not affect the resulting values.?

By a similar argument, for each w € W we have

r———1v

W(=)B(=Quw® -)w(-) =w

Applying twice the partial injectivity of the canonical conformal block w (cf. Rem. 1.39),
we conclude that A = B. This proves (2.28). O

*This reasoning for the commutativity of contractions will appear repeatedly in the remainder of the
article. We will not refer to it explicitly each time.
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ey w0

\,
D W
YW v- = idw(

)

5
CD<

(2.27)

/CD

Figure 2.2 The pictorial illustration of (2.30).

24 [XnC as an associative algebra over C

In this section, we choose W = xnC € Mod(V®?). Then (2.25) becomes

XnC XnC XnC XnC
T
@ O@D WD@D @31)
NS : A
XinC XnC
Following (2.24), we have
Y1op e i= (Y1 ®1h2), 1o Y2 = V(Y1 @Y2). (2.32)

for each i1, 15 € XnC.

Proposition 2.11. For each v, 12 € XnC, we have 11 o1, 12 = 1)1 o 9. Therefore, we denote
both o, and o by ©.

Proof. We compute for each ¢’ € NinC that

{ ] { ] (2.26)

@ w(=)e(-®-) - w(-))

<wlaidmC(_> : (,U(—) = w(@ﬁ’) (233)
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The picture of (2.33) is

Do o
o G @ G (2.27) i O G — ) 4 (2.34)
L

\
NS / o

XinC @n

In the pictures, we do not distinguish between w and w®. By a similar argument,

[ 1

f 1
@ )¥(=0 ) w(=)) = w(t)
Therefore, applying twice the partial injectivity of w (Rem. 1.39), we conclude ® = ¥. [J

Corollary 2.12. The complex vector space XinC, together with the operation <, defines a (not
necessarily unital) associative C-algebra (XnC, ©).

Proof. By Prop. 2.10 and 2.11, ¢ satisfies the associativity. This fact, together with the
linearity of ® and U, proves that (XInC, ¢) is an associative C-algebra. O
2.5 The XlyC-module structures on W € Mod(V®Y)

Fix W € Mod(V®¥)and 1 <i < N.

Theorem 2.13. The linear map ®; ; : XnC @ W — W defines a left XlnC-module structure on
W, and the linear map ®; _ : W Q@ XnC — W defines a right XinC-module structure on W. In
other words, for each 11, 2 € XnC and w € W, we have

D4 (Y1 01h2) @w) = Bi 4 (V1 @ Bi 4 (12 ®W)) (2.35)
P (w® (2 o1)) = i (Pi— (W Y2) ® 1) (2.36)

Proof. We only prove (2.35), as (2.36) can be proved in a similar way. We draw (2.1) as

(O 00 ) == =) e

’i/

That is, we rearrange of order of the spheres in (2.1) from 1,2,..., N tod,1,...,i — 1,7 +
-,N,and thelabels 1,...,i—1,i+1,..., N on the respective arrows are abbreviated
to the symbol ?. Of course, in this proof we set Ml = W. Set

A:MnCRXRCOW — W V1@ Y2 @w — P 1 (Py 4 (V1 @Y2) ®w)
B : MnpCROXnCROW — W Y1 @2 @w — D5 4 (V1 @ P 4 (12 @ w))

(Recall that @, 4 (1)1 ® 12) = 11 ©1p2.) Since A, B are defined by composing conformal
blocks, they are themselves conformal blocks. See Fig. 2.3.
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gL FeN <I>+,+( O@

A’ D@@OG _ Y %O//W .?

XnC EnC W |

UL L SN O@OD o0t
KnC |, : .

POy - O

Figure 2.3 The conformal blocks A and B.

For each w € W, we compute that

[ 1 [ 1 [

WA~ ® ~ @ w)w(—) = w(—)P; 4 (@44 (— @ —) @ w)w(—)

{ ] — ] (2.33) . (2.15)
=W(= )Py 1 (= ® =), HW(-)Pi 4 (- Ow) W(=)Pi+ (- @w) w  (238)
See Fig. 2.4 for the picture. We also compute that
1 L 1
W(=)B(-® - @uw)w(-) = w(=)Pi (= ® it (- @w))w(-)
CD) (=) 4 (~ @ w) —L 4 (2.39)

See Fig. 2.5. The figures show that the sewing radii can be chosen to be admissible when
all the sewing moduli are set to 1. Therefore, by Thm. 1.34, the contractions in (2.38) and
(2.39) converge absolutely.
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Figure 2.4 The pictorial illustration of (2.38).

I~

W
/47N

Sy - SN
WU IO00 e @ /@DW@
0. g 0 [] D 200

; \W
J L2 N
QOO s
_(216)

g - 01

Figure 2.5 The pictorial illustration of (2.39).

Applying twice the partial injectivity of the canonical conformal block w (cf. Rem.
1.39), we conclude A = B. O
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Corollary 2.14. Let W € Mod(V®?). Then W is a [xinC-bimodule whose left and right module
structures are defined by

XnC x W — W (Y, w) — P orw
W x XnC - W (w,9) = wor

Proof. This follows immediately from Prop. 2.10 and Thm. 2.13. O

2.6 The AUF algebra x»C with involution ©

Fix 1 < i < N. In this section, we describe the actions of [XjnC on W € Mod(V®") in
terms of vertex operators; see Thm. 2.20. This description will allow us to relate linear
operators that intertwine the action of V with those that intertwine the action of XnC. It
will also be useful in showing that the associative algebra XnC is AUE.

