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Abstract

Let V be an N-graded C2-cofinite vertex operator algebra (VOA), not necessarily
rational or self-dual. Using a special case of the sewing-factorization theorem from
[GZ25a], illustrated in Fig. 0 below, we show that the end

E “

ż

MPModpVq

M bC M1

in ModpVb2q (where M1 is the contragredient module of M) admits a natural struc-
ture of associative C-algebra compatible with its Vb2-module structure. Moreover,
we show that a suitable category CohLpEq of left E-modules is isomorphic, as a linear
category, to ModpVq, and that the space of vacuum torus conformal blocks is isomor-
phic to the space SLFpEq of symmetric linear functionals on E.

Combining these results with the main theorem of [GZ25b], we prove a conjec-
ture of Gainutdinov-Runkel [GR19]: For any projective generator G in ModpVq, the
pseudo-q-trace construction yields a linear isomorphism from SLFpEndVpGqopq to the
space of vacuum torus conformal blocks of V.

In particular, if A is a unital finite-dimensional C-algebra such that the category
of finite-dimensional left A-modules is equivalent to ModpVq, then SLFpAq is linearly
isomorphic to the space of vacuum torus conformal blocks of V. This confirms a
conjecture of Arike-Nagatomo [AN13].

T ˚

˜ ¸

» T ˚

˜ ¸

Figure 0. A pictorial illustration of the sewing-factorization isomorphism (0.4).
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0 Introduction

0.1 (Co)ends in finite logarithmic CFT

A fundamental feature of rational conformal field theory (rational CFT) is the factor-
ization property, which states, roughly speaking, that when a (possibly disconnected)
compact Riemann surface is sewn along several pairs of marked points using prescribed
local coordinates, the resulting space of conformal blocks is isomorphic to a direct sum of
spaces of conformal blocks associated to the pre-sewing configuration.

In the theory of rational and C2-cofinite vertex operator algebras (VOAs), proving the
factorization property in low-genus cases is a central topic in the literature. The key re-
sults in this direction include the modular invariance property [Zhu96, Hua05b] and the
associativity of intertwining operators [Hua95, Hua05a]. These are analytic in nature,
meaning that the isomorphisms appearing in the factorization property are derived us-
ing Segal’s formalism of sewing [Seg88, Seg04]. More recently, the factorization property
in arbitrary genus has been established for rational C2-cofinite VOAs using formal (al-
gebraic) sewing, as in [DGT24]; for genus zero, this formal approach was developed in
[NT05].
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Now we focus on a C2-cofinite, but not necessarily rational, VOA V “
À

nPNVpnq.
The category ModpVq of grading-restricted generalized V-modules is a finite abelian cate-
gory as a linear category [MNT10, Hua09]. As a monoidal category, its tensor structure—
defined via the formalism of Huang-Lepowsky-Zhang [HLZ14], [HLZ12a]-[HLZ12g]—
forms a (possibly non-rigid) ribbon Grothendieck-Verdier category [ALSW21].

In this setting, the study of factorization originates from the construction of non-
semisimple modular functors in topological field theory (TFT), especially the work of
Lyubashenko [Lyu95, Lyu96]. From the TFT perspective, factorization should naturally
be formulated in terms of ends and coends, the definitions of which will be recalled in Def.
2.32. There are several approaches to expressing factorization via ends and coends. One
is the left exact coend formulation [Lyu95, Lyu96, FS17]. Another employs the horizon-
tal composition of profunctors, as in [HR24]. In fact, the Huang-Lepowsky-Zhang tensor
category theory can be viewed as realizing a genus-zero sewing-factorization theorem in
the language of horizontal composition of profunctors—a perspective first emphasized
in [Mor22].

On the other hand, the modular invariance property is typically regarded as a genus-
one sewing-factorization theorem. In the non-rational case, one well-established formula-
tion of modular invariance is expressed in terms of pseudo-q-traces [Miy04, AN13, Fio16,
Hua24b]. However, the connection between this formulation and the end/coend perspec-
tive remains unclear. The aim of this paper is to clarify that relationship.

0.2 The sewing-factorization (SF) theorem

In [GZ25a], we established several equivalent formulations of the sewing-
factorization theorem for any C2-cofinite VOA V “

À

nPNVpnq. One such formula-
tion appears in the language of horizontal composition of profunctors; see [GZ25a, Sec.
3.2]. While this is a coend-based expression of the factorization property, its relation to
pseudo-q-traces is not immediately transparent. In the following, we recall the version of
the sewing-factorization theorem stated in terms of (dual) fusion products, as proved in
[GZ25a, Sec. 3.1] and reviewed in detail in Sec. 1.6.

Let G be a (possibly disconnected) compact Riemann surface with disjoint sets G1

and G of outgoing and incoming marked points, respectively, such that each connected
component of G intersects G1 YG. Suppose each point in G1 YG is equipped with a local
coordinate. Let N “ |G1| and R “ |G|. Fix orderings of G1 and G, that is, bijections

t1, . . . , Nu
»

ÝÝÑ G1 t1, . . . , Ru
»

ÝÝÑ G

Let Vect be the category of finite-dimensional C-vector spaces. Then we have a left exact
(cf. Rem. 1.4) profunctor

ModpVbN q ˆ ModpVbRq Ñ Vect

pM,Xq ÞÑ T ˚

˜ ¸

where the notation T ˚p¨ ¨ ¨ q on the RHS denotes the space of conformal blocks over G
with input module X and output module M. (The roles of input and output modules can
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be interchanged by taking contragredient modules.) This profunctor is covariant in M
and contravariant in X. For a detailed definition and interpretation of the figure, see Sec.
1.2.

By [DSPS19], every linear functor from a finite C-linear category to Vect is repre-
sentable. Therefore, for each fixed X P ModpVbRq, there exists an M-natural linear iso-
morphism

HomVbN pbGX,Mq
»

ÝÝÑ T ˚

ˆ ˙

(0.1)

Fix such a natural isomorphism, and let

ℸ P T ˚

ˆ ˙

be the element corresponding to idbGX P EndVbN pbGXq under the isomorphism (0.1).
The pair pbGX,ℸq is called a fusion product of X along G, and ℸ is called the canoni-
cal conformal block. Note that this construction depends on the chosen orderings of the
incoming and outgoing marked points G and G1. For simplicity, we suppress this depen-
dence in the introduction, but it will be made explicit in the main body of the paper.

Now suppose we are given, similarly to G, a compact Riemann surface F with disjoint
sets F 1, F of outgoing and incoming marked points. Let K “ |F 1| and assume that |F | “

N “ |G1|. Fix orderings of F 1 and F . Assume that each component of F intersects F 1 Y

F . Then, using the chosen orderings, we can analytically sew F and G along F and G1,
producing a new surface F#G:

“

(Since we are performing analytic sewing, we must choose sewing moduli. In the in-
troduction, as well as in many parts of this paper, we fix all sewing moduli to be 1; see
Subsec. 1.6.1 for details.)

Assume that each component of F#G intersects F 1 Y G. The sewing-factorization
(SF) theorem says that for each W P ModpVbKq and X P ModpVbRq, we have a linear
isomorphism (called the sewing-factorization isomorphism)

T ˚

˜ ¸

»
ÝÝÑ T ˚

˜ ¸

ϕ ÞÑ ϕ ˝ ℸ

(0.2)

where ϕ ˝ℸ : W1 bX Ñ C is the contraction of ϕ : W1 b bGX Ñ C and ℸ : nGXbX Ñ C,
with nGX being the contragredient module of bGX (called the dual fusion product).

We remark that in [GZ25a], the SF theorem is stated under the assumption that each
component of G intersectsG. This condition can be removed by invoking the propagation
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of conformal blocks; see Thm. 1.38. (In particular, when G is connected, it is allowed to
have no incoming marked points. In that case, since G intersects G1 Y G, the set G1 of
outgoing marked points must be non-empty.)

0.3 The SF theorem in terms of the end
ş

MPModpVq
M bC M1

An important special case of the above SF theorem is when F has two incoming points,
and G is the sphere N with no incoming and two outgoing points 8, 0, equipped with the
local coordinates 1{ζ, ζ respectively, where ζ is the standard coordinate of C. We refer to
N as the default 2-pointed sphere. Let pbNC,ωq be a fusion product of the complex field
C P ModpVb0q along N. Assume that

F “

Then, since

“ (0.3)

the SF isomorphism (0.2) becomes

T ˚

˜ ¸

»
ÝÝÑ T ˚

˜ ¸

ϕ ÞÑ ϕ ˝ω

(0.4a)

where W P ModpVbKq, and K is (again) the number of outgoing points of F.
By the propagation of conformal blocks, bNC is isomorphic to the fusion product bQV

of V along a sphere with one input and two outputs; see Thm. 1.14 for details.1 In [GZ25a,
Sec. 0.6], we explained why bQV can be viewed as the end

ş

MPModpVq
M b M1. Therefore,

we have an isomorphism of Vb2-modules

bNC »

ż

MPModpVq

M bC M1 (0.4b)

(An alternative proof of (0.4b) will be given in this paper; see Thm. 2.33.) Therefore,
(0.4a) yields the isomorphism shown in Figure 0 following the abstract. See Rem. 1.41 for
further explanation.

0.4 The Arike-Nagatomo conjecture is an easy consequence of the SF theorem

As a special case of the isomorphism in Figure 0, we have

T ˚

ˆ ˙

» T ˚

ˆ ˙

1The contragredient of bQV was first considered by Li in [Li02], where it was referred to as the regular
representation of V.
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» T ˚

ˆ ˙

where the last equality is due to the propagation of conformal blocks. Since the transpose
of the dinatural transform

ş

MPModpVq
MbM1 Ñ MbM1 is M1 bM Ñ

` ş

MPModpVq
MbM1

˘1,
the latter must satisfy the universal property required for a coend. Thus

´

ż

MPModpVq

M b M1
¯1

»

ż MPModpVq

M1 b M

Therefore, we have

T ˚

ˆ ˙

» T ˚

ˆ ˙

By (0.1) and (0.4b), the RHS above is isomorphic to

HomVb2

´

ż

MPModpVq

M b M1,

ż MPModpVq

M1 b M
¯

(0.5)

Therefore, the space of vacuum torus conformal blocks is isomorphic to (0.5). This imme-
diately implies the following theorem, originally conjectured by Arike-Nagatomo in the
Introduction of [AN13].

Theorem 0.1. Let A be a unital finite-dimensional C-algebra such that ModpVq is linearly iso-
morphic to the category ModfLpAq of finite dimensional left A-modules. Then we have a linear
isomorphism

T ˚

ˆ ˙

» SLFpAq (0.6)

where SLFpAq denotes the space of symmetric linear functionals on A.

By a symmetric linear functional on A, we mean a linear map ϕ : A Ñ C satisfying
ϕpabq “ ϕpbaq for all a, b P A.

Proof. We have used the SF theorem to prove that the LHS of (0.6) is linearly isomorphic
to (0.5). Note that

ModfLpAqop » ModpVqop » ModpVq

where the isomorphism ModpVqop » ModpVq is defined by sending each Mop to the con-
tragredient M1 of M. By [McR23],

ModpVq ˆ ModpVq Ñ ModpVb2q pX,Yq ÞÑ X bC Y

is a Deligne product. Therefore, (0.5) can be written as

HomModpVqbDelModpVq

´

ż

MPModpVq

M bDel M1,

ż MPModpVq

M1 bDel M
¯
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»HomModfLpAqbDelModfLpAqop

´

ż

MPModfLpAq

M bDel Mop,

ż MPModfLpAq

Mop bDel M
¯

where bDel denotes the Deligne product. By [FSS20, Cor. 2.9], if we identify ModfLpAqbDel

ModfLpAqop with the category BimfpAq of finite-dimensional A-bimodules, then the last
Hom space above is equivalent to

HomBimfpAqpA,A
˚q » SLFpAq

where each T P HomBimfpAqpA,A
˚q corresponds to 1tA ˝ T P SLFpAq and 1tA : A˚ Ñ C is

the transpose of λ P C ÞÑ λ ¨ 1A P A. This establishes the isomorphism (0.6).

0.5 The Gainutdinov-Runkel conjecture on pseudo-q-traces

The isomorphism (0.6) established in Thm. 0.1 is fairly abstract, and it is natural to
seek an explicit linear map that realizes this isomorphism. Such a map was proposed
by Gainutdinov and Runkel in [GR19]. Specifically, Conjecture 5.8 of [GR19] asserts that
if G is a projective generator in the abelian category ModpVq, then the pseudo-q-trace
construction (in the sense of [AN13]) yields a linear isomorphism

SLFpEndVpGqopq
»

ÝÝÑ T ˚

ˆ ˙

(0.7)

We do not recall the definition of the pseudo-q-trace construction here; see Sec. 3.2
for details, or the Introduction of [GZ25b] for a brief overview. However, let us explain
why the Arike-Nagatomo conjecture is a special case of the Gainutdinov-Runkel conjec-
ture: Suppose that ModpVq » ModfLpAq as linear categories, where A is a unital finite-
dimensional algebra. Then A, as a left A-module, is a projective generator of ModfLpAq,
and EndModfLpAq

pAqop » A. By choosing any G P ModpVq corresponding to the object A of

ModfLpAq, we recover the isomorphism (0.6) from (0.7).
We emphasize that in the main body of this paper, our proof of the Gainutdinov-

Runkel conjecture, formally stated in Thm. 3.7, does not rely on first establishing the
Arike-Nagatomo conjecture. In fact, our argument provides an independent proof of the
Arike-Nagatomo conjecture, separate from the one given in Sec. 0.4. Furthermore, our
proof does not assume the isomorphism bNC »

ş

MPModpVq
M b M1; rather, the alternative

proof of this isomorphism is a consequence of the techniques developed for proving the
Gainutdinov-Runkel conjecture, as we will see in Sec. 2.8.

To prove the Gainutdinov-Runkel conjecture, we must relate pseudo-q-traces to ends
and coends—in other words, to answer the question posed in the title of this paper. Our
answer, in brief, is as follows:

(1) The vector space bNC can be equipped with an associative C-algebra structure that
is compatible with its Vb2-structure (Cor. 2.12). Moreover, the algebra bNC is al-
most unital and finite-dimensional (AUF) in the sense of [GZ25b] (Cor. 2.22).

(2) There is a canonical linear isomorphism from the category CohLpbNCq of coher-
ent left bNC-modules (cf. Def. 2.24) to the abelian category ModpVq (Thm. 2.29).
Therefore, the projective generators of the two categories can be identified.
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(3) By (0.4a) and the propagation of conformal blocks, the sewing-factorization isomor-
phism implements an isomorphism from the following space of conformal blocks

T ˚

ˆ ˙

(0.8)

(which can be identified with SLFpbNCq, cf. Thm. 2.36) to the space of vacuum
torus conformal blocks.

(4) By the main result (Thm. 9.4) of [GZ25b] on symmetric linear functionals of AUF
algebras, the pseudotrace construction yields a linear isomorphism

SLFpEndVpGqq
by (2)

ùùùùù SLFpEndbNCpGqq
»

ÝÝÑ SLFpbNCq (0.9)

Due to (3), the sewing-factorization isomorphism yields an isomorphism from
SLFpbNCq to the space of vacuum torus conformal blocks. One can show that the
composition of the pseudotrace construction (0.9) and the SF isomorphism equals
the pseudo-q-trace construction. The proof of the Gainutdinov-Runkel conjecture is
finished.

0.6 The cobordism geometry of associative C-algebras

According to the discussion above, the key to answering the question “how are
pseudo-q-traces related to (co)ends” lies in the fact that the end bNC naturally carries
the structure of an AUF algebra. Our approach to studying torus conformal blocks via
infinite-dimensional associative algebras is partly inspired by Huang’s construction of
the algebra A8pVq in [Hua24a, Hua22] and his use of this algebra in [Hua24b] to estab-
lish modular invariance of intertwining operators for C2-cofinite VOAs. Another type
of infinite-dimensional algebra, the so called mode transition algebra, was considered
by Damiolini-Gibney-Krashen [DGK25, DGK24], and was conjectured in [DW25] to be
closely related to the end

ş

MPModpVq
M b M1, although this connection remains unclear in

the absence of rationality assumption on the C2-cofinite VOA V.
Our construction of the associative algebra structure on bNC differs fundamentally

from all previous approaches to associative algebras in the VOA context: it is purely
geometric, in the sense of Segal’s CFT and cobordism categories.

It is well-known that the vertex operator Y p´, zq, associated to any V-module, gives
a conformal block associated to a sphere with two inputs and one output. In contrast,
the geometric realization of the Zhu algebra ApVq and the higher Zhu algebras AnpVq is
far less transparent. However, the geometry for the algebra structure of bNC is much
clearer: the multiplication map ˛ : bNC b bNC Ñ bNC belongs to the following space of
conformal blocks:

T ˚

˜ ¸

(0.10)
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where the signs ` and ´ indicate the ordering of marked points; see Sec. 1.2 for the
precise meaning of the graphical notation for conformal blocks. Moreover, for any
M P ModpVq, the corresponding left bNC-module structure on M, given by a linear map
bNC b M Ñ M, belongs to the following space of conformal blocks:

T ˚

˜ ¸

(0.11)

These two conformal blocks will be defined precisely in Def. 2.7 in a uniform way using
the SF theorem. This provides yet another illustration of the power of the SF theorem
established in [GZ25a].