Recall that ( is the standard coordinate of C.

Definition 2.15. For each z € C* = C\{0}, let Q. be the propagation of the (2, 0)-pointed
sphere 91 = (1.37) at z with local coordinate { — z, cf. Def. 1.15. Namely, 9, is the
unordered (2, 1)-pointed sphere with local coordinates

Q. = ({o0,0}; 1/¢, ([P ¢ — 2)
Choose orderings

€:{+,—} — {0,0} e(+) = e(—=)=0
L {1} — {z} 1z

where e is the default ordering of {c0, 0} (cf. Def. 1.26). By Def. 1.15 and Thm. 1.14,
( X C, Nz)

is an (¢, ¢, )-fusion product of V along ., where X, is the unique element in

Q. I coordinate ¢ — z
T . COV) = T+ ( / “ )
XnC
satisfying
R, :EpCQV—>C  R(-®1) = w (2.40)
Define
RE:V - HnC = ((nC)* v (- @) (2.41)

where X, (— ® v) denotes the linear map NnC — C sending each ¢’ € NnC to X, (¢’ ® v).
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Convention 2.16. As in Convention 2.6, we will not distinguish between X, and Ng in the
graphical representations of conformal blocks. Moreover, only in this section, the local
coordinates at co and 0 are always assumed to be 1/¢ and ¢, respectively.

Remark 2.17. The map O : t € P! — 1/t € P! implements an isomorphism between Q,
and

1= = ({00,085 1/¢, ¢[PY1/21/¢ = 2)
Therefore, by Prop. 1.23,
(Km C,R.)
is an (O o ¢, 11/,)-fusion product of V along 9/ /.» where R belongs to

v

1/z l coordinate 1/ — z
7 < )& )
i 0
VoA

XnC
Lemma 2.18. Fix z € C*. Then for each A, pu € C, the linear map
Pi(<A) o P(<p)oRE: V- BinClea ) = (N Creprm)” (242)
is surjective.

Note that Py (< \) commutes with P_(< p), and Py (\) commutes with P_(u). (Recall
(1.6) for the meanings of these projection operators.)

Proof. Note that NinC<(y ;)] is finite dimensional. If (2.42) is not surjective, then there
exists 0 # ¢ € NnCic(n )] such that forallv eV,

(P(S NP-(< p)RE(v), ) =0,

which is equivalent to X, (v ® ¢) = 0. This contradicts the partial injectivity of the canon-
ical conformal block R (cf. Rem. 1.39). Thus (2.42) must be surjective. O

Remark 2.19. Fix z € C*. Then by Lem. 2.18, each 1) € XlnC can be written as a (finite)
linear combination of elements of the form P, (A)P_(u)X%(v) where A, € Cand v € V.

Theorem 2.20. Let z € C* and W € Mod(V®N). Then for each A\, € C, w € Wand v e V, we
have

i+ (P+()\)P7(M)Nz(v) ® w)

: Pi(\)Yi(v, 2) Pi()w (2433)
®i,- (w® P ()P ()N ()

Pi(pn)Y/ (v, 2) P;(\)w (2.43b)

(2

Clearly, these identities still hold if A and . are replaced with < A and < p.
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Proof. Step 1. We claim that for each w € W, w’ € W, v € V we have

<w’,<I>i +(—®w >N - = <w',Yi(v,z)w> (2.44a)
<w Q; _ >NZ <w (v, 2) w> (2.44b)

We first prove (2.44a). Note that (2.44a) is equivalent to Fig. 2.6; in particular, both sides of
(2.44a) define conformal blocks associated to geometric data on the respective side of Fig.
2.6. When v is the vacuum vector 1, the right hand side of (2.44a) becomes (v’ w) (i.e.,
the conformal block idw); by (2.15) (whose pictorial illustration is (2.16)) and (2.40), the
left hand side also becomes (w’, w). Therefore, by the propagation of conformal blocks
(cf. [GZ23, Cor. 2.44]), (2.44a) holds true.

v
l coordinate ( — z

N,
/(] y W 2
‘v 1 C //, \ coordinate Q* .O [] Y
0 - Wl a Z
) 90 e

Figure 2.6 The figure for (2.44a)

Similarly, (2.44b) is equivalent to Fig. 2.7. Here, we need to check that the RHS of
(2.44b) defines a conformal block associated to the geometric data given on the RHS of
Fig. 2.7. Once this is proved, by applying again the propagation of conformal blocks, we
obtain (2.44b). (Note again that in Fig. 2.6 and 2.7, the sewing radii can be chosen to be
admissible when all the sewing moduli are set to 1. Therefore, the contractions converge
absolutely.)

\Y%
1/ | coordinate 1/¢ — z

@N v G YEN
o = e Gl {) e
U O O :

Figure 2.7 The figure for (2.44b)

If the local coordinate at 1/z is ( — 1/z instead of 1/ — z, then

WRVeW —C wvuw — (W, Y;(v,1/2)w)
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defines a conformal block. Now, the element v, € G (cf. (1.1b)) transforms 1/{ — z to
¢ —1/z, thatis, vy, o (1/¢ — z) = ( — 1/z. By Prop. 1.24, the linear functional

WRVW —C wvw — (W, Y;U(y,)v, 1/2)w) = (W', Y] (v, 2)w)
defines a conformal block associated to the geometric data on the RHS of Fig. 2.7.