According to [Li01a, Li01b] (see also the appendex Chapter B of the arXiv version
of [GZ23]), the Zhu algebra ApVq and the higher Zhu algebra AnpVq can be realized as
quotient spaces of bNC, and their algebra structures can be defined via the Vb2-module
structure of bNC. Since our associative algebra structure on bNC is compatible with this
Vb2-module structure, we expect that the algebra structure on bNC descends to those of
ApVq and AnpVq. This, in turn, provides a cobordism-geometric interpretation of ApVq

and AnpVq: the geometries of the associative algebras ApVq and AnpVq should be viewed
as the zero-level and finite-level truncations of a distinguished conformal block in (0.10),
namely, the conformal block defining the multiplication map ˛ : bNC b bNC Ñ bNC.
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1 Conformal blocks and their graphical calculus

1.1 Notation

Throughout this paper, we use the following notation.

• N “ t0, 1, 2, . . . u, Z` “ t1, 2, . . . u. Neighborhoods are assumed to be open.

• Let Cˆ “ Czt0u. For each r P r0,`8s, we let

Dr “ tz P C : |z| ă ru Dˆ
r “ tz P C : 0 ă |z| ă ru

• Let Vect be the abelian category of finite-dimensional C-vector spaces.
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• Let ζ be the standard coordinate of CCC, namely, the identity map id : C Ñ C.

• For each complex manifold X , OX denotes the sheaf of germs of holomorphic func-
tions on X . Therefore, OXpXq “ OpXq is the space of holomorphic functions
X Ñ C. We let ωX be the sheaf of germs of holomorphic 1-forms on X .

• Throughout this paper, we fix an N-graded C2-cofinite vertex operator algebra
(VOA) V “

À

nPNVpnq with conformal vector c and vacuum vector 1. For each
n P N, we let

Vďn “
à

kďn

Vpkq

For each N P N, we let ModpVbN qModpVbN qModpVbN q be the category of grading-restricted generalized
VbN -modules, which is an abelian category by [Hua09] (see also [MNT10]). We re-
fer the reader to [Hua09] for the general properties of grading-restricted generalized
modules of C2-cofinite VOAs.

• Recall from [GZ24, Sec. 1.1] that if W P ModpVbN q and v P V, the i-th vertex
operator

YW,ipv, zq “
ÿ

nPZ
YW,ipvqnz

´n´1

is Y p1 b ¨ ¨ ¨ b v b ¨ ¨ ¨ b 1, zq where v is at the i-th component. We abbreviate YW,i to
Yi when no confusion arises. We also write

Y 1
i pv, zq “ YipUpγzqv, z

´1q (1.1a)

where Upγzq “ ezLp1qp´z´2qLp0q is the change-of-coordinate operator (cf. Subsec.
1.2.1) associated to

γz : t ÞÑ
1

z ` t
´

1

z
(1.1b)

Clearly Upγzq
´1 “ Upγ1{zq, and hence

Yipv, zq “ Y 1
i pUpγzqv, z

´1q (1.1c)

We write

Y 1
i pv, zq “

ÿ

nPZ
Y 1
i pvqnz

´n´1 (1.2)

We also write

Y` “ Y1 Y 1
` “ Y 1

1 Y´ “ Y2 Y 1
´ “ Y 1

2 for Vb2-modules (1.3)

Let Lipnq “ Yipcqn´1.
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• If W P ModpVbN q and λ1, . . . , λN P C, then Wrλ‚s is the subspace of all w P W such
that for all 1 ď i ď N , w is a generalized eigenvector of Lip0q with eigenvalue λi.
The finite-dimensional subspace Wrďλ‚s is defined to be the direct sum of all Wrµ‚s

where ℜpµiq ď ℜpλiq for all 1 ď i ď N . Then the contragredient VbN -module of W,
as a vector space, is

W1 “
à

λ‚PCN

pWrλ‚sq
˚

Then for each w P W, w1 P W we clearly have

xYipv, zqw,w1y “ xw, Y 1
i pv, zqw1y (1.4)

The algebraic completion of W is

W “ pW1q˚ “
ź

λ‚PCN

Wrλ‚s

We let

P pλ‚q “ the projection of W onto Wrλ‚s

P pď λ‚q “ the projection of W onto Wrďλ‚s

Fix 1 ď i ď N and λ P C, then

Pipλq resp. Pipď λq denotes the projection of W onto
à

µ‚PCN ,µi“λ

Wrµ‚s resp.
à

µ‚PCN ,ℜpµiqďℜpλq

Wrµ‚s
(1.5)

If N “ 2, we write

P`pλq “ P1pλq P`pď λq “ P1pď λq P´pλq “ P2pλq P´pď λq “ P2pď λq (1.6)

• Let E be a finite set such that |E| “ N . An ordering of E is a bijection ε :
t1, ¨ ¨ ¨ , Nu Ñ E. Suppose we have two orderings

ε : t1, ¨ ¨ ¨ , Nu Ñ E, Ç : t1, ¨ ¨ ¨ ,Mu Ñ F

The composition of orderings is defined as

ε ˚ Ç : t1, ¨ ¨ ¨ , N `Mu Ñ E \ F

ε ˚ Çpiq “ εpiq, 1 ď i ď N ε ˚ ÇpN ` jq “ Çpjq, 1 ď j ď M

Then ε ˚ Ç is an ordering of E \ F . It is easy to check that composition of orderings
satisfies the associativity. Thus, the composition of l orderings ε1 ˚ ε2 ˚ ¨ ¨ ¨ ˚ εl is
well-defined for εi : t1, ¨ ¨ ¨ , Niu Ñ Ei.

• Let N P Z`. The permutation group of t1, ¨ ¨ ¨ , Nu is denoted as SN .
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• Let M P ModpVq. Let EndpMq be the set of linear operators on M. Let

End0pMq :“
ď

λPC
EndpMrďλsq

“tT P EndpMq : T “ P pď λqTP pď λq for some λ P Cu

(1.7)

End0pMq is a grading-restricted Vb2-module whose module structure is determined
by the fact that for each v P V, T P End0pMq, the following relation holds in
End0pMqrrz˘1ss:

Y pv b 1, zqT “ YMpv, zq ˝ T Y p1 b v, zqT “ T ˝ YMpUpγzqv, z
´1q

Under this structure, the linear isomorphism

M b M1 »
ÝÝÑ End0pMq mbm1 ÞÑ m ¨ xm1,´y

is an isomorphism in ModpVb2q.

• Let M P ModpVq. If M is a right module over an associative C-algebra B, we let

End0BpMq “ tT P End0pMq : pTmqb “ T pmbqfor each m P M and b P Bu (1.8)

• If A is an associative C-algebra, we let

SLFpAq “ tsymmetric linear functionals on Au

where a symmetric linear functional on A denotes a linear map ϕ : A Ñ C satisfy-
ing ϕpabq “ ϕpbaq for all a, b P A.

1.2 Conformal blocks for unordered N -pointed compact Riemann surfaces

In this section, we introduce the (unordered) N -pointed compact Riemann surfaces
with local coordinates.

1.2.1 Sheaf of VOA

Let us recall the definition of sheaf of VOA. See [GZ24, Subsec. 1.3.1] for details.
Let G be the group of all fpzq “

ř

ną0 anz
n, where an P C and a1 ‰ 0. The group

product of f, g P G is defined to be the composition f ˝ g. For each α P G, Upαq is an
invertible linear operator on V defined by

Upαq “ α1p0qLp0q exp
´

ÿ

ną0

cnLpnq

¯

where cn P C and 0 ‰ α1p0q P C are the constants defined by αpzq “ α1p0q ¨

exp
`
ř

ną0 cnz
n`1Bz

˘

z.
More generally, if W P ModpVbN q, for each 1 ď i ď N we define a linear operator

Uipαq “ α1p0qLip0q exp
´

ÿ

ną0

cnLipnq

¯

(1.9)
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on W, which depends on the choice of argα1p0q.
If X is a complex manifold, a map ρ : X Ñ G (sending x P X to ρx P G) is called a

holomorphic family of transformations if for each x P X , there exists a neighborhood
V Ă X of x and a neighborhood U Ă C of 0 such that the map pz, yq P U ˆ V ÞÑ ρypzq P C
is holomorphic. In that case, for each n P N, we have an EndpVďnq-valued holomorphic
map

Upρq : X Ñ EndpVďnq x ÞÑ Upρxq

which induces an isomorphism of holomorphic vector bundles

Upρq : Vďn bC OX
»

ÝÝÑ Vďn bC OX

Let C be a Riemann surface (without boundary). The sheaf of VOA

VC :“ lim
ÝÑ
nPN

V ďn
C “

ď

nPN
V ďn
C

which relies on V and C, is defined as follows. V ďn
C is a (finite rank) locally free OC-

module defined by the transition functions provided below. For each open subset U Ă C
and each univalent (i.e. holomorphic injective) function η P OpUq, we have a trivializa-
tion, i.e., an isomorphism of holomorphic vector bundles

Uϱpηq : V ďn
C |U

»
ÝÑ Vďn b OU

If µ P OpUq is another univalent function, the transition function is given by the isomor-
phism

UϱpηqUϱpµq´1 “ Upϱpη|µqq : Vďn bC OU
»
ÝÑ Vďn bC OU (1.10)

Here ϱpη|µq : U Ñ G is the holomorphic family such that for each p P U ,

ϱpη|µqppzq “ η ˝ µ´1
`

z ` µppq
˘

´ ηppq

Equivalently, ϱpη|µqp is the unique element of G transforming the local coordinate µ´µppq

at p to η ´ ηppq, i.e.,

ϱpη|µqp ˝ pµ´ µppqq “ η ´ ηppq

Recall that ωC is the sheaf of germs of holomorphic 1-forms on C. We view ωC as a
holomorphic line bundle. Consider the tensor product bundle V ďn

C b ωC , formed from
V ďn
C and ωC . Then for each univalent η P OpUq as above, we have a trivialization

Uϱpηq b id : V ďn
C b ωC |U

»
ÝÑ Vďn b ωU

abbreviated to Uϱpηq for convenience.
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1.2.2 Definition of conformal blocks

Let N P N.

Definition 1.1. An (unordered)NNN -pointed compact Riemann surface with local coordi-
nates denotes the data

X “ pC
ˇ

ˇE; ηEq “ pC
ˇ

ˇE; pηxqxPEq, (1.11)

where C is a compact Riemann surface; E Ă C is a set of marked points such that |E| “

N ; for each x P E, ηx is a local coordinate at x—that is, ηx is an injective holomorphic
function on a neighborhood Ux of x satisfying ηxpxq “ 0. We also assume that

the intersection of E with each connected component of C is non-empty. (1.12)

An ordering of E is defined to be a bijection

ε : t1, 2, ¨ ¨ ¨ , Nu
»

ÝÝÑ E (1.13)

Given an ordering ε, the set E can be written as E “ tεp1q, ¨ ¨ ¨ , εpNqu.

Consider the sheaf VX b ωCp‚Eq, where

VX :“ VC

The sheaf VX b ωCp‚Eq consists of sections of VX b ωC
ˇ

ˇ

CzE
with finite poles at E. Then

H0
`

C,VX bωCp‚Eq
˘

is the space of global sections of VX bωC on CzE with finite poles at
E.

Let ε be an ordering of E. Let W P ModpVbN q. We will use the terminology of asso-
ciating WWW to EEE via εεε to describe the assignment of VbN -modules to marked points. This
terminology allows us to define the εεε-residue action ˚ε˚ε˚ε of H0

`

C,VX b ωCp‚Eq
˘

on W,
which is a linear action defined by

σ ˚εi w “ Resεpiq YipUϱpηεpiqqσ, ηεpiqqw (1.14a)

σ ˚ε w “

N
ÿ

i“1

σ ˚εi w (1.14b)

for each σ P H0
`

C,VX b ωCp‚Eq
˘

, w P W, and 1 ď i ď N .
Eq. (1.14a) is interpreted in the following way: Let Uεpiq be a connected neighborhood

of εpiq on which ηεpiq is defined, and let Uˆ

εpiq “ Uεpiqztεpiqu. Then the trivialization

Uϱpηεpiqq : VX b ωC
ˇ

ˇ

Uˆ

εpiq

»
ÝÝÑ V bC ωUˆ

εpiq

“ V bC OUˆ

εpiq

dηεpiq

maps σ (more precisely, the restriction σ|Uˆ

εpiq

) to a finite sum

ÿ

k

vk b fkdηεpiq
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where vk P V, and fk “ fkpηεpiqq P OpUˆ

εpiqq admits a Laurent series expansion at εpiq:

fk “
ÿ

nPZ
ak,npηεpiqq

n

with ak,n P C, and ak,n “ 0 for n ! 0. Then

σ ˚εi w “
ÿ

k

Resεpiq Yipvk, ηεpiqqw ¨ fkdηεpiq “
ÿ

k

ÿ

nPZ
ak,nYipvkqnw (1.15)

The space of coinvariants is given by

TX,εpWq “
W

H0
`

C,VX b ωCp‚Eq
˘

˚ε W

where SpanC has been omited in the denominator. Its dual space is called the space of
conformal blocks and is denoted by T ˚

X,εpWqT ˚
X,εpWqT ˚
X,εpWq. The elements of T ˚

X,εpWq are called con-
formal blocks associated to the family X, the module W, and the ordering ε. In other
words:

• The space T ˚
X,εpWq consists of all conformal blocks, i.e., linear functionals ϕ : W Ñ

C satisfying

xϕ, σ ˚ε wy “ 0

for each w P W, σ P H0pC,VX b ωCp‚Eqq.

Remark 1.2. Let W P ModpVbN q. A pictorial illustration of T ˚
X,εpWq is

T ˚

ˆ ˙

In this picture, X has two connected components, and N “ 5. Thus, the set E of marked
points has five elements, corresponding to εp4q, εp5q, εp1q, εp3q, εp2q, listed from left to
right. (Note that each marked point εpiq is equipped with a local coordinate ηεpiq.) And
M P ModpVb5q.

Remark 1.3. The setting of conformal blocks laid out in this article is slightly different
from that of [GZ23, GZ24, GZ25a], where we study conformal blocks associated to W P

VbN and an ordered N -pointed compact Riemann surface with local coordinates

Y “ pC|x1, . . . , xN ; η1, . . . , ηN q

The definition used there agrees with the present definition of T ˚
X,εpWq provided that,

given the above Y, we define the unordered data

X “ pC|E; pηxqxPEq where E “ tx1, . . . , xNu and ηxi “ ηi

and define the ordering ε by εpiq “ xi. Conversely, given the unordered data X and the
ordering ε as in (1.11) and (1.13), we define the ordered data

Y “ pC|εp1q, . . . , εpNq; ηεp1q, . . . , ηεpNqq
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Remark 1.4. For each M,W P ModpVbN q and T P HomVbN pM,Wq, the map T : M Ñ W
clearly descends to a linear map of the corresponding quotient spaces

T : TX,εpMq ÝÑ TX,εpWq (1.16)

Its transpose is

T t : T ˚
X,εpWq ÝÑ T ˚

X,εpMq (1.17)

Therefore, we have a contravariant functor

T ˚
X,ε : ModpVbN q ÝÑ Vect

W ÞÝÑ T ˚
X,εpWq

T P HomVbN pM,Wq ÞÝÑ
`

T t : T ˚
X,εpWq Ñ T ˚

X,εpMq
˘

called the conformal block functor. In fact, this contravariant functor is left exact; see
[GZ25a, Thm. 1.22].

1.2.3 Grouping marked points

Let X be as in Def. 1.1. In practice, the set E of marked points of (1.11) is often divided
into T subsets (where T P Z`), written as E “ E1 \ ¨ ¨ ¨ \ ET . In this case, for each
i “ 1, . . . , T , we let

ηEi “ pηxqxPEi (1.18)

so that X can be written as

X “ pC
ˇ

ˇE1 \ ¨ ¨ ¨ \ ET ; ηE1 , ¨ ¨ ¨ , ηET
q (1.19)

For each 1 ď i ď T , set Ni “ |Ei|, and choose an ordering

εi : t1, ¨ ¨ ¨ , Niu
»

ÝÝÑ Ei

Choose Wi P ModpVbNiq, and associate Wi to Ei via εi.
Recall that ε1 ˚ ¨ ¨ ¨ ˚ εT denotes the composition of the orderings ε1, . . . , εT , cf. Sec. 1.1.