Step 2. By the definition of contractions (cf. (1.48)) and the map Nﬁz, we can write
(2.44a) (equivalently, Fig. 2.6) as

3 (!, B (P (NP ()R (0) @ w)) = (', Yi(v, 2)u) (2.45)

AueC

Therefore, for each A, u € C, we have

(W', P;(\)Y;(v (w) = (Py(ANw', Yi(v, 2) Pi(p)w)
D <R~<A)w @i (P (VP ()N (0) ® Py(n)w))

X,fieC

(W', @i (Pr(A) P (1)RE (v) @ w))

(2.45)

(2.11b)
(2.11¢)

Since w' € W' is arbitrary, we obtain (2.43a). Similarly, (2.44b) implies

3 (W', (w® P-(1) 0)) = (W ¥ (0, 2w (2.46)
A,ueC
and hence
(W', Bi(p)Y (v, 2) P (Nw) = (P v 2P (Nw)
e 5 <Pi(u)w7@L_(B(A)w@p_(ﬁ)ﬂ(A)Ni(v)D
X,fieC
iibi (w', @ (w® P (1) P (ARE(0)))
Eq. (2.43b) follows. :

Corollary 2.21. Assume that N = 2 and W € Mod(V®?2). Let z € C*. For each \ € C, let
Xa = Pr()P-(ORE(L) € BInC)py (2.47)
Then x is independent of the choice of z. Moreover, for each w € W, we have
xyorw=P.(Nw, worxy=P_-(ANw. (2.48)

Proof. (2.48) follows from Thm. 2.20 by choosing v = 1 and p = . By the definition of X,
and X% in Def. 2.15, the element Nﬁz(l) € XnC = (KnC)* is equal to w. Therefore, Ni(l) is
independent of z. So is X . ]
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Corollary 2.22. (x)xec is a family of mutually orthogonal idempotents in the algebra XjnC, i.e.,
foreach A\, € C, X\ © Xy = 0 Xy Moreover, we have

dim (X)\ o XnC OXM) < 0
For each ¢ € XnC, we have

b= > xa0Voxy (2.49)

AueC
where RHS is a finite sum. Therefore, (XnC, ©) is an AUF algebra in the sense of [GZ25b].
Proof. By Cor. 2.21 with W = XJ»C, for each A, u € C, we have
XA X = Pr(N)Xp = 0x X
and
X ¢ BnCoxy = EKmCpy (2.50)
(2.50) implies that dim (x» ¢ KnC ¢ x,) < %0. Moreover, we have a decomposition

(2.50)
EnC = D EC)p == @ xaoEmCoxy
A,ueC A,ueC

which implies (2.49). O

Corollary 2.23. The canonical involution © is an anti-automorphism of the associative algebra
XnC. That is, for each 11,12 € XnC, we have

OY1 0 Oy = O(th2 0 1) (2.51)
Proof. By Thm. 2.8, O intertwines ®; , and ®; _. Therefore, for each w, ¢ € XnC, we have
O ow =, (WD)
Therefore

(OY1 0 OY) 0w = OYy 0 (O o w) = OY1 0 Py _(w R 2)
=0, (P4 _(w®2) ®11)

By Thm. 2.13, the last term above equals

Dy (W@ (Y2 0¢1)) = O(h20¢h1) ow

Since XnC is AUE, there exists an idempotent w such that

(O91 0 OYa) 0w = OYy © OYy O 01P1) 0w = O(1h2 0 1)

This proves (2.51). O
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2.7 The linear isomorphism .# : Mod(V) — Cohy,(XnC)

In this section, we apply the previous results to the case where N = 1. Recall from
(1.7) that for each M € Mod(V),

End’(M) ~ M ®c M/

is a C-subalgebra of End(M). For the remainder of this article, we identify these two
spaces when no confusion arises.

Definition 2.24. A left XjyC-module (M, my) is called coherent if it is finitely generated,
and if for each m € M there exists 1) € XnC such that my(¢))m = m. See [GZ25b, Sec. 2]
for equivalent descriptions of coherent left <jyC-modules. The linear category of coherent
left XlnC-modules is denoted by Cohy, (XinC).

Definition 2.25. Let M € Mod (V). Note that by Prop. 2.3, we have

XnC XnC M
) TV
Homye (}nC, M@ M) = 7* ( O D ) _ 7 ( O@ ) (2.52)
|1 l
M M M

By the universal property of dual fusion products (cf. Def. 1.10), there is a unique
v € Homye2 (m(c, M® M/)

whose transpose 7f; : M'QM — NnC composed with w : NyC — C equals the evaluation
pairing id2; : M/ @ M — C,m/ ® m — {(m’,m), that s,

wOWM:idfbw

As conformal blocks, 7y clearly equals the map ®; ; defined in Def. 2.7 for W = M. More
precisely, the map ¢, = ®; , satisfies

Oy ECOM M Y @m — mu(th)m (2.53)
where my (1) € End’(M) is viewed as a linear operator on M.
Remark 2.26. By Thm. 2.20, for eachm € M,v € Vand A, x € Cand z € C*, we have

i (Py (A) P ()RE(v))m = P(X)Yaa(v, 2) P(p)m (2.54a)
1 (P (S NP (< p)RE(v))m = P(< \)Yu(v, 2)P(< )m (2.54b)

In particular, we have my(xx)m = P(X)m.

Proposition 2.27. Let M € Mod(V). Then (M, my) is a coherent left XinC-module, i.e.,
(M, WM) € Cohy, (m@)
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Proof. By Thm. 2.13, (M, my) is a left XlnC-module. Since M is a finitely generated V-
module, by Rem. 2.26, M is a finitely generated left xijyC-module. For each m € M,
choose A € C such that m € M. Let ¢y € InCbe >, Py (1) P- (M)Ng(l). By Rem. 2.26,
we have my(1)m = P(< A\)m = m. Therefore, (M, myy) is coherent. O

Proposition 2.28. Let M, My € Mod(V) and T' : My — My be a linear map. Then T inter-
twines the actions of V if and only if T intertwines the actions of XnC. Therefore, we have

Homy (M, M) = Homg,,¢ (M, M)
Proof. By Rem. 2.19 and 2.26, T belongs to Homg,,c (M, M) iff
TPAN)Y (v,2)P(u)m = P(N)Y (v, z) P(u)T'm
holds for each \, ;1€ C, v € V, m € My, and z € C*. This is clearly equivalent to
TPAN)Y (v)pP(u)ym = P(N)Y (v), P(p)Tm (2.55)
for each A, i1, v, m, and n € Z. If this holds, then taking the sum over all A, i1, we obtain
TY (v)pym =Y (v),Tm (2.56)

for allv € V,m € M; and n € Z, which implies 7' € Homy(M;, M3). Conversely, assume
that 7' € Homy (M, M3). Then (2.56) holds. By Lem. 2.2, T" intertwines the actions of P(\)
and P(u). Therefore (2.55) is true. O

Theorem 2.29. The linear functor

Z : Mod(V) — Cohp,(XnC)
(M, Yr) — (M, mpp) (2.57)
Te HomV(Ml, Mg) — T e Homm(c(Ml, Mg)

is an isomorphism of C-linear categories. Consequently, Cohy,(XnC) is an abelian category since
Mod(V) is so.

It follows that XnC is strongly AUF in the sense of [GZ25b]. That is, the AUF algebra
XnC has finitely many irreducibles (cf. [GZ25b, Cor. 6.4])—equivalently, Cohy,(XnC) has
a projective generator (cf. [GZ25b, Prop. 7.8]).

Proof. Step 1. Note that if (M, Yy,) and (Mp, Yy,) are sent by .# to the same object,
then clearly M; = M as vector spaces. Moreover, the identity map on M; intertwines
the actions of XJnC, and hence intertwines the actions of V by Prop. 2.28. This proves
Yir, = Y.

According to the above paragraph, if we can prove that .% is surjective, namely, each
object (M, myr) of Cohy,(XnC) equals .# (M, Yyy) for some (M, Yyy) € Mod(V), then this
object (M, Yyy) is unique. Therefore, the functor ¢ : Cohr,(XIC) — Mod(V) sending each
(M, my) to (M, Yy) and sending each morphism to itself must be the inverse functor of
# . This will finish the proof that .# is an isomorphism of linear categories.
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To prove that .# is surjective, it suffices to prove that it is essentially surjective.
Indeed, suppose the latter is true. Choose any (M, my;) € Cohy,(XnC). Then there exists
(M,YM) € Mod(V) and an isomorphism of left XlyC-modules 7" : (M, my) — (M, o)
where (M, 75,) = Z (M, Yg). Let Yau(—, 2) = T~'Yg;(—, 2)T. Then (M, Yiy) € Mod(V) and
F (M, Yv) = (M, myp).

Step 2. Let us prove that .# is essentially surjective. Let € be the set of equivalence
classes of objects in the range of .%. It is clear that ¢ is closed under finite direct sums. ¢
is also closed under taking quotients. More precisely: Suppose that (M, my) = .7 (M, Yi)
where (M, Yyr) € Mod(V), and that X < M is a linear subspace invariant under the left ac-
tion of XInC. Then M/X belongs to the range of .%. To see this, we note that by Rem. 2.26,
X'is V-invariant, so Y descends to a vertex operator Yyyx on M/X, making (M/X, Yy/x)
an object of Mod(V). By Rem. 2.26 again, it is clear that .7 (M/X, Yyy/x) is the quotient of
(M, s M) by X.

By [GZ25b, Def. 2.3], any object in Cohy,(XnC) is isomorphic to a quotient of a finite
direct sum of objects of the form XjnC ¢ e where e € XnC is an idempotent. Moreover, by
(2.49), e is a subidempotent of f (i.e. eo f = f oe = e) where f = ZMeE X With E a finite
subset of C. Therefore, by the above paragraph, it suffices to show that for each i € C, the
left XlpyC-module X := XnC ¢ X, (Whose module structure 7x is defined by the left action
of XnC, ie., Tx(¢)(w o Xu) = 1 o w ox, for each ¢, w € XnC) belongs to the range of .7.

By Cor. 2.22, we have

X = D EmC) )
AeC

as vector spaces. This shows that X is a grading-restricted generalized V-module with
vertex operator Yx defined to be the restriction of Y,c 4+ to X. (In fact, for any W €
Mod(V®?), (@) Wy ., Yw,+) is clearly an object of Mod(V).) Let (X, mx) be Z(X, Yx).
Let us prove that 7x = 7x. This will finish the proof that (X, 7x) belongs to the range of
Z.