Proposition 1.5. For each α P ST , we associate Wαp1q b ¨ ¨ ¨ b WαpT q P ModpVbN q to E via
the ordering εαp1q ˚ ¨ ¨ ¨ ˚ εαpT q. Then the linear isomorphism

πα : W1 b ¨ ¨ ¨ b WT Ñ Wαp1q b ¨ ¨ ¨ b WαpT q

w1 b ¨ ¨ ¨ b wT ÞÑ wαp1q b ¨ ¨ ¨ b wαpT q

descends to a linear isomorphism

πα : TX,ε1˚¨¨¨˚εT pW1 b ¨ ¨ ¨ b WT q
»

ÝÝÑ TX,εαp1q˚¨¨¨˚εαpT q
pWαp1q b ¨ ¨ ¨ b WαpT qq

Therefore, its transpose gives a linear isomorphism

πtα : T ˚
X,εαp1q˚¨¨¨˚εαpT q

pWαp1q b ¨ ¨ ¨ b WαpT qq
»

ÝÝÑ T ˚
X,ε1˚¨¨¨˚εT

pW1 b ¨ ¨ ¨ b WT q
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Proof. By (1.14) and (1.15), for each σ P H0
`

C,VX b ωCp‚Eq
˘

we have

παpσ ˚ε1˚¨¨¨˚εT pw1 b ¨ ¨ ¨ b wT qq “ σ ˚εαp1q˚¨¨¨˚εαpT q pwαp1q b ¨ ¨ ¨ b wαpT qq

for each w1 P W1, . . . , wT P WT , and hence

παpσ ˚ε1˚¨¨¨˚εT wq “ σ ˚εαp1q˚¨¨¨˚εαpT q παpwq (1.20)

for each w P W1 b ¨ ¨ ¨ b WT . Therefore

πα

´

H0
`

C,VX b ωCp‚Eq
˘

˚ε1˚¨¨¨˚εT pW1 b ¨ ¨ ¨ b WT q

¯

“H0
`

C,VX b ωCp‚Eq
˘

˚εαp1q˚¨¨¨˚εαpT q pWαp1q b ¨ ¨ ¨ b WαpT qq

This proves that πα descends to a bijective linear map between spaces of coinvariants.

Definition 1.6. By Prop. 1.5, for each α P ST , we can identify the spaces of conformal
blocks T ˚

X,εαp1q˚¨¨¨˚εαpT q
pWαp1q b ¨ ¨ ¨ b WαpT qq and T ˚

X,ε1˚¨¨¨˚εT
pW1 b ¨ ¨ ¨ b WT q via πtα. We

denote this identified space by

T ˚
X,ε‚

pW‚qT ˚
X,ε‚

pW‚qT ˚
X,ε‚

pW‚q ” T ˚
X,ε1,...,εT

pW1, . . . ,WT q ” T ˚
X,εαp1q,...,εαpT q

pWαp1q, . . . ,WαpT qq

and call it the space of conformal blocks associated to X and W1, . . . ,WT via ε1, . . . , εT .

Remark 1.7. A pictorial illustration of T ˚
X,ε‚

pW‚q is

T ˚
X,ε‚

pW‚q “ T ˚

ˆ ˙

In this example, X has two components, with a total of N “ 8 marked points, divided
into T “ 4 subsets. The set of marked points is E “ Eb \ Er \ Em \ Eg where the
subscripts b, r,m, g stand for blue, red, magenta, and green, respectively. Let εb, εr, εm, εg
be the corresponding orderings.

• Eb consists of the top three blue points on the left component, ordered from left to
right as εbp2q, εbp3q, εbp1q.

• Er consists of the top two red points on the right component, ordered from left to
right as εrp2q, εrp1q.

• Em consists of the single magenta point, εmp1q, located at the bottom of the left
component.

• Eg consists of the bottom two green points: εgp1q lies on the left component, and
εgp2q on the right.
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The modules Wb P ModpVb3q, Wr P ModpVb2q, Wm P ModpVq, and Wg P ModpVb2q are
associated to Eb, Er, Em, Eg via the orderings εb, εr, εm, εg respectively.

Remark 1.8. When |Ei| “ 1, we typically omit the index of the arrow in the picture. When
|Ei| “ 2, we

write 1 and 2 as ` and ´, respectively (1.21a)

Accordingly, we

write Y1 and Y2 as Y` and Y´, respectively, for Vb2-modules (1.21b)

Moreover, for any Ei, reversing the directions of the arrows for Wi and simultaneously
replacing Wi with its contragredient W1

i represent the same space of conformal blocks.
For example, the space T ˚

X,ε‚
pW‚q in Rem. 1.7 can be represented by

T ˚
X,ε‚

pW‚q “ T ˚

ˆ ˙

“T ˚

ˆ ˙

“ T ˚

ˆ ˙

1.3 (Dual) fusion products

In this section, we letN,R P N. In order to define (dual) fusion products, we divide the
set of marked points E into T “ 2 parts E1, E, and place one of them—say E1—together
with its local coordinates in front of C. More precisely:

Definition 1.9. Let F be an unordered pR ` Nq-pointed compact Riemann surfaces with
local coordinates, where the set of marked points is divided into two groups E1 and E.
We let θx denote the local coordinate at x P E, and let θ1

x1 denote the local coordinate at
x1 P E1. We write this data as

F “
`

E1; θ1
E1

ˇ

ˇC
ˇ

ˇE; θE
˘

where θ1
E1 “ pθ1

x1qx1PE1 and θE “ pθxqxPE (1.22)

and call it an unordered pR,NqpR,NqpR,Nq-pointed compact Riemann surface with local coordi-
nates. We call E the incoming marked points (or simply inputs) of F, and we call E1 the
outgoing marked points (or simply outputs) of F.

Note that according to Def. 1.1, we have:

Each connected component of C intersects E Y E1. (1.23)
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When we view F as an pR ` Nq-pointed compact Riemann surface with local coordi-
nate, we write it as

F “
`

C
ˇ

ˇE1 \ E; θ1
E1 , θEq. (1.24)

Definition 1.10. Let F “ (1.22) be as in Def. 1.9. Choose orderings ε : t1, ¨ ¨ ¨ , Nu Ñ E and
ε1 : t1, ¨ ¨ ¨ , Ru Ñ E1. Associate W P ModpVbN q to E via ε. An pε1, εqpε1, εqpε1, εq-dual fusion product
of W along F denotes a pair pnF,ε1,εpWq, ,qpnF,ε1,εpWqג ,qpnF,ε1,εpWqג ,qג where nF,ε1,εpWq P ModpVbRq is associated to
E1 via ε1,

ג P T ˚
F,ε1,εpnF,ε1,εpWq,Wq

where T ˚
F,ε1,εpnF,ε1,εpWq,Wq is the space of conformal blocks associated to F and

nF,ε1,εpWq,W via ε1, ε (cf. Def. 1.6), and the following universal property is satisfied:

• For each M P ModpVbRq associated to E1 via ε1, the map

HomVbRpM,nF,ε1,εpWqq Ñ T ˚
F,ε1,εpM,Wq T ÞÑ ג ˝ pT b idWq (1.25)

is a linear isomorphism.

We call ג the canonical conformal block. We abbreviate pnF,ε1,εpWq, qג to nF,ε1,εpWq when
no confusion arises.

The contragredient VbR-module of nF,ε1,εpWq is denoted by bF,ε1,εpWqbF,ε1,εpWqbF,ε1,εpWq, that is,

bF,ε1,εpWq :“ nF,ε1,εpWq1

We call the pair pbF,ε1,εpWq, q—orג simply bF,ε1,εpWq—an pε1, εqpε1, εqpε1, εq-fusion product of W
along F.

Remark 1.11. In Def. 1.10, we are viewing

T ˚
F,ε1,εpnF,ε1,εpWq,Wq “ T ˚

F,ε1˚εpnF,ε1,εpWq b Wq

T ˚
F,ε1,εpM,Wq “ T ˚

F,ε1˚εpM b Wq

cf. Def. 1.6. Then ג is a linear functional

ג : nF,ε1,εpWq b W Ñ C

By Def. 1.6, one can also view

T ˚
F,ε1,εpnF,ε1,εpWq,Wq “ T ˚

F,ε˚ε1pW b nF,ε1,εpWqq

T ˚
F,ε1,εpM,Wq “ T ˚

F,ε˚ε1pW b Mq

In that case, ג is a linear functional

ג : W b nF,ε1,εpWq Ñ C

and the expression T ÞÑ ג ˝ pT b idWq in (1.25) should be replaced by

T ÞÑ ג ˝ pidW b T q
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Remark 1.12. When E “ H (and hence N “ 0), Def. 1.10 is interpreted in the following
way. Since

ModpVb0q “ Vect

It suffices to consider the scalar field C P ModpVb0q. Then, an ε1-dual fusion product of C
along F denotes a pair pnF,ε1pCq, ,qג where nF,ε1pCq P ModpVbRq, and

ג P T ˚
F,ε1

`

nF,ε1 pCq
˘

satisfies the following universal property that for each M P ModpVbRq associated to E1

via ε1, the following map is a linear isomorphism:

HomVbRpM,nF,ε1pCqq Ñ T ˚
F,ε1pMq T ÞÑ ג ˝ T (1.26)

In [GZ23], the existence of (dual) fusion products is established under the additional
assumption that each component of C intersects E (not merely EYE1). This assumption,
however, can be removed with the help of propagation of conformal blocks:

Theorem 1.13. Let F “ (1.22) be as in Def. 1.9. Choose orderings ε : t1, ¨ ¨ ¨ , Nu Ñ E and
ε1 : t1, ¨ ¨ ¨ , Ru Ñ E1. Associate W P ModpVbN q to E via ε. Then there exists an pε1, εq-dual
fusion products of W along F.

Note that by the universal property in Def. 1.10, pε1, εq-dual fusion products are
unique up to unique VbR-module isomorphisms.

Proof. By enlarging the set of incoming marked points of F, we get an pR,N `Lq-pointed
compact Riemann surface with local coordinates

rF “
`

E1; θ1
E1

ˇ

ˇC
ˇ

ˇE \ tz1, . . . , zLu; θE , θz1 , ¨ ¨ ¨ θzL
˘

(where z1, . . . , zL are distinct points of CzpEYE1q, and θzi is an arbitrary local coordinate
at zi) such that

each component of C intersects E Y tz1, ¨ ¨ ¨ , zLu. (1.27)

Then rF satisfies [GZ23, Asmp. 2.2], so that the dual fusion product exists. More precisely,
let

ιL : t1, ¨ ¨ ¨ , Lu
»

ÝÝÑ tz1, ¨ ¨ ¨ , zLu i ÞÑ zi

Associate W b VbL to E Y tz1, ¨ ¨ ¨ , zLu via ε ˚ ιL. By [GZ23, Thm. 3.31], there exists an
pε1, ε ˚ ιLq-dual fusion product

`

n
rF,ε1,ε˚ιL

pW b VbLq,rג
˘

of W b VbL along rF. We view rג
as a linear functional

rג : n
rF,ε1,ε˚ιL

pW b VbLq b W b VbL Ñ C

By [GZ23, Cor. 2.44], for each M P ModpVbRq we have an linear isomorphism

T ˚
rF,ε1˚ε˚ιL

pM b W b VbLq
»

ÝÝÑ T ˚
F,ε1˚εpM b Wq ψ ÞÑ ψp´ b 1bLq (1.28)
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Therefore, the linear functional

ג : n
rF,ε1,ε˚ιL

pW b VbLq b W Ñ C p´qג “ rגp´ b 1bLq

belongs to

T ˚
F,ε1,ε

`

n
rF,ε1,ε˚ιL

pW b VbLq,W
˘

“ T ˚
F,ε1˚ε

`

n
rF,ε1,ε˚ιL

pW b VbLq b W
˘

By the universal property of rג,

HomVbR

`

M,n
rF,ε1,ε˚ιL

pW b VbLq
˘

ÝÑ T ˚
rF,ε1˚ε˚ιL

`

M b W b VbL
˘

T ÞÑ rג ˝ pT b idW b idVbLq
(1.29)

is a linear isomorphism. Its composition with (1.28), namely

HomVbR

`

M,n
rF,ε1,ε˚ιL

pW b VbLq
˘

ÝÑ T ˚
F,ε1˚ε

`

M b W
˘

T ÞÑ ג ˝ pT b idWq

is also a linear isomorphism. This proves that
`

n
rF,ε1,ε˚ιL

pW b VbLq, ג
˘

is an pε1, εq-dual
fusion products of W along F.

The proof of Thm. 1.13 implies a result that is important enough to be stated sepa-
rately. Recall that 1 P V denotes the vacuum vector of V.

Theorem 1.14. Let F “ (1.22) be as in Def. 1.9. Choose orderings ε : t1, ¨ ¨ ¨ , Nu Ñ E and
ε1 : t1, ¨ ¨ ¨ , Ru Ñ E1. Associate W P ModpVbN q to E via ε. Let pnF,ε1,εpWq, qג be an pε1, εq-
dual fusion product of W along F.

Choose distinct points z1, . . . , zL P CzpE Y E1q and local coordinates θz1 , . . . , θzL at these
points. Let

rF “
`

E1; θ1
E1

ˇ

ˇC
ˇ

ˇE \ tz1, . . . , zLu; θE , θz1 , ¨ ¨ ¨ θzL
˘

(1.30)

Let ιL be the ordering of tz1, . . . , zLu defined by ιLpiq “ zi. Then there exists a unique

rג P T ˚
rF,ε1,ε˚ιL

`

nF,ε1,ε pWq,W b VbL
˘

(1.31a)

such that rג, as a linear functional nF,ε1,εpWq b W b VbL Ñ C, satisfies

p´qג “ rגp´ b 1bLq (1.31b)

Moreover,
`

nF,ε1,ε pWq,rג
˘

is an pε1, ε ˚ ιLq-dual fusion product of W b VbL along rF.

By viewing rג as a linear functional on nF,ε1,εpWq b W b VbL, we regard

T ˚
rF,ε1,ε˚ιL

`

nF,ε1,ε pWq,W b VbL
˘

“ T ˚
rF,ε1˚ε˚ιL

`

nF,ε1,ε pWq b W b VbL
˘
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Definition 1.15. The data rF “ (1.30) is called the propagation of F at z1, . . . , zL with local
coordinates θz1 , . . . , θzL . The pair

`

nF,ε1,ε pWq,rג
˘

defined in Thm. 1.14 is called the propagation of the dual fusion product pnF,ε1,εpWq, qג

at z1, . . . , zL with local coordinates θz1 , . . . , θzL .

Note that unlike the proof of Thm. 1.13, in Thm. 1.14 and Def. 1.15 we do not assume
that each component of C intersects E Y tz1, . . . , zLu. However, since we are assuming
that each component of C intersects E Y E1 (cf. Def. 1.1), the results in [GZ23] on the
propagation of conformal blocks still apply.

Proof of Thm. 1.14. Let pnF,ε1,εpWq, qג be an pε1, εq-dual fusion product of W along F. The
existence and uniqueness of rג satisfying (1.31) follow from the linear isomorphism (1.28).

Let
`

n
rF,ε1,ε˚ιL

pWbVbLq, rℸ
˘

be any pε1, ε ˚ ιLq-dual fusion product of WbVbL along
rF. By the proof of Thm. 1.13,

`

n
rF,ε1,ε˚ιL

pW b VbLq,ℸ
˘

is an pε1, εq-dual fusion product

of W along F, provided that we set ℸp´q “ rℸp´ b 1bLq. Therefore, by the uniqueness of
dual fusion products, there exists a unique VbR-module isomorphism

T : n
rF,ε1,ε˚ιL

pW b VbLq
»

ÝÝÑ nF,ε1,εpWq

such that ℸ “ ג ˝ pT b idWq. With the help of the isomorphism (1.28), one easily checks
that rℸ “ rג˝ pT b idW b idVbLq. This proves that

`

nF,ε1,ε pWq,rג
˘

is an pε1, ε˚ ιLq-dual fusion
product of W b VbL along rF.

1.4 Basic properties

1.4.1 The action of SN

Let X “ pC
ˇ

ˇE; ηEq be an N -pointed compact Riemann surface with local coordinates.

Definition 1.16. Choose α P SN . Then α induces an automorphism

α : ModpVbN q
»
ÝÑ ModpVbN q

defined as follows. For each W P ModpVbN q

αpWq :“ W as vector spaces (1.32a)

The i-th vertex operator on αpWq is defined by

YαpWq,i :“ YW,α´1piq (1.32b)

The operator α acts as the identity on the Hom spaces of ModpVbN q.
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Remark 1.17. Note that for each α, β P SN we have

α ˝ β “ α ˝ β

since, for each W P ModpVbN q, we have

Yα˝βpWq,i “ YβpWq,α´1piq “ YW,β´1˝α´1piq “ YW,pα˝βq´1piq

Therefore, we have a group homomorphism

SN Ñ Aut
`

ModpVbN q
˘

α ÞÑ α

Proposition 1.18. Let ε : t1, 2, ¨ ¨ ¨ , Nu Ñ E be an ordering of E. Let W P ModpVbN q. Let
α P SN . Then the identity map

idW : W Ñ αpWq

descends to a linear isomorphism

TX,εpWq
»

ÝÝÑ TX,ε˝α´1pαpWqq

Therefore, its transpose is a linear isomorphism

T ˚
X,ε˝α´1pαpWqq

»
ÝÝÑ T ˚

X,εpWq

Proof. Choose σ P H0
`

C,VX b ωCp‚Eq
˘

and w P W. If we view w as an element of the
module W, then

σ ˚ε w “

N
ÿ

i“1

Resεpiq YW,ipUϱpηεpiqqσ, ηεpiqqw

If we view w as an element of the module αpWq, then

σ ˚ε˝α´1
w “

N
ÿ

i“1

Resε˝α´1piq YαpWq,ipUϱpηε˝α´1piqqσ, ηε˝α´1piqqw

“

N
ÿ

i“1

Resε˝α´1piq YW,α´1piqpUϱpηε˝α´1piqqσ, ηε˝α´1piqqw

The above two expressions are clearly equal. This proves our result.