By Rem. 2.19, it suffices to prove that 7x(v) = mx(¢)) where p = P (\)P_ (K)Nﬁ (v) for
some A, k € Cand v € V. Choose any w € XJxC. Then

%X(w)(woxlﬁ) =powox, = (d’ow)OXu

(2.43) (2.48)
(Pr (M) Yyt (v, 1) Py (K)w) © Xu P_ (1) P+ (A)Yggyc 4 (v, 1) Py (K)w
On the other hand,
(2.54)
mx (1) (w o Xp) PA)Yx(v, 1) P(k)(w o Xu) = P (M) Ygyc,+ (v, 1) Py (8) (w o Xp)
(2.48)

P (\Yige. (0, )Py () P (1w = P (1) Py () Yigyc.t (v, 1) Py (R
This proves 7x(¢) = mx(¢). O

Corollary 2.30. Let (G, Yg) be a generator of Mod(V), that is, each object of Mod(V) has an
epimorphism from a finite direct sum of G. Then (G, ng) is a generator of Cohy,(XnC), and

76 : BnC — G® G’ = End’(G) (2.58)
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is an injective homomorphism of associative C-algebras. Moreover, for each z € C*, we have
76 (KnC) = Spanc{P(A)Yg(v, Z)P(M)LG i\ peCveV} (2.59)

Proof. By Thm. 2.29, (G, ng) is a generator of Cohy,(XnC). Therefore, for each A € C,
since XnC ¢ x) belongs to Cohr,(XnC), it has an epimorphism from a direct sum of G.
Therefore, if x € Xy C acts as zero on G, then for each finite set £ — C, x acts as zero on
@)z XnC o x». Note that this space can be written as (XnC) ¢ e where ep = >, cp X
is an idempotent of XnC. Since there exists E such that this space contains =, we have
x =z oepand eg € (XnC) o ep, and hence « = 0. This proves the injectivity of (2.58). Eq.
(2.59) follows immediately from Rem. 2.19 and 2.26. O

Corollary 2.31. Let (G, Yg) be a projective generator of Mod(V). Then (G, ng) is a projective
generator of Cohy,(XnC). Moreover, if we let B be Endy(G)°P, the opposite algebra of Endy (G),
then (2.58) restricts to an isomorphism of associative C-algebras

7 : nC — End%(G) (2.60)
which is also an isomorphism in Mod(V®?).

Recall (1.8) for the meaning of End%(G).

Proof. By Thm. 2.29, (G, ng) is a projective generator of Cohy,(XInC). Note that (2.58) is
simultaneously an injective homomorphism of associative algebras and (by Def. 2.25) an
injective homomorphism of V®2-modules. By [GZ25b, Thm. 11.7], the range of (2.58)
is End%(G). This proves that (2.58) restricts to an isomorphism of C-algebras (2.60). In
particular, (2.60) is bijective. Since End%(G) is clearly an V®2-submodule of G ® G’ €
Mod(V®?), we have End%(G) € Mod(V®?). It follows that (2.60) is also an isomorphism
in Mod(V®2). 0

2.8 An alternative proof of the equivalence XjnC ~ ., - vy M ®c M

In this section, we use the results developed in the preceding sections to give an al-
ternative proof of the isomorphism XyC ~ SMEMOd(V) M ®c M/, originally established in
[GZ25a, Sec. 0.6] with the help of [FSS20].

We first review the definition of ends and coend in the context of VOAs.

Definition 2.32. Let N € N, and let 2 be a category. Suppose that F' : Mod(V®Y) x
Mod(V®Y) — Z is a covariant bi-functor and A, B € 2. A family of morphisms

ow: F(W W) - A resp. ¢w:B — F(W,W) (2.61)

for all W € Mod(V®Y) (with contragredient module W’) is called dinatural if for any
M € Mod(V®") and T € Homyen (M, W) (with transpose T*), the diagram

i
FW M) 09 povr, B— " . FW,W)
F(idW/,T)J PM resp. le JF(Tf,idW)
FW,W) — ", 4 Fo, M) 8T povy )
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commutes. A dinatural transformation pw : F(W' W) — A (resp. ¢w : B — F(W',W))
is called a coend (resp. an end) in 7 if it satisfies the universal property that for any
Ae g (resp. B e 2) and dinatural transformation @w : F(W/ W) — A (resp ¢W :
B — F(W,W)) for all W € Mod(V®Y), there is a unique I' € Homy (A, A) (resp. ¥
Homg (B, B)) such that $w = T o ow (resp. Y = 1w o U) holds for all W. In that case,
we write

WeMod (VON)
a-]

F(W' W) resp. B= F(W W)

JWeMod(V@V)

From the universal property, if (co)ends exist, then they are unique up to unique iso-
morphisms. In this paper, we mainly consider the covariant bi-functor

F : Mod(V) x Mod(V) — Mod(V®?)  F(M,W) = W®c M

Theorem 2.33. The dinatural transform my : XnC — EndO(M) = M®M (for all M €
Mod(V)) is an end in Mod(V®?). In short, we have

XnC ~ M M as V&%-modules

fMeMod(V)

The dinaturality of (my)menmod(v), Which means that myy(—) o T = T o my(—) holds for
each M, W € Mod(V) and T' € Homy (M, W), is obvious due to Prop. 2.28.

Proof. Let us check the universal property. Let (1 : A — M ® M')penoa(y) be a dinat-
ural transform in Mod(V®?), where A € Mod(V®?). Choose a projective generator G €
Mod(V). By the dinaturality, for any T" € Endy(G), we have (idg @ T")v¢ = (T ®idg/)ve.
Therefore, each element in the range of g : A — G ® G’ = End"(G), as a linear opera-
tor on G, commutes with each T' € Endy(G). Therefore, g (A) is contained in End%(G)
where B = Endy(G)°P. By Cor. 2.31, there is a unique V®?-module morphism ¥ satisfy-
ing

v A - XnC Yo =7mgo Vv

Indeed, one sets ¥ = m;' o 7).

To prove the existence part of the universal property, we need to prove yn; = myo¥ for
allM € Mod(V), notjust for G. Let QZM = my o ¥. Then (@ZM t A - MM )menmod(y) is also
a dinatural transform. Moreover, we know that the dinatural transforms (¢n)nenmod(v)
and (Yy) MeMod(v) agree when Ml = G. Thus, they agree on any finite direct sum of G. For
any M € Mod(V), there exist n € N and an epimorphism 7 : X — M where X = G¥". By
the dinaturality, we have commuting diagrams

A—" MM A— MM
w;{ lidM@)T‘ JXJ }dM®Tt
TQidy/ TQidys

XX M® X XX M® X’
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where ¢x = ¢x. Thus (idy ® T") ¢ = (idy ® Tt)hyr. Since Tt is injective and hence

~

idy ® T is injective, we conclude ¥y = .

Finally, we check the uniqueness. Suppose that ¥’ : A — XjnC is another morphism
satisfying ¢y = myo ¥’ for all M € Mod (V). Then ¢g = ngo¥’, and hence rgoV¥ = mgoW'.
By Cor. 2.30, 7 is injective. Therefore ¥ = ¥’ ]

Corollary 2.34. The dinatural transform 7, : M @ M — R C (for all M € Mod(V)) is a coend
in Mod(V®?). In short, we have

MeMod(V)
NinC ~ J MM  as VO%-modules
Proof. It follows from Thm. 2.33 by taking transpose and reversing the arrows. O

2.9 Symmetric linear functionals on W € Mod(V®?)

In this section, we assume N = 2 and fix W € Mod(V®?). Recall that by Cor. 2.14, W
is a ®{ynC-bimodule. Let € = (C|{z,3}; 7., 75) be a standard 2-pointed sphere. Recall Rem.
1.31 for the meaning of .7*(W). Recall the canonical involution © defined in Thm. 2.8.

Definition 2.35. Let W € Mod(V®?). A linear map ¢ : W — C is called a symmetric
linear functional if

bW opw) =dp(wor 1) forall v € XnC,w e W
The space of symmetric linear functionals on W is denoted by SLF(W).

Theorem 2.36. Assume N = 2, and let W € Mod(V®?), viewed as a [XinC-bimodule. Let
¢ : W — C be a linear map. Then ¢ € SLF(W) if and only if b € F3*(W) (i.e., § satisfies (1.36)
forall v e Vand w e W). In short, we have

SLE(W) = 7 (W)

Proof. By Rem. 2.19, any element in X C is a linear combination of elements of the form
P, (\)P- (M)Ng(v), where \, € C, z € C*,and v € V. Thus, ¢ € SLF(W) iff

(@, PeOVP_ ()N (v) o w) = (b, w or P (NP (1)RE(v)) (2.62)
foreachv e V, we W, A, pu € C, and z € C*. By Thm. 2.20, (2.62) is equivalent to
(&, Py(N)Y4 (0, 2) Py () = (&, P_(1)Y" (v, 2) P (N)w)
for all v, w, A, 11, z, and hence equivalent to
(&, P (VY3 (0)a Py (1)w) = (b, P- ()Y ()0 P-(N)w) (2.63)

for all v, w, \, pand n € Z, where Y/ (v,2) = > Y/ (v),27 " L.
We want to show that condition (2.63) is equivalent to (1.36), i.e.,

(b, Yy (v)pw) = (P, Y (v)w) (2.64)
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holds for all v and n € Z. If (2.63) holds, by taking sum over all A, 1, we obtain (2.64).
Conversely, suppose that (2.64) holds. Then (¢, P} (r)w) = (¢, P_(x)w) holds for each
k € C due to Lem. 2.2, and hence

(&, Pr (WY1 (0)n Py (p)w) = (b, P-(A)Y4 (0)n Py () w)
(6, Y (0)nP- (N Py (n)w) =<, Y (0)n P (N Py (m)w)
=(b, P ()Y (v)n P-(Nw) = (b, P_(1)Y (0)n P-(\)w)

This proves (2.63). O]

By Prop. 1.32, regardless of which ordering we choose for {z, 3}, the pair (XnC, w) is
a fusion product of C along €. Therefore, we have a linear isomorphism

Homye: (W,NyC) — FF(W) T woT (2.65)

Recall that NiyC = (XInC)*. Therefore, for each w € W and 7' € Homyeg:2 (W,NnC), the
element T'w is a linear functional on Xy C.

Theorem 2.37. Choose & € I (W), and let T € Homye2(W,NnC) be the unique morphism
satisfying & = w o T'. Then for each w € W, and 1 € XmC, we have

(T'(w),09) = (Y o w) = E(w or ) (2.66)

Proof. The second equality in (2.66) is obvious. Let us prove the first one.
Define A = ©' o T : W — N»nC, which clearly belongs to

,\l L,

~(0)

X T+
XnC

Define B = £o0 @, ;. : XnC ® W — C, which is a composition of conformal blocks as
indicated by Fig. 2.8. Therefore, B belongs to (2.67).