Remark 1.19. A pictorial illustration of Prop. 1.18 is given by

T ˚

ˆ ˙

» T ˚

ˆ ˙

(1.33)

where the isomorphism is induced by id : W Ñ αpWq. On the LHS of (1.33), the number
for each x P E is ε´1pxq. On the RHS, the number for x is α ˝ ε´1pxq.
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1.4.2 Isomorphisms of pointed surfaces

Definition 1.20. Suppose we have two unordered N -pointed compact Riemann surfaces
with local coordinates

X “ pC
ˇ

ˇE; ηEq Y “ pD
ˇ

ˇF ; τF q

An isomorphism of NNN -pointed compact Riemann surfaces with local coordinates f :
X Ñ Y denotes a biholomorphism f : C Ñ D satisfying the following conditions:

• fpEq “ F .

• The pullpack of τF along f is ηE . More precisely, for each x P E, the relation

τfpxq ˝ f “ ηx

holds on a neighborhood Ux of x such that ηx is defined on Ux and τfpxq is defined
on fpUxq.

Proposition 1.21. Let X,Y be as in Def. 1.20, and let f : X Ñ Y be an isomorphism of N -
pointed compact Riemann surfaces with local coordinates. Choose an ordering ε : t1, ¨ ¨ ¨ , Nu Ñ

E. Let W P ModpVbN q. Then we have

TX,εpWq “ TY,f˝εpWq T ˚
X,εpWq “ T ˚

Y,f˝εpWq

In other words, the space of coinvariants (resp. space of conformal blocks) associated
to W and X via ε is identical to the one associated to W and Y via f ˝ ε. (Note that f ˝ ε is
an ordering of F .)

Proof. It is clear that

H0
`

C,VX b ωCp‚Eq
˘

¨ε W “ H0
`

D,VY b ωDp‚F q
˘

¨f˝ε W

Definition 1.22. Suppose that we are given two unordered pR,Nq-pointed compact Rie-
mann surfaces with local coordinates

F “ pE1; θ1
E1

ˇ

ˇC
ˇ

ˇE; θEq K “ pF 1;ϑ1
F 1

ˇ

ˇD
ˇ

ˇF ;ϑF q

If f : F Ñ G is an isomorphism of pR`Nq-pointed compact Riemann surfaces with local
coordinates satisfying fpEq “ F and fpE1q “ F 1, we call f an isomorphism of pR,NqpR,NqpR,Nq-
pointed compact Riemann surfaces with local coordinates.

Proposition 1.23. Let F,G be as in Def. 1.22, and let f : F Ñ G be an isomorphism of pR,Nq-
pointed compact Riemann surfaces with local coordinates. Choose orderings ε : t1, ¨ ¨ ¨ , Nu Ñ E
and ε1 : t1, ¨ ¨ ¨ , Ru Ñ E1. Let W P ModpVbN q. Let pnF,ε1,εpWq, qג be an pε1, εq-dual fusion
product of W along F. Then pnF,ε1,εpWq, qג is also an pf ˝ ε1, f ˝ εq-dual fusion product of W
along G.

Proof. This is clear by Prop. 1.21.
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1.4.3 Change of coordinates

Proposition 1.24. Let X “ pC|E; ηEq be an unordered N -pointed compact Riemann surface
with local coordinates. Choose an ordering ε : t1, . . . , Nu Ñ E. Let W P ModpVbN q. For each
1 ď i ď N , let αi P G, and choose an argument argα1

ip0q. Let rX “ pC|E; rηEq where

rηεpiq “ αi ˝ ηεpiq for all i

Then the (invertible) operator U1pα1q ˝ ¨ ¨ ¨ ˝ UN pαN q on W descends to a linear isomorphism

TX,εpWq
»

ÝÝÑ T
rX,ε

pWq

Therefore, its transpose is a linear isomorphism:

T ˚
rX,ε

pWq
»

ÝÝÑ T ˚
X,εpWq ϕ ÞÑ ϕ ˝ U1pα1q ˝ ¨ ¨ ¨ ˝ UN pαN q

Proof. This follows from the coordinate-free definition of conformal blocks. See [GZ23,
Sec. 2.1], [FBZ04, Sec. 6.5], or [Gui24, Thm. 3.2]. Note that in [GZ23], a diagonal operator
rLip0q is used instead of Lip0q to define (1.9). The operator rLip0q satisfies that Lip0q ´ rLip0q

commutes with the action of VbN . Therefore, the operator Uipαq defined in this paper
equals the composition of the corresponding operator in [GZ23] with an automorphism
of the VbN -module W. Thus, the results in [GZ23, Sec. 2.1] remain applicable in the
present setting.

Proposition 1.25. Let F “
`

E1; θ1
E1

ˇ

ˇC
ˇ

ˇE; θE
˘

be an unordered pR,Nq-pointed compact Riemann
surfaces with local coordinates. Choose orderings ε : t1, ¨ ¨ ¨ , Nu Ñ E and ε1 : t1, ¨ ¨ ¨ , Ru Ñ E1.
Let W P ModpVbN q. For each 1 ď i ď N and 1 ď j ď R, choose αi, βj P G with prescribed
argα1

ip0q and arg β1
jp0q, and let

rθεpiq “ αi ˝ θεpiq
rθ1
ε1pjq “ βj ˝ θ1

ε1pjq

Let rF “
`

E1; rθ1
E1

ˇ

ˇC
ˇ

ˇE; rθE
˘

. Let
`

n
rF,ε1,ε

pWq,rג
˘

be an pε1, εq-dual fusion product of W along rF.
Then

`

n
rF,ε1,ε

pWq, ג
˘

is an pε1, εq-dual fusion product of W along F, where

ג “ rג ˝ pU1pα1q ¨ ¨ ¨UN pαN q b U1pβ1q ¨ ¨ ¨URpβRqq : W b n
rF,ε1,ε

pWq Ñ C

Proof. This follows immediately from Prop. 1.24.

1.5 Standard 2-pointed spheres and the default fusion product pbNC,ωq

1.5.1 The 2-pointed sphere N and the default fusion product pbNC,ωq

Recall from Sec. 1.1 that ζ denotes the standard coordinate of C.

Definition 1.26. Throughout this paper, we let N denote the (unordered) 2-pointed sphere
with local coordinates:

N “
`

P1
ˇ

ˇt8, 0u; pηxqxPt8,0u

˘

where η8 “ 1{ζ and η0 “ ζ (1.34)

25



Then the automorphism group AutpNq » Z2 is generated by

ò : P1 Ñ P1 z ÞÑ 1{z

The default ordering of t8, 0ut8, 0ut8, 0u is defined to be

ϵ : t`,´u
»

ÝÝÑ t8, 0u ϵp`q “ 8 ϵp´q “ 0 (1.35)

Remark 1.27. Choose any W P ModpVb2q. By Prop. 1.21, we have T ˚
N,ϵpWq “ T ˚

N,ò˝ϵpWq.
In fact, both spaces consist of linear functionals ϕ : W Ñ C satisfying the relation

xϕ, Y 1
`pv, zqwy “ xϕ, Y´pv, zqwy for all v P V, w P W (1.36a)

in Crrz˘1ss. Equivalently, ϕ satisfies

xϕ, Y`pv, zqwy “ xϕ, Y 1
´pv, zqwy for all v P V, w P W (1.36b)

See [GZ25a, Rem. 2.1] for more explanations.

Definition 1.28. By viewing N “ (1.34) as an p2, 0q-pointed sphere with local coordinates

N “
`

t8, 0u; pηxqxPt8,0u

ˇ

ˇP1
˘

where η8 “ 1{ζ and η0 “ ζ (1.37)

we fix, throughout this article, an ϵ-dual fusion product pnN,ϵpCq,ωq of C along N, cf.
Rem. 1.12. We use the abbreviations

nNC :“ nN,ϵpCq bNC :“ bN,ϵpCq

and call pnNC,ωq the default dual fusion product of CCC along NNN. Accordingly,
pbNC,ωq—or simply bNC—is called the default fusion product of CCC along NNN.

Remark 1.29. Note that the canonical conformal block

ω P T ˚
N,ϵpnNCq “ T ˚

N,ò˝ϵpnNCq

is a linear functional

ω : nNC Ñ C

satisfying the same condition as ϕ in Rem. 1.27.

1.5.2 Standard 2-pointed spheres

Definition 1.30. A standard 2-pointed sphere is defined to be a 2-pointed compact Rie-
mann surface with local coordinates C that is isomorphic to N. Equivalently, it is defined
to be

C “ pC
ˇ

ˇtz, ¸u; ηz, η¸q (1.38)

where C is a compact Riemann surface biholomorphic to P1, and the local coordinates
ηz, η¸ are linear fractional transformations satisfying ηz ¨ η¸ “ 1.
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Remark 1.31. Let W P ModpVb2q. According to Rem. 1.27, the space of conformal blocks
associated to W and a standard 2-pointed sphere C is independent of the ordering of the
marked points of C. Therefore, we denote this space by T ˚

C pWqT ˚
C pWqT ˚
C pWq, whose elements are

precisely the linear functionals on W satisfying (1.36).

Proposition 1.32. Let C “ (1.38) be a standard 2-pointed sphere. Let ε : t`,´u Ñ tz, ¸u be any
ordering of tz, ¸u. Then pbNC,ωq is an ε-fusion product of C along C.

Proof. This is clear by Prop. 1.23.

The following two figures represent the fusion products of C along C with respect to
the two orderings of tz, ¸u.

and (1.39)

1.6 Composition of conformal blocks and the sewing-factorization theorem

Let K,N,R P N. In this section, we let

F “
`

F 1; θ1
F 1

ˇ

ˇC1

ˇ

ˇF ; θF
˘

G “
`

G1;µ1
G1

ˇ

ˇC2

ˇ

ˇG;µG
˘

be respectively pK,Nq-pointed and pN,Rq-pointed compact Riemann surfaces with local
coordinates, cf. Def. 1.9. Fix orderings

ε1 : t1, ¨ ¨ ¨ ,Ku
»

ÝÝÑ F 1 ε : t1, ¨ ¨ ¨ , Nu
»

ÝÝÑ F

Ç1 : t1, ¨ ¨ ¨ , Nu
»

ÝÝÑ G1 Ç : t1, ¨ ¨ ¨ , Ru
»

ÝÝÑ G

1.6.1 The sewing F#ε,Ç1

p‚ G and the composition F#ε,Ç1

G

For each x P F (resp. y1 P G1), choose a neighborhood Vx (resp. W 1
y1) such that θx (resp.

µ1
y1) is defined. Assume that Vx and W 1

y1 are open disks, i.e.

θxpVxq “ Drx µ1
y1pW 1

y1q “ Dρy1 where rx, ρy1 P p0,`8s (1.40)

The numbers rx, ρy1 are called sewing radii. Assume that Vx1 X Vx2 “ H if x1 ‰ x2, and
that W 1

y1
1

XW 1
y1
2

“ H if y1
1 ‰ y1

2.

Definition 1.33. Set

Dr‚ρ‚ “

N
ź

i“1

DrεpiqρÇ1piq
Dˆ
r‚ρ‚

“

N
ź

i“1

Dˆ
rεpiqρÇ1piq

Choose p‚ “ pp1, . . . , pN q P Dˆ
r‚ρ‚

. In other words, p‚ P CN satisfies

0 ă |pi| ă rεpiqρÇ1piq for each 1 ď i ď N (1.41)
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The sewing F#ε,Ç1

p‚ G of F and G via pε,Ç1q with sewing moduli p‚ is defined as follows.
(Note that if (1.41) is satisfied, we say that the sewing radii r‚, ρ‚ are admissible for the
sewing moduli p‚.)

For each 1 ď i ď N ,

Γi “

!

z P Vεpiq : |θεpiqpzq| ď
|pi|

ρÇ1piq

)

∆i “

!

z P W 1
Ç1piq : |µ1

Ç1piqpzq| ď
|pi|

rεpiq

)

are compact subsets of Vεpiq and W 1
Ç1piq respectively. We have a biholomorphism

Si : VεpiqzΓi
»

ÝÝÑ W 1
Ç1piqz∆i z ÞÑ pµ1

Ç1piqq
´1
´ pi
θεpiqpzq

¯

The compact Riemann surface C1#
ε,Ç1

p‚ C2 is defined by removing Γi and ∆i (for all 1 ď

i ď N ) and gluing VεpiqzΓi and W 1
Ç1piqz∆i via the biholomorphism Si. In other words, for

each z1 P VεpiqzΓi and z2 P W 1
Ç1piqz∆i,

z1 is identified with z2 ðñ θεpiqpz1q ¨ µ1
Ç1piqpz2q “ pi (1.42)

Note that after gluing, F andG1 are removed, but F 1, G and their local coordinates θ1
F 1 , µG

remain. We let

F#ε,Ç1

p‚
G “

`

F 1; θ1
F 1

ˇ

ˇC1#
ε,Ç1

p‚
C2

ˇ

ˇG;µG
˘

(1.43)

Then F#ε,Ç1

p‚ G satisfies the definition of an pK,Rq-pointed compact Riemann surface with
local coordinates, except that (1.23) in Def. 1.9 is not necessarily satisfied—that is, it is not
necessarily true that

each component of C1#
ε,Ç1

p‚
C2 intersects F 1 YG (1.44)

The superscript ε,Ç1 in #ε,Ç1

and #ε,Ç1

p‚ will be omitted when the context is clear.
In the case where p1 “ ¨ ¨ ¨ “ pN “ 1 (note that this requires rεpiqρÇ1piq ą 1 for each i,

due to (1.41)), we suppress the subscript p‚, that is, we write

F#ε,Ç1

G :“ F#ε,Ç1

p1,...,1q
G

We call F#ε,Ç1

G the composition of F and G via pε,Ç1q.

1.6.2 Sewing and composition of conformal blocks

Assume that condition (1.44) holds, namely, each component of F#ε,Ç1

p‚ G contains at
least one incoming or outgoing marked point. (Note that this condition is independent of
the choice of p‚.)

Choose W P ModpVbKq, M P ModpVbN q, X P ModpVbRq. Choose

ϕ P T ˚
F,ε1˚εpW

1 b Mq ψ P T ˚
G,Ç1˚ÇpM1 b Xq (1.45)
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Since ϕ and ψ are linear functionals W1 b M Ñ C and M1 b X Ñ C, respectively, they can
be viewed as linear maps

ϕ7 : M Ñ W ψ7 : X Ñ M (1.46)

Choose p‚ P Dˆ
r‚ρ‚

with fixed arguments arg p1, . . . , arg pR.
In the following, we let

p
L‚p0q
‚ :“ p

L1p0q

1 ¨ ¨ ¨ p
LN p0q

N (1.47)

Theorem 1.34. The linear functional

ϕ ˝p‚ ψ : W1 b X Ñ C

w1 b w ÞÑ
ÿ

λ‚PCN

@

w1,ϕ7 ˝ p
L‚p0q
‚ ˝ P pλ‚q ˝ψ7pwq

D

converges absolutely for each w1 P W1 and w P X. Moreover, ϕ ˝p‚ ψ belongs to
T ˚

F#ε,Ç1

p‚ G,ε1,Ç
pW1,Xq, that is, it is a conformal block associated to F#ε,Ç1

p‚ G and W1,X via the

orderings ε1,Ç.

Proof. This is due to Thm. 4.9 and Rem. 4.10 of [GZ24].

Definition 1.35. We call ϕ˝p‚ ψ the sewing of ϕ and ψwith moduli p‚. Note that ϕ˝p‚ ψ

can also be defined by the contraction

xϕ ˝p‚ ψ, w
1 b wy “

@

ϕ, w1 b p
L‚p0q
‚ ´

D

¨
@

ψ,´ b w
D

:“
ÿ

λ‚PCN

ÿ

αPAλ‚

xψ, w1 b p
L‚p0q
‚ eλ‚

pαqy ¨ xψ, qeλ‚
pαq b wy

(1.48)

where peλ‚
pαqqαPAλ‚

is a (finite) basis of Mrλ‚s with dual basis pqeλ‚
pαqqαPAλ‚

. In the case
that pi “ 1 and arg pi “ 0 for each i, we write

ϕ ˝ψ :“ ϕ ˝1,...,1 ψ

and call ϕ ˝ψ the composition of ϕ and ψ.

Remark 1.36. Suppose that pi “ 1 and arg pi “ 0 for each i. The terminology of compos-
ing conformal blocks is due to the obvious fact that the linear map

pϕ ˝ψq7 : X Ñ W (1.49a)

determined by ϕ ˝ψ equals the composition of ϕ7 and ψ7, that is, for each w P X,

pϕ ˝ψq7pwq “ ϕ# ˝ψ#pwq :“
ÿ

λ‚PCN

ϕ7 ˝ P pλ‚q ˝ψ7pwq (1.49b)

where the RHS converges absolutely when evaluated with each element of W1.
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Remark 1.37. Here, we give a pictorial illustration of composing conformal blocks: Let

ϕ P T ˚

˜ ¸

In this figure, F has two components and 7 marked points. The four green points on the
left, listed from top to bottom as ε1p2q, ε1p1q, ε1p4q, ε1p3q, are ordered by ε1. The three red
points on the right, listed from top to bottom as εp3q, εp2q, εp1q, are ordered by ε. Let

ψ P T ˚

ˆ ˙

In this figure, G is connected and has 6 marked points. The three red points on the left,
listed from top to bottom as Ç1p2q,Ç1p3q,Ç1p1q, are ordered by Ç1. The three blue points on
the right, listed from top to bottom as Çp1q,Çp3q,Çp2q, are ordered by Ç.