KnC W
gy L

)
N

Figure 2.8 The conformal block B.

Since w = w o O (cf. Thm. 2.8), we have w0 A = w 0 O o T' = &, This is a relation of
conformal blocks, as indicated in Fig. 2.9.
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Figure 2.9 The relation wo A = &,

On the other hand, for each w € W, we have

(2.15)

E(w) (2.68)

See Fig. 2.10. Therefore, by the partial injectivity of w (cf. Rem. 1.39), we see that A and
B correspond to the same conformal block in (2.67). More precisely: (Aw, ) = B(y) @ w)
holds for all w € W, ¢ € XjnC. This proves (2.66). O

W(=)B(- ®w) = £ o (w(—)®y 4 (~ ®w))

©(R)

W%
FYEmCy — j X, *\/ \
O (2.16) idw ’ O O _ d Xf
¥ YWy @ g

. D
W W S
% D

Figure 2.10 The pictorial illustration of (2.68).

We now consider the case where W = [xjnC. Then (2.65) becomes the linear isomor-
phism

Homye: (KinC, NnC) — SLF(®nC) = & ([&XmC) T woT (2.69)

Corollary 2.38. Choose & in SLF(XnC), and let T € Homye: ( Xy C,NnC) be the unique
morphism satisfying & = w o T'. Then the following are equivalent:

(a) T is injective.
(b) T is surjective.
(c) T is an isomorphism of V2-modules.

(d) The symmetric linear functional & is non-degenerate, that is, the following map is injective:

MnC — (KnC)* Y E(Po—) (2.70)
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Proof. For each A, i € C, the morphism T restricts to
T (nC)pr ) — ®nC)pa (2.71)

whose domain and codomain have the same finite dimension (because (NmC)[,\ 4] is the
dual space of (XnC)(y ). Therefore, T' is injective iff 7' is surjective iff 7" is bijective.
This proves the equlvalence of (a), (b), and (c). By Thm. 2.37, the map (2.71) sends each
w € KnC to OF o T'(w). Therefore, (a) and (d) are equivalent. O

3 Torus conformal blocks and pseudo-g-traces

3.1 The space 7 (V) of vacuum torus conformal blocks
3.1.1 The geometric setting

As usual, we let ¢ be the standard coordinate of C. We fix a standard 2-pointed sphere
¢, viewed as an (0, 2)-pointed sphere. Fix z € C*, and fix 7 € H where H < C is the (open)
upper half plane. Let ¢ = "™ with arg ¢ = 27R(7). Let Q. , be the (1,2)-pointed sphere
with local coordinates described by

Qg = ({00,035 1/4¢, ([P |2:¢ - 2)

Since 0 < |g| < 1, € can be composed with Q. 4, because the sewing radii can be chosen
to be admissible when the sewing moduli are set to 1. Let

3 {+,—} — {0,0} 3(+) = © 3(—)=0 (3.1)

be the default ordering of the outgoing marked points of Q. ,. Let € be an arbitrary or-
dering of the marked points of €. Let ¥, ; be the 1-pointed torus with local coordinates
defined by

(zz,q = Q:#&@Qz,q
That is,

Clearly, T. , is isomorphic to

((C/(Z+ Z)‘Iog: 2im¢ _ z>

3.1.2 The sewing-factorization theorem for vacuum torus conformal blocks

Recall from Rem. 1.31 that .7*(XnC) is the space of conformal blocks associated to
XnC and €, where the choice of ordering is irrelevant. Recall from Thm. 2.36 that

SLF(@nC) = 7 (MnC)

Let 7 (V) be the space of conformal blocks associated to V and T, via the unique
ordermg of the marked point of . ,.
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Remark 3.1. Let ¢, be the unique ordering of {z}. As noted in Def. 2.15, (XjnC, X;) is an
(3, t»)-fusion product of V along Q. = 9, ;. Let

N, =R, 0 (" O @idy) :KInC®V - C
whose corresponding map V — is
R = O ont LY
Then by Prop. 1.25, (XInC, R ) is an (3, ¢, )-fusion product of V along 9., ,.
Theorem 3.2. We have a linear isomorphism
SLF(@nC) — 75, (V) &—EoXi, (32)
where the RHS converges absolutely in the sense of (1.49b).

Proof. This is a special case of the sewing-factorization Thm. 1.38. O

The picture for the sewing-factorization isomorphism (3.2) is
m C @ XmC } —V
e e S N R
[ < 927[1
&

3.2 The isomorphism SLF(Endy(G)?) ~ 77 (V) via pseudo-g-traces

Let (G, Y ) be a projective generator of Mod(V). By Cor. 2.31, (G, ng) is a projective
generator of Mod(XInC). Let

Prop.2.28

B = Endv(G)Op Endmc (G)Op

which is a finite-dimensional unital C-algebra. Then G is a XjnC-B bimodule.

3.2.1 Pseudotraces

By Prop. 9.1 and Thm. 9.4 of [GZ25b], or by [GR19, Lem. 5.3], G is a projective right
B-module. In particular, each graded subspace Gy is a finite-dimensional projective
right B-module. It follows that the right B-module G has a left coordinate system, i.e., a
collection of morphisms of right B-modules

o € Homp(B,G) & € Homp(G,B), whereie [ (3.3)
satisfying the following conditions:

(a) Foreach ¢ € G, we have &'(¢) = 0 for all but finitely many i € I, and ) ,_; a;jod"(£) =
&
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(b) For each z € End%(G), we have z o o; = 0 and &' o 2 = 0 for all but finitely many
tel.

Definition 3.3. For each ¢ € SLF(B), the associated (left) pseudotrace Tr® : End%(G) —
C is defined by sending each z € End%(G) to

Tr?(z) = Zd)(&i oxoa;(lp)) (3.4)

el

Then Tr? is independent of the choice of left coordinate systems, and Tr¢ e
SLF(End%(G)). See [GZ25b, Sec. 4] for details.

Theorem 3.4. We have a linear isomorphism
SLF(Endy(G)°P) — SLF([®xC) ¢ — Tr®ong (3.5)

Moreover, ¢ is non-degenerate if and only if Tr? o ng is non-degenerate.
Proof. This is due to Thm. 9.4 and 10.4 of [GZ25b]. O

Remark 3.5. Recall from (2.69) the bijection between T' € Homye: (XnC,ENnC) and & €
SLF (xXnC) related by & = w o T. Therefore, by Thm. 3.4, there is a bijection between
¢ € SLF(Endy(G)°P) and

MeMod(V)
T? € Homye2 (m(c, Elsﬂ(C) ~ Homyeg:2 (J M® M/, f

M ® M)
MeMod (V)

(cf. Thm. 2.33 and Cor. 2.34 for the last equivalence) related by
T omg = woT? (3.6)

Moreover, by Cor. 2.38, ¢ is non-degenerate iff 7 is an isomorphism of V®2-modules.

Remark 3.6. In the special case that V is strongly-finite (i.e. the Cs-cofinite VOA
V = @,y V(n) satisfies V.~ V' and dimV(0) = 1), suppose that the conjectured
rigidity of Mod(V) holds. Then by [McR21], Mod(V) is a factorizable finite ribbon cat-
egory. Therefore, by [GR20], there is a distinguished (up to scalar multiplication) element
¢ € SLF(Endy(G)°P), called the modified trace, which is non-degenerate [GR20, Prop.
4.2]. Therefore, by Rem. 3.5, ¢ gives rise to a distinguished V®2-module isomorphism

T¢ XnC = NinC

In particular, XnC is self-dual. (The self-dualness of the end XnC also follows (more
directly) from [Shi17].)
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3.22  The isomorphism SLF(Endy(G)°?) ~ 7 (V)

Recall z € C*, g = €% (where 7 € H), and the 1-pointed torus ¥, , in Subsec. 3.1.1.
We are now ready to prove the following conjecture by Gainutdinov-Runkel, cf. [GR19,
Conjecture 5.8]. Note that each element of .77 (V) is a linear functional on V.

Theorem 3.7. Let (G, Yg) be a projective generator of Mod(V). Then we have a linear isomor-
phism

SLF (Endy(G)P) = Z& (V) ¢~ Tr?(Yg(—, 2)¢" ) (3.7)
where the RHS is understood as follows: for each v € V,

Tr? (Ye(v,2)q L(O) Z Trd’ AN Y (v, z)qL(O)P(A))
AeC

and the series on the RHS converges absolutely.

The construction of Tr? (Yg(—, 2)¢*()) from ¢ is called the pseudo-g-trace construc-
tion.

Proof. Let us show that the composition of the isomorphisms (3.2) and (3.5) agrees with
(3.7). We compute that

((32) 0 (35)(¢),0) = (Tr? omg) o RE (1) =222 3 Te? o mg (PN, w)RE ()
A,peC

= 3 Te? o me (Pe (NP (R ,(0)) = 3 Tr? o mg (Py () P- (1) g™+ Ok (v)
A,ueC A,ueC

where the sums converge absolutely. Recall from Def. 2.25 that for each ¢ € XjnC and w €
G, we have &, (¢ ® w) = mg(¥)w. By (2.9¢), we have @, (¢"+ Oy @ w) = ¢“ O, (v @ w),
and hence 7 (¢"+ () = ¢“O) g (¢)). Therefore,

(32)oB5)(¢),vy= Y, T’ (qL<0>7rG (P+()\)P—(M)Nﬂz(v))>

A,ueC

(2.54) DT (MO PYe(v,2)P(p) = D Te? (PN O P(\)Ye(v, 2) P(1))
ApeC A, ueC

Since Tr? a symmetric linear functional on End%(G), the last term above equals

D1 T (P(N)Ys(v, 2) P() PN O P(N)) = Y Te? (P(M)Yg (v, 2)¢" O P(V))
A, ueC AeC
This finishes the proof. O

For any associative C-algebra A, let Z(A) be its center.
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Corollary 3.8. Assume that V is strongly-finite, and that the conjectured rigidity of Mod(V)
holds. Then for each projective generator G of Mod(V), and for each non-degenerate ¢ €
SLF(Endy(G)°P) (cf. Rem. 3.6 for the existence), we have a linear isomorphism

Z(Endy(G)®) = Z& (V) x> Tr% (Yo (-, 2)¢") (3.8)
where ¢,, € SLF (Endy (G)°P) is defined by sending each y € Endy(G)°P to ¢(zy).

Proof. This follows immediately from Thm. 3.7 and the easy fact that for any finite-
dimensional C-algebra A and a fixed non-degenerate ¢ € SLF(A), the map

Z(A) - SLE(A) 2+ ¢,

is a linear isomorphism. O
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