Let χ be a conformal block associated to F#ε,Ç1

G and W1,X via ε1,Ç, that is, χ P

T ˚

F#ε,Ç1
G,ε1,Ç

pW1,Xq. Then the relation χ “ ϕ ˝ ψ is represented by the graphical equa-
tion

“

The pointed compact Riemann surface with local coordinates on the LHS of the above
equation represents the composition F#ε,Ç1

G of F,G via ε,Ç1.

1.6.3 The sewing-factorization theorem

We continue to assume that (1.44) holds, that is, each component of F#ε,Ç1

p‚ G con-
tains at least one incoming or outgoing marked point. Choose W P ModpVbKq and
X P ModpVbRq. Choose p‚ P Dˆ

r‚ρ‚
with fixed arguments arg p1, . . . , arg pR.

Theorem 1.38. Let pbG,Ç1,ÇpXq,ℸq be an pÇ1,Çq-fusion product of X along G. Then the following
map is a linear isomorphism

T ˚
F,ε1˚ε

`

W1 b bG,Ç1,ÇpXq
˘ »

ÝÝÑ T ˚

F#ε,Ç1

p‚ G,ε1˚Ç
pW1 b Xq

ϕ ÞÑ ϕ ˝p‚ ℸ
(1.50)

called the sewing-factorization isomorphism.
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Note that ℸ P T ˚
G,Ç1˚ÇpnG,Ç1,ÇpXq b Xq is a linear functional nG,Ç1,ÇpXq b X Ñ C.

Proof. In the special case that each component of G intersects the set G of incoming
marked points, the theorem is due to [GZ25a, Thm. 3.5]. The general case follows from
the special case and the propagation of conformal blocks and fusion products, as we ex-
plain below.

Choose distinct points z1, . . . , zL of G, disjoint from G1 Y G, such that the propaga-
tion rG of G at z1, . . . , zL (with arbitrarily chosen local coordinates at z1, . . . , zL) satisfies
the condition that each component intersects G Y tz1, . . . , zLu. Let ιL be the ordering of
tz1, . . . , zLu defined by ιLpiq “ zi. Let

rℸ P T ˚
rG,Ç1˚Ç˚ιL

`

nG,Ç1,Ç pXq b X b VbL
˘

be the propagation of ℸ at z1, . . . , zL, cf. Def. 1.15. Then, we have a commutative diagram

T ˚
F,ε1˚ε

`

W1 b bG,Ç1,ÇpXq
˘

T ˚

F#ε,Ç1

p‚
rG,ε1˚Ç˚ιL

pW1 b X b VbLq

T ˚
F,ε1˚ε

`

W1 b bG,Ç1,ÇpXq
˘

T ˚

F#ε,Ç1

p‚ G,ε1˚Ç
pW1 b Xq

ϕÞÑϕ˝p‚
rℸ

“ χ ÞÑχp´b1bLq

ϕÞÑϕ˝p‚ℸ

where the vertical arrow on the right is an isomorphism by (1.28).
By Thm. 1.14,

`

bG,Ç1,Ç pXq, rℸ
˘

is an pÇ1,Ç ˚ ιLq-fusion product of X b VbL along
rG. Therefore, by [GZ25a, Thm. 3.5], the top vertical arrow in the above diagram is an
isomorphism. It follows that the bottom arrow is also an isomorphism.

Remark 1.39. Let pbG,Ç1,ÇpXq,ℸq be an pÇ1,Çq-fusion product of X along G. Then the
canonical conformal block ℸ : nG,Ç1,ÇpXq b X Ñ C is partially injective, meaning that
if each component of G intersects the set G of incoming marked points, then for each
ξ P nG,Ç1,ÇpXq, we have

ℸpξ b wq “ 0 for all w P W ùñ ξ “ 0 (1.51)

See [GZ24, Rem. 3.17] for the explanation.
Since this partial injectivity is used in the proof that the sewing-factorization map

(1.50) is injective (see [GZ25a, Subsec. 2.5.2]), we also refer to the injectivity of the map
ϕ ÞÑ ϕ˝p‚ℸ as the partial injectivity of the canonical conformal block ℸ. (Note, however,
that the injectivity of this map does not require the assumption that each component of G
intersects the set G of incoming marked points.)

Remark 1.40. In the remainder of this article, we restrict to the case where pi “ 1 and
arg pi “ 0 for each i. In other words, we consider only the composition of conformal
blocks, rather than the more general sewing. Then, using the graphical calculus for the
composition of conformal blocks as described in Rem. 1.37, we reformulate the sewing-
factorization Thm. 1.38 as follows:
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Consider the fusion product

(1.52)

Then for each

χ P T ˚

˜ ¸

there exists a unique

ϕ P T ˚

˜ ¸

such that

χ “

Remark 1.41. In this paper, we will apply Rem. 1.40 mainly to the case that (1.52) is the
fusion product pbNC,ωq of C along a standard p2, 0q-sphere described in Prop. 1.32:

Then the sewing-factorization Thm. 1.38 asserts that for each

χ P T ˚

˜ ¸

there exists a unique

ϕ P T ˚

˜ ¸
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such that

χ “

2 bNC as an AUF algebra with involution Θ

Recall Def. 1.28 for the default fusion product pbNC,ωq. In this chapter, we prove
that bNC has a natural structure of associative algebra, which is almost unital and finite
dimensional (AUF) in the sense of [GZ25b]—that is, there is a family of mutually orthog-
onal idempotents peiqiPI of bNC such that bNC “

ř

i,j eipbNCqej where each summand
is finite-dimensional. (Note that this sum must be a direct sum.) We will also explain why
bNC is the end

ş

MPModpVq
M b M1.

In this chapter, all 2-pointed spheres in the pictures are assumed to be standard (cf.
Def. 1.30). Let N P Z`.

2.1 The actions Φi,` and Φi,´ of bNC on W P ModpVbNq

Let W,M P ModpVbN q. In this section, we fix 1 ď i ď N and consider the spaces of
conformal blocks

T ˚

˜ ¸

(2.1)

T ˚

˜ ¸

“ T ˚

˜ ¸

(2.2)

T ˚

˜ ¸

“ T ˚

˜ ¸

(2.3)

Let us give explicit algebraic descriptions of these conformal blocks.
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Remark 2.1. Let χ : W b M1 Ñ C be a linear map. Then χ P (2.1) if and only if for each
1 ď j ď N, v P V, w P W and m1 P M1, the following relation holds in Crrz˘1ss:

@

χ, Yjpv, zqw bm1
D

“
@

χ, w b Y 1
j pv, zqm1

D

(2.4)

We now show that each χ P (2.1), when viewed as a linear map W Ñ M, has range in
M. Recall (1.5) for the meaning of Pjpλq.

Lemma 2.2. Let K P Z`. Choose X P ModpVbKq and a finite subset S Ă X. Then for each
λ P C, there exists a polynomial hpxq P Crxs such that Pjpλq¸ “ hpLjp0qq¸ for all ¸ P S and
1 ď j ď K.

Proof. It is well-known that if T is a linear operator on a finite-dimensional C-vector space
W , then W is the direct sum of generalized eigenspaces of T , and the projection operator
of W onto each generalized eigenspace is a polynomial of T .

Now, choose µ‚ P CK such that ℜpµjq ě ℜpλq for all j, and that S Ă Xrďµ‚s. Let W
be the direct sum of K copies of Xrďµ‚s, and let T “ diagKj“1

`

Ljp0q
ˇ

ˇ

Xrďµ‚s

˘

. Then Q “

diagKj“1

`

Pjpλq
ˇ

ˇ

Xrďµ‚s

˘

is the projection of W onto the generalized eigenspace of T with
eigenvalue λ. Therefore, by the first paragraph, there exists a polynomial h such that
Q “ hpT q.

Proposition 2.3. Elements in (2.1) are precisely those elements of the form

T 5 : W b M1 Ñ C w bm1 ÞÑ
@

T pwq,m1
D

(2.5)

where T P HomVbN pW,Mq.

Proof. Note that a linear map T : W Ñ M belongs to HomVbN pW,Mq iff for each 1 ď j ď

N, v P V, w P W,m1 P M1, the following relation holds in Wrrz˘1ss:
@

T pYjpv, zqwq,m1
D

“
@

T pwq, Y 1
j pv, zqm1

D

(2.6)

Thus, (2.5) belongs to (2.1). Conversely, choose an element χ P (2.1). Set

χ7 : W Ñ pM1q˚ “ M w ÞÑ χpw b ´q

By (2.4),

χ
`

Ljp0qw bm1
˘

“ χ
`

w b Ljp0qm1
˘

This, together with Lem. 2.2 (applied to W ‘ M1), implies for each j and λ P C that
@

χ7pPjpλqwq,m1
D

“ χ
`

Pjpλqw bm1
˘

“ χ
`

w b Pjpλqm1
˘

“
@

χ7pwq, Pjpλqm1
D

Thus, χ7pPjpλqwq “ Pjpλqχ7pwq. Therefore, χ7 has range in M. Let T “ χ7. By (2.4) and
(2.6), T belongs to HomVbN pW,Mq. Clearly T 5 “ χ. This proves that χ is of the form
(2.5).

Next, we describe conformal blocks in (2.2) and (2.3).
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Remark 2.4. Let χ : bNC b W b M1 Ñ C (resp. δ : W b bNC b M1 Ñ C) be a linear map.
Then χ P (2.2) (resp. δ P (2.3)) iff for each v P V, ψ P bNC, w P W,m1 P M1, j ‰ i, the
following relations hold in Crrz˘1ss:

χ
`

ψ b Yjpv, zqw bm1
˘

“ χ
`

ψ b w b Y 1
j pv, zqm1

˘

(2.7a)

χ
`

ψ b Yipv, zqw bm1
˘

“ χ
`

Y 1
´pv, zqψ b w bm1

˘

(2.7b)
χ
`

Y`pv, zqψ b w bm1
˘

“ χ
`

ψ b w b Y 1
i pv, zqm1

˘

(2.7c)

resp.

δ
`

Yjpv, zqw b ψ bm1
˘

“ δ
`

w b ψ b Y 1
j pv, zqm1

˘

(2.8a)

δ
`

Yipv, zqw b ψ bm1
˘

“ δ
`

w b Y 1
`pv, zqψ bm1

˘

(2.8b)
δ
`

w b Y´pv, zqψ bm1
˘

“ δ
`

w b ψ b Y 1
i pv, zqm1

˘

(2.8c)

Proposition 2.5. Elements in (2.2) (resp. (2.3)) are precisely those of the form

T 5
` : bNC b W b M1 Ñ C ψ b w b w1 ÞÑ xT`pψ b wq, w1y

resp.

T 5
´ : W b bNC b M1 Ñ C w b ψ b w1 ÞÑ xT´pw b ψq, w1y

where

T` : bNC b W Ñ M resp. T´ : W b bNC Ñ M

is a linear map such that for all w P W, v P V, ψ P bNC and j ‰ i, the following relations hold
in Mrrz˘1ss:

T`

`

ψ b Yjpv, zqw
˘

“ Yjpv, zqT`

`

ψ b w
˘

(2.9a)
T`

`

ψ b Yipv, zqw
˘

“ T`

`

Y 1
´pv, zqψ b w

˘

(2.9b)
T`

`

Y`pv, zqψ b w
˘

“ Yi
`

v, zqT`pψ b w
˘

(2.9c)

resp.

T´

`

Yjpv, zqw b ψ
˘

“ Yjpv, zqT´

`

w b ψ
˘

(2.10a)
T´

`

Yipv, zqw b ψ
˘

“ T´

`

w b Y 1
`pv, zqψ

˘

(2.10b)
T´

`

w b Y´pv, zqψ
˘

“ Yipv, zqT´

`

w b ψ
˘

(2.10c)

Proof. It is clear that (2.7) and (2.8) are equivalent to (2.9) and (2.10), respectively. There-
fore, the only remaining step is to prove the following: if χ and δ satisfy the descriptions
in Rem. 2.4, then, when viewing χ as a linear map T` “ χ7 : bNCbW Ñ M, and viewing
δ as a linear map T´ “ δ7 : W b bNC Ñ M, the ranges of both maps lie in M.

By (2.7) and Lem. 2.2 (applied to bNC ‘ W ‘ M1), we have

χ
`

ψ b Pjpλqw b w1
˘

“ χ
`

ψ b w b Pjpλqw1
˘

χ
`

ψ b Pipλqw b w1
˘

“ χ
`

P´pλqψ b w b w1
˘
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χ
`

P`pλqψ b w b w1
˘

“ χ
`

ψ b w b Pipλqw1
˘

That is, for each ψ P bNC, w P W, λ P C and j ‰ i, the map T` “ χ7 satisfies

T`

`

ψ b Pjpλqw
˘

“ PjpλqT`

`

ψ b w
˘

(2.11a)
T`

`

ψ b Pipλqw
˘

“ T`

`

P´pλqψ b w
˘

(2.11b)
T`

`

P`pλqψ b w
˘

“ PipλqT`

`

ψ b w
˘

(2.11c)

Similarly, by (2.8) and Lem. 2.2, the map T´ “ δ7 satisfies

T´

`

Pjpλqw b ψ
˘

“ PjpλqT´

`

w b ψ
˘

(2.12a)
T´

`

Pipλqw b ψ
˘

“ T´

`

w b P`pλqψ
˘

(2.12b)
T´

`

w b P´pλqψ
˘

“ PipλqT´

`

w b ψ
˘

(2.12c)

This proves that T˘ have ranges in M.

Convention 2.6. In the pictures of conformal blocks, T˘ denote the conformal blocks
T 5

˘; equivalently, χ7 and δ7 denote the conformal blocks χ and δ, respectively. Similarly,
T P HomVbN pW,Mq denotes the conformal block T 5 : WbM1 Ñ C in (2.1) sending wbm1

to xTw,m1y.

We now focus on the case that M “ W. Recall that 1 ď i ď N is fixed.

Definition 2.7. By Rem. 1.41, there exist unique

Φ5
i,` P T ˚

˜ ¸

Φ5
i,´ P T ˚

˜ ¸

(2.13)

such that when viewed as linear maps

Φi,` : bNC b W Ñ W Φi,´ : W b bNC Ñ W (2.14)

(cf. Prop. 2.5), for each w P W, w1 P W1 we have

ωp´q ¨
@

Φi,`p´ b wq, w1
D

“
@

w1, w
D

“
@

Φi,´pw b ´q, w1
D

¨ωp´q (2.15a)

which is abbreviated to

ωp´q ¨ Φi,`p´ b wq “ w “ Φi,´pw b ´q ¨ωp´q (2.15b)
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for each w P W. Graphically,

“

“

(2.16)

Note that the sewing radii can be chosen to be admissible when all the sewing moduli are
set to 1 (cf. Subsec. 1.6.1 for terminology). Therefore, the contractions in (2.15) converge
absolutely (by Thm. 1.34).

2.2 The canonical involution Θ of bNC

We continue to fix 1 ď i ď N . In this section, we relate Φi,` and Φi,´.

Theorem 2.8. The space of conformal blocks

T ˚

˜ ¸

“ T ˚

˜ ¸

(2.17)

consists of linear operators T P EndpbNCq satisfying

TY`pvqn “ Y´pvqnT TY´pvqn “ Y`pvqnT for all v P V, n P Z (2.18)

Moreover, there exists a unique Θ P (2.17) whose transpose Θt P EndpnNCq satisfies

ω “ ω ˝ Θt (2.19)

In addition, we have Θ2 “ idbNC, in particular, Θ is bijective. For each W P ModpVbN q and
ψ P bNC, we have

Φi,`pψ b wq “ Φi,´pw b Θψq (2.20)

The map Θ is called the canonical involution of bNC.
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Proof. Let α : t`,´u Ñ t`,´u send ˘ to ¯. Recall Def. 1.16 for the meaning of αpbNCq.
Then, by Prop. 1.18, we have

T ˚

˜ ¸

“ T ˚

˜ ¸

Prop. 2.3
ùùùùùùù HomVb2pbNC, αpbNCqq (2.21)

The latter hom space clearly consists of T P EndpbNCq satisfying (2.18).
By Prop. 1.18, we have

T ˚

˜ ¸

“ T ˚

˜ ¸

(2.22)

Therefore, by Prop. 1.32, for each ϕ belonging to the RHS above, there exists a unique
T P HomVb2pαpnNCq,nNCq satisfying ϕ “ ω ˝ T . The existence and uniqueness of Θ
satisfying (2.18) and (2.19) follow by letting ϕ “ ω and Θ “ T t. Thus ω “ ω ˝ pΘtq2.
Since pΘtq2 P EndVb2pnNCq, by the universal property for dual fusion products, we have
pΘtq2 “ id, and hence Θ2 “ id.

By (2.18) and (2.19), the map

bNC b W Ñ W ψ b w ÞÑ Φi,´pw b Θψq

satisfies the definition of Φi,` in Def. 2.7. This proves (2.20).

2.3 The left and right actions Φ “ Φ`,` and Ψ “ Φ´,´ of bNC on W P ModpVb2q

In this section, we assume N “ 2. Choose W P ModpVb2q.

Definition 2.9. Let Φ “ Φ1,` ” Φ`,` and Ψ “ Φ2,´ ” Φ´,´, that is,

Φ “ Φ`,` : bNC b W Ñ W Ψ “ Φ´,´ : W b bNC Ñ W (2.23)

For each ψ P bNC and w P W, write

ψ ˛L wψ ˛L wψ ˛L w :“ Φpψ b wq w ˛R ψw ˛R ψw ˛R ψ :“ Ψpw b ψq (2.24)

The figures representing the conformal blocks Φ,Ψ are

(2.25)
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By Prop. 2.5, one can give an explicit and algebraic characterization of Φ and Ψ being
conformal blocks of the corresponding types. Specifically, for each v P V, ψ P bNC, w P

W, the following relations hold in Wrrz˘1ss:

Φpψ b Y´pv, zqwq “ Y´pv, zqΦpψ b wq

Φpψ b Y`pv, zqwq “ ΦpY 1
´pv, zqψ b wq

ΦpY`pv, zqψ b wq “ Y`pv, zqΦpψ b wq

resp.

ΨpY`pv, zqw b ψq “ Y`pv, zqΨpw b ψq

ΨpY´pv, zqw b ψq “ Ψpw b Y 1
`pv, zqψq

Ψpw b Y´pv, zqψq “ Y´pv, zqΨpw b ψq

By Def. 2.7, the conformal blocks Φ and Ψ are determined by the fact that

ωp´q ¨ Φp´ b wq “ w “ Ψpw b ´q ¨ωp´q (2.26)

holds for each w P W. The picture for (2.26) is

“ “ (2.27)

Proposition 2.10. For each ψ1, ψ2 P bNC and w P W, we have the associative law

pψ1 ˛L wq ˛R ψ2 “ ψ1 ˛L pw ˛R ψ2q

Therefore, both sides can be denoted by

ψ1 ˛ w ˛ ψ2

Proof. We need to prove

Ψ
`

Φpψ1 b wq b ψ2

˘

“ Φ
`

ψ1 b Ψpw b ψ2q
˘

(2.28)

for all ψ1, ψ2 P bNC and w P W. Set

A : bNC b W b bNC Ñ W ψ1 b w b ψ2 ÞÑ Ψ
`

Φpψ1 b wq b ψ2

˘

B : bNC b W b bNC Ñ W ψ1 b w b ψ2 ÞÑ Φ
`

ψ1 b Ψpw b ψ2q
˘

In other words, A and B are defined by the contractions

Apψ1 b w b ψ2q “
@

Φpψ1 b wq,´
D

¨ Ψp´ b ψ2q (2.29a)
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“

“

Figure 2.1 The conformal blocks A and B.

Bpψ1 b w b ψ2q “ Φpψ1 b ´q ¨
@

´,Ψpw b ψ2q
D

(2.29b)

where the notation is similar to that in (2.15b). Thus, A,B are obtained by composing
conformal blocks, and are therefore themselves conformal blocks; see Fig. 2.1.

For each w P W,

ωp´qAp´ b w b ´qωp´q
(2.29)

ùùùùù ωp´q
@

Φp´ b wq,´
D

¨ Ψp´ b ´qωp´q

(2.26)
ùùùùù

@

w,´
D

Ψp´ b ´qωp´q
(2.26)

ùùùùù
@

w,´
D

¨ idWp´q “ w (2.30)

The picture for (2.30) is Fig. 2.2. From this picture, it is evident that the sewing radii can
be chosen to be admissible when all sewing moduli are set to 1. Therefore, by Thm. 1.34,
the contractions involved in each term of (2.30) are simultaneously converging absolutely.
In particular, by Fubini’s theorem for absolutely integrable functions, the order in which
the contractions are performed does not affect the resulting values.2

By a similar argument, for each w P W we have

ωp´qBp´ b w b ´qωp´q “ w

Applying twice the partial injectivity of the canonical conformal block ω (cf. Rem. 1.39),
we conclude that A “ B. This proves (2.28).

2This reasoning for the commutativity of contractions will appear repeatedly in the remainder of the
article. We will not refer to it explicitly each time.
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(2.27)
ùùùùù

(2.27)
ùùùùù “

Figure 2.2 The pictorial illustration of (2.30).

2.4 bNC as an associative algebra over C

In this section, we choose W “ bNC P ModpVb2q. Then (2.25) becomes

(2.31)

Following (2.24), we have

ψ1 ˛L ψ2 :“ Φpψ1 b ψ2q, ψ1 ˛R ψ2 :“ Ψpψ1 b ψ2q. (2.32)

for each ψ1, ψ2 P bNC.

Proposition 2.11. For each ψ1, ψ2 P bNC, we have ψ1 ˛L ψ2 “ ψ1 ˛R ψ2. Therefore, we denote
both ˛L and ˛R by ˛.

Proof. We compute for each ψ1 P nNC that

@

ψ1,ωp´qΦp´ b ´q ¨ωp´q
D (2.26)

ùùùùù
@

ψ1, idbNCp´q ¨ωp´q
D

“ ωpψ1q (2.33)
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The picture of (2.33) is

(2.27)
ùùùùù “ (2.34)

In the pictures, we do not distinguish betweenω andω7. By a similar argument,

@

ψ1,ωp´qΨp´ b ´q ¨ωp´q
D

“ ωpψ1q

Therefore, applying twice the partial injectivity ofω (Rem. 1.39), we conclude Φ “ Ψ.

Corollary 2.12. The complex vector space bNC, together with the operation ˛, defines a (not
necessarily unital) associative C-algebra pbNC, ˛q.

Proof. By Prop. 2.10 and 2.11, ˛ satisfies the associativity. This fact, together with the
linearity of Φ and Ψ, proves that pbNC, ˛q is an associative C-algebra.

2.5 The bNC-module structures on W P ModpVbNq

Fix W P ModpVbN q and 1 ď i ď N .

Theorem 2.13. The linear map Φi,` : bNC b W Ñ W defines a left bNC-module structure on
W, and the linear map Φi,´ : W b bNC Ñ W defines a right bNC-module structure on W. In
other words, for each ψ1, ψ2 P bNC and w P W, we have

Φi,`
`

pψ1 ˛ ψ2q b w
˘

“ Φi,`
`

ψ1 b Φi,`pψ2 b wq
˘

(2.35)
Φi,´

`

w b pψ2 ˛ ψ1q
˘

“ Φi,´
`

Φi,´pw b ψ2q b ψ1

˘

(2.36)

Proof. We only prove (2.35), as (2.36) can be proved in a similar way. We draw (2.1) as

T ˚

˜ ¸

abbreviate
ùùùùùùùù T ˚

˜ ¸

(2.37)

That is, we rearrange of order of the spheres in (2.1) from 1, 2, . . . , N to i, 1, . . . , i ´ 1, i `

1, ¨ ¨ ¨ , N , and the labels 1, . . . , i´ 1, i` 1, . . . , N on the respective arrows are abbreviated
to the symbol ?. Of course, in this proof we set M “ W. Set

A : bNC b bNC b W Ñ W ψ1 b ψ2 b w ÞÑ Φi,`pΦ`,`pψ1 b ψ2q b wq

B : bNC b bNC b W Ñ W ψ1 b ψ2 b w ÞÑ Φi,`pψ1 b Φi,`pψ2 b wqq

(Recall that Φ`,`pψ1 b ψ2q “ ψ1 ˛ ψ2.) Since A,B are defined by composing conformal
blocks, they are themselves conformal blocks. See Fig. 2.3.
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“

“

Figure 2.3 The conformal blocks A and B.

For each w P W, we compute that

ωp´qAp´ b ´ b wqωp´q “ ωp´qΦi,`pΦ`,`p´ b ´q b wqωp´q

“ωp´qxΦ`,`p´ b ´q,´yωp´qΦi,`p´ b wq
(2.33)

ùùùùù ωp´qΦi,`p´ b wq
(2.15)

ùùùùù w (2.38)

See Fig. 2.4 for the picture. We also compute that

ωp´qBp´ b ´ b wqωp´q “ ωp´qΦi,`p´ b Φi,`p´ b wqqωp´q

(2.15)
ùùùùùωp´qΦi,`p´ b wq

(2.15)
ùùùùù w (2.39)

See Fig. 2.5. The figures show that the sewing radii can be chosen to be admissible when
all the sewing moduli are set to 1. Therefore, by Thm. 1.34, the contractions in (2.38) and
(2.39) converge absolutely.
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(2.34)
ùùùùù

(2.16)
ùùùùù

Figure 2.4 The pictorial illustration of (2.38).

(2.16)
ùùùùù

(2.16)
ùùùùù “

Figure 2.5 The pictorial illustration of (2.39).

Applying twice the partial injectivity of the canonical conformal block ω (cf. Rem.
1.39), we conclude A “ B.
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Corollary 2.14. Let W P ModpVb2q. Then W is a bNC-bimodule whose left and right module
structures are defined by

bNC ˆ W Ñ W pψ,wq ÞÑ ψ ˛L w

W ˆ bNC Ñ W pw,ψq ÞÑ w ˛R ψ

Proof. This follows immediately from Prop. 2.10 and Thm. 2.13.

2.6 The AUF algebra bNC with involution Θ

Fix 1 ď i ď N . In this section, we describe the actions of bNC on W P ModpVbN q in
terms of vertex operators; see Thm. 2.20. This description will allow us to relate linear
operators that intertwine the action of V with those that intertwine the action of bNC. It
will also be useful in showing that the associative algebra bNC is AUF.

Recall that ζ is the standard coordinate of C.

Definition 2.15. For each z P Cˆ “ Czt0u, let Qz be the propagation of the p2, 0q-pointed
sphere N “ (1.37) at z with local coordinate ζ ´ z, cf. Def. 1.15. Namely, Qz is the
unordered p2, 1q-pointed sphere with local coordinates

Qz “
`

t8, 0u; 1{ζ, ζ
ˇ

ˇP1
ˇ

ˇz; ζ ´ z
˘

Choose orderings

ϵ : t`,´u
»

ÝÝÑ t8, 0u ϵp`q “ 8 ϵp´q “ 0

ιz : t1u Ñ tzu 1 ÞÑ z

where ϵ is the default ordering of t8, 0u (cf. Def. 1.26). By Def. 1.15 and Thm. 1.14,
`

bN C,ℵz
˘

is an pϵ, ιzq-fusion product of V along Qz , where ℵz is the unique element in

T ˚
Qz ,ϵ˚ιzpnNC b Vq “ T ˚

˜ ¸

satisfying

ℵz : nNC b V Ñ C ℵzp´ b 1q “ ω (2.40)

Define

ℵ7
z : V Ñ bNC “ pnNCq˚ v ÞÑ ℵzp´ b vq (2.41)

where ℵzp´ b vq denotes the linear map nNC Ñ C sending each ψ1 P nNC to ℵzpψ1 b vq.
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Convention 2.16. As in Convention 2.6, we will not distinguish between ℵz and ℵ7
z in the

graphical representations of conformal blocks. Moreover, only in this section, the local
coordinates at 8 and 0 are always assumed to be 1{ζ and ζ, respectively.

Remark 2.17. The map ò : t P P1 ÞÑ 1{t P P1 implements an isomorphism between Qz

and

Q1
1{z “

`

t8, 0u; 1{ζ, ζ
ˇ

ˇP1
ˇ

ˇ1{z; 1{ζ ´ z
˘

Therefore, by Prop. 1.23,
`

bN C,ℵz
˘

is an pò ˝ ϵ, ι1{zq-fusion product of V along Q1
1{z , where ℵz belongs to

T ˚

˜ ¸

Lemma 2.18. Fix z P Cˆ. Then for each λ, µ P C, the linear map

P`pď λq ˝ P´pď µq ˝ ℵ7
z : V Ñ bNCrďpλ,µqs “

`

nN Crďpλ,µqs

˘˚ (2.42)

is surjective.

Note that P`pď λq commutes with P´pď µq, and P`pλq commutes with P´pµq. (Recall
(1.6) for the meanings of these projection operators.)

Proof. Note that nNCrďpλ,µqs is finite dimensional. If (2.42) is not surjective, then there
exists 0 ‰ ϕ P nNCrďpλ,µqs such that for all v P V ,

@

P`pď λqP´pď µqℵ7
zpvq,ϕ

D

“ 0,

which is equivalent to ℵzpv bϕq “ 0. This contradicts the partial injectivity of the canon-
ical conformal block ℵz (cf. Rem. 1.39). Thus (2.42) must be surjective.

Remark 2.19. Fix z P Cˆ. Then by Lem. 2.18, each ψ P bNC can be written as a (finite)
linear combination of elements of the form P`pλqP´pµqℵ7

zpvq where λ, µ P C and v P V.

Theorem 2.20. Let z P Cˆ and W P ModpVbN q. Then for each λ, µ P C, w P W and v P V, we
have

Φi,`
`

P`pλqP´pµqℵ7
zpvq b w

˘

“ PipλqYipv, zqPipµqw (2.43a)

Φi,´
`

w b P`pλqP´pµqℵ7
zpvq

˘

“ PipµqY 1
i pv, zqPipλqw (2.43b)

Clearly, these identities still hold if λ and µ are replaced with ď λ and ď µ.
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Proof. Step 1. We claim that for each w P W, w1 P W1, v P V we have

@

w1,Φi,`p´ b wq
D

ℵzp´ b vq “
@

w1, Yipv, zqw
D

(2.44a)
@

w1,Φi,´pw b ´q
D

ℵzp´ b vq “
@

w1, Y 1
i pv, zqw

D

(2.44b)

We first prove (2.44a). Note that (2.44a) is equivalent to Fig. 2.6; in particular, both sides of
(2.44a) define conformal blocks associated to geometric data on the respective side of Fig.
2.6. When v is the vacuum vector 1, the right hand side of (2.44a) becomes xw1, wy (i.e.,
the conformal block idW); by (2.15) (whose pictorial illustration is (2.16)) and (2.40), the
left hand side also becomes xw1, wy. Therefore, by the propagation of conformal blocks
(cf. [GZ23, Cor. 2.44]), (2.44a) holds true.

“

Figure 2.6 The figure for (2.44a)

Similarly, (2.44b) is equivalent to Fig. 2.7. Here, we need to check that the RHS of
(2.44b) defines a conformal block associated to the geometric data given on the RHS of
Fig. 2.7. Once this is proved, by applying again the propagation of conformal blocks, we
obtain (2.44b). (Note again that in Fig. 2.6 and 2.7, the sewing radii can be chosen to be
admissible when all the sewing moduli are set to 1. Therefore, the contractions converge
absolutely.)

“

Figure 2.7 The figure for (2.44b)

If the local coordinate at 1{z is ζ ´ 1{z instead of 1{ζ ´ z, then

W b V b W1 Ñ C w b v b w1 ÞÑ xw1, Yipv, 1{zqwy

47



defines a conformal block. Now, the element γz P G (cf. (1.1b)) transforms 1{ζ ´ z to
ζ ´ 1{z, that is, γz ˝ p1{ζ ´ zq “ ζ ´ 1{z. By Prop. 1.24, the linear functional

W b V b W1 Ñ C w b v b w1 ÞÑ xw1, YipUpγzqv, 1{zqwy “ xw1, Y 1
i pv, zqwy

defines a conformal block associated to the geometric data on the RHS of Fig. 2.7.

Step 2. By the definition of contractions (cf. (1.48)) and the map ℵ7
z , we can write

(2.44a) (equivalently, Fig. 2.6) as
ÿ

λ,µPC

@

w1,Φi,`pP`pλqP´pµqℵ7
zpvq b wq

D

“
@

w1, Yipv, zqw
D

(2.45)

Therefore, for each λ, µ P C, we have
@

w1, PipλqYipv, zqPipµqw
D

“
@

Pipλqw1, Yipv, zqPipµqw
D

(2.45)
ùùùùù

ÿ

rλ,rµPC

@

Pipλqw1,Φi,`pP`prλqP´prµqℵ7
zpvq b Pipµqwq

D

(2.11b)
ùùùùù

(2.11c)

@

w1,Φi,`pP`pλqP´pµqℵ7
zpvq b wq

D

Since w1 P W1 is arbitrary, we obtain (2.43a). Similarly, (2.44b) implies
ÿ

λ,µPC

@

w1,Φi,´pw b P´pµqP`pλqℵ7
zpvqq

D

“
@

w1, Y 1
i pv, zqw

D

(2.46)

and hence
@

w1, PipµqY 1
i pv, zqPipλqw

D

“
@

Pipµqw1, Y 1
i pv, zqPipλqw

D

(2.46)
ùùùùù

ÿ

rλ,rµPC

@

Pipµqw1,Φi,´pPipλqw b P´prµqP`prλqℵ7
zpvqq

D

(2.12b)
ùùùùù

(2.12c)

@

w1,Φi,´pw b P´pµqP`pλqℵ7
zpvqq

D

Eq. (2.43b) follows.

Corollary 2.21. Assume that N “ 2 and W P ModpVb2q. Let z P Cˆ. For each λ P C, let

χλ “ P`pλqP´pλqℵ7
zp1q P pbNCqrλ,λs (2.47)

Then χλ is independent of the choice of z. Moreover, for each w P W, we have

χλ ˛L w “ P`pλqw, w ˛R χλ “ P´pλqw. (2.48)

Proof. (2.48) follows from Thm. 2.20 by choosing v “ 1 and µ “ λ. By the definition of ℵz
and ℵ7

z in Def. 2.15, the element ℵ7
zp1q P bNC “ pnNCq˚ is equal toω. Therefore, ℵ7

zp1q is
independent of z. So is χλ.
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Corollary 2.22. pχλqλPC is a family of mutually orthogonal idempotents in the algebra bNC, i.e.,
for each λ, µ P C, χλ ˛ χµ “ δλ,µχµ. Moreover, we have

dim
`

χλ ˛ bNC ˛ χµ
˘

ă 8

For each ψ P bNC, we have

ψ “
ÿ

λ,µPC
χλ ˛ ψ ˛ χµ (2.49)

where RHS is a finite sum. Therefore, pbNC, ˛q is an AUF algebra in the sense of [GZ25b].

Proof. By Cor. 2.21 with W “ bNC, for each λ, µ P C, we have

χλ ˛ χµ “ P`pλqχµ “ δλ,µχµ

and

χλ ˛ bNC ˛ χµ “ bNCrλ,µs (2.50)

(2.50) implies that dim
`

χλ ˛ bNC ˛ χµ
˘

ă 8. Moreover, we have a decomposition

bNC “
à

λ,µPC
pbNCqrλ,µs

(2.50)
ùùùùù

à

λ,µPC
χλ ˛ bNC ˛ χµ

which implies (2.49).

Corollary 2.23. The canonical involution Θ is an anti-automorphism of the associative algebra
bNC. That is, for each ψ1, ψ2 P bNC, we have

Θψ1 ˛ Θψ2 “ Θpψ2 ˛ ψ1q (2.51)

Proof. By Thm. 2.8, Θ intertwines Φi,` and Φi,´. Therefore, for each w,ψ P bNC, we have

Θψ ˛ w “ Φ`,´pw b ψq

Therefore

pΘψ1 ˛ Θψ2q ˛ w “ Θψ1 ˛ pΘψ2 ˛ wq “ Θψ1 ˛ Φ`,´pw b ψ2q

“Φ`,´pΦ`,´pw b ψ2q b ψ1q

By Thm. 2.13, the last term above equals

Φ`,´pw b pψ2 ˛ ψ1qq “ Θpψ2 ˛ ψ1q ˛ w

Since bNC is AUF, there exists an idempotent w such that

pΘψ1 ˛ Θψ2q ˛ w “ Θψ1 ˛ Θψ2 Θpψ2 ˛ ψ1q ˛ w “ Θpψ2 ˛ ψ1q

This proves (2.51).
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2.7 The linear isomorphism F : ModpVq
»

ÝÝÑ CohLpbNCq

In this section, we apply the previous results to the case where N “ 1. Recall from
(1.7) that for each M P ModpVq,

End0pMq » M bC M1

is a C-subalgebra of EndpMq. For the remainder of this article, we identify these two
spaces when no confusion arises.

Definition 2.24. A left bNC-module pM, πMq is called coherent if it is finitely generated,
and if for each m P M there exists ψ P bNC such that πMpψqm “ m. See [GZ25b, Sec. 2]
for equivalent descriptions of coherent left bNC-modules. The linear category of coherent
left bNC-modules is denoted by CohLpbNCqCohLpbNCqCohLpbNCq.

Definition 2.25. Let M P ModpVq. Note that by Prop. 2.3, we have

HomVb2pbNC,M b M1q “ T ˚

˜ ¸

“ T ˚

˜ ¸

(2.52)

By the universal property of dual fusion products (cf. Def. 1.10), there is a unique

πM P HomVb2pbNC,M b M1q

whose transpose πtM : M1bM Ñ nNC composed withω : nNC Ñ C equals the evaluation
pairing id5

M : M1 b M Ñ C,m1 bm ÞÑ xm1,my, that is,

ω ˝ πtM “ id5
M

As conformal blocks, πM clearly equals the map Φ1,` defined in Def. 2.7 for W “ M. More
precisely, the map Φ` ” Φ1,` satisfies

Φ` : bNC b M Ñ M ψ bm ÞÑ πMpψqm (2.53)

where πMpψq P End0pMq is viewed as a linear operator on M.

Remark 2.26. By Thm. 2.20, for each m P M, v P V and λ, µ P C and z P Cˆ, we have

πM
`

P`pλqP´pµqℵ7
zpvq

˘

m “ P pλqYMpv, zqP pµqm (2.54a)

πM
`

P`pď λqP´pď µqℵ7
zpvq

˘

m “ P pď λqYMpv, zqP pď µqm (2.54b)

In particular, we have πMpχλqm “ P pλqm.

Proposition 2.27. Let M P ModpVq. Then pM, πMq is a coherent left bNC-module, i.e.,
pM, πMq P CohLpbNCq.
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Proof. By Thm. 2.13, pM, πMq is a left bNC-module. Since M is a finitely generated V-
module, by Rem. 2.26, M is a finitely generated left bNC-module. For each m P M,
choose λ P C such that m P Mrďλs. Let ψ P bNC be

ř

µďλ P`pµqP´pµqℵ7
1p1q. By Rem. 2.26,

we have πMpψqm “ P pď λqm “ m. Therefore, pM, πMq is coherent.

Proposition 2.28. Let M1,M2 P ModpVq and T : M1 Ñ M2 be a linear map. Then T inter-
twines the actions of V if and only if T intertwines the actions of bNC. Therefore, we have

HomVpM1,M2q “ HombNCpM1,M2q

Proof. By Rem. 2.19 and 2.26, T belongs to HombNCpM1,M2q iff

TP pλqY pv, zqP pµqm “ P pλqY pv, zqP pµqTm

holds for each λ, µ P C, v P V, m P M1, and z P Cˆ. This is clearly equivalent to

TP pλqY pvqnP pµqm “ P pλqY pvqnP pµqTm (2.55)

for each λ, µ, v,m, and n P Z. If this holds, then taking the sum over all λ, µ, we obtain

TY pvqnm “ Y pvqnTm (2.56)

for all v P V,m P M1 and n P Z, which implies T P HomVpM1,M2q. Conversely, assume
that T P HomVpM1,M2q. Then (2.56) holds. By Lem. 2.2, T intertwines the actions of P pλq

and P pµq. Therefore (2.55) is true.

Theorem 2.29. The linear functor

F : ModpVq Ñ CohLpbNCq

pM, YMq ÞÑ pM, πMq

T P HomVpM1,M2q ÞÑ T P HombNCpM1,M2q

(2.57)

is an isomorphism of C-linear categories. Consequently, CohLpbNCq is an abelian category since
ModpVq is so.

It follows that bNC is strongly AUF in the sense of [GZ25b]. That is, the AUF algebra
bNC has finitely many irreducibles (cf. [GZ25b, Cor. 6.4])—equivalently, CohLpbNCq has
a projective generator (cf. [GZ25b, Prop. 7.8]).

Proof. Step 1. Note that if pM1, YM1q and pM2, YM2q are sent by F to the same object,
then clearly M1 “ M2 as vector spaces. Moreover, the identity map on M1 intertwines
the actions of bNC, and hence intertwines the actions of V by Prop. 2.28. This proves
YM1 “ YM2 .

According to the above paragraph, if we can prove that F is surjective, namely, each
object pM, πMq of CohLpbNCq equals F pM, YMq for some pM, YMq P ModpVq, then this
object pM, YMq is unique. Therefore, the functor G : CohLpbCq Ñ ModpVq sending each
pM, πMq to pM, YMq and sending each morphism to itself must be the inverse functor of
F . This will finish the proof that F is an isomorphism of linear categories.
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To prove that F is surjective, it suffices to prove that it is essentially surjective.
Indeed, suppose the latter is true. Choose any pM, πMq P CohLpbNCq. Then there exists
p rM, Y

rMq P ModpVq and an isomorphism of left bNC-modules T : pM, πMq Ñ p rM, π
rMq,

where p rM, π
rMq “ F p rM, Y

rMq. Let YMp´, zq “ T´1Y
rMp´, zqT . Then pM, YMq P ModpVq and

F pM, YMq “ pM, πMq.

Step 2. Let us prove that F is essentially surjective. Let C be the set of equivalence
classes of objects in the range of F . It is clear that C is closed under finite direct sums. C
is also closed under taking quotients. More precisely: Suppose that pM, πMq “ F pM, YMq

where pM, YMq P ModpVq, and that X Ă M is a linear subspace invariant under the left ac-
tion of bNC. Then M{X belongs to the range of F . To see this, we note that by Rem. 2.26,
X is V-invariant, so YM descends to a vertex operator YM{X on M{X, making pM{X, YM{Xq

an object of ModpVq. By Rem. 2.26 again, it is clear that F pM{X, YM{Xq is the quotient of
pM, πMq by X.

By [GZ25b, Def. 2.3], any object in CohLpbNCq is isomorphic to a quotient of a finite
direct sum of objects of the form bNC ˛ e where e P bNC is an idempotent. Moreover, by
(2.49), e is a subidempotent of f (i.e. e ˛ f “ f ˛ e “ e) where f “

ř

µPE χµ with E a finite
subset of C. Therefore, by the above paragraph, it suffices to show that for each µ P C, the
left bNC-module X :“ bNC ˛ χµ (whose module structure rπX is defined by the left action
of bNC, i.e., rπXpψqpw ˛ χµq “ ψ ˛ w ˛ χµ for each ψ,w P bNC) belongs to the range of F .

By Cor. 2.22, we have

X “
à

λPC
pbNCqrλ,µs

as vector spaces. This shows that X is a grading-restricted generalized V-module with
vertex operator YX defined to be the restriction of YbNC,` to X. (In fact, for any W P

ModpVb2q,
`
À

λWrλ,µs, YW,`

˘

is clearly an object of ModpVq.) Let pX, πXq be F pX, YXq.
Let us prove that rπX “ πX. This will finish the proof that pX, rπXq belongs to the range of
F .

By Rem. 2.19, it suffices to prove that rπXpψq “ πXpψq where ψ “ P`pλqP´pκqℵ7
1pvq for

some λ, κ P C and v P V. Choose any w P bNC. Then

rπXpψqpw ˛ χµq “ ψ ˛ w ˛ χµ “ pψ ˛ wq ˛ χµ

(2.43)
ùùùùùpP`pλqYbNC,`pv, 1qP`pκqwq ˛ χµ

(2.48)
ùùùùù P´pµqP`pλqYbNC,`pv, 1qP`pκqw

On the other hand,

πXpψqpw ˛ χµq
(2.54)

ùùùùù P pλqYXpv, 1qP pκqpw ˛ χµq “ P`pλqYbNC,`pv, 1qP`pκqpw ˛ χµq

(2.48)
ùùùùù P`pλqYbNC,`pv, 1qP`pκqP´pµqw “ P´pµqP`pλqYbNC,`pv, 1qP`pκqw

This proves rπXpψq “ πXpψq.

Corollary 2.30. Let pG, YGq be a generator of ModpVq, that is, each object of ModpVq has an
epimorphism from a finite direct sum of G. Then pG, πGq is a generator of CohLpbNCq, and

πG : bNC Ñ G b G1 “ End0pGq (2.58)
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is an injective homomorphism of associative C-algebras. Moreover, for each z P Cˆ, we have

πGpbNCq “ SpanC
␣

P pλqYGpv, zqP pµq
ˇ

ˇ

G : λ, µ P C, v P V
(

(2.59)

Proof. By Thm. 2.29, pG, πGq is a generator of CohLpbNCq. Therefore, for each λ P C,
since bNC ˛ χλ belongs to CohLpbNCq, it has an epimorphism from a direct sum of G.
Therefore, if x P bNC acts as zero on G, then for each finite set E Ă C, x acts as zero on
À

λPE bNC ˛ χλ. Note that this space can be written as pbNCq ˛ eE where eE “
ř

λPE χλ
is an idempotent of bNC. Since there exists E such that this space contains x, we have
x “ x ˛ eE and eE P pbNCq ˛ eE , and hence x “ 0. This proves the injectivity of (2.58). Eq.
(2.59) follows immediately from Rem. 2.19 and 2.26.

Corollary 2.31. Let pG, YGq be a projective generator of ModpVq. Then pG, πGq is a projective
generator of CohLpbNCq. Moreover, if we let B be EndVpGqop, the opposite algebra of EndVpGq,
then (2.58) restricts to an isomorphism of associative C-algebras

πG : bNC
»

ÝÝÑ End0BpGq (2.60)

which is also an isomorphism in ModpVb2q.

Recall (1.8) for the meaning of End0BpGq.

Proof. By Thm. 2.29, pG, πGq is a projective generator of CohLpbNCq. Note that (2.58) is
simultaneously an injective homomorphism of associative algebras and (by Def. 2.25) an
injective homomorphism of Vb2-modules. By [GZ25b, Thm. 11.7], the range of (2.58)
is End0BpGq. This proves that (2.58) restricts to an isomorphism of C-algebras (2.60). In
particular, (2.60) is bijective. Since End0BpGq is clearly an Vb2-submodule of G b G1 P

ModpVb2q, we have End0BpGq P ModpVb2q. It follows that (2.60) is also an isomorphism
in ModpVb2q.

2.8 An alternative proof of the equivalence bNC »
ş

MPModpVq
M bC M1

In this section, we use the results developed in the preceding sections to give an al-
ternative proof of the isomorphism bNC »

ş

MPModpVq
M bC M1, originally established in

[GZ25a, Sec. 0.6] with the help of [FSS20].
We first review the definition of ends and coend in the context of VOAs.

Definition 2.32. Let N P N, and let D be a category. Suppose that F : ModpVbN q ˆ

ModpVbN q Ñ D is a covariant bi-functor and A,B P D . A family of morphisms

φW : F pW1,Wq Ñ A resp. ψW : B Ñ F pW1,Wq (2.61)

for all W P ModpVbN q (with contragredient module W1) is called dinatural if for any
M P ModpVbN q and T P HomVbN pM,Wq (with transpose T t), the diagram

F pW1,Mq F pM1,Mq

F pW1,Wq A

F pT t,idMq

F pidW1 ,T q φM

φW

resp.

B F pW1,Wq

F pM1,Mq F pM1,Wq

ψW

ψM F pT t,idWq

F pidM1 ,T q
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commutes. A dinatural transformation φW : F pW1,Wq Ñ A (resp. ψW : B Ñ F pW1,Wq)
is called a coend (resp. an end) in D if it satisfies the universal property that for any
rA P D (resp. rB P D) and dinatural transformation rφW : F pW1,Wq Ñ rA (resp rψW :
rB Ñ F pW1,Wq) for all W P ModpVbN q, there is a unique Γ P HomDpA, rAq (resp. Ψ P

HomDp rB,Bq) such that rφW “ Γ ˝ φW (resp. rψW “ ψW ˝ Ψ) holds for all W. In that case,
we write

A “

ż WPModpVbN q

F pW1,Wq resp. B “

ż

WPModpVbN q

F pW1,Wq

From the universal property, if (co)ends exist, then they are unique up to unique iso-
morphisms. In this paper, we mainly consider the covariant bi-functor

F : ModpVq ˆ ModpVq Ñ ModpVb2q F pM,Wq “ W bC M

Theorem 2.33. The dinatural transform πM : bNC Ñ End0pMq “ M b M1 (for all M P

ModpVq) is an end in ModpVb2q. In short, we have

bNC »

ż

MPModpVq

M b M1 as Vb2-modules

The dinaturality of pπMqMPModpVq, which means that πWp´q ˝ T “ T ˝ πMp´q holds for
each M,W P ModpVq and T P HomVpM,Wq, is obvious due to Prop. 2.28.

Proof. Let us check the universal property. Let pψM : A Ñ M b M1qMPModpVq be a dinat-
ural transform in ModpVb2q, where A P ModpVb2q. Choose a projective generator G P

ModpVq. By the dinaturality, for any T P EndVpGq, we have pidG b T tqψG “ pT b idG1qψG.
Therefore, each element in the range of ψG : A Ñ G b G1 “ End0pGq, as a linear opera-
tor on G, commutes with each T P EndVpGq. Therefore, ψGpAq is contained in End0BpGq

where B “ EndVpGqop. By Cor. 2.31, there is a unique Vb2-module morphism Ψ satisfy-
ing

Ψ : A Ñ bNC ψG “ πG ˝ Ψ

Indeed, one sets Ψ “ π´1
G ˝ ψG.

To prove the existence part of the universal property, we need to prove ψM “ πM˝Ψ for
all M P ModpVq, not just for G. Let rψM “ πM ˝Ψ. Then p rψM : A Ñ MbM1qMPModpVq is also
a dinatural transform. Moreover, we know that the dinatural transforms pψMqMPModpVq

and p rψMqMPModpVq agree when M “ G. Thus, they agree on any finite direct sum of G. For
any M P ModpVq, there exist n P N` and an epimorphism T : X Ñ M where X “ G‘n. By
the dinaturality, we have commuting diagrams

A M b M1

X b X1 M b X1

ψM

ψX idMbT t

TbidX1

A M b M1

X b X1 M b X1

rψM

rψX idMbT t

TbidX1
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where ψX “ rψX. Thus pidM b T tqψM “ pidM b T tq rψM. Since T t is injective and hence
idM b T t is injective, we conclude ψM “ rψM.

Finally, we check the uniqueness. Suppose that Ψ1 : A Ñ bNC is another morphism
satisfying ψM “ πM˝Ψ1 for all M P ModpVq. Then ψG “ πG˝Ψ1, and hence πG˝Ψ “ πG˝Ψ1.
By Cor. 2.30, πG is injective. Therefore Ψ “ Ψ1.

Corollary 2.34. The dinatural transform πtM : M1 bM Ñ nNC (for all M P ModpVq) is a coend
in ModpVb2q. In short, we have

nNC »

ż MPModpVq

M1 b M as Vb2-modules

Proof. It follows from Thm. 2.33 by taking transpose and reversing the arrows.

2.9 Symmetric linear functionals on W P ModpVb2q

In this section, we assume N “ 2 and fix W P ModpVb2q. Recall that by Cor. 2.14, W
is a bNC-bimodule. Let C “ pC

ˇ

ˇtz, ¸u; ηz, η¸q be a standard 2-pointed sphere. Recall Rem.
1.31 for the meaning of T ˚

C pWq. Recall the canonical involution Θ defined in Thm. 2.8.

Definition 2.35. Let W P ModpVb2q. A linear map ϕ : W Ñ C is called a symmetric
linear functional if

ϕpψ ˛L wq “ ϕpw ˛R ψq for all ψ P bNC, w P W

The space of symmetric linear functionals on W is denoted by SLFpWqSLFpWqSLFpWq.

Theorem 2.36. Assume N “ 2, and let W P ModpVb2q, viewed as a bNC-bimodule. Let
ϕ : W Ñ C be a linear map. Then ϕ P SLFpWq if and only if ϕ P T ˚

C pWq (i.e., ϕ satisfies (1.36)
for all v P V and w P W). In short, we have

SLFpWq “ T ˚
C pWq

Proof. By Rem. 2.19, any element in bNC is a linear combination of elements of the form
P`pλqP´pµqℵ7

zpvq, where λ, µ P C, z P Cˆ, and v P V. Thus, ϕ P SLFpWq iff

xϕ, P`pλqP´pµqℵ7
zpvq ˛L wy “ xϕ, w ˛R P`pλqP´pµqℵ7

zpvqy (2.62)

for each v P V, w P W, λ, µ P C, and z P Cˆ. By Thm. 2.20, (2.62) is equivalent to

xϕ, P`pλqY`pv, zqP`pµqwy “ xϕ, P´pµqY 1
´pv, zqP´pλqwy

for all v, w, λ, µ, z, and hence equivalent to

xϕ, P`pλqY`pvqnP`pµqwy “ xϕ, P´pµqY 1
´pvqnP´pλqwy (2.63)

for all v, w, λ, µ and n P Z, where Y 1
´pv, zq “

ř

n Y
1

´pvqnz
´n´1.

We want to show that condition (2.63) is equivalent to (1.36), i.e.,

xϕ, Y`pvqnwy “ xϕ, Y 1
´pvqnwy (2.64)
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holds for all v and n P Z. If (2.63) holds, by taking sum over all λ, µ, we obtain (2.64).
Conversely, suppose that (2.64) holds. Then xϕ, P`pκqwy “ xϕ, P´pκqwy holds for each
κ P C due to Lem. 2.2, and hence

xϕ, P`pλqY`pvqnP`pµqwy “ xϕ, P´pλqY`pvqnP`pµqwy

“xϕ, Y`pvqnP´pλqP`pµqwy “ xϕ, Y 1
´pvqnP´pλqP`pµqwy

“xϕ, P`pµqY 1
´pvqnP´pλqwy “ xϕ, P´pµqY 1

´pvqnP´pλqwy

This proves (2.63).

By Prop. 1.32, regardless of which ordering we choose for tz, ¸u, the pair pbNC,ωq is
a fusion product of C along C. Therefore, we have a linear isomorphism

HomVb2pW,nNCq
»

ÝÝÑ T ˚
C pWq T ÞÑ ω ˝ T (2.65)

Recall that nNC “ pbNCq˚. Therefore, for each w P W and T P HomVb2pW,nNCq, the
element Tw is a linear functional on bNC.

Theorem 2.37. Choose ξ P T ˚
C pWq, and let T P HomVb2pW,nNCq be the unique morphism

satisfying ξ “ ω ˝ T . Then for each w P W, and ψ P bNC, we have

xT pwq,Θψy “ ξpψ ˛L wq “ ξpw ˛R ψq (2.66)

Proof. The second equality in (2.66) is obvious. Let us prove the first one.
Define A “ Θt ˝ T : W Ñ nNC, which clearly belongs to

T ˚

˜ ¸

(2.67)

Define B “ ξ ˝ Φ`,` : bNC b W Ñ C, which is a composition of conformal blocks as
indicated by Fig. 2.8. Therefore, B belongs to (2.67).

B “

Figure 2.8 The conformal block B.

Sinceω “ ω ˝ Θt (cf. Thm. 2.8), we haveω ˝A “ ω ˝ Θt ˝ T “ ξ. This is a relation of
conformal blocks, as indicated in Fig. 2.9.
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“

Figure 2.9 The relationω ˝A “ ξ.

On the other hand, for each w P W, we have

ωp´qBp´ b wq “ ξ ˝ pωp´qΦ`,`p´ b wqq
(2.15)

ùùùùù ξpwq (2.68)

See Fig. 2.10. Therefore, by the partial injectivity of ω (cf. Rem. 1.39), we see that A and
B correspond to the same conformal block in (2.67). More precisely: xAw,ψy “ Bpψ bwq

holds for all w P W, ψ P bNC. This proves (2.66).

(2.16)
ùùùùù “

Figure 2.10 The pictorial illustration of (2.68).

We now consider the case where W “ bNC. Then (2.65) becomes the linear isomor-
phism

HomVb2pbNC,nNCq
»

ÝÝÑ SLFpbNCq “ T ˚
C pbNCq T ÞÑ ω ˝ T (2.69)

Corollary 2.38. Choose ξ in SLFpbNCq, and let T P HomVb2

`

bN C,nNC
˘

be the unique
morphism satisfying ξ “ ω ˝ T . Then the following are equivalent:

(a) T is injective.

(b) T is surjective.

(c) T is an isomorphism of Vb2-modules.

(d) The symmetric linear functional ξ is non-degenerate, that is, the following map is injective:

bNC Ñ pbNCq˚ ψ ÞÑ ξpψ ˛ ´q (2.70)
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Proof. For each λ, µ P C, the morphism T restricts to

T : pbNCqrλ,µs Ñ pnNCqrλ,µs (2.71)

whose domain and codomain have the same finite dimension (because pnNCqrλ,µs is the
dual space of pbNCqrλ,µs). Therefore, T is injective iff T is surjective iff T is bijective.
This proves the equivalence of (a), (b), and (c). By Thm. 2.37, the map (2.71) sends each
w P bNC to Θt ˝ T pwq. Therefore, (a) and (d) are equivalent.

3 Torus conformal blocks and pseudo-q-traces

3.1 The space T ˚
Tz,q

pVq of vacuum torus conformal blocks

3.1.1 The geometric setting

As usual, we let ζ be the standard coordinate of C. We fix a standard 2-pointed sphere
C, viewed as an p0, 2q-pointed sphere. Fix z P Cˆ, and fix τ P H where H Ă C is the (open)
upper half plane. Let q “ e2iπτ with arg q “ 2πℜpτq. Let Qz,q be the p1, 2q-pointed sphere
with local coordinates described by

Qz,q “
`

t8, 0u; 1{qζ, ζ
ˇ

ˇP1
ˇ

ˇz; ζ ´ z
˘

Since 0 ă |q| ă 1, C can be composed with Qz,q, because the sewing radii can be chosen
to be admissible when the sewing moduli are set to 1. Let

Ç : t`,´u
»

ÝÝÑ t8, 0u Çp`q “ 8 Çp´q “ 0 (3.1)

be the default ordering of the outgoing marked points of Qz,q. Let ε be an arbitrary or-
dering of the marked points of C. Let Tz,q be the 1-pointed torus with local coordinates
defined by

Tz,q “ C#ε,ÇQz,q

That is,

“

Clearly, Tz,q is isomorphic to
´

C{pZ ` τZq

ˇ

ˇ

ˇ

log z

2iπ
; e2iπζ ´ z

¯

3.1.2 The sewing-factorization theorem for vacuum torus conformal blocks

Recall from Rem. 1.31 that T ˚
C pbNCq is the space of conformal blocks associated to

bNC and C, where the choice of ordering is irrelevant. Recall from Thm. 2.36 that

SLFpbNCq “ T ˚
C pbNCq

Let T ˚
Tz,q

pVq be the space of conformal blocks associated to V and Tz,q via the unique
ordering of the marked point of Tz,q.
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Remark 3.1. Let ιz be the unique ordering of tzu. As noted in Def. 2.15, pbNC,ℵzq is an
pÇ, ιzq-fusion product of V along Qz “ Qz,1. Let

ℵz,q “ ℵz ˝ pqL`p0q b idVq : nNC b V Ñ C

whose corresponding map V Ñ bNC is

ℵ7
z,q “ qL`p0q ˝ ℵ7

z : V Ñ bNC

Then by Prop. 1.25, pbNC,ℵz,qq is an pÇ, ιzq-fusion product of V along Qz,q.

Theorem 3.2. We have a linear isomorphism

SLFpbNCq
»

ÝÝÑ T ˚
Tz,q

pVq ξ ÞÑ ξ ˝ ℵ7
z,q (3.2)

where the RHS converges absolutely in the sense of (1.49b).

Proof. This is a special case of the sewing-factorization Thm. 1.38.

The picture for the sewing-factorization isomorphism (3.2) is

ÞÝÑ

3.2 The isomorphism SLFpEndVpGqopq » T ˚
Tz,q

pVq via pseudo-q-traces

Let pG, YGq be a projective generator of ModpVq. By Cor. 2.31, pG, πGq is a projective
generator of ModpbNCq. Let

B “ EndVpGqop
Prop.2.28

ùùùùùùù EndbNCpGqop

which is a finite-dimensional unital C-algebra. Then G is a bNC-B bimodule.

3.2.1 Pseudotraces

By Prop. 9.1 and Thm. 9.4 of [GZ25b], or by [GR19, Lem. 5.3], G is a projective right
B-module. In particular, each graded subspace Grλs is a finite-dimensional projective
right B-module. It follows that the right B-module G has a left coordinate system, i.e., a
collection of morphisms of right B-modules

αi P HomBpB,Gq qαi P HomBpG, Bq, where i P I (3.3)

satisfying the following conditions:

(a) For each ξ P G, we have qαipξq “ 0 for all but finitely many i P I , and
ř

iPI αi˝qα
ipξq “

ξ.
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(b) For each x P End0BpGq, we have x ˝ αi “ 0 and qαi ˝ x “ 0 for all but finitely many
i P I .

Definition 3.3. For each ϕ P SLFpBq, the associated (left) pseudotrace Trϕ : End0BpGq Ñ

C is defined by sending each x P End0BpGq to

Trϕpxq “
ÿ

iPI

ϕ
`

qαi ˝ x ˝ αip1Bq
˘

(3.4)

Then Trϕ is independent of the choice of left coordinate systems, and Trϕ P

SLFpEnd0BpGqq. See [GZ25b, Sec. 4] for details.

Theorem 3.4. We have a linear isomorphism

SLFpEndVpGqopq
»

ÝÝÑ SLFpbNCq ϕ ÞÑ Trϕ ˝ πG (3.5)

Moreover, ϕ is non-degenerate if and only if Trϕ ˝ πG is non-degenerate.

Proof. This is due to Thm. 9.4 and 10.4 of [GZ25b].

Remark 3.5. Recall from (2.69) the bijection between T P HomVb2pbNC,nNCq and ξ P

SLFpbNCq related by ξ “ ω ˝ T . Therefore, by Thm. 3.4, there is a bijection between
ϕ P SLFpEndVpGqopq and

T ϕ P HomVb2pbNC,nNCq » HomVb2

´

ż

MPModpVq

M b M1,

ż MPModpVq

M1 b M
¯

(cf. Thm. 2.33 and Cor. 2.34 for the last equivalence) related by

Trϕ ˝ πG “ ω ˝ T ϕ (3.6)

Moreover, by Cor. 2.38, ϕ is non-degenerate iff T ϕ is an isomorphism of Vb2-modules.

Remark 3.6. In the special case that V is strongly-finite (i.e. the C2-cofinite VOA
V “

À

nPNVpnq satisfies V » V1 and dimVp0q “ 1), suppose that the conjectured
rigidity of ModpVq holds. Then by [McR21], ModpVq is a factorizable finite ribbon cat-
egory. Therefore, by [GR20], there is a distinguished (up to scalar multiplication) element
ϕ P SLFpEndVpGqopq, called the modified trace, which is non-degenerate [GR20, Prop.
4.2]. Therefore, by Rem. 3.5, ϕ gives rise to a distinguished Vb2-module isomorphism

T ϕ : bNC
»
ÝÑ nNC

In particular, bNC is self-dual. (The self-dualness of the end bNC also follows (more
directly) from [Shi17].)
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3.2.2 The isomorphism SLFpEndVpGqopq » T ˚
Tz,q

pVq

Recall z P Cˆ, q “ e2iπτ (where τ P H), and the 1-pointed torus Tz,q in Subsec. 3.1.1.
We are now ready to prove the following conjecture by Gainutdinov-Runkel, cf. [GR19,
Conjecture 5.8]. Note that each element of T ˚

Tz,q
pVq is a linear functional on V.

Theorem 3.7. Let pG, YGq be a projective generator of ModpVq. Then we have a linear isomor-
phism

SLFpEndVpGqopq
»

ÝÝÑ T ˚
Tz,q

pVq ϕ ÞÑ Trϕ
`

YGp´, zqqLp0q
˘

(3.7)

where the RHS is understood as follows: for each v P V,

Trϕ
`

YGpv, zqqLp0q
˘

:“
ÿ

λPC
Trϕ

`

P pλqYGpv, zqqLp0qP pλq
˘

and the series on the RHS converges absolutely.

The construction of Trϕ
`

YGp´, zqqLp0q
˘

from ϕ is called the pseudo-q-trace construc-
tion.

Proof. Let us show that the composition of the isomorphisms (3.2) and (3.5) agrees with
(3.7). We compute that

x(3.2) ˝ (3.5)pϕq, vy “ pTrϕ ˝ πGq ˝ ℵ7
z,qpvq

Thm. 1.34
ùùùùùùù

ÿ

λ,µPC
Trϕ ˝ πG

`

P pλ, µqℵ7
z,qpvq

˘

“
ÿ

λ,µPC
Trϕ ˝ πG

`

P`pλqP´pµqℵ7
z,qpvq

˘

“
ÿ

λ,µPC
Trϕ ˝ πG

`

P`pλqP´pµqqL`p0qℵ7
zpvq

˘

where the sums converge absolutely. Recall from Def. 2.25 that for each ψ P bNC and w P

G, we have Φ`pψ bwq “ πGpψqw. By (2.9c), we have Φ`pqL`p0qψ bwq “ qLp0qΦ`pψ bwq,
and hence πGpqL`p0qψq “ qLp0qπGpψq. Therefore,

x(3.2) ˝ (3.5)pϕq, vy “
ÿ

λ,µPC
Trϕ

´

qLp0qπG
`

P`pλqP´pµqℵ7
zpvq

˘

¯

(2.54a)
ùùùùù

ÿ

λ,µPC
Trϕ

`

qLp0qP pλqYGpv, zqP pµq
˘

“
ÿ

λ,µPC
Trϕ

`

P pλqqLp0qP pλqYGpv, zqP pµq
˘

Since Trϕ a symmetric linear functional on End0BpGq, the last term above equals
ÿ

λ,µPC
Trϕ

`

P pλqYGpv, zqP pµqP pλqqLp0qP pλq
˘

“
ÿ

λPC
Trϕ

`

P pλqYGpv, zqqLp0qP pλq
˘

This finishes the proof.

For any associative C-algebra A, let ZpAq be its center.
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Corollary 3.8. Assume that V is strongly-finite, and that the conjectured rigidity of ModpVq

holds. Then for each projective generator G of ModpVq, and for each non-degenerate ϕ P

SLFpEndVpGqopq (cf. Rem. 3.6 for the existence), we have a linear isomorphism

ZpEndVpGqopq
»

ÝÝÑ T ˚
Tz,q

pVq x ÞÑ Trϕx
`

YGp´, zqqLp0q
˘

(3.8)

where ϕx P SLFpEndVpGqopq is defined by sending each y P EndVpGqop to ϕpxyq.

Proof. This follows immediately from Thm. 3.7 and the easy fact that for any finite-
dimensional C-algebra A and a fixed non-degenerate ϕ P SLFpAq, the map

ZpAq Ñ SLFpAq x ÞÑ ϕx

is a linear isomorphism.
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